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Chapter 1: Introduction

1.1 Overview

This thesis is about probabilistic inference or parameter estimation of higher dimensional

multivariate distribution, tools and techniques of computing full conditional probability

as well as running a Gibbs sampling simulation.

Before computers, such higher multidimensional problems were deemed to be too

complicated to deal with and were highly avoided and the model choice was usually lim-

ited to simpler model that were often too simpli�ed to describe the real problem. During

the last decades, with incarnation of computers , modern technology, and MCMC meth-

ods, such high multivariate complex problems are highly embraced and solved without

fear or favor. The model we are going to be dealing with in this thesis is an example

of a well known class of Bayesian graphical model sometimes called Bayesian network

or Directed acyclic Graphical model, which is higher dimensional multivariate problem,

with unknown full joint distribution and posterior joint distribution but with nice hidden

properties. This type of a model would have been avoided some years back because of

the level of complexity or would have been simpli�ed, not any more.

1.2 About the Bayesian Network

A Bayesian graphical model(sometimes called Bayesian Network(BNW)) is a graphical

structure for representing the probabilistic relationships among a large number of random

variables ( attributes) and for carrying out probabilistic inference with those attributes.

The graphical structure of Bayesian network provides an insightful picture of the re-
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lationships among the random variables or attributes. For example, from Figure 1.1,

Figure 1.1: Graphical Model: Student DAG model

given a student prepared for the exam and the exam was hard, what is the probability of

getting a good grade? A Bayesian graphical model is therefore a probabilistic graphical

model that de�nes and characterizes a joint probability distribution among a given set

of random variables, using a directed acyclic graph (DAG) and a conditional probability

distribution for each random variable or attribute in the network given its parent set. The

graphical structure and representation simply displays conditional dependencies among

the variables and enables the researcher to perform the intended inference and answer

queries. Bayesian networks (DAG model) thus provides a framework of incorporating

diverse mixed data into a single model and existing prior knowledge with new informa-

tion. By assigning probability to an event in Bayesian Network, we are simply giving an

indication of how strongly we believe (uncertainty) that the event will or will not happen.
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1.2.1 Why Bayesian Network?

Bayesian networks have been widely applied to a variety of �elds [8] and have been used

to solve so many real life problems. In almost every �eld of research you can think of,

Bayesian network has been used. Here are some references and areas where DAG model

has been extensively used and continued to be used. In the medical �eld, a Bayesian

network has long been used for diagnosis, prognosis, and treatment of diseases [6]. In

arti�cial intelligence area and machine learning, Bayesian networks have been used [13],

vision recognition, expert system [8], [14]. Bayesian networks have been used in data

mining, search engine optimization (especially by Google), criminology, agriculture, in-

formation retrieval, image processing, decision support systems, engineering, signal de-

tection, genealogy, statistics, physics, food chain, the list continues.

Bayesian network is therefore a powerful tool for exploratory data analysis. It is such

an important, incredible and powerful model in most area of research. However, ap-

plying Bayesian networks to the analysis of large-scale data, consisting of thousands of

attributes, is not straightforward because of the heavy computational burden in learning,

visualization and working through the attributes relationships. In this thesis, we propose

a Gaussian Hierarchical model and then propose a novel method for large-scale or small

data analysis based on this hierarchical Bayesian networks(HBN). There are variety of

algorithms [8] and methods which can be used to deal with this type of a model. Our

method and technique will help make it easier to deal with a Hierarchical Gaussian model.

1.3 Our Contribution

The purpose of this thesis is to propose and study a simple generative model called Hier-

archical Gaussian model and show e�cient method of estimating parameters of interest

using Gibbs sampling. To achieve our desired result we will start by proposing a hierar-
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chical Gaussian model which is higher dimensional with unknown multivariate posterior

distribution and marginal distributions which are not so easy to compute and may be

even intractable but the full conditional distributions are nice close-formed uni variate

standard distributions. Our objective is to estimate parameters by drawing samples from

the multivariate joint posterior. Since the joint posterior of our proposed model is an

unknown distribution it will not be easy to sample from the joint posterior. What do we

do? Try marginal distributions? But the marginals are also not easy to compute. We

are left with the option of using the full conditional distributions. Hammersley Cli�ord

Theorem tells us that we can decompose a joint distribution into full conditional distri-

butions (distribution of a random variable conditioned on or given everything else). Our

other contribution is showing that the full conditional distributions admit closed form

(uni variate standard distribution). We will do this by literally computing the full con-

ditional distributions of our Hierarchical Gaussian model. With right tools, model and

techniques, the full conditionals are are not hard to compute. This brings us to our other

contribution, that of developing the required tools and technique. We will prove some

probability results, speci�cally the Normal distribution equalities. We will then show

how the proofs and techniques used in proving them are very handy and e�ective tools

for computing the full conditional distributions of our model. With all the necessary tool

and ingredient we will run a simulation given a real data using Gibbs sampling.

1.4 Outline of The Thesis

This thesis is divided into 6 chapters. In Chapter 2 we provide brief background and

review of Bayesian analysis graphs, graphical models and Bayesian Graphical model

which is necessary for everyone who is not familiar with these concepts. Chapter 3

provides an insight about probabilistic graphical model and graphical inferences. In this

chapter we will look at various probabilistic inference technique and graphical inference
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algorithms. The list of algorithms we cover is nowhere near being exhaustive. In Chapter

4 we look at the techniques of parameter estimation for Hierarchical Gaussian model using

Gibbs Sampling. In this chapter we will introduce and justify the use of Gibbs Sampling

and and also prove some probability results (Normal equalities) . In Chapter 5 we will

propose a simple and multiple populations hierarchical Gaussian models and compute

the full conditional distributions of the two models. We will conclude Chapter 5 by doing

Gibbs sampling parameter estimation for a multiple groups hierarchical Gaussian model

given real data by running a matlab simulation. Chapter 6 discusses the summary of the

thesis and proposes some possible future research.
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Chapter 2: Background and Bayesian Analysis Preliminaries

In this chapter we provide a brief review of the concepts necessary for this thesis. It is

neither comprehensive nor is it detailed. The reader or any interested person is assumed

to have some knowledge of probability, Bayesian analysis, graph theory and inference

algorithms [10]. Will explain some of the details if need be and give necessary references.

2.1 Bayesian Review and Genesis

Bayes rule: Is named after its founder Reverend Thomas Bayes, Figure 2.1. Bayes,

a British mathematician and theologian, created the basic law of probability referred to

as Bayes rule which allows updating of probabilities given new evidence. He is therefore

the father of Bayesian analysis. The Bayesian method involves updating our existing

knowledge as new evidence is obtained. The Bayesian was once highly disputed but in the

recent past, it being highly accepted and used in the scienti�c world of research and it is

becoming extremely popular with researchers. However, despite its fame and acceptance

the frequentist Statistician still have trouble accepting the the Bayesian results especially

when an informative or subjective prior is involved. The frequentist have no problem with

Bayesian method if non informative or objective prior is used. The Bayesian analysis is a

simple concept by itself, but it is di�cult to implement and it is especially di�cult when

it comes to selecting a good prior as there is no standard rule of choosing a prior. The

computation involved is also sometimes tasking and even intractable. The normalizing

constant involves computing integrals and we all know that integrals are hard and most

often, no closed form solution.
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Figure 2.1: Thomas Bayes: Father of Bayesian Analysis

2.1.1 Subjectivity in Bayesian Inference and Remedy

A Bayesian analysis is subjective in that two di�erent researchers/research groups (e.g.,

EPA and DOE/NETL or an OSU and a PSU researcher) may observe the same data

X and yet arrive at di�erent Bayesian conclusions about the unknown parameter of

interest, call it µ. This usually happens when the two groups or two researchers have

di�erent opinions or di�erent existing knowledge about µ. This subjectivity of Bayesian

paradigm is a great source of controversy, a genuine case and legitimate concern about

the application of Bayesian inference approach in science. This is because, it will seem

"unscienti�c" for a researcher's personal opinion or prior knowledge to in�uence and a�ect

important research inputs and therefore a�ecting the conclusions of a deemed scienti�c

study [6]. The problem is on choosing prior distribution as there is no explicit way or

method of choosing a prior. However, when a large amount of data are available, the

posterior mean and distribution tend to lean towards the sampling distribution since
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the prior mean does not change with the increase in the number of observations. The

prior thus becomes subdued as we increase our observations and hence has little e�ect

on the posterior, unless the prior was extremely certain or accurate where in that case

the prior has great in�uence on posterior. In the same token it also means that a

sharp likelihood neutralizes the prior e�ect and the study is thus more scienti�c. We

can also dilute the e�ect of researcher's opinion by using a more rigorous and objective

approach through non-informative prior, which expresses a researcher's ignorance about

the unknown parameters. A non informative or vague prior like using a constant for our

prior has little or no e�ect at all on Bayesian result. On the same note, today's posterior

can be used as prior in future.

2.2 Bayesian Analysis

In a nutshell we can summarize Bayesian analysis by just looking at the Bayesian theorem.

f(θ|X) =
p(θ,X)
m(X)

=
f(x|θ)p(θ)∫
f(x|θ)p(θ)dθ

• We want to make inference about our unknown parameter of interest θ.

• We update our uncertainty about θ after observing new evidence or dataset X.

• p(θ) re�ects our prior knowledge of parameter.

• p(X|θ) is the likelihood : Distribution of data given the unknown parameter θ. It

is actually a function of θ once we observe X.

• f(θ|X) is the posterior distribution which gives the Bayesian result. If θ is the

unknown mean of a distribution we can obtain and estimate it from the posterior

by �nding the expectation of the posterior distribution.
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• m(X) is the marginal likelihood of the observed data also known as the normalizing

constant, usually the hardest to compute as it involves integrals.

2.2.1 The Bayesian Approach to Distribution and Parameter Estima-

tion.

The Bayesian approach to density estimation is to form a posterior probability distri-

bution function p(µ|x) using the Bayes theorem in Section 2.2. The Bayes theorem

estimates the density of µ given the new observed dataset. We then estimate our param-

eter of interest from the posterior distribution. Consider for instance a problem where

the population variance σ2 is a known parameter, but mean µ is unknown and thus

a random variable and our parameter of interests. We thus to seek obtain a posterior

distribution p(µ|x)) and then estimate mean µ from the posterior. The �rst task is to

decide on the density of our prior p(µ). For computational purposes we take p(µ) to be a

Gaussian distribution, sampling distribution to be Gaussian as well, by conjugate priors,

the posterior is also Gaussian. The situation is modeled and graphically represented in

Figure ??, it is also called the Naive Bayes

b c d e

θ

. . .

Figure 2.2: Naive Bayesian.
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2.3 Graphs and Graphical Models

What is a graph? A graph is a representation consisting of nodes which are connected by

of edges and is usually denoted as G(V,E). Edges also known as links may be directed or

undirected. Edges can also have associated weights [10]. A graph with all edges directed

is called a directed graph else it is an undirected graph, see Figure 2.3. A directed

graph may be cyclic or acyclic as shown in Figure 2.4 . If we let the nodes to represent

random variables and the links or edges to represent conditional representation among

random variables the graph becomes a graphical model (Probabilistic model to be exact).

Probabilistic graphical model integrates both graph and probability. A graphical model

may be directed or undirected graphical model

a

b

e

d
j

f
c

h

g

l

Figure 2.3: Undirected Graph
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4

3

5

6

1 2

Figure 2.4: Directed Acyclic graph

2.3.1 Directed Acyclic Graphical Model (DAG)

A DAG is a graph with edges between the nodes which are as shown in Figure 2.5. A

DAG model is acyclic which means that there is no complete cycle and once we leave a

node there is no going back and that node cannot be revisited. In a DAG a node has

either parents and ancestors or children and descendants. Parents of a node are those

nodes that have a direct path to the node. In Figure 2.5 node d is a parent of node b.

Ancestors of a node are those nodes who have a directed path ending at node. In Figure

2.5 the ancestors of node c are nodes b,d,e. Conversely, the descendants of a node are

those nodes who have a directed path starting at the node. In Figure 2.5, nodes a,b,c,d

are descendant of node e. Nodes a and c are children of node b.

If the graph is not directed it is then undirected Figure 2.6. An undirected graph

is sometimes called an undirected network or Markov Random Fields. In an undirected

graphical model every node is an ancestor or a descendant of every other node.
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a

b

c

d

e

Figure 2.5: DAG: Ancestors, Parents and Chidren

a

b

e

d

j

f
c

h

g

l

Figure 2.6: Undirected Graph Model

2.3.2 Plates

Sometimes the graph involves so many attributes rendering it hard to visualize the struc-

ture. In such a situation we use plate notation on the repeated structure to represent

complex graphical models. We use plates or rectangular boxes to enclose a repeated
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a b

Figure 2.7: Graphical Model and Plate representation

structure. We do this by pasting the structure inside the plate N times, where N is the

Number of repeats and N is indicated in the lower right corner of the plate. The Figure

2.7 gives a graphical model and its associated plate.

2.4 Probabilistic Graphical Models (PGM)

Given a set of discrete random variable X = X1, X2, ..., XN , the full joint distribution

for directed acyclic graphical model is given as

p(X1, X2, ..., Xn) =
n∏
i=1

p(Xi|paXi)

where paX represent the parents of X. From the joint distribution we can obtain the

marginal probabilities of respective variables, the conditional distributions of variables

given other variables. A probabilistic graphical model is therefore just a nice repre-

sentation of a joint distribution, from which we can obtain marginals and conditional

probabilities. There are several advantages of the PGM over other representation.

• It is much more compact hence occupying smaller space (especially if we use plates).
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• It is much more time e�cient.

• It is easier to understand and communicate (�A picture is worth a thousand words�).

• It is easier to build and learn.

We now show how to compute the full joint probability distribution using Figure 2.8.

Since the full joint is a product of local conditionals where each variable is conditioned

on it parents, we just follow the de�nition to the letter and use the the fundamental

probability chain rule.

X2

X4

X1

X3 X5

X6

X7

Figure 2.8: DAG for Full Joint Probability distribution .
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p(x1, x2, x3, x4, x5, x6, x7) = p(x7, x6, x5, x4, x3, x2, x1)

= p(x7|x6, x5, x4, x3, x2, x1)p(x6, x5, x4, x3, x2, x1)

= p(x7|x3)p(x6, x5, x4, x3, x2, x1)

= p(x7|x3)p(x6|x5, x4, x3, x2, x1)p(x5, x4, x3, x2, x1)

= p(x7|x3)p(x6|x5, x2)p(x5, x4, x3, x2, x1)

= p(x7|x3)p(x6|x5, x2)p(x5|x4, x3, x2, x1)p(x4, x3, x2, x1)

= p(x7|x3)p(x6|x5, x2)p(x5|x3)p(x4, x3, x2, x1)

= p(x7|x3)p(x6|x5, x2)p(x5|x3)p(x4|x3, x2, x1)p(x3, x2, x1)

= p(x7|x3)p(x6|x5, x2)p(x5|x3)p(x4|x2)p(x3, x2, x1)

= p(x7|x3)p(x6|x5, x2)p(x5|x3)p(x4|x2)p(x3|x2, x1)p(x2, x1)

= p(x7|x3)p(x6|x5, x2)p(x5|x3)p(x4|x2)p(x3|x1)p(x2, x1)

= p(x7|x3)p(x6|x5, x2)p(x5|x3)p(x4|x2)p(x3|x1)p(x2|x1)p(x1)

= p(x1)
7∏
i=2

p(xi|pa(xi))

This gives us the joint distribution as a product of local conditional distributions.

2.4.1 Bayesian Networks and Hierarchical Bayesian Models

A Bayesian network is a Directed Acyclic Graphical (DAG) model where the nodes

represent random variables and edges represent probabilistic dependencies. Hierarchical

Bayes models is a Bayesian Network model written in a hierarchical form. It is called

hierarchical because the model is nested and the graphical representation is structured
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in such a way that they sit on top of each other forming a hierarchical structure.

Figure 2.9: Hierarchical DAG model

The Bayesian framework treats all model attributes as random variables. These

attributes include observed data, hidden variables, parameters, nuisance parameters as

random variables. Although Bayesian models can be represented using either directed or

undirected graphical model, it is the directed model that is commonly used in many real

life problems. In particular, in hierarchical Bayesian models, the naive Bayesian (simple

Bayesian) is modi�ed where prior distributions involves additional parameters known as

hyper parameters,and the hyper parameters when treated as random variables will have

their own distributions and the overall hierarchical model is thus a set of conditional

probabilities linking hyper parameters, parameters and observed data.

.
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Chapter 3: Probabilistic Inference in Graphical Models

In this chapter we are going to discuss the various algorithms and techniques applied in

probabilistic and statistical inferences for our graphical models. We will in particular

discuss at length Gibbs sampling which is the heart of this thesis.

3.1 Modeling and Inference

Once we identify the attributes (variables) to include in our model, our goal or objective

is to describe how these variables can interact and associate with each other. This is

achieved using graphical representations and forming joint distribution.

Once we are done constructing the probabilistic graphical model, we can embark on an-

swering all the questions of interest by performing inference on the distribution. The

questions that can be answered from the model are called queries. For example, com-

mon queries are to infer the value of unobserved data points or missing data points. We

might be interested in estimating the maximum likelihood estimate (MLE). the maxi-

mum a posteriori (MAP) estimate. The Bayesian rule (Posterior distribution happens to

be our mantra), is commonly used to answer queries.

Statistical inference is concerned with drawing conclusions, from numerical data, about

quantities that are not observed i.e we try to estimate the population parameters from

using sample statistics. For example, a clinical trial of a new throat cancer drug might

be designed to compare the survival rate in a population given the new drug with pop-

ulation on another treatment or no treatment at all. These survival rate refer to a large

population of patients, and it is neither viable, feasible nor ethically acceptable to ex-

periment the entire population. The estimates about the survival rate are thus based on
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a sample of patients. That said, graphical models are usually complex if a large number

of attributes are involved, and to thus make inferences we need some handy tools.

X2

X4

X1

X3 X5

X6

Figure 3.1: Directed acyclic Graphical Model.

3.2 Exact Algorithm

3.2.1 Variable Elimination Algorithm

We will use an example to explain the variable elimination algorithm which is just one

example of the Exact Algorithms. Consider the model in Figure 3.1 and suppose we wish

to compute the marginal probability p(x1). We will obtain the marginal by summing

(assuming a discrete case) over the remaining variables (unobserved variables)[17]

p(x1) =
∑
x2

∑
x3

∑
x4

∑
x5

∑
x6

1
Z
φ(x1, x2)φ(x1, x3)φ(x2, x4)φ(x3, x5)φ(x2, x5, x6)

Naively, each of these sums is applied to a summand involving six variables and thus the

computational complexity scales as k6 assuming each variable has k possible outcomes.
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We can simplify this complexity by exploiting the distributive law.

p(x1) =
∑
x2

∑
x3

∑
x4

∑
x5

∑
x6

1
Z
φ(x1, x2)φ(x1, x3)φ(x2, x4)φ(x3, x5)φ(x2, x5, x6)

=
1
Z

∑
x2

φ(x1, x2)
∑
x3

φ(x1, x3)
∑
x4

φ(x2, x4)
∑
x5

φ(x3, x5)
∑
x6

φ(x2, x5, x6)

=
1
Z

∑
x2

φ(x1, x2)
∑
x3

φ(x1, x3)
∑
x4

φ(x2, x4)
∑
x5

φ(x3, x5)f6(x2, x5)

=
1
Z

∑
x2

φ(x1, x2)
∑
x3

φ(x1, x3)
∑
x4

φ(x2, x4)f5(x2, x3)

=
1
Z

∑
x2

φ(x1, x2)
∑
x3

φ(x1, x3)f5(x2, x3)
∑
x4

φ(x2, x4)

=
1
Z

∑
x2

φ(x1, x2)
∑
x3

φ(x1, x3)f5(x2, x3)f4(x2)

=
1
Z

∑
x2

φ(x1, x2)f4(x2)
∑
x3

φ(x1, x3)f5(x2, x3)

=
1
Z

∑
x2

φ(x1, x2)f4(x2)f3(x2, x3)

=
1
Z
f2(x1)

where we have de�ned the intermediate factors or functions as fi, we obtain the value

of Z, and hence the marginal, by summing the �nal expression with respect to x1. If on

the other hand we assume the variables in Figure 3.1 are continuous the same will hold.

We will only need to interchange the summation with an integral as follows
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p(x1) =
∫
x2

∫
x3

∫
x4

∫
x5

∫
x6

1
Z
φ(x1, x2)φ(x1, x3)φ(x2, x4)φ(x3, x5)φ(x2, x5, x6)d(x6)d(x5)d(x4)d(x3)d(x2)

=
1
Z

∫
x2

φ(x1, x2)
∫
x3

φ(x1, x3)
∫
x4

φ(x2, x4)
∫
x5

φ(x3, x5)
∫
x6

φ(x2, x5, x6)d(x6)d(x5)d(x4)d(x3)d(x2)

=
1
Z

∫
x2

φ(x1, x2)
∫
x3

φ(x1, x3)
∫
x4

φ(x2, x4)
∫
x5

φ(x3, x5)f6(x2, x5)d(x5)d(x4)d(x3)d(x2)

=
1
Z

∫
x2

φ(x1, x2)
∫
x3

φ(x1, x3)
∫
x4

φ(x2, x4)f5(x2, x3)d(x4)d(x3)d(x2)

=
1
Z

∫
x2

φ(x1, x2)
∫
x3

φ(x1, x3)f5(x2, x3)
∫
x4

φ(x2, x4)d(x4)d(x3)d(x2)

=
1
Z

∫
x2

φ(x1, x2)
∫
x3

φ(x1, x3)f5(x2, x3)f4(x2)d(x3)d(x2)

=
1
Z

∫
x2

φ(x1, x2)f4(x2)
∫
x3

φ(x1, x3)f5(x2, x3)d(x3)d(x2)

=
1
Z

∫
x2

φ(x1, x2)f4(x2)f3(x2, x3)d(x2)

=
1
Z
f2(x1)

3.3 Approximate Algorithms

The above exact algorithms focused on the algebraic and graphical structure of prob-

abilistic graphical model inference. As the number of random variable increase exact

algorithm are no longer feasible. It is not an easy task to do carry out elimination algo-

rithm if for instance we have 1000 attributes. Thus enters the approximate algorithms

The approximate Algorithms on the other hand use the law of large numbers and the

Central Limit theorem to exploit the probability theory of the graphical model. One

popular class of approximate algorithms is based on the Markov Chain Monte Carlo

method which is discussed next.
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3.3.1 Markov Chain Monte Carlo(MCMC= (MC)2)

MCMC methods are techniques to approximate integrals and especially intractable in-

tegrals using simulated values. From our directed graphical model the joint distribution

is higher dimension multivariate distribution which is usually unknown. Computing

marginals from the joint distribution is also not easy and in most cases the integrals are

intractable with no known closed form solution. We thus use MCMC sampling methods

to sample from the joint distribution. For the purpose of this thesis we will discuss Gibbs

sampling as our example of MCMC method.

3.3.2 Gibbs Sampling

Gibbs sampling or a Gibbs sampler is Markov chain Monte Carlo (MCMC) algorithm for

sampling a non independent sequence of random values from full conditionals of a given

joint distribution. This sampling is done when direct sampling is not possible i.e when

not possible to sample from the multivariate distribution. The sample observed can be

used to approximate the joint distribution, bi variate distribution, marginal distributions

and even conditional distributions

Gibbs sampling is commonly used as a means of statistical inference and parameter

estimation, especially Bayesian inference. Since Gibbs sampling is the heart of this thesis

we will devote the next chapter to the discussion of Gibbs method.
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Chapter 4: Parameter Estimation For Hierarchical Gaussian Model

Via Gibbs Sampling

4.1 Gibbs Sampling

Gibbs sampling is a technique to draw samples from a joint distribution based on the

full conditional distributions of all the associated random variables. Gibbs sampling can

be traced back to the work of [11], whereas the concept of Gibbs sampler introduced

by [2] to the �eld of image processing. Given a Bayesian graphical model, the hyper

prior and prior distributions and the likelihood which generates the data,we can easily

construct joint posterior distribution of all parameters and random variables involved.

From the joint distribution, the marginal distribution of any random variable is obtained

by integrating out all other parameters or variables in the model. With a marginal dis-

tribution, parameters such as the mean, mode, median and variance of each parameter

can then be obtained from marginal posterior distribution. However, this integration is

usually computationally tedious and in most cases not analytically tractable and has no

closed form solution, hence we use numerical methods. Approximations to the marginal

distributions were proposed by [6].

Gibbs sampling [2] is thus a numerical integration method using MCMC. The method

generates random values from the marginal posterior distributions by repetitively sam-

pling from full conditional distributions.The properties of Gibbs and its power as an

MCMC numerical integration tool can be found in [5].
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4.1.1 Why Gibbs Sampling?

Most real life problem high dimensional. Such high dimensional problems involve full

joint distribution or joint posterior distribution that are high dimensional multivariate

distribution. For instance if a graphical model has 100 attributes and each attribute can

take 10 values, then we are talking of a sample space of 10100 con�gurations. To simulate

a random con�guration from such a sample space is next to impossible.

Gibbs sampling simulate and generate Markov Chain sequence from univariate distribu-

tions called full conditional distributions. Gibbs sampling theory shows the generated nth

value is a random value from a distribution that is close to the target or true distribution.

We might never hit the target but we will get pretty close 'for any chemical reaction to

take place'. Can we trust that the full conditionals will get us close to the target distri-

bution? The law of large numbers and the central limit theorem results cemented by the

Hammersley- Cli�ord Theorem are the main reason why Gibbs sampling works.

De�nition 4.1.1 Let p(y1, ..., yk) be the joint density of a random vector X1, ..., Xp and

let pi(xi) denote the marginal density of Xi. If pi(xi > 0) for every i = 1, .., p implies

p(x1, ..., xp) > 0, then the joint density is said to satisfy the positivity condition [19].

4.1.2 The Hammersley- Cli�ord Theorem

A very important property of full conditionals, and which the Gibbs sampler is based on

is that full conditionals fully specify and describe the joint distribution. The Theorem

proves that full conditionals, which the Gibbs sampler is based on, fully specify the joint

distribution [19, 1, 8]. That is the joint density can be decomposed and easily be derived

from the conditional densities.

Theorem 1 Let (X1, ..., Xp) satisfy the postivity and joint condition and have joint den-
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sity f(x1, ..., xp). Then for all ξ1, .., ξp ∈ supp(f)

f(x1, ..., xp) ∝
p∏
i=1

fXi|X−i(xi|x1,...x1−1,ξi+1,...,ξp)
fXi|X−i(ξi|x1,...x1−1,ξi+1,...,ξp)

Proof 1 The proof and explanation can be found in [1, 8, 19].

4.2 Normal Distribution Equalities

For higher dimension problems the joint posterior is a distribution whose kernel is un-

known and it is not easy to associate it with any known standard distribution. If we

want to sample from such a joint posterior it will not be directly possible. All is not lost,

as there are other techniques of sampling and inferences. In this part we will speci�cally

do Gibbs Sampling.

What do we need? To use Gibbs Sampler we need closed form (standard) full conditional

distributions. Since full conditions distributions are uni variate we can easily sample if

the distribution known. In this section we will proof some normal distribution equalities

from the scratch. These equalities which will resurface frequently from now on, happen

to be very a powerful tool when computing full conditionals. With a cleverly chosen data

model, parameter and hyper parameter models we were able to derive closed form full

conditional distributions. We now state and prove the theorems, in which case we will

�nd some have trivial proof but some are intense.

Theorem 2 These inequalities hold for Normal density function [2]

1 N(x;µ, σ2) = N(µ;x, σ2)

2 N(ax;µ, σ2) = 1
aN(x; µa ,

σ2

a2 )

3 N(x;µ1, σ
2
1)N(x;µ2, σ

2
2) = KN

(
x,

σ2
2µ1+σ2

1µ2

σ2
1+σ2

2
,
σ2
1σ

2
2

σ2
1+σ2

2

)
where K is constant.
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We de�ne

N(ax;µ, σ2) =
1√
2πσ

exp(− 1
2σ2

(ax− µ)2) (4.1)

We are now going to prove these e-qualities one at a time, some proofs are trivial others

will require some techniques and algebra manipulation

Proof 2 The proof of the �rst equality is trivial via de�nition. To thus prove that

N(x;µ, σ2) = N(µ;x, σ2) we use the de�nition. We want to Prove N(x;µ, σ2) = N(µ;x, σ2)

N(x;µ, σ2) =
1√
2πσ

exp(− 1
2σ2

(x− µ)2)

=
1√
2πσ

exp(− 1
2σ2

(µ− x)2)

= N(µ;x, σ2)•

Proof 3 The proof of the second equality uses the de�nition and some algebra. Thus

the proof of N(ax;µ, σ2) = 1
aN(x; µa ,

σ2

a2 ) is as follows:

N(ax;µ, σ2) =
1√
2πσ

exp(− 1
2σ2

(ax− µ)2)

=
1√
2πσ

exp(− 1
2σ2

(a(x− µ/a)2)

=
1√
2πσ

exp(− a2

2σ2
((x− µ/a)2)

=
1

a
√

2πσ/a
exp(− 1

2σ2/a2
(x− µ/a)2)

=
1
a
N(x;µ/a, σ2/a2)•

Proof 4 Here we use the de�nition, algebra and one simple trick of completing square

on the exponent.Thus the proof of N(x;µ1, σ
2
1)N(x;µ2, σ

2
2) = KN

(
x,

σ2
2µ1+σ2

1µ2

σ2
1+σ2

2
,
σ2
1σ

2
2

σ2
1+σ2

2

)
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where K does not depend on X is as follows:

N(x;µ1, σ
2
1)N(x;µ2, σ

2
2) =

1√
2πσ1

(
exp(− 1

2σ2
1

(x− µ1)2
)

1√
2πσ2

exp

(
− 1

2σ2
2

(x− µ2)2
)

=
1

2πσ1σ2
exp

(
− 1

2σ2
1

(x− µ1)2 − 1
2σ2

2

(x− µ2)2
)

=
1

2πσ1σ2
exp

(
− 1

2σ2
1

(x2 − 2xµ1 + µ2
1

)
exp

(
− 1

2σ2
2

(x2 − 2xµ2 + µ2
2)
)

=
1

2πσ1σ2
exp

(
−1

2

(
1
σ2

1

+
1
σ2

2

)
x2 − 2

(
µ1

σ2
1

+
µ2

σ2
2

)
x

)
exp

(
− µ2

2σ2
1

− µ2
2

2σ2
2

)
=

C

2πσ1σ2
exp

(
−1

2

(
1
σ2

1

+
1
σ2

2

)
x2 − 2

(
µ1

σ2
1

+
µ2

σ2
2

)
x

)

=
C1

2πσ1σ2
exp

−1
2

(
1
σ2

1

+
1
σ2

2

)x−
(
µ1

σ2
1

+ µ2

σ2
2

)
(

1
σ2
1

+ 1
σ2
2

)
2


=
C1

2πσ1σ2
exp

−1
2

(
σ2

2 + σ2
1

σ2
1σ

2
2

)x−
(
σ2
2µ1+σ2

1µ2

σ2
1σ

2
2

)
(
σ2
2+σ2

1

σ2
1σ

2
2

)
2


=
C1

2πσ1σ2
exp

(
−1

2

(
σ2

2 + σ2
1

σ2
1σ

2
2

)(
x− σ2

2µ1 + σ2
1µ2

σ2
1 + σ2

2

)2
)

= KN

(
x,
σ2

2µ1 + σ2
1µ2

σ2
1 + σ2

2

,
σ2

1σ
2
2

σ2
1 + σ2

2

)

Thus

N(x;µ1, σ
2
1)N(x;µ2, σ

2
2) = KN

(
x,

σ2
2µ1+σ2

1µ2

σ2
1+σ2

2
,
σ2
1σ

2
2

σ2
1+σ2

2

)
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Chapter 5: Hierarchical Bayesian Models, Joint Posterior and Full

Conditional Distributions

5.1 Simple Hierarchical Normal DAG Model with Known Variance

In this section we are going to compute joint distributions and full conditional distribu-

tions given a simple hierarchical model.

Consider the following directed a cyclic graph model

xi|µ ∼ N(µ, σ2)

µ|θ, τ2 ∼ N(θ, τ2)

θ v N(a, b2)

τ2 ∼ IG(c, d)

where a, b, c, d are given or speci�ed and σ2 is assumed to be known usually estimated

to be the sample variance.

The simple model (data from a single population) can be represented graphically as in

Figure 5.1

We could also represent the simple hierarchical graphical model using graph and

plates as shown in Figure 5.2
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Figure 5.1: Data from several Normal Distributions

5.1.1 Joint Posterior Distribution

We start by deriving the joint posterior distribution.

p(θ, τ2, µ|x) =
p(θ, τ2, µ, x)

p(x)

=
p(θ, τ)p(µ|θ, τ)p(x|µ)

p(x)

∝ p(θ, τ)p(µ|θ, τ)p(x|µ)

∝ p(θ)p(τ2)N(µ; θ, τ2)
n∏
i=1

N(xi;µ, σ2)

∝ p(θ)p(τ2)N(µ; θ, τ2)N(x̄;µ, σ2/n)

= p(θ)p(τ2)N(µ; θ, τ2)N(µ; x̄, σ2/n)

We can see that this is a distribution which is not familiar and cannot be associated with

any known distribution.
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a b

Figure 5.2: Graphical and Plate representation

5.1.2 Statistical and Posterior Inference

Goal:Draw samples of (θ, µ, τ) given observed data X

For this sampling to be done using Gibbs sampler we need to compute the full conditional

distributions and hope these distributions are nice closed form. From this joint posterior

distribution and the Normal distribution equalities proved above, we can easily compute

the full conditional distributions of each parameter by just considering the expression

containing that particular parameter and treating the rest as constants.

5.2 Finding Full Conditionals of the Parameters in The Simple Model

The probability of a random variable given everything else is called the full conditional

distribution. In Bayesian hierarchical modeling full conditional is the conditional dis-

tribution of a parameter given everything else. We can use Gibbs sampler to sample

from the joint distribution if we knew the full conditional for each parameter. For each

parameter, the full conditional distribution is the distribution of the parameter condi-

tional on all the other parameters and the evidence (observations). The full conditionals
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needed for implementation of the Gibbs sampler are basically easy to �nd. From the

joint distribution of all variables, only expression that contain the particular variable

(parameter) are considered the rest are treated as constant. The di�culty (is always) in

�nding normalizing constants which we do not necessarily need to compute.

5.2.1 Full conditional Distribution of µ

Finding full conditionals is a requirement in Gibbs sampling. A wise choice of model will

result in nice standard full conditional distribution. The full conditional of µ is easier as

it involves taking products of normal distributions and we easily know how to do that.

Like other full conditionals, we will only be interested on parts of the joint posterior

equation above that involve µ

p(µ|τ2, θ, σ2, x) ∝ p(µ, θ, τ2, σ2|x)

∝ p(θ)p(τ2)N(µ; θ, τ2)
n∏
i=1

N(xi;µ, σ2)

∝ N(µ; θ, τ2)
n∏
i=1

N(xi;µ, σ2)

∝ N(µj ; θ, τ2)
n∏
i=1

N(xi;µj , σ2)

∝ p(θ)p(τ2)N(µ; θ, τ2)N(x̄;µ, σ2/n)

∝ p(θ)p(τ2)N(µ; θ, τ2)N(µ; x̄, σ2/n)

= kN(µ;
σ2/nθ + τ2x̄

σ2/n+ τ2
,
τ2σ2/n

σ2/n+ τ2
)

∝ N
(
µ;
σ2/nθ + τ2x̄

σ2/n+ τ2
,
τ2σ2/n

σ2/n+ τ2

)

The full conditional of µ depends on (τ2, σ2, θ) and data .
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5.2.2 Full conditional Distribution of θ

From the joint posterior equation above, we will only consider those expressions which

involves θ

p(θ|τ2, µ, σ2, x) ∝ p(µ, θ, τ2, σ2|x)

∝ p(θ)p(τ2)p(µ|θ, τ2)
n∏
i=1

p(xi|µ, σ2)

∝ N(θ|a, b2)p(τ2)N(µ; θ, τ2)
n∏
i=1

N(xi;µ, σ2)

∝ N(θ|a, b2)N(µ|θ, τ2)

∝ N(θ|a, b2)N(θ|µ, τ2)

∝ N
(
θ;
aτ2 + µb2

τ2 + b2
,
b2τ2

b2 + τ2

)

The distribution is another Gaussian and this makes us happy.

5.2.3 Full conditional Distribution of τ 2

Similarly, to obtain the full conditional distribution of τ2 we will only consider the ex-

pressions in the Joint posterior above which involves τ2 and treat everything else as
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constant.

p(τ2|θ, µ, σ2, x) ∝ p(µ, θ, τ2, σ2|x)

∝ p(θ)p(τ2)p(µ|θ, τ2)
n∏
i=1

p(xi|µ, σ2)

∝ p(θ|a, b2)IG(τ2|c, d)N(µ; θ, τ2)
n∏
i=1

N(xi;µ, σ2)

∝ IG(τ2|c, d)N(µ|θ, τ2)

∝ IG
(
c+ 1/2, d+ (µ− θ)2/2

)
This full conditional distribution of parameter τ2 is another standard distribution. The

full conditional distributions of the parameters are well known distribution and can easily

we simulated.

5.3 A Hierarchical Normal Model for a Data from Several Groups

In this model data is observed from more than one populations.

Assume we have random samples fromM populations, having sample sizes n1, n2, .., nm

We specify the hierarchical data model:

X1j , ..., Xnjj |µj , σ2 v N(µj , σ2)

µj |θ, τ2 v N(θ, τ2)

τ2 v IG(a, b)

θ v N(θ0, κ2)

σ2 v IG(c, d)
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This can be represented graphically and using distribution as shown in Figure 5.3 and

the graphical and plate is shown in Figure 5.4 and Figure 5.5 respectively

Figure 5.3: Data from several Normal Distributions

5.3.1 Joint Posterior

This model assumes variability across group means, but group variances are assumed to

be constant = σ2 across groups. It assumes that the the data and prior parameters are

independent and identically independent.
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x11 x12 x1n1 x21 x22 x2n2 xm1 xm2 xmnm

θ σ

µ

µmµ2µ1

φ

. . .. . .

Figure 5.4: Data from several Normal Distributions

5.3.2 Posterior Inference

Goal: Draw samples of (µ1, ..., µm, θ, τ, σ) conditional on X

We will use Gibbs sampler to make dependent, approximate draws from this target dis-

tribution. To perform Gibbs sampling we need the full conditionals for each parameter.

We now approximate the joint posterior as via the following useful factorization:

p(µ1, ..., µm, θ, τ
2, σ2|x1, .., xm) =

p(µ1, ..., µm, θ, τ
2, σ2, x1, .., xm)

p(x1, .., xm)

∝ p(µ1, ..., µm, θ, τ
2, σ2, x1, .., xm)

∝ p(x1, .., xm|µ1, ..., µm, θ, τ
2, σ2) ∗ p(µ1, ..., µm, θ, τ

2, σ2)

∝ p(X|µ1, ..., µm, θ, τ
2, σ2)P (µ1, ..., µm|θ, τ2, σ2)p(θ, τ2, σ2)

=
m∏
j=1

nj∏
i=1

p(xij |µj , σ2)
m∏
j=1

p(µj |θ, τ2)p(θ|τ2, σ2)p(τ2, σ2)

=
m∏
j=1

nj∏
i=1

p(xij |µj , σ2)
m∏
j=1

p(µj |θ, τ2)p(θ)p(τ2)p(σ2)
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Figure 5.5: Data from several Normal Distributions: Plate

From the joint posterior distribution only expression that contain the particular variable

are considered the rest is treated as constant which do not a�ect the distribution.

5.4 The full conditionals of the parameters

5.4.1 Full conditional of µj

The full conditional distribution of µj is easier as we are taking products of normal and

we easily know how to do that. Like other full conditionals, we will only be interested
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on parts of the joint posterior equation above that involve µj

p(µj |µ1, ..., µm, τ
2, θ, σ2, X) ∝ p(µ1, ..., µ1, θ, τ

2, σ2|X = (x1, .., xm))

∝
m∏
j=1

nj∏
i=1

p(yij |µj , σ2)
m∏
j=1

p(µj |θ, τ2)p(θ)p(τ2)p(σ2)

∝ p(µj |θ, τ2)
nj∏
i=1

p(xij |µj , σ2)

∝ N(µj ; θ, τ2)
nj∏
i=1

N(xij ;µj , σ2)

∝ N(µj ; θ, τ2)N(x̄j ;µj ,
σ2

nj
)

∝ N(µj ; θ, τ2)N(µj ; x̄j ,
σ2

nj
)

∝ N

µj ; θ σ2

nj
+ x̄jτ

2

τ2 + σ2

nj

,
τ2 σ2

nj

τ2 + σ2

nj


The full conditional of µj depends on (τ, σ2, θ) and data from group j. It is a univariate

normal distribution (closed form)
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5.4.2 Full conditional distribution of θ

p(θ|µ1, ..., µm, τ
2, σ2, X) ∝ p(µ1, ..., µm, θ, τ

2, σ2|x1, .., xm)

∝
m∏
j=1

nj∏
i=1

p(xij |µj , σ2)
m∏
j=1

p(µj |θ.τ2)p(θ)p(τ2)p(σ2)

∝ p(θ)
m∏
j=1

p(µj |θ, τ2)

∝ N(θ; θ0, κ2)N(µ̄; θ,
τ2

m
)

∝ N(θ; θ0, κ2)N(θ; µ̄,
τ2

m
)

∝ N

(
θ;
θ0
τ2

m + µ̄κ2

κ2 + τ2

m

,
κ2 τ2

m

κ2 + τ2

m

)

As we can see by Markov blanket property this full conditional is independent of the data

X.It depends on the other variables (parameters) and is a standard univariate distribution

5.4.3 Full conditional distribution of τ 2

We now compute the full conditional distribution for τ2

p(τ2|µ1, ..., µm, θ, σ
2, X) ∝ p(µ1, ..., µ1, θ, τ

2, σ2|X)

∝
m∏
j=1

nj∏
i=1

p(xij |µj , σ2)
m∏
j=1

p(µj |θ, τ2)p(θ)p(τ2)p(σ2)

∝ p(τ2)
m∏
j=1

p(µj |θ, τ2)

∝ IG(a, b)
m∏
j=1

N(µj |θ, τ2))
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p(τ2|µ1, ..., µm, θ, σ
2, X) ∝ IG(a, b)

m∏
j=1

N(µj |θ, τ2))

∝ (τ2)−a−1e
−b
τ2

m∏
j=1

N(µj |θ, τ2))

∝ (τ2)−a−1e
−b
τ2

m∏
j=1

(τ2)−1e
−(µj−θ)

2

2τ2

∝ (τ2)−a−1e
−b
τ2 (τ2)−1/2e

−
Pm
j=1(µj−θ)

2

2τ2

∝ (τ2)−a−1−1/2e
−

Pm
j=1(µj−θ)

2−2b

2τ2

∝ (τ2)−a−1/2−1e
−

Pm
j=1(µj−θ)

2−2b

2
τ2

Clearly this is a kernel of inverse Gamma. That is

τ2|µ1, ..., µm, θ, σ
2, X v IG

(
a− 1/2,

∑m
j=1(µj − θ)2 − 2b

2

)

5.4.4 Full conditional distribution of σ2

Last but by no means the least we compute the full conditional for σ2. This is a bit

intense but tractable. The trick is recalling the relationship between gamma inverse

gamma distribution. That is if X has a gamma(α, β) distribution then Y = 1/X has
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inverse gamma distribution IG(α, β)

p(σ2|µ1, ..., µm, τ
2, θ,X) ∝ p(µ1, ..., µ1, θ, τ

2, σ2|X)

∝
m∏
j=1

nj∏
i=1

p(xij |µj , σ2)
m∏
j=1

p(µj |θ, τ2)p(θ)p(τ2)p(σ2)

∝ p(σ2)
m∏
j=1

nj∏
i=1

p(xij |µj , σ2)

∝ p(σ2)
m∏
j=1

nj∏
i=1

N(xij |µj , σ2)

∝ IG(c, d)
m∏
j=1

nj∏
i=1

N(yij |µj , σ2)

∝ (σ2)−c−1e
−d
σ2

m∏
j=1

1
σ
P
nj
e−

1
2σ2

Pnj
i (xij−µj)2

∝ (σ2)−c−1e
−d
σ2

1
σ
P
nj

m∏
j=1

e−
1

2σ2

Pnj
i (xij−µj)2

∝ (σ2)−c−1e
−d
σ2 (σ2)−

P
nj
2 e−

1
2σ2

Pm
j=1

Pnj
i=1(xij−µj)2

∝ (σ2)−(c+

P
nj
2

)−1e−
1

2σ2

Pm
j=1

Pnj
i=1(ij−µj)2− d

σ2

∝ (σ2)−(c+

P
nj
2

)−1e
− 1
σ2

 Pm
j=1

Pnj
i=1

(xij−µj)
2+2d

2

!

We recognize this to be the kernel of another inverse Gamma and hence

1
σ2
|µ1, ..., µm, τ

2, θ,X ∝ gamma

(
c+

∑
nj

2
,

∑m
j=1

∑nj
i=1(xij − µj)2 + 2d

2

)

Equipped with these full conditionals we can now use Gibbs sampling to generate MC

random variable.
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5.5 Gibbs Sampler in Action

The goal is to sample θ1, θ2, ..., θn given the joint distribution p(θ1, θ2, ..., θn). Due to the

complexity of the joint posterior, we are instead going to sample from full conditional

distributions which is the heartbeat of Gibbs sampling and assuming the full conditionals

are standard univariate distributions. We kick o� by by initializing (θ0
1, θ

0
2, ..., θ

0
n) (can

start from any reasonable starting point), the Gibbs sampler then draws variables in the

following manner. Assuming we have the �rst k iteration then the k+1 iteration and

thereafter will be obtained as:

θk+1
1 ∼ p(θ1|θ2 = θk2 , ..., θn = θkn)

θk+1
2 ∼ p(θ2|θ1 = θk+1

1 , θ3 = θk3 , ..., θn = θkn)

...
...

θk+1
n ∼ p(θn|θ1 = θk+1

1 , ..., θn−1 = θk+1
n−1)

As the number of iterations increases (k → ∞) [2] shows that the distribution of

(θk1 , θ
k
2 , ..., θ

k
n) converges to p(θ1, θ2, ..., θn). Which as k becomes large and large our kth

sample comes from a distribution which is very close to the target distribution and it

is as if we are sampling from the target distribution though not quite. The marginal

distribution of θ
(k)
i converges to p(θi) for (i = 1, 2, ..., n). Now that we know how to

sample, let the sampling game begin.The sampling will done in matlab.

5.6 Matlab Simulations, Histograms, Run Charts and Inferences

Chemical treatment. The data is shown in the table below. This data is from four

types of chemical treatment applied in variety of potatoes in Kenya. The treatments

included Agrifos 110, Agrifos 65,untreated control and Ridomil alternated with Dithane

(Conventional control) Treatments were applied at 7-day intervals during the crop season.
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The sprayer was calibrated prior to commencement of fungicide application so as to

deliver spray volume as per the recommendation of the product. Treatment applications

were initiated at the onset of late blight symptoms. Fungicides were applied with lever-

operated knapsack sprayers with maximum working pressures of approximately 300 kPa.

To compare e�ectiveness of 4 types of Chemicals treatment the yields of equal size plots

of the potatoes variety were collected

Table 5.1: Data of yields after treatment

Agri110 33.45 34.23 34.67 21.23 21.43 25.6 27.56 28.33
30.34 36.95 39.05 35.33 33.00 37.85 34.55 33.45
27.90 33.33 40.75 34.55 35.14 38.35 41.00 39.55

Agri65 29.86 35.96 32.91 22.56 19.67 19.57 27.77 25.57
28.90 35.91 37.78 36.75 34.56 33.50 35.28 28.95
25.14 28.95 36.87 33.15 31.00 38.90 37.98 38.95

Cont 26.50 29.43 27.32 11.24 13.68 12.21 17.22 16.47
15.22 35.22 32.80 33.25 26.77 29.20 27.50 14.87
17.45 18.45 32.00 29.07 26.85 25.70 29.56 31.00

Rid 31.58 33.54 35.05 24.95 24.23 23.85 29.85 26.40
31.75 34.87 37.10 36.00 35.35 34.80 32.95 31.00
30.05 34.50 38.72 32.80 35.87 39.45 39.56 40.66

We are going to simulate this in Matlab, run the MCMC and perform the inferences.

In our simulation we are going to discard the �rst couple of runs (simulations) as burn

in, then simulate the rest according our objective. We will then plot the run charts and

histograms of all the parameters. We will conclude by �nding the sample means and

variances of the three parameters We will also try to change the starting points just to

see the convergence behavior. In my simulation populations variance was assumed to

vary The following are the charts and histograms of the parameters

The parameters estimates after 100000 simulation and 20000 burn-in, is shown in the

Table 5.2
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Figure 5.6: The Runchart and Histogram of Angril110

Figure 5.7: The Runchart and Histogram of Angril65
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Figure 5.8: The Runchart and Histogram of Control Treatment

Figure 5.9: The Runchart and Histogram of Ridomil
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Figure 5.10: The Runchart and Histogram of µ2

Figure 5.11: The Runchart and Histogram of τ2
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Figure 5.12: The Runchart and Histogram of σ2

Table 5.2: Parameter Estimates

parameters First Trial Trial 2

σ2 38.50 37.36

τ2 77.63 79.12

θ 27.76 26.30

µ1 31.93 31.96

µ2 30.63 30.45

µ3 24.96 24.93

µ4 25.05 24.84
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Chapter 6: Conclusion

In this thesis we proposed a Gaussian Hierarchical Bayesian model with a higher multidi-

mensional joint posterior distribution which is not a standard distribution. The goal is to

sample from this multivariate joint posterior but due to the curse of dimensionality and

the nature of the distribution we could not easily draw samples from such a distribution

.To safe the day we proved and showed techniques of computing full conditionals, we did

this by presenting an MCMC technique and graphical inference algorithm for a Bayesian

hierarchical model. The MCMC method we used in this thesis is Gibbs sampling. This

sampler requires that we obtain closed form univariate full conditional distributions. We

hereby showed that our Gaussian hierarchical model admits closed form full conditional

distributions for all the parameters in the model. We showed and proved important

probability results which came in handy when computing the full conditionals. Con-

jugate priors,though not highly mentioned in this thesis played a signi�cant role when

computing full conditionals, especially those that involved the product of normal and

inverse gamma. We �nally generated samples from these full conditionals on matlab

using Gibbs sampling and given real data. From the simulated samples and after a burn

in we estimated the parameters of our model. We have accomplished our mission for now

but there is still more which can be done to improve Bayesian directed acyclic graphical

model. This leads to a couple of interesting future ideas.

6.1 Future Work

. Since we considered a continuous distribution case model, a possible future research is

to set up a similar model for discrete distribution or a mixture of continuous and non
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continuous(discrete case). Every model need to be tested and checked, hence another

possible research is to perform model checking and model �tting. It will be interesting to

perform model transformation if need be and check how such transformation a�ect the

multivariate joint posterior. It will also be interesting to use other inference techniques

on this model and see how they compare with Gibbs Sampling.

There is still very little which has been done on attributes of hierarchical Bayesian model

selection.

A parallel approach using other MCMC algorithms like Metropolis Hasting (Gibbs is a

special case of MH) would be interesting to see how they compare.
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