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Chapter 1: Introduction

1.1 Motivation

Software testing is a very important task during software development and it can be used

to improve the quality and reliability of the software system. Unfortunately, software

systems are becoming larger and more complex. Therefore, manually generating test

data of these systems is expensive, time consuming, and error prone[68]. One potential

way to reduce the cost and increase the efficiency of software testing is to generate test

data automatically.

Object-oriented software systems are heavily depended on the internal state of both

receiver and argument object instances [14]. Objects are instances of a class, and they

significantly increase the complexity of testing [59]. To alleviate the burden in object-

oriented unit testing, a number of automated test generation tools generate test inputs

for a unit (e.g. a class, or a method) [22, 31, 59, 79]. These test inputs are in the form

of method call sequences, where (1) desirable primitive method arguments values(e.g.,

integer) are automatically generated, and (2) desirable method argument objects and

receiver objects (e.g., a container class such as stack and list) are automatically generated

via a sequence of method calls [59].

When automatically performing unit test generation for object-oriented programs

like Java, the primary goal is to achieve a high or full code coverage (such as branch

coverage), of the class under test (CUT), which gains confidence in the CUTs quality and

functionality [94]. However, automatically generating test inputs for a unit test requires
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a desirable sequence of method calls that create and put objects into particular states.

Yet, how to generate these desired objects to achieve high code coverage is a challenging

task which hinders the automated test generation approaches [14]. A study shows that

failing to generate desirable objects is the main cause of low code coverage for automated

test generation tools [59].

There are many automated test input generation approaches, including random test-

ing, symbolic execution, and search based approaches. Random testing approaches

[22, 79] are easy to implement, applicable, and the fastest in execution [105]. Despite the

advantages that random testing provides, it is still considered weak for achieving high

structural coverage. The main reason for low coverage is that random testing faces a

challenge in producing a sequence of method calls with specific arguments for complex

programs. Approaches based on symbolic executions (e.g., KLEE [20]) explore path

conditions in the program under test and collect constraints from all inputs from the

branch statements. If the collected constraints are feasible, then a constraint solver is

used to generate input from them. However, these approaches face a challenge of scala-

bility if the program under test is complex. Finally, the search based approaches employ

meta-heuristic optimization techniques, such as Genetic Algorithms, and use a fitness

function that guides the search toward better solutions. Thus, the effectiveness of the

search algorithms is improved as long as the fitness function distinguishes between better

and worse solutions [13].

Search based test generation approaches (e.g., EvoSuite [31]) have already been shown

to be effective for generating test data that achieves high code coverage and reveals

failures for object-oriented programs [1, 13, 16, 31, 50]. However, in particular circum-

stances, these approaches face challenges which negatively affect their ability to achieve

high structural coverage for certain programs. When we have a large number of methods
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to test, each of which can take some parameters as inputs, then finding the potential

method calls (to optimize the solutions) can be a challenge due to the large size of the

search space [48]. In addition, the efficiency of the search based approaches decreases

for programs that have branch predicates using boolean or string constants, i.e., the

flag problem [68]. In this case, the resulting fitness function only produces two differ-

ent values. Therefore, no heuristic can be defined to guide the search, since the fitness

function landscape contains plateaus [13] [68]. Finally, the usage of non-primitive data

types as parameters of the methods, such as interfaces and object references, reduce the

effectiveness of the search based test data generation because it needs to decide which

class candidate to instantiate [68].

In response to this context, this thesis proposes scalable automatic techniques to au-

tomate the test input generation process. The techniques developed in this thesis utilizes

the static techniques to exploit program dependencies (e.g., control and data dependen-

cies) to generate desirable test inputs and strengthen structural coverage testing.

The statically-identified dependence information enhances two search-based approaches:

a genetic algorithm (GA) and memetic algorithm (MA). In particular, we introduce two

novel search-based approaches, called GAMDR [2] and MAMDR [1], to handle large

search space. We use search-based approaches [15] [16] and augment with method de-

pendency relations (MDR) [104] to guide the search to generate relevant sequences of

method calls that achieve high code coverage for unit-class testing.

1.2 Research Objectives

The overall objectives of this research are to investigate and establish approaches that

can effectively overcome some of the limitations of the current state-of-the-art search
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based testing techniques for object-oriented programs. Particularly, we want to propose

a novel automated search based testing technique which is able to generate more high-

covering test data.

Although, we implement our enhancement techniques in Java as an example of object-

oriented language to prove the concepts, our approach, however, is applicable in general

to any typed object-oriented language.

1.3 Scope of Research

In our view, state-of-the-art search based approaches mostly focus on randomly-created

sequences of method calls and, thus, neglect to support of object-oriented language

features such as encapsulation, inheritance, and polymorphism. They fail to generate

test data, and therefore, fail to produce desirable object states and the sequences of

method calls for non-primitive method arguments or receiver [59].

In response to this context, this thesis mainly covers the following topics in the soft-

ware testing area, search-based software testing of object-oriented systems, and struc-

tural coverage testing.

1.3.1 Search-Based Software Testing of Object-Oriented Software

In this thesis, we focus on incorporating knowledge about a program into the search

process for alleviating the current limited level of dealing with object-oriented language

features. Thus, one focus of our research is to propose techniques that deal effectively

with object-oriented programming concepts. At a high level, we see that we can use

variety of analysis techniques to detect data dependency relations within the class un-
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der test, and then adapt search based approaches to take advantage of this informa-

tion. If such dependency information is available, our techniques will help the search

to strengthen structural coverage and find better solutions than state-of-the-art search

based approaches.

In essence, the goal of this research is to precisely identify a root cause that prevents

achieving high structural coverage and steer search based test data generation in a di-

rected, automated manner toward effectively and efficiently exploring the search space.

Therefore, this leads to another focus area, which is to investigate different techniques

that extend the search based techniques to generate input data that simultaneously

deals with both complexity and scalability problems. Hence, the suggested techniques

should be simple, scalable, and effective in practice when, combined with a search based

technique.

We believe that precise knowledge of data dependence can be used to guide the

search to only explore regions in the search space that help to generate required input

data [100]. This tends to increase the efficiency of the search in general, and cover as

much code as possible even in the presence of complex predicates in particular.

With these objectives in mind, it is important to demonstrate the effectiveness of

our techniques and its efficiency at improving structural coverage. Hence, we will em-

pirically validate the proposed techniques by designing a set of experiments to compare

their capability to improve structural coverage with the state-of-the-art search based

approaches.
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1.3.2 Structural Coverage Testing

The main activity in software testing is to generate test cases that aim to achieve a

high degree of some adequacy criterion. An adequacy criterion is very helpful for testers

and plays two fundamental roles in software testing [106]. First, it can be used as a

stopping rule that indicates how sufficiently the testing has been performed. Second, it

can be used as a measurement of degree of test-suite quality. Zhu et al. [106] define

three different test adequacy criteria (1) structural coverage, (2) fault-based, and (3)

error-based adequacy criteria.

The structural coverage criterion (branch, path, and statement coverage) emphasizes

the need to exercise particular component in the source code of the class under test [106].

For example, the branch adequacy criterion requires that all the branches in the class

under test are exercised during testing [106]. This information can be used to indicate

the degree to which of the source code of the class under test is covered during the

software testing. Although a high code coverage degree does not make test cases more

effective in finding faults, but it offers a high confidence about the class quality and

reliability [52].

This thesis focuses on exploring effective search-based techniques to automatically

generate test cases that cover many branches as possible, and ideally we are going to

compare the results in terms of the achieved branch coverage. The branch coverage was

chosen because it has been shown to be the most commonly considered criteria in the

existing literature [52].
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1.4 Hypotheses and Research Questions

The underlying premise of this research study is that the search must first identify

the regions in the search space that contain feasible test data, and then explore them

to generate required sequences of method calls such that as much code as possible is

covered [59].

The overall objectives of this research formulate a hypothesis that expresses the

intent of what we are setting out to achieve. At a high level, our research hinges on the

following hypothesis:

incorporating the search based test data generation process with data dependency of the

predicates branches can produce test data with high branch-coverage for object-oriented

programs.

To investigate this hypothesis, three research questions are considered:

RQ1: To what extent does the presence of dependencies in the complex predicates

hinder the search for test object-oriented programs using evolutionary testing?

RQ2: How can data dependency analyses be managed in the SBST techniques such

that the structural coverage criteria and scalability are maximized?

RQ3: How effective are the test cases generated using our techniques?

1.5 Contributions of The Thesis

The major contributions of this thesis to existing knowledge can be as follows:

1. GAMDR, a fully automated featured search-based software testing approach for
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Java.

2. A description of how a light-wight static approaches from several researches on test

data generation are incorporated into the design of GAMDR.

3. Different enhancement techniques, such as seeding and local search, are proposed

to improve the effectiveness and efficiency of the search process.

4. An empirical study which evaluates the level of code coverage that can be obtained

using all the proposal presented in this thesis. To this end, we select several open

source Java projects, and compare the performance of our approaches against the

state of the art in test generation, considering random testing and search based

approaches.
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Chapter 2: Background and Terminology

This chapter contains common concepts used throughout the thesis, and they have been

added to make the thesis self-contained. The chapter starts by describing the various

features of object-oriented programming and how these features affect testing of object-

oriented systems. This chapter also defines the difference between procedural and object

oriented testing. Finally, the chapter provides background information on the most of

the topics covered in our technical approaches.

2.1 Object-Oriented Programming

What then, is object-oriented programming?. Booch [19, p. 35] defines it as the following:

Object-oriented programming is a method of implementation in which programs are orga-

nized as cooperative collections of objects, each of which represents an instance of some

class, and whose classes are all members of a hierarchy of classes united via inheritance

relationships.

There are three important parts to this definition: object-oriented programming (1)

uses objects; (2) each object is an instance of a class; and (3) classes are related to

one another via inheritance relationships. In other words, a programming language is

considered object-oriented if it has mechanisms that support classes and data abstraction,

encapsulation, inheritance, and polymorphism [19, p. 35]. The following sections describe
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these concepts.

2.1.1 Data Abstraction (Objects and Classes)

Abstraction is an exceptionally powerful technique that we as humans use for dealing

with complexity [19, p. 38]. In other words, an abstraction focuses on the outside view

of an object, and it takes out unnecessary details and separates an objects necessary

behavior from its internal implementation [19, p. 46].

An object-oriented program is object-based, and composites of interacting objects

that act upon themselves via invoking a sequence of method calls [19, p. 38]. The state

of an object depends on the data that are stored within its fields, and the behavior of

the object is influenced by its state.

In an object-oriented program, like Java, a class is used as the basis of how to

instantiate objects [103, p. 15]. Thus, a class is an abstract data type and it typically

includes attributes, and methods. The attributes are variables that represent the state

of an object, and the methods are operations that typically perform different operations

upon an object, such as altering, accessing the state of an object, or creating a new

object. Thus, the state of an object is affected by the order of method calls upon the

object.

2.1.2 Encapsulation

Encapsulation is one of the primary advantages of using objects, and it is often achieved

through information hiding [19, p. 46]. As Weisfeld suggests [103, p. 19], in good object-

oriented design, an object should only reveal the attributes and behaviors that other
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objects must have to interact with it. For example [103, p. 19], an object that calculates

the square of a number must provide a method to obtain the result, and the details of

its internal implementation remain hidden from all other objects.

In practice, an object-oriented program language (e.g., Java) offers control over the

visibility of member objects . Specifically, the methods and attributes of a class can

be declared as public, private and protected to mark its visibility [19, p. 51]. A class

member (i.e. a data type or method) declared public is visible to all other objects of the

application, and they can directly access it, regardless of which class declares it. A class

member declared private is fully encapsulated, and only the specific objects of the class

that declares it can access it. Finally, when a class member is declared as protected, only

the objects of the class that declares it and objects of all sub-classes of declaring class

can access it.

2.1.3 Inheritance

Object-oriented programming allows a class to inherit attributes and methods from other

classes [103, p. 22]. The most important reason underlying the usage of inheritance is

that defining hierarchy relationships between classes not only facilitates code reuse, but

also organizes classes to inherit commonly used state and behavior from other classes.

Booch [19, p. 56] argues that inheritance is the most important “is a”hierarchy rela-

tion, and it is an important element in object-oriented systems. For example, a cat and

dog are part of the mammal class. All mammals have some common attributes, such as

eye, and hair color, as well as some behaviors (i.e., methods), such as growing hair, and

generating heat. Without the use of hierarchies, the code for cat and dog would need

to define its characteristics explicitly. A better way to avoid this redundancy is to use
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inheritance, the cat and the dog classes need only to include any attributes or methods

that make them unique within their classes, and all common attributes and methods

could be moved up and declared in the class mammal [103, p. 22]. This is known as a

subclass of cat and dog, where mammal is referred to as cat’s and dog’s superclass.

Inheritance thus expresses a hierarchy of abstractions, in which a subclass redefines

the existing structure and behavior of its superclasses [19, p. 57]. As a result, when

the subclass object is instantiated, it contains everything in its own class, as well as

everything from the superclass. For instance, the dog and cat are more precisely specified

mammals, they inherit all of the attributes and methods from the mammal class. As a

result, when the dog or the cat class object is instantiated, it contains everything in its

own class, and it inherits its general attributes from the mammal class [103, p. 23].

2.1.4 Polymorphism

Polymorphism means different forms, and it is tightly coupled to inheritance [103, p. 25].

It allows a method to evoke different behavior in different objects. For example, consider

a superclass called Shape has the behavior called Area, and three subclasses Circle, Square,

and Rectangle all inherit directly from Shape. Even though, Shape has a Area method,

subclasses, such as Circle, and Square, override this method and provide their own actual

implementation of Area. The actual method to invoke is identified at run time as it

depends on the type of shape. Invoking the Area method on a Circle object calculates

area of a circle, and invoking the Area on a Square object calculates area of a square

[103, p. 172].

Polymorphism is a feature that allows one generic interface to be used to respond

to some common set of behaviors (i.e., methods) in different ways. This is the essence
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of polymorphism, a single object like Shape can have more than one form, and when a

message is sent to different objects, the different objects exhibit different behavior [103,

p. 155].

2.1.5 Java Generics

In Java, generics enable types (e.g., Integer, Double, or String) to be parameters when

defining classes and methods, such that the same code can be called with arguments of

different types [80]. It is very similar to formal parameters used in class and method

declarations. However, the inputs to formal parameters are values, while the inputs to

type parameters are types [32].

For example, generic concepts can be applied to create a generic method for sorting

an array of objects, then the generic method can be invoked with Integer arrays, Double

arrays, or String arrays, to sort the array elements. In a nutshell, generics are a feature

that improves code reusability in which the same code can be reused with different

inputs.

2.2 Object-oriented Features that Affect Testing

The object-oriented paradigm offers numerous benefits in software development by in-

creasing software reusability, reliability and extendibility. Although features such as

encapsulation, inheritance, polymorphism and generics eliminate some problems typical

of procedural programs [103, p. 6], they introduce new challenges in software testing [61].

In the following we consider these features separately to identify the different prob-

lems each of them can introduce in software testing.
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• Encapsulation is used to hide some of an object’s attributes and methods from other

objects. The object’s attributes, thus, can only be accessed through a sequence of

specific method calls. Because of the hiding information, the observation of the

state of an object can become very hard [39]. The hidden state, which is referred to

as the State Problem [72], poses a serious challenge to the object-oriented software

testing.

• Inheritance allows a class (i.e., subclass) to share attributes and methods from

preexisting classes (i.e., superclasses). Even though this feature provides the idea of

reusability and extendability, it opens the issue of retesting [39]. Methods inherited

from superclasses should be retested in the context of subclasses [61].

• Polymorphism is the capability of similar objects responding in different ways to

the same message. In other words, it allows a method exhibits different behavior

in similar objects. Although polymorphism helps make object oriented programs

more flexible and reusable, it introduces undecidability in program testing because

the exact implementation of a method cannot be known until runtime [39].

• Generics allow programmers to parameterize classes and methods with types, such

that the method can be called for different types [32]. While generics prevent code

duplication, this feature makes it difficult to know what is the exact type for generic

type parameters [32]. This is a particularly serious problem for automated test data

generation because it will blindly attempt to instantiate a new object to satisfy

any generic parameters [32]. In fact, this problem is quite common in Java, as the

Java compiler removes anything that was declared generic on the source code, such

that any generic parameter is converted to type Object in bytecode [81].
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On the whole, it is not possible to test a single class in isolation [84]. A test program

for object-oriented software typically consists of an interactions of methods from multiple

classes, which brings objects to complex and different states [94]. Thus, the space of

potential inputs of a class under test can be huge to systematically and automatically

explore.

2.3 Procedural Versus Object-Oriented Programming

Despite automated test generation has received a great deal of attention, automatically

generating sufficient test inputs still remains a challenge task [94]. Lots of early work

has been mainly focused on procedural programs such as C programs [68], but recent

research has been focused on generating inputs for object-oriented programs such as Java

[14][22][79][94].

Generating test inputs for object-oriented programs is more difficult and complicated

than for procedural programs. In procedural programs, for example, the data and the

operations (i.e., procedures, functions, and subroutines) that manipulate the data are

separated [103, p. 19]. As a result, procedural programs testing typically require gener-

ating input of values for arguments of procedure or function under test as well as global

variables. On the other hand, in object-oriented programs the data and the operations

(called methods), which manipulate the data, are both encapsulated in the object [103,

p. 20]. Thus, object-oriented testing not only requires generating primitive inputs, but

also requires generating desirable object instances for both receiver object and arguments

of method under test.

Procedural programs, also, are typically full units whose private operations are not

modified by outside programs [39]. As noted in previous sections, object-oriented pro-
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grams allowing the definition of private attributes and methods can be accessed only

through the class itself and its subclasses. This restricted accessibility means that it is

more difficult to observe an object’s state. Testing is therefore more difficult because the

only way to influence and observe an object’s state is through a class’s or other class’s

methods. In addition, an object could have attributes of primitive types and other object

types which increases the complexity and size of the search space. Because of these diffi-

culties, the automatic generation of test data is still an open problem in object-oriented

software testing.

2.4 Test Generation

Test data generation is both one of the most important tasks and critical challenges

in software testing since it can greatly reduce the effort and cost needed during the

testing process [6]. It comes as no surprise that in the past few decades, a significant

number of different techniques for automatic test case generation have been developed

and investigated.

This section considers various automation techniques for test data case generation,

including: (1) random testing, (2) symbolic execution, and (3) search-based testing.

2.4.1 Test data generation by random testing

Random testing, an approach in which the process of generating test inputs is simply

performed randomly, has been shown to be a remarkably effective and simple technique

for automated test input generation [7]. In random testing, the input domain of the

program under test is defined, test inputs (i.e., test cases) are randomly selected from



17

this domain, and then the program structure is executed and the output of the program

is observed for the test inputs [47]. The most distinguishing features of random testing

are its ability to generate large numbers of test cases and its scalability to large software

programs [79]. This is because random testing randomly generates test cases and is often

without prior information about the complexity and size of the program under test [12].

Several approaches have been proposed that mainly focus on improving the effective-

ness and capability of the random test technique for fault detection [78]. One example

of a proposed approach is adaptive random testing (ART) [21]. ART focuses on enhanc-

ing the fault-detecting effectiveness of random testing by introducing a certain level of

control over how test inputs are evenly selected across a program’s input domain [78].

Ciupa et al. [23] also suggest adaptive random testing for object-oriented programs

(ARTOO). The approach is based on the program’s notion of object distance and ap-

plies ART approach [21] for testing object-oriented programs. Another well-known and

state-of-the-art random testing approach for object-oriented programs is Randoop [79],

which uses feedback information to generate test inputs that explore different a program

under test executions. Additionally, Groce et al. [44] propose a random testing approach

that is based on using a “swarm”that creates test inputs by using randomly generated

configurations that omit randomly selected features. This feature omission leads to bet-

ter exploration of the search space of a program under test and improves fault-detection

[44].

Random testing is most often criticized because it typically fails to produce particular

test inputs to trigger unanticipated behaviors and fails to cover all of the testing targets

[47]. To illustrate, consider a program under test that takes a single integer input x

and contains a conditional statement such as if(x == 0). In random test generator , the

probability of randomly generate the required value of x to cover this branch is extremely
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low [12].

2.4.2 Test data generation by symbolic execution

King proposed symbolic execution in 1976 [63] that contrasted with random testing

by statically analyzing a program’s source code to generate test data [6]. Symbolic

execution has been used for a number of applications in software testing, such as the

automatic generation of test data to improve branch coverage and detect software errors

[20][37][62], fault localization [83], and regression testing [88]. A number of different

tools for symbolic execution has been developed for symbol execution. For example, a

well-known symbolic execution tool is PathFinder [99], which automatically generates

inputs to achieve high structural coverage of Java programs. Klee [20] and CUTE [90]

are symbolic execution tools for C language. Finally, Pex [95] targets .NET languages.

The key idea behind symbolic execution is to replace concrete inputs of the program

with symbolic variables that represent all possible values [6]. During symbolic execution,

the constraints on inputs in branch statements are collected. A set of path conditions is

modified to record the new constraints on the symbolic values [78]. The path condition

is a boolean formula and consists of algebraic expressions and conditional operators [90].

Symbolic execution uses constraint solvers (e.g., Z3 [25]) to produce concrete values that

make each path condition true [78]. The goal is to generate concrete values for inputs

that execute every feasible path condition [90].

Although the symbolic execution technique offers an automated mechanism to ex-

plore all feasible executions of a program’s paths, the technique suffers from significant

limitations when it is applied to large, real programs [6]. One of the main limitations

of this technique is its inability to symbolically execute all program paths, also known
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as a path explosion [6]. Another limitation is that it cannot handle constraints involv-

ing floating point variables [6]. Additionally, symbolic execution is not able to detect

the number of iterations of loop programming structures because loops dramatically in-

crease the number of paths [68]. These problems have been addressed to improve the

technique’s usefulness on real world software testing programs.

Researchers in software testing have proposed different techniques to partially alle-

viate the problems just described. For example, dynamic symbolic execution (DSE),

such as DART [38], or concolic execution, such as CUTE [90], attempt to overcome the

problem of solving complex constraints. The idea is to simplify a path condition that a

constraint solver cannot handle by substituting selected expressions in the path condi-

tion with runtime values. Another approach is to hybridize the DSE and search-based

approaches to solve floating point computations [6]. Inkumsah and Xie [56] introduce

a hybrid tool, called EVACON, and report the first results for a combined DSE and

a genetic algorithm. Despite a large body of work has shown the benefits of symbolic

executions in automatic test data generation, more research is needed to provide more

effective general solutions [6].

2.4.3 Test data generation in search based software testing (SBST)

The aim of search based software engineering (SBSE) is to use a variety of metaheuristic

search techniques to automate many human-based software engineering activities [54].

Metaheuristic techniques, such as genetic algorithms, have been proposed in different

areas to automate software engineering processes, e.g., test data generation, model clus-

tering, and cost/effort prediction [24].

One major area where SBSE has been much interest is Search-based software testing
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(SBST) [54]. SBST has been successfully applied in a wide range of software testing

problems such as object-oriented programs [13][97][31], web applications [4], and aspect-

oriented programs [50]. SBST is the process of generating test cases utilizing search-based

algorithms to find test data. SBST uses fitness functions to capture the improvement

of the search process [6]. The fitness function is heuristic and used by search to both

measure and compare solutions and direct the search into potentially promising areas of

the search space to reach the global optimum [68][52]. The main search-based algorithms

that have been applied to automate the test input generation process in software testing,

including hill climbing, alternating variable method, and genetic algorithms [69].

What distinguishes SBST from other test input generation techniques is the process

of finding test data itself. In contrast to symbolic execution, for example, SBST is

able to handle different primitive data types such as floating-point and integral numbers

[54]. In addition, SBST is widely applicable because any test objective, in principle, can

be transformed into a fitness function [54]. However, despite the large body of work on

SBST [52], there are still several limitations that have been impeded the wide acceptance

of these techniques. McMinn [69] discussed potential research areas to improve various

aspects of the SBST, including: handling the size of the search space, handling the

execution environment, and hybridizing SBST with DSE to improve testability.

This section describes some SBST algorithms that have been applied in software test

data generation and includes: (1) local search algorithms, (2) evolutionary algorithms

and (3) memetic algorithms. In addition, the fitness function is described and the concept

of domain-input reduction is explained.
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2.4.3.1 Local Search Algorithms

Local search algorithms operate and aim to improve a single solution at a time by moving

to local neighbor solutions of better fitness [69]. Empirical studies have shown that this

search technique can be very efficient in practice [53].

With local search algorithms only the neighborhoods of one solution are considered

and the fitness function is used to evaluate possible moves within the search space to

reach a local optimum [53]. Often, the search can easily yield a local optimal solution

but not represent a globally optimal solution. To prevent trapping the search in a local

optimum, various strategies are used [68]. For example, the search is restarted with a

new random solution in order to find potentially better solutions and enable the search

to explore a wider region of the search space [54].

Here, we provide a brief review of two local search techniques that have been used

in software test data generation, namely Hill Climbing (HC) and Alternating Variable

Method (AVM).

1. Hill Climbing (HC) is a simple local search based technique that is both effective

and easy to implement [53]. HC usually starts with an initial solution chosen

randomly from the search space. At each iteration, the neighbors to the current

solution are evaluated. When a fitter neighbor solution is found, it replaces the

current solution. The neighbors of that solution are then evaluated to look for

fitter neighbors. The process continues until no fitter neighbor is found for the

current solution. At this time the search has reached a local optimum [68]. HC

attempts to escape local optima by continually restarting the search. HC is often

restarts as many times as computing resources allow [54].

2. Alternating Variable Method (AVM) is a similar technique to HC developed
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by Korel [64]. The problem with HC is that can get trapped at local optima. AVM

solves the problem to some extent by trying to locally optimize each input variable

in isolation. This helps the search to move to the next variable if a local optimum

is reached [60]. The AVM has been shown to be effective and efficient for covering

branches for C programs [53].

The AVM initializes all the variables with random values. Then, it starts with

exploratory moves on the first variable by increasing or decreasing its value a small

amount. In the case of integral types, for example, an exploratory move starts at

+1 or -1. If the changes improve the fitness function, larger changes called pattern

moves are made. For example, in the case of integers, the search tries +2 then +4

[34]. A series of pattern moves is made in the same direction as long as the fitness

function is improved by each pattern move [64].

When there are no further improvements in the fitness function, the search goes

back to the exploratory moves on the same variable. Once there are no further

improvements of the variable value, the search moves to consider the next variable

for an exploratory move. If the entire set of variables have been explored, the

AVM restarts from another generated input values until the computing resources

is exceeded( e.g., the number of fitness evaluations) [55].

2.4.3.2 Evolutionary Algorithms

In contrast to local search algorithms, evolutionary algorithms are considered to be a

global search because they simultaneously operate with more than one candidate solution

[54]. They are based on the idea of genetics and evolution where new and fitter sets of the
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candidate solutions, often called individuals or chromosomes, are created by combining

portions of fittest candidate solutions [68]. Genetic Algorithm (GA) is probably the most

commonly applied technique in evolutionary algorithms [68]. A standard GA algorithm

for testing can be seen in Figure 2.1.

1. P ← Randomly generate initial population
2. While criterion is not met do
3. Evaluate fitness of each individual in P
4. I1, I2 ← Select two parents from P
5. O1, O2 ← Crossover parents to I1, I2 form new offspring
6. P ′ ← Mutate O1, O2

7. P ←P ′

8. End While

Figure 2.1: The genetic algorithm applied in testing

GA starts with a random initial population of individuals and then the algorithm

enters evolutionary iterations in the following order: 1) each individual is executed and

its fitness is computed; 2) individuals with a higher fitness value are selected for popu-

lating the next generation; 3) a recombination operator is applied by taking two parent

individuals and producing two new offspring; 4) after recombination, a mutation is ap-

plied, which produces small random changes to the offspring; and 5) new offspring fill

the population of the next generation. The evolution is performed until a termination

criterion is met, e.g., a time budget or number of generations. To avoid the possible

loss of the fittest individuals (elitism), the new population is always initialized with a

number of fittest individuals without any modification.

The individual length, population size, crossover, and mutation probability values in

GA are referred to as GA parameters. Additionally, selection, crossover, and mutation

are referred to as GA operators.
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There is a subset of evolutionary algorithms, called Genetic Programming (GP),

that shares many characteristics with GA, e.g., the operators of selection, reproduction,

and mutation. However, the difference between the two is the representation of the

individuals. In GP, individuals are normally represented as tree-structures [84][100].

2.4.3.3 Hybrid Evolutionary Algorithms

Hybrid evolutionary algorithms intrinsically integrates evolutionary algorithms with other

techniques, such as local search algorithms, to improve the performance of the evolu-

tionary algorithm such as speed of convergence [45]. In the following, we provide a brief

description of some of techniques that have been incorporated with the evolutionary

algorithm.

1. Hybrid Approaches Incorporating Local Search Algorithms. Hybridiza-

tion between evolutionary algorithms and local search algorithms is known as

Memetic Algorithms (MAs)[77]. On a high-level view, a genetic algorithm (GA)

is used to search for more globally optimal solutions and a local search algorithm

(e.g., HC) is applied to improve each solution at the end of each generation [53].

As a reported in the literature, MAs have been successfully applied to testing and

showed better performance than evolutionary algorithms and local search algo-

rithms [13][16][34][53].

2. Hybrid Approaches Incorporating Dynamic Symbolic Execution (DSE).

The integration of evolutionary algorithms and dynamic symbolic execution has

in recent years contributed to a large number of hybrid evolutionary approaches

[6]. Evolutionary algorithms (e.g., GA) scales well and can handle floating point
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computation well, but it may struggle to generate specific values to cover difficult

branches [36], while DSE uses constraint solvers to precisely calculate the exact

input values, but it may fail to solve floating point constraints [6]. This led several

authors in the literature to propose a combination of GA and DSE to deliver

the best of both approaches and produce better results in testing than individual

approach [36] [56][67].

2.4.3.4 Fitness Functions

Fitness functions are heuristics and a fundamental part of any search algorithm. They

reward individuals to guide a search toward fitter individuals and promising areas of the

search space in the hope of finding a global optimal solution. In the context of structural

criteria such as branch coverage, several fitness function have been proposed, and the

most popular fitness function used to find test data to cover a target branch integrates

two metrics, the approach level and the branch distance [101]. (More details can be

found [8][68]).

1. Approach Level is usually represented with an integer and used to show how

many of the conditional statements were not executed by a particular input to

reach the target branch [8].

2. Branch Distance is used to solve the constraints of the predicates in the control

flow graph. The branch distance computes the difference between a predicate value

and a data input to execute the branch that leads to the target branch (see Tracey

et al. [98] for more details). For instance, for predicate i<10 when the value of i is 2,

then the distance to cover the false branch is x = 10− 2 [36]. However, the branch
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distance has to be normalized to x
(x+1) [8], where x is the branch distance. This

normalization guarantees that approach level is always more important than branch

distance. In practice, to evaluate the fitness function the CUT is instrumented at

bytecode level [8].

2.5 Conclusion

This chapter started by providing a basic understanding of the principles and the descrip-

tion of various features of object-oriented programming (Section 2.1). It was followed

by a brief discussion of the challenges that object-oriented features impose for testing

(section 2.2). Section 2.3 presented the differences between the object-oriented and pro-

cedural programming. Finally, several approaches and automated test input generation

techniques were presented, and their limitations were analyzed (Section 2.4).

Through this critical literature review, we concluded that search-based test data

generation is an active research area, leading to several recent searching techniques.
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Chapter 3: Related Work

In this chapter, we discuss the most closely related Search Based Software Testing (SBST)

techniques, with particular attention paid to their strengths and weaknesses. In addition,

the impact of search space reduction and the seeding to improve the performance of SBST

approaches for testing object-oriented programs is explored.

3.1 Search Based Unit Testing

In 1976, Miller and Spooner [75] were the first to propose a simple search technique

that deals with generating floating-point test data [69]. Little progress was made until

1990 when Korel [64] extended Miller and Spooners research and developed a search

technique. This search technique targets each branch predicate in turn, known as the

Goal Oriented Approach [68]. It employs the alternating variable method (AVM) local

search to generate test data for procedural programs. Since then, the use of search based

techniques has been widely investigated and shown great potential in software testing

[68]. According to a recent survey, there has been a rapid increase in the number of papers

in the area of SBST since 2001 [52]. The most widely used search based techniques are

genetic algorithms (GAs), genetic programming (GA), and hill climbing (HC) [52].

In 2004, Tonella [97] applied a genetic algorithm (GA) testing technique to test

object-oriented programs such as Java classes and developed a tool called eToc. In this

approach, a population of test cases was generated when a new branch was targeted.

Test cases were well formed and represented an actual execution of sequence method calls
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with their caller and inputs. As a result, special mutation operators and the crossover

were implemented to enforce the feasibility of the new generated test cases. The fitness

function used to guide the search was the ratio of the number of control dependences

traversed during the execution of a test case over all the control dependences that lead

to the target branch. eToc was evaluated on seven different Java classes and covered

relatively high branches when compared to random testing [97].

Despite the fact that eToc was the first search based technique for testing object-

oriented programs, eToc does not address several object-oriented features (e.g., encapsu-

lation, and inheritance). Furthermore, eToc's fitness function does not exploit the branch

distance [68]. McMinn [68] argues that if the fitness function uses only the number of

control dependences, the search will have no guidance on how to enter nested branches

and cover the target branch. In other words, the search space will contain plateaus,

which degenerate the search to a random search if it reaches such a plateau.

The predominant approach in SBST is to separately target each test goal (e.g.,

a target branch), and then a separate search is undertaken to cover this goal (e.g.,

[57][97][101]). One of the problems facing this approach within evolutionary algorithms

(e.g., GA) is that when each branch is individually chosen, the predicate of that branch

might not be executed by any of the test cases in the population [68]. As a result, the fol-

lowing studies addressed the issue of targeting a single test goal each time and proposed

approaches in which all test goals (e.g., target branches) are targeted simultaneously

[14][16][31].

Arcuri and Yao [14] applied and analyzed different search algorithms on the testing

of Java container classes (e.g., Vector, Stack, LinkedList, and Hashtable). Hill climbing

(HC) with random restarts, a genetic algorithm (GA) and memetic algorithm (MA)

were used and compared. Their empirical study showed that the MA results were the
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best among the algorithms. Arcuri and Yao [14] also proposed a more advanced fitness

function that integrates the normalized branch distance with the total number of covered

branches and the length of test cases. Based on the empirical evaluations, similar to eToc

[97], Arcuri and Yao [14] approach only targets individual classes (i.e., container classes),

and cannot generate sequence of method calls that involve more than one class [94].

Barsei et al. [16] proposed a hybrid global-local search (MA) tool for Java classes

called TestFul. Their approach combines GA and HC to generate tests that cover the

maximum number of branches of the class under test (CUT). The GA is used to search

for the test that has higher coverage and explore all the internal states of the CUT. The

HC is used to target uncovered branches. Barsei et al. [16] use a fitness function that

consists of three parts: the length of the test case that must be minimized, and both

the number of covered statements and branches that must be maximized. TestFul is

a semi-automated approach, and it requires the user to provide some XML description

of the CUT to enhance the efficiency of the approach. TestFul also requires the user

to manually add additional classes that can be used as concrete implementations of the

abstract classes and interfaces [16]. As a result, the empirical evaluation of TestFul was

only on 15 classes [16][76]. However, TestFul generated tests with higher branch coverage

when compared to eToc [16].

EvoSuite [31] automatically generates and optimizes whole test suites towards sat-

isfying a coverage criterion, e.g. branch coverage. EvoSuite uses a GA to evolve and

optimize whole test suites that consist of a different number of individual test cases to

alleviate the problem that derives from the infeasibility and difficulty of targeting each

branch in turn. In addition, the search is guided by a fitness function that calculates

the number of executed methods and the minimum normalized branch distance for each

of the uncovered branches in the CUT. The empirical study showed that EvoSuite is
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superior to the traditional approach that targets one branch at a time [31]. Recently,

the GA search in EvoSuite has been combined with the local search alternating variable

method (AVM) to optimize the values in a specific test case of a test suite [33]. Their

result showed that the combined techniques increased the branch coverage by up 32%

over GA [33].

While our work is broadly equivalent, it is not identical to the algorithms used by

Arcuri and Yao [14] and Barsei et al. [16]. Our approach is different in three aspects.

First, our approach is fully automated to deal with different object-oriented features,

such as inheritance and polymorphism. Second, we fully statically analyze the CUT and

automatically leverage method dependency relations (MDR) [105] to avoid exploring the

whole search space and to augment both the efficiency and effectiveness of the search.

Lastly, we implement a new strategy to seed different types of values (i.e., primitive,

non-primitive and arrays) during the search process to generate test data inputs that

cover complex program branches.

3.2 The Chaining Approach and State Problem

It has been shown that the internal state of objects can cause problems for search based

software approaches [52]. As defined by Harman [52], the internal state problem occurs

when certain target branches are controlled by predicates whose values depend on state

variables. As a consequence, the search requires finding a sequence of method calls,

which involves creating objects and invoking methods from multiple classes, to change

the state variables into the proper values required to cover the target branches [94].

These types of optimizations can lead to a loss of guidance in fitness function [72].

McMinn and Holcombe [72] argue that in the presence of the state problem, an
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arbitrary call to the method under test (MUT) may not cover a target branch. Therefore,

extra guidance must be provided to search for method calls and data inputs that change

the object state to the right internal state [72]. As a result, McMinn and Holcombe

proposed a solution using the chaining approach developed by Ferguson and Korel [27].

The chaining approach [27] originally was used to generate test data for programs and

applied data flow analysis to find previous program statements on which a target branch

depended. Those statements are sequences of events, and the alternating variable method

(AVM) search was used to generate data input to execute these statements to cover the

target branch. However, McMinn and Holcombe [72] combined the evolutionary search

with the chaining approach for testing procedural programs. In their approach, if the

search failed to cover a target branch, the chaining approach performed and identified a

relevant sequence of functions that needed to be executed to cover a target branch. A

simple initial experiment with a preliminary version of the system was conducted, and

the results showed the effectiveness of the proposed approach.

Although applying the chaining approach can be an effective way to generate test

data, evaluating all possible transitional statements to cover the target branch is a very

expensive process [52]. As a result, the aforementioned approaches were only evaluated

with a small number programs. In contrast, our approach is fully automated and handles

different features of object-oriented programs and their size, which can vary by an order

of magnitude [1].

3.3 Input Domain Reduction

The input domain reduction technique typically deals with the identification of irrelevant

variable inputs and eliminates them from the search space and the scope of testing to



32

reduce test effort [48]. Harman et al. [48] were the first to theoretically and empirically

explore the input domain reduction for the SBST.

The search space is based on the set of possible input domains of the program under

test [48] . In particular, the input domain in object-oriented program testing is gener-

ally considered all the public methods and constructors of the class under test (CUT),

including the primitive and non-primitive parameters [48]. The search-based approaches

for object-oriented programs are hindered by the explosive size of the input domain of

the object-oriented programs [94]. It is possible, however, that some methods in object-

oriented programs do not determine whether a branch will be covered or not [50]. The

input domain reduction avoids the generation of irrelevant methods and variable inputs

from the input domain of the CUT using various techniques. Thereby, reducing the size

of the search space and potentially enhancing the search process [84].

In the next subsections, we provide an overview of three techniques that have been

used to perform input domain reduction for effectively improving code coverage results.

These techniques include program slicing [102], purity analysis [87], and method depen-

dence relations (MDR) [105].

3.3.1 Program Slicing

Program slicing is a static technique that focuses on selected aspects of semantics based

on a slicing criterion that helps to create a reduced version of a program [102]. The

slicing criterion captures the semantic of interest, while the process of slicing deletes

any parts of the program that cannot affect the slicing criterion [102]. Based on the

slice criterion, it is possible to construct two forms: a backward or a forward slice. A

backward slice contains all the statements of the program that could influence the slicing
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criterion, whereas a forward slice contains those statements which can be influenced by

the slicing criterion [49].

The program slicing technique can therefore provide precise guidance for the search

process since it slices away irrelevant statements of the program under test and helps

identify which input variables can not influence the coverage of a target branch. As

a result, the program slicing technique has been used to reduce the input domain of

search-based software testing (SBST) approaches [49][48][50][71].

Harman et al. [48] were the first to theoretically and empirically explore the search

space reduction for the SBST. Their study analyzes the relationship between removing

irrelevant input variables and SBST algorithms, including GA, HC and MA. In their

work, static analysis was used to remove input variables that are irrelevant for determin-

ing whether a target branch will be executed or not, thereby reducing the search space.

Their empirical study showed that irrelevant input removal improved the performance

of the aforementioned SBST algorithms. However, the study focused on procedural

programs and primitive parameters values [48].

In a separate study, Binkley and Harman [18] conducted a simple experiment to show

how the analysis of predicate dependence on parameters of a procedure can be used to

reduce test data generation effort in evolutionary testing. Their initial results showed

that the combination of the analysis of predicate dependency with the optimized search

required fewer fitness evaluations.

Harman et al. [50] also proposed a domain reduction technique to exclude irrelevant

parameters in the search space for aspect-oriented programs. They performed backward

slicing to identify such irrelevant parameters [102]. The slice criterion is the predicate of

a target aspectual branch, and the resulting program slice is used to exclude irrelevant

parameters of target methods. Then, an evolutionary testing approach is conducted
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only on the identified relevant parameters. However, a test target branch does not

necessarily depend on any parameters of the method under test, and might only depend

on a member field. Despite the fact that defined member fields were not considered in

their domain reduction, their results showed a decrease in test effort with reduction and,

most importantly, an increase in the number of branches covered.

3.3.2 Purity Analysis

Salcianu and Rinard [86][87] described a systematic purity analysis for Java programs.

Their analysis classifies a method as pure if it does not modify objects that existed before

the execution of that method [87]. More interestingly, their analysis can also recognize

read-only and safe parameters when the method is impure.

• A parameter is read-only if the method does not mutate any object reachable from

the parameter [87].

• A parameter is safe if it is read-only and the method does not create any externally

visible heap paths to objects reachable from the parameter [87].

These definitions are useful in the context of search-based test case generation, as

it provides a way to automatically identify and remove irrelevant methods that have no

affect on whether a branch will be covered [46] [84].

Arcuri and Yao [13] proposed a technique called Dynamic Search Space Reduction

(DSSR) that can be applied to any type of object-oriented program. Their technique

dynamically eliminates the read-only methods that do not change the state of the object

from the search space. However, the study focused on a simple subset of Java programs:

container classes, which are a typical benchmark in testing of object-oriented programs
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[29]. As a result, a database for the common method names (e.g. insert, add, push) was

used with string matching algorithms to determine whether a method is read-only or

not. The empirical results showed that DSSR usage improved the efficiency of the search

algorithms, particularly the hill climbing local search, in terms of speed and number of

steps to reach a global optimum. However, the applicability of DSSR to non-containers

was unclear. Some studies have suggested that containers have quite different behavior

than more general code [43].

Barsei et al. [16] also proposed a semi-automated approach to augment the efficiency

and speed-up the test generation with the TestFul tool. This is achieved by requiring

the user to provide data regarding the effects of each method of the CUT. A method can

be: (1) a mutator, when it may change the objects state; (2) a worker, when it does not

change the objects state but it may perform some computations, or (3) an observer, when

it does not change the objects state and does not perform any additional computation

[17]. TestFul exploits the information and prunes methods from the test case that have

no impact on the targeted branch before starting the HC search.

EvoTest [89] and eCrash [84] approaches leverage purity analysis to reduce the input

space of object-oriented programs. The usage of the technique almost doubles the cover-

age/time performance of EvoTest. However, the user of the tool manually adds the pure

annotation to complement the information generated automatically. On the other hand,

the eCrash approach involves representing and evolving test cases using the Strongly-

Typed Genetic Programming technique. The Extended Method Call Dependence Graph

(EMCDG) is employed for constructing a method call sequence that puts the CUT into

specific states. Then, parameter purity analysis is performed on the parameters of the

MUT and the purified EMCDG is obtained by removing the edges representing safe

and read-only parameters from the EMCDG. Based on their empirical results, the in-
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clusion of a parameter purity analysis phase into the process of test data generation has

a significant improvement in the number of generation and computational time.

3.3.3 Method Dependence Relations (MDR)

In contrast to aforementioned approaches, our approach statically analyzes the source

code of the CUT to precisely identify only those member fields (primitive and non-

primitive) or parameters of the MUT that would be relevant to covering uncovered

branches. Then, it leverages MDR to automatically guide the search to generate a se-

quence of method calls that produces the desired values for member fields or parameters

that have impact on target branches. Zhang et al. [105] have introduced a systematic

Method Dependence Relations (MDR) approach based on a hypothesis that two meth-

ods have dependence relations if the fields they read or write overlap. Their approach

statically computes two types of dependence relations: write-read and read-read.

• write-read relation: Given two methods and ; reads field and writes it, it is declared

that has write-read dependence relation on g.

• read-read relation: If methods and both read the same field , each method has a

read-read dependence relation on the other.

More interestingly, their approach is able to define and merge the effects of the method

calls: if a callee is a private method, it recursively merges its access field set into its

callers. This helps reduce the search space size by only considering public methods that

lead to executing targeted private methods. In most cases, methods require instances

of other classes to be used as arguments. To deal with that, we analyze the signatures
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of each public method and identify whether two methods have a possible dependence in

terms of accessed data, (i.e. accessed-data relation) [104].

• accessed-data relation: If a method returns a non-primitive type and method uses

it as an a argument, it is declared that has accessed-data dependence relation on .

MDR is useful for testing write-read related methods, as it has a high chance of

exploring new program behaviors and states [105]. In addition, it is especially useful in

the context of search-based software testing approaches, as the search domain of object-

oriented programs can be reduced by automatically identifying and eliminating read-read

related methods. In addition, MDR can also identify candidate methods that modify a

specific member class field [13].

Regarding the reduction of the search space based on member fields, we are aware

of the work of Thummalapenta et al. [94]. In that work, the Seeker tool combines

both dynamic symbolic execution (DSE) and static analysis. Their approach statically

analyzes an inter-procedural execution trace which gathered during the execution of DSE

to identify a target member field that needs to be modified for covering a target branch.

Then, their approach exploits method-call graphs to identify methods that modify the

target member filed. However, static analysis used in our work differs completely from

the static analysis used in their approach. Their approach uses method-call graphs while

the work we proposed uses MDR [42].

3.4 Seeding

When a class under test (CUT) contains branches that depend on particular constant

values, randomly generating the right values can be very challenging. However, covering
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such branches can be easier if the constant values are extracted from the CUT and used

instead of randomly generated values [28].

Many works proposed different seeding strategies to enhance the efficiency and effec-

tiveness of SBST. For example, Alshraideh and Bottaci [5] proposed a seeding strategy in

which string constants are extracted from the source code of the CUT and used to seed

the initial population of the GA. Their empirical study showed using extracted string

constants can improve the branch coverage of the CUT. McMinn et al. [74] also proposed

an approach for generating test cases involving string inputs, where the potential string

values are extracted from web queries. The empirical results show that their approach

improves branch coverage for 15 of the 20 Java classes. Recently, Alshahwan and Harman

[4] introduced a seeding strategy, Dynamically Mined Value (DMV), in testing PHP web

applications using SBST. Their approach dynamically collects constant values from the

returned HTML and associates them with their respective input fields. Then these val-

ues are randomly seeded in the search process when targeting their associated branches.

Their results show the DMV seeding approach significantly increases the efficiency and

effectiveness for web application testing.

Fraser and Arcuri [28] conducted a study on 20 Java projects using EvoSuite, con-

cluding that the use of seeding can strongly improve performance of an evolutionary

search algorithm. During the search process, with a defined probability an extracted

constant value, as opposed to a randomly generated new value, is used. The results

showed best coverage was obtained using a 20% probability of extracted constants on

all the case study. However, Similar to the aforementioned works, their strategy seeding

considered only primitive constant types (e.g., numbers, strings). Recently, Sakti et al.

[85] also proposed another strategy seeding in which both the primitive constant values

and the null constants were extracted from the source code of the CUT. Their seeding
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approach defines a seeding probability for each extracted constant based on the number

of occurrences of the constants in the CUT. The approach was implemented to seed a

random testing (RT).

In object-oriented programs, however, branches are involved with both primitive

constant values, and also with non-primitive values, such as instances of classes, and

arrays. For example, assume that a search technique test generation tries to cover

branch B1 at line 3 in the MUT foo as follows:

1. public boolean foo equals(Object obj) {
2. If(obj instanceof Foo)
3. return true; //B1
4. Return false
4. }

Figure 3.1: foo class

The signature of the MUT required an instance of Object (line 1). In this case, the

search technique will randomly try to choose a concrete value for value obj from all the

classes assignable to Object. The chances of selecting a class foo for value obj can be very

small because the branch using instanceof operator (line 2) which offers no guidance

to the search.

Our seeding approach, therefore, differs from the previous works in two aspects. First,

beside the primitive constant values, our approach extracted other available information

from the predicates of the target branches in the CUT, such as type of classes, null con-

stant values, and arrays indices. Second, our seeding strategy with a defined probability

uses only the proper values for the uncovered branches from which they were collected.
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Chapter 4: Improving Genetic Algorithm via Method Dependency

Relations

4.1 Introduction

Significant success has been achieved by applying search-based software testing (SBST)

to the problem of automated structural test data generation [13][16][31][50]. SBST for-

mulates the process of generating test inputs as a search problem, and employs meta-

heuristic techniques (e.g., evolutionary algorithms) to find test inputs [68]. The power

of SBST lies in the use of fitness functions which provides effective guidance towards the

optimum solution. Thus, the effectiveness of the search algorithms is improved as long

as the fitness function distinguishes between better and worse solutions [13].

Many different search-based testing techniques for object-oriented programs have

been proposed to automatically generate sequences of object constructor and method

calls such as TestFul [16], EvoSuite[31], or eToc [97]. A major issue with most of the ex-

isting approaches is that they consider the whole search space of possible input values and

method calls to the program under test. In practice, generating method calls to generate

desirable objects has been a significant challenge for automated test input generation

approaches, partly because of the huge search space of possible method calls [59]. This

problem has been significantly highlighted in several research studies [34][50][94][105].

This chapter introduces an automatic approach, called GAMDR1, to effectively re-

duce the size of the search space and generate desirable object constructor and method

1The name is derived from improving Genetic Algorithm via Method Dependency Relations
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calls. The purpose of our approach is not to exhaustively explore the search space, but

to improve branch coverage by intelligently guiding the search toward finding regions in

the search space with method calls that produce desirable object instances. GAMDR

uses a similar GA algorithm used for the empirical work in [15] and [16] and augments

it with static analysis techniques adapted from recent work on random testing [105][93].

Previous works on SBST to reduce the search space for object-oriented programs has

tended to be evaluated on relatively small scale systems [13][16][84]. However, GAMDR

can handle a large scale programs of Java as well as a number of open source programs

(See Section 4.4). An empirical study was performed in which GAMDR was compared

with a well known evolutionary testing tool EvoSuite [31]. In order to establish a fair

comparison the GAMDR was also compared with two other different approaches: the

basic implementation GA without MDR enabled [15][16], and pure random testing RT

[22]. The goal of the empirical study was to examine how MDR impacts the effectiveness

and efficiency of the GA effort in terms of improved branch coverage over a limited time

period.

The major contributions of this chapter are as follows:

1. A fully automated search-based testing approach for Java that addresses the chal-

lenging problem of SBST.

2. A description of how MDR is incorporated into the design and implementation of

the GAMDR approach.

3. An empirical study that evaluates the effectiveness and efficiency of the GAMDR

approach.

The rest of this chapter is divided into the following: Section 4.2 illustrates some

of the problems that search-based approaches face. Section 4.3 presents our proposed
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approach for improving branch code coverage. We explain how GAMDR leverages data

dependency and method dependency relations to guide the search process in improving

code coverage and also cover its implementation id details. In section 4.4 presents the

empirical study used to evaluate GAMDR alongside the research questions answered,

and it also represents threats to validity. Section 4.5 concludes the chapter.

4.2 Motivation

In this section, we illustrate some of the problems that we empirically observed by

applying the state-of-the-art search based tool, called EvoSuite [31], through illustrative

examples taken from the Commons-lang32 and NanoXML3 projects. These examples are

intended to illustrate how the size of domain input and the presence of complex data

dependencies are a key limiting factor of achieving high branch coverage for SBST.

4.2.1 Input Domain Size

The size of the search space of potential data inputs is a key factor affecting the ef-

fectiveness of any search-based approach [71][48]. To illustrate this issue, consider the

ArrayUtils class from Commons-lang3 example shown 4.1. The class contains 229

different public methods to test, each of which takes primitive and/or array arguments.

Although the class contains 1104 target branches, most of these branches are trivial and

not difficult to cover. For example, supposing that the method under test named as

MUT is subarray (lines 3-17), and it takes three different arguments. The first argu-

ment is an array of characters, followed by two integer arguments used as the start and

2org.apache.commons.lang3
3http://nanoxml.sourceforge.net/orig/



43

1. public class ArrayUtils {
2. ...227 more public methods ...
3. public static char[] subarray(final

char[] array, int startIndexInclusive, int
endIndexExclusive) {

4. if (array == null) {
5. return null; \\B1
6. }
7. if (startIndexInclusive < 0)
8. startIndexInclusive = 0;
9. if (endIndexExclusive >array.length)
10. endIndexExclusive = array.length;
11. final int newSize = endIndexExclusive -

startIndexInclusive;
12. if (newSize <0)
13. return EMPTY CHAR ARRAY;
14. final char[] subarray = new char[newSize];
15. System.arraycopy(array, startIndexInclusive,

subarray, 0, newSize);
16. return subarray;
17. }
18. }

Figure 4.1: ArrayUtils class

the end indices. The method returns a new array containing the elements between the

start and the end indices. Let us assume that the true branch of the predicate “if (array

== null)”(at line 4) is the target branch B1.

In practice, the test data generation process (i.e., search process) explores various

combinations of method calls and the input data for all their parameters [50]. The

number of possible method calls of the target class (i.e., ArrayUtils) is very large and

the possible input data values of each method increases the search space even further.

As a result, the search process is quite difficult and time consuming which tends to lower
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the effectiveness and efficiency of the search in general.

The relevant method calls and the parameters which affect the coverage of a target

branch constitute only a small portion of the entire search space. We can observe that,

the only parameter of the target method that can influence the coverage B1 is the first

parameter, which is the array parameter, and it is required to hold null value. As a

result, the search process should explore the search space for these relevant method calls

and parameters instead of investing time on the entire search space.

As revealed by our experimental results, pure random testing (RT) achieves 99%

versus EvoSuites 68% branch coverage of the ArrayUtils class. We speculate the low

branch coverage of the EvoSuite because it failed to call the more relevant methods

and their parameters to cover certain target branches due to the extreme number of the

public methods of the ArrayUtils class. In other words, EvoSuite should only consider

and choose these relevant methods and parameters during the search process to cover

certain target branches and satisfy all-branch coverage criteria [50].

4.2.2 Control and Data Dependencies

Search-based test data generation also encounters extra challenges in generating data

inputs in the presence of complex predicates of the method under test (i.e., MUT) [72].

A major challenge arising from the presence of complex predicates is the search has to

navigate all the entire search space to generate a desirable sequence of method calls.

Thus, the search process may require very specific guidance to find the valid sequence of

method calls and the input values of their parameters.

To understand the effect of complex predicates, consider the source code of the classes

CDATAReader and StdXMLReader, which are part from NanoXML, given in Figure 4.2.
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1. class CDATAReader extends Reader {
2. private IXMLReader reader;
3. private char savedChar;
4. private boolean atEndOfData;
5. CDATAReader(IXMLReader reader){
6. this.reader = reader;
7. this.savedChar = 0;
8. this.atEndOfData = false;
9. }
10. public int read(char[] buffer, int offset, int

size)throws ... {
11. ...
12. while (...) {
13. char ch =this.savedChar;
14. if (ch == 0)
15. ch = this.reader.read();\\B1
16. else
17. this.savedChar = 0; \\B2
18. if (ch == ']') {
19. char ch2 = this.reader.read(); \\B3
20. if (ch2 == ']')
21. char ch3 = this.reader.read(); \\B4
22. ...more if statements ...
23. }
24. }
25. }\\end of method public int read line 10
26. ...3 more methods ...
27. }\\end of class CDATAReader

28. public class StdXMLReader implements IXMLReader {
29. ...
30. public StdXMLReader(String publicID, String systemID)

{
31. URL systemIDasURL = null;
32. ...
33. }\\end of public StdXMLReader
34. public static IXMLReader stringReader(String str) {
35. return new StdXMLReader(new StringReader(str));
36. }\\end of public static IXMLReader stringReader
37. ...20 more methods ...
38. }\\end of class StdXMLReader

Figure 4.2: Two classes taken from the NanoXML project
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We consider the method read (lines 10-24) as the target method, which reads data from

another reader until the end, and returns the number of characters read, or -1 if at EOF.

The method read takes as inputs an array of character and two integer variables.

A CDATAReader test must satisfy both values and order method calls to achieve full

or at least high branch coverage. We can observe that, creating a CDATAReader object

requires a valid StdXMLReader (line 28) object, which is a concrete implementation of

the interface class IXMLReader. As a result, a valid sequence of method calls requires

calling methods in a correct order to create the desired objects: a valid IXMLReader

object must be created before a CDATAReader object.

We can also observe that, the target method (lines 10-24) contains some branches that

require a particular character value, such as ']', at line 18. In fact, some branches’predicates

involve a Boolean value, such as target branch B3 at line 19, i.e. the flag problem [68].

As a result, no heuristic can be defined that gives guidance on how to cover the target

branch B3. In such cases, the search space will have large plateaus and the search will

likely degenerate to pure randomness, since no information can be exploited to guide the

search on how to change the flow of the execution [68].

Suppose the target branch is the true branch of the predicate “if (ch2 == ']')”at

line 21, which is only executed when the non-primitive filed reader contains '']]''. If

the search process fails to find and generate method calls and parameters that satisfy

these constraints, the generated tests will fail cover the target branch B4. For example,

the constructor of CDATAReader needs to have a valid IXMLReader object with all its

field members correctly initialized as a parameter.

Despite the fact that the class CDATAReader contains only 4 public methods, our

experiment revealed that RT, simple GA, and EvoSuite [31] could only achieve 66%,

71%, and 68% branch coverage of the CDATAReader class, respectively. As shown
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through this example, it is clear that EvoSuite faced a challenge to achieve high branch

coverage of the class CDATAReader due to the requirement of complex method calls.

This is because there is no guidance encoded in the fitness function identifying which

constructors, methods or parameters must be called in order to cover certain target

branches.

This result also supports the belief that the applicability of the search-based test

data generation techniques are limited not only when the search space is large but also

when it does not take into account data dependencies within the CUT [14][73].

4.3 GAMDR

GAMDR is a SBST approach which uses a combination of genetic algorithm (GA) and

static analysis technique (MDR). It can be used to generate test data for a given Java

class which achieve high branch coverage for that class. During the search process toward

finding test data inputs, GAMDR does not attempt to cover each target branch individ-

ually, but it tries to cover all the target branches at the same time. This implementation

is likely to accelerate the search towards the global optimum (i.e., total branch coverage)

because it does not waste efforts and time on infeasible target branches [31]. In addition,

the search is guided by a fitness function that was introduced by Fraser and Arcuri [31].

In order to calculate the fitness function, the CUT must be instrumented.

As shown in previous sections, the search-based approaches EvoSuite and pure GA

when executed against large classes, such as ArrayUtils class, in limited time often end up

with only small regions of the search explored and fail to achieve high branch coverage

of the classes due to the large size of the search space. These approaches also face

a challenge of achieving high branch coverage when executed against classes, such as
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CDATAReader class, that require of the generation of a sequence of complex method

calls.

To cope with such challenges, GAMDR leverages MDR to direct GA toward effec-

tively and efficiently exploring the search space with the following steps. Given a class to

test, GAMDR first statically analyzes each target branch predicate and performs data

dependency analysis to identify the relevant member fields (i.e, attributes) and/or pa-

rameters that affect execution of the target branch. After all relevant member fields and

parameters have been identified, GAMDR uses MDR to identify all the methods and/or

constructors of classes that change (i.e., write) the value of those identified relevant mem-

ber fields and parameters. Finally, GA specifically narrows down the search space and

only explores these identified relevant methods and constructors to create a sequence

method calls that are required in order to cover certain target branches. Combining GA

with MDR has a number of advantages:

1. It focuses on the root cause of getting the branch targets to be covered.

2. It focuses only on the relevant parts if the test input that affect the execution of

the target branches.

3. It implements a domain reduction mechanism to improve the search space explo-

ration.

Unlike previous search-based approaches, these strengths together enable the pro-

posed approach to steer the search in a directed, automated manner toward effectively

and efficiently exploring promising areas of the search space. This approach allows the

search to explore high complexity code in order to achieve high branch coverage.
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4.3.1 Example

This sections explains the search mechanism in GAMDR using the same illustrative

example shown in Figure 4.2, and assumes that GAMDR tries to cover B4 at line 21. It

can be observed that the non-primitive field reader affects whether the target branch

B4 is covered. Another observation is that, the reader object, which passes as an

argument of the CDATAReader’s constructor at line 5, should already exist and precede

the call of CDATAReader’s constructor.

Based on these observations, GAMDR applies MDR to identify both irrelevant mem-

ber fields of the target class and parameters of the target method. Then it excludes the

irrelevant member fields and parameters from the scope of the search process in order

to improve search efforts.

The resulting MDR analysis identifies only relevant methods and constructors that

can influence the coverage of the target branch B4. For example, MDR identifies the

constructor of CDATAReader that writes the field reader. Then, MDR also identifies

both the class constructor of StdXMLReader at line 30 and the method stringReader

at line 34, because they both return objects that can be used to replace the interface class

type argument in the CDATAReader constructor. As a result, GA tries to generate test

data and method calls for these relevant methods and constructors instead of investing

time on all constructors, methods and parameters.

This combined MDR and target branch predicate extraction information allows

GAMDR to generate more effective sequences of method calls. These generated se-

quences can cover branches that require complex method calls. Our results show that

GAMDR achieves 90% branch coverage of the CDATAReader, which is 23% higher than

pure random testing RT, 22% higher than EvoSuite and 19% higher than a simple GA.
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4.3.2 Approach

In this section, the concepts of the GAMDR approach are presented. As depicted in

Figure 4.3, GAMDR consists of three different components.

Figure 4.3: Overview of GAMDR

• Instrumenter: The original source code of the CUT is instrumented at byte-

code level to measure the coverage values and calculate fitness function. In our

experiments, we used Soot [40] for analyzing and instrumenting Java byte-code.

• Static Analyzer: The static analyzer component is used to identify method de-

pendency relations (MDR) based on the set of the fields that may be read or

written by each method [105] and collect specific constant values (primitive and

non primitive) from predicates. The results are stored in a repository and used

later by GA search, which helps in generating required values and sequences of

method calls that explore more branches and increase code coverage of the CUT.

• Genetic Tester: This component conducts evolutionary testing using GA, which

is derived from [14][16] but additionally implements MDR. The GA targets all
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the branches of the CUT at the same time, and it iteratively manipulates the

population by applying fitness function, selection, crossover, and mutation in order

to eventually cover all the target branches.

We next present more details on two key components in GAMDR: The Static Ana-

lyzer and the Genetic Tester components.

4.3.2.1 Static Analyzer Component

Using the existing GAs approaches such as [31][16], we can see that during the search

process some methods or parameters are randomly changed into the existing potential

solutions (i.e., test cases). However, certain branches are required for more favorable

changes [34]. In addition, when the branch distance does not offer enough guidance to

automatically construct complex objects through a method sequence of calls, the search

with a GA will degenerate to a random search [81]. When this is the case, the search

tends to stagnate and fail to find optimal solutions.

The key idea behind our approach is in using a static analysis to identify relevant

methods and constant values for each target branch, and then use them during the search

process (e.g., mutation operation). Thus, our proposed solution more effectively improve

the chance of selections of most relevant methods and parameters that may help to cover

certain branches.

Our Static Analyzer Component (SAC) takes the advantages of MDR [105] and is

able to capture essential information (e.g., constructors, methods, and parameters) from

the source code. The information then is used to assist the search in two major ways.

First, it guides the search to those parts of the existing solutions in the population

where changes are most likely to affect coverage of more branches. Second, it identifies
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irrelevant methods and parameters, excluding them from the scope of testing in order

to reduce test efforts.

The novelty of our approach is that SAC helps the search of the GA to avoid pre-

mature convergence and to increase the speed of exploring the search space. To extract

relevant information from the class under test (CUT), we use static analysis and imple-

ment this phase in two stages: Dependency Identifier and Constants Extractor

• Dependency Identifier. In the dependency identifier stage, we analyze the CUT

and start by identifying the constructors and methods of all target branches. For

each target branch, we perform backward analysis, and precisely identify whether

a parameter of the method contains the target branch (named as a target method)

or if a member field of a class can help to cover the target branch. Knowing which

member fields of the CUT are affecting the target branch, we can greatly improve

GA performance by calling only methods that modify those fields, rather than the

entire methods. As a result, for each member field, we use MDR to identify the

methods that modify the member field (i.e., write-read relation). In addi-

tion, if a parameter of the target method affects the coverage of the target branch,

we identify all the methods that write in the target method (i.e., read-write

relation). However, if the identified parameter is not a primitive type, we iden-

tify the methods return the same type object that can be passed as an argument

to the target method (i.e., accessed-data relation).

• Constants Extractor. During the constants extractor stage, if a target branch

involves primitive constants or strings, the extract constants component is extract-

ing constant values from each target branch. These values are seeded during the

search of the GA to help cover their associated target branches. However, in some
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cases a target branch is dependent on non-primitive constant type, and the signa-

ture of the target method does not reveal what the exact type of the parameter

should be [32]. In fact, this problem is very common in Java and is known as Java

Generics. As a result, beside the primitive constant values, constants extractor

extracts other available information from the predicates of the target branches in

the CUT, such as type of classes, null constant values, and arrays indices.

4.3.2.2 Genetic Tester Component

For an algorithm to be considered genetic, we need to define a representation of test cases

as individuals, a fitness function, and the genetic operators: selection, crossover and

mutation. The selection operator is used to select the prospective parents, the crossover

operator is used to create new individuals by mating parents, and the mutation operator

is used to mutate the individuals. There is a large body of literature regarding the role

and effects of the various fitness functions, crossover operators, and mutation operators

[10][58][70].

In Genetic Algorithms, mutation operator plays an essential role, which slightly mod-

ifies the individuals, i.e. test cases, with a relatively small probability. In general, the

mutation operator is used to introduce new information (e.g., a method call) into the

population and is considered a random variation [58]. Mutation operators (e.g., modify-

ing input primitive values or inserting/removing method calls) are randomly performed

to preserve diversity of populations, and avoid the search to trap in a local optimum

[58].

Nevertheless, whenever mutation occurs, the chance of choosing the right method

calls or primitive values (where changes are most beneficial) is very low. Thus, such a
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“blind”mutation has two different problems. First, insufficient guidance to the required

data inputs can cause unnecessary computation expense [34]. This is due to an inability

to explore promising areas in the search space. Secondly, randomly flipping methods or

manipulating an input primitive value may fail to generate high quality new solutions

[13]. This can lead to increased chances of premature convergence (i.e., trap in a local

optimum) due to the lack of diversity in the population [71].

GAMDR thus exploits MDR to narrow down search space and direct mutation op-

erators to the most beneficial regions in the search space that lead the global optimum,

or high branch coverage of the CUT.

We have opted the following individual representation, fitness function, and the se-

lection, crossover, and mutation operators:

1. Individual representation: An individual can be viewed as a sequence of method

and constructor calls, we decided to use an individual representation similar to [8,

13], because it is easy to apply and manipulate. GAMDR is not only restricted

to primitive datatypes, but also can handle arrays of any type. As a result, each

individual consists of a set of statements that are a constructor, method call, or

array input:

a) Constructor statement : represent a constructor call to generate a new

instance of a selected class, e.g., CDATAReader CDATAReader 0 = new

CDATAReader(StdXMLReader 0);.

b) Method statement : represents a public method call, e.g, CDATAReader 0.read(

charArray 0,10,20);. Parameters of constructors and method classes can be

randomly generated and initialized depends on their types.

c) Array statement : directly accesses a public field and changes its value of
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an object, e.g., int CDATAReader.field = 0; {'A','l','i'};.

d) Field statement : directly accesses a public field of an object and changes

its value , e.g., CDATAReader.field = 0;.

For a given class to test, the test cluster [100] is automatically defined. The test

cluster of the class under test includes all the public constructors of the available

classes, public methods, and fields, and this is done by performing a static analysis

of all the signatures of the public methods and constructors of the CUT, and adding

each type encountered to the test cluster. In addition, returned non primitive

objects are stored in a pool and served as a target object or parameter object for

succeeding statement calls.

2. Fitness Function: GAMDR uses a fitness function to determine if an individual

is to be selected for reproducing in the subsequent generations. We use the fitness

function in equation (1) to guide the search and it is similar to the one proposed

by [13][31]. The fitness function uses branch distance (BD) and keeps track of how

close an individual is to cover all reachable branches, but not executed yet.

f(i) =
∑
bj∈B

BD(bj , i), where B is the target branches of the CUT (1)

And, we use equation (2) for measuring BD.

BD(bj , i) =


0 if brnach j is covered

k if brnach j is reached (2)

1 otherwise

Where k is a normalizing function and its value within [0,1], and we use the normal-
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ization function [8]: k = x
x+1 . The function BD(bj , i) shows how close an individual

i is to cover that not covered branch j. For instance, for predicate a < 10 when

the value of a is 2, then the distance to the false branch is x = 10− 2 [34].

While BD often gives good results, it can deceive the search and lead to longer

individuals without increasing the coverage, which is called bloat [30]. Therefore,

when during the search process there are two individuals have the same coverage,

we always prefer the shortest individual.

3. Genetic Operations: GAMDR implements common genetic operators, i.e., se-

lection, crossover, and mutation, to manipulate and evolve successive populations.

Following is a summary of these operators:

a) Selection : In this operation two parents are selected for reproductions (i.e.,

crossover). We implement tournament selection [68]. In this selection mech-

anism, two individuals are randomly selected. Then, a random number is

generated. Finally, we select the fitter individual if is less than r, otherwise

the less fit individual is selected. However, if two individuals have the same

fitness values, the shortest individual is selected to prevent bloat [30].

b) Crossover : This operator produces new individuals from the selected indi-

viduals. There are many different ways to implement crossover, such as single

or multiple crossover points. We implement a single crossover point, where

the two selected individuals are cut at a random single point.

c) Mutation : After crossover, the individuals are subjected to mutation. Rather

than just randomly change statements of the chosen individuals, GAMDR

uses MDR to direct mutations towards relevant statements where changes may
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help to result better fitter individuals and increase exploring the search space.

Therefore, GAMDR randomly chooses a reached but not covered branch and

analyzes its predicates. Then, GAMDR precisely identifies the relevant type

of elements that are involved in executing of the branch, e.g. member field,

parameter method, or/and constant values. Consequently, GAMDR directs

the mutation operators to explore those identified relevant statements (i.e,

constructors, methods, and parameters). Finally, for a chosen individual with

a length n, GAMDR randomly apply one of the following operations with

probability 1/3.

- Remove: All irrelevant statements are removed, as well as a chosen state-

ment from the identified related statements is removed from the chosen

individual with a probability r.

- Insert: Insert a random number r, where 1 ≤ r ≤ n, of identified relevant

statements in a random position in the chosen individual.

- Change: Each identified relevant statement and parameter is changed

in the chosen individual with probability r.

d) Elitism : At each new generation, the 10% of the population that have high

fitness values are directly copied to the next new generation without any

modification.

4.4 Empirical Study

In previous sections, we have presented the GAMDR approach for automated structural

coverage for Java programs. Our approach uses genetic algorithm (GA) to perform

test data generation, and utilizes the method dependency relations (MDR) to guide the
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search toward efficiently and effectively exploring the search space.

In this section, we present an evaluation of the effectiveness of GAMDR in improving

branch coverage testing. In order to extend the applicability of the study, we compared

GAMDR’s effectiveness against three different approaches: a simple GA, pure random

testing (RT) [22], and the EvoSuite [31]. We assessed the effectiveness of MDR by

empirically comparing the performance of the search algorithm GA without MDR, to

the performance of the algorithm with MDR. We refer to these algorithms as GA and

GAMDR respectively. We also compared GAMDR with RT in order to make sure that

the success of GAMDR is not due to the simplicity of the test subjects [3]. In addition,

to allow for a fair comparison, we compared GAMDR with RT that implemented in

generating the initial population of GAMDR. We also compared GAMDR with EvoSuite

with two reasons. First, EvoSuite is a mature tool that applies a genetic algorithm to

generate test data that achieve high code coverage for Java classes. Second, EvoSuite is

publicly available and has been successfully run on a variety of Java projects [10][28][30].

Although we explored the possibility of comparing Seeker [94] to GAMDR, but we

could not perform such comparison because Seeker targets .Net programs, particularly

C#, whereas GAMDR targets Java programs. TestFul [16] also could not be applied in

our evaluation because the tool is semi-automatic and requires the user to provide some

XML description of the class under test (CUT) to enhance the efficiency of the approach.

TestFul also requires the user to manually add additional classes which can be used as

concrete implementations of the abstract classes and interfaces [8]. The large number of

classes (see section 4.1.1) that we used in our experiments makes it difficult to compare

GAMDR with TestFul.

The goal of the empirical study is to investigate the effectiveness and efficiency of

GAMDR when compared with representative test generation tools. The research ques-
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tions to be answered by this study are therefore as follows:

RQ 1: How effective is GAMDR in achieving branch coverage in comparison

with representative test generation approaches? This research question

focuses on determining the influence of the MDR approach for improving branch

coverage. To do so, we compared GAMDR with a simple GA (i.e., without MDR

enabled), RT and EvoSuite. We also compared their results in terms of the achieved

code coverage.

RQ 2: Given a fixed search time, can MDR improve the efficiency of a simple

GA in achieving branch coverage in comparison with representative test

generation approaches? This research question aims to see if MDR has the

potential to improve the efficiency of the simple GA in exploring of a large search

space and finding the required test data. To address this research question, we

ran GA, GAMDR, RT, and EvoSuite on each target subject with a short time

limit. The more quickly additional branches are covered, the more efficient the

test generation approach.

RQ 3: What types of branches does GAMDR fail to cover? The aim of the third

research question is to identify the challenges remaining for our future research. To

this end, we selected classes where GAMDR achieved low coverage, and manually

analyzed and investigated the reasons for low coverage.

The research questions were addressed using various open source Java projects, as

described in the next section.
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4.4.1 Test Subjects

In the empirical study, we used five popular open source projects as test subjects in our

evaluations. Table 4.1 shows some of their characteristics such as the name, the number

of classes, methods, NCSS (i.e., Non Comment Source Statement) lines of code, and

branches for each subject. Classes, methods, and NCSS were measured at the byte-code

level, using the Javancss4 tool. However, the number of branches were measured at the

byte-code level using GAMDR .

Test Subject #Classes #Methods NCSS #Branches

Commons Codec 41 654 3,269 1,373

Commons CLI 11 126 677 288

Conzilla 13 67 377 120

jdom2 40 647 3,196 978

lang3 55 1,558 9,182 5052

NanoXML 26 322 1,984 571

Joda-Time 57 1,489 9,152 2,207

Total 243 4,863 27,837 10,589

Table 4.1: Details of the test subjects used in the empirical study.

In total 175 classes were used, and were selected because they were widely used as

benchmarks for evaluating different SBST approaches, such as EvoSuite [31] and Delver

[74], and non SBST approaches, such as JTExpert [85] and Palus [105]. Apache Com-

mons Codec (Commons Codec) is an implementation of common encoders and decoders

such as Base64, Hex and URLs. Commons CLI is a library that provides an API for

parsing command line options passed to programs. Conzilla is a knowledge management

tool. jdom2 is a Java-based solution for accessing, manipulating, and outputting XML

data from Java code. lang3 is a several utility classes with null-safe methods for String

4http://www.kclee.de/clemens/java/javancss/
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parsing and manipulation. NanoXML is a small non-validating parser for Java. Finally,

Joda-Time provides date and time library for Java.

These projects include classes which are complex and represent cases where SBST

approaches, such as EvoSuite, have experienced problems in achieving high branch cov-

erage [34][36]. For example, the constructor of PathURN class, which is in the Conzilla

test subject, calls the URN superclass, and requires a valid URN string to produce the

desired PathURN object. As a result, without a desirable PathURN object, a program

execution throws an exception before any of the code in PathURN can actually be exe-

cuted.

Such classes are ideal for use in evaluating GAMDR, since they represent inheritance

and implementation relationships. We expect that GAMDR with its ability to precisely

extract necessary dependency relations among the classes and identify the root cause

leading to the creation of a PathURN object, can potentially guide the search to produce

desirable PathURN objects and achieve high code coverage.

4.4.2 Experimental Setup

This section describes our evaluation setup in order to evaluate the effectiveness of

GAMDR, and describes how GAMDR, simple GA (i.e., without MDR enabled), RT,

and EvoSuite are configured.

We used identical configurations for simple GA and GAMDR to ensure as fair a

comparison as possible between GAMDR and simple GA. They both use the same fitness

function defined in equation (1), and use a single point crossover with probability 0.8.

Mutation probability of an individual is 0.9, and the probability of insertion, changing,

and removing statement is set to r = 0.01. The population size is 100, and the length
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of the individual is set to 80. Tournament with size 2 is used in the selection phase.

The elitism is set to 10% of the population size. The choice of these parameters that we

used in our evaluation were commonly adopted and used in several testing search-based

approaches [13][16][22][30].

We also used EvoSuite version 20130910 with the default configuration because prior

works showed that tunning EvoSuite with different parameters failed to outperform the

default configuration [10][65].

To compare random testing (RT) with the search-based approaches, we adopted the

proposed approach by Ciupa et al.[23], and implemented random generation with the

following configurations: the length of test cases in RT is set to 200 [40][41], probability

of creating a new instance of a chosen class rather than using existing ones = 0.25.

However, with probability 0.1, the instance of the chosen class is set to null. For string

values, characters are chosen randomly from the set of 95 printable ASCII characters

(0x200x7E) [74].

As our primary purpose of this study is to evaluate the capability of each testing

approach in achieving high branch coverage, the main challenge is identifying a fair

stopping criteria to all testing approaches. Search algorithms are commonly compared

in terms of the number of fitness evaluations per target branch, and this metric was

used in different previous studies such as [50][74]. In this particular evaluation, because

all the testing approaches target all branches at the same time, we decided to set up

a fixed time budget for each testing approach including the early static analysis and

instrumentations stages. We also applied each approach with time limit of 5 minutes to

show effectiveness of GAMDR in achieving high branch coverage.

Our secondary goal of this study is to compare the efficiency of GAMDR with the

other testing approaches. To achieve this, we specifically chose 30 seconds as a time
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limit for each class under test (CUT) [41]. A budget of only 30 seconds provides a quick

insight into how the search process finds useful data input and quickly achieves a high

branch coverage [41].

To evaluate the statistical difference of GAMDR, we followed the guidelines in [9].

We implemented JaCoCo Version 0.7.55 to measure coverage during test generation. In

addition, to reduce the randomness of each testing approach, it is important to conduct

the experiments multiple times. Therefore, for each CUT (not per test subject program),

we ran each testing approach 30 times for each time limit (i.e., 30 seconds and 5 minutes)

with different random seeds.

Finally, all the experiments in the evaluations were conducted on a machine with

Intel(R) Xeon(R) CPU E31240 V2 @ 3.40GHz and 14 GB RAM, running Red Hat with

Kernel Linux 2.6.32.

4.4.3 Effectiveness of GAMDR

RQ 1: How effective is GAMDR in achieving branch coverage in comparison

with representative test generation approaches? Table 4.2 summarizes the branch

coverage percentage which is averaged out of the 30 runs of each testing approach at

a time limit of 5 minutes. In the table, the highlighted values with bold text indicates

that a particular testing approach obtained the highest coverage (IF STATISTICALLY

SIGNIFICANT) for that test subject. The p-values are based on the Mann-Whitney-

Wilcoxon test at a level of α=0.05, and performed with R version 3.0.16.

In addition, to visually compare all testing approaches, Figure 4.4 shows the box-plots

5http://eclemma.org/jacoco/
6https://www.r-project.org/
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Test Subject RT(%) EvoSuite(%) GA(%) GAMDR(%)

Commons Codec 89.71 89.28 87.76 90.47
Commons CLI 95.96 95.67 91.97 95.81
Conzilla 70.05 82.79 73.78 91.85
Jdom2 83.58 81.22 80.02 83.03
lang3 88.48 78.64 86.98 89.43
NanoXML 62.87 61.34 62.51 69.88
Joda-Time 79.52 83.19 79.95 85.10

Table 4.2: Branch Coverage achieved by RT, EvoSuite, GA, and GAMDR at 5 minutes

and compares the actual obtained branch coverage of RT, EvoSuite, GA, and GAMDR

at 5 minutes for each test subject.

(a) Commons Codec (b) Commons CLI (c) Conzilla

(d) Jdom2 (e) lang3 (f) NanoXML (g) Joda-Time

Figure 4.4: Coverage results over 30 runs of each approach on each of the 5 test subjects ar 5
minutes
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4.4.3.1 Comparison with Random Testing (RT)

It is clear from Table 4.2 and Figure 4.4 that GAMDR outperforms RT on Conzilla and

NanoXML subjects in branch coverage, but GAMDR achieves little coverage increase

over RT in two subjects, namely Commons Codec and lang3. For the final test subject

program, Jdom2, GAMDR almost achieves the same branch coverage as RT.

As shown in Table 4.2 and Figure 4.4, GAMDR achieves 91.85% branch coverage for

the subject Conzilla and 69.88% branch coverage for the subject NanoXML, while RT

achieves 70.05% and 62.87% branch coverage, respectively. One major reason GAMDR

achieves higher branch coverage than RT is that most Conzilla and NanoXML test

subjects contain classes containing constructors that call superclasses and require calling

methods that are in a correct order that have valid arguments. Due to these requirements,

most randomly-generated sequences of method calls may fail to generate a valid object

instance of the class under test and then fail to reach desirable states and cover target

branches.

For example, in the Conzilla test subject, the constructor of the class identity.URL

calls the identity.URN superclass. Each of these classes has a constructor that con-

tains nested branches that require specific character values, such as ':', '/', and '/'. These

constraints make the task of generating a valid object instance of the identity.URL

class more difficult. Although RT randomly generates a new sequence of method calls

on each iteration with a length of 200, which means that RT has a higher probability

of calling the constructor of identity.URL class. However, RT frequently fails to find

the correct character values that satisfy the constraints and cover the branches in the

constructors of the classes. As a result, RT can not create a valid object instance of

the identity.URL class. In fact, most of the test data generated by RT could not
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reach beyond 8 branches out of 22 and only achieved 37.12% branch coverage of the

identity.URL class.

In contrast, the static analysis used in GAMDR helps identify the root cause which

leads to failure to generate instances of the identity.URL class, and identifies all rel-

evant accessible constructors of the identity.URL class that can be used to generate

valid object instances. MDR enhances the search process by allowing GAMDR to concen-

trate on not only creating new instances of the identity.URL class more frequently,

but also focusing more effectively on the valid existing instances of identity.URL

class. Because of these advantages, GAMDR achieves 87.42% branch coverage of the

identity.URL class, which is 50.30% more than RT.

The results also show the test cases generated with GAMDR achieves little cover-

age increase over RT in two test subjects, namely Commons Codec and lang3. How-

ever, a detailed analysis at the class level reveals that GAMDR has higher coverage

than RT on large classes. For example, in lang3, the class lang3.BooleanUtils

contains 40 public methods and 250 branches, 101 of which are nested in one pub-

lic method namely Boolean toBooleanObject(final String str). GAMDR

achieves 89.4% branch coverage of the lang3.BooleanUtils class, whereas RT only

achieves 84.8%. The primary reason is that the significant number of public method

and classes decreases the probability of picking relevant methods in a test sequence calls.

Consequently, RT encounters difficulties generating required sequences of method calls

to cover nested branches. However, the proposed static analysis helps GAMDR to reach

and cover more branches by testing only related methods together.

For the final test subject, Jdom2, RT actually achieves slightly increase in the branch

coverage with an average equal to 0.54%. The reason is that most methods in Jdom2

do not have any constraints or dependencies between each other. Therefore, randomly
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generating of sequences of method calls can achieve high branch coverage.

In general, our results show that GAMDR is more effective than RT on large size

classes, suggesting its strength lies in testing classes requiring generate method calls

in specific orders with specific arguments, a weakness of random testing observed in

previous studies [40][92].

4.4.3.2 Comparison with EvoSuite

Results in Figure 4.4 and Table 4.2 answer RQ1 by clearly showing, with high statical

confidence, that GAMDR outperforms EvoSuite on 3 test subjects, namely, Conzilla,

lang3 and NanoXML. There are two major reasons for achieving these results. First, the

optimizations used by EvoSuite, such as constant seeding (i.e., constants are collected

statically and dynamically at run time) lacks necessary directions towards the appro-

priate branches from which they are collected. As a result, EvoSuite is unlikely to pick

up specific constant values from the potential seeding pool to execute certain branches.

Second, the randomize of the mutation operator in EvoSuite lacks necessary guidance to

those methods and parameters where changes may be most required to execute certain

branches.

Figure 4.4 and Table 4.2 also show that GAMDR achieves little coverage increase over

EvoSuite in Commons Codec and Jdom2. These test subjects do not require a complex

of sequence of method calls in order to cover certain branches. In order to understand

the effectiveness in terms of branch coverage between GAMDR and EvoSuite, we select

and manually analyze the code coverage of four classes where a significant difference is

observed. Figure 4.5 shows the percentage of branch coverage achieved by both GAMDR

and EvoSuite on the selected classes.
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Figure 4.5: Comparison of EvoSuite and GAMDR on classes in terms of branch coverage

As shown in Figure 4.5, GAMDR achieves higher branch coverage in small classes,

such as identity.PathURN and identity.URL. For example, in the Conzilla test

subject, GAMDR achieves 82.92% branch coverage for the identity.PathURN class,

which contains only 8 branches, while EvoSuite only achieves 39.17%. The reason for

this low coverage is that the constructor of the class PathURN extends class URN which

also extends class URI. These inheritance relations increase the size of the search space

since the test cluster includes all the set of available classes, their public constructors,

methods, and their parameters. We speculate that EvoSuite generates test sequences

that might have included irrelevant constructor or method calls in the initial population.

Since EvoSuite relies on mutation operations to modify a test case with a certain prob-

ability, EvoSuite could no longer produce new offspring (i.e., new test cases) with better



69

performances than their parents due to the randomized operations in the mutation op-

erator. EvoSuite could not preserve the population diversity during the evolution, and

as a result, the search was trapped in one area of the search space (i.e., local optimal

[68]).

Figure 4.6 shows another example where the static analysis used in GAMDR helps

to identify methods dependence relation based on the fields they write i.e., write-read

relation, and prefers write-read related methods during the mutation operations to cover

a target branch.

1. public class ISOPeriodFormat {
2. private static PeriodFormatter cStandard;
3. ...4 more private member fields ...
4. public static PeriodFormatter standard() {
5. if (cStandard == null) {
6. cStandard = new PeriodFormatterBuilder();
7. ...more statements ...
8. }
9. return cStandard;
10. }
3. ...4 more public static methods...
11. }

Figure 4.6: ISOPeriodFormat class

As is shown in Figure 4.6, the branch condition at line 6 uses a null value and

so the branch distance measurement does not provide any guidance, i.e., flag problem

[68]. As a result, EvoSuite blindly tries to mutate the test cases and faces challenges

in generating sequences that require to call the same method multiple times to pro-

duce the desired object state for the field member cStandard. EvoSuite easily covers

the branch that requires the null value and faces challenges in generating a sequence

of method calls that call the PeriodFormatter method at least twice. In contrast,
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the static analysis uses in GAMDR allows to identify methods that change the member

field cStandard. Thus, during the mutation stage, GAMDR recommends to invoke the

same method before PeriodFormatter method, since they both have write-read rela-

tion, and testing them together allows to change the state of the member field cStan-

dard. This permits GAMDR to generate more effective sequences of method calls that

allow to cover all the target branches and reaches 100% branch coverage of the class

joda.time.format.ISOPeriodFormat.

The Figure 4.5 also shows the improvement in branch coverage between GAMDR and

EvoSuite in large classes, such as lang3.ArrayUtils and lang3.BooleanUtils.

GAMDR achieves 99.29% for the lang3.ArrayUtils and 94.26% for the lang3.BooleanUtils,

while EvoSuite only achieves 79.98% and 89.4%, respectively.

Manual analysis for both classes shows that each class contain a large number of

public methods, each of which contains a large number of branches. For example, the

lang3.ArrayUtils class includes 233 methods and 1104 branches, and the lang3.BooleanUtils

class includes 40 methods and 250 branches. Most of the branches require null values

or character values. Intuitively, we would expect that EvoSuite should achieve higher

coverage, as the seeding strategy would influence the search and help to cover not-trivial

branches [28]. However, due to the large size of the search space EvoSuite can not iden-

tified of which method calls or parameters need to be mutated to cover certain branches.

The results indicate that MDR is indeed useful in helping to increase branch coverage by

identifying relevant methods and parameters that need to be mutated in order to cover

particular target branches.
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4.4.3.3 Comparison with simple GA

Our results show that GAMDR achieves higher branch coverage than simple GA for all

five test subjects. This result is easily explained by considering the way GA works. GA

uses a genetic algorithm which maintains a population of individuals (i.e, test cases),

and randomly changes , with a certain probability, particular parts of the test cases (i.e,

mutation operations). These random mutation operations can lead to losing the diversity

of the population, and the search thus can be easily trapped in local optima [71].

To prevent the search from being trapped in local optima, GAMDR utilizes MDR to

discard irrelevant methods and constructors calls, which do not improve branch coverage,

and directs the mutation operator to those parts of the test cases where changes are

most beneficial. These directed changes are most likely to improve the exploration of

the search space, maintaining diversity among the individuals of the population, and

hence improving the branch coverage.

We next investigated the impact of MDR on the performance of GAMDR by analyz-

ing the code coverage at the class level. We chose two classes from Commons Codec and

lang3 test subjects, the language.DoubleMethaphone class, and lang3.BooleanUtils

class, respectively. Both of these classes contain a large number of conditional statements

and public methods. Class language.DoubleMethaphone contains 443 branches and

38 public methods, whereas lang3.BooleanUtils contain 250 branches and 40 pub-

lic methods. In addition, the difficulty to cover a large number of the branches in these

classes lies in the generation of constant values, such as null values. These type of

branches cause losing of useful branch distance information, and thus do not provide

good guidance to the fitness function that the search can use to find test inputs [91].

Figure 4.7 compares the average branch coverage for language.DoubleMethaphone
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and lang3.BooleanUtils at one minute intervals over five minutes.

(a) language.DoubleMetaphone (b) lang3.BooleanUtils

Figure 4.7: Branch coverage comparison between GA and GAMDR over 5 minutes with one
minute intervals

As shown in Figure 4.7, the use of MDR is beneficial for the search process, GAMDR

achieves 83.84% branch coverage for language.DoubleMethaphone and achieves

89.4% branch coverage for lang3.BooleanUtils, while GA only achieves 74.80%

and 83.4%, respectively. The lower coverage of GA can be attributed to the poor search

guidance that the fitness function provides. With a poor fitness function, the search are

not capable of finding and producing better individuals in large search space, such as the

space of possible inputs for language.DoubleMethaphone and lang3.BooleanUtils

classes. To understand this, we should consider the problem of premature convergence

in genetic algorithms [66]. This phenomenon occurs when a few better (i.e, fitter) in-

dividuals quickly dominate the population, thus reducing the population diversity and

causing the search process to be trapped in a local optima [68][66]. Applying the muta-

tion operator can preserve the population diversity and prevent the search process from

being trapped in local optima [68].

In contrast, the use of MDR improves the performance of the mutation operator by

identifying irrelevant constructor, method, and parameter calls, and excluding them from

the search space, so the search process focuses only on method and parameters calls where
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changes are more likely to produce a fitter offspring. Hence, GAMDR retains population

diversity and easily generates test sequences that achieve higher branch coverage than

GA.

In summary, the results of figure 4.4 and table 4.2 show that in all test subjects there

is a significant branch coverage improvement over simple GA. Combining MDR with GA

helped GAMDR to generate test data that achieved a high level of branch coverage.

4.4.3.4 Improvements over Time

Five minutes can be a long time for a test data generation approach, and it may be

the case that the improvement of GAMDR only appears after spending a large amount

of time [36]. We studied the performance of the GAMDR and the other test data

generation (i.e., RT, EvoSuite and GA) approaches at different time intervals. To this

end, we performed a set of experiments and kept track of achieved branch coverage at

each minute interval. The experiments were conducted on Commons Codes, Conzilla,

and NanoXML test subjects. We chose these test subjects because these projects contain

different types of classes. For example, Commons Codes has very few constraints on its

class constructors and methods. The Conzilla and NanoXML contain more complex

classes and represent cases where RT, EvoSuite and GA have problems in achieving high

branch coverage. Each experiment was performed with the same configurations chosen

in RQ1.

Figure 4.8 shows the time analysis for each test subject individually. The results

show that, regardless of the time, there is always a large gap between the GAMDR and

the other test approaches. Figure 4.8 also clearly shows that the beneficial of MDR does

not appear overtime, but applies from the beginning.
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(a) Commons Codec (b) Conzilla

(c) NanoXML

Figure 4.8: For the three test subjects, average coverage at different points in time for the
GAMDR, RT, GA, and EvoSuite at 5 minutes.

Figure 4.8 provides further insight and shows different behaviors among test subjects.

For example, in Commons Codec test subject, RT performs very similar to EvoSuite until

minute two where the performance of RT increases through time. The reason is that class

constructors in this project do not need specific arguments. As a result, RT generates

many legal sequences of method calls that create new object instances more often, while

EvoSuite tends to focus on the existing ones. As a result, RT covers more branches over

time.
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4.4.4 Efficiency of GAMDR

RQ 2: Given a fixed search time, can MDR improve the efficiency of a

simple GA in achieving branch coverage in comparison with representative

test generation approaches?

Our secondary purpose was to evaluate the capability of MDR to improve the effi-

ciency of a simple GA in achieving high branch coverage. An ideal option to compare

the efficiency of each approach was to set up a fixed number of fitness evaluations for

all test generation approaches [48]. However, such a comparison would favor EvoSuite.

This is because EvoSuite represents a set of test cases (i.e., a test suite) as an individual

[31], whereas in RT, GA and GAMDR, a test case represents an individual, such that

the comparison of fitness evaluations would not be fair.

A second option was to set up a short fixed time for all test generation approaches

to examine the efficiency of GAMDR, in terms of how quickly additional branches are

covered. In this particular evaluation, we chose the second option. We determined a

timeout value of 30 seconds because it was commonly adopted in testing approaches

[41]. We also empirically observed that for some classes 30 seconds, would be more than

enough to cover all the feasible branches.

Results of the experiment are presented in Figure 4.9. All results are averaged over

thirty runs of each test subject. Figure 4.9 shows that GAMDR is more efficient than the

genetic approaches, EvoSuite and GA, because it achieves the highest branch coverage

for all test subjects, except for Conzilla. For Conzilla test subject, EvoSuite achieves

the highest branch coverage among all test approaches at 30 seconds. The reason is that

most of the classes in Conzilla perform string manipulation operations and most branches

depend on characters (e.g., if(nuri.indexof(':')==-1)). Thus, test inputs generated by



76

(a) commons (b) Commons CLI (c) Conzilla

(d) Jdom2 (e) lang3 (f) NanoXML

(g) Joda-Time

Figure 4.9: Coverage results over 30 runs of each of approach on each of the 5 test subjects at
30 seconds

EvoSuite are more efficient than GAMDR to cover trivial branches due to the use of

optimizations, such as constant and dynamic seeding [91].

Figure 4.9 also compares GAMDR and RT in terms of average branch coverage

achieved at 30 seconds. GAMDR outperforms RT in the case of complex programs.

Considering the NanoXML test subject, for example, GAMDR is more efficient than
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Figure 4.10: Comparison of RT, EvoSuite, GA, and GAMDR on selected classes in terms of
branch coverage

RT because at 30 seconds it covers 60.23%, whereas RT covers 56.81%. For other test

subjects, such as Commons Codec, Jdom2 and lang3, RT is more efficient than GAMDR

and achieves higher branch coverage at 30 seconds. The primary reason is that RT

repeatedly generates a sequence of method calls (i.e, test cases) with a length of 200.

Thus RT has a higher probability to explore the search space wider and covers as many

trivial branches as possible in a shorter duration of time. In contrast, GAMDR relies on

the genetic algorithm and mutates an existing test case with a certain probability. As a

result, GAMDR works longer to explore the search space and may, in time, fully cover

all trivial branches.
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To understand the observed difference of the branch coverage within 30 seconds,

we selected different classes from these test case subjects. Figure 4.10 presents the

percentage of the branch coverage achieved by each approach on the selected classes.

The results in Figure 4.10 provide evidence that GAMDR performs better than

EvoSuite and GA in terms of efficiency. Specifically, GAMDR is more efficient than

EvoSuite and GA on classes that contain a large number of branches. For exam-

ple, GAMDR achieves 71.5% and 94.2% for the language.DoubleMetaphone and

lang3.ArrayUtils at 30 seconds, whereas EvoSuite reaches 58.1% and 45.1 % and

GA reaches 64.7% and 81.8 %, respectively. The primary reason is that GA, and Evo-

Suite approaches randomly choose which method to mutate (i.e, insert, update, and

delete) from all methods available in a class under test. However, there is only a sub-

set of methods that to be mutated in order to cover particular branches. In contrast,

MDR allows GAMDR to efficiently increase the speed with which the search space is

explored by guiding the mutation operator towards only relevant methods and covering

and reaching more target branches in less time.

Note that for identify.URL, EvoSuite achieves higher branch coverage than GAMDR,

GA, and RT. In this class, branches rely on character constants. Therefor, the seeding

used in EvoSuite helps to cover branches more quickly than GAMDR, GA, and RT.

In RQ 2, the question addresses whether MDR can help GAMDR to avoid the

exploration of useless sequences of method calls and generate optimal sequences for the

class under test (i.e., test cases that cover all the target branches). Thus, GAMDR

converges faster to the optimal tests and reaches the global optima for the class under

test faster than the other test approaches.

To this end, we further investigated the identify.URN class in the Conzilla test

subject, since GAMDR and RT covered all the target branches within 30 seconds. Figure
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4.11 impressively demonstrates how MDR helps GAMDR to converge quickly to the

optimal solutions and find the global optimum for the class identify.URN. GAMDR

covered all 8 branches in average 4.09 seconds, while RT took a 7.26 seconds to cover all

the target branches for the class identify.URN. Each test data inputs generated by

both GA and EvoSuite missed one branch compared to test data generated by GAMDR.

As a result, and contrary to the random of mutation operator, our approach GAMDR

achieves a high code coverage in less than 30 seconds.

Figure 4.11: Comparison of RT, EvoSuite, GA, and GAMDR on identify.URN class in terms of
branch coverage

To summarize, our results show that the static analysis used in GAMDR leverages the

information of how relevant methods are used and identifies data dependences affecting

the execution of branches. This information is used to help GAMDR to effectively and

efficiently improve the exploration of complex and large search space by recommending

related methods to test together for quicker high branch coverage achievements.
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4.4.5 Difficult Branches

RQ3. What types of branches did GAMDR fail to cover? Although GAMDR

achieved higher coverage than RT, EvoSuite and GA, the coverage achieved is still not

100%. We identified some branches that are difficult to cover, as the following:

• String and special characters comparison. Some branches require well-

formated string or special characters value to be covered. If a test generator fails

to generate these values, the generated test will fail to cover these branches. For

instance, the class Verifier from Jdom2 test subject contains a significant number

of branches that depends on special characters, such as '\t ', '\n ', or '0x00B7 '.

It is difficult for GAMDR to randomly generate a required character to cover such

branches. In future work, we plan to address this issue by seeding the constants

during the search process that can help GAMDR to cover branches which require

particular string values or special characters values.

• Environment dependency. Another reason for the low coverage achieved by

GAMDR is that some classes contain constructors or/and methods, which takes

environment variables or specific file structures. For example, in the NanoXML

test subject, classes, such as XMLWriter or StdXMLReader, contain constructors

and methods that require a parameter that must be referring to an existing XML

file. GAMDR can not automatically generate these types of inputs. However, there

is a lot of research on how to handle environment dependencies [11][81], which is

currently beyond the scope of our research.
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4.4.6 Threats to Validity

As with any empirical study, there are several potential threats impact to the validity of

our conclusions.

• Construct validity threats refer to the degree of the relationship between the-

ory and the way we judge the performance of our technique. In our study, we

compared GAMDR with other testing approaches, such as RT, GA, and EvoSuite,

in terms of branch coverage. We gave priority to the branch coverage because it is

the most common criteria to measure the performance of a testing technique [51].

Another measure of performance, one would compare search algorithms based on

the number of fitness evaluations [28]. A test suite in EvoSuite represents an indi-

vidual, whereas GAMDR, GA,and RT, the test case, which has different lengths,

represents the individual. Thus, the comparison of fitness evaluations would favor

EvoSuite. As a result, we chose time limit (i.e., 5 minutes and 30 seconds) rather

than the fitness of the evaluations.

• Internal validity threats concern how the empirical process was carried out.

One potential threat is that comes from an existing fault in our instrumentation

and testing frame. To reduce these threats, we carefully tested GAMDR, and

manually inspected the results of each component of GAMDR. Furthermore, the

randomized nature of any testing algorithm may affect the internal validity. As a

result, we ran each testing approach multiple times (i.e., 30 times) with different

seeds. We also followed rigorous statistical procedures to analyze the results [9].

• External validity threats concern of the generality of our conclusions. We used a

large number of test subjects, which contains 175 classes. All the test subjects and
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classes have been used in previous empirical studies [28][31][74][85]. Another threat

might come from not trying different parameter settings for each test approach.

To reduce this threat, we carried out our experiments with the most common

parameter settings which have been used in previous studies [10][13][16][41].

4.5 Conclusion

This chapter has introduced and evaluated GAMDR approach for searchbased software

testing (SBST). GAMDR applies a genetic algorithm, augmented with method depen-

dency relations for improving branch coverage for Java programs. GAMDR leverages

MDR to reduce the size of the search space and direct genetic mutations on particular

parts of the test cases for certain branches to be covered.

Our empirical study shows that GAMDR effectively and efficiently finds test data

inputs and achieves high code coverage in less than 30 seconds. The empirical study also

shows that GAMDR achieves higher branch code coverage than random testing (RT),

EvoSuite, and a simple GA (without MDR enabled) for complex Java programs.

As mentioned in the Section 4.4.5, further improvements are required in order to

improve branch coverage. This is the subject of the next chapter.
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Chapter 5: A hybrid Search (A Memetic Algorithm)

5.1 Introduction

Memetic algorithms (MAs) [77] are a metaheuristic that combines (hybrid) both global

and local search (e.g., a genetic algorithm (GA) with a hill climbing (HC)). A simple

way to implement a MA is to employ a stage of local search to improve each individual

at the end of each generation [53].

This chapter presents an automated search-based technique that uses a memetic

approach. The memetic algorithm combines both a genetic algorithm (GA), described

in Chapter 4, and Hill Climbing (HC) to generate test data for Java programs The

former is used to produce test cases that maximize the branch coverage of the class

under test (CUT), while minimizing the length of each test case. The latter is used

to target uncovered branches in the preceding search phase. However, two important

changes are made to optimize individuals (i;e, test cases) that allow the search to execute

more target branches. Firstly, the HC terminates for each individual upon reaching a

local optima [53]. Secondly, the HC is employed the MDR to diversify the search and

explore new and unseen areas of the search space [53].

The main contributions of this chapter are the following:

1. We introduce a search-based approach to automatic test generation based on

memetic algorithms. We extend global search (Genetic Algorithm) with a local

search (Hill Climbing). We also employ MDR with HC to improve its effective-

ness.
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2. We also introduce a way to seed constants into the search process when targeting

uncovered branches.

3. We present the results of an empirical study on 4 popular open source programs

and 6 Java classes. Some of these classes are taken from recent experiments where

search-based approaches, like EvoSuite, struggled with challenges in achieving high

coverage. The results show the effectiveness and impact of our approach.

This chapter is organized as follows.

5.2 Applying Memetic Algorithm (MAMDR)

In this section, the concepts of our hybrid search-based approach are presented. Figure

5.1 illustrates our approach, called MAMDR1, architecture.

Figure 5.1: Overview of MAMDR

As shown in Figure 5.1, MAMDR is built on top of the GAMDR framework for

search-based testing. In contrast to GAMDR, it extends the Genetic Algorithm (GA)

behind the GAMDR test generation tool into Memetic Algorithm, by equipping it with

1The name is derived from improving Memetic Algorithm via Method Dependence Relations
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a local search (HC). In addition, the HC is extended by including MDR to generate

sequences of related method calls and also initializes values using constants collected

from the source code that would cover the target branches. Let us detail how these

extensions all fit together.

5.2.1 Genetic Algorithm

The GA used in MAMDR described in Chapter 4. However, we use the fitness function

in equation (1) to guide the GA search, and it is combined two objectives in a single

function [13].

f(i) = BRcov(i) + (1− α)
1

(1 + len(i))
, α ∈ [0, 1] (1)

We omit the branch distance in equation (1). This is because at the end of the search,

we are only seeking to achieve high coverage with short length individuals [13].

5.2.2 Hill Climbing (HC)

When the GA results stagnate, we employ hill climbing (HC) as the local search, similar

to that used in the works [13] and [16]. For each branch uncovered in the GA, the

individual that achieved best fitness for each reached branch is stored and used as a

starting point for HC. Thus, the input of the HC is a list of all uncovered branches and

the fittest individual for each branch. Every branch in the provided list is then processed

in an attempt to cover it. A branch is reached if its predicates are executed, while a

branch is covered if its predicates are evaluated as true or false. An individual that
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reaches a branch is mutated and executed until the branch is covered or the stopping

criterion is met, for example number of attempts. At each execution of the mutated

individual, we keep track of new covered and reached branches and accordingly update

the test suite.

Fitness Function: The fitness function that guides HC is similar to that which

was used by Arcuri and Yao [13]. We apply the branch distance (BD) in the HC search

because we target a single branch at a time and focus on the predicates of the target

branch. Consequently, we use equation (2) for measuring BD.

BD(j) =


0 if the branch j is covered

min(k) if the branch j is reached (2)

1 if the branch j is not reached

Where k is a normalizing function, and we use the normalization function [8]: k = x
((x+1)) ,

and x shows how far a predicate is from obtaining its opposite value. For instance,

for predicate i < 10 when the value of i is 2, then the distance to the false branch is

x = 10− 2 [31]. Finally, we integrate BD with the total branches coverage of the indi-

vidual to guide the HC search in the following way:

f(i) = BRcov(i) + (1−BD(j)) (3)

HC uses equation (3) as a fitness function to compare between the current and the

mutated individual. However, if the two individuals have the same fitness, HC always

picks the shortest individual [13]. Our approach explores the large space to generate

candidate methods as well as specific constant values that help to cover target branches.
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Consequently, we analyze the targeted branchs predicates and precisely identify the type

of elements that are involved in executing of the branch, e.g. member field, parameter

method, or/and constant values. Then, we recommend methods and/or constant values

for the following types of elements being involved in the conditions target branch:

(a) Member field: To deal with class member fields, we followed a similar approach to

the ones used by Thummalapenta et al. [94]. We precisely identify a member field

and also leverage MDR to identify the related methods that write the targeted

member field and help to achieve a desired value. If the target branch belongs

to a non-public method, i.e. private, we also leverage MDR to identify all the

public methods that call the targeted private method and recommend the identified

related methods list to HC.

(b) Parameter of method: We identify a parameter of method and also determine

the type of the parameter, as well as the type of the method either public or private.

Then, we also leverage MDR to identify the methods that call and/or have write-

read relation with the targeted method. However, in some instances, it is impossible

to reduce search space based on the parameters, because all parameters of a method

can be involved in deciding whether a target branch is covered [48]. In spite of that,

Harman et al. [48] showed that HC increases its search performance by removing

irrelevant input variables.

(c) Primitive Values: Rather than using random values, we apply a similar approach

to that of Alshahwan et al. [4]. First, we collect constants from the target branch

predicates. Then, we make a few changes to the constants and based on their types

as inputs to the recommended related methods parameters these are used as input.

Finally, with a certain probability we apply the following modifications based on
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the type of the constant:

- Integer and Long: We add/subtract a random number r to the constant

value, with −1 ≤ r ≤ 1.

- Float and Double: We add/subtract a random number r to the constant

value, with −1 ≤ r ≤ 1.

- Boolean: We only flip the value either true or false.

- Character: We randomly replace the value with another character.

- Strings: We apply one of three mutation operators as in [16]. (1) deletes the

constant from the string value of the parameter methods in the individual. (2)

inserts the constant in a random place into the string values of the parameter

methods in the individual. (3) replaces the constant value with the parameter

targeted method in the individual.

(d) Array Values: We first leverage our static analysis information to determine the

exact index i′ for which an assignment helps to cover the target branch. Then,

on the assignment of the index i′, we generate input values depending on the

component type of the array. We also use constant extracted from target branch

predicates as input, rather than a random value.

Finally, we apply three different mutation operations to produce a modified version

of the individual [6, 8]:

1. Insertion: Insert a random number r, where −1 ≤ r ≤ 10, of methods that are

randomly chosen from the identified related methods list in a random position in

the individual.
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2. Deletion: Remove a random number r, where −1 ≤ r ≤ 5, of chosen methods

from the identified related methods list from the individual, as well as remove all

the methods that do not exist in the list.

3. Change: Change the parameters of a random number r, where −1 ≤ r ≤ 5, of

chosen methods or constructors in the individual with the modified constant.

Finally, the modified individual is then executed to see if the target branch is covered

or if the fitness function is improved. In the former, the new individual is returned and

is added to GA population and replaced with the least fit of an individual in the current

population. In the latter, the fitter individual will be selected as a new starting point.

HC repeats the aforementioned mutation operations until the attempt limit is reached.

In this case, HC selects another uncovered branch, along with the individual that reaches

the branch and tries to cover it.

5.3 Evaluation

To validate our approach described in this chapter, we compared its effectiveness against

three different approaches: pure random testing, the EvoSuite [31] tool as a representa-

tive for search-based approaches, and a simple MA [13] [16]. EvoSuite is fully automatic

and performs some code transformations to allow optimizations of string values. On the

other hand, random testing (RT) has been recognized as an effective and fast testing

technique, in which test cases consist of randomly selected methods with inputs ran-

domly chosen from the input domain. Thus, to analyze the performance of random

testing and MAMDR, we followed a random test generation strategy proposed by Ciupa

et al. [23]. In addition, we compared a simple MA without method dependency rela-
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Test Subject #Classes #LOC #Branches

Commons CLI 11 667 288

Commons Codec 26 2650 1371

NanoXML 12 1532 591

org.jdom2 20 2869 1108

org.joda.time.format.DateTimeFormat 1 365 145

Fraction 1 252 140

StringTokenizer 1 122 72

AvlTree 1 306 148

BinomialHeap 1 185 62

TreeMap 1 481 158

Table 5.1: Details of the test subjects used in the empirical study.

tion (MDR) with our approach to show the effectiveness of our search space reduction

approach in test data generation. MA uses both GA and HC. Unlike MAMDR, MA

applies a simple HC to modify an individual. When HC targets an uncovered branch, it

randomly performs one of the following actions: adding methods from the test cluster,

removing statements, or changing the parameters of statements of the individual.

It would be very valuable to compare our approach performance with TestFul [16] and

Seeker [94]. We could not use Seeker in our evaluation because it targets .Net programs,

particularly C#, whereas MAMDR targets Java programs. In addition, TestFul is semi-

automatic and it requires the user to provide some XML description of the CUT to

enhance the efficiency of the approach. TestFul also requires the user to manually add

additional classes which can be used as concrete implementations of the abstract classes

and interfaces [16]. The large number of classes that we use in our experiments makes

it harder to compare MAMDR with TestFul.

To evaluate MAMDR we consider several types of programs. We chose 4 open-source

Java programs as used in the EvoSuite experiments [30]. We also included DateTimeFor-
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mat and Fraction classes where search-based approaches, like EvoSuite, did not achieve

high coverage. However, not all classes contain numeric or string constants nor predi-

cates, which are easy to analyze. Therefore, this set of subjects contains three container

classes, which are taken from the work of Sharma et al. [92], to see whether our ap-

proach has a negative effect on the performance of the search process when its power

is not needed. Table 5.1 lists our evaluation subjects, including their number of public

classes, lines of code , and number of instrumented branches.

5.3.1 Research Questions

Having defined the case study subjects, we now address the following research questions:

RQ1: Does MAMDR achieve higher branch coverage than representative test

generation tools? To answer this question, we ran RT, EvoSuite, MA, and MAMDR

on each target subject with a time limit. The original source code of each subject

was instrumented to measure the branch coverage of each approach.

RQ2: What is the impact of using constants from target branches predicates for

seeding? For this question, we first ran two different versions of MAMDR, one

version seeds the search process with the constant values (denoted as MWS), and

the other version without seeding (denoted as MNS).

5.3.2 Evaluation Setup

We next describe our evaluation setup in order to answer the preceding two research

questions. Search algorithms have many parameters to adjust; in this experiment we
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followed similar settings in [6]. The GA uses the fitness function defined in equation (1),

with = 0.5. The GA also uses a single point crossover with probability 0.8. Mutation

probability of an individual is 0.9. The population size is 100, and the length of the

individual is set to 80. Tournament with size 2 is used in the selection phase. The elitism

is set to 10% of the population size. HC uses the fitness function defined in equation (3).

We apply HC after five consecutive generations without any further improvements in the

total branch coverage, i.e. the population of the search had stagnated. The number of

attempts for each target uncovered branch is set to 1,000 which means each uncovered

branch gets at least 1,000 fitness evaluations whenever being selected. We also considered

the constant seeding from the branch predicates with the probability 0.8.

We ran EvoSuite with default configurations, and only tuned the running time for

test generation to the required time limit. The length of test cases in the random testing

is set to 200 [41]. The probability of creating a new instance of a chosen class rather than

using existing ones = 0.25. However, with probability 0.1, the instance of the chosen

class is set to null. For string values, characters are chosen randomly from the set of 95

printable ASCII characters (0x200x7E) [74]. All the experiments were conducted on a

machine with Intel Core 2 Quad CPU @ 2.66 GHz and 8 GB RAM.

To evaluate the statistical difference of our approach, we followed the guidelines in [9].

For each approach, we set the time limit 5 minutes, and run 30 times for different random

seeds on each test class (not per test subject program).

5.4 Results

This section provides a summary of the results with respect to the research questions.
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Test Subject RT(%) EvoSuite(%) MA(%) MNS(%) MWS(%)

Commons CLI 96.88 95.67 96.83 96.84 99.28

Commons Codec 91.59 89.34 91.94 92.33 93.20

NanoXML 63.32 59.20 65.67 70.85 73.68

org.jdom2 82.50 80.19 80.11 82.40 86.39

DateTimeFormat 82.09 68.69 81.15 83.75 89.06

Fraction 93.52 85.45 90.36 93.10 92.93

StringTokenizer 62.50 63.89 62.5 62.50 86.62

AvlTree 95.27 70.50 95.27 95.27 95.27

BinomialHeap 90.32 88.71 93.55 93.55 93.55

TreeMap 82.91 82.91 82.91 82.91 82.91

Table 5.2: Average branch coverage Achieved by RT, EvoSuite, MA, MNS, and MWS.

5.4.1 Coverage Results

Table 5.2 summaries the result obtained by the experiment for all the test cases subjects.

The table shows the average of the branch coverage value over the 30 runs with different

random seeds. We highlighted in bold where the highest branch coverage is achieved

by each approach with statistical significance, respectively. The statically difference has

been calculated with Mann-Whitney U at the 95% confidence level.

Figure 5.2 shows a box-plot of the actual average branch coverage achieved over 30

runs of each approach on each test subject.

5.4.2 Comparison with RT

The results in Table 5.2 show that MNS outperforms RT on 3 test subjects in the branch

coverage. Coverage levels were identical between MNS and RT for 4 test subjects, partic-

ularly container classes. NanoXML shows the highest improvement with a 7.53% increase

in coverage. The reason why RT achieves a lower branch coverage than MNS can be ex-
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(a) Commons Codec (b) Commons CLI (c) NanoXML (d) Jodm.git

(e) DateTimeFormat (f) Fraction (g) StringTokenizer (h) AvlTree

(i) BinomialHeap (j) TreeMap

Figure 5.2: Average Branch Coverage of each of the 5 approaches on each test subject

plained by the fact that some constructors of classes in the NanoXML require instances

of other classes and/or specific values used as arguments. For example, the constructor

of class StdXMLReader requires a Reader object (the input for the XML data), and

string values as arguments. RT, thus, creates many invalid objects of StdXMLReader

due to the large size and complexity of the search space, and then fails to reach desirable

states that help to cover target branches. On the other hand, static analysis used in

MNS helps to identify related methods that lead to cover branches. For instance, MNS

identifies the stringReader method, which only takes one string argument, and returns a
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valid StdXMLReader object instance, thereby reducing the search space size. Invoking

stringReader allows MNS to create many valid StdXMLReader objects that can be used

to reach many desirable states that help to cover branches.

We also noticed that MNS showed no substantial branch coverage improvement over

RT in Common Codec and Commons CLI, where RT previously observed to be very

effective in testing Apache Commons programs [105]. One main reason is that Common

Codec has few path constraints and its methods can be called without any specific order

to initialize objects, suggesting MNS strength lies in testing classes that require complex

input sequences. Moreover, RT also did a little better than MNS for the Fraction class.

This can be explained by considering that the Fraction class is immutable, which means

constructors of the class updates its member fields, and if parameters of the constructors

are not valid an exception is thrown, which hinders the search process [16]. In our

experiments, the length of RT test cases was set to 200.

That allows RT to randomly create many desirable object instances in each test

case. The capability to generate a number of valid object instances helps RT to cover

many branches of the Fraction class. However, the static analysis used in MNS helps

to identify the constructor of the class is responsible of writing its fields. This helps

MNS to concentrate on creating a valid Fraction object instance and avoiding throwing

exceptions, and thus the search process is improved [16].

5.4.3 Comparison with EvoSuite

Our results show that MNS achieved higher branch coverage than EvoSuite for all sub-

jects. Although EvoSuite creates method call sequences with the assistance of trans-

formed String methods like String.equals to calculate distance measurements to the
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branches [31], it fails to generate method call sequences that cover very difficult branches.

We identified two possible reasons for the lowest branch coverage of EvoSuite. First, the

measurement in the branch distance offers little guidance to explore a large search space

and find input data to cover difficult branches. Second, when an individual in EvoSuite

is a set of test cases, each of which consists of a sequence of method calls, then the

size of the search space is very large [34]. As a result, it is difficult for EvoSuite to

mutate a primitive value and find a desirable value input to cover a target branch, since

the probability of it being mutated during the search is very low [34]. Thus, EvoSuite

finds it hard to make progress towards the optimal solution by only using mutation and

crossover operations. The aforementioned two reasons for branches to remain uncover

are all related to the size of the search space, a weakness of EvoSuite observed in recent

approaches [34] [36] [81].

Indeed, the exclusion of irrelevant methods from the search space can effectively im-

prove the performance of EvoSuite because the mutation operator will be concentrating

its effort on methods that can influence coverage of a target branch [48].

5.4.4 Comparison with MA

Table 5.2 also shows the comparison results on branch coverage achieved by MA and

MNS. We can observe that MNS outperforms MA in 5 out of 10 test subjects. In the

remaining five test subjects, MA and MNS achieve exactly the same coverage. Among

these five subjects where MA and MNS achieve the same branch coverage is Commons

CLI. Commons CLI has only a few constraints that need to be satisfied [105]. Therefore,

the majority of Commons CLI branches are trivial and randomly picking methods and

finding their arguments across the whole search space can achieve good results. In
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summary, input domain search space reduction can cause an increase in branch coverage,

particularly, for programs that contain branches requiring specific method calls ordering

or arguments.

5.4.5 Impact of seeding constants

As might be expected, seeding improves branch coverage 7 of 10 test subjects (Table 5.2).

Branch coverage was identical for container classes. Noticeable improvements were ob-

tained for Commons Codec, Commons CLI, NanoXML, org.jdom2, and StringTokenizer.

The highest improvement with 5.31% was recorded in DateTimeFormat test subject. In

DateTimeFormat class, most of the branch targets are contained in private methods,

and depended on a string values. Approaches like EvoSuite or RT might need to run

for very long time to cover these branches. MWS can cover these target branches much

quicker for two possible reasons. First, collecting constants from predicates of the target

branches helps MWS to seed these constants into the search process, and cover branches

that depend on these specific constants. Second, identifying related methods helps MWS

to generate sequence of method calls to a target branch with desired values for member

fields and method arguments.

As the Figure 5.2 shows, in many test subjects MWS achieves higher branch coverage

than other approaches. For Commons CLI, Commons Codec, and StringTokenizer MWS

shows the highest coverage. In each case, MWS seeded valid constant string values to

the tested methods to cover specific branches which guided the search towards additional

nested branches. However, these values are difficult to generate due to the randomized

generation in each other approach. We also notice that MWS shows identical coverage

over 30 runs compared to MNS for Fraction class. The primary reason is that this class
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is a number implementation and has methods that accept numbers, which contain few

constant-using predicates. As a result, both approaches relied on fitness function to

guide the search to generate input data that cover target branches.

Despite MWS improving branch coverage on most test subjects, it still does not

achieve 100% branch coverage. The simple explanation is that some classes might con-

tain branches that are included in private methods which are not called by any public

methods [34]. In addition, some branches required complex data inputs to be covered.

For example, some methods in the StdXMLReader class, which in the NanoXML test

subject, require a file containing XML data as input. These types of inputs are difficult

to generate, and thus MWS generates ineffective tests.

What came as a surprise is that RT outperforms EvoSuite in most test subjects.

One explanation would be that the length of the test case for RT is 200 [40], which is

three times as long as EvoSuites. Although it may be possible to find parameter settings

for which EvoSuite performs better, discovering parameter settings can be considered

computationally expensive [10].

5.5 Threats to Validity

As with any empirical study such as this, there are several potential threats impact to

the validity of our conclusions. fThis section provide a brief overview of the threats to

validity and how they have been addressed.

• Internal validity threats The major internal threat that could affect our re-

sults is the probability of having faults in our instrumentation. To minimize this

threat, we carefully tested our instrumentation framework and manually tested

instrumented source code for several program subjects. Another potential threat
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to internal validity could be with randomized algorithms. Therefore, we ran our

experiments for 30 times and applied rigorous statistical procedures.

• External validity threats The external validity is how generalizable our results

are based on our selection of test subjects. The test subjects in this experiment

were different types of programs and their size varied by an order of magnitude.

We included open source projects and container classes. In addition, the selection

test subjects have been widely used in other empirical studies in SBST.

5.6 Conclusion

In this chapter, we have proposed MAMDR, a fully automatic tool that utilizes three

different approaches: genetic algorithms, hill climbing, and method dependence relations

to achieve high code coverage. To evaluate MAMDR, we conducted evaluations on

several open source programs and container classes. Our results showed that MAMDR

demonstrated significant improvements in branch coverage compared to purely random

testing and the search-based EvoSuite. With our approach, related methods, which are

based on their fields, are exploited to modify particular fields or arguments in order to

cover a branch that is required for a certain execution path. This is particularly useful

to handle a large search space and to generate sequences of method calls for classes with

complicated constraints branches.

The individual presented concepts of our automated search-based test generation

have (in many cases) been applied in other approaches to generate test cases for Object-

Oriented programs, like Java, but the combination of methods and exploiting of all

information available is key to overall success.
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We showed that it can be difficult for search-based approaches to generate test cases

that include good method sequences and arguments, due to the application of a pure

randomized algorithm in the mutation phase. We also showed how our novel seeding

approach exploited method dependence relations to increase the effectiveness of the MAs.
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Chapter 6: Strengthening the Genetic Algorithm with Initial

Population and Seeding

6.1 Introduction

In recent years the number of papers on search-based techniques has been increasing

quite rapidly, and the majority of papers focus on the use of search-based techniques,

such as the genetic algorithm (GA), in automated generation of test cases for structural

coverages [55], as in the case of object-oriented programs (e.g., [1] [13],[16][31]). Although

GA has been shown to be a promising approach for the task of software testing, many

different factors affect the performance of the GA. These factors include the population

size, genetic operators, initial population, and seeding.

The aim of this chapter is to discuss and evaluate the following strategies: a strategy

to generate the initial population and a strategy to seed constants extracted from the

source code. The goal is to improve search-based test generation for object-oriented

programs and allow the search to generate tests more effectively. Another objective is

to enhance the performance and ability of the GA to reach the global optimum instead

of being stuck in a local optimum.

This chapter introduces two primary contributions:

1. A new strategy to set the initial population is applied to improve the quality of

the initial population of the GA, and to reach the optimum solution in the search

search space.
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2. A constants seeding strategy is applied to increase the likelihood of covering a

target branch.

3. An empirical study is performed to show the effectiveness of the proposed strategies

on the performance of the GA. Although, we focus on the branch coverage criterion

and Java language, our approach can be extended to other coverage criteria and

used object-oriented languages.

The rest of this chapter is organized as follows. Section 6.2 introduces two strategies of

improving the initial population, and Section 6.3 sets up the context of seeding constants

strategy. Section 6.4 then presents an empirical study and discusses our findings. Section

6.5 discusses threats to validity of this study. Finally, Section 6.6 concludes the chapter.

6.2 New strategies for the initial population

A genetic algorithm (GA) usually starts with a set of possible solutions (i.e., test cases)

randomly generated as an initial population. Although, the process of randomly select-

ing all solutions of the initial population from the search space of the problem seems

simple, the initial population critically affects the convergence, the capability, and the

performance of the GA [96]. If the size of the search space is small, these properties of

the GA may not be affected. However, for most of object-oriented programs, the search

space is large and complicated because of two reasons. First, generating a sequence of

method calls often involves methods from multiple classes, resulting in a large space of

candidate method calls [94] [96]. Second, finding a desired object of a class, and finding

a proper sequence of method calls to put the classes in a desirable state, is difficult due

to its large search space [94]. Thus, domain knowledge information can be exploited to



103

reduce the size search space and improve the quality of the individuals that are able to

cover many target branches of the CUT.

Given some domain knowledge information, it can be easy to create an initial popu-

lation that produces better starting points and to increase the diversity for the search,

which may impact the increasing-coverage capability of the GA [28].

Several works have been proposed to improve the initial population of the GA [28] [76] [96].

Fraser and Arcuri [28] implemented a simple strategy, called ”AllMethods“ to maximize

the number of method calls in the initial population. In their strategy, during the ini-

tialization, each time a new method is inserted into the population, the next method is

chosen based on a ring buffer of all the methods. In other words, each time a new method

call is inserted, it is not chosen randomly; instead, the next method in the buffer is re-

turned. The aim of this strategy is to guarantee that all the methods of the class under

test (CUT) are called in the initial population. Their results showed that the technique

improves the branch coverage for different classes, particularly for classes containing a

high number of methods.

Miraz et al. [76], also improve the initial population by performing random testing to

generate individuals and selecting the best ones out of a larger pool to generate the initial

population. They evaluated their technique on six Java classes and their experiments

show that it increases the branch coverage for more complex classes, such as Red-Black

Tree class [76].

In this chapter, we propose two new strategies to initialize the initial population of

the GA. Unlike previous works, we adopt two different approaches in the design of the

strategies: (1) The method dependency relations (MDR) given by Zhang et al. [105],

and (2) The SWARM testing approach given by Groce et al. [44]. The intention is to

improve the performance and effectiveness of the GA in terms of code coverage.
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6.2.1 Directed-Population Strategy

In the case of generating test cases for object-oriented programs, there are three prereq-

uisites to achieve full or at least high coverage (such as branch or statement coverage):

(1) instantiate the class under test (CUT), (2) generate a sequence of method calls to

produce desired object states for the arguments, and (3) execute a method that may

reach the target branches [85] [94]. However, when the initial population is generated

entirely randomly from the set of accessible methods it is quite challenging to generate

such sequences that satisfy the preceding prerequisites.

To mitigate this problem, this study introduces a strategy (which we call “Directed-

POP”) to improve the initial population by attempting to select methods that generate

desired object states of the CUT and reach the target branches. The strategy is based

on the proposed approach method dependence relations (MDR) by Zhang et al. [105],

and includes the following steps. First, a static analysis is implemented to identify a

set of relevant methods or constructors based on the data members they may read or

write. Second, during the initialization, when generating a sequence of method calls,

i.e., an individual, a new method is randomly selected, and then the static dependence

information is used to determine the dependent methods that are likely to change the

state of the selected method. Finally, the selected method and its dependent methods

are used to form a sequence of method calls.

The intuition is that instead of allowing the GA to start from an initial population

that is randomly generated, the static dependence information is used to create individ-

uals that contain relevant sequences of method calls that may change the state of an

instance of the CUT and reach the target branches. Based on our experience on apply-

ing search-based techniques such as EvoSuite [31], we observed that the branches in the
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CUT are not covered due to the inability to generate target object states of the CUT.

The main reason is that there is often a low probability of generating proper sequences

of method calls at random to construct desired objects of the CUT and reach the target

branches [94].

6.2.2 SWARM-Population Strategy

Groce et al. [44] proposed and evaluated an inexpensive approach, called SWARM, to

improve the diversity of test cases generated during random testing. In the random test-

ing approach, all of the features of the CUT, i.e., public methods and constructions, are

available during the construction of each test case. The SWARM approach, in contrast,

is based on a construct configuration that randomly chooses which features to include

in each test case. The idea behind SWARM is that omitting some features increases

the effectiveness of testing due to interactions between features [42][44]. Experimental

results show that SWARM testing increases coverage and can improve the fault detection

dramatically [44].

In the present study, we implement this strategy, which we call ”SWARM-POP”,

to reduce the size of the search space of the problem, and improve the performance of

the GA by increasing the probability of reaching the global optimum. To implement

this strategy, during the creation of the initial population, each time a new individual

(i.e., test case) is generated, it is not constructed from all the available public methods

and constructors of the CUT; instead, it is chosen based on a randomly constructed

configuration.

The following steps are implemented to generate each configuration and to create

the initial population automatically. First, all public methods and constructions of the
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CUT are identified. Next, a random configuration, called Cr, is generated with only

a set of randomly chosen public methods and constructors of the CUT. Finally, when

generating a new individual, a sequence of method calls is generated from all possible

sets of predefined available public methods and constructors in the generated Cr.

The rationale is that an individual generated using a randomly selected configuration,

which leaves out some methods and constructors, has a higher chance of increasing the

diversity of the initial population and avoiding the GA from premature convergence and

being stuck in a local optima [68].

6.3 Seeding constants from source code

When the predicates of the CUT involve constants values and specific strings, randomly

generating the right values to cover these branches can be challenging. One way of cir-

cumventing this problem is to collect constant values from the source code, and then

enhance the search through seeding with these constant values [28]. For example, con-

sider the following branch condition (if inputs.equals (”bar”)). During the search (e.g.,

initial population and mutation operators), using the string value ”bar” as a constant

seed when generating string inputs may help the search to easily cover this branch [28].

There have been several seeding strategies used to improve different aspects of the

search-based software testing (SBST) [4][5][28][35]. For example, Fraser and Arcuri study

a seeding strategy that is applied when generating new or modifying existing test cases

and show that the use of seeding can significantly improve the automated SBST tool

EvoSuite [28]. In their work, a constant pool is populated with extracted concrete values

from the source code during the instrumentation phase. Then, whenever attempting to

randomly generate a new constant value, with a fixed probability PConstant, a constant



107

value is randomly selected from the constant pool. They show that PConstant = 0.2 gives

the best results compared to other values (e.g., 0.4, 0.6, and 0.8).

As previous works have shown, seeding constant values extracted from source code

of the class under test (CUT) can improve the performance of the search based test

generation. However, all previous approaches use a constant seeding probability PConstant

to randomly use one of the collected constants, rather than a random new value during

test generation. Thus we make a few modifications to seed constant values collected from

the source code of the CUT into the search process. We call this approach Directed-

Seeding Values (DSeed). More details about DSeed are explained in the next section.

6.3.1 Guided-Seeding Strategy

Using the existing seeding approaches, there is a chance that seed collected constant

values during the search do not cover their associated target branches. Fraser and Arcuri

showed that depending on how the value PConstant is chosen, the seeding can be harmful

and affect the coverage negatively in some classes [28]. The reason is that, the constant

values collected are not specific to the predicates from which they were collected and

they can aid only in covering branches that depend on these constants [4].

To mitigate this problem, we propose a Guided-Seeding strategy, GSeed, that directs

the search to seed a constant value and focuses on methods relevant for calling the

associated branch from which it was collected. For this purpose, we keep track of the

methods and parameters in the test cases that have the potential to reach and execute

uncovered branches, and we use this information to seed the constant values and to

associated them with their respective inputs and branches [4]. Methods that do not

contribute at all to trigger the associate branch are ignored altogether by the search [82].
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More specifically, we statically analyze the predicate that is involved with the un-

covered branch (i.e., target branch) and include any constant value if the predicate is

dependent on a particular value and include a method that contains the target branch.

We also create the following three ‘method groups’ formed using method dependence

relations (MDR) [104][105].

Method under test consists of the methods that call directly or indirectly the

target branch (i.e., associated branch).

Parameter provider consists of all the methods and constructors that return an

object that can be passed as a parameter to the methods under test.

State changer consists of all the methods that may change the state of member

fields in the methods under test.

Then, during the search, whenever attempting to generate a new constant value, with

a certain probability, the constant value associated to the target branch is chosen rather

than randomly generated. In addition, when randomly choosing a mutation operator

(i.e., insert, update or delete), one of the method groups is selected at random and

contains all methods that can influence the target branch, instead of exploring random

of irrelevant method calls.

6.4 Empirical Evaluation

We now describe the evaluation of the effectiveness of our proposed strategies. Specifi-

cally, we assess how affective our proposed strategies are in improving the effectiveness

of the GA by considering the following research questions:
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1. RQ1: How does each of our population enhancement approaches (i.e, Directed-

POP and SWARM-POP) affect branch coverage?

2. RQ2: What is the impact on branch coverage of using the guided-seeding strategy

(GSeed) for seeding constants?

3. RQ3: How much higher percentage of branch coverage is achieved by Directed-

POP, SWARM-POP, and GSeed compared to GAMDR and MAMDR, respec-

tively?

The research questions were addressed using classes adopted from different open

source code, as described in the next section.

6.4.1 Case Studies

To answer these research questions, we selected a set of 15 classes taken from the lit-

erature. More precisely, our selection criteria for classes were (a) represent cases where

SBST (i.g., EvoSuite) struggle to achieve high coverage and (b) represent string problems

in SBST.

An overview of the case studies selected for the experiments in this evaluation is shown

in Table 6.1. They include fifteen (15) Java classes from 5 open source projects, and

tend to perform different complex operations [74]. These case studies represent classes

where different search-based techniques such as eToc [97] and EvoSuite [31] scored very

low branch coverage as a reported in [1][36][74], and [85].
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Project Class #Methods NCSS #Branches

Commons Codec language.DoubleMetaphone 38 564 443

Conzilla identity.PathURN 4 17 8
identity.ResourceURL 5 22 10
identity.URL 6 39 22

Joda-Time format.DateTimeFormat 25 353 145
format.DateTimeFormatter 45 256 88

lang3 lang3.ArrayUtils 233 1558 1104
lang3.BooleanUtils 40 250 250
lang3.ClassUtils 41 371 228
lang3.JavaVersion 5 39 20
math.NumberUtils 45 454 363
time.DateUtils 58 425 227

NanoXML nanoxml.CDATAReader 4 57 26
nanoxml.ContentReader 4 68 26
nanoxml.NonValidator 15 240 83

Table 6.1: Details of the test subjects used in the empirical study.

6.4.2 Experimental Set-up

To evaluate the effectiveness of our proposed strategies, we carried out two different

sets of experiments, each one addressing one of each research questions. We ran each

of enhancement strategy for 5 minutes on each test subject. All the experiments were

repeated 30 times to take the randomness nature of the search based optimization into

account. We ran GA with default random population on the case studies and measured

its coverage. This measured coverage forms a baseline for comparing GA with and with-

out the proposed enhancement strategies. Finally, all the experiments in the evaluations

were conducted on a machine with Intel(R) Xeon(R) CPU E31240 V2 @ 3.40GHz and

14 GB RAM, running Red Hat with Kernel Linux 2.6.32.
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6.4.3 RQ1: Optimizing the Initial Population

Class GA Directed-POP SWARM-POP

language.DoubleMetaphone 76.80 77.31 76.00

identity.PathURN 47.92 53.75 51.25
identity.ResourceURL 67.33 75.33 76.00
identity.URL 59.09 68.18 68.79

format.DateTimeFormat 78.87 81.10 76.97
format.DateTimeFormatter 53.71 58.79 51.70

lang3.ArrayUtils 92.80 94.50 94.70
lang3.BooleanUtils 83.11 85.64 85.24
lang3.JavaVersion 46.33 53.33 54.67
math.NumberUtils 85.94 93.44 93.94
time.DateUtils 70.82 80.97 82.35

nanoxml.CDATAReader 71.15 77.56 76.15
nanoxml.ContentReader 70.90 79.87 74.36
nanoxml.NonValidator 23.09 29.76 20.04

Average 66.27 72.76 70.15

Table 6.2: Average Coverage Per Classes when Directed-POP and SWARM-POP initialization
Strategies Are Employed.

In the first set of experiments, we addressed the first research question on whether

our initial population enhancement approaches help increase branch coverage achieved

by a simple GA approach [13][79]. For this purpose, we ran GA with and without the

two different enhancement strategies for the initialization of the first population.

Table 6.2 shows the results obtained by the first experiment for Directed-POP and

SWARM-POP initialization strategies. The number of covered branches increases with

Directed-POP for all the test subjects, when the coverage is increased from 66.70% to

72.76%.

Covered branches also increase with SWARM-POP for all the test subjects except

for language.DoubleMetaphone, format.DateTimeFormat and format.DateTimeFormatter
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test subjects. The primary reason for lower coverage is that, the classes contain methods

that require desired object states for the arguments. These desired objects help to cover

the target branches in the methods. For example, the class format.DateTimeFormat con-

tains 145 branches, 58 of which are in one private method called format.DateTimeFormatter(

DateTimeFormatterBuilder builder, String pattern).

1. public class DateTimeFormat {
2. ...more public and private methods omitted here ...
3. private void parsePatternTo(DateTimeFormatterBuilder

builder, String pattern) {
4. ...more statements omitted here ...
5. switch (c) {
6. case ’G’: // era designator (text)
7. builder.appendEraText();
8. break;
9. case ’C’: // century of era (number)
10. builder.appendCenturyOfEra(tokenLen,

tokenLen);
11. break;
12. case ’x’: // weekyear (number)
13. ...4 more statements omitted here...
15. }//end parsePatternTo method
14. ...more public and private methods omitted here ...
15. }

Figure 6.1: format.DateTimeFormat class

Figure 6.1 shows an example where target branches in a private method indirectly

depend on a desired object state for the class DateTimeFormatterBuilder. The SWARM-

POP fails to include all the require invoking method calls to instantiate the class Date-

TimeFormatterBuilder in the initial population.

Enhancing the initial population with a method dependence relation, Directed-

POP, improves the branch coverage percentage compared to a GA for the DateTimeFor-
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mat and DateTimeFormatter. In both classes, average coverage increases from 78.87% to

81.10% and from 53.71% to 58.79%, respectively. The better performance of Directed-

POP can be explained as follows: When the initial population is entirely generated ran-

domly, the chances of selecting a required DateTimeFormatterBuilder class are very small.

On the hand, with the assistance of the static analysis, the Directed-POP identifies

another method DateTimeFormatterBuilder appendLiteral(char c) in the Date-

TimeFormatterBuilder class, which returns an object of the DateTimeFormatterBuilder

class. Directed-POP invokes DateTimeFormatterBuilder appendLiteral(char

c) when calling DateTimeFormatter(DateTimeFormatterBuilder builder, String pattern) in

some individuals that are able to generate sequences for creating objects of the the Date-

TimeFormatterBuilder class. Our results show that the static analysis phase improves

the initial population and produces a much better starting individuals for the search to

achieve higher branch coverage.

6.4.4 RQ2: Guided Seeding Constants

In the second set of experiments, we addressed the second research question which asks

what the impact on branch coverage of using the guided-seeding strategy. To address

this question, we compared the effectiveness of the guided seeding, GA-GSeed, to

the approach proposed by Fraser and Arcuiri [28]. We called this approach unguided

seeding, GA-USeed. To compare GA-GSeed with GA-USeed, we ran GA with

the two different seeding strategies. To avoid a bias in our results, we set the value

of PConstant = 0.2 for GA-USeed, as it was the optimal probability value that gave the

best results in the empirical work carried out by Fraser and Arcuri [28].

Table 6.3 shows the branch coverage achieved by GA, GA-USeed and GA-GSeed. In
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Class GA GA-USeed GA-GSeed

language.DoubleMetaphone 76.80 84.26 85.05

identity.PathURN 47.92 37.92 65.00
identity.ResourceURL 67.33 73.00 82.67
identity.URL 59.09 70.30 78.79

format.DateTimeFormat 78.87 81.17 86.64
format.DateTimeFormatter 53.71 49.70 55.64

lang3.ArrayUtils 92.80 95.19 98.69
lang3.BooleanUtils 83.11 86.92 86.88
lang3.JavaVersion 46.33 100.00 100.00
math.NumberUtils 85.94 94.02 94.61
time.DateUtils 70.82 82.85 82.91

nanoxml.CDATAReader 71.15 75.13 94.74
nanoxml.ContentReader 70.90 77.56 90.90
nanoxml.NonValidator 23.09 24.76 38.29

Average 66.27 73.77 81.48

Table 6.3: Results of the branch coverage achieved by Directed Seeding.

both seeding strategies, average coverage increases from 66.27% to 73.77% and 81.48%,

respectively. As shown in our results, GA-GSeed outperforms GA-USeed by covering

target branches that GA-USeed failed to cover.

As the Table 6.3 shows, the GA-GSeed strategy (which uses directed seeding) achieves

significantly higher branch coverage than the GA-USeed strategy (which does not) on the

classes PathURN, DateTimeFormat, ArrayUtils, CDATAReader, ContentReader and NonVa-

lidator classes. GA-GSeed achieves the same coverage for the rest of the classes with

GA-USeed.

A closer look at the target branches that GA-USeed was not able to cover without the

directed seeding illustrates where the current seeding strategy faces problems. Figure 6.2

shows an example where GA-USeed has problem covering target branches.

The target branches are contained in the constructor of the PathURN and dependent
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1. public class PathURN extends URN {
2. public PathURN(String nuri) throws MalformedURIException {
3. super(nuri);
4. if(uri.length() == secondColonLocation + 1)
5. throw new MalformedURIException("Empty Path URN", uri);
6. if (uri.charAt(secondColonLocation + 1) != ’/’ )
7. throw new MalformedURIException("Path URN has no ...);
13. if(!uri.regionMatches(colonLocation + 1, "path", 0,
13. secondColonLocation - colonLocation - 1))
14. throw new MalformedURIException("The identifier was ...);
15. }//end PathURN constructor
14. ...more public methods omitted here ...
15. }

Figure 6.2: identify.PathURN class

on a string value and can only be covered if GA-USeed finds the correct value for each tar-

get branch, such that an PathURN object is constructed. However, the chances of finding

the correct values for calling a constructor can be very small. Without domain-specific

knowledge, random seeding in GA-USeed many generated tests that do not trigger their

target associated branches. The reason is that GA-USeed chooses the extracted val-

ues and methods to call randomly from all constant values and methods in the CUT,

even though only a subset of all methods are used for triggering the associated target

branches. However, the static analysis used in GA-GSeed helps to seed the extracted

constant values into the search space when targeting their associated branches and guides

the GA towards methods relevant for triggering their associated target branches. As a

consequence, the related methods influence the random decisions of the GA-GSeed and

leads to improved coverage of the PathURN class.
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6.4.5 RQ3: Comparison with GAMDR and MAMDR

We next address the third research question regarding comparing branch coverage achieved

by the proposed enhancement strategies with GAMDR and MAMDR (see Chapter 4 and

5 for more details).

Table 6.4 shows our results. The results show that the integration of MDR into the

GA and MA improves the branch coverage much over the standard GA and MA. By

focusing only on relevant methods, GAMDR, Directed-POP, MNS, and MWS improves

the chance of generating desired sequences of method calls for each target branch and

further improves the chance by covering all target branches.

In summary, these encouraging results suggest that information control dependencies

plays an important role to improve code coverage by assisting search-based approaches.

We can conclude that the integration of information control dependencies into the search-

based techniques leads to an improvement with strong statistical significance.

6.5 Threats to Validity

We are aware of the following threats to the validity of our results. First, threats to

internal validity might come from how the empirical study was conducted. To limit

these threats, we carefully tested our testing framework to reduce the probability of

having any faults. In addition, all the experminet were repeated 30 times to reduce any

random aspects in the observed results. Second, threats to construct validity might exist

because we gave the priority to the branch coverage to compare the performance of our

techniques. This measurement does not take into account how difficult the produced test

suites will be to manually evaluated. However, it is widely accepted that the higher the



117

C
la

ss
R

T
E

vo
S

u
it

e
G

A
G

A
M

D
R

D
ir
ec
te
d
-

P
O
P

S
W
A
R
M
-

P
O
P

G
A
-

U
S
ee
d

G
A
-

G
S
ee
d

M
A

M
N

S
M

W
S

la
n

g
u

a
g
e.

D
ou

b
le

M
et

a
p

h
on

e
7
9.

80
80

.6
6

76
.8

0
84

.5
4

77
.3

1
76

.0
0

84
.2

6
85

.0
5

81
.9

0
82

.9
5

8
5.

2
2

id
en

ti
ty

.P
a
th

U
R

N
4
4.

17
39

.1
7

47
.9

2
82

.9
2

53
.7

5
51

.2
5

37
.9

2
65

.0
0

48
.7

5
50

.0
0

5
3.

7
5

id
en

ti
ty

.R
es

o
u

rc
eU

R
L

7
4.

00
90

.0
0

67
.3

3
91

.0
0

75
.3

3
76

.0
0

73
.0

0
82

.6
7

71
.0

0
84

.0
0

9
4.

0
0

id
en

ti
ty

.U
R

L
3
9.

39
73

.4
8

59
.0

9
87

.4
2

68
.1

8
68

.7
9

70
.3

0
78

.7
9

91
.3

6
93

.1
8

9
8.

1
8

fo
rm

a
t.

D
at

eT
im

eF
or

m
a
t

8
0.

92
68

.6
9

78
.8

7
84

.9
0

81
.1

0
76

.9
7

81
.1

7
87

.3
8

81
.1

5
83

.7
5

8
9.

0
6

fo
rm

at
.D

at
eT

im
eF

o
rm

a
tt

er
4
7.

77
69

.4
7

53
.7

1
59

.5
8

58
.7

9
51

.7
0

49
.7

0
55

.6
4

81
.4

8
84

.7
7

8
4.

3
2

la
n

g
3.

A
rr

ay
U

ti
ls

9
9.

09
61

.4
2

92
.8

0
99

.1
8

94
.5

0
94

.7
0

95
.1

9
98

.6
9

94
.2

3
94

.2
8

9
5.

9
2

la
n

g3
.B

o
ol

ea
n

U
ti

ls
8
4.

80
79

.9
9

83
.1

1
89

.4
0

85
.6

4
85

.2
4

86
.9

2
86

.8
8

84
.3

6
85

.4
4

8
7.

4
0

la
n

g3
.J

av
aV

er
si

o
n

6
5.

33
10

0.
00

46
.3

3
75

.5
0

53
.3

3
54

.6
7

10
0.

0
0

10
0.

0
0

6
1.

8
3

9
3.

6
7

10
0.

0
0

m
a
th

.N
u

m
b

er
U

ti
ls

9
2.

07
79

.9
4

85
.9

4
94

.0
7

93
.4

4
93

.9
4

94
.0

2
94

.6
1

90
.5

7
94

.0
7

9
6.

2
3

ti
m

e.
D

a
te

U
ti

ls
6
9.

27
89

.0
0

70
.8

2
82

.9
5

80
.9

7
82

.3
5

82
.8

5
82

.9
1

80
.1

8
82

.8
2

8
4.

5
8

n
a
n

ox
m

l.
C

D
A

T
A

R
ea

d
er

6
6.

03
68

.8
5

71
.1

5
90

.3
8

76
.1

5
77

.5
6

75
.1

3
94

.7
4

77
.0

5
97

.0
5

9
6.

6
7

n
an

ox
m

l.
C

on
te

n
tR

ea
d
er

7
4.

36
86

.2
8

70
.9

0
90

.3
8

79
.8

7
74

.3
6

77
.5

6
90

.9
0

82
.5

6
90

.5
1

9
1.

6
7

n
an

ox
m

l.
N

o
n

V
al

id
a
to

r
2
4.

11
15

.9
8

23
.0

9
35

.4
1

29
.7

6
20

.0
4

24
.7

6
38

.2
9

30
.6

1
35

.9
3

3
8.

3
7

T
ab

le
6.

4:
E

va
lu

at
io

n
re

su
lt

s
sh

ow
in

g
h

ig
h

er
b

ra
n

ch
co

ve
ra

g
e

a
ch

ie
ve

d
b
y

G
A

a
n

d
M

A
w

it
h

th
e

a
ss

is
ta

n
ce

o
f

M
D

R
.



118

coverage is, the better test suites are [16]. Lastly, threats to external validity regarding

the selection of classes we analyzed may not be representative for all Java classes. To

avoid selection bias, we select all classes from different recent studies on string problem

in search-based testing [36] [28] [74] and report the results for all of them.

6.6 Conclusion

Genetic algorithm (GA) shows a promising approach for the task of testing object ori-

ented programs. The performance of the GA is dependent on a multitude of factors

and parameters. initial population and Seeding constant are examples of factors that

may strongly influence the performance of the GA. In this chapter, we proposed two new

strategies to create an initial population, and analyzed a new different seeding technique.

The aim is to enhance the performance of the GA and reduce the risk of being stuck in

a local optimum. Our primary results show that beginning a search with specific indi-

viduals instead of randomly generating the initial population enables the improvement

of the coverage and reaching the global optimum. In addition, instead of relying on

randomly seeding constant, we include more domain specific information as a guide for

the seeding constants. Using related methods, we have evidence that directed seeding

leads to significantly improved the performance of GA and achieved better coverage.

Our initial set of experiments showed that the proposed enhancement techniques can

lead to increased branch coverage. Our intention is to continue to accommodate other

structural testing criteria, such as data-flow coverage or mutation coverage. Our future

work also includes the enhancement of other aspects of the genetic algorithm particularly

the representation of the fitness function to speed up the evaluation of the GA.
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Chapter 7: Conclusion and Future Work

In this chapter we will summarize the achievements of this thesis and suggest possible

future directions for research.

7.1 Summary of Achievements

In this thesis, we proposed different approaches that novelty rely on statically analyzing

the internal structure of a class under test (CUT) to improve the effectiveness of search-

based test data generation techniques. The proposed approaches are based on a genetic

algorithm (GA) and a memetic algorithm (MA), which use search-based optimization

to target all uncovered barnacles at the same time. Our approaches are novel in using

information control dependencies from a static analysis to generate relevant sequences of

method calls that achieve high code coverage. The results of empirical studies on several

Java open-source projects showed that the statically-identified dependence information

helped the GA and MA algorithms to achieve higher branch coverage than the current

state of the art. The results represent a step towards a new direction on leveraging the

information control dependencies to assist search-based test generation approaches to

achieve higher code coverage.

The aims and objectives of this thesis were as follows:

1. To address the limitations of the existing search-based techniques for testing object-

oriented programs
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2. To develop new techniques to improve the capability and the performance of the

search-based approaches for the automatic generation test data for object-oriented

programs.

3. To perform an empirical investigation which evaluates the new techniques against

the state of the art techniques.

The first of the objectives was addressed by comparing and evaluating the random

testing and search-based testing techniques. We evaluated these techniques by comparing

and contrasting their strengths and limitations in handling large size and high complexity

programs. These limitations are the primary motivation that led to the proposal of this

thesis.

After successfully pointing out that the exploration of the search space is the funda-

mental challenge facing the search-based approaches, the second objective was achieved

by combining a static analysis in a novel way with a genetic algorithm (GA) in a tool

called GAMDR [2]. The tool is driven by the method dependency relations (MDR) to

optimize the search space exploration. Unlike previous search-based approaches, this

combination enables the proposed approach to explore high complexity code in order to

achieve high branch coverage.

In this thesis, we also make the contribution of enhancing the effectiveness of the

GA. In particular, we extended the GA test generation into a Memetic Algorithm, by

equipping it with several Local Search operators. These operators exploited MDR to

allow the search for test cases to function more effectively [1]. In addition, to enhance

the initial population of the GA, we leveraged the method dependence relations given by

Zhang et al. [104] and SWARM approach given by Groce et al. [44] to provide the GA

with a high-quality initial population that help the GA to achieve higher code coverage.



121

The strategy guided-Seeding constant values, also was proposed to increase the likelihood

of covering target branches that rely on specific values. To this end, a static analysis was

applied to direct the search to seed a constant value and focus only on methods relevant

for calling the associated branch from which it was collected.

The last objective of the thesis was achieved by evaluating and comparing the pro-

posed techniques to popular search algorithms. Different empirical studies involved a

large size of classes taken from open source programs. The results show that the proposed

approaches scale well to complex hard-to-cover programs and demonstrate a significant

improvement in branch coverage over popular approaches.

In summary, Chapter 2 starts by describing the various features of object-oriented

programming and how these features affect testing of object-oriented systems. The

chapter continues with an explanation of the differences between procedural and object-

oriented programs. Finally, the chapter provides background information on most of the

topics covered in our proposed technical approaches.

Chapter 3 illustrates an extensive literature review of automated test input generation

techniques. Particularly, we reviewed search-based testing and input domain reduction

techniques.

Chapters 4, 5 and 6 propose approaches to improve the effectiveness of the search-

based approaches. To this end, we leverage the method dependence relations to identify

relevant methods and parameters that need to be mutated in order to cover particu-

lar branches. Unlike previous search-based approaches, the works in this thesis have

a number of advantages. 1) It focuses on the root cause of the failure to cover target

branches. 2) It focuses only on the relevant parts of the individuals (i.e., test cases) that

affect the execution of the target branches. 3) It implements a domain reduction mech-

anism to speed search space exploration. These strengths together enable the proposed
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approaches to explore high complexity code in order to achieve high branch coverage.

7.2 Summary of Future Work

7.2.1 Future Work

This thesis has contributed effective techniques to significantly improve the perform-

ing of the search-based software testing to maximize branch coverage, particularly in

the field of test input generation for object-oriented programs. However, the proposed

approaches have a few limitations. This section discusses the limitations of the cur-

rent implementation of our proposed approaches, and proposes a number of interesting

research directions that have the potential for further investigation.

• Our proposed approaches focus exclusively on generating test suites that achieve

as high as possible branch coverage. It is widely accepted that the higher the

coverage is, the better test suites are [16], but this measurement does not take into

account the difficulty faced by developers in evaluating the produced test suites,

and adding test oracles in terms of assertions. Therefore, it would be interesting

to enlarge the scope of the proposed techniques to automatically generate effective

assertions and evaluate the fault detection capability of the generated test suites.

• We showed the ability of method dependence relations (MDR) to guide the genetic

algorithm (GA) and the hill climbing (HC) to generate tests with a higher branch

coverage than the pure GA and EvoSuite. However, it has been reported that

search algorithms usually depend on several parameters, such as population size,

mutation rate, and type of crossover [10]. It would be interesting to carry out a
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large empirical analysis on different combinations of parameters and values, or use

more advanced parameter control techniques [26] and show that the superiority of

our proposed techniques hold.

• We combined MDR with the GA and the local search (HC), and evaluated our

proposed techniques against the pure random testing, the pure GA, the HC, and

EvoSuite. There is a potential opportunity to combine MDR with other search

optimizations, such as Korle'Alternating Variable Method [64], and conduct fur-

ther experiments to show whether or not such a combination further improves the

achieved coverage.

• We showed that the exploitation of the domain knowledge can improve different

aspects of the GA, such as the initial population. However, a study shows that

generating desirable object instances has been a significant challenge for automated

test generation tools [59]. Thus, it is interesting to move a step further and leverage

the domain knowledge to alleviate such problems, and improve generating required

instances for classes with complex internal states. For this purpose, one should

investigate the capturing object instances from different search phases, and exploit

these object instances to guide the search in generating test cases [59].

7.2.2 Final Thoughts

All the experiments in this thesis were performed on different Java projects represent-

ing instances of difficult problems from an search-based test software testing (SBST)

approaches point of view, such that the integration of information control dependencies

and SBST approaches leads to clear improvements [36]. However, not all real software
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actually exhibit the necessary properties; data dependencies may be rare in real soft-

ware. To demonstrate whether data dependencies are common in Java programs, we ran-

domly chose and analyzed five different open source projects: tinySQL1, Barbecue2,

OMJState3, JETT4, and riak5. Then, we randomly selected 10 classes from each

project, and applied our static analysis tool to identify method dependence relations

based on the fields they read or write. The results of our empirical analysis show that

10% of the classes exhibit the data dependencies information.

We next show different examples demonstrate the usefulness of the static analysis

phase in practice and provide useful evidence to identify the set of relevant methods for

each target branch.

The first example taken from the tinySQL project and shows the static analysis is

effective in identifying the set of relevant methods from different classes that can be called

to reach a target branch. Our static analysis identifies that the method executeQuery

from the tinySQLStatement class requires the constructor of the tinySQLDriver,

tinySQLConnection, and tinySQLStatement, classes to be called in a correct or-

der. To achieve high code coverage of the executeQuery, a valid tinySQLDriver, a

tinySQLConnection, and a tinySQLStatement object must be created before the

method is called. Testing only relevant methods and constructors might help SBST ap-

proaches to create tinySQLDriver, tinySQLConnection, and tinySQLStatement

objects in a correct order and generate more effective sequences of method calls.

The second example shows a case where a method parameters cannot influence the

coverage of the target branches. The class GraphicOutput taken from Barbecue

1https://sourceforge.net/projects/tinysql
2http://barbecue.sourceforge.net/
3http://omjstate.sourceforge.net/
4http://jett.sourceforge.net/
5https://github.com/krestenkrab/riak-java-pb-client
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project. The class contains 5 methods, and all the target branches depend on two

private data members, g and savedColour. If a SBST approach fails to call the

constructor GraphicsOutput, which changes the state of the member fields g and

savedColour, the generated tests will fail to cover most of the target branches. How-

ever, the static analysis identifies that the method beingDraw and the constructor

of the classes GraphicsOutput, CenteredLabelLayout, MarginLabelLayout,

and DefaultLabelLayout are relevant and can influence the coverage of the target

branches in the method beingDraw.

The classes FormulaScanner and FormulaParser, taken from jett, contain all

the target branches only in one public method. For example, the class FormulaScanner

has five private data members and six public methods. The method Token getNextToken()

contains all the target branches, and does not have any parameters that help to cover

these target branches. The static analysis can be used to identify related methods (i.e.,

void reset() and void setFormulaText(String formulaText)) based on

the read/write data members and recommend to test them together. By excluding the

irrelevant methods, we essentially reduce the search space for testing the target branches,

and allow the SBST approach to better explore the search space, reaching more target

branches; thus increasing code coverage.

The third example shows an example where a method parameter specifies an instance

of Object, such that a SBST approach needs to find appropriate values for type parame-

ter Object in order to cover all branches. The class StringMatchesGuardCondition

and IntegerGreaterThanGuardCondition, which are taken from OMJState project,

contains branches that rely on an object type. For example, to cover all the branches in

the method evaluate (Object o) in the class StringMatchesGuardCondition,

an instance of the Event class is required in a relevant state. The challenges in this
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method is that a SBST approach needs to create an instance that matches the method sig-

nature when calling evaluate. However, our static analysis identifies that the method

depends on Event class. By identifying this relation, a SBST approach can create a suit-

able Event object and can easily cover all dependent branches in the method evaluate

(Object o).

The final example shows some classes are hard to instantiate. The constructor of the

classes StateMachine taken from OMJState project, and BucketProperties taken

from riak project, require objects to generate the desired object state. For example,

the class StateMachine has three private data members and two public methods.

The constructor of the class modifies all the data members and contains a loop over

Transitions. If a SBST approach fails to generate a desirable object instance required

for the data member Transitions, an exception is thrown and no StateMachine

object will be created. This class similar to the PathURN class in the Conzilla project,

which was used in our evaluations. We expect that, with a SBST approach alone, it

is difficult to obtain any coverage. However, the static analysis can identify relevant

accessible constructors of the StateMachine class, and allows the SBST approach to

concentrate on creating new instances of the StateMachine class more frequently.

We believe that when testing sizable and complex programs where the search space

is too large to exhaustively explore, the ability of our proposed approaches’ to reduce

the search space and to precisely guide the SBST approaches by focusing on relevant

methods and constructors for achieving high branch coverage.
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