
  

 



AN ABSTRACT OF THE DISSERTATION OF 
 

Parnian Hosseini for the degree of Doctor of Philosophy in Civil Engineering 

presented on November 11, 2016. 

Title:  Multi-objective Optimization of Reservoir Operation Under Uncertainty with 

Robust and Flexible Decision Variables 

 
 
 

Abstract approved:_________________________________________________ 

                 Arturo S. Leon,      Nathan L. Gibson 
 
 
 

Optimization of reservoir operation is involves various competing objectives for a 

scarce resource (water). To find the optimal operation of reservoirs, it is essential to 

consider multiple objectives simultaneously. There are various sources of uncertainty 

associated with the reservoir operation problem that should be considered as well. 

The overarching goal of this research is to develop a framework for finding flexible 

and reliable solutions to the reservoir operation problem with competing objectives. 

Because some sources of uncertainty are not well quantified, providing flexible 

decision variables lets the decision maker choose accordingly from a range of options 

knowing that all the flexible decision variables are feasible with a specified 

probability of failure and that are relatively optimal. To accomplish this goal, each 

flexible decision variable is represented by a random variable within a specific range 

instead of a single deterministic decision variable. An additional objective is added to 

the optimization problem, in order to maximize the flexibility of decision variables. 

The proposed methodology is tested for two mathematical test problems and the 

operation of the Grand Coulee reservoir, which is located on the Columbia River in 

the Northwestern United States. The Stochastic Collocation (SC) method is used to 

sample the random variables and approximate the expected values of the objectives. 

 



For the Grand Coulee reservoir, the decision variables are the daily turbine outflows. 

The first objective of the optimization is to minimize the forebay elevation deviation 

at the end of the optimization period.  The second objective is to maximize the 

revenue from the hydropower production. The results show that the proposed 

methodology could find some flexible decision variables with 45% coefficient of 

variation. The corresponding expected objectives have less than 20% deterioration 

from the deterministic Pareto solutions. However, the number of function evaluations 

increases exponentially with the number of decision variables. Therefore, this 

methodology is suggested for problems with a few decision variables. 

For finding flexible decision variables in problems with many decision variables, a 

dimension reduction method called Karhunen Loeve (KL) expansion is implemented 

in the optimization problem. By extracting useful information from the decision 

variables, the decision space can be represented with merely a few random variables 

using a set of deterministic decision variables. The results show that three random 

variables are sufficient to generate decision variable realizations which have mean 

and variance less than 1% and 5% different from the original decision variable 

realizations, respectively. The proposed methodology is capable of efficiently finding 

flexible decision variables that lead to expected objective values close to the Pareto 

deterministic solutions. To force the generated decision variable realizations to stay 

within the feasible bounds and therefore reduce the number of constraints that need to 

be checked, the data is transformed to be within bounds first, and then the KL-

expansion is performed. Using the transformed data decreases the computational time 

but the decrease in computational time is not significant. 

The inflow uncertainty is also considered as the only source of input uncertainty. 

Forecast inflow ensembles can be used as the source of inflow uncertainty. However 

in this study due to lack of information, historical inflows are used instead. The 

inflow uncertainties are represented using the KL-expansion. Robust optimization is 

performed by optimizing the weighted sum of the expectation and standard deviation 

of the objective due to uncertain inflows. The weights in the robust objective 

 



formulation can be changed based on the decision maker’s preference of robustness 

versus performance. 

Finally, the combined framework to find robust and flexible decision variables is 

tested on a reservoir operation problem and the results were compared to the 

deterministic case.  
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1.  Introduction 

1.1. Literature Review 

Due to the rapid increase in global population (United-Nations, 2011) the importance 

of water resources management is crucial. Optimization is a tool to find the best 

decisions to a complex problem, and to get the optimal objectives. Multiple review 

studies (e.g., (Singh, 2012)) exist that provide an extensive review of applications of 

optimization techniques in water resources management. Reservoirs have been built 

all around the world for different purposes and it is important to find reservoirs’ 

operational strategies that balance and meet all water demands (Ahmad et al., 2014). 

Managing the operation of a reservoir system can be very complex as it is dependent 

on many variables, such as, inflows, storage, and water and hydroelectric power 

demands (Rani and Moreira, 2010). The works of (Labadie, 2004) and (Rani and 

Moreira, 2010) reviewed various optimization and simulation models for optimizing 

reservoir systems including both classical methods and evolutionary algorithms. The 

popularity of evolutionary algorithms in optimization problems has rapidly increased 

over the last few years partly due to their potential to solve problems that are difficult 

to solve by some of the classical search techniques (Nicklow et al., 2009). 

In reservoir problems, conflicts may happen in cases when improving one objective is 

only possible by degrading other objectives. Evolutionary algorithms can be the 

favorable tool for these types of problems as they can find trade-offs of the optimal 

solutions for the competing objectives in a single optimization run (Golberg, 1989). A 

comprehensive review of the use of evolutionary algorithms in water related 

problems is presented in (Reed et al., 2013). Genetic Algorithm (GA) based methods 

are the most popular evolutionary algorithms in water resources management 

applications and have been reviewed in (Nicklow et al., 2009). Among these methods, 

the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) (Deb et al., 2000) can be 

considered as the primary technological breakthrough for the generation of advanced 

multi-objective evolutionary algorithms that incorporate elitism and efficient non-

domination sorting when finding the Pareto solutions (Reed et al., 2013). Some of the 

applications of NSGA-II in multi-objective reservoir operation problems and a 
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proposed method to rank the solutions are discussed in (Malekmohammadi et al., 

2011). 

To have reliability and robustness, it is essential to consider uncertainties in any 

optimization problem and this is specifically important in water resources 

management problems (Nicklow et al., 2009). Despite the recurring use of flexibility 

in recent water resources management literature, the precise meaning of the term 

“flexibility” is elusive (DiFrancesco and Tullos, 2014). The importance of decision 

makers’ preferences in the optimization process for water management problems has 

been addressed in numerous studies. In some cases, the decision makers tend to 

disregard the global optimal solutions due to local and short-term benefits (e.g., 

(Babbar-Sebens et al., 2013; Babbar-Sebens, 2017; Kaini et al., 2012)). In this study, 

flexibility refers to alternative options in decision space rather than a specific decision 

variable that corresponds to an optimal objective. Flexible decision variables in water 

distribution systems dealing with future demand uncertainty has been considered 

using decision tree analysis in (Basupi and Kapelan, 2013). Although, flexibility can 

be provided to some extent by considering future scenarios, it is desirable to find 

more flexible approaches (Maier et al., 2014). 

The popularity of the term “robust optimization” for different applications makes the 

meaning of the term unclear and the results are difficult to interpret (Ray et al., 2010). 

Minimizing the effects of variation in objectives due to uncertain behavior of some 

parameters is known as the principle of robust optimization and can be categorized 

into two types (Chen et al., 1996): 

• Type I: objective variation due to unavoidable parameter uncertainties, such 

as input parameters. 

• Type II: objective variation due to variation in decision variables. 

Various approaches have been used in the literature including: optimization of 

objective expectation due to parameter variation (Sahinidis, 2004) and minimizing the 

deviation of objectives due to parameter variations (Ray et al., 2010). To guarantee 

robust solutions found by optimization, solutions must have feasibility robustness and 
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sensitivity robustness. Feasibility robustness refers to making sure the problem 

parameters remain in the feasible region despite the occurrence of the variations. 

Sensitivity robustness implies the insensitiveness of the objective function to the 

parameter variation (Jung and Lee, 2002). 

1.2. Research Questions 

 In this study, three research questions are investigated: 

1. How can flexibility in decision variables be incorporated in reservoir 

optimization problems and how does flexibility affect the Pareto solutions? 

(Type II robust optimization considers the feasibility robustness) 

2. How is computational efficiency increased with reduction of the dimension of 

the search space in reservoir operation?   

3. How can we incorporate flexibility in decision variables in reservoir operation 

under uncertainty and how does flexibility affect the Pareto solutions? (Type I 

and II robust optimization consider feasibility and sensitivity robustness 

simultaneously) 

1.3. Outline 

The main goal of this study is to develop a framework for finding flexible decision 

variables. Flexibility in this study refers to having more than one option (either a 

range of options or multiple feasible scenarios) that are ensured to fulfill feasibility 

robustness for a given risk threshold. The probability of failure of the problem 

constraints due to the flexible decision variables is guaranteed to be less than a given 

threshold. This threshold is selected based on the risk attitude of the decision maker 

(Gibson et al., 2014). 

Chapter 2, introduces the flexibility concept by defining each decision variable as a 

random variable and clarifying the proposed concept through simple test problems 

and a reservoir operation case study. In Chapter 3, the concept of flexible decision 

variables is discussed specifically for reservoir operation and a new approach is 

introduced for improving the computational efficiency of the problem. Namely, a 
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dimension reduction method is used to decrease the number of random variables that 

are necessary to approximately regenerate the decision space. 

In Chapter 4, the concept of robust optimization under input uncertainty (type I) is 

investigated and both feasibility robustness and sensitivity robustness are considered 

in the process of optimization. To ensure the sensitivity robustness, a linear 

combination of objective expectation and objective variation is considered as the 

objective function of the robust optimization (Arora, 2004; McIntire et al., 2014). 

Then the two concepts of robust optimization under uncertainty and flexible decision 

variables are combined in the proposed framework. Although the expected value of 

the optimal objective may be sacrificed to some extent due to flexibility and 

robustness, the feasibility and robustness are guaranteed for a given risk threshold. 

This framework can be extended to other decision support tools and also other 

operating problems. 

1.4. Case Study 

The proposed framework in this study is tested on a simplified version of the Grand 

Coulee reservoir problem. The Grand Coulee reservoir is one of 10 large reservoirs 

on the Columbia River in Northwestern United States that are operated by Bonneville 

Power Administration (BPA) ( Figure 1.1). Hydropower production is one the main 

objectives of reservoir operation for the BPA. 

Model characteristics are adapted from a more comprehensive model studied by 

(Chen et al., 2014). The reservoir problem studied in this research is described in a 

simple Sketch ( Figure 1.2). Turbine outflows in daily time-steps are the decision 

variables. A period of two weeks (August 25th-September 8th) is selected for this 

problem. 
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Figure 1.1. The Sketch map of the reservoirs on the Columbia River 

The main reason for choosing this period for the optimization problem is because 

some of the 10 reservoirs on the Columbia river shift their objectives from 

maximizing hydropower generation and minimizing fish flow violation to only 

maximizing power production (however, the Grand Coulee does not have a fish flow 

violation objective). Data availability is the other reason for choosing these 14 days. 

However, the methods described here are general and can be applied to any other time 

frame. It is assumed that turbine flow is the only outflow from the reservoir; spill flow 

is considered zero. The inflow hydrograph is the input of the optimization problem 

and inflow uncertainty is considered using historical inflow hydrographs (Chen et al., 

2016). 
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Figure 1.2. Simple sketch of reservoir problem and its parameters 

One of the objectives of the problem is maximizing the revenue from hydropower 

production. This objective is designed to make sure the system meets the power 

demand while maximizing the revenue from power generation. The difference of 

generated hydropower and demand, net electricity, is multiplied by the price (from 

the power market) to calculate revenue. Predicted hydropower prices can be another 

source of input uncertainty. However for simplicity, price is assumed to be 

deterministic and is pre-determined by an economic model (Chen et al., 2014).  

Another objective of this reservoir operation problem is minimizing the forebay 

elevation (reservoir water surface elevation) deviation at the end of the optimization 

period. To satisfy future planning requirements, forebay elevation is expected to 

remain within a certain elevation range by the end of optimization. 

The constraints of this reservoir operation problem include: 

1.the maximum and minimum allowable value of turbine flows 

2.the maximum allowable difference between any two consecutive daily out- 

flows (ramp constraint) 

3.the maximum allowable forebay elevation deviation 
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2.  Flexible Decision Variables in Multi-Objective Optimization of 

Reservoir Operation 

2.1. Abstract 

This study explores optimization in the case when certain input uncertainties cannot 

be well quantified. In these scenarios the operator (decision maker) prefers to have 

the most flexibility, which is defined to be the range of options for decision variables, 

and still achieve the objectives of the reservoir operation. The proposed framework 

determines upper and lower bounds on each decision variable value by treating the 

amount of flexibility as an additional objective. In finding these bounds, there is a 

trade-off between the amount of flexibility that can be allowed and the values of the 

expected objectives. The Multi-objective Genetic Algorithm NSGA-II is used for the 

optimization and each decision variable is represented by a random variable. To 

compute the expectations of objectives, the Stochastic Collocation (SC) method is 

used, which deterministically samples the random variables at strategically chosen 

points and uses the corresponding weights to find the expected value of the 

objectives. The effectiveness of the proposed approach to find optimal and flexible 

decision variables is shown in three problems including two mathematical tests and a 

simplified single reservoir operation. Comparison of deterministic solutions to those 

with flexible decision variables shows that the expectations of objectives are close to 

the deterministic solutions especially for the reservoir operation problem. 

2.2. Introduction 

It is very important to study how to operate and release water from a reservoir system 

over time to maximize the goals and benefits, such as hydropower production, while 

satisfying water demands (e.g., irrigation, domestic water use and environmental 

requirements). Most of these objectives conflict with each other (Labadie, 2004) thus, 

an optimal trade-off of solutions must be found. A comprehensive review of the use 

of evolutionary algorithms for several water resources management optimization 

problems can be found in (Nicklow et al., 2009; Reed et al., 2013). 
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Different sources of uncertainty affect the reservoir operation problems. Sources of 

uncertainty are classified as: knowledge deficiency and natural variability (Tung and 

Yen, 2005). Uncertainties caused by knowledge deficiency can be decreased by 

gathering more data. To consider the effects of uncertainties due to natural variability, 

robust optimization has been implemented to find solutions that are less sensitive to 

small deviations in variables (Deb and Gupta, 2006). The work of (Kerachian and 

Karamouz, 2006) and (Ganji et al., 2007) implemented a stochastic evolutionary 

algorithm to account for natural variability in reservoir inflow. The coupling of a 

dimension reduction method within a multi-objective evolutionary algorithm was 

investigated by (Chen et al., 2016). Robust optimal solutions were found considering 

decision variables’ variability as the source of uncertainty (Bernardo and Saraiva, 

1998). However, the variability in decision space was decreased to ensure robustness 

which is different from the approach proposed in this study. 

Flexibility in decision making is a fairly recent approach in water resources 

management problems. A methodology for a flexible design in water distribution 

systems was formulated by (Basupi and Kapelan, 2013). They combined a Multi-

Objective Genetic Algorithm, Monte Carlo sampling, and decision tree analysis to 

find a flexible design considering uncertain future demand. They represented possible 

future demand scenarios by random variables. Decision tree analysis was used to 

portray the possible scenarios and to study the consequences for each option. Flexible 

designs using the decision tree analysis were also studied by (Marques et al., 2015). 

They used a real option methodology to find flexible design variables in a water 

distribution network. A decision tree was presented to predict different scenarios that 

may arise. In both of these studies, certain scenarios for realizations that may happen 

were considered, and the optimal design for each scenario was found. Only few 

particular scenarios were examined in the decision tree approach. Moreover, they 

evaluate constraints discretely. On the other hand, the proposed method in this paper 

attempts to find a range of options for each decision variable and the constraints are 

calculated in a continuous probability space. 
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Some sources of uncertainty are not well predicted (e.g. price variations). Therefore, 

the operator may need to modify some of the assumed optimal decision variables in 

response to the actual varying circumstances. These modifications may result in 

violations of some constraints or deterioration of some objectives from their predicted 

optimal values. 

The main contribution of this paper is the development of a method for incorporating 

flexibility in decision variables within optimization problems. In other words, the 

proposed method finds a range of options for each decision variable instead of a 

single deterministic value. Each decision is represented by a uniform random variable 

and the decision maker can choose any value of the decision variables within the 

optimal range provided by this optimization framework, and be confident that the 

probability of constraint violations will be within pre-established bounds. The current 

study seeks to find the largest possible range of options for each decision variable. 

Moreover, the preference of the decision maker for a different distribution of random 

variables representing each decision variable can be implemented. For example, if the 

turbine outflow from a reservoir can be selected from a range of options and the 

decision maker has the tendency to choose from the center of the interval rather than 

at the boundaries, a Beta distribution can be used instead of Uniform distribution. 

This paper further aims to assess the influence of flexible decision variables on the 

resulting Pareto solutions. A Pareto curve is a set of non-dominated solutions of a 

multi-objective optimization problem (Van Veldhuizen and Lamont, 1998). Note that 

the flexibility concept proposed in this paper is not the same as finding multiple 

optimal solutions for a multi-objective optimization problem (called non-dominated, 

non-inferior or Pareto solutions). In fact flexible decision variables can be found for 

each of the Pareto solutions in a multi-objective optimization problem. It is also 

different from sensitivity analysis in which the variation of an objective (output) due 

to uncertainty of decision variables is studied. In this paper, variability of the decision 

variables (inputs) is not assumed (like the sensitivity analysis case), therefore the 

proposed method allows variability in decision variables without assuming any pre-

specified ranges. Interval arithmetic (Hanss, 2005) is another method to consider the 
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effect of a prescribed interval for each input and study the resulting outputs due to the 

intervals. Unlike the sensitivity analysis and the interval arithmetic method, in the 

proposed approach the goal is to find feasible ranges for decision variables by 

optimization. 

This paper is organized as follows. Section 2.3, explains the proposed methodology. 

Section 2.4, shows the efficacy of the proposed method on three test problems: a 

single-objective mathematical test problem (section 2.4.1), a multi-objective 

mathematical test problem (section 2.4.2) and then a reservoir operation problem 

(section 2.4.3). The optimal flexible decision variables are found and compared with 

the deterministic optimal decisions. Section 2.5, presents the discussion and 

conclusion of the proposed methodology. 

2.3. Methodology 

For the multi-objective optimization, the non-dominated sorting multi-objective 

optimization method (NSGA-II) (Deb et al., 2002) is used. Each decision variable is 

replaced by lower and upper bounds, which doubles the number of decisions in the 

optimization. An additional objective is also added to maximize the flexibility of 

decisions, which is thus represented by the summation of the standard deviations for 

all 𝑚 decision variables ({𝜎𝑖}𝑖=1𝑚 ). 

For each variable, the decision maker can choose any value within the optimal range. 

A uniform random variable represents the potential solutions within the range of the 

lower and upper bounds of each decision variable. Each decision variable is 

represented by a random variable:   

𝑥(𝑡𝑖) = 𝜇𝑖 + 𝜎𝑖𝜉𝑖 (2.1)  

 

where 𝑥(𝑡𝑖) represents the 𝑖𝑡ℎ decision variable. Uniform random variables are 

assumed in this study (𝜉𝑖). The upper and lower bounds of each decision variable are 

used to calculate the mean (𝜇𝑖) and standard deviation (𝜎𝑖) of the decision variable 
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with equation  (2.2) and equation  (2.3). Each random variable is shifted according to 

the prescribed upper and lower bounds: 

𝜇𝑖 = 𝑢𝑖+𝑙𝑖
2

, (2.2)  

𝜇𝑖 = 𝑢𝑖−𝑙𝑖
√12

, (2.3)  

where (𝑙𝑖) and (𝑢𝑖) are the lower and upper bounds of the 𝑖𝑡ℎ uniform random 

variable. 

Each random variable (𝜉𝑖) can be sampled multiple times (Ξ𝑖𝑘) and the value of the 

objective function𝑓({𝑥𝑖(Ξ𝑖𝑘)}𝑖=1𝑚 ), can be calculated for multiple samples  

𝜉𝑘���⃗ = {𝛯𝑖𝑘}𝑖=1𝑚 of the random variable leading to a sample mean. Alternatively, to 

decrease the number of function evaluations without sampling the random variable 

many times, the Stochastic Collocation (SC) Method is used to find the expected 

value of the objective function (Gibson et al., 2014; Leon et al., 2012; Xiu and 

Hesthaven, 2005).  

The Stochastic Collocation method is used instead of Monte Carlo (MC) method for 

decreasing the number of function evaluations and therefore increasing the 

convergence rate. The set of collocation points 𝑍 = [𝑧1, 𝑧1, … , 𝑧𝑁𝐶] is chosen as the 

roots of appropriate orthogonal polynomials (one-dimensional) (Gibson et al., 2014; 

Xiu, 2010). The expectation of the objective function is calculated as 

𝐸[𝑓({𝜉𝑖}𝑖=1𝑚 )] = ∑ 𝑓(𝑧𝑘)𝜔𝑘
𝑁𝐶
𝑘=1 , (2.4)  

where 𝑧𝑘, represents the collocation points, 𝜔𝑘 represents the corresponding weights 

of the collocation points and NC is the total number of collocation points, which is 

problem dependent (Sankaran et al., 2010) ( Figure 2.1). 

In constrained optimization problems, to make sure that the results are feasible, the 

probabilistic constraints concept is implemented. To calculate the probability of 

failure (𝑃𝐹) of a constraint, it is assumed that the constraint can be represented by a 

polynomial of random variables referred to as polynomial surrogate (McIntire et al., 

2014). The polynomial surrogate of the constraint is created using the constraint 
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values calculated at the aforementioned collocation points. These polynomial 

surrogates can be sampled efficiently (without sampling the whole system many 

times) to calculate the probability of failure (𝑃𝐹). The probability of failure of a 

constraint's surrogate is used as the representation of the constraint's violation 

(McIntire et al., 2014). 

 

 

Figure 2.1. Flowchart for the proposed method 

2.4. Application 

A simple mathematical function, with known optimal solutions, is used to 

demonstrate the proposed method. 

2.4.1.Test 1: Single-Objective Mathematical Test Problem 

The goal is to find the optimal values with flexible decision variables for a quadratic 

function using the proposed methodology. We start with the following deterministic 

problem.  
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      Problem 1A: Find 𝑥𝑖, in order to 

Minimize 𝑓(𝑥) = ∑ (𝑥𝑖2)𝑚
𝑖=1 , 

subject to 0 ≤ 𝑥𝑖 ≤ 1,  

 

(2.5)  

where 𝑥𝑖is the 𝑖𝑡ℎdecision variable and 𝑚 is the number of decision variables of the 

quadratic function. The known deterministic optimal decision variables and the 

resulting optimal objective are 𝑥𝑖 = 0 and 𝑓(𝑥𝑖) = 0, respectively. 

To find the flexible decision variables, the bounds of the uniform random variables 

representing each decision variable are found by optimization (i.e.  𝜉𝑖 ∈ [𝑙𝑖 ,𝑢𝑖]). We 

state this as the following problem. 

      Problem 1B: Find  𝑙 = [𝑙𝑖]𝑖=1𝑚  and 𝑢�⃗ = [𝑢𝑖]𝑖=1𝑚 , in order to 

Minimize 𝐸�𝑓1(𝜉)� = 𝐸[∑ (𝜉𝑖)2𝑚
𝑖=1 ], and 

 

(2.6)  

Maximize 𝑓2�𝜉� = ‖𝜎⃗‖, 

 

(2.7)  

Subject to 0 ≤ 𝑙𝑖 ≤ 𝑢𝑖 ≤ 1 for all 𝑖, 

 

(2.8)  

where  𝜉 = [𝜉𝑖]𝑖=1𝑚 , 𝜎⃗ = [𝜎𝑖]𝑖=1𝑚  as defined in equations  (2.1),  (2.2) and  (2.3). The 

additional objective equation  (2.7) is for maximizing the decision variables' flexibility 

by maximizing the standard deviation of all the random decision variables. For exact 

solution to problem 1B go to Appendix. 

      Results 

We demonstrated the approach on the test problem for 𝑚 = 2. The optimal results for 

two conflicting objectives can be demonstrated as the trade-off of the objectives 

( Figure 2.2). The first objective is the expected value of the quadratic function of the 

random variables  (2.6) and the second objective is the norm of the standard deviations 

of the random variables, which represents the flexibility of each Pareto solution 
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calculated by  (2.7). The comparison of the deterministic solution of the quadratic 

function (Problem 1A) and the Pareto solutions with flexible decision variables 

(Problem 1B) shows that the higher is the flexibility of one scenario, the farther it will 

deviate from the deterministic optimal solution ( Figure 2.2 A). 

The solutions with warmer colors, have more flexibility in decision variables while 

the expected objective values are higher than the deterministic minimum solution. 

The flexible decision variables (the mean and the range of options) corresponding to 

each of the Pareto solutions, testify that the ranges of options are more for the 

solutions with warmer colors ( Figure 2.2 C, D). Due to randomness of the flexible 

decision variables, the value of the first objective may vary from its mean value, as is 

shown by horizontal lines in  Figure 2.2 B. 

2.4.2.Test 2: Multi-Objective Mathematical Test Problem 

As most water resources problems are multi-objective, a multi-objective problem is 

tested in this section. 

Using test problems is an effective way to validate a methodology for the following 

reasons: The exact optimal deterministic solutions to the test problem are known and 

the objectives are simple mathematical functions, which makes them more 

straightforward to understand. (Deb, 1998) proposed using test problems to measure 

some characteristics of multi-objective algorithms. In this study, test problem ZDT1 

suggested by (Zitzler et al., 2000) is considered. The reason for choosing this specific 

test problem is the similarities of its objective functions with the reservoir problem 

case study (Section 2.4.3). 

The number of decision variables in ZDT1 can vary from 2 to 30 (this range is 

according to (Deb et al., 2002), however it can be any other number as well). ZDT1 

has two objectives that should be minimized and the Pareto is convex. The 

characteristics of ZDT1 are shown in  Table 2.1 (Deb et al., 2002). 

 



 

 
15 

 

 

Figure 2.2. Optimal solutions for single-objective test problem with two decision variables A) 
Pareto solutions; B) The range of changes of the objective due to randomness of 
decision variables; C) Flexible bounds for first decision variable for all the Pareto 
solutions; and D) Flexible bounds for second decision variable for all the Pareto 
solutions (Note that these are the standard deviations, 𝜇𝑖 ± 𝜎𝑖, not the entirety of the 
range [𝑙𝑖 ,𝑢𝑖]) 

We state the deterministic (non-flexible) test problem as follows, 

      Problem 2A: Find  𝑥��⃗ = [𝑥𝑖]𝑖=1𝑚  in order to 

Minimize𝑓1(𝑥) = 𝑥1, and (2.9)  

Minimize 𝑓2(𝑥) = 𝑔(𝑥)�1 −�𝑥1 𝑔(𝑥)⁄ �, (2.10)  

where 𝑔(𝑥) = 1 + 9 (∑ 𝑥𝑖𝑚
𝑖=2 ) (𝑚− 1)⁄ , 

Subject to 0 ≤ 𝑥𝑖 ≤ 1 for all 𝑖. 

 

(2.11)  
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To find flexible decision variables for ZDT1 problem, with an additional objective for 

flexibility, there are three objectives. 

      Problem 2B: Find  𝑙�⃗ = [𝑙𝑖]𝑖=1𝑚  and  𝑢���⃗ = [𝑢𝑖]𝑖=1𝑚  in order to 

Minimize  𝐸�𝑓1(𝜉)� = 𝐸[𝜉1], and (2.12)  

Minimize  𝐸�𝑓2(𝜉)� = 𝐸 �𝑔(𝜉)�1 −�𝜉1 𝑔(𝜉)⁄ ��, 
(2.13)  

Subject to 0 ≤ 𝑙𝑖 ≤ 𝑢𝑖 ≤ 1 for all 𝑖, (2.14)  

Minimize 𝑓2(𝑥) = 𝑔(𝑥)�1 −�𝑥1 𝑔(𝑥)⁄ �, (2.15)  

where 𝜉𝑖 ∈ [𝑙𝑖 ,𝑢𝑖]. 

Table 2.1. ZDT1 (All objective functions are to be minimized) 

Problem 𝑚 Variable 

bounds 

Objective functions Optimal 

solutions 

ZDT1 2 [0,1] 𝑓1(𝑥) = 𝑥1 

𝑓2(𝑥) = 𝑔(𝑥) �1 −�𝑥1 𝑔(𝑥)⁄ � 

𝑔(𝑥) = 1 + 9��𝑥𝑖

𝑚

𝑖=2

� (𝑚− 1)�  

𝑥1 ∈ [0,1] 

𝑥𝑖 = 0 

𝑖 = 2, … ,𝑚 

 

      Results 

The first two objectives are the minimization of the expected values of 𝑓1 and 𝑓2, 

respectively ( Figure 2.3 A). The third objective is the maximization of the flexibility 

of the decision variables. The 3D surface shown in  Figure 2.3 A is created with the 

Pareto solutions for visualization purpose although these Pareto solutions not 

represent the whole surface. The closer the flexible solutions are to the deterministic 

Pareto solutions ( Figure 2.3 B), the smaller are the ranges of flexible decision 

variables. For example, solutions shown with warmer colors are closer to the 

deterministic Pareto solutions and the decision variables have less flexibility ( Figure 

2.3 C, D); to have more flexibility the solutions shown with green color, have wider 
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range of options in their both decision variables, however the corresponding Pareto 

solutions are dominated by the deterministic Pareto solutions. Optimizing three 

objectives in problem 2B is the reason for the difference in the shape of Pareto 

solutions in problem 2A and 2B ( Figure 2.3 B). The decision makers can make their 

decisions based on the flexibility for each decision variable ( Figure 2.3 C, D) and the 

corresponding Pareto solution and its variation ( Figure 2.3 B). In this case, each 

Pareto solution corresponds to the expected value of the objectives due to randomness 

of the chosen flexible decision variables. The objective values can vary for both 

objectives. The standard deviation of each objective is represented by the ellipse's 

radius in each dimension and is increased by larger flexible ranges in decision 

variable. 
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Figure 2.3. Comparing scenarios for multi-objective test problem with two decision variables for 
deterministic and optimal solutions with flexible decision variables A)3D Pareto 
solutions B) Comparison of deterministic scenarios (in black) and the flexible solutions 
(in color) in 2D; The range of changes of the objective due to randomness of decision 
variables are shown with ellipses; C) Flexible bounds for first decision variable for all 
the Pareto solutions and the deterministic first decision variables (in black); and D) 
Flexible bounds for second decision variable for all the Pareto solutions and the 
deterministic second decision variables (in black) 

2.4.3.Test 3: Reservoir Operation Problem 

A simplified model of the Grand Coulee reservoir on the Columbia River is used as 

the test case ( Table 2.2), which is based on the problem studied by (Chen et al., 2014, 

2016). The desirable decision variables are the daily turbine outflows. To simplify the 

reservoir test problem, a period of two days was considered1. Minimizing the 

deviation of forebay elevation2 at the end of the optimization period is the first 

1 It was also tested for problems with 4 and 6 decision variables (time-steps) 
2 Reservoir's water surface elevation 
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objective. This objective is required to maintain the forebay elevation at a desired 

elevation for consistency with long-term planning. To further restrict the deviation of 

the forebay elevation, the forebay elevation deviation at the end of the optimization 

period constrained as well. The second objective is to maximize the revenue due to 

hydropower generation. The difference of generated hydropower and demand is 

called net electricity. The net electricity multiplied by the hydropower price 

determines the revenue at each time-step and the summation of the produced revenue 

at all time-steps is considered as the second objective value. The daily hydropower 

price for this period is considered deterministic and is pre-determined by an economic 

model (Chen et al., 2016).  

The flexible and non- flexible problems are stated as follows: 

      Problem 3A: Find  𝑄�⃗ = [𝑄𝑛]𝑛=1
𝑁𝑡  in order to 

Minimize 𝑓1(𝑄�⃗ ) = ��𝐹𝐵𝑒𝑛𝑑�𝑄�⃗ �−𝐹𝐵𝑡𝑎𝑟𝑔𝑒𝑡��
𝑈𝑟−𝐿𝑟

, and (2.16)  

Minimize 𝑓2�𝑄�⃗ � = −�
∑ �𝑃𝐺𝑛�𝑄�⃗ �−𝑃𝐿𝑛�∗𝑃𝑟𝑛
𝑁𝑡
𝑛=1

∑ (𝑃𝑟𝑛∗𝑃𝐿𝑛)𝑁𝑡
𝑛=1

�, 
(2.17)  

Subject to 𝑄𝑚𝑖𝑛 ≤ 𝑄𝑛 ≤ 𝑄𝑚𝑎𝑥 for all 𝑛, (2.18)  

Subject to 𝑓2�𝑄�⃗ � ≤ 𝛿𝐹𝐵. 

 

(2.19)  

      Problem 3B: Find  [𝑙𝑛]𝑛=1
𝑁𝑡 and [𝑢𝑛]𝑛=1

𝑁𝑡 in order to 

Minimize 𝐸[𝑓1�𝜉�] =
��𝐹𝐵𝑒𝑛𝑑�𝜉�⃗ �−𝐹𝐵𝑡𝑎𝑟𝑔𝑒𝑡��

𝑈𝑟−𝐿𝑟
, and 

(2.20)  

Minimize 𝐸[𝑓2�𝜉�] = −�
∑ �𝑃𝐺𝑛�𝜉�⃗ �−𝑃𝐿𝑛�∗𝑃𝑟𝑛
𝑁𝑡
𝑛=1

∑ (𝑃𝑟𝑛∗𝑃𝐿𝑛)𝑁𝑡
𝑛=1

�, 
(2.21)  

Maximize 𝑓3�𝜉� = ‖𝜎⃗‖, (2.22)  

Subject to 𝑄𝑚𝑖𝑛 ≤ 𝑄𝑛 ≤ 𝑄𝑚𝑎𝑥 for all 𝑛, (2.23)  

Subject to 𝑃𝐹(𝐶) ≤ 𝛼, (2.24)  

𝐶: 𝑓2�𝜉� ≤ 𝛿𝐹𝐵. (2.25)  
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where 𝜉 ∈ [𝑙𝑛,𝑢𝑛] and is the set of random variables representing the decision 

variables, 𝐹𝐵𝑒𝑛𝑑is the forebay elevation at the end of the optimization period, which 

depends on the turbine outflows (𝑄), 𝐹𝐵𝑡𝑎𝑟𝑔𝑒𝑡is the desired forebay elevation at the 

end of optimization period, which is pre-determined for each reservoir (𝛿𝐹𝐵), 𝑈𝑟 and 

𝐿𝑟are the maximum and minimum allowable reservoir's forebay elevation. 

Table 2.2.Reservoir operation problem (All objective functions are to be minimized) 

Problem 𝑛 Variable 

bounds 

Objective functions 

Reservoir 

operation 

problem 

2 [30,290] 
𝑓1�𝑄�⃗ � =

��𝐹𝐵𝑒𝑛𝑑�𝑄�⃗ � − 𝐹𝐵𝑡𝑎𝑟𝑔𝑒𝑡��
𝑈𝑟 − 𝐿𝑟

 

𝑓2�𝑄�⃗ � = −�
∑ �𝑃𝐺𝑛�𝑄�⃗ � − 𝑃𝐿𝑛� ∗ 𝑃𝑟𝑛
𝑁𝑡
𝑛=1

∑ (𝑃𝑟𝑛 ∗ 𝑃𝐿𝑛)𝑁𝑡
𝑛=1

� 

 

where 𝑁𝑡 is the number of time-steps in the optimization. In the proposed 

methodology the objectives of the optimization are formulated as a minimization. 

Therefore, the second objective is formulated as a minimization of revenue loss. 𝑃𝐺𝑛 

is the hydropower produced in  𝑛𝑡ℎ time-step, 𝑃𝐿𝑛 is the hydropower demand (load) 

and 𝑃𝑟𝑛 is the price of hydropower. The constraints of this problem are designed to 

maintain the outflows within the allowable boundaries (�𝑄𝑚𝑖𝑛,𝑄𝑚𝑎𝑥� = [30,290] 

kcfs for this problem). For problem 3B, 𝜎⃗ is the set of standard deviation of the 

decision variables, the probability of failure (𝑃𝐹) of the constraint is calculated and 

the solutions with 𝑃𝐹 less than an allowable failure threshold (𝛼) are considered as 

feasible solutions. The value of 𝛼 is chosen based on the risk attitude of the decision 

maker. 

      Results 

A surface is created using the Pareto solutions in 3D ( Figure 2.4 A) which 

demonstrates the spread of Pareto solutions, however this surface is not the exact 

representation of the Pareto surface. In this figure, x-axis is the expectation of the first 
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objective (minimizing the deviation of forebay elevation at the end of the 

optimization period), y-axis is the expectation of the second objective (maximizing 

the revenue from hydropower production) and z-axis is the flexibility (‖𝜎⃗‖). Each 

decision variable's standard deviation is bounded by the maximum and minimum 

constraints. Therefore, in this problem, the maximum standard deviation can be 

almost 75 kcfs (in Uniform distribution, 𝜎 = 𝑢−𝑙
√12

). Therefore, in  Figure 2.4 A the 

maximum flexibility happens when both decision variables have the maximum 

allowable standard deviation. The analogy of the deterministic Pareto solutions of 

problem 3A and the projected Pareto solutions problem 3B in 2D, shows that the 

Pareto solutions corresponding to flexible decision variables are dominated by the 

deterministic Pareto solutions ( Figure 2.4 B). In other words, each solution on the 

deterministic Pareto is better than the flexible solutions at least for one of the 

objectives. As it was expected, the objective values are sacrificed (in comparison to 

deterministic Pareto solutions) to some extent to allow flexibility in the decision 

variables. As an example, the solution showed with yellow color (𝐸[𝑓1] ≈ 0.06 

and 𝐸[𝑓2] ≈ −2.2) is dominated by the deterministic solution with 𝐸[𝑓1] ≈ 0.05 

and 𝐸[𝑓2] ≈ −2.4. But this solution offers flexibility for both decision variables 

(𝜎1 = 50 and 𝜎2 = 10). Moreover, the variations of the objectives due to random 

behavior of the flexible decisions are more restricted in comparison to the objective 

variations in test 1 (sections 2.4.1) and test 2 (section 2.4.2). The complex structure of 

the reservoir operation problem and the impact of the higher number of non-linear 

constraints may be the reason that the Pareto solutions are less different from the 

deterministic Pareto solutions. 
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Figure 2.4. Optimal solutions for reservoir operation problem with two decision variables A) Pareto 
solutions; B)The range of changes of the objective due to randomness of decision 
variables; C) Flexible bounds for first decision variable for all the Pareto solutions; and 
D) Flexible bounds for second decision variable for all the Pareto solutions (𝑃𝐹 < 1%) 

Each of the flexible Pareto optimal solutions can be desirable based on the decision 

maker's preference. The solutions with higher flexibility (e.g., solution with green 

color in  Figure 2.4) may be preferred by a certain decision maker over the solutions 

with lower forebay elevation deviation or even lower revenue losses. All of the 

solutions are assured to have less than 1% probability of failure of their constraints. 

The results of the optimization with 𝛼 equal to 5, 10 and 20% are not very different 

from those shown here with 𝛼 = 1% ( Figure 2.5). 
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Figure 2.5. Optimal solutions for reservoir operation problem with two decision variables A) Pareto 
solutions; B)The range of changes of the objective due to randomness of decision 
variables; C) Flexible bounds for first decision variable for all the Pareto solutions; and 
D) Flexible bounds for second decision variable for all the Pareto solutions (𝑃𝐹 = 20%)  
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Figure 2.6. Example 1 of the decision that the decision maker may choose in decision and objective 
space 

 

Figure 2.7. Example 2 of the decision that the decision maker may choose in decision and objective 
space 

The decision makers can choose different options from the Pareto solutions based on 

their preferences. If flexibility in the first decision variable is more desirable for the 

decision maker, the solution shown in  Figure 2.6 can be selected. The coefficient of 
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variation (𝐶𝑉) is used to show the relative flexibility of each decision variable 

(𝜎𝑄 𝜇𝑄⁄ ), which is 18% 𝐶𝑉 for the outflow in the first time-step and 5.9% 𝐶𝑉 for the 

outflow in the second time-step. The flexibility in decision space leads to average 

1.9% difference for the first objective and 4.1% decrease in revenue. However a 

decision maker who preferred high flexibility in both decision variables may choose 

the solution shown in  Figure 2.7. The flexibility of the outflow in both time-steps are 

the same (𝐶𝑉 = 46%) and corresponds to an average 11.3% difference for the first 

objective and 17.2% less generated hydropower from what the deterministic 

optimization would suggest to provide. 

2.5. Conclusions And Future Directions 

The proposed methodology finds the optimal flexible decision variables, with a pre-

specified probability of failure. Each decision variable is represented by a range and 

the operator can choose any value in that range.  

Due to high computational cost, this methodology can be suitable for short-term 

operation of reservoirs with a small number of decision variables (e.g., 6) as the 

function evaluations will increase exponentially by increasing the number of decision 

variables (𝑁𝐶𝑚 where 𝑁𝐶 is the number of collocation points in each dimension and 

m is the number of decision variables). Although the proposed framework is not 

efficient for reservoir operation problems with many decision variables (e.g., larger 

than 6), it can be useful when the number of decision variables is relatively small 

(e.g., 6) and the operator needs flexibility in decision making. To improve resolution, 

one needs to decrease the time-steps which increases the dimension. Using a basis 

function representation would allow arbitrarily fine resolution, which is independent 

from the decision space dimension. Therefore to make this methodology applicable to 

problems with multiple decision variables, future work is required to implement a 

dimension reduction method to increase the computational efficiency, which is the 

topic of ongoing research. 

Moreover, to find solutions with limited variation in the objective space, the concept 

of robust objective can be implemented in addition to flexibility but is beyond the 
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scope of this paper. Robustness refers to minimizing the objectives variation due to 

variable uncertainties while optimizing the expected of the objective. This can be 

done by robust objective concept which is a weighted sum of objective expectation 

and its standard deviation. The weights are chosen based on the risk attitude of the 

decision maker (Arora, 2004; McIntire et al., 2014). 

Acknowledgments 

This research was supported by the Bonneville Power Administration through the 

Technology Innovation Program, grant numbers TIP-258 and TIP-342. 

 

 

  

 



 

 
27 

 

3.  Flexible Decision Variables in Reservoir Operation Using 

Dimension Reduction Approach 

3.1. Abstract 

This paper presents a framework for using dimension reduction approach to find 

flexible decision variables in a multi-objective optimization reservoir operation 

problem. The use of flexible decision variables provides the operator with options if 

unforeseen variations occur (e.g., uncertainty sources that are not included in the 

process of optimization). If each decision variable is represented by a random 

variable, then problems with many decision variables can get computationally 

expensive. Therefore, to decrease the number of random variables and consequently 

reduce the computational time, a dimension reduction technique (Karhunen-Loeve 

expansion) is implemented within the process of optimization. A multi-objective 

evolutionary algorithm (NSGA-II) is used to optimize the expected value of the 

objectives and simultaneously maximize the flexibility of decision variables. 

The Grand Coulee reservoir is used as the case study. The decision variables of this 

simplified reservoir problem are the daily turbine outflows. The objectives are chosen 

to be maximizing revenue from hydropower production and minimizing the forebay 

elevation deviation by the end of optimization period (Chen et al., 2014). 

The proposed framework is capable of decreasing the number of random variables 

and then finding flexible decision variables while having a pre-specified probability 

of failure of constraints. 

3.2. Introduction 

Operation of a reservoir system is complex due to many competing objectives, 

requirements and constraints. Optimization methods are used to effectively maximize 

beneficial aspects of a reservoir system (such as hydroelectric power production) and 

manage water utilization. Different optimization techniques have been applied to 

problems such as groundwater, irrigation and reservoir operation management to 

name a few (Singh, 2012). The use of optimization techniques for reservoir operation 
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systems has been reviewed comprehensively (Ahmad et al., 2014; Labadie, 2004). 

The application of evolutionary algorithms in various water resources optimization 

problems was reviewed in (Nicklow et al., 2009; Reed et al., 2013). Different sources 

of uncertainty can affect the solutions in an optimization problem. Optimization of 

reservoir operation under uncertainty was investigated in (Sahinidis, 2004). 

Consideration of input uncertainty was addressed by several studies (e.g., Escudero, 

2000; Faber and Stedinger, 2001; Gibson et al., 2014; Karamouz et al., 2009; Leon et 

al., 2012). Numerous studies have demonstrated the importance of decision makers' 

preferences in the process of optimization for water management problems and that 

not all decision makers are able to identify their preferences accurately (e.g., Babbar-

Sebens et al., 2013; Babbar-Sebens, 2017; Kaini et al., 2012). Although, optimization 

is a strong tool to find optimal solutions, decision makers may alter the optimal 

decisions or choose the solutions with better local-benefits rather than solutions 

identified by optimization for a large and complex decision space (Piemonti et al., 

2013). 

The main focus of this paper is to find flexible decision variables. The importance of 

flexibility in decision making and the consideration of decision maker preference in 

the trade-off between performance and robustness, has been discussed extensively 

(Bernardo and Saraiva, 1998; DiFrancesco and Tullos, 2014; Herman et al., 2015; 

Marques et al., 2015). A methodology for finding optimal flexible decision variables 

was proposed by (Hosseini et al., 2017b), representing each decision variable by a 

random variable. This methodology can be computationally expensive for problems 

with many decision variables and can suffer from the "Curse of dimensionality" 

(Bellman, 2015) as it would lead to a multi-dimensional decision space. 

The main contribution of this paper is to find flexible decision variables for a 

reservoir operation problem using a dimension reduction method. To have a 

representation of the decision space a set of optimal decision variables found by 

deterministic optimization is used. The Karhunen-Loeve (KL) expansion method is 

then used to reduce the dimension of the decision space (Chen et al., 2016; Gibson et 
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al., 2014; Xiu, 2010) so that the decision space can be approximated by a few random 

variables. 

3.3. Methodology 

To find decision variables in a reservoir operation problem, the primary decision 

space can be approximated by either, 

1. a set of deterministic optimal decision variables (decisions leading to 

deterministic Pareto solutions in the objective space) or, 

2. a set of historical decision variables or, 

3. a combination of both deterministic and historical optimal decision variables. 

Option 1 is investigated in this study and is briefly explained in section 3.3.1. The 

dimension reduction method (KL-expansion) is implemented to reduce the dimension 

of the decision space to a manageable number of random variables, and is discussed 

in section 3.3.2 (Gibson et al., 2014; McIntire et al., 2014). 

3.3.1.Multi-Objective Optimization (NSGA-II) 

The non-dominated sorting multi-objective optimization method (NSGA-II) (Deb et 

al., 2002) is used. NSGA-II is one of the most popular evolutionary algorithms (Reed 

et al., 2013) for finding a set of non-dominated optimal solutions to a multi-objective 

optimization problem. NSGA-II is an improved version of the NSGA method 

proposed by (Srinivas and Deb, 1994) which uses non-dominated ranking to classify 

the population in the process of selection. An elitist mechanism and a crowded 

comparison operator are used in NSGA-II to find more diverse Pareto solutions with 

higher computational efficiency. The elitism in this method refers to the coupling of 

the best parents and the best offspring obtained (Malekmohammadi et al., 2011). 

3.3.2.Karhunen-Loeve Expansion 

The Karhunen-Loeve (KL) expansion method is a dimension reduction method 

(Hernández-Andrés et al., 1998; Xiu, 2010), which is conceptually similar to 

Principle Component Analysis (PCA). This method uses to obtain the covariance 

structure of a given set of realizations and extracts the orthogonal eigen-pairs 
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(eigenvalues and eigen-functions). The random process can be represented by a series 

expansion (the KL-expansion) of the eigen-pairs and their corresponding random 

coefficients (Chen et al., 2016). It is assumed that there are 𝑀 decision variable 

realizations corresponding to the deterministic Pareto solutions and each realization 

has 𝑛 time-steps. 

The decision space is assumed to be a Gaussian process. The deterministic 

realizations [𝑄𝑖(𝑡)]𝑖=1𝑀 are used to determine the sample mean (equation  (3.1)) and 

covariance structure (equation  (3.2)) of the decision space (Gibson et al., 2014; Xiu, 

2010) 

𝑄�(𝑡) = ∑ 𝑄𝑖(𝑡)𝑀
𝑖=1
𝑀

, (3.1)  

𝐶(𝑡𝑗 , 𝑡𝑘) =
∑ �𝑄𝑖�𝑡𝑗�−𝑄�𝑗�(𝑄𝑖(𝑡𝑘)−𝑄�𝑘)𝑀
𝑖=1

𝑀−1
, (3.2)  

We let [𝜆𝑘,𝜓𝑘]𝑘=1∞  be the eigenvalues and eigen-functions of the integral equation 

(𝜆𝜓(𝑡) = ∫ 𝐶(𝑥, 𝑡)𝜓(𝑥)𝑑𝑥𝑛
𝑡0

), and let 𝜉 = [𝜉]𝑘=1∞  be uncorrelated Gaussian random 

variables with mean 0 and standard deviation 1. Then the KL-expansion is given by: 

𝑄𝑔�𝑡, 𝜉� = 𝑄�(𝑡) + ∑ �𝜆𝑘𝜓𝑘(𝑡)𝜉𝑘∞
𝑘=1 , (3.3)  

The KL-expansion can be truncated and approximated by a few random variables as 

follows: 

𝑄𝑔�𝑡, 𝜉� = 𝑄�(𝑡) + ∑ �𝜆𝑘𝜓𝑘(𝑡)𝜉𝑘
𝑁𝑟𝑣
𝑘=1 , (3.4)  

where 𝑁𝑟𝑣 is the number of terms in the truncated KL-expansion and 𝑄𝑔(𝑡) is the 

random vector of decision variables. 

3.3.3.Stochastic Collocation (SC) Method 

The Stochastic Collocation (SC) is a method used to approximately calculate the 

expectation of a function depending on a multi-dimensional random space. The SC 

method exploits properties of Lagrange interpolation polynomials and involves 

simple deterministic sampling at discrete points (Xiu and Hesthaven, 2005). 
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The Monte Carlo (MC) method is one of the traditional approaches to generate 

realizations and estimate the expected system output. However, the MC method is 

known to have a slow convergence rate (e.g., Babuska et al., 2004; Babuška et al., 

2010; Xiu and Hesthaven, 2005) requiring a relatively high number of function 

evaluations to estimate the expected value of the output with high precision. While 

the MC method involves a sample mean, the SC method uses a weighted sum of an 

objective function solved deterministically (non-intrusive method) at the chosen 

collocation points, 

𝐸�𝑓(𝑡,𝑌�⃗ )� = ∑ 𝑓(𝑡,𝑌𝑛𝑐)𝜔𝑛𝑐
𝑁𝑐
𝑛𝑐=1 , (3.5)  

where 𝑌�⃗ = [𝑌𝑛𝑐]𝑛𝑐=1
𝑁𝑐  is the set of collocation nodes and 𝜔��⃗ = [𝜔𝑛𝑐]𝑛𝑐=1

𝑁𝑐  is the set of 

corresponding weights for the collocation nodes. The collocation nodes are the tensor 

product of the roots of suitable one-dimensional orthogonal polynomials (Gibson et 

al., 2014; Xiu, 2007). This method turns out to be less computationally expensive in 

comparison to the MC method and it only needs the function evaluations at a set of 

pre-determined points. 

3.3.4. Probabilistic Constraints 

Due to the stochastic nature of the problem, the constraints cannot be evaluated 

deterministically. Sampling the problem can be very computationally expensive 

(McIntire et al., 2014). Since sampling a polynomial surrogate is computationally 

cheaper than solving the whole system at each sample, a polynomial surrogate of each 

constraint is constructed using the constraint values calculated at the collocation 

nodes (Gibson et al., 2014). The constructed polynomial surrogate can be sampled to 

approximate the probability of failure (𝑃𝐹) of that constraint. The 𝑃𝐹 is used as the 

representation of constraint violation in the process of optimization. 

3.3.5.Flexible Decision Variables 

Using the concept of dimension reduction, the decision space can be approximated by 

a few random variables given the mean and covariance structure of realizations from 

the decision space. As discussed in section 3.3.1, the realizations are taken to be 

deterministic optimal solutions. In the proposed methodology the flexible decisions 
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are defined by the choice of coefficients in the KL-expansion. Thus, the optimization 

method finds the mean and standard deviation of each KL-expansion random variable 

([𝜉𝑘]𝑘=1
𝑁𝑟𝑣 ). These parameters are referred to as Control Variables to avoid confusion 

with the deterministic decision variables (which are the turbine outflows in daily 

time-steps in this study). The objectives of this optimization problem are the expected 

value of the problem objectives with an additional objective to maximize flexibility. 

Flexibility of decision variables is represented by the sum of squares of the standard 

deviations of the random variables in the KL-expansion multiplied by the 

corresponding eigenvalues. By including the eigenvalues in this calculation, the 

actual influence of each random variable's standard deviation is taken into account. 

The approach is summarized in  Figure 3.1. 

 

Figure 3.1. Flowchart for the proposed method 
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3.4. Case Study 

The efficacy of the proposed methodology is tested on a reservoir operation problem 

described by (Hosseini et al., 2017b) and is a simplified version of the Grand Coulee 

reservoir problem studied by (Chen et al., 2016). The Grand Coulee reservoir is one 

of the largest reservoirs on the Columbia River in the Northwestern United States and 

hydropower production is one of its main purposes. The goal is finding the optimal 

turbine outflows in daily time-steps while minimizing the revenue loss1 and 

minimizing the forebay elevation2 and a given target by the end of optimization 

period. Forebay elevation is expected to be within a target elevation range by the end 

of the optimization period for future planning requirements (Chen et al., 2016). The 

deterministic optimal decision variables are assumed to be representative of the 

decision space. A period of 14 days starting August 25th is selected for this 

optimization problem. Data availability and the importance of optimizing the 

reservoirs on Columbia River in these two particular weeks (Chen et al., 2014) are the 

main reasons to choose this period3. 

The following scenarios are studied in this paper: 

1. Deterministic optimization 

2. Flexible decision variables using dimension reduction of the data 

3. Flexible decision variables using dimension reduction of transformed data 

3.4.1. Deterministic Optimization 

This first scenario is the deterministic optimization of reservoir operation to find 𝑄�⃗ =

[𝑄𝑛]𝑛=1
𝑁𝑡 , in order to 

Minimize 𝑓1(𝑄�⃗ ) = ��𝐹𝐵𝑒𝑛𝑑�𝑄�⃗ �−𝐹𝐵𝑡𝑎𝑟𝑔𝑒𝑡��
𝑈𝑟−𝐿𝑟

, and (3.6)  

Minimize 𝑓2�𝑄�⃗ � = −�
∑ �𝑃𝐺𝑛�𝑄�⃗ �−𝑃𝐿𝑛�∗𝑃𝑟𝑛
𝑁𝑡
𝑛=1

∑ (𝑃𝑟𝑛∗𝑃𝐿𝑛)𝑁𝑡
𝑛=1

�, 
(3.7)  

1 maximizing revenue due to hydropower generation 
2 reservoir's water surface elevation 
3 the proposed framework can be extended to any other period and any other reservoir network 
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Subject to 𝑄𝑚𝑖𝑛 ≤ 𝑄𝑛 ≤ 𝑄𝑚𝑎𝑥 for all 𝑛, (3.8)  

Subject to 𝑓1�𝑄�⃗ � ≤ 𝛿𝐹𝐵, (3.9)  

Subject to |𝑄𝑛 − 𝑄𝑛+1| ≤ 𝑄𝑟𝑎𝑚𝑝 for all 𝑛. (3.10)  

where 𝑄�⃗  is the set of turbine outflows from the reservoir for 𝑁𝑡 time-steps, 𝑓1 

represents the forebay elevation variation, 𝐹𝐵𝑒𝑛𝑑 is the forebay elevation by the end 

of the optimization period, 𝐹𝐵𝑡𝑎𝑟𝑔𝑒𝑡 is the desired forebay elevation at that time 

(which is a known value in the reservoir operation problem), 𝑈𝑟 and 𝐿𝑟 are the 

allowed maximum and minimum forebay elevations, 𝑃𝐺𝑛 is the hydropower 

produced for time-step 𝑛, 𝑃𝐿𝑛 is the load and 𝑃𝑟𝑛 is the price of power. This problem 

has constraints for maximum and minimum allowable turbine outflows 

(�𝑄𝑚𝑖𝑛,𝑄𝑚𝑎𝑥� = [30,290] kcfs for this problem ( 3.4.1)). Ramping constraints are 

also considered (equation  (3.10)). The purpose of a ramping constraint is to restrict 

the outflow variation in two consecutive time-steps (𝑄𝑟𝑎𝑚𝑝 = 70 kcfs for this 

problem). Also, a constraint is included to control the maximum allowable forebay 

elevation deviation (𝛿𝐹𝐵 equation  (3.9)). Forebay elevation deviation, in addition to 

being one of the objectives, is also a constraint to prevent the forebay elevation to 

change drastically from its target. 
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Figure 3.2. (A) Eigenvalues and (B) eigen-functions of the original (deterministic) decision 
variables (Semi-logarithmic scale) 

 

Figure 3.3. (A) Eigenvalues and (B) eigen-functions of the original (deterministic) decision 
variables 

The dimension reduction method is applied to the optimal deterministic decision 

variables. The eigenvalues decrease exponentially when they are sorted in descending 

order ( Figure 3.2). Therefore, the effect of the first few eigen-pairs are more 

important than the rest of them ( Figure 3.3). The comparison of the randomly 

generated realizations (𝑄𝑔) using only a few versus all the eigen-pairs 

(equation  (3.4)), demonstrates that even 3 random coefficients can be sufficient for 

the purpose of representing the decision space and generating flexible decision 

variables ( Figure 3.4 C, D). 
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Figure 3.4. (A) The original (deterministic) optimal Pareto solutions, (B) the corresponding decision 
variables, (C) the generated decision variable realizations using 14, (D) the generated 
decision variable realizations using 3 random variables in the KL-expansion 
(equation  (3.4)) 
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Figure 3.5. Comparison of (A) the expected of the original and generated decision variables using 
14, (B) the variance of the original and generated decision variables using 14, (C) the 
expected of the original and generated decision variables using 3, (D) the variance of the 
original and generated decision variables using 3 random variables in the KL-expansion 

A comparison of the original data and the generated realizations' means, indicates that 

the average of the original data and the expected value of the generated realizations 

are the same using 14 and 3 random variables ( Figure 3.5 A and C, respectively). The 

same comparison is made to investigate the extent of deviation of the original and 

generated realizations. The standard deviation of the generated realizations using the 

truncated KL-expansion is as good as standard deviation of the ones generated using 

complete covariance structure information ( Figure 3.5 B and D, respectively). 

Although the agreement of the standard deviations is not as precise as the means, it 

still has less than 10 % error (maximum relative error in the 11th time-step). To 

investigate the effect of the generated realizations on the objective space, the original 
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Pareto solutions are compared to a randomly generated solution set using complete 

and truncated KL-expansions ( Figure 3.6). Because of the random nature of the KL-

expansion the generated decision variables may fall outside the boundary of the 

original data. Therefore, there are scenarios in the objective space in addition to the 

original deterministic Pareto solutions. However, they may be infeasible and are 

disqualified and eliminated in the process of optimization. Note that the solution sets 

shown in  Figure 3.6 are not Pareto optimal solutions. Each scenario on these sets are 

the result of a randomly generated realization of the decision variables in the 

objective space. All the randomly generated outflows are calculated using random 

variables with normal distribution. 

 

Figure 3.6. Comparison of the original deterministic Pareto solutions and the objectives 
corresponding to a solution set of randomly generated decision variables by KL 
expansion using 14 and 3 random variables 
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Figure 3.7. Comparison of the original deterministic Pareto solutions and the Pareto corresponding 
to the flexible decision variables (in 2D) 
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Figure 3.8. (A) The original deterministic optimal Pareto solutions, (B) the corresponding decision 
variables (with the same color as A), (C) comparison of the original deterministic Pareto 
solutions and the samples corresponding to 2 of the flexible Pareto solutions; each 
ellipse represents the standard deviation of 𝑓1 and 𝑓2 by its radii in horizontal and 
vertical dimension, respectively, (D) samples of the decision variable (outflow) 
realizations for 2 samples showed in C 

3.4.2. Flexible Decision Variables Using Dimension Reduction Of The 
Data 

The second scenario explored involves optimizing expected values of operation 

objectives while also maximizing flexibility in decisions. The control variables are 

the statistical parameters of the random variables in the KL-expansion representation 

of the decision variable. 

The problem is stated as follows: 

Find  �𝜇𝜉𝑘�𝑘=1
𝑁𝑟𝑣  and �𝜎𝜉𝑘�𝑘=1

𝑁𝑟𝑣  and compute 𝑋���⃗ = [𝑋𝑙]𝑙=1
𝑁𝑙 , in order to 
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Minimize 𝐸�𝑓1(𝑄𝑔�𝑡, 𝑋⃗�)� =
��𝐹𝐵𝑒𝑛𝑑�𝑄𝑔�𝑡,𝑋�⃗ ��−𝐹𝐵𝑡𝑎𝑟𝑔𝑒𝑡��

𝑈𝑟−𝐿𝑟
, and 

(3.11)  

Minimize 𝑓2 �𝑄𝑔�𝑡, 𝑋⃗�� = −�
∑ �𝑃𝐺𝑛�𝑄𝑔�𝑡,𝑋�⃗ ��−𝑃𝐿𝑛�∗𝑃𝑟𝑛
𝑁𝑡
𝑛=1

∑ (𝑃𝑟𝑛∗𝑃𝐿𝑛)𝑁𝑡
𝑛=1

�, 
(3.12)  

Maximize 𝑓3(𝑋⃗) = �𝜆𝜎𝜉�, (3.13)  

Subject to 𝑃𝐹(constraint 1, constraint 2, constraint 3) ≤ 𝛼, (3.14)  

Constraint 1 : 𝑄𝑚𝑖𝑛 ≤ 𝑄𝑛
𝑔 ≤ 𝑄𝑚𝑎𝑥 for all 𝑛, (3.15)  

Constraint 2 : 𝐶2: 𝑓1(𝑄𝑔) ≤ 𝛿𝐹𝐵,  (3.16)  

Constraint 3 : �𝑄𝑛
𝑔 − 𝑄𝑛+1

𝑔 � ≤ 𝑄𝑟𝑎𝑚𝑝 for all 𝑛, (3.17)  

where 𝑁𝑙 = 𝑁𝑐𝑁𝑟𝑣  and 𝑋𝑙 are all the adjusted stochastic collocation nodes 

corresponding to the parameters of the random variables (𝜇𝜉𝑘 and 𝜎𝜉𝑘). 

To ensure feasibility, the joint probability of failure (𝑃𝐹) of the constraints should be 

less than the allowable probability of failure (𝛼 is chosen based on the decision 

maker's risk attitude). For each constraint, a polynomial surrogate of the constraint 

values is approximated. The 𝑃𝐹 of each constraint is calculated by sampling each 

polynomial surrogate and a single violation of one constraint is considered a failure 

for that sample. The solutions which violate (𝑃𝐹 < 𝛼) are considered as infeasible 

solutions. 
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Figure 3.9. (A) Eigenvalues and (B) eigen-functions of the transformed deterministic decision 
variables (Semi-logarithmic scale) 

 

Figure 3.10. (A) Eigenvalues and (B) eigen-functions of the transformed deterministic decision 
variables 

       Discussion 

Each Pareto solution for the flexible decision variables is the expectation of all the 

flexible scenarios ( Figure 3.7). Therefore, each Pareto solution is a representation of 

what the expected value would be; the variation of the objective value in the objective 

space is not shown in this figure. To show the variability of the objective values due 

to random samples of KL-expansion, a few examples of the flexible decision 

variables (20 random samples) and the corresponding objectives and their standard 

deviations are shown ( Figure 3.8 D and C). Only two of the Pareto solutions are 

selected to demonstrate the flexibility in decision space and the resulting variation in 

objective space more clearly. Each optimal control variable found by the proposed 

methodology, lead to a cluster of possible decision variables that give the decision 

maker flexibility in decision space. 
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Figure 3.11. (A) The original deterministic optimal Pareto solutions, (B) the corresponding decision 
variables, (C) the generated decision variable realizations using 14, (D) the generated 
decision variable realizations using 3 random variables in the KL-expansion  with 
transformed data (equation  (3.4)) 
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Figure 3.12. Comparison of (A) the expected of the original and generated decision variables using 
14, (B) the variance of the original and generated decision variables using 14, (C) the 
expected of the original and generated decision variables using 3, (D) the variance of the 
original and generated decision variables using 3 random variables in the KL-expansion 
with transformed data 
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Figure 3.13. Comparison of the original deterministic Pareto solutions and the objectives 
corresponding to a solution set of randomly generated decision variables by KL-
expansion with transformed data using 14 and 3 random variables 
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Figure 3.14. Comparison of the original deterministic Pareto solutions and the Pareto corresponding 
to the flexible decision variables (in 2D) using transformed data 
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Figure 3.15. (A) The original deterministic optimal Pareto solutions, (B) the corresponding decision 
variables (with the same color as A), (C) comparison of the original deterministic Pareto 
solutions and the samples corresponding to 2 of the flexible Pareto solutions; each 
ellipse represents the standard deviation of 𝑓1 and 𝑓2 by its radii in horizontal and 
vertical dimension, respectively, (D) samples of the decision variable (outflow) 
realizations for 2 samples showed in C using transformed data 

3.4.3. Flexible Decision Variables Using Dimension Reduction Of 
Transformed Data 

Due to the use of random variables in the representation, the generated realizations 

using KL-expansion may not always be within the feasible boundaries 

(�𝑄𝑚𝑖𝑛,𝑄𝑚𝑎𝑥�,  Figure 3.5 Figure 3.4). Therefore, constraints are imposed to make 

sure each generated turbine flow is in the feasible region (equation  (3.15)). 

Constructing the polynomial surrogates of these constraints can be computationally 

expensive. An alternative is to transform the data with a function designed to restrict 

the generated solutions to stay in the feasible region. The original data is transformed 
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with 𝑄𝑡𝑟(𝑡) = �𝑄𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒
𝑎𝑣𝑔 � + 𝑄𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒𝑏𝑜𝑢𝑛𝑑 tan �𝑄

(𝑡)−𝑄𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒
𝑎𝑣𝑔

𝑄𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒
𝑏𝑜𝑢𝑛𝑑 � and the 

covariance structure of the transformed data is used to generate the KL-expansion 

formulation, instead. Where 𝑄𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒
𝑎𝑣𝑔 = 𝑄𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒

𝑚𝑖𝑛 +𝑄𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒
𝑚𝑎𝑥

2
 

and 𝑄𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒𝑏𝑜𝑢𝑛𝑑 = 𝑄𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒
𝑚𝑖𝑛 −𝑄𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒

𝑚𝑎𝑥

2
. To keep the solutions in the feasible 

region, a conservative boundary is considered (𝑄𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒𝑚𝑎𝑥 = 𝑄𝑚𝑎𝑥 − 𝑄𝑚𝑖𝑛). The 

transformed data is used in the process of dimension reduction thus implicitly 

enforcing bounds, so the boundary constraints for the decision variables 

(equation  (3.15)) can be disregarded. 

       Discussion 

The data Transformation approach reduces the computational time since the 

generated solutions are automatically in the feasible region and there is therefore no 

need to calculate 𝑃𝐹 of the boundary constraints. By using the transformed data 

rather than the original data, some constraint calculations can be avoided and this 

leads to a 7% reduction in CPU time. The reduction in computational time can be 

larger (83% less CPU time) for the problems with no ramping constraints as there is 

no need for constructing the polynomial surrogates of the decision variables and 

calculating the probability of failure of the constraints. 

The convergence rate of the eigenvalues of the transformed data to zero is slower than 

the convergence rate of eigenvalues of the original data ( Figure 3.10). However, the 

generated decision variables using the transformed data are bounded in a desirable 

range ( Figure 3.11). Further, the generated realizations are more diverse ( Figure 3.11 

D) compared to the generated realizations in  Figure 3.4. The objective values 

corresponding to generated decision variables are not always similar to the original 

Pareto solutions ( Figure 3.13). Although the variance of the generated data using the 

transformed data does not match the original variance ( Figure 3.12), the generated 

data can be useful for the purpose of finding flexible decision variables because the 

mean of the original and generated data are very close. Also the comparison of the 
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mean and variance using truncated KL-expansion and the KL-expansion using 14 

random variables, shows that the use of only a few random variables to generate 

realizations is sufficient as the variance and especially the mean value are not very 

different ( Figure 3.12). 

As the Pareto solutions of section ( 3.4.3) are in 3-dimensional objective space, the 2D 

projection of Pareto ( Figure 3.14) is compared to the original deterministic Pareto 

solutions ( 3.4.1). The comparison indicates that the expectation of the objectives 

corresponding to the flexible decision variables are very similar to the original Pareto 

solutions ( Figure 3.14). The samples of the flexible decision variables shows that for 

each Pareto solution there is a cluster of possible decision variables; the 

corresponding objective values shows larger variations can happen for more flexible 

decision variables ( Figure 3.15 D). The variability in objective space is mostly along 

the deterministic Pareto solutions. 

3.5. Conclusion 

The goal of this study is to find flexible decision variables for a reservoir operation 

problem that give decision makers more options in the process of optimization. 

Additionally, the variation of objective space could be minimized by the 

implementation of robust objectives, but this is not within the scope of this paper. The 

proposed methodology finds flexible decision variables using dimension reduction. 

This method is more computationally efficient than other methods that represent each 

decision variable with a random variable and is more practical for problems with 

multiple decision variables (time-steps). While, the results of this study are illustrated 

for probability of failure less than 10%, the problem has also been solved for 20% and 

no probability of failure (𝛼 < 1%). Decreasing the allowable probability of failure 

results in less flexible options. 

The expected values of the objective functions are approximated by the SC method 

using only a few collocation points in each random dimension. The error in the 
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approximation by the SC method is less than 1% in comparison to the calculated 

expectation by the MC method. 

The optimal decision variables from the original data (section 3.4.2) are more flexible 

than the decisions found using the transformed data (section 3.4.3) ( Figure 3.8 

and  (3.14)), however the use of transformation ensures that the constraints are 

satisfied. 

While a Gaussian distribution is assumed for the distribution of random coefficients 

in KL-expansion, this choice can be the decision maker's preference and in this study 

does not have a significant effect on the results. 
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4.  Robust multi-objective optimization of reservoir operation under 

uncertain inflows with flexible decision variables 

4.1. Abstract 

This study presents a robust and flexible optimization framework for the operation of 

a single reservoir. Robust optimization considers the effects of uncertainty in the 

process of finding optimal solutions. The main source of input uncertainty considered 

in this study is due to uncertain inflows. Uncertainties of outflows can be correlated 

to the uncertainties of inflows via the dynamics of the reservoir system. Because other 

sources of uncertainty can also influence the reservoir operation, instead of 

determined decision variables, the reservoir operator may prefer flexible decision 

variables, which ensures that no constraints are violated as long as the reservoir 

operation is within the range of these decision variables. A multi-objective 

evolutionary algorithm is used for maximizing flexibility while also maximizing 

hydropower generation and minimizing variation in forebay elevation of the Grand 

Coulee reservoir, which is located in the Columbia River (U.S. Pacific Northwest). 

The results of this study are compared against a purely robust optimization 

framework and the advantages of this robust and flexible optimization approach are 

discussed. 

4.2. Introduction 

Optimization under uncertainty has been studied in various applications. To have 

reliability and robustness, it is essential to consider uncertainties in water resources 

planning and management problems (Nicklow et al., 2009). Some of the parameters 

of an optimization problem may not be well predicted, however the statistics may be 

known. Therefore the expectation of the problem objective may be calculated with 

respect to the random parameter, and can be used to replace the original objective of 

the problem (Houda, 2006). However, there are scenarios for which considering only 

the expectation of an objective is not an adequate representation of the possible 

realizations of the objective, as large and unacceptable  negative and positive 

deviations can cancel out and inaccurately lead to an expected value that seems 
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acceptable (Jin and Sendhoff, 2003). Different approaches have been studied in 

literature for addressing robustness in the process of optimization, including but not 

limited to the minimization of the expectation of the objective simultaneously with 

the minimization of objective variation due to uncertain parameters (Sahinidis, 2004). 

To find robust and reliable optimal decisions, the variation in the objective space due 

to input and parameter uncertainties should either be confined or at least remain 

within the feasible region (Jung and Lee, 2002). A concise review of utilization of 

robust optimization in water resources management problems has been provided and 

the different definitions of robustness in each problem were described in (Ray et al., 

2010). 

Reservoir operation is one of the important areas in water resources management in 

which the operator needs to determine how to release water from the reservoir in 

desired time-steps (e.g., hourly, daily) to optimize the objectives that the reservoir is 

meant to fulfill (Ahmadi et al., 2014). According to multiple studies, the main source 

of uncertainty associated to a reservoir system is the uncertain inflows (e.g., 

Escudero, 2000; Faber and Stedinger, 2001; Gibson et al., 2014; Karamouz et al., 

2009; Kerachian and Karamouz, 2006; Leon et al., 2012; Rani and Moreira, 2010). 

Considering uncertainties is essential in optimizing the operation of a reservoir 

system, as these variations may lead to inadequate objectives and violation of 

constraints. Optimal scenarios may become less desirable due to uncertainties and 

even become infeasible. Uncertain inflows can be represented by a linear stochastic 

perturbation of the expectation of inflow realizations rather than assuming a 

stochastic behavior, as that may lead to large impractical uncertainties (Gibson et al., 

2014; Leon et al., 2012).  

On the other hand, some situations may occur, for instance, due to an unforeseen 

source of uncertainty, in which the decision maker prefers to alter the expected 

optimal decision variables (e.g., Babbar-Sebens, 2017; Babbar-Sebens et al., 2013; 

Kaini et al., 2012) calculated either deterministically or through a robust optimization 

framework considering input uncertainty. In this case, flexible decision variables that 

will allow deviation from its expected value and ensure feasibility and relative 
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optimality, are desirable (Hosseini et al., 2017b). The concept of finding flexible 

decision variables using a dimension reduction method to find optimal solutions with 

flexible decision variables was proposed in (Hosseini et al., 2017a). A set of feasible 

decision variables was utilized to represent the decision space and a KL expansion 

was used to approximate the decision space with a few number of control variables. 

Then in the optimization process, the parameters of the control variables were found 

in order to optimize the expected value of the objectives and also maximize the 

flexibility in decision space. 

The main contribution of this paper is to develop a framework for finding flexible and 

robust decision variables in a multi-objective reservoir operation problem under 

uncertain inflows. The proposed methodology is able to utilize the historical and/or 

deterministic optimal decision variables to represent and regenerate the decision 

space with a manageable number of control variables (Hosseini et al., 2017a). 

Moreover, forecast inflow hydrographs are considered as the source of input 

uncertainty. Input uncertainty can be represented by a continuous random framework 

and subsequently the dimension can be reduced to a small number of random 

variables (Gibson et al., 2014). 

The expected value of each objective can be approximated with respect to these two 

different sources of uncertainty (flexible decision variables and random inflows). To 

ensure robustness the weighted sum of the expected objective and its variance is 

considered as the robust objective of the optimization problem (Arora, 2004; McIntire 

et al., 2014). The optimal solutions are chosen to be robust with respect to uncertain 

inflows (type I robust design) and also flexible within the decision space (type II 

robust design) (Chen et al., 1996). 

4.3. Methodology And Case Study 

The concept of robust objectives is implemented to minimize the variation in 

objective space from uncertain inputs and flexible outputs. The stochastic behavior of 

the problem is due to the uncertain inflows coming into a reservoir and the 

randomness of the flexible decision variables. Therefore, the proposed methodology 
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is a combination of type I and II robust design problems (Chen et al., 1996). To 

simplify the explanation of the model, the methodology is explained in 3 sections. 

First, the robust optimization under uncertain inputs is explained (section 4.3.1). Then 

the implementation of a dimension reduction method with optimization for finding 

flexible decision variables is described (section 4.3.2). At last, the structure of the 

overall proposed methodology for finding robust and flexible decision variables is 

explained (section 4.3.3). 

Operation of Grand Coulee reservoir in Columbia River (located in Northwestern 

United States) is chosen as the case study to test the efficacy of the proposed method. 

This reservoir problem is a simplified version of the problem studied by (Chen et al., 

2016; Hosseini et al., 2017b). 

4.3.1. Robust Optimization Under Uncertain Inputs 

The uncertain input in this problem can described by an ensemble of forecasted 

inflows to the reservoir. However, in the absence of this data, historical inflow 

hydrographs can be used instead. Historical inflows for Grand Coulee are used in this 

study. It is assumed that the inflows are represented by a Gaussian process1. A 

Karhunen-Loeve (KL) expansion is used to reduce the dimension of random inflows 

and represent inflow uncertainty with a few random variables. The average and the 

covariance structure of the historical inflows are calculated using  

𝑄�𝑖𝑛𝑓𝑙𝑜𝑤(𝑡) =
∑ 𝑄𝑖

𝑖𝑛𝑓𝑙𝑜𝑤(𝑡)𝑀𝑙
𝑖=1

𝑀𝑙
, (4.1)  

𝐶𝑖𝑛𝑓𝑙𝑜𝑤(𝑡𝑗 , 𝑡𝑘) =
∑ �𝑄𝑖

𝑖𝑛𝑓𝑙𝑜𝑤�𝑡𝑗�−𝑄�𝑗
𝑖𝑛𝑓𝑙𝑜𝑤��𝑄𝑖

𝑖𝑛𝑓𝑙𝑜𝑤(𝑡𝑘)−𝑄�𝑘
𝑖𝑛𝑓𝑙𝑜𝑤�𝑀𝑙

𝑖=1

𝑀𝑙−1
, 

(4.2)  

 

where 𝑄�𝑖𝑛𝑓𝑙𝑜𝑤inflow and 𝐶𝑖𝑛𝑓𝑙𝑜𝑤are the average and covariance of the inflow 

realizations, respectively and 𝑀𝑙 is the number of the historical inflow realizations. 

Then the KL expansion is as follows 

1 A distributional sensitivity test has shown that there is not significant sensitivity to different types of 
distributions of inflow (Gibson et al., 2014). 
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𝐼𝑔�𝑡, 𝜉� = 𝑄�𝑖𝑛𝑓𝑙𝑜𝑤(𝑡) + ∑ �𝜆𝑘
𝑖𝑛𝑓𝑙𝑜𝑤𝜓𝑘

𝑖𝑛𝑓𝑙𝑜𝑤(𝑡)𝜉𝑘𝐼∞
𝑘=1 , (4.3)  

𝜆𝑖𝑛𝑓𝑙𝑜𝑤𝜓𝑖𝑛𝑓𝑙𝑜𝑤(𝑡) = ∫ 𝐶𝑖𝑛𝑓𝑙𝑜𝑤(𝑥, 𝑡)𝜓𝑖𝑛𝑓𝑙𝑜𝑤(𝑥)𝑑𝑥𝑛
𝑡0

, (4.4)  

where  �𝜆𝑘
𝑖𝑛𝑓𝑙𝑜𝑤�

𝑘=1

∞
 are the eigenvalues and �𝜓𝑘

𝑖𝑛𝑓𝑙𝑜𝑤�
𝑘=1

∞
are the eigen-functions of 

the integral equation  (4.4), and 𝜉𝐼 = [𝜉𝑘𝐼 ]𝑘=1∞  are uncorrelated random variables with 

mean 0 and standard deviation 1. The eigenvalues converge rapidly to zero when 

sorted in decreasing order ( Figure 4.1,  Figure 4.2 A). Therefore only a few 

eigenvalues and eigen-functions are sufficient to regenerate inflow realizations using 

the KL expansion (equation  (4.5)). The eigenvalues are negligible after the fourth 

eigenvalue ( Figure 4.1), however, even 2 random variables can suffice ( Figure 4.2). 

The reduced order model is given by the truncated KL expansion 

 

Figure 4.1. Eigenvalues and eigen-functions of the historical inflow ensembles in semi-logarithmic 
scale 
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Figure 4.2. Eigenvalues and eigen-functions of the historical in flow ensembles 

𝐼𝑔�𝑡, 𝜉� ≅ 𝑄�𝑖𝑛𝑓𝑙𝑜𝑤(𝑡) + ∑ �𝜆𝑘
𝑖𝑛𝑓𝑙𝑜𝑤𝜓𝑘

𝑖𝑛𝑓𝑙𝑜𝑤(𝑡)𝜉𝑘𝐼
𝑁𝑟𝑣𝐼
𝑘=1 , (4.5)  

where 𝑁𝑟𝑣𝐼  is the number of random variables needed to approximate the uncertain 

inflows.  For a realization of the random vector 𝜉𝐼, the quantity 𝐼𝑔 is the generated 

inflow realization. Using the generated inflow realizations, the objective functions 

can be evaluated non-intrusively for each sample and the expectation and standard 

deviation of the objective function (with respect to random inflows) can be used to 

formulate the robust objective of the optimization problem. 

To decrease the number of function evaluations while calculating the expected value 

of the objectives, the Stochastic Collocation (SC) method is used. In SC method, the 

system is calculated at strategically chosen samples of the random variables called 

collocation points. These collocation points and their corresponding weights are used 

to approximate the expected value of a function 

𝐸[𝑓(𝑡, 𝜉)] ≅ ∑ 𝑓(𝑡, 𝜉𝑐𝑛𝑐)𝜔𝑛𝑐
𝑁𝑐
𝑛𝑐=1 , (4.6)  
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The number of function evaluations required for a given error tolerance is 

significantly less compared to other sampling techniques such as Monte Carlo 

Method. 

Robust optimal solutions to the reservoir operation problem are found using the 

robust objectives concept (Arora, 2004). A robust objective is implemented to 

simultaneously optimize the expected value of the objective (weighted summation) 

and minimize the variation (standard deviation) of the objective due to input 

uncertainty. A robust objective ensures that the robust optimal solutions are relatively 

less sensitive to the input uncertainty and are more reliable in their constraints 

considering a pre-specified probability of failure (McIntire et al., 2014). A robust 

objective for a minimization problem can be defined by 

Minimize 𝐹 = �1 − 𝜔𝑓�
𝐸[𝑓]
𝜇𝑓𝑚𝑎𝑥

+ 𝜔𝑓
𝜎𝑓

𝜎𝑓𝑚𝑎𝑥
, (4.7)  

where 𝐸[𝑓] and 𝜎𝑓 are the expected value and standard deviation of function f due to 

uncertain input uncertainties, respectively. The expectation and the standard deviation 

are normalized by their maximum values (𝜇𝑓𝑚𝑎𝑥 and 𝜎𝑓𝑚𝑎𝑥), 𝜔𝑓is the weight of robust 

objective and indicates the decision maker's preference of robustness versus 

performance. This weight helps in choosing solutions in the trade-off between 

robustness and optimal objective values. 

       Problem Description 

The decision variables of the optimization problem are the daily turbine outflows that 

are released from the reservoir. To ensure the achievement of the reservoir's future 

requirements, the water surface elevation of the reservoir is expected to remain within 

an elevation range by the end of optimization period. Therefore, the first objective of 

the optimization problem is the minimization of forebay elevation (reservoir's water 

surface elevation) deviation. 
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The second objective is the maximization of revenue due to hydropower production1. 

The power demand (load) is extracted from the generated hydropower and the 

difference is called the net electricity. The revenue is calculated from multiplication 

of price by the net electricity. The price of hydropower is assumed to be known and 

pre-determined by an economic model (Chen et al., 2016). Grand Coulee reservoir 

does not have the fish flow requirements, and other objectives are neglected in this 

study. 

The decision variables are the daily turbine outflows for a period of 14 days starting 

from August 25th. This period is chosen due the importance of these14 days for BPA. 

For some of the operated reservoirs by BPA, the objectives of reservoir operation 

shifts in this period. 

The statement of the robust optimization framework is as follows: 

Find 𝑄�⃗ = [𝑄𝑛]𝑛=1
𝑁𝑡 , in order to 

Minimize 𝐹1 = �1 − 𝜔𝑓1�
𝐸�𝑓1�𝑄�⃗ ,𝐼𝑔(𝜉�⃗ 𝐼)��

𝜇𝑓1𝑚𝑎𝑥
+ 𝜔𝑓1

𝜎𝑓1
𝜎𝑓1𝑚𝑎𝑥

, 
(4.8)  

where 𝐸[𝑓1�𝑄�⃗ , 𝐼𝑔(𝜉𝐼)�] =
��𝐹𝐵𝑒𝑛𝑑�𝑄�⃗ ,𝐼𝑔(𝜉�⃗ 𝐼)�−𝐹𝐵𝑡𝑎𝑟𝑔𝑒𝑡��

𝑈𝑟−𝐿𝑟
, 

(4.9)  

Minimize 𝐹2 = �1 − 𝜔𝑓2�
𝐸�𝑓2�𝑄�⃗ ,𝐼𝑔(𝜉�⃗ 𝐼)��

𝜇𝑓2𝑚𝑎𝑥
+ 𝜔𝑓2

𝜎𝑓2
𝜎𝑓2𝑚𝑎𝑥

, 
(4.10)  

where 𝐸[𝑓2�𝑄�⃗ , 𝐼𝑔(𝜉𝐼)�] = −�
∑ �𝑃𝐺𝑛�𝑄�⃗ ,𝐼𝑔�𝜉�⃗ 𝐼��−𝑃𝐿𝑛�×𝑃𝑟𝑛
𝑁𝑡
𝑛=1

∑ (𝑃𝑟𝑛×𝑃𝐿𝑛)𝑁𝑡
𝑛=1

�, 
(4.11)  

Subject to 𝐶1, 𝐶2, 𝑃𝐹(𝐶3) ≤ 𝛼 , (4.12)  

𝐶1:𝑄𝑚𝑖𝑛 ≤ 𝑄𝑛 ≤ 𝑄𝑚𝑎𝑥 for all 𝑛, (4.13)  

𝐶2: |𝑄𝑛 − 𝑄𝑛+1| ≤ 𝑄𝑟𝑎𝑚𝑝 for all 𝑛, (4.14)  

𝐶3: 𝑓2 �𝑄�⃗ , 𝐼𝑔�𝜉𝐼�� ≤ 𝛿𝐹𝐵. (4.15)  

where 𝑄�⃗  is the set of turbine outflows from the reservoir, 𝐼𝑔is the generated inflow 

hydrograph with 𝑁𝑡 time-steps using a set of random variables (𝜉𝐼 = [𝜉𝑘𝐼 ]𝑘=1
𝑁𝑟𝑣𝐼 ), 𝐸[𝑓1] 

1 the framework is designed for minimization problems, therefore this objective is converted to 
minimization of revenue loss 
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represents the expectation of forebay elevation variation, 𝐹𝐵𝑒𝑛𝑑is the forebay 

elevation at the last time-step, 𝐹𝐵𝑡𝑎𝑟𝑔𝑒𝑡 is the desired forebay elevation at the last 

time-step (which is a known value in the reservoir operation problem). 𝑈𝑟 is the 

maximum water level of the reservoir and 𝐿𝑟 is the minimum water level and are used 

to normalize the forebay elevation values. 𝑃𝐺𝑛 is the hydropower produced at time-

step 𝑛, 𝑃𝐿𝑛 is the load and 𝑃𝑟𝑛 is the price for the hydropower. Constraints of this 

problem consists of box constraints for the allowable turbine flows in each time-step 

(equation  (4.13)), the ramp constraint for the outflow in two consecutive time-steps 

(equation  (4.14)) and the maximum forebay elevation (equation  (4.15)). The forebay 

elevation constraint should be satisfied for the most likely uncertain inflows. To 

enforce this, a polynomial surrogate of the constraint is approximated and the 

solutions with Probability of Failure (𝑃𝐹) less than a pre-specified threshold (𝛿𝐹𝐵), 

are considered to be feasible. 

       Discussion 

The inflow realizations can be generated using 2 random coefficients in KL 

expansion and in comparison to the original historical inflows ( Figure 4.3), the mean 

and the variance are almost the same. The difference of original inflow realizations' 

average and the expectation of generated samples is less than 2%. The difference of 

the original and generated inflows' variances is more than the difference of the mean 

values (approximately 10%), because the KL expansion generally predicts the mean 

value more precisely than the other modes. 
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Figure 4.3. Comparison of the historical inflow ensembles (A) and the generated inflows using 2 
random coefficients of KL-expansion (B) 

 

Figure 4.4. Comparison of the mean (A) and variance (B) of the historical inflow ensembles and the 
generated inflows using 2 random coefficients of KL-expansion 

The performance of a multi-objective problem can be evaluated by Hypervolume 

Index. This index measures the volume of objective space dominated by the Pareto 

solutions. Since the hypervolume index combines the convergence and diversity 
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metrics in one index, is found to be a good index for comparison purpose (Chen et al., 

2016; Zitzler et al., 2003). The comparison of the Pareto solutions in different 

generations shows that the optimization is converged after 45000 generations as the 

variation in the hypervolume index is less than 15% ( Figure 4.5). 

 

Figure 4.5. The comparison of robust Pareto solutions in different generations 
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Figure 4.6. (A) Comparison of the objective expectations and (B) comparison of decision variables 
for different weights 𝜔𝑓 = [0,0.2,0.4,0.6,0.8] (𝜔𝑓 was assumed equal for both 
objectives, 𝛼=20%, 𝑁𝑟𝑣𝐼 = 2) 

The comparison of the results using different weights in the robust objective 

(equation  (4.7)) shows that by increasing the weight, the objective values deteriorates 

( Figure 4.6 A) while the variation of the objectives improves ( Figure 4.7). The 

influence of objective value is less than the standard deviation only for very high 

weight values (i.e. ω=0.8). Therefore, all the Pareto solutions are relatively close in 

the objective and decision space ( Figure 4.6 A and B). 
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Figure 4.7. Comparison of the results for different weights 𝜔𝑓 = [0,0.2,0.4,0.6,0.8] (A) total 
variability of objectives versus expectation of first objective, (B) total variability of 
objectives versus expectation of second objective, (C) standard deviation of first 
objective versus expectation of first objective, (D) standard deviation of second 
objective versus expectation of second objective due to inflow uncertainty (𝜔𝑓 was 
assumed equal for both objectives, 𝛼=20%, 𝑁𝑟𝑣𝐼 = 2) 
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4.3.2. Flexible Decision Variables Using Dimension Reduction Method 

In this section the goal is to describe a method to find flexible decision variables as 

proposed in (Hosseini et al., 2017a). Representing each decision variable by a random 

variable leads to a multi-dimensional random space. Sampling the random space can 

become impractical when the number of decision variables increases. Therefore, a 

dimension reduction method is applied to a set of deterministic decision variables to 

represent the decision space by a few random variables. Then the optimization 

problem is designed to find the control variables which are the means and the 

standard deviations of the aforementioned random variables. The desired optimization 

solutions should be feasible and have optimal expected objectives and maximum 

flexibility in decision variables. A brief explanation follows. 

A set of decision variables corresponding to deterministic Pareto solutions are used as 

the original representation of decision space. KL expansion is the method used to 

reduce the dimension of decision space. The mean (equation  (4.16)) and the 

covariance structure (equation  (4.17)) of the deterministic decision variables is 

extracted and used for generating decision variable realizations (equation  (4.18)) 

𝑄�𝑜𝑢𝑡𝑓𝑙𝑜𝑤(𝑡) =
∑ 𝑄𝑖

𝑜𝑢𝑡𝑓𝑙𝑜𝑤(𝑡)𝑀
𝑖=1

𝑀
, (4.16)  

𝐶𝑜𝑢𝑡𝑓𝑙𝑜𝑤(𝑡𝑗 , 𝑡𝑘) =
∑ �𝑄𝑖

𝑜𝑢𝑡𝑓𝑙𝑜𝑤�𝑡𝑗�−𝑄�𝑗
𝑜𝑢𝑡𝑓𝑙𝑜𝑤��𝑄𝑖

𝑜𝑢𝑡𝑓𝑙𝑜𝑤(𝑡𝑘)−𝑄�𝑘
𝑜𝑢𝑡𝑓𝑙𝑜𝑤�𝑀𝑙

𝑖=1

𝑀−1
, 

(4.17)  

𝑄𝑔�𝑡, 𝜉𝑂� ≅ 𝑄�𝑜𝑢𝑡𝑓𝑙𝑜𝑤(𝑡) + ∑ �𝜆𝑘
𝑜𝑢𝑡𝑓𝑙𝑜𝑤𝜓𝑘

𝑜𝑢𝑡𝑓𝑙𝑜𝑤(𝑡)𝜉𝑘𝑂∞
𝑘=1 , (4.18)  

where �𝜆𝑘
𝑜𝑢𝑡𝑓𝑜𝑤,𝜓𝑘

𝑜𝑢𝑡𝑓𝑜𝑤�
𝑘=1

∞
are the eigenvalues and eigen-functions (eigen-pairs) of 

the integral equation  (4.19), respectively. 𝜉𝑂 = [𝜉𝑘𝑂]𝑘=1∞  are the uncorrelated Gaussian 

random variables. 

𝜆𝑜𝑢𝑡𝑓𝑙𝑜𝑤𝜓𝑜𝑢𝑡𝑓𝑙𝑜𝑤(𝑡) = ∫ 𝐶𝑜𝑢𝑡𝑓𝑙𝑜𝑤(𝑥, 𝑡)𝜓𝑜𝑢𝑡𝑓𝑙𝑜𝑤(𝑥)𝑑𝑥𝑛
𝑡0

, (4.19)  

By using finite number of random coefficients (𝑁𝑟𝑣𝑂 ), samples of decision variables 

realizations could be approximated (equation  (4.20)). 
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𝑄𝑔�𝑡, 𝜉𝑂� ≅ 𝑄�(𝑡) + ∑ �𝜆𝑘
𝑜𝑢𝑡𝑓𝑙𝑜𝑤𝜓𝑘

𝑜𝑢𝑡𝑓𝑙𝑜𝑤(𝑡)𝜉𝑘𝑂
𝑁𝑟𝑣𝑂
𝑘=1 , (4.20)  

The SC method is used to calculate the expected value of the objective functions. 

       Problem Description 

The control variables1 of this optimization problem are the mean and standard 

deviation of each KL-expansion's random coefficient. The number of daily-time steps 

are 14 days and the number of optimization control variables are assumed (Hosseini 

et al., 2017b). However, a third objective is considered to maximize the flexibility of 

the decision variables. Due to randomness of the turbine outflows, polynomial 

surrogate of each constraint is created. The feasible solutions have less than   

probability of failure. 𝛼 reflects the risk attitude of the decision maker. 

 

Figure 4.8. Eigenvalues and eigen-functions of the optimal deterministic decision variables in semi-
logarithmic scale 

1Control variables are the same as the decision variables that the optimization is supposed to find in 
order to optimize the problem's objectives. However, in this section these variables are referred to 
control variables not to be mistaken as deterministic decision variables (turbine outflows) 
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Figure 4.9. Eigenvalues and eigen-functions of the optimal deterministic decision variables 

Find �𝜇𝜉𝑘�𝑘=1
𝑁𝑟𝑣𝑂  and �𝜎𝜉𝑘�𝑘=1

𝑁𝑟𝑣𝑂 , in order to 

Minimize 𝐸[𝑓1�𝑄𝑔(𝑡, 𝜉𝑂)�] =
��𝐹𝐵𝑒𝑛𝑑�𝑄𝑔(𝑡,𝜉�⃗ 𝑂)�−𝐹𝐵𝑡𝑎𝑟𝑔𝑒𝑡��

𝑈𝑟−𝐿𝑟
 

(4.21)  

Minimize 𝐸[𝑓2�𝑄𝑔(𝑡, 𝜉𝑂)�] = −�
∑ �𝑃𝐺𝑛�𝑄𝑔(𝑡,𝜉�⃗ 𝑂)�−𝑃𝐿𝑛�×𝑃𝑟𝑛
𝑁𝑡
𝑛=1

∑ (𝑃𝑟𝑛×𝑃𝐿𝑛)𝑁𝑡
𝑛=1

� 
(4.22)  

Maximize 𝑓3(𝜉) = �𝜆𝜎𝜉� (4.23)  

Subject to 𝑃𝐹(𝐶1,𝐶2,𝐶3) ≤ 𝛼  (4.24)  

𝐶1:𝑄𝑚𝑖𝑛 ≤ 𝑄𝑛
𝑔 ≤ 𝑄𝑚𝑎𝑥 for all 𝑛 (4.25)  

𝐶2: 𝑓1(𝑄𝑔) ≤ 𝛿𝐹𝐵  (4.26)  

𝐶3: �𝑄𝑛
𝑔 − 𝑄𝑛+1

𝑔 � ≤ 𝑄𝑟𝑎𝑚𝑝 for all 𝑛 (4.27)  

       Discussion 

The decrease of eigenvalues while sorted in a descending order, shows that a finite 

number of random coefficients can be enough for representing the decision space 

( Figure 4.8). The number of random coefficients (𝑁𝑟𝑣𝑂 ) in the KL-expansion is 

assumed 3 as the eigenvalues converged to zero after the third eigenvalue ( Figure 

4.9). The randomness of the KL-expansion may cause the generated decision 
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variables to be outside of the feasible region. However, by using only 3 random 

coefficients infinite samples of the decision space can be generated ( Figure 4.10). The 

mean and the variance of the generated decision variables are close to the mean and 

the variance of the original data (mean less than 1 and variance less than 5 percent 

difference ( Figure 4.11)). 

 

Figure 4.10. (A) Comparison of the original deterministic decision variables and (B) generated 
outflow realizations using 3 random coefficients of the KL-expansion 

The flexible decision variables are found by the proposed methodology have the same 

expected Pareto solutions. However, the randomness of the flexible decision variables 

leads to variation in objective space (ellipses in  Figure 4.12). To simultaneously 

observe the variability in the objective space ( Figure 4.13 A) and the decision space 

( Figure 4.13 B), two solutions from the flexible Pareto are selected. There are two 

clusters of decision variable samples for each of the solutions and the variability of 

corresponding objectives are mostly along the deterministic Pareto. The decision 

maker has multiple decision variable realization options, for two given expected 

objective values. 
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Figure 4.11. (A) Comparison of the mean and (B) variance of the original deterministic decision 
variables and the generated outflow realizations using 3 random coefficients of the KL-
expansion 
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Figure 4.12. Comparison of the original Pareto solutions (deterministic) and the Pareto for flexible 
decision variables with 20% probability of failure, each ellipse represents the standard 
deviation of 𝑓1 and 𝑓2 by its radii in horizontal and vertical dimension, respectively 
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Figure 4.13. (A) Comparison of the original Pareto solutions (deterministic) and the samples 
corresponding to 2 of the flexible Pareto solutions; each ellipse represents the standard 
deviation of 𝑓1 and 𝑓2 by its radii in horizontal and vertical dimension, respectively, (B) 
samples of the decision variable (outflow) realizations for 2 samples (𝛼 = 20%) 
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Figure 4.14. Comparison of the original Pareto solutions (deterministic) and the Pareto for flexible 
decision variables with less than 1% probability of failure, each ellipse represents the 
standard deviation of 𝑓1 and 𝑓2 by its radii in horizontal and vertical dimension, 
respectively 
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For the decision maker with risk averse attitude, the probability of failure can be 

decreased. The results of probability of failure less than 1% (𝛼 < 1) shows less 

variability in objective space as it is expected that no random samples would violate 

any constraints ( Figure 4.14). Therefore, consequently the flexibility in decision 

space will be also less. 

4.3.3.Robust And Flexible Decision Variables 

To find robust and optimal solutions with flexible decision variables, the two 

concepts of robust optimization (section 4.3.1) and flexible decision variables (section 

4.3.2) are implemented in the proposed framework. The steps of the proposed method 

are as follows: 

1. Perform the dimension reduction of inflow ensembles to determine the 

number of necessary KL expansion coefficients ( 𝑁𝑟𝑣𝐼 ) to represent the input 

uncertainty. 

2. Perform the dimension reduction of the deterministic decision variables to 

determine the number of necessary KL expansion coefficients ( 𝑁𝑟𝑣𝑂 ) to 

represent the decision space (outflow realizations) and determine the flexible 

decision variables. 

3. Perform the multi-objective optimization method to find control variables in 

order to optimize the robust objectives and maximize flexibility. 

       Problem Description 

The control variables of this optimization problem are the parameters of KL-

expansion's random coefficients (�𝜇𝜉𝑘�𝑘=1
𝑁𝑟𝑣𝑂 , �𝜎𝜉𝑘�𝑘=1

𝑁𝑟𝑣𝑂 ). These control variables are 

used to generate samples of turbine outflow realizations in daily time-steps (two 

weeks). The decision variables corresponding to the deterministic Pareto are used to 

construct the KL-expansion. To generate outflow realizations using the truncated KL-

expansion (equation  (4.20)), 3 random coefficients (𝑁𝑟𝑣𝑂 = 3) are used (section 4.3.2). 

The inflow uncertainty is introduced to the optimization problem using a finite series 

representation of historical inflows (equation  (4.5)). 2 random coefficients (𝑁𝑟𝑣𝑂 = 2) 
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are used in the truncated KL expansion (section 4.3.1). Therefore the problem 

objectives are dependent on two different sets of random variables. The SC method is 

used to strategically sample the random variables in few points. Using the evaluated 

function values for the collocation nodes and their corresponding weights, the 

expected values of the objective functions are approximated. 

The randomness of the problem variables leads to variability of objective values. To 

ensure the reliability of the optimal solutions, robust objectives are calculated. The 

variability of each objective due to input uncertainty (type I robust design) and 

control variable uncertainty (type II robust design) is implemented in the objective 

calculation. The weighted sum in robust objective equation  (4.7) lets the optimization 

minimize both the objective and its variability due to dependent random variables, 

simultaneously. 

Minimize 𝐹1 = �1 − 𝜔𝑓1�
𝐸�𝑓1�𝑄�⃗ 𝑔(𝜉�⃗ 𝑂),𝐼𝑔(𝜉�⃗ 𝐼)��

𝜇𝑓1𝑚𝑎𝑥
+ 𝜔𝑓1

𝜎𝑓1
𝜎𝑓1𝑚𝑎𝑥

, 
(4.28)  

where 𝐸[𝑓1�𝑄�⃗ 𝑔(𝜉𝑂), 𝐼𝑔(𝜉𝐼)�] =
��𝐹𝐵𝑒𝑛𝑑�𝑄�⃗ 𝑔(𝜉�⃗ 𝑂),𝐼𝑔(𝜉�⃗ 𝐼)�−𝐹𝐵𝑡𝑎𝑟𝑔𝑒𝑡��

𝑈𝑟−𝐿𝑟
, 

(4.29)  

Minimize 𝐹2 = �1 − 𝜔𝑓2�
𝐸�𝑓2�𝑄�⃗ 𝑔(𝜉�⃗ 𝑂),𝐼𝑔(𝜉�⃗ 𝐼)��

𝜇𝑓2𝑚𝑎𝑥
+ 𝜔𝑓2

𝜎𝑓2
𝜎𝑓2𝑚𝑎𝑥

, 
(4.30)  

where 𝐸[𝑓2�𝑄�⃗ 𝑔(𝜉𝑂), 𝐼𝑔(𝜉𝐼)�] = −�
∑ �𝑃𝐺𝑛�𝑄�⃗ 𝑔(𝜉�⃗ 𝑂),𝐼𝑔(𝜉�⃗ 𝐼)�−𝑃𝐿𝑛�×𝑃𝑟𝑛
𝑁𝑡
𝑛=1

∑ (𝑃𝑟𝑛×𝑃𝐿𝑛)𝑁𝑡
𝑛=1

�, 
(4.31)  

Maximize 𝑓3(𝜉) = �𝜆𝑜𝑢𝑡𝑓𝑙𝑜𝑤𝜎𝜉�, (4.32)  

Subject to 𝑃𝐹(𝐶1,𝐶2,𝐶3) ≤ 𝛼, (4.33)  

𝐶1:𝑄𝑚𝑖𝑛 ≤ 𝑄𝑛
𝑔 ≤ 𝑄𝑚𝑎𝑥 for all 𝑛, (4.34)  

𝐶2: 𝑓1(𝑄𝑔) ≤ 𝛿𝐹𝐵, (4.35)  

𝐶3: �𝑄𝑛
𝑔 − 𝑄𝑛+1

𝑔 � ≤ 𝑄𝑟𝑎𝑚𝑝 for all 𝑛, (4.36)  

To ensure the feasibility of solutions, the probability of failure of constraints is 

calculated by creating and sampling a polynomial surrogate of each constraint. Some 

of the constraints only depend on the variability of control variables (such as 𝐶1 

and 𝐶2) while the others depend also on the input uncertainty (𝐶3). 
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       Discussion 

The results show that the framework can find some optimal and feasible solutions. 

However the difference of Pareto solutions are not as notable as the robust case with 

no flexible decision variables. The diversity of the solutions in both objective space 

and decision space is less than the case with no flexibility ( Figure 4.15). By changing 

the weight in the robust optimization formulation (equations  (4.28)) and  (4.30)) it is 

expected to have more robust solutions. The comparison of the Pareto solutions in 3D 

( Figure 4.16) shows that the Pareto surface when 𝜔𝑓 = 0.4 is below the Pareto 

surface when 𝜔𝑓 = 0. However this is not true for all the Pareto solutions as this 

problem is actually a 5-dimensional optimization problem. 

 

Figure 4.15. Results with flexible and robust decision variables: A) Pareto solutions projected in 2D 
for different weights; B) the expected decision variables corresponding to each Pareto 
solution 
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Figure 4.16. The Pareto solution in 3D for different weights indicating the robustness in objective 
space 
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Figure 4.17. The spider plot showing two samples from the two Pareto solutions with 𝜔𝑓 = 0 and 
𝜔𝑓 = 0.4 in 5D 

To better compare the results, an example of both Pareto solutions (which have the 

closest value of expected 𝑓1 and 𝑓2) are demonstrated in a 5-D plot ( Figure 4.17). The 

results shows that by increasing the weight more robust solutions can be achieved as 

the standard deviation of the objectives are decreased. However the flexibility is also 

decreased for this solution. The comparison of the flexibility and robustness of all the 

Pareto solutions for these two scenarios shows the trade-off between these two 

objectives which are not competing objectives ( Figure 4.18). 
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Figure 4.18. The flexibility of decision variables versus robustness for two different weights in robust 
optimization 

4.4. Conclusion 

The robust objective concept is used to ensure that the optimal decision variables are 

not sensitive to the uncertain inflows. Using a KL-expansion, some realizations of 

inflow hydrographs are generated. The results shows that by using 2 random 

variables, the inflow realizations have the same mean (less than 2% relative error) and 

variance (less than 10%) as the original data. 

The robust objective concept is used to simultaneously minimize the expectation as 

well as the variation of the objectives due to random inflows by using a weighted 

average. Comparison of the results for various weights shows that the performance of 

the objective functions is sacrificed by decreasing the standard deviation of the 

objectives. The weights are the decision maker's preference of robustness versus 

performance. 
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Next the optimal robust and flexible decision variables of the reservoir problems are 

found. The variation of the objective functions stem from both uncertain inflows and 

the randomness of the flexible decision variables. The optimization problem here also 

has an additional objective to maximize the flexibility. The solutions show that 

robustness and flexibility are not exclusively competing in this example which can be 

the reason for the less diverse Pareto solutions in comparison to the case with only 

robust solutions. 
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5.  Final Discussion 

5.1. Summary 

Study of uncertainties in water resources management problems and considering the 

effects of these variabilities on the system has never been more critical. Optimization 

of reservoir operation under uncertainty for competing objectives was the main focus 

of this study. Two types of uncertainties were addressed in this research: Flexibility in 

decision variables and Input uncertainties (i.e. inflow). 

The concept of flexibility in decision making is a fairly recent approach especially in 

optimization of reservoir operation. In this research, flexibility refers to a range of 

options that could be chosen by the decision maker and the feasibility of choosing any 

of those options randomly, in that it has been determined that feasible optimal 

solutions satisfy a certain probability of failure tolerance. Therefore, the decision 

maker could have more than one optimal solution and could act according to real-

time circumstances. 

The first approach for finding flexible decision variables was to represent each 

decision variable (time step) by a random variable. The methodology was tested in 

two mathematical test problems and then was extended to a simple multi-objective 

reservoir problem. The results indicated the capability of the proposed methodology 

for finding Pareto optimal solutions while maximizing the flexibility in decision 

space. 

The results of the reservoir problem showed that by flexibility in decision space, the 

objectives' expectations were close to the deterministic Pareto solutions. Therefore, 

for a certain probability of failure, the decision maker could be confident that the any 

choice of the flexible decision variables were feasible and the expectation of these 

options would not be very different from the deterministic Pareto solutions. In other 

words, although the objectives might be sacrificed from their deterministic values, the 

decision maker would have a range of feasible options. For example in a specific 

case, the method would allow almost 45% flexibility (Coefficient of Variation) in the 
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reservoir turbine flow in both time-steps and had less than 20% deterioration of the 

objectives. 

The Stochastic Collocation (SC) method was used for sampling the random variables. 

This method was much faster than Monte Carlo method as the system was only 

evaluated on a few strategically chosen points called collocation points. To ensure the 

feasibility of each flexible decision variable, the evaluated constraint values for each 

collocation point were used for constructing a Polynomial Surrogate representing that 

constraint. This method was computationally efficient since rather than evaluating the 

whole system for many samples of the random variables, only the Polynomial 

Surrogate would be sampled to approximate the Probability of Failure. Although 

using the SC method made this approach much faster, the function evaluations would 

increase exponentially by adding to the number of decision variables (〖NC〗^(N_rv 

)). This approach would only work well for problems with few decision variables. For 

example, for short-time optimization reservoir operation this methodology could be 

useful. 

To develop a framework that could be extended to problems with many decision 

variables, a dimension reduction method was used to represent the decision space by 

a manageable number of random variables. The decision variables corresponding to 

the deterministic Pareto solutions were used as the representation of the decision 

space. The Karhunen-Loeve (KL) expansion was used to extract the mean and 

covariance structure of the deterministic decision variables and regenerate decision 

variable realizations using a few random coefficients. For example, in the specific 

problem discussed in section 3.4.2, by using only three random coefficients, the mean 

and variance of the deterministic and generated realization were almost the same (less 

than 10% relative error). The results showed the capability of the proposed approach 

for finding flexible decision variable solutions for systems with many decision 

variables. Some of the flexible solutions might lead to a wide range of objective 

values. Although the expected objective values were in the same range of the 

deterministic Pareto solutions, the variability in objective space might not be 

desirable. 
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The Robust optimization concept was used to confine the variation of objectives due 

to randomness of dependent variables by implementing the robust objectives 

approach. The weighted sum of objective expectation and standard deviation of 

objective due to random variables were used as the robust objectives. The comparison 

of the robust optimization results using different weight showed that the standard 

deviation of the objectives were decreased by increasing the weight in the robust 

objective. The Pareto solution consisted of the objective expectations. The decision 

maker could specify the weight based on their preference on robustness and objective 

performance. 

Finally a framework was developed to find robust solutions with flexible decision 

variables. The variation of the objectives due to random inflows and also randomness 

of flexible decision variables were minimized in the robust objectives. The results 

showed the efficacy of the framework to find ranges of flexible decision variables 

with optimal expected objectives. 

5.2. Future Research 

Implementing the SC method for approximating the expected value of the objectives 

decreased the computational time. For multi-dimensional random space, the full-

tensor grid was used in this research and it is recommended to use the sparse-grid and 

investigate if for a given accuracy the computational time can be decreased. 

The deterministic decision variables were used as the representation of the decision 

space and it is suggested to use a combination of deterministic and the historical 

decision variables to have a more diverse decision space to study and compare the 

results to the results of the current research. 

Inflow uncertainty was considered as the sole source of input uncertainty and other 

sources such as price uncertainty can be considered in the proposed framework. 

Implementation of the KL-expansion method to decrease the decision space helped to 

decrease the computational efforts of the optimization problem with a single reservoir 

and can be used for a multi-reservoir system. 
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Although the Pareto optimal concept was considered in the multi-objective 

optimization problem, to decrease the number of objectives, the weighted sum 

concept was used to define robust objectives. In the robust objective calculation, the 

weights of all objectives were assumed equal. However it is recommended to find the 

solutions for various weights of interest or Pareto optimal solutions without weights. 

5.3. Conclusions 

The proposed framework is capable of finding flexible decision variables considering 

an allowable probability of failure of constraints. Two types of robust optimization 

(uncertain inflow and flexible outflow) are considered. These solutions may help the 

decision maker have more information and options in their decision making process. 

This framework can be useful in other decision support tools. 
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Appendices 

Exact Solution to Test Problem (1B) 

Note: 𝐸[∑ 𝜉𝑖2𝑚
𝑖=1 ] = ∑ 𝐸[𝜉𝑖2]𝑚

𝑖=1  by independence and 𝐸[𝜉𝑖2] = 𝜇𝑖2 + 𝜎𝑖2, thus min 

𝐸[𝑓1] =min ∑ 𝜇𝑖2 + 𝜎𝑖2𝑚
𝑖=1 .  

Also, max 𝑓2 is equivalent to max ‖𝜎⃗‖2 = ∑ 𝜎𝑖2𝑚
𝑖=1 , which are clearly contradictory 

objectives. 

Consider 𝑚 = 2, to find the Pareto curve, assume [𝜎𝑖]𝑖=12 is known; Thus 𝑓2 is 

determined. 

For a given optimal solution with a known 𝜎1 + 𝜎2, the corresponding optimal 

𝜇1 + 𝜇2 must merely be min 𝜇12 + 𝜇22 while satisfying constraints: 

𝜇𝑖 = 𝑢𝑖+𝑙𝑖
2

 and 𝜎𝑖 = 𝑢𝑖−𝑙𝑖
√12

 becomes: 

  I: 2𝜇𝑖=𝑢𝑖 + 𝑙𝑖  

II: √12𝜎𝑖 = 𝑢𝑖 − 𝑙𝑖 

By adding and subtracting (I) and (II) and considering constraint: 

 2𝜇𝑖 + √12𝜎𝑖 = 2𝑢𝑖 ≤ 2, then 𝜇𝑖 ≤ 1 − √12
2
𝜎𝑖 

2𝜇𝑖 − √12𝜎𝑖 = 2𝑙𝑖 ≥ 0, then √12
2
𝜎𝑖 ≤ 𝜇𝑖 

i.e. min 𝜇𝑖2 subject to √12
2
𝜎𝑖 ≤ 𝜇𝑖 ≤ 1 − √12

2
𝜎𝑖, then 𝜇𝑖∗ = √12

2
𝜎𝑖 

Thus, in general 𝑓1∗ = ∑ 3𝜎𝑖2 + 𝜎𝑖2𝑚
𝑖=1 = ∑ 4𝜎𝑖2𝑚

𝑖=1 = 4(𝑓2∗)2 as seen in  Figure 2.2 A. 

We note that every feasible 𝑓2 value is attainable by the Pareto curve via the 

appropriate choice of 𝑓1 namely 𝑓1∗ = 4(𝑓2∗)2; given an (𝑓1, 𝑓2) pair, there is no 

unique (𝜇1, 𝜇2,𝜎1,𝜎2) which attains it, as demonstrated by the apparent randomness 

in  Figure 2.2 C and D, except in cases of 𝑓2 = 0 and 𝑓2 = 1/√12 (left and right-
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most points in the Pareto, i.e. when (𝑙𝑖 ,𝑢𝑖) = (0,0) and (0,1), respectively. In the 

latter case, 𝜇𝑖 = 1
2
 and 𝜎𝑖 = 1

√12
 so that  𝑓22 = ∑ 𝜎𝑖22

𝑖=1 = 1
6
 and 𝑓1 = 4 �1

6
� = 2

3
). 
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