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Chapter 1: Introduction

Supercomputers and parallel computers consist of many individual nodes con-

nected by edges in an interconnection network. The nodes communicate with each

other by passing messages along the edges of the network using a standard mes-

sage passing mechanism such as the Message Passing Interface (MPI) [10]. The

topology chosen for the interconnection network therefore plays an integral role in

the performance of the computer. One of the more popular choices is the toroidal

topology, which includes toroidal meshes and the k-ary n-cube. For example,

the IBM BlueGene/Q [10], the Cray XE6 and XK7 (3D torus gemini intercon-

nect [3]), the HP GS1280 multiprocessor [14], the K-computer [1], and the Intel

Ivy bridge [18] all use a toroidal topology.

Eisenstein-Jacobi networks (often abbreviated as EJ networks) are an alterna-

tive to 2D tori. Originally developed over two decades ago [30], an EJ network

is a 2D wraparound network of degree six. Many topological properties of these

networks were explored in [37], [24]. It is shown in [2] that EJ networks are a gen-

eralization of the hexagonal torus networks developed earlier in [31], [11], and [22].

In particular, the hexagonal torus topology was used in the design of the Hexag-

onal Architecture for Real-Time Systems (HARTS) machine at the University of

Michigan [31]. The Mayfly [19] designed at HP laboratories is another example

of a parallel system that uses a hexagonal torus topology and a hexagonal topol-

ogy has been proposed for cellular networks [27]. In Chapter 2 we develop two

deadlock-free routing algorithms for hexagonal torus interconnection networks.

Gaussian networks [38] were proposed as another alternative to toroidal net-

works. Both a 2D torus and a Gaussian network are of degree four whereas the

latter has smaller diameter than a torus with an approximately the same num-

ber of nodes. A smaller diameter directly translates to a smaller average message

latency, the average time of arrival and departure of messages in the network. Su-



2

percomputers with large number of nodes usually employ n-dimensional tori. For

example, the IBM BlueGene/Q [10] uses a 5D torus. Gaussian networks are 2D.

In Chapter 3 we develop higher dimensional Gaussian networks as an alternative

to higher dimensional tori and many topological properties of higher dimensional

Gaussian networks are proved.

Degree-three networks are known to cost less than 2D toroidal networks where

the cost of a network is defined as the product of the degree and the diameter

of the network [44]. One well-known class of degree-three networks contains the

honeycomb networks introduced in [44]. Some honeycomb networks are shown to

have similar properties compared to 2D tori. It is shown in [41] that a honeycomb

torus can be obtained by pruning a 2D torus, and in Chapter 4 we apply a sim-

ilar pruning technique to Gaussian networks and construct degree-three pruned

Gaussian networks. Just as Gaussian networks are a generalization of 2D squared

torus networks, we show that degree-three pruned Gaussian networks are a gener-

alization of honeycomb squared torus networks. The resulting degree-three pruned

Gaussian network has a smaller diameter than the corresponding honeycomb torus

with an equivalent number of nodes.

The rest of this thesis is organized as follows. Chapter 2 contains two deadlock-

free routing algorithms for hexagonal meshes and tori. Higher dimensional Gaus-

sian networks along with their topological properties are given in Chapter 3. Chap-

ter 4 describes degree-three pruned Gaussian networks along with some topological

properties and communication algorithms. Finally, this thesis ends with some con-

cluding remark in Chapter 5.
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Chapter 2: Deadlock-free Routing in Hexagonal Interconnection

Networks

2.1 Introduction

The hexagonal torus topology was used in the design of the Hexagonal Architecture

for Real-Time Systems (HARTS) machine at the University of Michigan [31]. The

Mayfly [19] designed at HP laboratories is another example of a parallel system

that uses a hexagonal torus topology. In addition, the hexagonal topology has

been proposed for cellular networks [27].

Shortest path routing algorithms for hexagonal tori were originally proposed

in [31], [11], and [22]. These original algorithms used a three-component address-

ing scheme based on the decomposition of the network into three edge-disjoint

Hamiltonian cycles. Each of the components specifies the order of a node in one

of the three Hamiltonian cycles. This was improved in [27] to require fewer bits

in each component. Here the node addresses (x, y, z) represent the corresponding

position along the angles 0, 60 and 120 degrees from the horizontal axis. It is

shown in [27] that under this representation, a node can be represented in more

than one possible way and so the representation has some redundancy. Later on,

an improved two-component addressing scheme was given [37] and [2]. Under

this addressing scheme, each component of the address represents the position of

a the node at angles of 0 and 60 degrees from the horizontal axis. (This is sum-

marized in Section 2.2.) This scheme was proved in [2] to have a minimal number

of addressing bits.

Deadlock can be informally described as follow. Consider a group of agents

- which are usually packets in our discussion - that are each supposed to travel

along the network from a source to a destination. There might be a situation in

which these agents cannot proceed and must wait forever in the network. This
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situation happens when some group of agents are waiting for each other to release

resources. A resource can be either a physical channel, or a virtual channel, or a

buffer. When a sequence of waiting agents forms a cycle then deadlock is said to

occur in the network [17, Chapter 14].

The authors in [32] provide a minimum fraction of turns that must be pro-

hibited in hexagonal meshes and hexagonal tori (as well as in some other regular

topologies) in order to construct a deadlock-free routing algorithm in an intercon-

nection network. Prohibited turns are the turns that are not allowed to be taken

by a routing algorithm.

The resource dependence graph can be defined as a directed graph G = (V,E).

The set of nodes can be resources or agents. If an agent A is holding a resource

node B then there is an edge from A to B. In addition, if an agent A is waiting

for a resource B then there is an edge from B to A. In this resource dependence

graph, if there is a cycle then there is a possibility of deadlock in the network [15].

Cycles in the resource dependence graph are necessary but not sufficient con-

ditions for deadlock. Dally and Seitz [15] showed deadlock can be avoided if there

is a total ordering on the resources such that every packet is routed in increasing

(or decreasing) order of resources. This condition is too restrictive and it is not

necessarily required as pointed out in [23].

In this chapter we first propose a deadlock-free minimal routing algorithm for

hexagonal mesh networks based on deadlock avoidance techniques. Here, the term

minimal means that at every step in the routing algorithm the packet gets closer to

its destination. The algorithm is a deterministic routing; that is, there is exactly

one path that any packet can travel from source to destination.

Next we extend the proposed algorithm to hexagonal torus networks by adding

some extra virtual channels to the network in order to avoid the deadlock caused

by the wraparound edges. In order to verify the proposed algorithm is deadlock-

free, we use Dally and Seitz’s technique [15] of establishing a total ordering on

the resources. Two virtual channels for the deadlock-free deterministic routing

algorithm are used. How the virtual channels are used is similar to the routing
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given in [46] for toroidal networks.

Next we propose a partially adaptive minimal routing for hexagonal mesh net-

works. A partially adaptive routing algorithm offers more than one minimal path

for some source and destination pairs. This algorithm applies Glass and Ni’s turn

model [28] to hexagonal mesh networks. The basis for our algorithm is shortest

path routing [2], modified by removing cycles from the resource dependence graph.

Finally, we extend the partially adaptive routing algorithm to hexagonal torus

networks. This time the algorithm uses three virtual channels to remain deadlock-

free.

The rest of the chapter is organized as follows. Section 2.2 briefly explains the

topology of hexagonal torus networks and the turn model is reviewed in Section 2.3.

A deterministic and deadlock-free routing algorithm for hexagonal meshes and

hexagonal tori are presented in Section 2.4. Section 2.5 shows a partially adaptive

and deadlock-free routing algorithm for hexagonal meshes and hexagonal tori. The

summarizing conclusions are given in Section 2.6.

2.2 The Hexagonal Torus Topology

As discussed earlier, the hexagonal torus topology was used in the design of HARTS

network at the University of Michigan [31], [11], [22]. For every positive integer n,

the hexagonal network is denoted by Hn and its nodes are the points in the infinite

equilateral triangle grid that lie on the first n concentric hexagons about the origin.

Each node of the infinite equilateral grid lies on six edges, labeled according to its

direction by E, NE, NW, W, SW, or SE. It is shown in [24] that every node in

this infinite grid can be addressed by a two-component addressing scheme as 〈x, y〉
where x and y correspond to the signed distance of E and NE from the origin,

respectively. For instance, the nodes on the ray at an angle of 60 degrees through

the origin have coordinates 〈0, n〉 for all n = 0, 1, . . . while those on the ray at

an angle of −π/3 have coordinates 〈n,−n〉 for all n = 0, 1, . . .. Fig. 2.1 gives the

addresses for the nodes of H3.

The network Hn has two types of edges: regular and wraparound edges. Edges
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Figure 2.1: The node addresses for H3.

of the first type are the sides of all triangles in the infinite triangle grid that

connect two nodes of Hn. The second type consists of the wraparound edges,

connecting two boundary nodes in Hn. In order to explain the wraparound edges,

the concept of EJ numbers and the quotient rings are useful. These concepts are

briefly explained next.

Let ω be the complex number 1+i
√
3

2
, defining the NE direction in the infinite

grid. Every node 〈x, y〉 in the infinite triangle grid can be uniquely represented by

the complex number x + yω where x and y are integers. These complex numbers

are called the Eisenstein-Jacobi numbers or EJ numbers and they form a subring of

the field of complex numbers. An EJ interconnection network [30], [37] is generated

by a fixed EJ number α = a + bω. Its nodes are the congruence classes modulo α

where the nodes x = x1 + x2ω and y = y1 + y2ω are adjacent if and only if y − x

equals ±1, ±ω, or ±ω2 modulo α. The EJ network generated by α is homogeneous,

regular of degree six, and always has |α|2 = a2 + ab+ b2 nodes.

The hexagonal network Hn is the EJ network generated by α = n+ (n− 1)ω,

with |α|2 = 3n2 − 3n + 1 nodes. The diameter of the hexagonal network Hn is

n − 1 and has the maximal number of nodes for all regular networks of degree 6

and diameter n− 1 [24].

Now the wraparound edges are explained. An example is considered first.

Consider H3. First tile H3, which is generated by α = 3 + 2ω in the infinite grid,
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with the centers at (s + tω)α, where s and t are integers. Fig. 2.2 shows three of

these tiles.

Figure 2.2: Three hexagons in the tiling of the plane by hexagons where the centers
of the hexagons are 0 = 〈0, 0〉, 3 + 2ω = 〈3, 2〉, and 2ω2 + 3ω = 〈−2, 5〉

The nodes of a hexagonal network lie within a hexagon centered at the origin.

In the infinite triangle grid every node has six neighbors. For instance, the node

〈0, 2〉 is adjacent to six nodes: 〈−1, 3〉, 〈0, 3〉, 〈1, 2〉, 〈1, 1〉, 〈0, 1〉, and 〈−1, 2〉
(listing clockwise). The last three neighbors are in H3, but the first three neighbors

are not. The two nodes 〈−1, 3〉 and 〈0, 3〉 are located in the hexagon centered at

〈−2, 5〉 and the node 〈1, 2〉 is in hexagon centered at 〈3, 2〉. When these hexagons

are translated to be centered at the origin, these points correspond to 〈1,−2〉,
〈2,−2〉, and 〈−2, 0〉, respectively. This is equivalent to find mod α = 3 + 2ω for

the corresponding nodes. In H3, the node 〈0, 2〉 is adjacent (by wraparound edges)

to the nodes 〈1,−2〉, 〈2,−2〉, and 〈−2, 0〉.
In general the wraparound edges are obtained by considering the tiling of the
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infinite triangle grid with non-overlapping hexagons. Consider Hn which is gener-

ated by α = n+(n− 1)ω and centered at the origin. Next tile the infinite triangle

grid with non-overlapping hexagons with centers at (s + tω)α for s, t ∈ Z. Each

node in Hn has six neighbors in the six different directions. (that is, in ω0, . . . , ω5

directions.) Consider the boundary nodes. These nodes have some neighbors which

are not located within Hn but are located in other hexagons centered at ωjα for

j = 0, . . . , 5 where ωjα is of the form (s + tω)α. The neighbors of the bound-

ary nodes are obtained by translating back the hexagons centered at ωjα to be

centered at the origin. Fig 2.3 shows an example of wraparound edges for H4.

76543

3332313029 34

2221201918 23

76543 8

24

1716151413 18 19

1110987 12 13 14

2726252423 28 29 30

036353433 1 2 3 4

3433323130

Figure 2.3: The wraparound edges for H4. Shaded nodes show the networks nodes.
For simplicity, the nodes are numbered in order they are visited when traveling
along the Hamiltonian cycle in the East direction starting from node 0.
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2.3 The Turn Model

The turn model was introduced by Glass and Ni in [28] as a technique to prevent

deadlock in wormhole switched interconnection networks. Unlike other deadlock

avoidance methods, the turn model does not add virtual channels to the network

but rather eliminates the possibility of cycles in the resource dependence graph

by forbidding some turns. It was originally described for 2D mesh networks and

extended to 2D torus networks. The turn model is deadlock free, livelock free, and

maximally adaptive [28]. We will apply the turn model to the hexagonal network

to avoid deadlock in routing. First we briefly review the turn model for the 2D

mesh.

Consider a 2D mesh with sides parallel to the X-axis and Y -axis where x and

y represent the two dimensions. Packets traveling in one dimension can cause de-

pendency between channels in the same dimension (and direction) and channels of

the next dimension. These dependencies are drawn in the form of eight possible

turns from one dimension to the other dimension as shown in Fig. 2.4. For exam-

ple, the bottom-right turn in Fig. 2.4(a) represents a packet traveling in the +x

direction and this packet can wait on the channel in the +y direction. Allowing

all eight turns generates cycles in the resource dependence graph, and one way to

avoid deadlock is to remove some turns so that there is no cycle in the resource

dependence graph [15]. The well-known dimension order routing (first going along

the X-dimension and then along the Y -dimension) forbids the four turns (two

from each cycle) given in Fig. 2.5. Because of this, the dimension order routing is

deadlock-free [28].

Instead of avoiding these turns, the turn model proposed in [28] avoids only

two turns, one from each cycle, and so it is more adaptive than the dimension

order routing. In each of the two cycles in Fig. 2.4, any one of the four turns can

be removed to avoid cycles and so there are a total of 16 possible ways of removing

one turn from each cycle.

Of the 16 possible ways to remove one turn from each cycle, it is known that

twelve of them avoid cycles [28]. For instance it is impossible to generate a cycle
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(a) Counter clock-
wise turns

(b) Clockwise turns

Figure 2.4: Eight possible turns in a 2D mesh.

(a) Counter clock-
wise turns

(b) Clockwise turns

Figure 2.5: Four turns are eliminated in dimension order routing.

with any combination of the turns in Fig. 2.6(a) with those in Fig. 2.6(b) [28]. The

routing algorithms resulting from these combinations are named (in order): the

west-first, the north-last, and the negative-first.

In the next section, similar concepts are used to avoid deadlock for minimal

routings in hexagonal networks.

2.4 Deterministic Routing in Hexagonal Mesh and Torus Networks

Each node in a hexagonal mesh network has a two-component address 〈x, y〉 where
x, y are integers and x + yω is its representation in the infinite triangle grid [2].

Note that the complex number ω = 1+i
√
3

2
and

ω2 = ω − 1 ; ω3 = −1 ; ω4 = −ω ; ω5 = 1− ω ; ω6 = 1.
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(a) Forbidden turn (b) West-first, North-last, and Negative-first

Figure 2.6: The turn model for 2D mesh. (a)The North to West turn is not
allowed. (b)Three possible routing algorithms.

Type Signs Route

1 x, y ≥ 0 x nodes in ω0, y nodes in ω1

2 x ≤ 0, y ≥ 0, |x| ≤ |y| |y| − |x| nodes in ω1, |x| nodes in ω2

3 x ≤ 0, y ≥ 0, |x| ≥ |y| y nodes in ω2, |x| − |y| nodes in ω3

4 x, y ≤ 0 |x| nodes in ω3, |y| nodes in ω4

5 x ≥ 0, y ≤ 0, |x| ≤ |y| |y| − |x| nodes in ω4, x nodes in ω5

6 x ≥ 0, y ≤ 0, |x| ≥ |y| |y| nodes in ω5, |x| − |y| nodes in ω0

Table 2.1: Shortest path routing from origin to node 〈x, y〉 = aωj−1 + bωj.

For every grid point 〈x, y〉 there exists j such that it can be written as aωj−1+ bωj

where a and b are nonnegative integers (this is proved in [24]). The sign and

comparative size of x and y determines j. Using this representation, in [24] it is

proved that the minimal distance from the origin to the grid point aωj−1 + bωj is

a + b and the route from origin to this point is obtained by taking any a edges

of direction ωj−1 and b edges of direction ωj. The message taking this route is

referred as type-j message (j = 1, 2 . . . 6). Table 2.1 summarizes the six different

message types and their route in hexagonal networks.

In general, to route from S to D first D − S = x + yω mod α is calculated.

Then D − S is written as aωj−1 + bωj for integer a, b ≥ 0 according to Table 2.1.

The routing is done by taking any a edges of direction ωj−1 and b edges of direction
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ωj from the source node [24].

Note that in a type-j message there might be a 120 degree counter-clockwise

turn from ωj−1 to ωj. Fig. 2.7(a) illustrates how these turns can create cycles in

the resource dependence graph which can result in a deadlock situation. Simi-

larly, a type-j message may contain a 120 degree clockwise turn from ωj to ωj−1.

Fig. 2.7(b) shows how these turns can also generate a cycle.

(a) Counter-
clockwise turns

(b) Clockwise turns

Figure 2.7: 12 possible turns in an hexagonal network

Looking at the infinite triangle grid one asks what kinds of cycles might occur.

Some convex polygons including triangle, rhombus, parallelogram, and isosceles

trapezoid might create cycles because these polygons have at least one 60 degree

interior angle. A 60 degree turn consists of a turn from ωj direction to ωj±2 mod 6

direction. Such a turn is not permitted by the shortest path routing algorithm.

Therefore no cyclic channel dependency of the shape of the mentioned polygons

can be constructed.

2.4.1 A Deterministic Algorithm in Hexagonal Mesh Networks

Suppose S and D are the source and destination nodes respectively. From the

representation D−S = aωj−1+ bωj where a, b ≥ 0 it is known that every minimal

path uses any combination of a edges in the ωj−1 direction and b edges in the

ωj direction. Our deterministic algorithm will choose only one of these paths.

Showing that our algorithm avoids the cycles shown in Fig. 2.7 will guarantee that

it is deadlock-free.
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Of the twelve possible turns, only the six turns shown in Fig. 2.8 will be allowed.

Given D − S = aωj−1 + bωj , our algorithm chooses the following minimal path:

If j is one of j = 1, 3, 5, travel a edges in the ωj−1 direction followed by b edges in

the ωj direction. For j = 2, 4, 6 first travel b edges in the ωj direction and then a

edges in the ωj−1 direction. This algorithm only uses the six turns in Fig. 2.8.

(a) Counter clock-
wise turns

(b) Clockwise
turns

Figure 2.8: Six of the twelve turns are allowed in deterministic routing.

In order to prove that this algorithm is deadlock-free, we assign a numbering

system to the channels that is similar to the one given in [15]. In the algorithm, a

packet traveling in the ω0 direction can only wait for a channel in the ω0, ω1 or ω5

directions. Similarly, an ω2 packet can waits only for the ω2, ω1 or ω3 directions,

and an ω4 packet waits only for the ω4, ω3 or ω5 directions. We will show that this

allows the channels to be numbered in a way such that the sequence of channels

traveled by any packet is in strictly increasing or strictly decreasing order. This

guarantees the algorithm is deadlock-free [15]. As mentioned earlier, this approach

is a sufficient condition and it is too restrictive as stated in [23].

It is shown in [24] that there exist three edge-disjoint Hamiltonian cycles in

the EJ network generated by α = a + bω provided that gcd(a, b) = 1. These

Hamiltonian cycles are obtained by successively adding 1, ω or ω2 modulo α to the

origin. Note that a hexagonal torus network is generated by α = n+ (n− 1)ω and

gcd(n, n− 1) = 1. Therefore, there exist three edge-disjoint Hamiltonian cycles in

a hexagonal torus network.

One way to assign a number to the channels is to use the order in which the

channels are visited along one Hamiltonian cycle. In this subsection we consider
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hexagonal meshes and the Hamiltonian cycles explained above do not exist in

hexagonal meshes. For simplicity, we imagine hexagonal meshes as hexagonal tori

(that is, with wraparound channels). As we visit the channels along a Hamiltonian

cycle when we encounter wraparounds no number is assigned.

The channels are numbered as follows. (Fig. 2.9 gives the numbering for H3).

First we assign numbers to the channels that belong to ω0, ω2 and ω4 directions

and then to the channels that belong to ω1, ω3 and ω5 directions. The numbers

are assigned in the increasing order determined by the Hamiltonian cycle in each

direction. The numbering at each direction starts from the given node and ends

at the original node along the corresponding Hamiltonian cycle.

• ω0-direction: Start numbering at node −(n− 1).

• ω2-direction: Continue numbering at node (n− 1)− (n− 1)ω.

• ω4-direction: Continue numbering at node (n− 1)ω.

• ω1-direction: Continue numbering at node −(n− 1)ω.

• ω3-direction: Continue numbering at node (n− 1).

• ω5-direction: Continue numbering at node −(n− 1) + (n− 1)ω.

Theorem 2.1. The deterministic routing algorithm for hexagonal meshes defined

by the turns in Fig. 2.8 is deadlock-free.

Proof. Since in each direction the assigned numbers of the channels increase along

that direction, it suffices to prove the values of channels in an allowed turn increase

along that turn. Each allowed turn in the algorithm originates in one of the

directions ω0, ω2, ω4 and ends in one of the directions ω1, ω3, ω5. Since all numbers

of the channels in the first group of directions are less than those in the second

group of directions, the values of the two channels in an allowed turn are increasing

along the turn. This guarantees that the algorithm is deadlock-free.
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‹0,1›‹-1,1›

‹1,0›

‹1,-1›‹0,-1›

‹-1,0› ‹0,0› ‹2,0›

‹2,-2›‹0,-2›

‹-2,0›

‹-2,2› ‹0,2›

‹1,-2›

‹-1,2›

‹2,-1›

‹1,1›

‹-1,-1›

‹-2,1›

4 5

0 1 2 3

9 10 11

6 7 8

12 13

55 50 4517 25 1932 37 2870 76 82

26 20 1442 51 4675 81 7331 36 41

54 49 44 5333 38 29 3422 16 24 1879 71 77 83

27 21 15 2374 80 72 7848 43 52 4739 30 35 40

69 68

64 63 62

59 58 57 56

67 66 65

61 60

Figure 2.9: Enumeration of an H3 in deterministic routing.

2.4.2 Routing in Hexagonal Torus Networks

In the last subsection we give a deterministic routing algorithm for hexagonal

meshes. In this subsection, we use additional virtual channels in order to apply

that algorithm for hexagonal tori.

The routing algorithm for hexagonal networks proposed in this section is based

on the concept of dateline classes introduced by Dally and Towles in [17] combined

with the shortest path algorithm for hexagonal networks in [25].

The virtual channel dependence graph in Fig. 2.10 depicts how a cycle in a

four-node ring can be broken by using two virtual channels c0 and c1 per physical

channel. Each packet begins by taking the c0 channels and then switches to the c1

channel if the dateline is crossed. We apply this idea to hexagonal torus networks



16

c1
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b1
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Figure 2.10: Virtual channel dependence graph in a four node ring using the
concept of dateline classes. (This figure is taken from [17].)

by adding extra virtual channels per each physical channel and considering each

wraparound channel as a dateline.

2.4.3 A Deterministic Algorithm in Hexagonal Torus Networks

Consider the deterministic algorithm defined by the turns in Fig. 2.8. The following

Lemma shows that any message using the deterministic algorithm will use at most

two wraparound channels.

Lemma 2.2. Any message routed by either the deterministic algorithm or by

the partially adaptive routing algorithm in hexagonal tori will use at most two

wraparound channels.

Proof. Once a message uses a wraparound channel in one direction, it cannot use

any more wraparound channels in that direction. Consider the hexagonal network

Hn generated by α = n + (n − 1)ω. The diameter of this network is n − 1 and

the minimum number of nodes along a given direction is n. (For example, the

minimum number of nodes along a row is n and this occurs at the bottom and

the top rows.) Thus if a message uses more than one wraparound channel in a

direction to reach its destination this path length will be greater than n and so it
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is not a shortest path. Since message-types consist of at most two directions, they

can use at most two wraparound channels, one in each direction.

Two classes of virtual channels (VC0 and VC1) are used in this algorithm

Regular messages utilize channels in VC0. Wraparound messages which are the

messages that use one or more wraparound channels use channels in VC1 when

they are injected to the network. As soon as they cross all the required wraparound

channels, they use channels in VC0.

Theorem 2.3. The deterministic routing algorithm defined by the turns in Fig. 2.8

is deadlock-free in hexagonal tori.

Proof. We assign numbers to the virtual channels in a way that all the numbers

for VC1 channels are less than those of VC0 channels. In this way, the cross

dependencies between the two classes don’t cause deadlock because the way the

channels are assigned guarantees that no cycle will occur between the two classes.

Thus, it suffices to prove that there exists no cyclic channel dependency on each

one the classes. To number the VC0 channels we use the same method as de-

scribed in subsection 2.4.1. The channels in VC1 are numbered in the increasing

order determined by the Hamiltonian cycle in each direction. The numbering at

each direction starts from the origin and ends at the origin along the correspond-

ing Hamiltonian cycle. Since we are considering hexagonal tori, we also assign

numbers to the wraparound channels as they are visited along the corresponding

Hamiltonian cycle. The numbering starts along the Hamiltonian cycle in the ω0

direction and continues along the Hamiltonian cycles in the remaining directions

with the following order: ω2, ω4, ω1, ω3, ω5.

In this way, it is guaranteed that the numbers are increasing along each direction

for the VC1 channels except for the “rows” that contain the origin. (Here “row”

can be in any of the six directions). In such rows the number assigned to the

channels in the first half of the row is greater than the number assigned to the

channels in the second half of the row. (The direction along the row specifies the

two halves.) However, no message originates from the first half of the row uses
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a wraparound channel because the path length of such message is greater than n

in Hn. By the shortest path algorithm any message length has to be less than or

equal to n− 1.

2.5 Partially Adaptive Routing in Hexagonal Mesh and Torus Net-

works

In this section we propose partially adaptive routing algorithms for hexagonal

meshes and tori.

2.5.1 A Partially Adaptive Algorithm in Hexagonal Mesh Networks

Although the deterministic algorithm proposed in Section 2.4.1 is deadlock-free,

it offers no adaptivity. Prohibiting only one turn from each of the two cycles in

Figure 2.7 yields a more adaptive mechanism (which is still not fully adaptive.) In

general, adaptive routing algorithms are more desirable than deterministic routing

algorithms as adaptivity provides more path diversity. However, deterministic

routing algorithms are easy to implement [17, Chapter 8.2].

There are 36 possible ways to eliminate two turns from each one of the two

hexagonal cycles, but not all of them yields a deadlock-free routing algorithm.

For example, consider allowing the five turns shown in Figure 2.11(a) with the

five turns in one of Figure 2.11(b) through Figure 2.11(g). When the turns in

Figure 2.11(g) are allowed no type-6 message is routed in the network and the

cycle in Figure 2.12 can occur in the associated resource dependence graph.

In addition, whenever all message-routings of four consecutive message-types

are allowed cycles can be generated in the resource dependence graph. (This

happens in Hn for all n ≥ 4). For instance, consider the partially adaptive routing

algorithm that uses only the turns in Figure 2.11(a) and Figure 2.11(b). This

is the same as Figure 2.11(f) and Figure 2.11(g) where here type-1 and type-6

messages are deterministic and the remaining message-types can be routed fully
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(a)

(b) (c) (d) (e)

(f) (g)

Figure 2.11: The revised turn model for an hexagonal network.

adaptively. Figure 2.13 shows an example of a cycle in the resource dependence

graph. Similarly, cycles exists in the resource dependence graph of the routing

algorithm that uses the turns in Figure 2.11(a) and Figure 2.11(f).

We consider the partially adaptive routing algorithm that uses only the turns

in Figure 2.11(a) and Figure 2.11(d). Two turns are not allowed in this algorithm;

that is, the routing is deterministic for messages of types 3 and 6. In order to

prove this routing is deadlock-free, we will impose a total ordering on the network

channels so that every packet is routed along channels in a strictly increasing

(or decreasing) order. This guarantees that the partially adaptive algorithm is

deadlock-free [15].

A sample enumeration for H3 (using the ten turns in Figure 2.11(a) and Fig-
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Figure 2.12: Combining Figure 2.11(a) and 2.11(g) causes deadlock.

ure 2.11(d)) is given in Figure 2.14. The choice of allowed turns gives us a clue

that all ω2, ω1 and ω0 channels need to be numbered first. (Since we are numbering

from bottom to top the ω1 channels of a given row must be numbered before the

ω2 and ω0 channels of the next row so that the values along the turns from ω1 to

ω2 as well as from ω1 to ω0 increase along the corresponding turns.) In addition,

the values of the channels in each direction must increase along that direction.

Starting from the node 〈0,−2〉 in Figure 2.14, we number its ω2, ω1, ω0 channels

as 0, 1, 2, respectively. Moving to the next node in the ω2 direction (the node

〈−1,−1〉) its ω2, ω1, ω0 channels are assigned 3, 4, 5, respectively. For the next

node 〈−2, 0〉 in the ω2 direction, the ω2 channel of 〈−2, 0〉 is a wraparound channel

and this is not given a number; assign 6,7 to its ω1, ω0 channels.

The node 〈1,−2〉 is on the East side of the node 〈0,−2〉, and its ω2, ω1 and

ω0 channels are assigned 8, 9, and 10 respectively. This continues through the

next NE nodes, each time assigning to the ω2, ω1 and ω0 channels the next set

of integers. Continuing this process by taking next set of the nodes along the ω2

direction, the node 〈1, 1〉 is the last one to be considered and 41 is the highest

number given to a channel. Proceeding to the node 〈0, 2〉 we assign 42, 43, and 44

to the channels ω5, ω4 and ω3 respectively. From here, the ω5, ω4 and ω3 channels

(as available) of the nodes 〈1, 1〉 and 〈2, 0〉 (in that order) along the ω5 direction
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Figure 2.13: Combining Figure 2.11(a) and 2.11(b) causes deadlock.

are assigned the next set of integers, namely, 45, 46, 47, 48 and 49. This process

is continued by taking the next set of nodes along the ω5 direction, going from top

to bottom. Figure 2.14 shows the numbers assigned to the channels of H3. Using

only the turns allowed in Figure 2.11(a) and Figure 2.11(d), in Theorem 2.4 it is

proved that a packet can be routed from any pair of source and destination using

a strictly increasing sequence of channel numbers.

Let the total number of channels in each direction be c and thus the total

number of channels is 6c. Using this fact, the channels in Hn are numbered in a

two-phase process as follows:

In the first phase, all the ω2, ω1 and ω0 channels are given distinct numbers

from 0 to 3c − 1, according to the following ordering. Visit the nodes along the

ω2 direction starting at the node 〈0,−(n − 1)〉. For each node the ω2, ω1 and ω0

channels (if they exist) are assigned the next set of consecutive integers. Continue

the process each time starting at the nodes 〈1,−(n − 1)〉, . . . , 〈n − 1,−(n − 1)〉,
〈n− 1,−(n− 1) + 1〉, . . . , 〈n− 1, 0〉.

In the second phase, all the ω5, ω4 and ω3 channels are assigned distinct numbers

from 3c to 6c−1 as follows. Order the nodes along the ω5 direction starting at the

node 〈0, n−1〉. For each node, the ω5, ω4 and ω3 channels (if they exist) are assigned
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7 16 26 35

5 13 23

18 29 38

30 39

17 28 3727 36 4162 51 4361 50 42

0 8 191 9 2083 78 6979 70 59

6 15 25 3474 64 54 4614 24 33 4073 63 53 45

3 11 21 3182 75 66 564 12 22 3276 67 57 48

81 72

80 71 60

77 68 58 49

65 55 47

52 44

Figure 2.14: Our numeration of the edges of H3 in partially adaptive routing.

the next set of consecutive integers. Continue the process each time starting at

the nodes 〈−1, n− 1〉, . . . , 〈−(n− 1), n− 1〉, 〈−(n− 1), n− 2〉, . . . , 〈−(n− 1), 0〉.

Theorem 2.4. If only the turns in Figure 2.11(a) and Figure 2.11(d) are allowed

the resulting algorithm is deadlock-free in hexagonal meshes.

Proof. Each interior node 〈i, j〉 has at most six outgoing channels and at most

six incoming channels connecting the node to its neighbors. An example with six

neighbors is given in Figure 2.15. The channels are identified by the number of

their source node and their direction. For example, the direction 0 channel from

the node 〈i, j〉 to the node 〈i+ 1, j〉 is c0ij . A turn is identified from a channel to

another channel by an arrow. For instance, c0ij → c1(i+1)j shows the turn from the

channel 0 of the node 〈i, j〉 to the channel 1 of the node 〈i+ 1, j〉.
As we stated in the numbering system, the values of channels in each direction
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Figure 2.15: Deadlock-freedom proof.

increase along that direction. Thus, we only need to prove that the values of

channels in an allowed turn increase along that turn. Ignoring the two prohibited

turns, there are 12 turns originating from the node 〈i, j〉 as follows:
1 : c0ij → c5(i+1)j 2 : c0ij → c1(i+1)j

3 : c1ij → c0i(j+1) 4 : c1ij → c2i(j+1)

5 : c2ij → c1(i−1)(j+1) 6 : c2ij → c3(i−1)(j+1)

7 : c3ij → c2(i−1)j 8 : c3ij → c4(i−1)j

9 : c4ij → c3i(j−1) 10 : c4ij → c5i(j−1)

11 : c5ij → c4(i+1)(j−1) 12 : c5ij → c0(i+1)(j−1)

Note that this is a generic node since not every node has all six outgoing channels

and some turns cannot occur.

From the above turns, turns numbered 7 and 12 are not allowed by the current

combinations of the turns. Since we enumerate all channels along ω0, ω1 and ω2

directions before the rest of the channels the turns 1 and 6 preserve the increasing

order of channel values. In the first phase of the enumeration process the channels

along the ω0, ω1 and ω2 directions for the node 〈i, j〉 are enumerated before the

channels of the nodes 〈i + 1, j〉, 〈i, j + 1〉, and 〈i − 1, j + 1〉, guaranteeing the

increasing order of channel values in the turns 2, 3, 4, and 5. Similarly, the channel

values in the remaining turns (8, 9, 10 and 11) are numbered in an increasing order.
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This is because in the second phase of the enumeration process the channels along

ω3, ω4 and ω5 directions for the node 〈i, j〉 is enumerated before the corresponding

channels of the nodes 〈i − 1, j〉, 〈i, j − 1〉, and 〈i + 1, j − 1〉. Thus, the partially

adaptive routing algorithm is deadlock-free.

2.5.2 A Partially Adaptive Algorithm in Hexagonal Torus Networks

In this subsection we extend the algorithm in Section 2.5.1 to hexagonal tori. This

means that only the turns in Figure 2.11(a) and Figure 2.11(d) are allowed by the

algorithm in this subsection.

By Lemma 2.2 no message can take more than two wraparound channels in

hexagonal tori. We use three classes of virtual channels (VC0, VC1, and VC2).

Regular messages utilize VC0. Wraparound messages use VC2 when they are

injected to the network. As soon as they cross a wraparound edge, they use

VC1 if one more wraparound edge is required for them to reach their destination.

Wraparound messages switch to VC0 when no more wraparound edge is required

to reach their destination.

Theorem 2.5. If only the turns in Figure 2.11(a) and Figure 2.11(d) are allowed

the resulting algorithm is deadlock-free in hexagonal tori.

Proof. VC2 channels and VC1 channels are numbered in a way similar to that

described in subsection 2.5.1 with one modification. The process is as follows.

Consider Hn. Let N = 3n2−3n+1 be the total number of nodes. Since each node

has six outgoing channels (and six incoming channels) the total number of channels

is 6N . That is, there are N channels (including the wraparound channels) in each

direction. Similar to the subsection 2.5.1, the channels in Hn are numbered in a

two-phase process as follows.

In the first phase, all the ω2, ω1 and ω0 channels are given distinct numbers

from 0 to 3N − 1, according to the exact same ordering as given in the first phase

described in subsection 2.5.1. Note that here each node has three channels in each

of the three directions. Some of the channels might be wraparound channels.
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In the second phase, all the ω5, ω4 and ω3 channels are assigned distinct numbers

from 3N to 6N−1 according to the exact same ordering given in the second phase

described in subsection 2.5.1. Again, every node has three channels in each of the

three directions. Some of the channels might be wraparound channels.

After numbering the VC2 channels from 0 to 6N − 1 as described above, we

number the VC1 channels from 6N to 12N−1 in the same way. Finally, we number

the VC0 channels from 12N to 12N+6c−1. (Remember that c is the total number

of channels in one direction in a hexagonal mesh network.) All VC0 channels are

numbered exactly as described in subsection 2.5.1.

Note that, when we were proving the Theorem 2.4 we mentioned that not every

node has all six outgoing channels. But even if every node has all six outgoing

channels the proof remains the same. Thus, based on Theorem 2.4 there is a total

ordering within each class of virtual channels. If a message wants to switch its

class of virtual channel, then it always goes from a higher numbered class to a

lowered numbered class based on the proposed algorithm. Therefore, there is a

total ordering considering all three classes of virtual channels which means that no

cyclic dependencies will be created.

2.6 Conclusion

This chapter proposes two new deadlock-free and minimal routing algorithms for

hexagonal mesh and torus interconnection networks. By prohibiting certain turns

in the resource dependence graph, the proposed algorithms are deadlock-free. In

addition, since they are minimal routings, no livelock can happen in the network.

Some additional virtual channels per physical channel are used to remove inherent

cycles caused by the wraparound edges.

Although the partially adaptive routing algorithms proposed in this chapter

offer good adaptivity, they are not still fully adaptive. Obtaining fully adaptive

routing algorithm for hexagonal mesh and torus networks would be one direction

for future work. Developing fault-tolerant routing algorithms (that is routing al-
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gorithms that can route a packet in existence of faulty nodes or channels) would

be another direction for the future.



27

Chapter 3: Higher Dimensional Gaussian Networks

3.1 Introduction

The original Gaussian networks were proposed [36] as compelling alternatives to

classical 2D-torus networks. An on-chip implementation of Gaussian networks was

developed in [49]. One advantage of these networks over 2D-torus networks is that

they are degree four networks that have a smaller diameter for the same number

of nodes. This results in a lower average message latency. One of the reasons

for considering higher dimensional toroidal networks is to reduce the diameter-to-

nodes ratio further.

In this chapter we develop higher dimensional Gaussian networks 1 . The main

advantages of these networks are as follows.

• They are Cayley graphs and so they are node symmetric.

• The average distance of these networks is always less than that of the toroidal

networks with the same degree and number of nodes.

• The diameter of these networks is
√
2 times less than that of the toroidal

networks with same degree and same number of nodes.

• Because of the above two properties, shortest-path routing algorithms in

Gaussian networks always outperform such algorithms in toroidal networks.

• The collection of Gaussian networks is a more general class of networks which

includes toroidal networks as a special case.

• It is possible to embed two edge-disjoint k-ary n-cube in an n-dimensional

Gaussian network. This means any algorithm developed for a torus network

1This chapter has been published in [8, 42]



28

can be easily transported to the Gaussian network. Furthermore, the network

can be decomposed into the maximum number of edge-disjoint Hamiltonian

cycles.

In [39] a different type of 2-dimensional Gaussian network, called hierarchical

Gaussian networks, is constructed which is not node-symmetric.

The rest of the chapter is organized as follows. Section 3.2 briefly reviews im-

portant properties of the original Gaussian networks that are relevant to the rest

of the paper. The definition and some basic topological properties of higher di-

mensional Gaussian networks are given in Section 3.3. Next, Section 3.4 provides

a shortest-path routing algorithm for the networks, while the distance distribu-

tion and the average distance are given in Section 3.5. Some simulation studies

comparing the routing algorithms of Gaussian networks and torus networks are

given in Section 3.6. Section 3.7 shows how broadcasting can be accomplished.

Embedding edge-disjoint toroidal networks, including edge-disjoint Hamiltonian

cycles, is described in Section 3.8. Finally, the summarizing conclusions are given

in Section 3.10.

3.2 A Review of One-dimensional Gaussian Networks

Gaussian networks are wraparound networks of degree four in which the generating

rectangle for the classical torus network is replaced by any square whose vertices

have integer coordinates. We may assume the southeastern vertex of the square is

the origin and its northeastern vertex is (a, b) where a, b are non-negative integers.

This square can be used to tile the plane, as illustrated in Figure 3.1 for (a, b) =

(3, 5). The way the Gaussian network is presented in Figure 3.1 is called half-open

square representation [24].

We now describe the Gaussian network generated by this square. We will

denote the network by Ga+bi where the complex number a + bi (for i2 = −1) is

used to represent the point (a, b). The nodes of the network are the origin and

all integer points lying either within the square or on the interior of one of the
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Figure 3.1: The basic square and surrounding tiles for (a, b) = (3, 5).

two sides containing the origin. There are a2 + b2 nodes in Ga+bi. As with torus

networks, Gaussian networks have two types of links: regular and wraparound.

Regular links connect neighboring points within the basic square. For instance,

in Figure 3.1, the node (0, 2) has four regular neighbors whereas (2, 5) has only

two regular neighbors. The wraparound links are obtained by pasting each of the

two sides containing the origin to its opposite side, forming a torus with a rotated

square grid. This is illustrated in Figure 3.2 for G3+5i.

An easy way to find the wraparound edges follows from the fact that the

basic square tiles the plane with no overlapping. For instance, to find the two

wraparound edges at (2, 5) first note that as a point in the plane (2, 5) is adjacent

to the points (1, 5), (2, 4), (3, 5), (2, 6). Only the first two points are nodes in

G3+5i. Referring to the tiling in Figure 3.1, the other two points can be translated

to the points (0, 0) and (−1, 1) in the same position in the basic square. These are

the wraparound neighbors of (2, 5).
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Figure 3.2: A picture of G3+5i.

This geometric structure can be rephrased in algebraic terms based on the

representation of an integer point (x, y) in the plane as the complex number x+yi.

The set of such numbers is a subring of the complex numbers, called the ring of

Gaussian integers. In the tiling for α = a+ bi the tile obtained by translating the

basic tile by xα and then by yαi has SE corner (x+ iy)α. Consequently, the set of

all tile corners is the set of all Gaussian multiples of a+bi where the multiple gives

the location of the tile. Because of this, the action of translating any node back to

the basic square amounts to finding an equivalent representative modulo α. For

example, when α = 3+ 5i (refer to Figure 3.1) the integer point (−4, 10) is in the

tile obtained by translating using α+αi = −2+8i, and the equivalent point in the

basic tile is (−4, 10) − (−2, 8) = (−2, 2). From this we see that the nodes of the

Gaussian network for α are the representatives of the Gaussian integers modulo α,

and p+qi±1 (mod α) and p+qi± i (mod α) are the neighbors of the node p+qi.
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This argument proves it is a Cayley graph with four generators, and so is a regular

node-symmetric network of degree 4. For the remainder of this paper we will refer

to Gα as the one-dimensional Gaussian network generated by α. Also, Zα will

denote the ring of Gaussian integers modulo α, whose size is N (a+ bi) = a2 + b2

where N (α) is called the norm of α.

Gaussian networks generated by α = k+(k+1)i (for positive k) are called dense

because they contain the maximum number of nodes for a given diameter [38].

The nodes of dense networks are usually arranged according to their distance

from 0 rather than using the basic square representation. Figure 3.3 gives this

representation for α = 3 + 4i.

i
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-1+i

-1+2i 1+2i

2-i
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3
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3
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Figure 3.3: The dense Gaussian network G3+4i .
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3.3 Higher Dimensional Gaussian Networks

In the case of torus networks, in particular the k-ary n-cube, each node is addressed

using n-digit vectors with coordinates in Zk. Two nodes in this network are ad-

jacent if and only if the node addresses differ in exactly one component by ±1

mod k. A similar definition can be used to describe an n-dimensional Gaussian

network as below.

Definition 3.1. Let α = a + bi ∈ Zα. The nodes in an n-dimensional Gaussian

network, denoted by G
(n)
α , are represented by n-digit vectors whose components are

Gaussian integers modulo α. Two nodes are adjacent if and only if their node

addresses differ in exactly one position by ±1 mod α or ±i mod α.

The theory remains the same even if the components of the nodes are allowed to

come from different α’s.

One helpful observation is that G
(n)
α is a Cayley graph since it is generated by

the 4n basic vectors that have exactly one nonzero component which is equal to

either ±1 or ±i. Thus, G
(n)
α is a node-symmetric network.

Another useful way of describing an n-dimensional Gaussian network is using

the concept of the cross product of graphs, which is sometimes called the Cartesian

product or simply the product of graphs. It has long been known [5, 20, 33, 48]

that the graph-theoretic concept of cross product can be used to obtain higher

dimensional interconnection networks. Given two networks N0, N1, their cross

product N1 ⊗ N0 is the network whose node set is the Cartesian product of the

two node sets, and the nodes (u1, u0), (v1, v0) are adjacent in N1 ⊗N0 when either

u1 = v1 and u0 is adjacent to v0 in N0 or u0 = v0 and u1 is adjacent to v1 in N1.

Intuitively, the cross product N1 ⊗N0 has a copy of N0 at every vertex of N1 and

also a copy of N1 at every vertex of N0. For instance, if Ck is a cycle of size k then

Ck ⊗ Ck is a torus, and Ck1 ⊗ Ck2 is a mixed radix torus.

Since N1 × N0 is the set of nodes, the number of nodes in N1 ⊗ N0 is the

product of the number of nodes in the factors, and from the adjacency relation the

degree of the product is the sum of the degrees of the factors. As has already been
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observed in [20,48], a shortest path can be accomplished in two legs by traversing

a shortest path in each component. Therefore, the distances add and the diameter

of the cross product is the sum of the diameters of the factors.

Example 3.2. G
(2)
2+3i has 169 nodes and is a regular graph of degree 8. Figure 3.4

pictures all links incident to the nodes (0, 0) and (−2,−1 + i) in G
(2)
2+3i. The node

(0, 0) is adjacent to 8 nodes, that can be grouped into two sets: (1, 0), (−1, 0), (i, 0), (−i, 0)

and (0, 1), (0,−1), (0, i), (0,−i). Similarly, the node (−2,−1+ i) is adjacent to the

8 nodes (−1,−1+ i), (−2i,−1+ i), (1− i,−1+ i), (2i,−1+ i) and (−2, i), (−2, 1−
i), (−2, 2), (−2,−1) .

Figure 3.4: All nodes in G
(2)
2+3i are given, along with all links incident to either

(0, 0) or (−2,−1 + i).

The cross product can be inductively defined for any set of finitely many net-

works N0, . . . , Nn as

Nn ⊗Nn−1 ⊗ . . .⊗N0 = Nn ⊗ (Nn−1 ⊗ . . .⊗N0) ,
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and this is used to define an n-dimensional Gaussian network G
(n)
α as the n-fold

cross product of the Gaussian network Gα;

G(n)
α =

n times
︷ ︸︸ ︷

Gα ⊗ . . .⊗Gα = Gα ⊗
n−1 times

︷ ︸︸ ︷

(Gα ⊗ . . .⊗Gα) .

As before, the theory remains the same even if the components of the nodes are

integers modulo different αj’s. Note that for α = a or α = bi, G
(n)
α is exactly the

a-ary n-cube or the b-ary n-cube.

The network G
(n)
α has N (α)n = (a2+b2)n nodes, since it is the set of all n-tuples

with components in Gα. One way to picture G
(n)
α is that a copy of G

(n−1)
α has been

placed on each node of Gα.

Our earlier discussion also shows that the degree of each node is 4n and that

a shortest path in G
(n)
α can be constructed by taking any n-leg combination of

shortest paths in each component. Consequently, the distance is the sum of the

distances in the components, and the diameter of G
(n)
α is n times the diameter

of Gα.

3.3.1 Implementation

Gaussian networks like toroidal networks are wraparound topologies in which the

size of wraparound edges grows by the network size whereas the regular edges

(non-wraparound edges) are supposed to have unitary length. Tori are known to

have a folded shape in which the regular edges are doubled in size and the length

of the wraparound edges are reduced to be the same as the length of the regular

edges in the folded layout [16].

As an attempt to alleviate the problem of long wraparound edges, an elegant

folded layout for dense Gaussian networks was presented in [38, 45]. Initially, the

nodes of a dense Gaussian network generated by α = k + (k + 1)i are arranged in

2k+1 rows and k+1 columns. The first row only contains one node which is chosen

to be the origin by the network symmetry. This is illustrated in Figure 3.6(a) for the
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dense Gaussian network presented in Figure 3.3 where k = 3. In the initial layout,

vertical edges correspond to imaginaries and diagonal edges represent reals. Other

edges are obtained followed by the adjacency patterns of the Gaussian network.

Then a set of shuffle transformations are performed on the rows according to

the following procedure: (The shuffles are given in Figure 3.5)

• For rows 1 ≤ i ≤ k + 1 rotate (clockwise) ⌊ i−1
2
⌋ nodes and then perform

shuffle A to odd rows and shuffle B to even rows.

• For rows k + 2 ≤ i ≤ 2k + 1 rotate (clockwise) ⌊ i
2
⌋ nodes and then perform

shuffle B to odd rows and shuffle A to even rows.

Shuffle A:

x′ =

{
2x− 1 if x ≤ (n+ 1)/2
2n− 2x+ 2 if x > (n+ 1)/2

Shuffle B:

x′ =

{
2x if x < (n+ 1)/2
2n− 2x+ 1 if x ≥ (n+ 1)/2

Figure 3.5: The shuffles transform a node in position x to a node in position x′ in
one of the n positions of the corresponding row or column.

The layout after row transformations is shown in Figure 3.6(b) for G3+4i. Fi-

nally all columns are shuffled according to shuffle A. Figure 3.6(c) shows the final

layout for G3+4i. In the final layout, no edge has a wire length greater than
√
5.

Although in a folded torus all edges are doubled in length but the approximate

diameter of a folded Gaussian network is L
√

5N
2

whereas that of a folded torus is

L
√
4N , where N is the number of nodes and L is the unit of length. In terms of ap-

proximate average distance a folded torus is barely superior. For more information

refer to [38, 45].

We use the exact set of transformations in order to reduce the length of the

long wraparound edges in higher dimensional Gaussian networks. For example,

the folded layout of G
(2)
α is obtained in two steps. Recall that each super node in
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Figure 3.6: Folded dense Gaussian network for the Gaussian network generated by
α = 3 + 4i.
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G
(2)
α is a Gα. First, the shuffle transformations explained above are used to fold

all the Gaussian networks Gα. Then, the shuffle transformations transform all the

super nodes in their final place.

Similarly, G
(n)
α can be transformed to a folded layout in n steps to reduce the

wire length.

3.4 Shortest-path Routing in Higher Dimensional Gaussian Net-

works

As noted in the last section, a shortest path between A = (an−1, . . . , a0) and B =

(bn−1, . . . , b0) in G
(n)
α can be obtained by using a shortest path routing from ai to bi

in each factor of the cross product. In this section we propose an optimal routing

algorithm using the optimal routing in Gα as given in [24, 36].

Since Gn
α is node-symmetric, to find a shortest path from A to B we can first

find one from 0 to C = B −A and then translate back by A, where all operations

are done modulo α in each component. In [24] a shortest path from 0 to ci is found

by calculating the minimal Gaussian distance from ci to the four corners of the

basic square. More details can be found in [24, Section VI]. The previous best

Gaussian routing algorithm [36, Algorithm 1] required thirteen comparisons.

Before giving our routing algorithm in G
(n)
α we first illustrate the algorithm

with an example.

Example 3.3. Let α = 3 + 4i. Our algorithm finds a shortest path from A =

(−1 + i, 1 + 2i) to B = (−1 − i,−1 + i) in the two-dimensional G
(2)
α = Gα ⊗ Gα.

First, C = B − A = (−2i,−2 − i) is calculated using the modulo α difference

in each component. A shortest path is then obtained by correcting the offset C,

changing one component at a time using the sequence of links specified by the

routing algorithm in Gα. Thus, one shortest path from A to B is

A = (−1 + i, 1 + 2i), (−1, 1 + 2i), (−1 − i, 1 + 2i),

(−1− i, 2i), (−1 − i,−1 + 2i), (−1 − i,−1 + i) = B .
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A

B

Figure 3.7: The path described in Example 3.3.
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The distance from A to B equals 2 + 3 = 5.

Suppose v = (vn−1, vn−2, . . . , v1, v0) and w = (wn−1, wn−2, . . . , w1, w0) are re-

spectively the source and the destination nodes. Then, the routing algorithm is

done by correcting the offset one coordinate at a time in some particular order.

The algorithm is described below.

Algorithm 3.4. Shortest path routing for n-dimensional Gaussian network G
(n)
α

where α = a+bi (0 ≤ a ≤ b and a, b ∈ Z) is the network generator.

Input: Two nodes v = (vn−1, vn−2, . . . , v1, v0) and w = (wn−1, wn−2, . . . , w1, w0)

where vj, wj ∈ Zα.

Output: A shortest path from v to w.

1: for j = n− 1 downto 0 do

2: Let uj = ((wj − vj) mod α) = x+ yi.

3: while uj 6= 0 + 0i do

4: Travel x horizontally and y vertically in the j − th coordinate.

5: end while

6: end for

3.5 The Distance Distribution

Since every n-dimensional Gaussian network is node-symmetric the distance dis-

tribution charts the number of nodes at various distances from 0. All nodes at

distance t from the origin in G
(n)
α can be found by multiplying the nodes at dis-

tance one in Gα times the nodes at distance t−1 in G
(n−1)
α , plus nodes at distance

2 in Gα times nodes at distance t − 2 in G
(n−1)
α , and so on. Therefore, if d(n)(t)

is the number of nodes at a distance of t from 0 in an n-dimensional Gaussian

network G
(n)
α then the values can be found recursively (with respect to the dimen-

sion n) using the equation

d(n)(t) =
nd∑

j=0

d(1)(j)× d(n−1)(t− j)
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since the diameter of G
(n)
α equals nd where d is the diameter of Gα.

Example 3.5. The dense network G2+3i has N (2 + 3i) = 13 nodes, its diameter

equals 2, and d(1)(1) = 4, d(1)(2) = 8. The distance distributions of the nodes for

the one-, two-, and three-dimensional Gaussian networks are given in Table 3.1.

For example, the number of nodes at distance 3 in G
(3)
2+3i is denoted by d(3)(3) and

equals

d(1)(0)d(2)(3) + d(1)(1)d(2)(2) + d(1)(2)d(2)(1) + d(1)(3)d(2)(0)

which is

1× 64 + 4× 32 + 8× 8 + 0× 1 = 256 .

Table 3.1: Distance distributions for G
(n)
2+3i when n = 1, 2, 3.

d(n)(t) n = 1 n = 2 n = 3

t = 0 1 1 1

t = 1 4 8 12

t = 2 8 32 72

t = 3 0 64 256

t = 4 0 64 576

t = 5 0 0 768

t = 6 0 0 512

Total number of nodes 13 169 2197

The distance distribution can also be found using a matrix recurrence. We

first note that since d(n)(t) = 0 for all t > nd, we are interested in calculating the

components of Dj = (d(j)(nd), . . . , d(j)(0)) for j = n. Then the vector D1 records

the distance distribution for Gα which is given in [36, Theorems 10, 11]. Shortest

paths of length t are obtained using any combination of shortest paths from each

component for which the lengths add to t. Therefore, each Dj+1 = DjA where A

is the square lower triangular diagonal-constant matrix whose first column is the

reverse of D1, and Dj+1 = D1A
j . For Example 3.5,
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A =
















1 0 0 0 0 0 0

4 1 0 0 0 0 0

8 4 1 0 0 0 0

0 8 4 1 0 0 0

0 0 8 4 1 0 0

0 0 0 8 4 1 0

0 0 0 0 8 4 1
















3.5.1 Average Distance

For simplicity, assume the generator is dense; that is, α = k + (k + 1)i for some

integer k ≥ 1. A consequence of Theorem 3.2 in [48] is that the average distance

in G
(n)
α equals n times the average distance in Gα. Here we introduce the following

simpler proof of this result.

By node-symmetry, the average distance in the network G
(n)
α is obtained by

finding the average distance from the node (0, 0, . . . , 0) to all other nodes. Arrang-

ing the N (α)n node addresses in any order in an array with the node (0, 0, . . . , 0)

as the first row, the sum of the distances of each node from the node (0, 0, . . . , 0) is

the sum of the distances of each coordinate from 0. Since each column of the array

contains every element of G
(n)
α exactly N (α)n−1 times, the average n-dimensional

distance is n times the average distance in Gα.

It is known [36] that in dense networks generated by α = k + (k + 1)i there

are exactly 4t nodes at a distance of t from the node 0 for every t = 0, . . . , k.

Therefore, the average distance in dense Gα equals

4(12 + 22 + . . .+ k2)

N (α)
=

4k(k + 1)(2k + 1)

6× (2k(k + 1) + 1)
<

2k + 1

3

for all α = k + (k + 1)i . This implies that the average distance in G
(n)
α is less

than 2nk/3.
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3.5.2 Comparisons with torus networks

We continue to assume the n-dimensional Gaussian network is generated by α =

k + (k + 1)i with N (α)n = (k2 + (k + 1)2)n nodes. Since the degree of each node

in G
(n)
α is 2n, an 2n-dimensional torus is used for the comparisons.

For the comparison of average distances we use the 2n-dimensional torus net-

work with the side in each dimension equal to (2k(k + 1) + 1)1/2. The average

distance of this torus network is

2n×
√

2k(k + 1) + 1

4
>

nk√
2

for all k. Therefore, the average distance in G
(n)
α is

√
8/3 ≈ 0.942 less than the

average distance in an equivalent torus network. (In [17] it is noted that the average

distance of a k-ary n-cube is nk/4 for k even and (k − 1)(k + 1)n/4k ≈ nk/4 for

k odd.)

We recall that the diameter of n-dimensional Gaussian network with α = k +

(k + 1)i is nk and the number of nodes equals (2k2 + 2k + 1)n > 2nk2n. The 2n-

dimensiona torus network with 2nk2n nodes has a diameter of n
2n
√
2nk2n =

√
2nk.

Therefore, the diameter of the torus network is
√
2 times larger than the equivalent

n-dimensional Gaussian network. To give one example, there is a 2-dimensional

Gaussian network of degree 8 with 40, 000 nodes whose diameter is 20, while the

diameter of a 40,000-node torus with degree 8 must be at least 2× 10
√
2 ≈ 28.

3.6 Simulation Results

This section compares the performance of the routing algorithm given in Section 3.4

for higher dimensional Gaussian networks with a routing algorithm in the higher

dimensional torus networks. Each physical channel utilizes two virtual channels:

The first virtual channel is used by messages not traversing any wraparound link,

whereas the second virtual channel is used by the messages that need to take a

wraparound link to be delivered to their destination.
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For this comparison, we have performed a simulation in which the average

message latency is the performance metric. Our simulation experiments are per-

formed using XMulator [40]. The XMulator is a complete, flit-level, event-based,

and extensively detailed package for simulation of interconnection networks which

can simulate different interconnection networks with arbitrary topology, switching

methods, routing algorithms, and even in the presence of faults.

For the sake of this study, delays for switching and routing decisions are ignored

and only the delay in the physical channels is considered. The message generation

interval has exponential distribution. Three different destination distribution pat-

terns are considered; they are uniform random, hotspot, and Rentian [12]. Rentian

traffic pattern is used because it is shown in [29] that many parallel applications

employ a communication pattern that follows the Rent’s rule. We model the Com-

munication Probability Distribution (CPD), the probability that a node sends a

message to another node at a given distance, as stated in [6]. For that we choose

the Rent’s exponent to be 0.7. For the hotspot traffic pattern, 10% of messages

are destined for the hotspot node. Physical channel delay is one cycle and message

length is chosen to be 64 flits. The networks use wormhole flow control [17].

We have chosen two different network sizes for the simulations. Table 3.2

summarizes the number of nodes, diameter, and average distance for the networks

used in this study. The small-size pair consists of a 5-ary 4-cube (a four-dimensional

torus) paired with G
(2)
3+4i. Each network has 625 nodes. For the large-size pair

we compare a 12-ary 4-cube and a G
(2)
8+9i which have 20736 and 21025 nodes,

respectively.

Figures 3.8 shows the average message latency of deterministic routing as a

function of the message generation rate for a uniform random traffic pattern. These

results show our routing algorithm outperforms the dimension order routing algo-

rithm for a torus with the same number of nodes and the same node degree.

Figures 3.9 shows the same result for the hotspot traffic pattern. The network

saturates at significantly lower message generation rate per cycle using hotspot

traffic pattern as compared to the uniform traffic pattern. Our routing algorithm
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Table 3.2: The diameter and the average distance for the networks used in this
study.

Network # of nodes Diameter Avg distance

G
(2)
3+4i 625 6 4.48

T5×5×5×5 625 8 4.8

G
(2)
8+9i 21025 16 11.25

T12×12×12×12 20736 24 12
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Figure 3.8: Deterministic routing using uniform random traffic
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continues to outperform the routing algorithm of tori with the same number of

nodes and the same node-degree.

Figure 3.10 shows the result for Rentian traffic pattern. Unlike previous two

figures, our routing algorithm performs slightly better than the routing algorithm

of tori in the small-size networks. The two routing algorithms perform almost the

same in the large-size networks. Another interesting result is that the average

message latency for the large-size networks is smaller than that of the small-size

networks. This is due to the fact that as the network size increases the probability

of communication between nodes at farther distances decreases.

3.7 Broadcasting

This section presents a one-to-all broadcasting method for n-dimensional Gaus-

sian networks. In this communication pattern a node sends its message to all

other nodes in the network. Broadcasting is frequently used in combinatorial and

numerical problems [5, 33], and developing efficient algorithms for this communi-

cation pattern provides a design of efficient parallel solutions to these problems.

The broadcasting algorithm presented in this section assumes the use of multiple

I/O routers. That is, a node can send multiple messages simultaneously through

all of its links.

An optimal one-to-all broadcasting algorithm for one-dimensional Gaussian

networks was developed in [36]. We will explicitly describe the algorithm [38] for

dense Gaussian networks below, and then explain how the one-dimensional algo-

rithms can be iteratively applied to get an optimal algorithm for the n-dimensional

case. A similar method works in non-dense networks.

For broadcasting in the dense network Gk+(k+1)i a spanning tree is constructed

as in Figure 3.11 in k steps that indicate broadcasting stages. All links incident to

the node 0 are included in the tree, thereby connecting 0 to all four of its neighbors,

1,−i,−1, i. These four neighbors form four separate right-angled quadrants, which

we label as SE, SW,NW, and NE , respectively. The remainder of our explanation

focuses on the construction of the subtree in the SE quadrant since a similar
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Figure 3.11: The spanning tree for G3+4i.

process yields the subtrees in other quadrants. In the second stage of construction

within the SE quadrant, the +1 and −i edges from node 1 are added, giving access

to the nodes 2 and 1− i, respectively. At the third stage, the +1 and −i edges of

1 − i are added as well as the +1 edges from node 2. In general at the jth stage

(for j = 2, 3, . . . , k) the +1 and −i edges from 1 − (j − 2)i are added as well as

the +1 edges in any rows of the constructed spanning tree so far. Performing this

procedure in each quadrant results in a spanning tree in which each node is within

a distance of k from 0. The broadcasting from node 0 is performed in the stages

indicated by this construction.

The broadcasting algorithm for n-dimensional networks of the form G
(n)
k+(k+1)i

is performed along a spanning tree similarly to the one-dimensional tree. Since

an n-dimensional Gaussian network is node-symmetric, we may assume the node

0 is the center of broadcasting. The broadcasting is done in nk stages divided

into n rounds of k stages each. The method adapts the idea in [48] to Gaussian

networks.”

In the first round of broadcasting, the broadcast message propagates in k stages

as follows. At the first stage, node (0, 0, . . . , 0) sends the broadcast message to

nodes (1, 0, . . . , 0), (−1, 0, . . . , 0), (i, 0, . . . , 0), and (−i, 0, . . . , 0). Then, at the next
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stages every one of these nodes broadcasts in their corresponding quadrant in a

manner similar to the process explained for the one-dimensional Gaussian network.

That is, by the end of first round, all nodes (an−1, 0, 0, . . . , 0) have received the

broadcast message. Figure 3.12 illustrates how the broadcast message propagates

in the first round of broadcasting algorithm in G
(2)
3+4i.
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3

2 3
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123

23
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Figure 3.12: The spanning tree for the first round of broadcast algorithm in G
(2)
3+4i.

Similarly, by the end of second round, all nodes (an−1, an−2, 0, . . . , 0) have re-

ceived the broadcast message in the k stages of the second round. This process can

be continued. In the last round of broadcasting, the broadcast message has arrived

at the centers (an−1, an−2, . . . , a1, 0) of all the one-dimensional Gaussian networks

in the lowest level of G
(n)
α . Then broadcasting is continued similarly to broadcast-

ing for one-dimensional Gaussian networks. This algorithm is optimal because no

node receives duplicate messages and the number of steps in the algorithm is the



50

diameter of the network.

3.8 Embedding Multi-dimensional Tori on G
(n)
α

One of the important problems in parallel processing is to determine guest networks

that can be embedded onto a given network (called the host network). Then

any software systems and algorithms developed for the guest networks can be

transported to the host network. In this section for a given host network G
(n)
α ,

α = a + bi where gcd(a, b) = 1 and n = 2r, r ∈ Z, it is shown how to embed two

edge-disjoint (a2 + b2)-ary n-cube, four edge-disjoint (a2 + b2)-ary n/2-cube, eight

edge-disjoint (a2 + b2)-ary n/22-cube, etc. on an n-dimensional Gaussian network.

In particular, it is shown how to decompose G
(n)
α into 2n edge-disjoint Hamiltonian

cycles using some Lee distance Gray codes.

In the one-dimensional case it is known [24] that the two cycles formed by

consistently adding either 1 or i to 0 contain all nodes of Ga+bi when gcd(a, b) = 1,

and so are two edge-disjoint Hamiltonian cycles. This establishes a one-to-one

correspondence between the nodes in Gα and the nodes of the cycle of integers

modulo N = a2 + b2 [36]. Since the node addresses in the n-dimensional Gaussian

network are n-tuples, this gives a one-to-one correspondence between the nodes in

G
(n)
α and nodes in the n-dimensional torus with radix N .

Example 3.6. Consider G1+2i which has 12+22 = 5 nodes. The node address set is

{0, 1,−1, i,−i} and G1+2i is a complete graph with 5 nodes. There is a one-to-one

correspondence between Z5 = {0, 1, 2, 3, 4} and the node set {0, 1,−1, i,−i} because

0 mod (1+2i) = 0, 1 mod (1+2i) = 1, 2 mod (1+2i) = i, 3 mod (1+2i) = −i,

and 4 mod (1+2i) = −1. In this network there are two edge-disjoint Hamiltonian

cycles. The first is

H1 = 〈0, 1, 2, 3, 4〉 = 〈0, 1, i,−i,−1〉

and the second is

H2 = 〈0, i, 2i, 3i, 4i〉 = 〈0, i,−1, 1,−i〉.
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3.8.1 Hamiltonian Property of G
(n)
α for any n ≥ 1

First we show that G
(n)
α is Hamiltonian. In what follows, we will denote the node

addresses in G
(n)
α as elements in Z

n
α and hence by the above discussion in Z

n
N . We

will see that the Gray code given in [13] and [7] described below can be used to

show that G
(n)
α is Hamiltonian. Note that in a Gray code over ZN , every two

consecutive vectors and also the last and the first vectors differ in one position by

±1 mod N .

Assume Zn
N is ordered in the radix-N number system. The Gray code mapping

f : Zn
N → Z

n
N as given by [13] and [7] is

f(an−1an−2 . . . a0) = (gn−1gn−2 . . . g0)

where gn−1 = an−1 and for j = n− 2, n− 3, . . . , 0, gj = (aj − aj+1) mod N .

Example 3.7. Since N (1 + 2i) = 5 then N = 5. There are therefore 25 nodes in

the network G
(2)
1+2i. The Gray code sequence over Z

2
5 is

H = 〈00, 01, 02, 03, 04, 14, 10, 11, 12, 13, 23, 24, 20, 21, 22,
32, 33, 34, 30, 31, 41, 42, 43, 44, 40〉
= 〈00, 01, 0i, 0− i, 0− 1, . . . ,−10〉

and this forms one Hamiltonian cycle. Please refer to Figure 3.13. The solid lines

in the first part of the network gives this Hamiltonian cycle.

Note that iH also forms another Hamiltonian cycle. Furthermore, H and iH

are edge-disjoint because in H two adjacent nodes differ by ±1 and in iH they

differ by ±i.

3.8.2 Edge-Disjoint Hamiltonian Cycles and Tori in G
(2)
α

In this subsection, we describe the decomposition technique for a G
(2)
α . The next

subsection describes the method for a G
(n)
α where n = 2r, r > 1.
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Many Hamiltonian decomposition results obtained for the torus as given in [4]

can be directly applied to the n-dimensional Gaussian network. For n = 2r, these

results can be easily described in terms of Gray codes.

As recalled above, Ga+bi can be decomposed into two edge-disjoint Hamiltonian

cycles by consistently adding 1 or i to the starting node N = a2 + b2 times. For

example, G1+2i has two edge disjoint Hamiltonian cycles given byH1 = 〈0, 1, 2, 3, 4〉
and H2 = 〈0, i, 2i, 3i, 4i〉. In what follows, this decomposition is written as

Gα = H1 ⊕H2.

Now consider the two dimensional Gaussian network G
(2)
α . The general idea of how

to obtain two edge-disjoint tori and four edge-disjoint Hamiltonian cycles in this

network is described below.

Since each 1-dimensional factor can be decomposed into two edge-disjoint Hamil-

tonian cycles of length N, G
(2)
α can be decomposed as

G(2)
α = Gα ⊗Gα = (HN

1 ⊕HN
2 )⊗ (HN

3 ⊕HN
4 ).

This last term equals (HN
1 ⊗HN

3 )⊕ (HN
2 ⊗HN

4 ) due to the distribution property

of the operands, where each summand is a torus of size N × N . Therefore, these

2-dimensional Gaussian networks can be decomposed into two edge disjoint N ×
N tori. In [4] (also see below), it is shown how to obtain two edge-disjoint

Hamiltonian cycles in a torus network. Using this scheme for each of the above

tori, we have decomposed the 2-dimensional network G
(2)
α into four edge-disjoint

Hamiltonian cycles. This is illustrated in the next example and its accompanying

Figure 3.13.
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Example 3.8. Let α = 1 + 2i. Then:

G
(2)
1+2i = G1+2i ⊗G1+2i

= (〈0, 1, 2, 3, 4〉 ⊕ 〈0, i, 2i, 3i, 4i〉)
⊗ (〈0, 1, 2, 3, 4〉 ⊕ 〈0, i, 2i, 3i, 4i〉)
= (〈0, 1, 2, 3, 4〉 ⊗ 〈0, 1, 2, 3, 4〉)
⊕ (〈0, i, 2i, 3i, 4i〉 ⊗ 〈0, i, 2i, 3i, 4i〉)
= T5×5 ⊕ T5×5

= (H ′
1 ⊕H ′

2)⊕ (H ′
3 ⊕H ′

4)

〈0, 1, 2, 3, 4〉⊗〈0, 1, 2, 3, 4〉 and 〈0, i, 2i, 3i, 4i〉⊗〈0, i, 2i, 3i, 4i〉 are two edge-disjoint

tori as shown in Figure 3.13. From these two tori, we can obtain four edge-disjoint

Hamiltonian cycles, each of length 25. In the figure, the solid lines and dashed lines

show these four Hamiltonian cycles.

0=0

1=1

2=i

4=-1

3=-i

0=0 1=1 2=i 3=-i 4=-1

0=0

i=i

2i=-1

4i=-i

3i=1

0=0 i=i 2i=-1 3i=1 4i=-i

Figure 3.13: Two edge-disjoint tori T 1
5×5⊕T 2

5×5 generating four edge-disjoint Hamil-

tonian cycles in G
(2)
1+2i.
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3.8.3 Gray Codes and Edge-Disjoint Hamiltonian Cycles in G
(n)
α ,

where n = 2r, r > 1

So far, we have shown that there exist two edge-disjoint tori and four edge-disjoint

Hamiltonian cycles in the degree 8 network G
(2)
α . In this section we describe these

in terms of the Gray codes given in [4]. This will facilitate the generation of edge-

disjoint tori in G
(2)
α as well as in G

(n)
α where n = 2r. First, we describe a basic Gray

code in a recursive way and then show how to modify this Gray code to generate

all edge-disjoint Hamiltonian cycles in G
(n)
α . Then, in the next section it is shown

how to obtain edge-disjoint tori.

Let G
(1)
N = (a0, a1, . . . , aN−1) with ai ∈ ZN and all ai’s distinct where N =

a2 + b2 is the number of nodes in the Gaussian network generated by α = a + bi.

Then G
(1)
N is a Gray code with one digit. Let G

(1),t
N be the cyclic t-shift of G

(1)
N .

For example:

G
(1),0
N = G

(1)
N = (a0, a1, . . . , aN−1)

G
(1),1
N = (aN−1, a0, a1, . . . , aN−2)

G
(1),2
N = (aN−2, aN−1, a0, a1, . . .)

...

G
(1),j
N = (aN−j , aN−j+1, . . . , aN−1, a0, a1, . . .)

Define G
(2m)
N as follows:

G
(2m)
N = G

(m)
N ⊗G

(m)
N

= {AjG
(m),j
N |Aj is the j-th word in the G

(m)
N } ,

for j = 0, 1, 2, . . . , N − 1}
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Example 3.9. Let α = 1 + 2i. Then N = 5 and we have:

G
(1),0
5 = G

(1)
5 = (0, 1, 2, 3, 4)

G
(1),1
5 = (4, 0, 1, 2, 3)

G
(1),2
5 = (3, 4, 0, 1, 2)

G
(1),3
5 = (2, 3, 4, 0, 1)

G
(1),4
5 = (1, 2, 3, 4, 0)

G
(2)
5 = G

(1)
5 ⊗G

(1)
5 as shown in Table 3.3

G
(4)
5 = G

(2)
5 ⊗G

(2)
5 as shown in Table 3.4.

Table 3.3: Gray Codes in G
(2)
α where α = 1 + 2i.

0G
(1),0
5 1G

(1),1
5 2G

(1),2
5 3G

(1),3
5 4G

(1),4
5

00 14 23 32 41

01 10 24 33 42

02 11 20 34 43

03 12 21 30 44

04 13 22 31 40

The following Claim proved in [4] shows that the G
(2m)
N defined above is actually

a Gray code.

Claim 3.10. G
(n)
N forms a Gray code over Z

n
N for n a power of 2, i.e, n = 2r.

Next we show that all other edge-disjoint Hamiltonian cycles in G
(n)
α can be

obtained by some form of permutation and multiplication over the digits of G
(n)
N .

First, we define these permutations.

For 0 ≤ j ≤ 2n−1, let j = (jn−1 jn−2 . . . j0) be the binary representation of the

integer j. Let G
(n=2r)
N be the Gray code with column digits as (en−1 en−2 . . . e0).

Then Pj(G
(n=2r)
N ) is the permutation of the column vectors of G

(n=2r)
N , for j =

0, 1, 2, . . . , 2r − 1 and these permutations are defined as follows.
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Table 3.4: Gray Codes in G
(4)
α = G5,2 ⊗G5,2 where α = 1 + 2i.

00G
(2),0
5 01G

(2),1
5 . . . 44G

(2),23
5 40G

(2),24
5

00 00 01 40 . . . 44 02 40 01

00 01 01 00 . . . 44 03 40 02

00 02 01 01 . . . 44 04 40 03

00 03 01 02 . . . 44 14 40 04

00 04 01 03 . . . 44 10 40 14

00 14 01 04 . . . 44 11 40 10

00 10 01 14 . . . 44 12 40 11

00 11 01 10 . . . 44 13 40 12

00 12 01 11 . . . 44 23 40 13

00 13 01 12 . . . 44 24 40 23

00 23 01 13 . . . 44 20 40 24

00 24 01 23 . . . 44 21 40 20

00 20 01 24 . . . 44 22 40 21

00 21 01 20 . . . 44 32 40 22

00 22 01 21 . . . 44 33 40 32

00 32 01 22 . . . 44 34 40 33

00 33 01 32 . . . 44 30 40 34

00 34 01 33 . . . 44 31 40 30

00 30 01 34 . . . 44 41 40 31

00 31 01 30 . . . 44 42 40 41

00 41 01 31 . . . 44 43 40 42

00 42 01 41 . . . 44 44 40 43

00 43 01 42 . . . 44 40 40 44

00 44 01 43 . . . 44 00 40 40

00 40 01 44 . . . 44 01 40 00



57

For j = (jn−1 jn−2 . . . j0), if jk = 1, k = 0, 1, . . . , n− 1 then permute the least

0-th 2k elements of G
(n=2r)
N with next (1-st) 2k elements, the second 2k elements

with the third 2k elements, and so on. For example, let P0(G
(23)
N ) = P000(G

(23)
N ) =

(e7, e6, e5, e4, e3, e2, e1, e0). Then

P1(G
(23)
N ) = P001(G

(23)
N ) = (e6, e7, e4, e5, e2, e3, e0, e1)

P2(G
(23)
N ) = P010(G

(23)
N ) = (e5, e4, e7, e6, e1, e0, e3, e2)

P3(G
(23)
N ) = P011(G

(23)
N ) = (e4, e5, e6, e7, e0, e1, e2, e3)

P4(G
(23)
N ) = P100(G

(23)
N ) = (e3, e2, e1, e0, e7, e6, e5, e4)

P5(G
(23)
N ) = P101(G

(23)
N ) = (e2, e3, e0, e1, e6, e7, e4, e5)

P6(G
(23)
N ) = P110(G

(23)
N ) = (e1, e0, e3, e2, e5, e4, e7, e6)

P7(G
(23)
N ) = P111(G

(23)
N ) = (e0, e1, e2, e3, e4, e5, e6, e7)

Now it can be shown [4] if G
(n=2r)
N is the Gray code designed as in Claim 3.10,

then

• the permutations Pj(G
(n=2r)
N ), for j = 0, 1, 2, . . . , 2r − 1 give n = 2r edge-

disjoint Hamiltonian cycles in G
(n)
α

Furthermore, it can be proved that

• multiplying each of Pj(G
(n=2r)
N ) by the complex number i gives another set

of n = 2r edge-disjoint Hamiltonian cycles in G
(n)
α .

In this way, 2n edge-disjoint Hamiltonian cycles are generated in G
(n)
α for n = 2r.

3.8.4 Embedding Edge-disjoint Tori

So far we have shown how to obtain 2n edge-disjoint Hamiltonian cycles in G
(n)
α

where n = 2r, and α = a + bi with gcd(a, b) = 1. Now we describe how to

embed various edge-disjoint tori on G
(n)
α . First it is explained for two-dimensional
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tori. Consider the two dimensional tori of size N (α)n/2 × N (α)n/2 whose row

and column addresses correspond to one of the n/2 = 2r−1 digit independent

Gray codes mentioned above. (Two Gray codes are said to be independent if

they generate edge-disjoint Hamiltonian cycles in the corresponding torus.) Since

there are 2(n/2) = 2r independent Gray codes we will have 2r two-dimensional

tori. These tori are edge-disjoint. This is because, if two nodes are adjacent in a

row (respectively in a column) of a given torus, then they cannot be adjacent in

a row (respectively in a column) of any other torus since the rows and columns

to be addressed correspond to independent Gray codes. In a similar fashion, we

can obtain 2(n/22) = 2r−1 edge-disjoint 4-dimensional tori by using the n/4 digit

independent Gray codes as the addresses along each dimension; 2r−2 edge-disjoint

8-dimensional tori by using n/8 digit independent Gray codes as the addresses

along each dimension, etc.

3.9 Higher Dimensional EJ Networks

The theory and topological properties developed for n-dimensional Gaussian net-

works can easily be extended to first define and then to develop topological proper-

ties of n-dimensional EJ networks. In [37], the authors have presented the original

one-dimensional EJ network and in [24] many topological properties of this network

are given.

The hexagonal network is a special case of an EJ network [2]. There have

been several examples of higher dimensional hexagonal mesh networks described

in [9, 21, 26]. The basis for all these networks is a hexagonal mesh, and they are

not node-symmetric.

Let ω = a + bρ where ρ = 1+
√
3i

2
be a given EJ integer. The norm is N (ω) =

a2+ b2+ab. In this network Eω, generated by ω, the number of nodes is N (ω) and

each node can be addressed using EJ integers in Zω. Two nodes α1, α2 ∈ Zωare

adjacent if and only if they differ by ±1,±ρ or ±ρ2. Then, Eω is a regular degree

six network with a2+b2+ab nodes. Now we describe the n-dimensional EJ network

E
(n)
ω .



59

Definition 3.11. An n-dimensional EJ network E
(n)
ω generated by ω = a+ bρ has

N (ω)n = (a2 + b2 + ab)
n
nodes, each node is addressed using the EJ integers in

Z
n
ω and two nodes β1, β2 ∈ Z

n
ω are connected by an edge if and only if they differ

in one position by ±1,±ρ or ±ρ2.

Thus, the degree of these networks is 6n. It can be easily seen that these

networks satisfy the Cayley graph property with 6n generators. These generators

have 0’s in all but one position, where the non-zero element can be 1,−1, ρ,−ρ, ρ2

or −ρ2. This implies the n-dimensional EJ networks are node-symmetric.

The routing and broadcasting algorithms for these networks can be done us-

ing the dimensional order routing (broadcasting) algorithm similar to the ones

described in Section 3.4 (Section 3.7) for n-dimensional Gaussian networks. In

addition, the distance distribution of these networks can also be obtained using

the recurrence equation method described in Section 3.5.

Another way of defining E
(n)
ω is using the concept of the cross product of graphs,

i.e.

E(n)
ω =

n times
︷ ︸︸ ︷

Eω ⊗Eω ⊗ . . .⊗ Eω .

Given ω = a+bρ where gcd(a, b) = 1, it is shown in [24], Eω can be decomposed

into three edge-disjoint Hamiltonian cycles. These three edge-disjoint Hamiltonian

cycles can be obtained by traversing along 1,ρ, and ρ2 directions. Suppose n = 2r

for r ∈ Z. Similar to the techniques given in Section 3.8, we can embed three edge-

disjoint (a2 + b2 + ab)-ary n-cube on E
(n)
ω , or six edge-disjoint (a2 + b2 + ab)-ary

n/2-cube, or 12 edge-disjoint (a2+b2+ab)-ary n/22-cube, and so on. In particular,

we can generate 3× 2r = 3n edge-disjoint Hamiltonian cycles in E
(n)
ω . The first n

edge-disjoint Hamiltonian cycles can be generated by the Lee distance Gray codes

described in Section 3.8. Then, multiplying these Gray codes by ρ and ρ2 we

can get another set of 2n Gray codes and these 3n Gray codes correspond to 3n

edge-disjoint Hamiltonian cycles in E
(n)
ω where ω = a+ bρ.
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3.10 Conclusion

In this chapter, we have introduced higher dimensional Gaussian networks and

have shown that the diameter and the average distance of the higher dimensional

Gaussian network are less than those of a multidimensional torus with the same

number of nodes and degree. An optimal one-to-one routing algorithm has been

developed. Simulation results show that our given routing algorithm does outper-

form the usual routing algorithm for tori in terms of average message latency.

We have been able to extend many properties of one-dimensional Gaussian

networks to the higher dimensional setting, including finding the distance dis-

tribution and an optimal one-to-all broadcasting algorithm. In particular, when

n = 2r we have generated 2n edge-disjoint Hamiltonian cycles in n-dimensional

Gaussian networks G
(n)
a+bi when gcd(a, b) = 1. We have also shown how to embed

multi-dimensional edge-disjoint torus networks on this network.

We have also briefly shown that the development of the theory in this chapter

can easily be extended to the higher dimensional EJ networks.
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Chapter 4: Degree-three Pruned Gaussian Networks

4.1 Introduction

Gaussian networks [38] were proposed as an alternative to toroidal networks. These

networks are shown to have advantage over the toroidal networks because they

have a smaller diameter. A smaller diameter and smaller average distance implies

a smaller average message latency, the average time of arrival and departure of

messages in the network. It is shown in [36] that a 2D torus is a special case of a

Gaussian network. These networks are regular of degree four. Smaller degree inter-

connection networks are sometimes more desirable, especially in on-chip networks.

The smaller the degree of a node, the lower the cost of implementation.

Some attempts have been made to introduce degree-three networks to obtain

networks with smaller degree than degree four. Honeycomb mesh networks [44]

are a well-known class of degree-three networks. Adding appropriate wraparound

edges to a honeycomb mesh yields a honeycomb torus. Honeycomb torus networks

are known to cost less than 2D toroidal networks where the cost of a network is

defined as the product of the degree and the diameter of the network [44].

Parhami and Kwai in [41] and also Xiao and Parhami in [47] showed that a

honeycomb torus can be obtained by pruning a 2D torus. We apply the analogous

pruning technique to Gaussian networks in order to construct degree-three pruned

Gaussian networks. Just as Gaussian networks are a generalization of 2D square

torus networks, we show that degree-three pruned Gaussian networks are a gener-

alization of honeycomb square torus networks. In addition, in some situations the

resulting degree-three pruned Gaussian network has a smaller diameter than the

corresponding honeycomb torus with an equivalent number of nodes.

The rest of this chapter is organized as follows. In Section 4.2 some basic

definitions and mathematical terms are explained. Section 4.3 explains the honey-
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comb network. Next, Section 4.4 briefly reviews important properties of Gaussian

networks that are relevant to the rest of the chapter. The definition and some

basic topological properties of degree-three pruned Gaussian networks are given in

Section 4.5. The summarizing conclusions and future research directions are given

in Section 4.6.

4.2 Definitions

In this chapter we briefly review some of the terminology and mathematical terms

that are used throughout the rest of this section. An interconnection network is an

undirected graph. Thus, the following pair of terms are equivalent: node/vertex,

edge/link, graph/network. We use node, edge, and network throughout the rest of

this manuscript.

Definition 4.1. Let G = (V,E) be a graph. Then V (G) represents the set of nodes

and E(G) represents the set of edges in G. The number of edges incident to a node

is defined to be the degree of the node.

Definition 4.2. A simple graph is an undirected, unweighted graph with no loops

and no multi-edges. A simple graph could be connected or disconnected.

Definition 4.3. Let G and H be two simple graphs. A graph isomorphism from

G to H is a bijection f : V (G) → V (H) such that for any two vertices u and v in

V (G), uv ∈ E(G) if and only if f(u)f(v) ∈ E(H). That is, u and v are adjacent

in G if and only if f(u) and f(v) are adjacent in H. The two graphs G and H are

said to be isomorphic if and only if there exists an isomorphism between them.

Definition 4.4. An automorphism of a graph G is an isomorphism of the graph

with itself. That is, there is a bijection from V (G) to V (G) that maps every pair

of edges in E(G) to E(G).

Definition 4.5. A graph is node-symmetric if for every pair of nodes u and v

there exists an automorphism mapping u to v.
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Definition 4.6. A set Γ is said to be a group under the binary operation ⊗ if it

satisfies the following properties.

• Closure: ∀x, y ∈ Γ, x⊗ y ∈ Γ.

• Identity: ∃1 ∈ Γ such that ∀x ∈ Γ : x⊗ 1 = 1⊗ x = x.

• Associativity: ∀x, y, z ∈ Γ then (x⊗ y)⊗ z = x⊗ (y ⊗ z).

• Inverse: ∀x ∈ Γ, ∃x−1 ∈ Γ such that x⊗ x−1 = x−1 ⊗ x = 1.

Definition 4.7. Let S be a subset of the group Γ. Then S is called a generator

set of group Γ if every element of Γ can be obtained as a combination of finitely

many elements of S or their inverses under the group operation.

Definition 4.8. Let S be a set of generators for a finite group Γ under the group

operation ⊗. The Cayley graph relative to Γ and S is the graph in which the nodes

are the elements of the group Γ and the edges are defined as follows. Two nodes

x and y ∈ Γ are adjacent if and only if there exists a generator s ∈ S such that

either y = x⊗ s or y = s⊗ x.

4.3 Honeycomb Networks

A honeycomb mesh network is built from hexagons in the hexagonal plane tes-

sellation where the nodes and edges of the network are the nodes and edges of

the hexagon. One way to build a honeycomb mesh network is to consider all the

hexagonal tiles included in a fixed convex polygon. Then the sides of the polygon

specify the borders of a honeycomb mesh network. The nodes on the borders are

called the boundary nodes. Therefore, a honeycomb mesh network is a degree-

three network where each node except for the boundary nodes is adjacent to three

nearest neighbors 120 degrees apart. Three polygons (hexagon, rectangle, and

rhombus) were used in [44] to define three types of honeycomb meshes namely

the honeycomb hexagonal mesh (HHM or HM), the honeycomb rectangular mesh

(HReM), and the honeycomb rhombic mesh (HRoM).
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Honeycomb hexagonal meshes of size t (denoted by HMt) were discussed thor-

oughly in [44]. Basically, one hexagon forms HM1 and HM2 is formed by placing

6 hexagons on the six sides of HM1. In general, HMt is formed by including the

6(t−1) hexagons surrounding the outer layer of HMt−1. Figure 4.1(a) shows HM3.

A honeycomb hexagonal torus of size t (HTt) can be constructed from a hon-

eycomb hexagonal mesh of size t (HMt) by adding appropriate wraparound edges.

Figure 4.1(b) gives the wraparound edges for HM3. The same numbers represent

the existence of a wraparound edge between two boundary nodes. Consider the

three dashed lines in Figure 4.1(b) . These are the three axes used in [44] to

address the nodes. Each pair of dashed lines divides the nodes into different sec-

tors. In total, there are six sectors. Boundary nodes in one sector are adjacent

to boundary nodes in the opposite sector. The wraparound edges are drawn by

considering the mirror symmetric boundary nodes with respect to the third axis.

For more information on these wraparounds refer to [44].

The number of nodes in HMt and HTt is 6t2. The number of edges, the di-

ameter, and the bisection width of HMt (HTt) are 9t2 − 3t (9t2), 4t− 1 (2t), and

0.82
√
n (2.04

√
n), respectively [44].

4.3.1 Honeycomb Rectangular Tori

Honeycomb rectangular tori were considered in [41] as networks with better topo-

logical properties than other honeycomb networks. These networks have a rectan-

gular exterior shape and when redrawing them using a brick drawing [41] transfor-

mation, they resemble brick tori. A brick drawing of a network is another way of

representing the same network in which the network is redrawn in such a way that

the edges of the network become perpendicular to each other. (Refer to Figure 4.2.)

A honeycomb rectangular torus is denoted by HReT(m,n) where m and n are

the sides of the exterior rectangle encompassing the honeycomb network. It is

shown in [41] that HReT(m,n) is the pruned version of an m× 2n torus network;

that is, HReT(m,n) is obtained by removing some of the edges from an m × 2n

torus but keeping the same set of nodes (For one example refer to Figure 4.2).
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(b) HT3. Same numbers represent
wraparound edges.

Figure 4.1: Honeycomb hexagonal mesh and torus of size 3.

For this reason, it is stated in [41] that a honeycomb rectangular torus has a

straightforward VLSI layout. In addition, it is proved in [41] that honeycomb

rectangular tori are Cayley graphs and thus node-symmetric. The authors in [41]

have proposed an efficient routing algorithm for honeycomb rectangular tori.

The authors in [41, 44] studied the special case of HReT(m,n) where m = 2n.

This special honeycomb torus has an square exterior shape and is denoted by

HSTt or HReT(t, t/2). The number of nodes in HSTt is t2 and its diameter is

t. Figure 4.2(a) shows the HReT(8,4) and its corresponding 8 × 8 pruned torus

version is shown in Figure 4.2(b) in which the dotted lines represent the pruned

(removed) edges.

4.4 A Review of Gaussian Networks

In this section we briefly recall Gaussian networks as defined earlier in Section 3.2

and present some more properties of these networks that will be useful in the rest

of this chapter. More details can be found in [24, 36, 38].



66

(a) HReT(8,4) (b) 8× 8 pruned torus

Figure 4.2: The honeycomb rectangular torus HReT(8,4) which is isomorphic to
8 × 8 pruned torus. The dotted lines represent the pruned edges in the 2D torus.
The solid lines correspond to the brick drawing of HReT(8,4).

A Gaussian network Gα is generated by the complex number α = a+ bi where

a, b are positive integers. The nodes in Gα are the set of remainders upon division

by α (the division as complex numbers). A node in Gα is addressed using a complex

Gaussian integer in the form of x+ yi where the integers x and y are the real and

imaginary parts of the Gaussian integer. Two nodes in Gα are adjacent if and only

if they differ by ±1 or ±i modulo α. A given node x + yi ∈ Gα is called an even

node if x+ y is even, while x+ yi ∈ Gα is called an odd node if x+ y is odd.

Definition 4.9. A bipartite graph is a graph in which the nodes of the graph can be

divided into two disjoint sets such that no two nodes in the same set are adjacent.

Theorem 4.10. If a+b is even then the Gaussian network generated by α = a+bi

is a bipartite graph where the two sets of even nodes and odd nodes is the partition

of nodes.

Proof. We show that when a+b is even the two disjoint sets for the bipartite graph

Gα are the set of even nodes and the set of odd nodes defined above. That is, we

show that when a+ b is even, odd nodes are adjacent only to even nodes and vice
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versa. First consider the nodes that are endpoints of regular edges in the half-open

square representation of Gα. Two nodes are adjacent if their addresses differ in

one position by ±1 or ±i; That is, if a node is odd (even), then every neighbor is

even (odd).

Next consider the boundary nodes. Let the node P1 be a boundary node in Gα.

Let the node P2 be the neighbor of P1 which is located outside of the basic square.

By the above explanation, if P1 is even (odd) then P2 must be an odd (even) node.

Let P3 be the translation of the node P2 to the basic square. Then, P3 is obtained

by subtracting mα from P2 for m ∈ {1,−1, i,−i}. Since a + b is even, P3 is even

(odd) provided that P2 is even (odd). In other words, we have shown that if the

boundary node P1 is even (odd) its neighbor through the wraparound edge is odd

(even).

4.5 Degree-Three Pruned Gaussian Networks

This section introduces degree-three pruned Gaussian networks as an alternative

to honeycomb rectangular tori.

Consider a Gaussian network Gα generated by α = a + bi where 0 < a ≤ b

and a+ b is even. The pruning technique used to construct a degree-three pruned

Gaussian network works as follows: For each given node x + yi in the network,

the edge incident to node (x + yi) + 1 will be removed if and only if x + yi is an

odd node, where the addition is modulo α. Consequently, the edge incident to

node (x+ yi)− 1 will be removed if and only if x+ yi is an even node, where the

subtraction is modulo α. Figure 4.3 shows the square representation of the pruned

Gaussian network generated by α = 3 + 5i.

Note that when if either a = 0 or b = 0, the degree-three pruned Gaussian

network is a pruned torus of size b×b or a×a. Thus, a degree-three pruned Gaussian

network is a generalization of a honeycomb squared torus (pruned squared torus).

Theorem 4.12 shows that a degree-three pruned Gaussian network is regular of

degree three provided that a + b is even. First, let us define a regular graph.
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Figure 4.3: The square representation of the pruned Gaussian network generated
by α = 3 + 5i. The pruned edges are represented by dotted lines.
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Definition 4.11. A graph is said to be regular of degree r if and only if all the

nodes of the graph have degree r.

Theorem 4.12. Let Gα be a Gaussian network generated by α = a+ bi such that

0 < a ≤ b. Then the degree-three pruned Gaussian network defined by pruning Gα

is regular of degree three if a+ b is even.

Proof. By Theorem 4.10, Gα is a bipartite graph when a + b is even. The two

disjoint sets of the bipartite graph are the set of even nodes and the set of odd

nodes. Each even (odd) node is adjacent to four odd (even) nodes. For each node,

the pruning technique defined above removes one of its two horizontal edges as

shown in Figure 4.4. Therefore, all nodes of the remaining network have exactly

three neighbors and the resulting network is regular of degree three.

Figure 4.4: A node and its edges in a degree-three pruned Gaussian network. The
dotted lines represent the pruned edges. Black circles represent even nodes and
white circles represent odd nodes.

Next we prove that the resulting degree-three pruned Gaussian network is a

Cayley graph, and thus it is node-symmetric.

4.5.1 Node Symmetry

Cayley graphs are known to be node-symmetric [35]. Therefore, in order to prove

that a network is node-symmetric, it suffices to show that it is a Cayley graph.

Next we prove that the degree-three pruned Gaussian networks are Cayley

graphs. In the proof we adapt the technique given in [34, 41].
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Theorem 4.13. Let Gα be a Gaussian network generated by α = a+ bi such that

0 < a ≤ b. Then the degree-three pruned Gaussian network defined by pruning Gα

is a Cayley graph.

Proof. Let Γ be the set of Gaussian integers within the basic square Pα.

For each (m+ in), (u+ iv) ∈ Γ define an operation ⊕ as follows (the addition

on the left is the addition of complex numbers):

(m+ in)⊕ (u+ iv) = m+ (−1)m+nu+ i(n + v) mod α

First, we show that Γ is a group under the operation ⊕ defined above.

• Closure: For any two points (m+ in), (u+ iv) ∈ Γ, the result of (m+ in)⊕
(u + iv) is calculated modulo α that is, the remainder upon division by α.

Thus, the result is a point in Γ.

• Identity: 0 is the identity element under ⊕ because ∀(m + in) ∈ Γ we have

(m+ in)⊕ 0 = 0⊕ (m+ in) = (m+ in).

• Associativity: ∀(m+ in), (u+ iv), (z+ it) ∈ Γ we have ((m+ in)⊕ (u+ iv))⊕
(z + it) = (m+ in)⊕ ((u+ iv)⊕ (z + it)). There are four cases to show this

equality holds depending on whether m+ n and u+ v are even or odd. We

prove the case when m + n is even and u + v is odd. For the other cases a

similar proof can be given.

((m+ in)⊕ (u+ iv))⊕ (z + it) = (m+ u+ i(n+ v))⊕ (z + it)

= m+ u− z + i(n + v + t)

= (m+ in)⊕ (u− z + i(v + t))

= (m+ in)⊕ ((u+ iv)⊕ (z + it))

• Inverse: For every (m + in) ∈ Γ it can be checked that there is an inverse
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such that

(m+ in)⊕ (m+ in)−1 = (m+ in)−1 ⊕ (m+ in) = 0

where (m+ in)−1 is either (−m− in) or (m− in) depending on m+n is even

or odd.

The set

S = {1,+i,−i}

which is a subset of Γ (assuming the basic square is centered at 0) is a generator

set for Γ because every element of Γ can be obtained by a combination of finitely

many elements of S and their inverses under ⊕. Therefore, S is a generator set

for Γ. Also, Γ has the same node set as the degree-three pruned Gaussian network

generated by α. Every node (x + iy) ∈ Γ is adjacent to the nodes (x + iy) ⊕ 1,

(x+iy)⊕i, and (x+iy)⊕−i. Thus, Γ is the degree-three pruned Gaussian network

and is a Cayley graph.

4.5.2 Diameter

In this section we use an approach analogous to that used in [41] to calculate the

diameter of degree-three pruned Gaussian networks.

The diameter is a longest shortest path between any pair of nodes in a network.

Since a degree-three pruned Gaussian network is node-symmetric, the diameter can

be considered to be the longest shortest path from the origin. Consider the basic

square defined by a Gaussian network. The square has four corners, but only one

of them is included in the node set of the network. The other three corners of

the basic square are actually multiples of α. In other words, they are modulo α

translations of the origin. We assume the following conjecture that we have not

proved.

Conjecture 4.14. The distance of a node from the origin in a pruned Gaussian

network is the minimum of the (pruned Gaussian) distance of this node from the
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four corners of the basic square.

We will use this fact to calculate the diameter of a degree-three pruned Gaussian

network. But first let us find a lower bound for the diameter. It is shown in [36,

Corollary 13] that the diameter of a Gaussian network generated by α = a + bi,

where 0 ≤ a ≤ b is b if a2 + b2 is even. Since in a degree-three pruned Gaussian

network a + b is always even, its diameter is at least b.

Theorem 4.15. Let Gα be a degree-three pruned Gaussian network generated by

α = a+ bi such that 0 < a ≤ b. Assuming Conjecture 4.14, then the diameter d of

the network is

d =







b if a ≤ ⌈b/2⌉
2k + r if a > ⌈b/2⌉ and a+ b = 3k + r for r = 0,±1.

Corollary 4.16. The cost of the network defined by the product of the degree and

the diameter is smaller in a degree-three pruned Gaussian network generated by

α = a+ bi (0 < a < b and a+ b is even) compared to a Gaussian network with the

same generator.

Proof. Since the diameter of the Gaussian network generated by α is b the cost

of the network is c1 = 4b. The cost of the degree-three pruned Gaussian network

generated by α is c2 = 3b if a ≤ ⌈b/2⌉ and is c3 = 2a + 2b + r for r = 0,±1 if

a > ⌈b/2⌉. Since 2a < 2b, we have c3 < c1.

Note that if a = b and a + b = 3k + 1 then the cost of a degree-three pruned

Gaussian network is one more than that of a Gaussian network generated with the

same generator.

We prove Theorem 4.15 by first proving a useful equation for finding the dis-

tance between the nodes.

Let x0 + y0i and x1 + y1i be the source node and the destination node, respec-

tively. First we suppose x0 + y0i is an even node. Consider these two nodes in the
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2D plane. Let ∆x = x1 − x0 and ∆y = y1 − y0. The distance between two nodes

x0 + y0i and x1 + y1i is given by







|∆x|+ |∆y| if |∆y| ≥ |∆x|
2∆x− s if |∆y| < ∆x and ∆x > 0

2|∆x|+ s if |∆y| < |∆x| and ∆x < 0

(4.1)

where s = 0(1) if ∆x + ∆y is even (odd). If x0 + y0i is an odd node then the

distance is given by







|∆x|+ |∆y| if |∆y| ≥ |∆x|
2∆x+ s if |∆y| < ∆x and ∆x > 0

2|∆x| − s if |∆y| < |∆x| and ∆x < 0

(4.2)

We now prove (4.1) and (4.2). In order to find the distance between the source

and the destination we will trace a route similar to the dimension order routing

algorithm. The route starts from the source to first correct ∆x unless the required

edge has been pruned. In that case, the route continues one step in dimension Y

in the direction that corrects ∆y. If ∆y is already corrected then two extra edges

must be added to the path: one edge adding an offset to ∆y and one removing the

added offset.

If |∆y| ≥ |∆x| no extra steps are required. Thus, the distance between source

and destination is |∆x| + |∆y|. If |∆y| < |∆x| then extra steps may be needed.

Depending on the sign of ∆x two different cases will be considered. We assume

the source node is an even node. The argument for odd node is similar.

Case 1. ∆x > 0. The route starts by alternating dimensions until ∆x− |∆y|
edges in dimension X remain to be corrected. For each pair of remaining steps in

dimension X , two additional steps are required to go back and forth in dimension

Y . Note that, if there is only one step required to correct the X-dimension edge,
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it can be done in one edge. Therefore, the route is completed in 2⌊∆x−|∆y|
2

⌋ more

steps.

Case 2. ∆x < 0. The route begin in dimension Y and continues to alternate

dimensions as before, until |∆x| − |∆y| edges in dimension X remain to be cor-

rected. Then, if one step is required to correct the offset in dimension X , three

additional steps are needed, for a total of 2⌈ |∆x|−|∆y|
2

⌉ additional steps. In summary

we can write the distance between x0 + y0i and x1 + y1i is







|∆x| + |∆y| if |∆y| ≥ |∆x|
∆x+ |∆y|+ 2⌊∆x−|∆y|

2
⌋ if |∆y| < ∆x and ∆x > 0

|∆x| + |∆y|+ 2⌈ |∆x|−|∆y|
2

⌉ if |∆y| < |∆x| and ∆x < 0

(4.3)

where ∆x = x1 − x0 and ∆y = y1 − y0 and x0 + y0i is an even node.

The term 2⌈ |∆x|−|∆y|
2

⌉ equals |∆x|−|∆y| if ∆x+∆y is even and |∆x|−|∆y|+1

if ∆x + ∆y is odd. Similarly, 2⌊∆x−|∆y|
2

⌋ equals ∆x − |∆y| or ∆x − |∆y| − 1 if

∆x+∆y is even or odd, respectively. Thus, the above equation can be simplified

and be written as in Equation (4.1).

Now we are ready to prove Theorem 4.15. As stated earlier, when a+ b is even

the diameter of the Gaussian network is b and therefore the diameter of the pruned

Gaussian network is at least b.

Next we identify the situations in which the diameter is greater than b. As

we prove this we will prove that the diameter equals b when a ≤ ⌈b/2⌉. Consider

the square representation of the Gaussian network Gα generated by α = a + bi

(0 < a ≤ b) as shown in Figure 4.5. When a = 0 then the Gaussian network is a

torus and that has been discussed thoroughly in [41]. In the following discussion

we first assume b is even. Later we assume b is odd.

Let M = x+ yi be a node in Gα. Based on Conjecture 4.14 the distance of M

from the origin is the minimum of the distances of M from the four corners of the

basic square. Note that the term distance means using the edges of the pruned
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a+bi

-b+ai

(a-b) + (a+b)i

-2
x
=

b

Figure 4.5: Shaded region shows the region where the distance from the origin
might be greater than b.
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graph. By Equation (4.1) the distance of M from the origin is |x| + y if y ≥ |x|;
that is, M is in the region between the two lines y = x and y = −x. The region

with a distance greater than b from the origin and within these two lines lies within

by x+ y > b and −x+ y > b. If y < |x| then by Equation (4.1) the region with a

distance greater than b lies within 2|x| ≥ b. This region is shown in Figure 4.5.

Note that in the following discussion we consider the case where a < b. If a = b

then the line y = b
a
x which is the side of the square between the origin and a+ bi

lies on the line y = x. In this case the following discussion will be simplified since

some of the regions disappear. For the case a < b the line y = b
a
x lies between the

two lines y = x and x = 0 as is shown in Figure 4.5 because the slope of this line

is greater than 1 (since 0 < a < b we have b
a
> 1). Using similar reasoning in later

figures all the lines lie as shown.

Now, consider the corner which is the point (a − b) + (a + b)i. Assume the

node x+ yi is in the basic square and let ∆x = x− (a− b) and ∆y = y − (a+ b).

If |∆y| ≥ |∆x| the region with a distance greater than b from (a − b) + (a + b)i

and the lines y = x + 2b and y = −x + 2a lies within the region x + y < 2a − b

and −x + y < b. If |∆y| < |∆x| then the region with a distance greater than b

lies within 2x ≥ 2a− b. The shaded regions in Figure 4.6 describe all the possible

regions where distance of M from origin can be greater than b.

Considering the above constraints and looking at Figure 4.6 there are only two

regions in which there could be a node with a distance greater than b from the two

mentioned corners of the basic square. We call these two regions A and B. Region

A is bounded by the two sides of the square originating from a + bi and the lines

x + y = b, −x + y = b, and 2x = 2a− b. The region between the other two sides

of the square originating from −b + ai and bounded by the lines x + y = 2a − b,

−x+ y = b, and −2x = b forms region B. These regions are shown in Figure 4.6.

Next, consider the remaining two corners of the basic square. Similar to the

previous discussion we draw two pairs of lines, each pair of line begins in one of

the two corners. These lines in addition to the previous lines and the basic square

are shown in Figurer 4.7.
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A

B

a+bi

-b+ai

(a-b) + (a+b)i

Figure 4.6: Shaded regions show the two regions where the distance from the origin
and (a− b) + (a+ b)i might be greater than b.
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Note that there is a hidden assumption in Figurer 4.7 (and so in all the following

figures). The assumption is 2a− b > 0. Let the node H be the intersection of the

two lines y = b and y = −x + 2a. Let D = bi. Since the length of the line DH is

2a − b, when 2a− b ≤ 0 then the rectangle (which we call it A1) region does not

exist. In other words, if a ≤ ⌊b/2⌋ then the diameter of the network is b.

a+bi

-b+ai

(a-b) + (a+b)i

Figure 4.7: Basic square and the lines used to prove the diameter of the Gaussian
network Ga+bi where 0 < a < b.

First consider the region A. There cannot be any node where the distance is

greater than b lying in the triangular shape bounded by the side of the square (the

side between a + bi and (a − b) + (a + b)i) and the two lines y = −x + 2a and
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y = x + b − a. Assume P1 = x1 + y1i is such a node. By Equation( 4.1), the

distance of P1 from (a − b) + (a + b)i is d1 = 2(x1 − (a − b)) − s1 where s1 is 0

or 1 depending on whether P1 is even or odd. By Equation( 4.1), the distance of

P1 from a + bi is d2 = 2(a− x1) + s1. Since d1 + d2 = 2b it is impossible to have

d1 > b and d2 > b.

There cannot be any node whose distance is greater than b lying in the triangle

generated by the side of the square (the side between 0 and a + bi) and the two

lines y = x + b − a and x + y = b. On the contrary, assume P2 = x2 + y2i is

such a node. However, the nodes with the distance greater than b from a + bi are

contained in the region defined by x+ y < a. In this case P2 is not in this region.

Thus, the rest of nodes in A where distance is greater than b lie within the

region bounded by x + y = b, y = x + b − a, y = −x + 2a, and −x + y = b. We

call this rectangle A1.

Next consider the region B. There cannot be any node where distance is greater

than b lying in the triangular shape bounded by the side of the square (the side

between −b + ai and the origin) and the two lines y = −x and y = x + a + b.

Assume P3 = x3 + y3i is such a point. By Equation( 4.1), the distance of P3 from

b+ ai is d3 = 2(b− |x3|)− s3 where s3 is 0 or 1 depending on whether P3 is even

or odd. The distance of P3 from the origin is d4 = 2(|x3|) + s3. Since d3 + d4 = 2b

it is impossible to have d3 > b and d4 > b.

There cannot be any node where distance is greater than b lying in the triangle

generated by the side of the square (the side between (a−b)+(a+b)i and −b+ai)

and the two lines y = x + a + b and x + y = 2a − b. Assume P4 = x4 + y4i is

such a node. However, the nodes where distance is greater than b from −b+ai are

contained in the region defined by x+ y > a. P4 is not in this region.

Thus, the rest of nodes in B where distance is greater than b lie within the

region bounded by x + y = 2a − b, y = x + a + b, y = −x, and −x + y = b. We

call this rectangle B1.

The two regions A1 and B1 are shown in Figure 4.8.

Now let us take a closer look at regions A1 and B1. First consider region
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B1

A1

a+bi

-b+ai

(a-b) + (a+b)i

Figure 4.8: Shaded regions are the region A1 and the region B1 in which the
network distance might be greater than b.
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A1 as shown in Figure 4.9. The coordinates of the nodes are as follows. C =

a − b/2 + (a + b/2)i, D = bi, E = a − b/2 + (3b/2 − a)i, F = a − b/2 + bi, and

G = a+bi. Note that since we are assuming for now that a and b are even integers,

all five points have integer coordinates and so are nodes in the rectangle.

By (4.1) (the third case applies), the distance of any node P on the line CE

from the corner G of the basic square is 2(a− (a− b/2)) + s = 2(b/2) + s = b+ s

where s is 0 or 1 . By (4.1) all the nodes that lie within the rectangle and between

G and the line CE have distance less than b from G. Thus the only nodes where

distance from 0 might be greater than b is the triangle CDE (excluding the points

on the lines CD and DE, because the distance of any node on these lines from 0

is b). We call this triangle region A2. This region is the shaded triangle shown in

Figure 4.9. If a and b are both even, then C and E have integer coordinates. Thus,

the line CE is also included in the region A2.

If a and b are both odd, then C and E are not nodes in the network. Instead

the nodes in the network lie on the two lines x = a−(b+1)/2 and x = a−(b−1)/2.

These two lines are the L1 and L2 lines shown in Figure 4.10, respectively. By (4.1),

the distance of any node on the line L2 from G is at most b. Thus this line is not

included in the region A3. But the line L1 is included in the region A3.

Now consider region B1 as shown in Figure 4.11. The coordinates of the nodes

are as follows. C ′ = −b/2+ b/2i, D′ = a− b+ ai, E ′ = −b/2+ bi, F ′ = −b/2+ ai,

F ′′ = −b/2 + 1 + ai, and G′ = −b + ai. Note that since we are assuming for

now that a and b are even integers, all five points have integer coordinates and

so are nodes in the rectangle. By (4.1) (the second case applies), the distance of

any node on the line C ′E ′ from the corner of the basic square G′ = −b + ai is

2(b− b/2)− s = 2(b/2)− s = b− s where s is 0 or 1. By (4.1) all the nodes that

lie within the rectangle and between the point G′ and the line C ′E ′ and including

the points on the line C ′E ′ have distance less than or equal to b from G′. Thus

the only region where the distance might be greater than b is the shaded triangle

shown in Figure 4.11 (excluding the points on the lines C ′D′ and D′E ′). Note that

F ′′ = F ′ + 1. We call this triangular region B2. If a and b are both even, then C ′
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C

D

E

F
G

x=a-b/2

Figure 4.9: The rectangle is the region A1 and the shaded triangle is the region A2

in which the network distance might be greater than b for even b.
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C

D

E

F
G

L2L1

x=a-(b+1)/2

Figure 4.10: The rectangle is the region A1 and the shaded triangle is the region
A3 in which the network distance might be greater than b for odd b.
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and E ′ as well as F ′ and F ′′ have integer coordinates. Thus, the line x = F ′′ is

also included in the region B2.

C✄

D✄

E✄

F✄
G✄

F✄✄

Figure 4.11: The rectangle is the region B1 and the shaded triangle is region B2

in which the network distance might be greater than b for even b.

If a and b are both odd, then C ′ and E ′ are not nodes in the network. Instead

the nodes in the network lie on the two lines x = −(b− 1)/2 and x = −(b+ 1)/2.

These two lines are the L1 and L2 lines shown in Figure 4.12, respectively. By (4.1),

the distance of any node on the line L2 from G′ is at most b− 1. Thus this line is

not included in region B3. But the line L1 is included in the region B3.

Simple math shows that the triangle CDE and C ′D′E ′ in the previous figures

have the same size. All triangles are isosceles triangle and the size of the sides CE

or C ′D′ is 2a− b. Comparing Figure 4.9 and Figure 4.11, region A2 is larger than

region B2 when a and b are both even. Although Figure 4.10 and Figure 4.12 show
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C✄

D✄

E✄

F✄
G✄

L1L2

Figure 4.12: The rectangle is the region B1 and the shaded triangle is region B3

in which the network distance might be greater than b for odd b.
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that region A2 and region B2 have the same size when a and b are both odd region

A2 may have some nodes with a greater distance from the corner. Consider the

nodes on the line L1 in the figures. By (4.1), the distance of any node on this line

from G is at most b+ 2 in Figure 4.10. However, the distance of any node on the

line L1 in Figure 4.12 is at most b+ 1.

Next we find the value for the diameter nodes. A Diameter node is a node

whose distance from 0 is the diameter of the network. They must lie in the regions

A2 or B2 for even b (A3 or B3 for odd b). By (4.1) the distance of any node in

region A2 from −b+ ai is at least 2b. This is because the X offset is 2b. However,

the maximum distance of any node in region A2 from the other three corners is

at most 2a. (By (4.1), the distances of C from 0, E from (a − b) + (a + b)i, and

D from a + bi are 2a.) Since a < b, to find diameter nodes in region A2 (A3) the

corner −b + ai is not considered. Similarly, to find diameter nodes in region B2

(B3) the corner a+ bi is not considered.

Lemma 4.17. Let Gα be a degree-three pruned Gaussian network generated by

α = a+ bi such that 0 < a ≤ b. Let u+ (b± v)i specify the nodes in the region A2

where u and v are integers such that 0 < u ≤ ⌊b/2⌋ and 0 ≤ v ≤ u− 1. Then any

node with v ≥ 2 cannot be a diameter node.

Proof. Without loss of generality assume the node P1 = u+ (b− v)i for v ≥ 2 is a

diameter node. If v is an even number, then by (4.1) the node P2 = u+ bi and P1

have the same distance from a+ bi. Now consider the node P3 = u− 1 + bi. This

node is within the region A2 since v ≥ 2 implies u ≥ 3. The distance of P3 from

the three corners of the basic square (all except for −b + ai) is greater than the

distance of P1 from the three corners. Thus, P1 is not the node with the longest

distance from the origin in the network.

Now, if v is an odd number. Then by (4.1) the node P4 = u+ (b− 1)i and P1

have the same distance from a+ bi. Now consider the node P5 = u− 1 + (b− 1)i.

(Again this node is within the region A2.) The distance of P5 from the two corners

a + bi and 0 is greater than that of P1. Thus, P1 is not the node with the longest

distance from the origin in the network.
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Lemma 4.18. Let Gα be a degree-three pruned Gaussian network generated by

α = a+ bi such that 0 < a ≤ b. Let a− b− u+ (a± v)i specifies the nodes in the

region B2 where u and v are integers such that 0 < u < ⌊b/2⌋ and 0 ≤ v ≤ u− 1.

Then any node with v ≥ 2 cannot be a diameter node.

Proof. Without loss of generality assume the node P1 = a − b − u + (a − v)i for

v ≥ 2 be the diameter. If v is an even number, then by (4.1) the node P2 =

a− b−u+ ai and P1 have the same distance from −b+ ai. Now consider the node

P3 = a − b − u + 1 + bi. This node is within the region B2 since v ≥ 2 implies

u ≥ 3. The distance of P3 from the three corners of the basic square (all except

for a + bi) is greater than that of P1. Thus, P1 is not the node with the longest

distance from the origin in the network.

Now, if v is an odd number, then by (4.1) the node P4 = a− b − u + (a− 1)i

and P1 have the same distance from −b+ ai. Now consider the node P5 = a− b−
u + 1 + (a − 1)i. (Again this node is within the region B2.) The distance of P5

from the two corners −b+ ai and 0 is greater than that of P1. Thus, P1 is not the

node with the longest distance from the origin in the network.

The following theorem is a direct result of Lemma 4.17 and Lemma 4.18.

Theorem 4.19. Let Gα be a degree-three pruned Gaussian network generated by

α = a + bi such that 0 < a ≤ b. Let u + (b ± v)i and a − b − u + (a ± v)i be the

nodes in the region A2 and the region B2, respectively. (u and v are integers such

that 0 < u ≤ ⌊b/2⌋ and 0 ≤ v ≤ u− 1.) Then any diameter node has either v = 0

or v = 1.

Now we are ready to find the value for diameter nodes. Consider the region

A2. By Theorem 4.19 first assume the node P1 = u + (b − 1)i for 0 < u ≤ ⌊b/2⌋
is a node with the longest distance from 0. P1 must be an odd node. If P1 is an

even node then consider the node P2 = u + bi which is an odd node. By (4.1)

the distance of P2 from a + bi is greater than the distance of P1 from a + bi. In

addition, the distance of P2 from 0 is greater than the distance of P1 from 0. Thus,
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P1 is not the node with the longest distance in the network. This means P1 must

be an odd node.

The distance of P1 from 0 is d1 = u + b− 1. The distance of P1 from a + bi is

d2 = 2(a−u)+1. We do not consider the distance of P1 from a− b+(a+ b)i since

this distance is greater than d1. Since P1 is not a diameter node then d2 ≥ d1. If

d2 6= d1 there exists a node P ′
1 whose distance from a+ bi is d1. Since d1 is odd, P

′
1

has to be an odd node. The closest odd node to P1 which is also closer to a + bi

is the node u + 1 + bi. Let P ′
1 be that node. Now consider the node P ′′

1 = u+ bi.

The distance of this node from a + bi and also from 0 and from (a− b) + (a+ b)i

is greater than d1. Thus, d1 cannot be the diameter.

The only possible case is d1 = d2. If we solve for d1 = d2 we have

u+ b− 1 = 2(a− u) + 1

b− 2a = −3u+ 2

b− 2a+ 3a− 3a = −3u+ 3− 1

a + b = 3(a− u+ 1)− 1;

that is, a+ b = 3k − 1 for k = a− u+ 1. In this case the diameter of the network

is

u+ b− 1 = a− k + 1 + b− 1 = 2k − 1.

Next consider the node P3 = u + (b + 1)i which is also a diameter node for u =

a− k + 1 because the distance of P3 from a− b+ (a + b)i and from a + bi is also

d1. There is one more node with the same distance from a − b + (a + b)i and 0.

This node is P4 = u − 1 + bi (note that the distance of P4 from a + bi is greater

than d1).

Now consider the region B2. Following the same argument and considering

Theorem 4.19 and assuming the node P5 = a− b− u+ (a− 1)i is a diameter node
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we have

|a− b|+ u+ a− 1 = 2(a− u)

a + b = 3(a− u+ 1)− 2;

that is, a+ b = 3k−2 for the same k obtained before. But this is not true because

in the above discussion we had a + b = 3k − 1. This means the assumption P5

is a diameter node is wrong. However, if we assume P6 = a − b − u + ai be the

diameter then we have

|a− b|+ u+ a = 2(a− u)

a + b = 3k − 1,

which is the same as the equation obtained when we were considering the region

A2. In short, we have shown that when a+ b = 3k−1 the diameter of the network

is 2k − 1. In this case, there are three nodes in the region A2 and one node in the

region B2 which have this distance from the origin.

Next, consider the region A2 again. This time assume the node P7 = u+ bi is a

diameter node. Since P7 lies on the line y = b it has the same distance d7 = u+ b

from 0 and from a− b+ (a+ b)i. In this case P7 can be either an odd or an even

node.

Case 1. If P7 is an even node, then by (4.1) the distance of P7 from a + bi is

d8 = 2(a − u). Similar to the argument given above, d7 has to be equal to d8. If

we solve for d7 = d8 we have

u+ b = 2(a− u)

a+ b = 3(a− u);

that is, a+ b = 3k for k = a− u. In this case the diameter of the network is

u+ b = a− k + b = 2k
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If we consider the region B2 we also get the same result for the node P8 = a− b−
u+ ai.

Case 2. If P7 is an odd node. then by (4.1) the distance of P7 from a + bi is

d9 = 2(a− u) + 1. Again d7 and d9 must be the same. If we solve for d7 = d9 we

have

u+ b = 2(a− u) + 1

a+ b = 3(a− u) + 1;

that is, a+ b = 3k + 1 for k = a− u. In this case the diameter of the network is

u+ b = a− k + b = 2k + 1.

It is easily verifiable that no node in the region B2 has such a distance from the

origin. This is the case where the diameter node only lies within the region A2.

Note that in our argument to find the diameter we obtained the diameter by

finding the longest distance from node 0 which is an even node. By Equation (4.2)

in some situations the distance from an odd node is different than the distance

from an even node. However, by node symmetry we will obtain the same result

even if we find the diameter by calculating the distances from an odd node.

4.5.2.1 Comparison with Torus

The diameter of the honeycomb torus is given only for a special case where it has

an square exterior shape (HSTm or HReT(m,m/2)). A HSTm has n = m2 nodes

and its diameter is m [41, 44]. When m is a multiple of two there is a pruned

Gaussian network generated by m/2 +mi. This network also has diameter m but

with 5m2/4 nodes. Therefore, a degree-three pruned Gaussian network provide

25% more nodes than the honeycomb torus of the same diameter.

In general, the diameter of a degree-three pruned Gaussian network is always

less than the diameter of the pruned torus network of the same size. Consider a
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degree-three pruned Gaussian network generated by α = a+ bi. We just show the

case when a ≤ b/2 in the last paragraph.

Let a > 1
2
b. Or, let a = xb for x > 1/2. Then the number of nodes in

the pruned Gaussian network is N = a2 + b2 = x2b2 + b2 = b2(1 + x2). The

diameter of this pruned Gaussian network is d1 ≈ 2a+2b
3

= 2xb+2b
3

= 2
3
b(1 + x). The

maximum value for the diameter of a pruned torus with N number of nodes is

d2 =
√
N = b

√
1 + x2.

Next, we show that d2 is always greater than d1. That is: b
√
1 + x2 > 2

3
b(1+x)

or
√
1 + x2 > 2

3
(1 + x).

Consider the inequality 5x2−8x+5 > 0. The minimum of 5x2−8x+5 occurs at

x = 8/10 = 4/5. (This can be obtained by differentiating the equation and finding

the root i.e. 10x− 8 = 0.) This is minimum because the second differentiation is

positive, i.e. the second differentiation of 10x−8 is 10). Thus, the minimum value

of this equation is 5(4/5)2− 8(4/5)+ 5 = 9/5. Thus, the inequality is always true.

Now we have:

5x2 − 8x+ 5 > 0

9(1 + x2) > 4(1 + x2 + 2x)

1 + x2 >
4

9
(1 + x)2

√
1 + x2 >

2

3
(1 + x)

Thus, we showed that d2 is always greater than d1.

4.5.3 Routing

This section presents a shortest path routing algorithm for degree-three pruned

Gaussian networks. Basically, the routing algorithm is similar to the dimension-

order routing algorithm.

The route starts from the source to first correct the offset in dimension X one

unit unless the required edge has been pruned. In that case, the route continues
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one step in dimension Y in the direction that corrects the offset in dimension Y .

This process continues by iteratively moving one step along each one of the two

dimensions. When the offset in dimension X is corrected, the route continues to

correct any remaining offset in dimension Y .

Since a degree-three pruned Gaussian network is node-symmetric, a shortest

path routing from S to D can be found as follows. First, find the route from 0 to

D − S and then add S to each node in this route, where all operations are done

modulo α. In the process of finding the route from 0 to D − S we need to find

distances.

Assuming Conjecture 4.14, the shortest path from 0 to D − S is found by

calculating the minimal distance from D − S to the four corners of the basic

square using Equation (4.1) if S is even. If S is odd then the situation is different

because S and 0 do not have the same edge set. In this case we can shift the basic

square (and also S and D) one unit to the right so that each corner is an odd node.

Then we use Equation (4.2) to find the distances.

Algorithm 4.20 presents the routing algorithm for degree-three pruned Gaussian

networks.

Algorithm 4.20. Shortest path routing for degree-three pruned Gaussian net-

work Gα where α = a + bi (0 ≤ a ≤ b and a, b ∈ Z) is the network genera-

tor.

Input: The source node S = x0+y0i and the destination node D = x1+y1i where

xj , yj ∈ Z.

Output: A shortest path from S to D.

1: Calculate D − S mod α and write it as ∆x+∆yi.

2: Assume Conjecture 4.14. Among the four corners of the basic square choose

the one with the minimum distance from ∆x + ∆yi using Equation (4.1) if

S is even. If S is odd use Equation (4.2). Write the minimum distance as

∆x′ +∆y′i.

3: while ∆x′ 6= 0 or ∆y′ 6= 0 do

4: if ∆x′ 6= 0 then
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5: if ∆x′ > 0 (∆x′ < 0) and the current node is odd (even) then

6: Go to line 11

7: else

8: Go one step along dimension X in the direction to correct ∆x′ and

decrease ∆x′

9: end if

10: else

11: Go one step along dimension Y in the direction to correct ∆y′ and decrease

∆y′. If ∆y′ = 0 then go one step up or down.

12: end if

13: end while

In line 1 of Algorithm 4.20, D−S mod α needs to be calculated. It is explained

in Section 4.4 that only one corner of the basic square is included in the Gaussian

network. This node (the bottom right node) which we refer to it as Cu+vi is in

the form uα + viα = (u + vi)α for some u, v ∈ Z. A given Gaussian integer w is

located in the tile with corner Cu+vi if and only if w− γα ∈ Pα for γ = u+ vi [24].

It is shown in [24] that for every Gaussian integer w = x + yi there exist unique

r, s ∈ R such that w = rα + siα. It is easily verifiable that r and s can be found

by solving the following matrix equation: (The determinant of the 2× 2 matrix is

nonzero so we can solve the equation.)

[

a −b

b a

][

r

s

]

=

[

x

y

]

(4.4)

Solving the above equation, we have u ≤ r < u + 1 and v ≤ s < v + 1 for some

u, v ∈ Z. Then we have

w mod α = w − (u+ vi)α (4.5)

The routing algorithm is illustrated in the following example.

Example 4.21. Let α = 6 + 8i. Algorithm 4.20 finds a shortest path from A =
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−2 + 11i to B = 3 + 5i in degree-three pruned Gα. First, C = B − A = 5 − 6i

is calculated. Using Equation (4.4) we have r = −18/100 and s = −76/100.

Since −1 ≤ r < 0 and −1 ≤ s < 0 the tile containing C has the corner labeled

by (−1 − i)α. Using Equation (4.5), C mod α = 5 − 6i − (−1 − i)α = 3 + 8i.

Next, we find the minimal distance from 3 + 8i to the four corners of the basic

square using Equation (4.2) (because the source node A is an odd node), Thus,

the corner 6 + 8i is the closest corner to 3 + 8i with distance 5. We write this

distance as a complex number ∆x′ + ∆y′i = −3. Finally, following the lines 3

to 13 of Algorithm 4.20 the route from A to B of length 5 is as follows: A =

−2+11i,−3+11i,−3+10i,−4+10i,−4+11i,−5+11i≡ 3+5i = B. This route

is shown in Figure 4.13.

A

B

Figure 4.13: Shortest path route from A = −2 + 11i to B = 3 + 5i in G6+8i using
Algorithm 4.20.
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4.5.4 Broadcasting

In this section we provide a broadcasting algorithm for degree-three pruned Gaus-

sian networks. We adopt the same approach provided in [43] to construct the

broadcasting algorithm for degree-three pruned Gaussian networks. We assume

the all-port model; that is, at every step of the algorithm a node can send a

broadcast message to all of its neighbors.

4.5.4.1 Broadcasting in a Part of a Square

Consider the set of nodes in the 2D degree-three grid which are contained in a

square whose diagonals are 2b (for some integer b > 0) and the slope of its sides

are ±1. First, let b be even. Let the square be centered at the origin. A ball of

radius b and center at 0 is the set of nodes of distance less than or equal to b from

0 where the distance is calculated by (4.1). This ball is bounded by the square

and it is the shaded region in Figure 4.14.

Consider the two lines y = x and y = −x in Figure 4.14. These lines divide

the square into four geographic regions: up, down, left, and right. In the up and

down regions for a given node P = x+ yi we have |y| ≥ |x|. Thus, the distance of

P from 0 is |x|+ |y| which is less than or equal to b in the square.

Consider the line x = b/2 in the right region. If P = x + yi is located in the

right region by (4.1) its distance from 0 is at most 2b and this occurs when P lies

on the line x = b/2. Now consider the line x = −b/2. If P = x + yi is located in

the left region by (4.1) its distance from 0 is at most 2b+ 1 and this occurs when

P lies on the line x = −b/2 for odd P . If P is even and lies on the line x = −b/2

then by (4.1) its distance from 0 is 2b. Thus, only the even nodes on this line are

included in the ball of radius b.

If b is odd, then place the square in a way that its center is an odd node. Note

that we consider the center node to be origin or node 0, at the same time we say

this node is odd. Therefore, from now on whenever b is odd our definition of odd

nodes and even nodes are exchanged. That is, a node x + yi is odd (even) when
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x=-b/2 x=b/2

bi

-bi

b-b

Figure 4.14: A ball of radius b = 14 in the square with diagonal equal to 2b.
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x+ y is even (odd). This simplifies and unifies our discussion.

Assume b is odd. Then the ball of radius b is defined by calculating the distances

using (4.2) and is very similar as before except the two lines x = −b/2 and x = b/2

are replaced with the two lines x = −(b + 1)/2 and x = (b − 1)/2, respectively.

Again, the odd nodes on the line x = −(b+ 1)/2 are not included in the ball.

The reason we choose the square in this section is that later we show that a

Gaussian network Gα generated by α = a+ bi can be placed within this square in

a way that each corner of Gα lies on a side of the square.

Suppose the center of the square is the node with the broadcast message. We

show a very simple broadcasting algorithm that broadcasts the message in the

shaded region shown in Figure 4.14 in at most b steps.

First, a skeleton tree similar to the one given in [43] is constructed as follows for

the case when b is even. Start from node 0 (center of the square) and generate four

paths as follows. Path P1 is built by iteratively moving right and up. P2 is built

by iteratively moving up and left. P3 is built by iteratively moving down and left

and P4 is built by iteratively moving right and down. These paths are continued

until reaching the borders of the square. The length of each of these paths is b. If

b is odd, then the order of the moves will be changed; that is, path P1 is built by

iteratively moving up and right (instead of right and up), P2 is built by iteratively

moving left and up, P3 is built by iteratively moving left and down and P4 is built

by iteratively moving down and right. Figure 4.15 shows the skeleton tree for a

square with b = 14.

The skeleton tree defined above divides the square into four geographic regions:

up, left, down, and right. Next we describe how to extend the skeleton tree into a

spanning tree. Once we have a spanning tree constructed, the broadcast message

can be propagated from the root (node 0) to all the nodes in the tree.

Consider the up region. Start from the even nodes on the path P1 (apart from

node 0) and the odd nodes on the path P2 and construct paths by going up along

direction Y until reaching the borders of the square. Similarly, in the down region

start from the even nodes on the path P4 (apart from node 0) and the odd nodes
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P2

bi

-bi

b-b

P1

P4P3

Figure 4.15: The skeleton tree for the broadcasting algorithm.
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on the path P3 and construct paths by going down along direction Y until reaching

the borders of the square.

Consider the right region. The path P1 is extended as follows. For every odd

node x + yi in the path if x is even and x > 0 construct a path from x + yi

by iteratively moving one step down, right, up, and right until reaching the line

x = b/2. The path P4 is extended as follows. For every odd node x + yi in the

path if x is odd and x > 1 construct a path from x+ yi by iteratively moving one

step up, right, down, and right until reaching the line x = b/2.

Now consider the left region. The path P2 is extended as follows. For every even

node x+yi in the path if x is odd construct a path from x+yi by iteratively moving

one step down, left, up, and left until reaching the line x = −b/2 (x = −b/2+1) if

x+yi is even (odd). The path P3 is extended as follows. For every even node x+yi

in the path if x is even and x < 0 construct a path from x+yi by iteratively moving

one step up, left, down, and left until reaching the line x = −b/2 (x = −b/2 + 1)

if x+ yi is even (odd).

If b is odd, given our new definition of odd and even nodes the procedure for

constructing the spanning tree is the same as above with some modifications. In

the right region the construction of the paths continues until reaching the line

x = (b− 1)/2. In the left region the construction of the paths starts when x < −1

(for a given x + yi node in the region) and continues until reaching the line x =

−(b− 1)/2.

Figure 4.16 shows an example of a spanning tree which is constructed in the

square whose diagonal is 28.

Next we show that a degree-three pruned Gaussian network generated by α =

a + bi (as well as a Gaussian network) can be placed within the square whose

diagonal is 2b.

Consider the degree-three pruned Gaussian network Gα where α = a + bi and

0 < a ≤ b. Consider the point P = a−b
2
+ia+b

2
. Since a+b is even, the coordinates of

P are always integers and so P is a node. From now on in this section we consider

this node to be the node 0 and the addresses of the other nodes will be adjusted
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x=-b/2 x=b/2

bi

-bi

b-b

Figure 4.16: An example of a spanning tree in the square whose diagonal is 28.
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accordingly. Thus, the coordinates of the corners of the basic square generated by

α = a + bi are a+b
2

+ b−a
2
i, a−b

2
+ a+b

2
i, −a+b

2
+ a−b

2
i, and b−a

2
− a+b

2
i. Now consider

the square whose diagonal is 2b and its center is the node 0. This square and the

basic square for Ga+bi are shown in Figure 4.17. It can be verified that each corner

of the basic square lies on a side of the square. For example consider the side

x+ y = b (this is the side between the nodes bi and b.) The corner a+b
2

+ b−a
2
i lies

on this side because
a + b

2
+

b− a

2
= b.

-b b

bi

-bi

O

(a-b)/2+(a+b)/2i

-(a+b)/2+(a-b)/2i

(b-a)/2-(a+b)/2i

(a+b)/2+(b-a)/2i

Figure 4.17: The square with diagonal 2b and a basic square for Ga+bi centered at
O.
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4.5.4.2 Decomposed Square Representation when a ≤ ⌊b/2⌋
A decomposed square, denoted by Pd(α), is obtained by decomposing a basic square

of the degree-three pruned Gaussian network generated by α = a+bi. That is, the

basic square is divided into some nonoverlapping regions and then these regions

are reassembled to form Pd(α).

Figure 4.18 shows a basic square centered at 0 for the degree-three pruned

Gaussian network Gα generated by α = a + bi where 0 < a < b/2 and the square

whose diagonal is 2b (as discussed earlier). The node O is both the center of Gα

and the center of the square and it is considered to be the origin. The dashed lines

in the figure represent the two lines y = x and y = −x. The distance of the nodes

on the line x − y = −a from iα is b by (4.1) if b is even or by (4.2) if b is odd.

Similarly, the distance of the nodes on the line x− y = a from i3α is b.

Table 4.1 shows the coordinates of the nodes and the corresponding nodes in

the decomposed square Pd(α). Note that if b is odd, then the coordinates of some

of the points in Table 4.1 are not integers. But this doesn’t affect our discussion

because we are considering the Gaussian integer within the regions. If b is odd

then there is no Gaussian integer on the lines in some of the regions.

Table 4.1: The coordinates of the nodes in Figure 4.18.

A1 − b
2
+ b

2
i A2

b
2
+ b−2a

2
i

B1 − b
2
+ a

2
i B2

b
2
− a

2
i

C1 − b
2
+ 2a−b

2
i C2

b
2
− b

2
i

E1 −a+b
2

+ a−b
2
i E2

b−a
2

− a+b
2
i

F1
a−b
2

+ a+b
2
i F2

a+b
2

+ b−a
2
i

C3
2a−b
2

+ 2a+b
2

i A5
b−2a
2

− b+2a
2

i

Consider the two triangles A1B1F1 and A2B2F2. Since A1 − A2 = B1 − B2 =

F1−F2 = iα all the Gaussian integers in A1B1F1 and A2B2F2 are congruent modulo

α. Similarly, all the Gaussian integers in B1C1E1 and B2C2E2 are congruent

modulo α. Therefore, A2B2F2 and B1C1E1 in P(α) are replaced with A1B1F1 and
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A1

B1

C1

D1

E1

F1

A2

B2

C2

F2

E2

C3

D3

D4

D5

A5

O

Figure 4.18: Dividing the basic square of Ga+bi into regions when a ≤ ⌊b/2⌋.
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A1

B1

C1

D1

E1

F1

A2

B2

C2

F2

E2

C3

D3

D4

D5

A5

Figure 4.19: The decomposed square representation when a ≤ ⌊b/2⌋.
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B2C2E2 in Pd(α), respectively.

Now, consider the two triangles C1E1D1 and C3F1D3. We have C3 − C1 =

F1 − E1 = α. Note that D1 = −b/2 + y1i and D3 = a − b/2 + y3i. In general y1

and y3 are not integers. However, D3 − D1 = a + (y3 − y1)i. y1 and y3 can be

found by writing the equations of the lines E1E2 and F1F2, respectively. It can be

easily shown that y3 − y1 = b. That means D3 −D1 = a + bi = α. Thus, all the

Gaussian integers in C1E1D1 and C3F1D3 are congruent modulo α.

Similarly, we can show that all the Gaussian integers in A2F2D4 and A5E2D5

are congruent modulo α. Therefore, A2F2D4 and C1E1D1 in P(α) are replaced

with A5E2D5 and C3F1D3 in Pd(α), respectively. The decomposed square Pd(α)

is shown in Figure 4.19.

In this figure the thick solid lines represent the borders that are included in the

shaded region whereas the dashed lines show the borders that are not included in

the shaded region. The reason why some of the lines are not included in the shaded

region is as follows. First, remember that only the nodes on the two sides (side

E1E2 and E2F2) of the basic square are included in the node set of the network.

The line A1D1 is not included because the distance of some of the nodes on this

line from 0 is greater than b. Instead of the nodes on this line, the nodes on the

lines A2C2 and C3D3 are considered. The line A5D5 is not included because the

line A2D4 is included. The line A1C3 is excluded since its congruent modulo α

(line A5C2) is included.

Note that in this section 0 < a < b/2. In this case all the points shown in

Figure 4.18 lie as shown. Consider C3 as an example. The Y coordinate of C3 is

a+ b/2 and since a < b/2 this point always lie on the border of the square. Same

reasoning can be given for A5.

Now, we can construct a spanning tree in the way that described earlier. Note

that, the construction in each region continues until it covers the nodes in the

network. The detail is as follows.

Consider the node P = x+ yi in the up region. If x > a− b/2 the construction

continues until 2ax+2by ≤ a2 + b2. (The equation of the line F1F2 is 2ax+2by =
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a2 + b2.) Else the construction continues until |x|+ y < b. Similarly, if P = x+ yi

is visited in the down region and if x ≤ b/2 − a the construction continues until

2ax+2by ≥ −(a2+ b2). (The equation of the line E1E2 is 2ax+2by = −(a2+ b2).)

Else the construction continues until |x| + |y| ≤ b. The construction in the right

and left region is exactly as described earlier. Except that in the left region the

nodes on the line x = −b/2 are not covered because the corresponding nodes are

already covered.

4.5.4.3 Decomposed Square Representation when a ≥ ⌈b/2⌉
Similar to the previous section a ball of radius a ≥ ⌈b/2⌉ is defined as follows.

First, we assume d is even. A ball of radius d and center at 0 is the set of nodes of

distance less than or equal to d from 0 where the distance is calculated by (4.1).

This ball is bounded by the square whose diagonals are 2d. The left of right regions

are bounded by the lines x = d/2 and x = −d/2, respectively. Again, the odd

nodes on the line x = −d/2 are not included in the ball. (If d is odd the ball is

defined similar to the case where b is odd.)

Figure 4.20 shows the basic square for the degree-three pruned Gaussian net-

work Gα generated by α = a + bi where a ≥ ⌈b/2⌉. This figure also shows the

square whose diagonal is 2b. The node O is both the center of Gα and the center

of the square and it is considered to be the origin. The dashed lines in the figure

represent the two lines y = x and y = −x. The distance of the nodes on the lines

x− y = −a and x+ y = −a from i2α is b (based on Equation (4.1) if b is even and

based on Equation (4.2) if b is odd). Similarly, the distance of the nodes on the

lines x− y = a and x+ y = a from α is b.

Table 4.2 shows the coordinates of the nodes and the corresponding nodes in

the decomposed square Pd(α). Again if b is odd the coordinates of the points H1,

H3, J4, and J5 are not integers. However, this doesn’t affect our discussion.

Based on the discussion given in Section 4.5.4.2 the triangles A2B2F2 and

B1C1E1 in P(α) are replaced with A1B1F1 and B2C2E2 in Pd(α), respectively.

Consider the quadrilateral G1E1D1H1 in P(α), it can be replaced with the quadri-
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A1

B1

C1

D1

E1

F1

A2

B2

C2

F2

E2

G3

D3

D4

I5

O

H1

G1 I4

J4

D5

H3

J5

Figure 4.20: Dividing the basic square of Ga+bi into regions when a > ⌊b/2⌋.
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Table 4.2: The coordinates of the nodes in Figure 4.20.

A1 − b
2
+ b

2
i A2

b
2
+ b−2a

2
i

B1 − b
2
+ a

2
i B2

b
2
− a

2
i

C1 − b
2
+ 2a−b

2
i C2

b
2
− b

2
i

E1 −a+b
2

+ a−b
2
i E2

b−a
2

− a+b
2
i

F1
a−b
2

+ a+b
2
i F2

a+b
2

+ b−a
2
i

C3
2a−b
2

+ 2a+b
2

i A5
b−2a
2

− b+2a
2

i

G1 −a G3 bi

H1 − b
2
+ b−2a

2
i H3

2a−b
2

+ 3b−2a
2

i

I4 a I5 −bi

J4
b
2
+ 2a−b

2
i J5

b−2a
2

+ 2a−3b
2

i

lateral G3F1D3H3 in Pd(α). This is because G3 − G1 = F1 − E1 = D3 − D1 =

H3−H1 = α and the corresponding Gaussian integers inG3F1D3H3 andG1E1D1H1

are congruent modulo α.

Similarly, consider the two quadrilaterals I4J4D4F2 and I5J5D5E2. Again, since

I4− I5 = J4−J5 = D4−D5 = F2−E2 = α the corresponding Gaussian integers in

the two quadrilateral are congruent modulo α. Thus, I4J4D4F2 in P(α) is replaced

with I5J5D5E2 in Pd(α).

Then, Pd(α) is given in Figure 4.21. Now, consider the two triangles C1G1H1

and I4A2J4. By (4.1) or (4.2) these triangles are in fact the regions where the

diameter node lies, because they are the only regions where the distance from the

origin (and also from α and iα) is greater than b. We further decompose these

triangles.

Figure 4.22(a) shows the triangle C1G1H1 divided into different regions. As-

sume the diameter d of the network is b+c for some integer c > 0. Let K1 = G1+c,

L1 = C1 − ci and M1 = H1 + ci. We assign the common edges of the three regions

shown in Figure 4.22(a) to each one of the regions as follows. The lines L1K1 and

K1M1 except for the point K1 belongs to the triangle L1K1M1. The line G1K1
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Figure 4.21: The first stage at decomposition.
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belongs to region 1.

The triangle I4J4A2 is also divided into three different regions similar to the

triangle C1G1H1 as shown in Figure 4.22(b). Here, let K2 = I4 − c, M2 = J4 − ci,

and L2 = A2 + ci. The lines L2K2 and K2M2 except for the point K2 belongs to

the triangle L2K2M2. The line I4K2 belongs to region 3.

Now we replace the regions 1, 2, 3, and 4 with the corresponding quadrilaterals

shown in Figure 4.23. Again, reasons for the inclusion or exclusion of each line can

be given.

It can be verified that the Gaussian integers within regions 1, 2, 3, and 4 in

Figure 4.23 and the corresponding regions in Figure 4.22(a) and Figure 4.22(b) are

congruent modulo α. For example, the points in region 1 in Figure 4.22(a) and the

points in region 1 in Figure 4.23 are congruent modulo α because C1 − C2 = iα

(as well as the other three corners of the two quadrilaterals).

C1

H1

G1

L1

M1

K1

1

2

(a)

I4

A2

L2

M2

K2

3

4

J4

(b)

Figure 4.22: The two regions where diameter nodes may lie.

The spanning tree for the Pd(α) is constructed as described earlier. Note that,

the construction in each region continues until it covers the nodes in the network.

The detail is as follows.

Consider the node P = x+ yi in the up region. If x > a− b/2 the construction

continues until 2ax+2by ≤ a2 + b2. (The equation of the line F1F2 is 2ax+2by =

a2 + b2.) Else if a− b < x < 0 the construction continues until |x|+ y < b. For the
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Figure 4.23: The final layout of the decomposed square representation when a >
⌊b/2⌋.
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remaining part (that is 0 < x < a− b/2 and x < a− b) the construction continues

until |x|+ y < d.

Similarly, if P = x + yi is visited in the down region and if x ≤ b/2 − a the

construction continues until 2ax + 2by ≥ −(a2 + b2). (The equation of the line

E1E2 is 2ax+ 2by = −(a2 + b2).) Else if 0 < x < a− b the construction continues

until |x|+ |y| ≤ b. For the remaining part (that is b/2− a < x < 0 and x > a− b)

the construction continues until |x|+ |y| < d.

The construction in the right and left region is the same as described earlier

and continues in the right region until it covers the nodes on the line x = b/2. The

construction continues in the left region up to but not including the nodes on the

line x = −b/2. In addition in both regions if b/2− a+ c ≤ y ≤ a− b/2 + c (recall

that we assume d=b+c) then the construction continues unit it covers the nodes

within the two triangles K1L1M1 and K2L2M2.

We next prove that the length of any broadcast from 0 is at most d (diameter of

the network). This can be seen for the up and down regions because these regions

are bounded by the lines |x|+ |y| = d. Consider the left region. The broadcasts in

this region stop at the node K1 + 1 because node K1 is covered by region 1. Let

l be X offset of the node K1 + 1 from 0. The value for l is found by subtracting

the length of the line G1O from the length of the line G1K1 minus one; that is,

l = a−c−1. By (4.1) the length of any path from 0 to x = K1+1 in the left region

is at most 2l+1. Thus, we need to show that 2l+1 ≤ 2k+ r where a+ b = 3k+ r

for r = 0,±1. Thus, we have

l = a− c− 1 = a− (d− b)− 1 = a + b− d+ 1 = 3k + r − (2k + r)− 1 = k − 1

and the distance from K1+1 to 0 is 2(k−1)+1 ≤ 2k+ r since −1 ≤ r. Therefore,

we have proved that any broadcast length in the left region is at most d.

Now consider the right region. The broadcasts in this region stop at the node

K2 − 1 because node K2 is covered by region 3. Let l′ be X offset of the node

K2 − 1 from 0. The value for l′ is found by subtracting the length of the line I4O

from the length of the line I4K2 minus one; that is, l′ = a− c−1. This is the same
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value obtained above for l, so l = l′. By (4.1) the length of any path from 0 to

x = K2−1 in the right region is at most 2l. Thus, we need to show that 2l ≤ 2k+r

where a + b = 3k + r for r = 0,±1. We already showed that 2l + 1 ≤ 2k + r,

so 2l ≤ 2k + r. Therefore, we have proved that any broadcast length in the right

region is at most d.

4.6 Conclusion and Future Research Directions

In this chapter we introduce a class of degree-three networks obtained from prun-

ing Gaussian networks. We prove that these networks are Cayley graphs, and thus

node-symmetric. We also calculate the diameter of the network. The diameter of

the degree-three pruned Gaussian network is less than the diameter of the honey-

comb torus with approximately the same number of nodes. In addition, we develop

some communication algorithms for the proposed network. These algorithms in-

clude a routing and a one-to-all broadcasting algorithm.

Developing a deadlock-free routing algorithm for degree-three pruned Gaussian

networks is a possible future research direction.
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Chapter 5: Conclusion

This thesis considers interconnection networks based on Eisenstein-Jacobi and

Gaussian integers. Chapter 2 proposes two new deadlock-free and minimal rout-

ing algorithms for hexagonal meshes and tori. By prohibiting certain turns in

the resource dependence graph, the proposed algorithms remain deadlock-free.

Since they are minimal, no livelock can happen in the network. Additional virtual

channels per physical channel are used to remove inherent cycles caused by the

wraparound edges.

Chapter 3 discusses higher dimensional Gaussian networks. We show that the

diameter and the average distance of a higher dimensional Gaussian network are

less than those of a multidimensional torus with approximately the same number

of nodes and degree. An optimal one-to-one routing algorithm has been devel-

oped. Simulation results show that our routing algorithm does outperform the

usual routing algorithm for tori in terms of average message latency. We extend

many properties of one-dimensional Gaussian networks to the higher dimensional

setting, including the distance distribution and an optimal one-to-all broadcast-

ing algorithm. In particular, when n = 2r we generate 2n edge-disjoint Hamil-

tonian cycles in n-dimensional Gaussian networks generated by α = a + bi for

nonnegative integers a, b where gcd(a, b) = 1. We have also shown how to embed

multi-dimensional edge-disjoint torus networks on this network.

Chapter 4 proposes a degree-three interconnection network that is obtained

from pruning a Gaussian network. This network shows possible performance im-

provement over the other degree-three networks such as honeycomb rectangular

tori in that it has smaller diameter. A routing algorithm is given in this chapter.

A possible future research direction is to obtain fully adaptive and deadlock

free routing algorithms for the three main families of interconnection networks

discussed in this thesis. In addition, developing fault-tolerant routing algorithms
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(that is, a routing algorithm that can route a packet in the existence of faulty

nodes or edges) would be another direction for research.
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