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Recognizing human actions in videos is a long-standing problem in computer vision with a wide

range of applications including video surveillance, content retrieval, and sports analysis. This

thesis focuses on addressing efficiency and robustness of video classification in unconstrained

real-world settings. The thesis work can be broadly divided into four major parts.

First, we address view-invariant action recognition. This problem is formulated within the

multi-task learning framework, where the action model of each viewpoint is specified as a sepa-

rate task and all tasks are trained jointly.

Second, we address a large-scale action recognition in uncontrolled settings. For robustness,

we augment the standard training video dataset with additional data from another modality data

source – namely, 3D skeleton sequences of human body motion –. A recurrent neural network

called long short-term memory (LSTM) is used to encode sequences from 3D skeleton data.

For learning another LSTM for video classification, we use a modified hybrid backpropagation

through time algorithm.

Third, we address the unsupervised video summarization. We formulate the problem as a

subset frame selection and specified a novel deep generative network to compute a video sum-

mary with the smallest representation error.

Fourth, we introduce the new problem of budget-aware semantic segmentation of videos. In

this line of work, we consider two models. The first model uses a conditional random field (CRF)

model and replaces the standard inference steps for feature computation with a sequential pol-

icy which intelligently selects a subset of regions and their corresponding features. The second



model is a deep recurrent policy which is learned to select a subset of frames and uses a shal-

low convolutional neural network (CNN) to propagate the available segmentation to unlabeled

frames.

This research has advanced the state of the art in computer vision because the approaches

developed enabled meeting stringent runtime requirements arising in many applications, and

working in less sanitized settings.
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Chapter 1: Introduction

Since the introduction of low-cost video recording devices such as mobile phones, wearable and

ego-centric cameras and surveillance equipment, the volume of the video data has been rapidly

increasing. The forecast report [59] shows more than 80% of the Internet content will be video

data in 2020. Statistical analysis of the upload rate of the video data [3] also supports this

observation. To analyze, browse and search today‘s ever-growing video collections, we need

robust algorithms that understand and summarize the video content in an efficient way. In this

thesis we focus on improving robustness and efficiency of the state of the art on ‘large-scale

action recognition’, ‘unsupervised video summarization’, and ‘semantic video segmentation’,

where robustness is defined in terms of the model‘s accuracy and efficiency is defined in terms

of the inference processing time.

Understanding videos of human actions, recorded in an uncontrolled setting, is an open prob-

lem in computer vision. First, these videos are captured in-the-wild, where the actions are viewed

from various camera viewpoints and distances, and under partial occlusion. Second is a large

number of action classes and the granularity of the action categories (e.g. freestyle BMX, cyclo-

cross and road bicycle racing are similar actions which all contain humans riding a bike(s)).

Third, the actions may be performed by individuals or groups of people (e.g., skateboarding vs.

marathon), and may be characterized by critical human-human and human-object interactions

(e.g., bull-riding vs. horseback riding). Finally, the same action can be performed with different

motion styles and variations in speed.

Action recognition has been a long-standing problem in computer vision [180, 177, 159, 133,

104, 141, 126, 115, 161, 66, 46, 10, 63, 144, 72, 184, 25, 158, 134]. We advanced the state of the

art by learning how to be robust and efficient as opposed to common heuristics. We particularly

proposed a multimodal deep learning approach where multiple models which are grounded on

different input sources are trained jointly.

Video summarization has attracted recent attention with the appearance of large data. Given a

long video, the goal is to provide a shorter length video which still provides informative content

regarding the original video. One difficulty is that there is no unique way to define the video

summarization problem and the exact definition highly depends on the application [127, 120,
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121, 7, 164, 139, 44, 89, 79, 65, 118, 56]. More importantly, we believe that the main challenge

is the inherent subjectiveness of a ‘good’ summary.

Finally, the design of any practical computer vision system is typically informed by a trade-

off between efficiency and accuracy. Good computational efficiency is usually achieved by tak-

ing a number of heuristic pre- and post-processing steps and integrating them with the main ap-

proach. For example, vision practitioners heuristically limit the types of features to be extracted

(e.g., low-cost ones) from an image or a video. While these steps have been satisfactory for

small-scale problems, their heuristic nature makes an adaptation of existing systems to settings

with stringent run-time requirements very difficult.

In the following, we provide an outline of this thesis. This thesis is a manuscript style.

Chapters 2 and 3 present our work on human action recognition. We hypothesize that robust-

ness can be achieved through utilizing multiple different input modalities. The modalities are

not necessarily from different physical sensors (e.g. videos captured from different viewpoints

can be considered as distinct input modalities).

Our work on robust action recognition under varying viewpoints which is formulated as a

novel latent multi-task learning is described in chapter 2. This work follows the state of the art

traditional paradigm in computer vision. The common practice in the traditional paradigm is to

represent a video by a summary of locally computed appearance or motion feature descriptors

[20, 21] for a set of informative interest points [24, 86, 167, 156], or a dense set of feature points

sampled in space-time [154, 155]. A probabilistic model is then used [85, 5, 84, 140, 98] to

classify the action.

A historic paradigm shift happened in machine learning research by the recent breakthrough

in deep learning and the concept of big data. In this new practice, the emphasis is on end-to-end

learning of feature hierarchies. Deep models have shown impressive accuracy in many vision

problems including action classification from wild videos [10, 63, 144, 72, 184, 25, 158, 134,

125, 138]. The current research efforts to improve deep action classification models can be

grouped as follows: (a) Increasing the amount of training data [72] or using additional com-

plementary input sources [111, 62] (b) Fusing hand-designed and deep-convolutional features

[158, 134, 184], and (c) Combining Convolutional Neural Networks (CNNs) with either graph-

ical models [144, 55, 112], or recurrent neural networks [25, 112] for capturing complex tem-

poral dynamics. Despite these efforts, the action classification accuracy of existing work is still

markedly below the state-of-the-art performance on the related large-scale problem of image

classification. On the other hand, although the feed-forward architecture of these models pro-
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vides a faster inference in images, efficiency is still an important practical challenge in videos.

This motivates us to seek a novel strategy to improve efficiency and robustness of deep action

classification models. We propose a novel regularization, which uses complementary informa-

tion from 3D skeleton data during training to improve the classification accuracy. This work is

presented in chapter 3

In chapter 4 we formulate the video summarization as an unsupervised subset selection prob-

lem, i.e. given a complete set of video frames, the key goal is to select a subset of those frames

that preserve most of the important content of the original video frames. Our main contribu-

tion is to introduce a completely different view on the definition of a ‘good summary’. Instead

of the standard approach, which requires a heuristic, human engineered metric or measures to

summarize a video, we learn both the metric and the summarization algorithm.

In chapters 5 and 6 we study on the efficiency of semantic video segmentation. Good compu-

tational efficiency is usually achieved by taking a number of heuristic pre- and post-processing

steps and integrating them with the main approach. For example, vision practitioners heuristi-

cally limit the types of features to be extracted (e.g., low-cost ones), as well as locations and

scales in images and video from which they are extracted. While these steps have been satisfac-

tory for small-scale problems, their heuristic nature makes an adaptation of existing systems to

settings with stringent runtime requirements very difficult.

The trade-off between efficiency and accuracy can be seen as a cost-aware inference. The

cost-aware inference is a more challenging problem compared to the standard recognition tasks.

The cost-aware inference can be formulated as a decision-making problem. As an example,

consider the semantic video segmentation which is a well-known problem in computer vision

community. While the accuracy of a semantic video segmentation algorithm is defined in terms

of the correct estimated pixel labels, the efficiency is defined in terms of the processing time

(budget) the algorithm needs to provide pixel labeling.

However, none of the current solutions [102, 113, 73, 182, 18] satisfy the runtime expec-

tations. Only a few heuristic approaches have considered efficiency in semantic segmentation

[61, 95, 50]. Instead, we define the new problem of ‘budget-aware semantic video segmenta-

tion’. We hypothesize that casting the budget-aware semantic video segmentation inference as a

Markov Decision Process (MDP), allows us to provide a principled framework for considering

the trade-off between accuracy and efficiency. While in chapter 5 we learn the policy through

standard classification-based policy iteration, in chapter 6 we train the policy, modeled as a

recurrent neural network, using recurrent policy gradient approach.
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Due to the diversity of prior work on each topic we choose to provide a complete review of

the prior work on each topic at the beginning of the respective chapter.
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Chapter 2: Latent Multitask Learning for View-Invariant Action

Recognition

Abstract

This paper presents an approach to view-invariant action recognition, where human poses and

motions exhibit large variations across different camera viewpoints. When each viewpoint of a

given set of action classes is specified as a learning task then multitask learning appears suitable

for achieving view invariance in recognition. We extend the standard multitask learning to allow

identifying: (1) latent groupings of action views (i.e., tasks), and (2) discriminative action parts,

along with joint learning of all tasks. This is because it seems reasonable to expect that certain

distinct views are more correlated than some others, and thus identifying correlated views could

improve recognition. Also, part-based modeling is expected to improve robustness against self-

occlusion when actors are imaged from different views. Results on the benchmark datasets show

that we outperform standard multitask learning by 21.9%, and the state-of-the-art alternatives by

4.5–6%.

2.1 Introduction

This paper considers the problem of view-invariant action recognition. Given a video that shows

a human action (e.g., walking, jumping), we want to identify the action class and camera view-

point. The videos are captured from different camera viewpoints, which are taken to be discrete

and indexed by the viewpoint identifier, or viewpoint, for short.

Invariance to viewpoint changes is critical for action recognition, because people’s motion

trajectories may take arbitrary directions relative to the camera viewpoint while performing an

action. In our setting, natural variations of action instances within a class are augmented by

variations in their appearance across different viewpoints.

One way to achieve view invariance could be to reason about a 3D layout of the scene,

or 3D volume of the human body, so that the video features can be adapted from one view to

another through geometric transformations [180, 177, 159, 133, 104]. However, this framework
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critically depends on accurate detection of the body joints and contour, which are still open

problems in real-world settings. An alternative way would be to extract view-invariant video

features [141, 126, 115, 161, 66, 46]. Some of these methods are limited by requiring access to

motion capture data, while others find invariant features for only a subset of views.

The third group of approaches use knowledge transfer. They seek to extend knowledge ac-

quired in training from one or a limited number of views to other target views where recognition

will be performed. They either transform view-dependent video features to a new view-invariant

feature space [91, 99], or adapt model parameters to the target views [30, 31, 173]. The transfor-

mation is learned on the co-occurrence statistics of view-dependent features. This is attractive,

because knowledge transfer relaxes the requirements for accurate 3D scene and 3D human-body

reconstruction. However, these approaches require access to simultaneous multiview observa-

tions of the same action instance (except for [91]). In addition, they represent a video by a

bag-of-words (BoW) disregarding the layout of human-body parts. Accounting for body parts

seems important in our setting, because they are subject to self-occlusion when imaged from

different views.

To approach our problem, we specify that each viewpoint of a given set of action classes is

a learning task. Then, view invariance in recognition could be achieved by jointly learning all

the tasks using Multitask Learning (MTL) [14]. This is because MTL would be able to estimate

a latent feature representation shared across all views. While MTL is well known to vision

[146, 101, 123, 187], it has never been used for view-invariant action recognition.

MTL is based on the assumption that all the tasks considered (i.e., in our case viewpoints

of actions) are correlated. However, in our setting, this assumption may be too strong. Human

actions may occur in cluttered scenes, and discriminative movements of the human body may

not be visible from all viewpoints. Therefore, MTL is bound to under- or over-estimate the

correlation among all the viewpoints, due to confusing background and foreground features, and

disregarding self-occlusions of the human body.

To address the above issues, we extend the standard MTL to Latent Multitask Learning

(LMTL). Our LMTL uses a part-based action representation, instead of the standard BoW. In

this way, LMTL is enabled to identify foreground video features which group into discrimi-

native action parts, each corresponding to characteristic movements of a human-body part. In

addition, LMTL is enabled to identify latent groupings of correlated viewpoints of a given set of

action classes. Thus, LMTL learns a new shared feature space, such that each group of camera

viewpoints found to be correlated are allowed to share features, whereas this sharing is prohibited
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between the groups.

We use the latent large-margin framework [181] to formulate LMTL, wherein we incorporate

the mixed integer programming of [68] for grouping the viewpoints. This extends the work of

[68], which does not account for latent parts. Within each group of viewpoints, a shared feature

representation is estimated and used for learning parameters of a part-based action model, subject

to the trace-norm regularization. Fig. 2.1 shows an overview of our approach.

In the sequel, Sec. 2.2 gives a more formal overview of our approach, Sec. 2.3 reviews the

standard MTL, Sec. 2.4 formulates our LMTL, Sec. 2.5 specifies inference, Sec. 2.6 describes

video features, and Sec. 2.7 presents our results.

2.2 Overview of Our Approach

Our LMTL framework leverages a deformable parts model (DPM) [33]. DPM has K nodes

representing K action parts, connected in a star structure. An action part is a discriminative

space-time window in the video volume. Thus, each node of DPM can be characterized by

spatiotemporal features extracted from the corresponding space-time window. The nodes are

connected to the root, where the graph edges encode space-time deformations of the action parts.

DPM parameters represent weights associated with nodes and edges. The weights can be learned

within the latent large-margin framework [181], aimed at jointly discovering the K latent parts,

and estimating their weights so as to maximize the discriminativeness of DPM across a set of

action classes. Below, we give an overview of how to ground action parts onto raw pixels, and

how to perform view-invariant action recognition.

Access to action parts is provided by representing a video by a large set of overlapping

space-time windows of different sizes and shapes, V = {V1, ...,VN}. When an action occurs in

the video, it occupies only a subset of K � N windows, A = {Vk : Vk ∈ V, k = 1, ...,K},
corresponding to the K action parts. Video features extracted from A, and spatiotemporal dis-

placements of the windows in A can be represented by a d-dimensional vector, φ(x, y,h), where

x denotes the features; y is the action class; and h denotes the space-time locations of the win-

dows in A. For a set of M action classes, we learn a multiclass DPM by using an augmented D-

dimensional feature vector, Φ(x, y,h), where D = d ·M . Φ(x, y,h) is a sparse vector, whose

all elements are set to zero, except in the yth segment of d elements copied from φ(x, y,h).

Our LMTL is aimed at transforming the input view-dependent Φ(x, y,h) to a new, view-

invariant feature space. We use a linear transform, U>Φ(x, y,h), where U ∈ RD×D is an
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canonical view 1

...

Finding Latent Parts and Grouping Viewpoints of all Action Classes

Latent Multitask Learning

new video

max
y,v,h

wT
yvU

TΦ(x, y,h)

{{wv,y}, U}

{ŷ, v̂}

output

canonical view 2 canonical view g

Figure 2.1: For a given video, we estimate the action class ŷ and viewpoint v̂ using Latent
Multitask Learning (LMTL). LMTL identifies action parts, h, and groups of correlated camera
viewpoints. LMTL learns a linear transformation U to map input view-dependent features to a
new feature space, partitioned into subspaces which are shared by viewpoints within the same
group.
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orthogonal square matrix. For recognition, we define the multiclass discriminant function F as

Fy,v,h(x) = w>v U
>Φ(x, y,h), (2.1)

where v is the viewpoint, and wv ∈ RD are the multiclass DPM parameters. Given a video, the

action class and viewpoint are estimated via localizing latent action parts as

(ŷ, v̂) = arg max
y,v,h

Fy,v,h(x). (2.2)

We learn wv using LMTL. In the following section, we briefly review the standard MTL,

and defer the specification of LMTL to Sec. 2.4.

2.3 A Brief Review of Multitask Learning

The model parameters wv, defined in Sec. 2.2, can be learned using MTL, where each task v

represents recognition of one of M action classes imaged from the given view v. This section,

first, specifies a learning paradigm where the tasks are learned independently, referred to as

Baseline 1. Then, we present the standard MTL, referred to as Baseline 2. Finally, we review

the recent task-grouping MTL of [68], referred to as Baseline 3. These baselines are used in our

experiments for comparison (Sec. 2.7).

2.3.1 Baseline 1 = Learning Independent Tasks

Let W be a matrix whose columns are wv, indexed by viewpoints v = 1, ..., V . Also, let

∆(y, ŷ(wv,x)) denote a loss function of recognizing action class ŷ when the true class is y

in the vth task. For this baseline, we assume that all tasks use the same feature space, with

feature vectors x. Given training data Dv = {(xi, yi) : i = 1, 2, ...}, the tasks can be learned

independently as

min
W

∑V
v=1

∑
(xi,yi)∈Dv ∆(yi, ŷ(wv,xi)) + γ‖W‖2F , (2.3)

where ‖W‖2F =
∑

v ‖wv‖22 is the Frobenius norm of W .
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2.3.2 Baseline 2 = MTL

MTL extends Baseline 1 by finding a common feature subspace on which all the tasks perform

well. We use a linear transformationU of the original features, U>x, to find a lower-dimensional

subspace. As in [68], we regularize MTL learning of every wv by using the (2,1)-norm of W ,

‖W‖2,1 =
∑D

i=1

√∑
v w

2
i,v, as

min
W,U

∑V
v=1

∑
(xi,yi)∈Dv ∆(yi, ŷ(wv, U

>xi)) + γ‖W‖22,1. (2.4)

The regularization of W in (2.4) enforces row-sparseness of W , i.e., maximizes the number of

zero rows in W .

Note that the loss in (2.4) is not convex with respect to both W and U ; but it is convex with

respect to each of them separately. For solving (2.4), we use the approach of [8], where a similar

optimization problem is addressed by removing the non-convex dependency of the loss function

on two variables. To this end, we introduce the following notation:

(Θ, Ω) = (UW, Udiag(λ)U>), (2.5)

where λ = [ ‖W1‖2
‖W‖2,1 , ...,

‖Wi‖2
‖W‖2,1 , ....,

‖WD‖2
‖W‖2,1 ] and Wi is the ith row of W . The columns of matrix

Θ are denoted as {θv : v = 1, ..., V }. Using this new notation, the minimization problem of

(2.4) can be expressed as (see the proof in [8]):

min
Θ,Ω

∑
v

∑
(xi,yi)∈Dv

∆(yi, ŷ(θv,xi)) + γ
∑
v

θ>v Ω−1θv. (2.6)

From (2.1) and (2.2), our inference requires the computation of the product Θ = UW , rather than

using the matrices U and W individually. Therefore, instead of learning U and W , it suffices to

learn Θ, and then directly use Θ in (2.2). Next, we describe an algorithm for estimating Θ and

Ω from (2.6).

The following two-step iterative algorithm, presented in [8], can be used for solving the

optimization problem of (2.6):

1. Given Θ, find Ω from (2.6). By theorem 4.1 in [8], there is a closed-form solution

Ω= (ΘΘ>)
1
2

Trace((ΘΘ>)
1
2 )

.

2. Given Ω, find Θ from (2.6). Substituting the closed-form solution of Ω from step 1 in (2.6),
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we get min
Θ

∑
v

∑
(xi,yi)∈Dv ∆(yi, ŷ(θv, xi)) + γ‖Θ‖2∗, where ‖ · ‖∗ is the trace norm.

2.3.3 Baseline 3 = Task-grouping MTL

In [68], the standard MTL is extended by grouping tasks and finding feature subspaces for dif-

ferent groups. As mentioned in Sec. 2.1, the approach of [68] is agnostic of parts, and thus is

our Baseline 3. The task grouping can be achieved by separating the regularization of Θ over

distinct task groups in (2.6) as

min
Θ,Ω

∑
v

∑
i

∆(yi, ŷ(θv,xi)) + γ
∑
g

∑
vg

θ>vgΩ
−1θvg , (2.7)

where vg denotes viewpoints that belong to group g. Note that a solution of (2.7) needs to resolve

the latent assignment of viewpoints to groups, in addition to finding Θ and Ω.

As for Baseline 2, we can use the above two-step iterative algorithm for solving (2.7). For

given Θ, the first step finds the closed-form solution Ω= (ΘΘ>)
1
2

Trace((ΘΘ>)
1
2 )

. Then, in the second

step, we substitute this closed-form solution for Ω into (2.7), and obtain the following simpler

problem:

min
Θ

∑
v

∑
i ∆(yi, ŷ(θv, xi)) + γ

∑
g ‖Θg‖2∗. (2.8)

where Θg is a matrix whose columns are parameters θvg of the viewpoints in group g.

Mixture integer programming can be used in (2.8) to identify the latent assignment of view-

points to groups. Let Qg ∈ RV×V denote the diagonal assignment matrices for grouping the

viewpoints into their respective groups g. Thus, (2.8) can be conveniently expressed as

min
Θ,{Qg}

∑
v

∑
i ∆(yi, ŷ(θv, xi)) + γ

∑
g ‖ΘQg‖2∗

s.t.
∑

g Qg = I,
(2.9)

where I is the identity matrix. Note that when the maximum g = 1, Baseline 3 is equivalent to

Baseline 2.
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2.4 Latent Multitask Learning

This section specifies our LMTL. We extend the task-grouping MTL of [68] (i.e., Baseline 3) to

additionally identify discriminative action parts. The goal of LMTL is to learn Θ and Ω, defined

in (2.5), and the viewpoint grouping matrices {Qg}, defined in (2.9), and use them for inference

in (2.2). Below, we first specify how to estimate Ω, then formulate a new optimization problem

for estimating Θ, and {Qg}, and finally present an iterative algorithm for learning all LMTL

parameters Θ, Ω, and {Qg} on training data.

As in Baselines 2 and 3, we can readily estimate Ω, given Θ, using the closed-form solution

Ω= (ΘΘ>)
1
2

Trace((ΘΘ>)
1
2 )

.

2.4.1 New Optimization Problem.

For learning Θ, and {Qg}, we introduce a new loss function, and substitute it in (2.9). Let

h∗vi = h∗(θv,xi) denote the estimates of vth task for latent action parts in a training video,

(xi, yi) ∈ Dv, given its true action class yi. Also, let ĥvi = ĥ(θv,xi) denote the estimates of

vth task for latent action parts in the same training video, (xi, yi) ∈ Dv, without the knowledge

of its true action class, but given some estimate ŷvi = ŷ(θv,xi). Then, as in [33, 181], we define

a loss function, ∆(yi,h
∗
vi, ŷvi, ĥvi), in terms of both action class labels and latent variables, and

substitute it in (2.9). Thus, we obtain the following new optimization problem:

min
Θ,{Qg}

∑
v

∑
i ∆(yi,h

∗
vi, ŷvi, ĥvi) + γ

∑
g ‖ΘQg‖2∗

s.t.
∑

g Qg = I,
(2.10)

The above loss function ∆(yi,h
∗
vi, ŷvi, ĥvi) is not convex. As discussed in [181, 33], defining

a loss function based on h∗ is difficult. Following the derivation in [181, 33], we approximate

∆(yi,h
∗
vi, ŷvi, ĥvi) with the upper-bound loss function, ∆(yi,h

∗
vi, ŷvi, ĥvi) ≤ ∆ub(yi, ŷvi, ĥvi),

where
∆ub(yi, ŷvi, ĥvi) = max

ŷ,ĥ
[θv
>U>Φ(xi, ŷ, ĥ) + ∆01(yi, ŷ)]

−max
h

[θv
>U>Φ(xi, yi,h)],

(2.11)
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where ∆01(yi, ŷ) is defined as the standard zero-one loss, taking value 1 when yi 6= ŷ, and 0,

otherwise. We substitute ∆ub in (2.10), which gives our final formulation for learning Θ and Qg
parameters:

min
Θ,{Qg}

∑
v

∑
i ∆ub(yi, ŷvi, ĥvi) + γ

∑
g ‖ΘQg‖2∗

s.t.
∑

g Qg = I.
(2.12)

2.4.2 Iterative Algorithm.

Given training data,Dv = {(xi, yi)}, v = 1, ..., V , the parameters of LTML, Θ, Ω and {Qg}, are

learned using an iterative algorithm, where each iteration consists of the following three steps.

Step 1: Given Ω and {Qg}, find Θ from (2.12). The key ideas is that for given {Qg}, the

optimization problem of (2.12) is separable, i.e., the columns of Θ, {θv : v = 1, ..., V }, can

be independently estimated. This follows from
∑

g ‖ΘQg‖2∗ =
∑

g ‖Θg‖2∗ =
∑

g

∑
v∈g ‖θv‖22,

where v ∈ g means that the latter sum is only over those viewpoints in the group g. From (2.11)

and (2.12), we derive the following V optimization problems for finding Θ:

min
θv

[1

2
‖θv‖2 + C

n∑
i∈Dv

max
ŷ,ĥ

[θvΦ(xi, ŷ, ĥ) + ∆01(yi, ŷ)]

−C
n∑

i∈Dv

max
h

[θvΦ(xi, yi,h)]
]
,

(2.13)

Note that (2.13) is the standard latent structured SVM formulation [33, 181], and can be effi-

ciently solved using the CCCP algorithm, as in [33, 181].

Step 2: Given {Qg} and Θ, compute Ω using the closed-form solution, Ω = (ΘΘ>)
1
2

Trace((ΘΘ>)
1
2 )

.

Step 3: Given Θ and Ω, find {Qg}. In this step, we use the gradient descent, following the

derivation presented in [68]. The gradient decent of the Lagrangian function of (2.12) is made

possible in [68] by relaxing the integer regularization in (2.12) to
∑

g ‖Θ
√
Qg‖2∗. For binary

solutions of Qg the relaxed regularization is equivalent to the original one.
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2.5 Inference

Given a set of space-time windows of a new video, V = {V1, ...,VN}, inference consists of two

steps.

In the first step, we infer latent variables, ĥ, i.e., identify K action parts in V, using the

distance transform accommodated for 2D+time volumes [33]. From (2.1), this uniquely specifies

the augmented feature vector Φ(x, y, ĥ) that is used for computing the multiclass discriminant

function:

Fy,v,ĥ(x) = w>v U
>Φ(x, y, ĥ) = θ>v Φ(x, y, ĥ). (2.14)

In the second step, from (2.2) and (2.14), we recognize the action class and viewpoint of the

new video as

(ŷ, v̂) = arg max
y,v

θ>v Φ(x, y, ĥ). (2.15)

2.6 Features

This section describes our feature vectors x and φ(x, y, ĥ).

A video is represented by a large set of overlapping space-time (2D+t) windows of differ-

ent sizes. Each 2D+t window is characterized by the standard BoW with 2000 codewords. For

extracting the codewords, we use dense trajectories [151], which have shown promise for view-

invariant action recognition [173]. The dense trajectories are described by a concatenation of the

following descriptors: trajectory(30), HOG(108), HOF(96), MBHx(96), and MBHy(96)). For

extracting the dense trajectories, and computing their descriptors, we use the software implemen-

tation from [152]. Given the set of feature descriptors from all videos in training data, we use

K-means to find the 2000 codewords, and thus produce the BoW descriptions of all space-time

windows in the video.

φ(x, y, ĥ) is formed by concatenating unary and pairwise potentials of action parts. The

unary potential is a BoW associated with the corresponding space-time window. The pairwise

potential is defined as the Euclidean distance between the two closest corners of the 2D+t win-

dows corresponding to the root and the action part.
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2.7 Results

Datasets. We evaluate our approach on three benchmark datasets including: the IXMAS dataset

[161], the newer version of IXMAS dataset [160] referred to as IXMAS(new), and the i3DPost

multiview human action dataset [43]. IXMAS has 12 different actions performed by 11 actors

three times. These actions have been recorded in five different viewpoints. IXMAS(new) has the

same set of actions as IXMAS, recorded from five different viewpoints with different cameras.

Two-thirds of the videos contain objects in the scene partially occluding the actors. i3DPost has

13 actions of 8 people recorded from 8 viewpoints. In addition to simple actions (e.g. Walk,

Run, Bend), i3DPost contains structured actions (e.g. Run-Fall, Run, Jump, Walk), and actions

with two actors (e.g. Pull). Prior work reports accuracy only for the simple actions of i3DPost.

We evaluate our approach on all the actions of i3DPost.

Video Representation. A video is split into overlapping 2D+t windows of varying width,

height and time duration. The width and height vary in a range of [100, 200] pixels, and time

varies in [5-90] frames in increments of 10 frames. This generates approximately 25000 over-

lapping 2D+t windows for a video of 90 frames of size (400× 300) pixels. In our experiments,

our approach is relatively insensitive to the size parameters and placement of 2D+t windows.

For example, a twice larger size and coarser placement of 2D+t windows, totaling 10000, yields

on average a performance reduction by 2%.

Input parameters to our LMTL include: the number of action parts K = {2, 4, 6, 8} and

the number of groups g ∈ {1, 5, 6, 7, 8}. We test our sensitivity to the specific choice of K and

g. Fig. 2.2 shows that changes of g affect our average accuracy on the action classes of i3DPost.

VaryingK in the subrange 4−−6 seems to have negligent effect on our average accuracy. In the

following, we will use g = 3 andK = 6, which give the best results, if not mentioned otherwise.

Baselines. Baseline 1 learns action classifiers separately for different viewpoints, and is

specified in (2.3). Baseline 2 learns a common feature subspace for all tasks; it is introduced

in [8], and specified in (2.4). Baseline 3 learns a feature subspace for a group of tasks; it is

introduced in [68], and specified in (2.9).

Two Settings. We use two settings for evaluation. First, we have access to a balanced set of

labeled data from all viewpoints. We use the standard two-thirds and one-third split for training

and testing, respectively. This setting allows us to compare our LMTL with the baselines and

methods which use all viewpoints in training. The second setting tests how our LMTL deals

with an unbalanced number of videos from different viewpoints, as is often the case in real
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Figure 2.2: Our average recognition accuracy on i3DPost videos for different input parameters
K and g.

world applications. We have access to videos from one or more source views, and limited (or

no) access to videos from other target views. For evaluation, we vary the number of source

views, and the number of videos from target views present in training.

Tables 2.1, 2.2 and 2.3 show the average accuracy of LMTL and the baselines with respect

to different viewpoints on IXMAS, IXMAS(new) and i3DPost respectively in the first setting.

We see that sharing features across all viewpoints in Baseline 2 worsens results relative to

Baseline 1. This is not a surprise, because the assumption that all viewpoints share a com-

mon feature space is too strong (e.g., top view in IXMAS dataset has completely different ap-

pearance from the other views). We can see that Baseline 3 gives better accuracy by grouping

different viewpoints. Another interesting observation is the effect of using latent action parts.

LMTL(g=1), gets better results compared to Baseline 3, especially on the IXMAS(new) and

I3DPost datasets which contain occlusion and structured actions. This shows the merit of our

accounting for action parts. We also see performance improvement by grouping viewpoints,

LMTL(g=3), over using a single group. In summary, we perform 10% − 26% better than the

baselines on the benchmark datasets.

Tables 2.4, 2.5 and 2.6 show the confusion tables of our approach for action classes on the

IXMAS, IXMAS(new) and i3DPost datasets. Although we do not model structured actions and

actions with more than one actor explicitly in our model, results on the i3DPost dataset show a
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Target View Cam0 Cam1 Cam2 Cam3 Cam4 Avg
B1 78.7 75.3 74.8 73.8 69.6 74.4
B2 78.9 71.5 70.1 69.1 72.4 72.4
B3(g=3) 81.1 82.8 82.5 80.4 77.6 80.9
LMTL(g=1) 86.4 85.5 80.2 84.1 76.8 82.6
LMTL(g=3) 96.8 95.6 94.7 96.5 92.1 95.1

Table 2.1: Average accuracy in [%] of LMTL and Baseline1 (B1), Baseline2
(B2), Baseline3 (B3) for different camera viewpoints on IXMAS.

Target View Cam0 Cam1 Cam2 Cam3 Cam4 Avg
B1 65.5 64.2 62.7 68.8 59.3 64.1
B2 60.3 66.2 60.5 63.8 61.9 62.5
B3(g=3) 68.8 70.1 66.5 70.6 64.4 68.1
LMTL(g=1) 78.2 81.6 80.7 77.6 76.1 78.8
LMTL(g=3) 90.2 91.4 88.7 88.1 84.4 88.6

Table 2.2: Average accuracy in [%] of LMTL and Baseline1 (B1), Baseline2
(B2), Baseline3 (B3) for different camera viewpoints on IXMAS(new).

Target View Cam0 Cam1 Cam2 Cam3 Cam4 Cam5 Cam6 Cam7 Avg
B1 72.4 74.8 72.6 69.6 69.7 70.6 73.9 71.2 71.9
B2 69.7 73.9 72.3 68.8 70.5 69.7 70.4 70.1 70.7
B3(g=3) 71.3 81.2 79.4 80.7 74.5 77.3 78.2 77.8 77.6
LMTL(g=1) 85.4 84.5 86.7 86.6 81.6 79.5 79.8 80.9 83.1
LMTL(g=3) 89.9 91.1 89.5 90.9 86.9 85.6 84.2 83.4 87.7

Table 2.3: Average accuracy in [%] of LMTL and Baseline1 (B1), Baseline2 (B2), Baseline3
(B3) for different camera viewpoints on i3DPost.
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CW CA GU KI PU PT PC SH SD TA WK WV
CW 93.1 0 0 0 0 1.7 0 3.4 0 0 0 1.7
CA 3.4 89.7 0 0 0 0 0 1.7 0 0 0 5.2
GU 0 0 100 0 0 0 0 0 0 0 0 0
KI 0 0 0 100 0 0 0 0 0 0 0 0
PU 0 0 0 0 98.3 0 0 0 1.7 0 0 0
PT 0 0 0 0 0 86.2 8.6 0 1.7 0 0 3.4
PC 0 0 0 3.4 0 3.4 93.1 0 0 0 0 0
SH 1.7 1.7 0 0 0 0 0 89.7 0 0 0 6.9
SD 0 0 0 0 0 0 0 0 100 0 0 0
TA 0 0 0 0 1.7 0 0 0 0 96.6 1.7 0
WK 0 0 0 0 0 0 0 0 0 0 100 0
WV 1.7 3.4 0 0 0 1.7 0 1.7 0 0 0 91.4

Table 2.4: The confusion matrix of LTML for the IXMAS action classes.
CW=CheckWatch, CA=CrossArms, GU=GetUp, KI=Kick, PU=PickUp, PT=Point,
PC=Punch, SH=ScratchHead, SD=SitDown, TA=TurnAround, WK=Walk,
WV=Wave. The values are in [%]

reasonable accuracy for these set of actions.

Studying recognition accuracy per viewpoint is important, because it shows how well an

approach performs in different viewpoints. Fig. 2.3 shows our average accuracy per viewpoint

on the IXMAS dataset. We can see that our recognition accuracy is consistent across different

viewpoints.

Table 2.7 shows the confusion matrix of our viewpoint estimation on the IXMAS dataset.

Our average viewpoint estimation accuracy is 82%. Confusion matrices of our viewpoint esti-

mation on the IXMAS(new) and i3DPost datasets are shown in tables 2.8 and 2.9 respectively.

In the second setting, we fix the number of source viewpoints, and evaluate the sensitivity of

LMTL to a varying fraction of target samples in training. Fig. 2.4 shows the average accuracy

of LMTL for different fractions of target views in the IXMAS datasets. For 0% fraction of

target views, LMTL does not perform as good as [91] on IXMAS. This is because LMTL is
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CW CA GU KI PU PC SH SD TA WK WV
CW 79.3 8.6 0 0 0 5.2 3.4 0 0 0 3.4
CA 6.9 75.9 0 0 0 3.4 6.9 0 0 0 6.9
GU 0 0 89.7 0 3.4 0 0 6.9 0 0 0
KI 0 0 0 93.1 0 5.2 0 0 1.7 0 0
PU 0 0 5.2 0 94.8 0 0 0 0 0 0
PC 1.7 0 0 6.9 0 91.4 0 0 0 0 0
SH 0 5.2 0 0 0 1.7 82.8 0 0 0 10.3
SD 0 0 6.9 0 3.4 0 0 89.7 0 0 0
TA 0 0 0 1.7 0 0 0 0 93.1 5.2 0
WK 0 0 0 0 0 0 0 0 0 100 0
WV 0 3.4 0 1.7 0 0 5.2 0 0 5.2 84.5

Table 2.5: Confusion matrix of LMTL on IXMAS(new) action classes.
CW=CheckWatch, CA=CrossArms, GU=GetUp, KI=Kick, PU=PickUp, PC=Punch,
SH=ScratchHead, SD=SitDown, TA=TurnAround, WK=Walk, WV=Wave

BD HS HW JF JP PL RN RF RJ SS WK WS
BD 96.6 0 0 0 0 0 0 0 0 3.4 0 0
HS 0 65.5 0 0 0 0 0 0 1.7 0 24.1 8.6
HW 0 0 100 0 0 0 0 0 0 0 0 0
JF 0 0 0 91.4 0 0 8.6 0 0 0 0 0
JP 0 0 0 0 100 0 0 0 0 0 0 0
PL 3.4 5.2 0 10.3 0 67.2 3.4 1.7 0 8.6 0 0
RN 0 0 0 0 0 0 96.6 1.7 0 0 1.7 0
RF 0 0 0 0 0 0 5.2 93.1 1.7 0 0 0
RJ 0 0 0 15.5 0 0 8.6 3.4 70.7 0 0 1.7
SS 6.9 0 0 0 0 0 0 0 0 93.1 0 0

WK 0 0 0 0 0 0 0 0 0 0 100 0
WS 0 0 0 0 0 0 1.7 0 0 0 20.7 77.6

Table 2.6: Confusion matrix of LMTL on I3DPost action classes. BD=Bend,
HS=HandShake, HW=HandWave, JF=JumpForward, JP=Jump-In-Place, PL=Pull,
RN=Run, RF=Run-Fall, RJ=Run-Jump-Walk, SS=Sit-Standup, WK=Walk,
WS=Walk-Sit
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Figure 2.3: Accuracy in [%] of LMTL across different viewpoints on IX-
MAS.

CAM0 CAM1 CAM2 CAM3 CAM4
CAM0 81.8 12.7 3 1.8 0.6
CAM1 16.4 81.2 1.8 0.6 0
CAM2 0.6 3 84.8 11.5 0
CAM3 3.6 3.6 8.5 83.6 0.6
CAM4 1.8 4.8 7.3 7.9 78.2

Table 2.7: The confusion matrix of viewpoints estimated by LMTL
on IXMAS. The values are in [%]

CAM0 CAM1 CAM2 CAM3 CAM4
CAM0 82.4 1.8 9.7 1.2 4.8
CAM1 1.2 87.9 2.4 7.9 0.6
CAM2 4.2 0.6 83.6 1.8 9.7
CAM3 1.2 8.5 1.8 86.1 2.4
CAM4 5.5 1.2 7.3 2.4 83.6

Table 2.8: Confusion matrix of estimated viewpoints for LMTL on
IXMAS(new). Values are in [%]
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CAM0 CAM1 CAM2 CAM3 CAM4 CAM5 CAM6 CAM7
CAM0 88.7 6.7 4.6 0 0 0 0 0
CAM1 3.6 90.3 5.6 0 0 0 0.5 0
CAM2 0 0 90.3 0 1.0 8.7 0 0
CAM3 6.7 4.1 0 88.7 0 0.5 0 0
CAM4 0 0 0.5 0 86.7 0 2.1 10.8
CAM5 0 0 7.7 0 0 91.3 1.0 0
CAM6 0 0 0 0 3.6 0 91.8 4.6
CAM7 0 0.5 0 0 8.7 0 6.2 84.6

Table 2.9: Confusion matrix of estimated viewpoints for LMTL on I3DPost. Values are in [%]

a supervised approach, and needs at least some fraction of target examples for classification.

Starting from one-fourth of target samples, we get better accuracy compared to [91].

In the second setting, we also test our sensitivity to the number of source viewpoints. This is

important, because not all methods result in significant performance increase by using multiple

source views (e.g. [91]). Fig. 2.5 shows the effect of using multiple source views on our average

accuracy for three datasets. We have averaged over all different combinations of source views.

In addition to the source view videos, we also use one-third of videos of the target viewpoint

in learning. Note that the total number of groups of viewpoints is limited by the number of the

source views, which is 5 in IXMAS, and 8 in both IXMAS(new) and i3DPost.

For a fair comparison with the state of the art, we use two different modes of tests: 1) Un-

balanced labeled mode, where we use one-third of videos from the target views in training, and

2) Balanced labeled mode, where we use two-thirds of videos from the target views in training.

The state-of-the-art approaches include [66] and [91, 99] as representatives of view-invariant

features and transfer learning approaches. [91] uses multi-kernel SVM. We also compare with

another latent structured model [174]. A comparison with geometric-based approaches to view-

invariant recognition is not possible, because they do not report their accuracy per viewpoint.

Table 2.10 shows the comparison on IXMAS in the unbalanced labeled mode. Tables 2.11 and

2.12 show the comparison using fully labeled training data on the two IXMAS datasets. LMTL

outperforms the state-of-the-art approaches by 4.5–6%.

The best average accuracy on the simple action classes of i3DPost, reported in [60], is

90.88%. From Table 2.3, LMTL outperforms the approach of [60] by 5.4% for the same set

of actions. Our evaluation on i3DPost shows that the DPM representation of action classes is
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Figure 2.4: Average accuracy in [%] based on the fraction of target examples in the IXMAS
training dataset.

Figure 2.5: Average accuracy in [%] for different numbers of viewpoints in the IXMAS, IX-
MAS(new) and i3DPost datasets.
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Target View Cam0 Cam1 Cam2 Cam3 Cam4 Avg
[91] 62.0 65.5 64.5 69.5 57.9 63.9
[173] 86.1 93.1 73.6 80.6 - 83.3
LMTL 89.2 87.7 86.8 90.5 79.6 86.8
LMTL 89.2 87.7 86.8 90.5 - 88.6

Table 2.10: Average accuracy in [%] of LMTL, and the state of the art on
IXMAS in unbalanced labeling mode.

Target View Cam0 Cam1 Cam2 Cam3 Cam4 Avg
[66] 74.8 74.5 74.8 70.6 61.2 71.2
[99] 86.6 81.1 80.1 83.6 82.8 82.8
[173] 95.1 89.6 91.7 90.3 - 91.7
LMTL 95.9 96.8 94.5 96.9 89.9 94.8
LMTL 95.9 96.8 94.5 96.9 - 96

Table 2.11: Average accuracy in [%] of LMTL and the state of the art on
IXMAS in balanced labeling mode.

Target View Cam0 Cam1 Cam2 Cam3 Cam4 Avg
[160] 87.0 88.3 85.6 87.0 69.7 83.5
LMTL 90.2 91.4 88.7 88.1 84.4 88.6

Table 2.12: Average accuracy in [%] of LMTL and the state of the art on
IXMAS(new) in balanced labeling mode.
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capable of handling more complex, structured actions.

Implementation is done in C++. We perform our experiments on a core-i7 cpu and 8GB

RAM PC. The inference running time is O(m logm), where m is the number of overlapping

2D+t windows in the video.

2.8 Summary

We have formulated a new approach to view-invariant action recognition. Our novelty is two-

fold. We have formalized viewpoints of a given set of action classes as learning tasks, which

can be jointly learned within the Multitask Learning (MTL) framework. To express that some

viewpoints may not be correlated, and that discriminative action parts are subject to occlusion

across the views, we have extended the standard MTL to latent MTL (LMTL). Thus, our LMTL

identifies groupings of correlated viewpoints, leveraging a multiclass deformable parts model of

actions.

Our evaluation on the benchmark IXMAS, IXMAS(new), and i3DPost datasets shows that

accounting for parts and grouping viewpoints in LMTL leads to significant performance im-

provements over MTL, and other knowledge-transfer approaches to view-invariant action recog-

nition.
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Chapter 3: Regularizing Learning of Human Actions from Videos Using

3D Human-Skeleton Sequences

Abstract

This paper argues that large-scale action recognition in video can be greatly improved by provid-

ing an additional modality in training data – namely, 3D human-skeleton sequences – aimed at

complementing poorly represented or missing features of human actions in the training videos.

For recognition, we use Long Short Term Memory (LSTM) grounded via a deep Convolutional

Neural Network (CNN) onto the video. Training of LSTM is regularized using the output of

another encoder LSTM (eLSTM) grounded on 3D human-skeleton training data. For such reg-

ularized training of LSTM, we modify the standard backpropagation through time (BPTT) in

order to address the well-known issues with gradient descent in constraint optimization. Our

evaluation on three benchmark datasets – Sports-1M, HMDB-51, and UCF101 – shows accu-

racy improvements from 1.7% up to 14.8% relative to the state of the art.

3.1 Introduction

This paper is about classifying videos of human actions. We focus on domains that present

challenges along two axes. First, we consider a large set of action classes (e.g., the Sports-1M

dataset with 487 action classes [72]) which may have very subtle inter-class differences and large

intra-class variations (e.g., Sports-1M contains 6 different types of bowling, 7 different types of

American football and 23 types of billiards). The actions ma y be performed by individuals

or groups of people (e.g., skateboarding vs. marathon), and may be defined by a particular

object of interaction (e.g., bull-riding vs. horseback riding). Second, our videos are captured in

uncontrolled environments, where the actions are viewed from various camera viewpoints and

distances, and under partial occlusion.

Recent work uses Convolutional Neural Networks (CNNs) to address the above challenges

[10, 63, 144, 72, 184, 25, 158, 134]. However, despite the ongoing research efforts to: (a) In-

crease the amount of training data [72], (b) Fuse hand-designed and deep-convolutional features
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[158, 134, 184], and (c) Combine CNNs with either graphical models [144, 55, 112], or recurrent

neural networks [25, 112] for capturing complex dynamics of human actions, we observe that

their classification accuracy is still markedly below the counterpart performance on large-scale

image classification. This motivates us to seek a novel deep architecture, leveraging some of the

promising directions in (a)–(c).

Our key idea is to augment the training set of videos with additional data coming from an-

other modality. This has the potential to facilitate capturing important features of human actions

poorly represented in the training videos, or even provide complementary information missing

in the videos. Specifically, in training, we use 3D human-skeleton sequences of a few human

actions to regularize learning of our deep representation of all action classes. This regulariza-

tion rests on our hypothesis that since videos and skeleton sequences are about human motions

their respective feature representations should be similar. The skeleton sequences, being view-

independent and devoid of background clutter, are expected to facilitate capturing important

motion patterns of human-body joints in 3D space. This, in turn, is expected to regularize, and

thus improve our deep learning from videos.

It is worth noting that the additional modality that we use in training does not provide ex-

amples of most action classes from our video domain. Rather, available 3D human-skeleton

sequences form a small-size training dataset that is insufficient for robust deep learning. Never-

theless, in this paper, we show that accounting for this additional modality greatly improves our

performance relative to the case when only videos are used in training.

As illustrated in Fig. 4.1, for action recognition, we use Long Short Term Memory (LSTM)

grounded via a deep Convolutional Neural Network (DCNN) onto the video. LSTM is modified

to have an additional representational layer at the top, aimed at extracting deep-learned feature

rv from the entire video. In training, we regularize learning of LSTM such that its output rv is

similar to features rs produced by another encoder LSTM (eLSTM) grounded onto 3D human-

skeleton sequences. The sequences record 3D locations of 18 joints of a human body while the

person performs certain actions, such as those in the Carnegie-Mellon Mocap dataset [1] and the

HDM05 Mocap dataset [110]. eLSTM is learned in an unsupervised manner by minimizing the

data reconstruction error. Note that a hypothetical supervised learning of an LSTM on skeleton

data would not be possible in our setting, since we have access to a small dataset representing

only a small fraction (or none) of action classes from the video domain. During test time, we do

not use any detections of human joints and their trajectories, but classify a new video only based

on raw pixels taken as input to the LSTM+DCNN.
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Figure 3.1: Our novel deep architecture: the LSTM on the left is trained on videos under weak
supervision, and the encoder LSTM (eLSTM) on the right is trained in unsupervised manner on
3D human-skeleton sequences. vt and st denote the input video frame and skeleton data at time
t. rv and rs are the output features of LSTM and eLSTM. y and ŷ are the ground-truth and
predicted class labels. ht, h1

t , and h2
t are the hidden layers in the two respective LSTMs. xt is

the output feature of DCNN’s FC7 layer. Euclidean distances between corresponding features
rv and rs are jointly used with the prediction loss between y and ŷ for a regularized learning of
the LSTM on videos.
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Our main contribution represents a novel regularization of LSTM learning. Unlike the stan-

dard regularization techniques, such as drop out or weight decay [58, 25, 183], we define a set

of constraints aimed at reducing the Euclidean distances between top-layer features of LSTM

trained on videos and corresponding output features of eLSTM. We use these constraints to

regularize and thus extend the standard backpropagation through time (BPTT) algorithm [25].

BPTT back-propagates a class-prediction loss for updating LSTM parameters via stochastic gra-

dient descent. We additionally back-propagate the above constraints between corresponding

features. This requires modifying the standard (unconstrained) gradient descent to an algorithm

that accounts for constraints. To this end, we use the hybrid steepest descent [41].

In this paper, we consider several formulations of regularizing LSTM learning corresponding

to the cases when ground-truth class labels are available for the skeleton sequences, and when

this ground truth is not available.

We present experimental evaluation on three benchmark datasets, including Sports-1M [72],

HMDB-51 [81], and UCF101 [137]. We report the performance improvement ranging from

1.7% to 14.8% relative to the state of the art.

In the following, Sec. 3.2 reviews related work, Sec. 3.3 specifies LSTM, Sec. 3.4 formulates

our novel deep architecture, and Sec. 3.5 presents our results.

3.2 Closely Related Work

This section reviews related work on: combining CNN and LSTM, encoder LSTM, using skele-

ton data for action classification, and multimodal deep learning in vision.

• LSTM+DCNN. Frame-level DCNN features have been used as input to LSTM for action

classification [25]. This architecture has been extended with additional layers for con-

volutional temporal pooling [112]. The main advantages include that these architectures

are deeply compositional in both space and time, and that they are capable of directly

handling variable-length inputs (e.g., video frames) and capturing long-range, complex

temporal dynamics. They are learned with backpropagation through time (BPTT). Our

key difference is in the definition of LSTM output layer. Our output layer includes the

standard softmax layer for classification and the additional representational layer for map-

ping input video sequences to a feature space. It is the construction of this new feature

space that allows us to regularize LSTM learning. Another difference is that we replace
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the standard stochastic gradient descent in BPTT, with an algorithm that accounts for con-

straints in optimization.

• Encoder LSTM. LSTM has been used to encode an input data sequence to a fixed length

vector, which, in turn, is decoded to predict the next unobserved data [138]. However,

this recurrent autoencoder-decoder paradigm has not yet demonstrated competitive perfor-

mance on action classification in videos. Our main difference is that we use the encoder

LSTM to generate a feature manifold for regularizing a supervised learning of another

LSTM.

• Action classification using skeleton data has a long-track record [47, 103, 150, 157, 171,

175, 26]. However, at test time, these approaches require either 3D locations of human

joints, or detection of human joints in videos. In contrast, at test time, we just use pixels

as input, and neither detect human joints nor need their 3D locations.

• Multimodal learning. Recent work uses text data as an additional modality to improve

image classification [114, 38, 28, 135, 78, 105]. For example, a combination of DCNN

and LSTM has been used for multimodal mapping of finer object-level concepts in images

to phrases [78].

Closely related work introduces a semi-supervised embedding in deep architectures [165].

Due to the fundamental differences in our problem statements, we cannot use these ap-

proaches. More importantly, instead of a heuristic combination of classification loss and the

embedding loss, we use a well-defined set of constraints to explicitly exploit the information

contained in the embedding space.

Another difference is that object classes of text data are in one-to-one correspondence with

object classes appearing in images (or it is assumed that the image and text domains have a large

overlap of object classes). In contrast, our 3D skeleton sequences represent only a few action

classes from the video domain. Similar to [38, 135], we do not use the other modality at test

time. For multimodal training, these approaches use, for example, the Euclidean distance [135],

modified hinge loss [38], parameter transfer and regression loss [28], or pairwise ranking loss

[78]. Instead, we minimize the cross entropy loss associated with the softmax layer of LSTM,

subject to the feature similarity constraints in our regularization. Importantly, in Sec. 3.4.3, we

provide convergence guarantees for our regularized learning of LSTM.
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3.3 A Brief Review of LSTM

A major building block of our novel architecture is LSTM [58, 138], depicted in Fig. 3.2. LSTM

is a recurrent neural network as briefly reviewed below.

The LSTM’s recurrent unit memorizes previous input information in a memory cell, ct,

indexed by time t. The output is hidden variable ht. Three gates control the updates of ct and

ht: ‘input’ it, ‘output’ ot, and ‘forget’ ft. In (3.1), we summarize their update equations, where

symbol � denotes the element-wise product, and W are LSTM parameters.

it =σ(Wxixt +Whiht−1 +Wcict−1 + bi),

ot=σ(Wxoxt +Whoht−1 +Wcoct−1 + bo),

ft=σ(Wxfxt +Whfht−1 +Wcfct−1 + bf ),

ct=ft � ct−1 + it � tanh(Wxcxt +Whcht−1 + bc),

ht=ot � tanh(ct).

(3.1)

From (3.1), the input gate, it, regulates the updates of ct, based on inputs xt and previous values

of h and c. The ‘output gate’, ot, controls if ht should be updated given ct. The forget gate, ft,

resets the memory to its initial value. The LSTM parameters WLSTM = {Wxi,Wxo,Wxf ,Wci,

Wco,Wcf ,Whi,Who,Whf} are jointly learned using BPTT.

The LSTM unit preserves error derivatives of the deep unfolded network. This has been

shown to avoid the well-known vanishing gradient problem, and allows LSTM to capture long-

range dependencies in the input data sequence.

3.4 Regularizing LSTM for Action Recognition

As mentioned in Sec. 3.1, our novel architecture consists of eLSTM for learning a feature repre-

sentation of 3D human-skeleton sequences, and a stacked DCNN+LSTM for classifying videos.

Below, we describe these two components.

eLSTM. Fig. 3.3 shows the time-unfolded encoder and decoder parts of eLSTM. The goal

of eLSTM is to encode the input skeleton sequence, s = {st : t = 1, 2, . . . }, consisting of

3D locations of human joints. The sequences may have variable lengths in time. eLSTM ob-

serves the entire skeleton sequence s, and encodes it to a feature vector rs. The set of encoded

representations {rs} are assumed to form a manifoldMs of skeleton sequences. To learn the

encoder, a decoder LSTM tries to reconstruct the normalized input 3D data in the reverse order.
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Figure 3.2: LSTM unit [58, 138].

The reconstruction error is then estimated in terms of the mean-squared error in the normalized

3D coordinates, and used to jointly learn both the encoder and decoder LSTMs. The reversed

output reconstruction benefits from low range correlations which makes the optimization prob-

lem easier. The input to the encoder at each time step t, is the output of the decoder at time

step t− 1, i.e. st−1. An alternative architecture is to learn an encoder LSTM to predict the next

skeleton frame. To avoid over-fitting, we use the standard drop-out regularization for eLSTM

[183].

DCNN+LSTM. As shown in Fig. 4.1, for classifying human actions in videos we use a

stacked architecture of a frame-level DCNN and a two-layer LSTM. DCNNs have been demon-

strated as capable of learning to extract good image descriptors for classification [147, 184, 71].

For DCNN, we use the same network architecture initially trained on the ImageNet dataset as

in [142]. The only difference is in the number of output units of the softmax layer at the top of

DCNN, since we address different numbers of action classes. Note that we later fine-tune DCNN

parameters together with LSTM ones in our regularized learning.

Our LSTM differs from the model used in [25] in the top output layer. The output layer of our

LSTM extends the standard fully connected softmax layer for classification with an additional

representation layer. This representation layer is aimed at mapping input video sequences, v =

{vt : t = 1, 2, . . . }, with variable lengths in time, to fixed-length vectors rv. The size of this

representation layer is set to be equal to that of the output layer of eLSTM. Thus, the vectors rv
and rs have the same size.
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Figure 3.3: The time-unfolded visualization of the encoder LSTM (left) and decoder LSTM
(right) for learning a feature representation from input 3D human-skeleton sequences. The en-
coder LSTM observes the entire skeleton sequence and encodes it to a fixed-length representa-
tion. The decoder LSTM tries to reconstruct 3D locations of human joints in the reverse order
of the input sequence. The reconstruction error is then used to jointly learn both the encoder and
decoder LSTMs.
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Our goal of learning DCNN+LSTM parameters, Θ, is to minimize the classification loss,

L(Θ), subject to constraints g between vectors rv and corresponding vectors rs in manifoldMs.

Thus, for all training videos v ∈ Dv, we formulate the regularized learning of DCNN+LSTM as

min
Θ
L(Θ)

s.t. ∀v ∈ Dv , g(rv,Ms) ≤ 0,
(3.2)

where L(Θ) =
∑

v∈Dv l(v,Θ) is the cross entropy loss associated with the softmax layer of

LSTM, and g is a constraint based on the distance between rv and Ms. g can be defined in

different ways. We only require that the constraints are differentiable functions. In the following,

we define two distinct constraints that give the best results in our experiments.

3.4.1 Class Independent Regularization

For class independent regularization of learning DCNN+LSTM parameters, the constraint g =

g1 in (3.2) is specified to ensure that, for every video v ∈ Dv, rv is sufficiently similar to the

mapped vectors rs ∈Ms. This is achieved by defining an upper-bound for the average distance

between rv and all rs ∈Ms as in (3.3)

g1(rv,Ms) =
1

n

∑
rs∈Ms

‖rv − rs‖22 − α, (3.3)

where α > 0 is an input parameter, and n is the number of training skeleton sequences. This

type of regularization is suitable for cases when training skeleton sequences do not represent the

same action classes as training videos or represent a very small subset of action classes.

3.4.2 Class Specific Regularization

For class specific regularization of learning DCNN+LSTM parameters, the constraint g = g2 in

(3.2) is specified to take into account action class labels of training skeleton sequences, when

available. This type of learning regularization is suitable for cases when some action classes

represented by training skeleton sequences do “overlap” with certain action classes in training

videos. The definition of class equivalence between the two modalities can be easily provided

along with ground-truth annotations.
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We expect that rv and rs should be more similar if video v and skeleton sequence s share

the same class label, lv = ls, than rv and rs′ of skeleton sequences s′ with different class labels,

lv 6= ls′ . This is defined in (3.4)

g2(rv,Ms) =
1

n=

∑
rs∈Ms
lv=ls

‖rv − rs‖22 −
1

n 6=

∑
rs′∈Ms

lv 6=ls′

‖rv − rs′‖22. (3.4)

where n= and n 6= are the numbers of training skeleton sequences that have lv = ls and lv 6= ls.

The constraint g2 defined in (3.4) ensures that the average Euclidean distance between rv and

rs ∈ Ms for skeleton sequences s of the same action label is less than the average Euclidean

distance between rv and rs′ for skeleton sequences s′ of different action labels.

3.4.3 Hybrid Steepest Descent

We jointly learn parameters, Θ=WLSTM∪WDCNN, by modifying the standard backpropagation

and applying a stochastic gradient descent algorithm which accounts for the aforementioned

constraints. One standard approach to solve a constrained convex optimization problem is to use

Lagrange multipliers and fuse the constraints with the original objective into a new unconstrained

optimization problem. Unfortunately, as demonstrated in [117], gradient descent poorly works

with Lagrange multipliers, mainly because they introduce saddle points in the new objective.

Therefore, we resort to an alternative approach called hybrid steepest descent [41] for solving

our constrained convex optimization, as described below.

Fig. 3.4 shows a simulation of hybrid steepest descent for a simple convex optimization

problem. At each iteration, the algorithm checks if the current solution – i.e., the current Θ

parameters in our case – satisfies all constraints. If so, Θ is updated according to the gradient

of the original objective function – i.e., in our case, the cross entropy loss L(Θ) – without

considering the constraints. If any constraint is violated by the current solution – i.e in our case,

g(rv,Ms) ≤ 0 constraint is not satisfied for rv computed by DCNN+LSTM with the current

Θ parameters –, we update Θ according to the gradient of the violated constraints. The proof of

correctness, asymptotic stability, and convergence of this algorithm is presented in [41]. Note

that there is no guarantee that the final value of the parameters Θ satisfies all constraints. In our

implementation we keep track of the top 5 best solutions based which have the minimum number

of violated constraints.
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Figure 3.4: Simulation of the hybrid steepest descent algorithm for a simple optimization prob-
lem presented in [41]. In this example Θ = x1, x2, L(Θ) = −x1, g1 = (x1−10)2

36 + (x2−10)2

81 − 1,
and g2 = 10

8 x1 + x2 − 28. The dark hashed lines show the boundary of the feasible set.

We use hybrid steepest descent to modify BPTT for regularized learning of DCNN+LSTM.

Note that the updates of the recurrent units only depend on the particular value of the the back-

propagated gradient. Once this gradient is computed, we use it in the same way as in the standard

BPTT. Thus, as summarized in Alg. 1, our modification of BPTT amounts to alternating the

specification of the error gradient at the output layer according to the above rules of hybrid

steepest descent. In Alg. 1, we use g > 0 to denote a constraint violation, and ηt is the time

dependent learning rate.

3.5 Results

For evaluation, we use the Sports-1M [72], HMDB-51 [81], and UCF-101 [137] datasets. Sports-

1M consists of more than 1 million videos from Youtube, annotated with 487 action classes.

There are on average 3000 videos for each action class, where the average video length is 5

minutes 36 seconds. Considering the large number of action classes, long duration of the videos,

and large variety of camera motions, Sports-1M is currently acknowledged as one of the most
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Algorithm 1 Regularized learning procedure of LSTM
1: Input: Training videos Dv andMs

2: Output:LSTM parameters Θ
3: % note that during training we assume sequences in Dv are of the same length
4: repeat
5: for every v ∈ Dv do
6: forward-pass v through unfolded LSTM
7: if all constraints satisfied then
8: Θt

BPTT←−−−− Θt−1 − ηtOL(Θ)
9:

10: % This updates Θ by back-propagating the gradient of the cross entropy loss.
11: else
12: Θt

BPTT←−−−− Θt−1 − ηt
∑
g>0

Og(Θ);

13: % This updates Θ by back-propagating the sum of gradients of the violated
14: constraints.
15: end if
16: end for
17: until

challenging benchmarks for action recognition in the wild. HMDB-51 consists of 6849 videos

with 51 action labels. Each action class has at least 100 videos with an average video length of

3.1 seconds. UCF-101 consists of 13,320 videos of 101 action classes with average video length

of 7.2 seconds. We follow [112], and report our average accuracy on the given three dataset

splits.

We use human skeleton sequences of the Carnegie-Mellon Mocap [1] and HDM05 [110]

datasets to train eLSTM. HDM05 consists of 2337 sequences with 130 action classes performed

by 5 subjects. These sequences record the 3D locations of 31 human joints at each frame.

Carnegie-Mellon Mocap consists of 2605 sequences with 23 action classes. These sequences

record the 3D locations of 41 human joints at each frame. For consistency, we use only 18

human-body joints (head, lower back, upper back, upper neck, right/left clavicle, hand, humerus,

radius, femur, tibia, foot) of the skeleton sequences, and resolve name conflicts and duplicates

in these two datasets.

eLSTM: An LSTM with two hidden layers is used for the encoder and decoder. Input and

output of the encoder and decoder LSTMs are 54 = 18 × 3 dimensional vectors of 3D human

body joint positions. We normalize input data in the range of [0, 1]. We empirically verified that
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eLSTM with 512 and 1024 hidden units in the first and second recurrent layer of the encoder

LSTM, and the same number of hidden units in a reverse order for the decoder LSTM results in

the smallest reconstruction error. The model is trained on 16 frame sequences. Since the training

is unsupervised, both Carnegie-Mellon Mocap and HDM05 datasets are used in training phase.

It takes 16-19 hours to converge for about 3160 minutes of skeleton sequences. For defining g2

constraints, we use the class labels defined in HDM05.

DCNN: We use GoogLeNet [142] trained on ImageNet [130] as DCNN in our approach.

This DCNN is fine-tuned on a set of randomly sampled video frames. The output layer is mod-

ified for the fine-tuning based on the number of action classes. On average (150-200) frames

are sampled from each video. The second to the last fully connected layer (FC7) is used as the

frame descriptor input to LSTM. Note that, later, DCNN parameters are fine-tuned again jointly

with LSTM training.

Our Regularized LSTM (RLSTM): Our RLSTM for action recognition contains two hid-

den layers of 2048 and 1024 hidden units, respectively. The number of output units for classi-

fication is 487 for Sports-1M, 51 for HMDB-51, and 101 for UCF101. The number of output

units for representation is 512, which is equal to the number of hidden units in the second re-

current layer of eLSTM. Similar specifications are used in [25, 138]. Fixed length sequences

of 16 frames are used in training. We find that a random initialization of RLSTM converges to

a poor local optimum. To overcome this, we train a non regularized LSTM using one-tenth of

the training instances in Sports-1M. We use weights of this learned model to initialize weights

of RLSTM. Weights of the representation layer are initialized randomly between [-0.1, 0.1].

Similar to [25, 138], we estimate an average prediction of 16 block frames with a stride of 8

in inference. The linear weighting presented in [112] is used to combine predictions from each

block for the entire video.

Implementation: We use Caffe [64] and a modified version of the RNN library in Torch

[19] in our experiments. All experiments are performed on an Intel quad core-i7 CPU and 16GB

RAM PC with two Tesla-K80 Nvidia cards.

3.5.1 Baselines and Variations of our Approach

We conduct a comparison with several baselines in order to evaluate effectiveness of different

constraints in our regularized learning of RLSTM. These baselines include the following:
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1- DCNN: This is a ‘single-frame’ based action recognition evaluated in [72] – a video is

represented by a single frame and classification is perform only based on the content in

that frame

2- LSTM: This is a (DCNN+LSTM) learned without any regularization and constraints, sim-

ilar to the approach of [25] with only difference in the number of hidden units (due to a

different number of classes considered).

Based on the constraints, defined in Sec. 3.4.1 and 3.4.2, for regularizing learning of RLSTM,

we define the following three variations of our approach:

1- RLSTM-g1: uses class independent constraints g1 to regularize the learning

2- RLSTM-g2: uses class specific constraints g2 to regularize the learning

3- RLSTM-g3: uses g1 ∪ g2 to regularize the learning.

Table 3.1-a shows our average classification accuracy on HMDB-51 and UCF101. All vari-

ations of our method improved the accuracy of the baseline LSTM (3.1% to 12.2%). RLSTM-

g2 achieves a better accuracy compared to RLSTM-g1. This strongly supports the hypothesis

that deep-learned features of vides and skeleton sequences should be similar, and that our reg-

ularization should improve action recognition. Because the 3D human skeleton datasets and

UCF101/HMDB-51 share a few common action classes, RLSTM-g3 which combines the class

independent and class specific constraints outperforms RLSTM-g2.

Comparison of our method with the state of the art deep learning based approches is pre-

sented in Tab. 3.1-b. We can see that RLSTM-g3 outperforms variations of [72, 138, 25, 147,

134] which only use raw frames by 1.7%− 22%. Higher accuracy is reported in [184, 112, 134,

158] on UCF101 for (raw pixels + optical flow) input. In comparison with their accuracy of

88.6%− 90.3%, we achieve a comparable performance of 86.9% accuracy on UCF101 by using

only pixels of video frames.

Hit@k values are a standard evaluation for large-scale datasets. A test instance is considered

correctly labeled if the ground truth label is among the top k predictions. Similar to [112, 71] we

use Hit@1 and Hit@5 values to report accuracy on Sports-1M. Table 3.2 shows the classification

accuracy of the baselines, different RLSTM models, and the state of the art on Sports-1M. One

interesting result is that RLSTM-g1 outperforms RLSTM-g2. We believe that this is because of
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Method UCF101 HMDB-51
Single-Frame [72] 64.9 41.2

LSTM 75.2 43.1
RLSTM-g1 78.3 49.3
RLSTM-g2 81.5 51.4
RLSTM-g3 86.9 55.3

(a)

Method UCF101 HMDB-51
[72] 65.4 -
[138] 75.8 44.1
[25] 71.12 -
[134] 72.8 40.5
[184] 79.34 -
[147] 85.2 -

RLSTM-g3 86.9 55.3

(b)

Table 3.1: (a) Average classification accuracy of regularized LSTM models and baselines on
UCF101 and HMDB-51. Our approach outperform the LSTM baseline by 11.7% − 12.2% (b)
Average classification accuracy of RLSTM-g3 and the state of the art on UCF101 and HMDB-
51. Our approach outperform the best result in state of the art by 1.7− 11.2%.

a poor overlap of the large number of action classes in Sports-1M with the set of action classes

in the skeleton data obtained from HDM05 and CMU Mocap. Our best approach improves the

classification accuracy on Hit@1 by 2.5% − 16.6%. Also the baseline non-regularized LSTM

yields better accuracy than the temporal pooling approaches of [72, 147]. We believe that this is

mainly because the baseline LSTM has access to the longer video frames.

To verify the effectiveness of hybrid-gradient descent used in our regularized learning, we

also train our DCNN+LSTM using AdaGrad [27] and Adam [75]. These two alternative algo-

rithms are aimed at minimizing the standard weighted sum of the classification and representa-

tion loss. The comparison is shown in Table 3.3, where RLSTM denotes our approach to regu-

larized training with hybrid-gradient descent, and LSTM(·) denotes our approach to regularized

training with AdaGrad or Adam.

The regularized learning of RLSTM-g1 and RLSTM-g3 is controlled by the α parameter,

specified in eq. (3.3). Fig. 3.5 shows how our accuracy changes for different values of α on

HMDB-51. We can see that for small values of α the accuracy is very low. We observe that for

these values the learning algorithm does not converge. The algorithm alternates gradient updates

with respect to classification error and violated constraints. This is because the optimization

problem becomes almost infeasible for small values of α. The accuracy gradually increases for

larger values of α, but again decreases when α becomes sufficiently large. The accuracy of
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Method Hit@1 Hit@5
Single-Frame [72] 59.3 77.7

LSTM 71.3 89.9
[72] 60.9 80.2
[112] 72.1 90.6
[147] 61.1 85.2

RLSTM-g1 73.4 91.3
RLSTM-g2 62.2 85.3
RLSTM-g3 75.9 91.7

Table 3.2: Average classification accuracy of regularized LSTM models, baselines, and the state
of the art on Sports-1M. Our approach outperform the best result in state of the art by 2.5% and
the LSTM baseline by 4.6%.

Method UCF101 HMDB-51
LSTM(adm)-g1 75.7 44.6
LSTM(adm)-g2 79.20 49.8
LSTM(adm)-g3 81.8 51.3
LSTM(adg)-g1 74.9 44.3
LSTM(adg)-g2 81.6 49.5
LSTM(adg)-g3 80.7 48.6

RLSTM-g1 78.3 49.3
RLSTM-g2 81.5 51.4
RLSTM-g3 86.9 55.3

Table 3.3: Average classification accuracy of our approach on UCF101 and HMDB-51, when
the regularized training is conducted with AdaGrad [27] or Adam [75] – denoted as LSTM(adg)
and LSTM(adm) – or hybrid-gradient descent – denoted as RLSTM.
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Figure 3.5: Average classification accuracy of RLSTM-g1 and RLSTM-g3 on HMDB-51 for dif-
ferent α values, where α is the input parameter that controls the regularized learning of RLSTM-
g1 and RLSTM-g3. Small values of α enforce stronger regularization that the feature outputs of
RLSTM and eLSTM are highly similar.

RLSTM-g1 reaches that of the standard LSTM for large values of α, and remains nearly the

same. This is because sufficiently large values of α yield an unconstrained optimization, i.e.,

non-regularized learning of LSTM.

3.5.2 Contributions of 3D Skeleton Sequences

We conduct further experiments to understand the differences between the original and the regu-

larized video model that have access to 3D skeleton information. We first compute the per-class

average precision for all classes and highlight the ones that show largest differences. This is

shown in table 3.4. The interesting observation is that although the overall average accuracy on

the entire dataset is improved, this is not the case for all classes. We identified three different

patterns: 1) For the action classes with instances in 3D skeleton sequences we see the highest

accuracy improvement. 2) For the action classes which do not have corresponding instances in

3D skeleton sequences, but contain significant human motion we still observe a fair amount of

improvement. 3) For action classes which do not have instances in 3D skeleton sequences and

mostly involve motions not related to human motion (e.g. windsurfing) , we actually notice a

small accuracy drop.

The other important question is that how much of the accuracy improvement is just a result
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Actions Accuracy Change
Running +4.2

Badminton +2.4
Track cycling +2.1

Road bicycle racing +2.4
Down hill biking +1.9

bmx +1.8
Wind Surfing -1.2

Fishing -1.0
Land Surfing -0.0

Table 3.4: Average per-class accuracy improvement or drop on Sports-1M

Training Setup Hit@1 Hit@5
100% video training data 71.3 89.9
99.5% video training data 71.2 89.9

99.5% video training data + 0.5% 3D sequence data 75.9 91.7

Table 3.5: Accuracy improvement based on amount of the additional data on Sports-1M

of an additional amount of data we use in training. In other words, we want to verify that the

accuracy improvement is not just because of the extra training data but the type of data we use.

This is important because eventually we are adding more training data and it is shown that more

training data helps. To verify this we perform an experiment with fewer video data. The number

of 3D skeleton sequences is only 0.5% of the available video data in training. We randomly

choose 95.5% of the video data and compute the accuracy of a non-regularized video model.

Later we train our regularized video model with the additional 0.5% 3D skeleton sequences.

The result is shown in table 3.5. We can see that the addition of 3D skeleton sequence actually

improves the accuracy 3% more than the same amount of video data.

3.6 Summary

We have proposed a novel deep architecture for large-scale action recognition. The main contri-

bution of our work is to use 3D human-skeleton sequences to regularize the learning of LSTM,
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which is grounded via DCNN onto the video for action recognition. We have modified the back-

propagation through time algorithm in order to account for constraints in our regularized joint

learning of LSTM+DCNN. Our experimental results demonstrate that the skeleton sequences

could successfully constrain the learning of LSTM+DCNN leading to an improved performance

relative to the case when LSTM is trained only on videos. Specifically, on Sports-1M, UCF101,

and HMDB-51 our accuracy improves by 2.5% − 16.6%, 1.7 − 21.5%, and 11.2 − 14.8%, re-

spectively. We also verified that the accuracy improvement is solely because of the type of the

additional input data and not just the amount of the added data.
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Chapter 4: Video Summarization through Generative Adversarial

Networks

Abstract

This paper addresses the problem of unsupervised video summarization, formulated as selecting

a sparse subset of video frames that optimally represent the input video. Our key idea is to learn

a deep summarizer network to minimize distance between training videos and a distribution of

their summarizations, in an unsupervised way. Such a summarizer can then be applied on a

new video for estimating its optimal summarization. For learning, we specify a novel generative

adversarial framework, consisting of the summarizer and discriminator. The summarizer is the

autoencoder long short-term memory network (LSTM) aimed at, first, selecting video frames,

and then decoding the obtained summarization for reconstructing the input video. The discrimi-

nator is another LSTM aimed at distinguishing between the original video and its reconstruction

from the summarizer. The summarizer LSTM is cast as an adversary of the discriminator, i.e.,

trained so as to maximally confuse the discriminator. This learning is also regularized for spar-

sity. Evaluation on four benchmark datasets, consisting of videos showing diverse events in

first- and third-person views, demonstrates our competitive performance in comparison to fully

supervised state-of-the-art approaches.

4.1 Introduction

A wide range of applications require automated summarization of videos [3, 185], e.g., for saving

time of human inspection, or enabling subsequent video analysis. Depending on the application,

there are various distinct definitions of video summarization [127, 120, 121, 7, 164, 139, 44, 89,

79, 65, 118, 56]. In this paper, we consider unsupervised video summarization, and cast it as a

key frame selection problem. Given a sequence of video frames, our goal is to select a sparse

subset of frames such that a representation error between the video and its summary is minimal.

Our problem statement differs from other formulations considered in the literature, for ex-

ample, when a particular domain of videos to be summarized is a priori known (e.g., first-person
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(a) (b)

Figure 4.1: (a) Overview: Our goal is to select key frames such that a distance between feature
representations of the selected key frames and the video is minimized. (b) As specifying a
suitable distance between deep features is difficult, we use a generative adversarial framework
for optimizing the frame selector. Our approach consists of a variational auto-encoder and a
generative adversarial network.

videos) [79], or when ground-truth annotations of key frames are provided in training data based

on attention, aesthetics, quality, landmark presence, and certain object occurrences and motions

[52].

Fig. 4.1a shows an overview of our approach to selecting key frames from a given video. The

key frame selector is learned so as to minimize a distance between features extracted from the

video and the selected key frames. Following recent advances in deep learning [138, 178, 186],

we extract deep features from both the video and selected sequence of key frames using a cascade

of a Convolutional Neural Network (CNN) – specifically GoogleNet [142] – and Long Short-

Term Memory Network (LSTM) [58, 138]. The CNN is grounded onto pixels and extracts

deep features from a given frame. The LSTM then fuses a sequence of the CNN’s outputs
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for capturing long-range dependencies among the frames, and produces its own deep feature

representing the input sequence. Specifically, we use the (variational) auto-encoder LSTM [138,

76] as a suitable deep architecture for unsupervised learning of video features. Given a distance

between the deep representations of the video and selected key frames, our goal is to optimize

the frame selector such that this distance is minimized over training examples.

Recent work, however, demonstrates that specifying a suitable distance of deep features is

difficult [87]. Hence, we resort to the generative adversarial framework [48], which extends

the aforementioned video summarization network with an additional discriminator network. As

shown in Fig. 4.1b, the decoder part of the summarizer is used to reconstruct a video from the

sequence of selected key frames. Then, we use a discriminator, which is another LSTM, to distin-

guish between the original video and its reconstruction from the summarizer. The auto-encoder

LSTM and the frame selector are jointly trained so as to maximally confuse the discriminator

LSTM – i.e., they are cast in a role of the discriminator’s adversary – such that the discrimina-

tor has a high error rate in recognizing between the original and reconstructed videos. When

this recognition error becomes maximum, we deem that the frame selector is learned to produce

optimal video summarizations.

As we will show in this paper, our approach allows for an effective regularization of generative-

adversarial learning in terms of: (i) limiting the total number of key frames that can be selected;

or (ii) maximizing visual diversity among the selected key frames. For a fair comparison with

related approaches to fully supervised video summarization – a different setting from ours that

provides access to ground-truth key frame annotations in training – we also show how to effec-

tively incorporate the available supervision as an additional type of regularization in learning.

Evaluation on four benchmark datasets, consisting of videos showing diverse events in first-

and third-person views, demonstrates our competitive performance in comparison to fully super-

vised state-of-the-art approaches.

Our contributions include:

1. A new approach to unsupervised video summarization that combines variational auto-

encoders and generative-adversarial training of deep architectures.

2. First specification of generative-adversarial training on high resolution video sequences.

In the following, Sec. 4.2 reviews prior work, Sec. 4.3 briefly introduces the generative ad-

versarial network (GAN) and the variational autoencoder (VAE) models, Sec. 4.4 specifies main

components of our approach, Sec. 4.5 formulates our end-to-end training, Sec. 4.6 describes vari-
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ants of our approach differing in types of regularization we use in learning, and finally Sec. 4.7

presents our results.

4.2 Related Work

This section reviews related: (i) problem formulations of video summarization; (ii) approaches

to supervised and unsupervised video summarization; (iii) deep learning approaches; and (iv)

work using the generative adversarial framework in learning.

Various Problem Formulations. Video summarization is a long-standing problem, with

various formulations considered in the literature. For example, the video synopsis [121] tracks

moving objects, and then packs the identified video tubes into a smaller space-time volume.

Also, montages [7, 164, 139] merge and overlaps key frames into a single summary image. Both

of these problem formulations, however, do not require that the video summary preserves the

information about a temporal layout of motions in the video. Previous work has also studied

hyperlapses where the camera viewpoint is being changed during the time-lapse for speeding-up

or slowing-down certain parts of the input video [79, 65, 118, 56]. Our problem statement is

closest to storyboards, representing a subset of representative video frames [44, 89]. However,

except for [186, 178], existing approaches to generating storyboards do not take advantage of

deep learning.

Supervised vs. Unsupervised Summarization. Supervised methods assume access to hu-

man annotations of key frames in training videos, and seek to optimize their frame selectors

so as to minimize loss with respect to this ground truth [45, 186, 185]. However, for a wide

range of domains, it may be impossible to provide reliable and a sufficiently large amount of

human annotations (e.g., military, nursing homes). These domains have been addressed with un-

supervised methods, which typically use heuristic criteria for ranking and selecting key frames

[92, 178, 74, 189, 136]. There have been attempts to use transfer learning for domains without

supervision [186], but the surprisingly better performance of the transfer learning setting com-

pared to the canonical setting, reported in [186], suggests a high correlation of the domains for

three training dataset and one test dataset , which is hard to ensure in real-world settings.

Deep Architectures for Video Summarization. In [186], two LSTMs are used – one along

the time sequence and the other in reverse from the video’s end – to select key video frames,

and trained by minimizing the cross-entropy loss on annotated ground-truth key frames with

an additional objective based on determinantal point process (DPP) to ensure diversity of the
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selected frames. Our main differences are that we do not consider the key frame annotations,

and train our LSTMs using the unsupervised generative-adversarial learning. In [178], recurrent

auto-encoders are learned to represent annotated temporal intervals in training videos, called

highlights. In contrast, we do not require human annotations of highlights in training, and we do

not perform temporal video segmentation (highlight vs non-highlight), but key frame selection.

Generative Adversarial Networks (GANs) have been used for image-understanding prob-

lems [48, 124, 131, 128], and frame prediction/generation [106, 149, 42]. But we are not aware

of their previous use for video summarization. In [87], the discriminator output of a GAN is

used to provide a learning signal for the variational auto-encoder (VAE). We extend this ap-

proach in three critical ways: (1) We specify a new variational auto-encoder LSTM, whereas

their auto-encoder is not a recurrent neural network, and thus cannot be used for videos; (2) Our

generative-adversarial learning additionally takes into account the frame selector – a component

not considered in [87]; and (3) We formulate regularization of generative-adversarial learning

that is suitable for video summarization.

4.3 Review of VAE and GAN

Variational Autoencoder (VAE) [76] is a directed graphical model which defines a posterior

distribution over the observed data, given an unobserved latent variable. Let z ∼ pz(z) be a

prior over the unobserved latent variable, and x be the observed data. One can interpret z as

the encoding of x and define q(z|x) as the probability of observing z given x. It is typical

to set pz(z) as the standard normal distribution. Similarly, p(x|z) identifies the conditional

generative distribution for x. Learning is done by minimizing the negative log-likelihood of the

data distribution:

− log
p(x|z)p(z)

q(z|x)
= − log(p(x|z))︸ ︷︷ ︸

Lreconst

+DKL(q(z|x)‖p(z)︸ ︷︷ ︸
Lprior

. (4.1)

For efficient learning, Kingma et al. [76] propose a reparameterization of the variational

lower bound suitable for stochastic gradient descent.

Generative Adversarial Network (GAN) [48] is a neural network that consists of two com-

peting subnetworks: i) a ‘generator’ network (G) which generates data mimicking an unknown

distribution and ii) a ‘discriminator’ network (D) which discriminates between the generated
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samples and the ones from true observations. The goal is to find a generator which fits the true

data distribution while maximizing the probability of the discriminator making a mistake.

Let x be the true data sample, z ∼ pz(z) be the prior input noise, and x̂ = G(z) be the

generated sample. Learning is formulated as the following minimax optimization:

min
G

max
D

[
Ex[logD(x)] + Ez[log(1−D(x̂))]︸ ︷︷ ︸

LGAN

]
, (4.2)

where D is trained to maximize the probability of correct sample classification (true vs generated)

and G is simultaneously trained to minimize log(1−D(x̂)).

4.4 Main Components of Our Approach

Our approach consists of the summarizer and discriminator recurrent networks, as illustrated in

Figure 4.2.

Given CNN’s deep features for every frame of the input video, x = {xt : t = 1, . . . ,M},
the summarizer uses a selector LSTM (sLSTM) to select a subset of these frames, and then

an encoder LSTM (eLSTM) to encode the sequence of selected frames to a deep feature, e.

Specifically, for every frame xt, sLSTM outputs normalized importance scores s = {st : st ∈
[0, 1], t = 1, . . . ,M} for selecting the frame. The input sequence of frame features x is weighted

with these importance scores, and then forwarded to eLSTM. Note that in the special case of

discretized scores, st ∈ {0, 1}, eLSTM receives only a subset of frames for which st = 1. The

last component of the summarizer is a decoder LSTM (dLSTM), which takes e as input, and

reconstructs a sequence of features corresponding to the input video, x̂ = {x̂1, x̂2, ..., x̂M}.
The discriminator is aimed at distinguishing between x and x̂ as belonging to two distinct

classes: ‘original’ and ‘summary’. This classifier can be viewed as estimating a distance between

x and x̂, and assigning distinct class labels to x and x̂ if their distance is sufficiently large. In this

sense, the discriminator serves to estimate a representation error between the original video and

our video summarization. While one way to implement the discriminator could be an energy-

based encoder-decoder [190], in our experiments a binary sequence classifier have shown better

performance. Hence, we specify the discriminator as a classifier LSTM (cLSTM) with a binary-

classification output.

Analogous to the generative adversarial networks presented in [48, 87], we have that dLSTM

and cLSTM form the generative adversarial network (GAN). The summarizer and discriminator
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Figure 4.2: Main components of our approach: The selector LSTM (sLSTM) selects a subset of
frames from the input sequence x. The encoder LSTM (eLSTM) encodes the selected frames
to a fixed-length feature e, which is then forwarded to the decoder LSTM (dLSTM) for recon-
structing a video x̂. The discriminator LSTM (cLSTM) classifies x̂ as ‘original’ or ‘summary’
class. dLSTM and cLSTM form the generative adversarial network (GAN).
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Figure 4.3: The four loss functions used in our training. In training, we use an additional frame
selector sp, governed by a prior distribution (e.g., uniform), which produces the encoded repre-
sentation ep, and reconstruction x̂p. The adversarial training of cLSTM is regularized such that
it is highly accurate on recognizing x̂p as ‘summary’, but that it confuses x̂ as ‘original’.

networks are trained adversarially until the discriminator is not able to discriminate between the

reconstructed videos from summaries and the original videos.

4.5 Training of sLSTM, eLSTM, and dLSTM

This section specifies our learning of: (i) Summarizer parameters, {θs, θe, θd}, characterizing

sLSTM, eLSTM, and dLSTM; and (ii) GAN parameters, {θd, θc}, defining dLSTM and cLSTM.

Note that θd are shared parameters between the summarizer and GAN.

As illustrated in Fig. 4.3, our training is defined by four loss functions: 1) Loss of GAN,

LGAN, 2) Reconstruction loss for the recurrent encoder-decoder, Lreconst, 3) Prior loss, Lprior,

and 4) Regularization loss, Lsparsity. The key idea behind our generative-adversarial training

is to introduce an additional frame selector sp, governed by a prior distribution (e.g., uniform

distribution), sp ∼ p(sp). Sampling the input video frames with sp gives a subset which is

passed to eLSTM, producing the encoded representation ep. Given ep, dLSTM reconstructs a

video sequence x̂p. We use x̂p to regularize learning of the discriminator, such that cLSTM is

highly accurate on recognizing x̂p as the ‘summary’ class, but that it confuses x̂ as ‘original’

class. Recall that the Lprior is imposed by the prior distribution over e as in (4.1).
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Similar to the training of GAN models in [48, 87], we formulate an adversarial learning

algorithm that iteratively optimizes the following three objectives:

1. For learning {θs, θe}, minimize

(Lreconst+Lprior+Lsparsity).

2. For learning θd, minimize (Lreconst+LGAN).

3. For learning θc, maximize LGAN.

In the following, we define Lreconst and LGAN, while the specification of Lsparsity is deferred

to Sec. 4.6.

Reconstruction loss Lreconst: The standard practice in learning encoder-decoder networks is

to use the Euclidean distance between the input and decoded output, ‖x−x̂‖2, for estimating the

reconstruction error. However, recent findings demonstrate shortcomings of this practice [87].

Hence, instead, we define Lreconst based on the hidden representation in cLSTM – specifically,

the output of the last hidden layer of cLSTM, φ(x), for input x. Note that while x is a sequence

of features, φ(x) represents a compact feature vector, capturing long-range dependencies in the

input sequence. Therefore, it seems more appropriate to use φ(x), rather than x, for specifying

Lreconst.

Specifically, we formulate Lreconst as an expectation of a log-likelihood log p(φ(x)|e), given

that x has been passed through the frame selector s and eLSTM, resulting in e:

Lreconst = E[− log p(φ(x)|e)], (4.3)

where expectation E is approximated as the empirical mean of training examples. In this paper,

we consider p(φ(x)|e)) ∝ exp(−‖φ(x) − φ(x̂)‖2), while other non-Gaussian likelihoods are

also possible.

Loss of GAN, LGAN: Following [87], our goal is to train the discriminator such that cLSTM

classifies reconstructed video summaries x̂ as ‘summary’ and original sequences x as ‘original’.

In order to regularize this training, we additionally enforce that cLSTM learns to classify ran-

domly generated summaries x̂p as ‘summary’, where x̂p is reconstructed from a subset of video

frames randomly selected by sampling from a given prior distribution. In this paper, for this
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prior, we consider the uniform distribution. This gives:

LGAN = log(cLSTM(x)) + log(1− cLSTM(x̂))

+ log(1− cLSTM(x̂p)),
(4.4)

where cLSTM(·) denotes the binary soft-max output of cLSTM.

Given the above definitions of Lreconst and LGAN, as well as Lsparsity explained in Sec. 4.6,

we update the parameters θs, θe, θd and θc using the Stochastic Gradient Variational Bayes

estimation [77, 76], adapted for recurrent networks [29]. Algorithm 4 summarizes all steps of our

training. Note that Algorithm 4 uses capital letters to denote a mini-batch of the corresponding

variables with small-letter notation in the previous text.

Algorithm 2 Training SUM/GAN model
1: Input: Training video sequences
2: Output: Learned parameters {θs, θe, θd, θc}.
3: Initialize all parameters {θs, θe, θd, θc}
4: for max number of iterations do
5: X ← mini-batch from CNN feature sequences
6: S ← sLSTM(X) % select frames
7: E = eLSTM(X,S) % encoding
8: X̂ = dLSTM(E) % reconstruction
9: Sp ← draw samples form the uniform distribution

10: Ep = eLSTM(X,Sp) % encoding
11: Xp = dLSTM(ESp) % reconstruction
12: % Updates using Stochastic Gradient:
13: {θs, θe} +← −O(Lreconst + Lprior + Lsparsity)

14: {θd} +← −O(Lreconst + LGAN)

15: {θc} +← +O(LGAN) % maximization update
16: end for

4.6 Variants of our Approach

This section explains our regularization of learning. We use the following three types of regular-

ization, which define the corresponding variants of our approach.
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Summary-Length Regularization penalizes having a large number of key frames selected

in the summary as:

Lsparsity =

∥∥∥∥∥ 1

M

M∑
t=1

st − σ
∥∥∥∥∥

2

(4.5)

where M is the total number of video frames, and σ is an input hyper-parameter representing

a percentage of frames that we expect to be selected in the summary. When our approach uses

Lsparsity, we call it SUM-GAN.

Diversity Regularization enforces selection of frames with high visual diversity, in order to

mitigate redundancy in the summary. In this paper, we use two standard definitions for diversity

regularization – namely, (i) Determinantal Point Process (DPP) [142, 45, 186]; and (ii) Repelling

regularizer (REP) [190].

Following [186], our DPP based regularization is defined as:

Ldpp
sparsity = − log(P (s)) (4.6)

where P (s) is a probability that DPP assigns to the selection indicator s. We compute P (s;L) =
det(L(s))
det(L+I) , where L is an M ×M similarity matrix between every two hidden states in eLSTM,

I is an identity matrix and L(s) is a smaller square matrix, cut down from L given s. Let et be

the hidden state of eLSTM at time t. For time steps t and t′ the pairwise similarity values are

defined as Lt,t′ = stst′etet′ .

When our approach uses Ldpp
sparsity, we call it SUM-GANdpp.

For repelling regularization, we define

Lrep
sparsity =

1

M(M − 1)

∑
t

∑
t′ 6=t

( e>t et′

‖et‖‖et′‖
)

(4.7)

and call this variant of our approach as SUM-GANrep.

Keyframe Regularization is specified for the supervised setting where ground-truth annota-

tions of key frames are provided in training. This regularization enables a fair comparison of our

approach with recently proposed supervised methods. Note that we here consider importance

scores as 2D softmax outputs {st}, rather than scalar values as introduced in Sec. 4.4. We define
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the sparsity loss as the cross-entropy loss:

Lsup
sparsity =

1

M

∑
t

cross-entropy(st, ŝt). (4.8)

We call this variant of our approach as SUM-GANsup.

4.7 Results

Datasets. We evaluate our approach on four datasets: SumMe [53], TVSum [136], Open Video

Project (OVP) [2, 22], and Youtube [22]. 1) SumMe consists of 25 user videos. The videos

capture multiple events such as cooking and sports. The video contents are diverse and include

both first-person and third-person camera. The video lengths vary from 1.5 to 6.5 minutes. The

dataset provides frame-level importance scores. 2) TVSum contains 50 videos from YouTube.

The videos are selected from 10 categories in the TRECVid Multimedia Event Detection (MED)

(5 videos per category). The video lengths vary from 1 to 5 minutes. Similar to SumMe, the

video contents are diverse and include both ego-centric and third-person camera. 3) For OVP, we

evaluate on the same 50 videos used in [22]. The videos are from various genres (e.g. documen-

tary, educational) and their lengths vary from 1 to 4 minutes. 4) The YouTube dataset includes

50 videos collected from websites. The duration of the videos are from 1 to 10 minutes and the

content include cartoons, news and sports.

Evaluation Setup. For a fair comparison with the state of the art, the keyshot-based metric

proposed in [186] is used for evaluation. Let A be the generated keyshots and B the user-

annotated keyshots. The precision and recall are defined based on the amount of temporal overlap

between A and B as follows:

precison =
duration of overlap between A and B

duration of A

recall =
duration of overlap between A and B

duration of B
(4.9)

Finally, the harmonic mean F-score is used as the evaluation metric:
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Fscore = 2 · precison× recall
precison + recall

(4.10)

We follow the steps in [186] to convert frame-level scores to key frames and key shot sum-

maries, and vice versa in all datasets. To generate key shots for datasets which only provide

key frame scores, the videos are initially temporally segmented into disjoint intervals using KTS

[119]. The resulting intervals are ranked based on their importance score where the importance

score of an interval is equal to the average score of the frames in that interval. A subset of

intervals are selected from the ranked intervals as keyshots such that the total duration of the

generated key shots are less than 15% of the duration of the original video.

For datasets with multiple human annotations (in the form of key shots or key frames), we

follow the standard approach described in [54, 136, 186] to create a single ground-truth set

for evaluation. While evaluating our SUM-GANsup model, we used the same train, test and

validation split as in [186]. For fair comparison, we run it for five different random splits and

report the average performance.

Implementation Details: For fair comparison with [186], we choose to use the output of

pool5 layer of the GoogLeNet network [142] (1024-dimensions), trained on ImageNet [130],

for the feature descriptor of each video frame. We use a two-layer LSTM with 1024 hidden

units at each layer for discriminator LSTM (cLSTM). We use two two-layer LSTMs with 2048

hidden units at each layer for eLSTM and dLSTM respectively. It is shown in [138] that a

decoder LSTM which attempts to reconstruct the reverse sequence is easier to train. Similarly,

our dLSTM reconstruct the feature sequence in the reverse order. Note that while presenting x

and x̂ as the cLSTM input, both sequences should have similar ordering in time.

We initialize the parameters of eLSTM and dLSTM, with the parameters of a pre-trained

recurrent autoencoder model trained on feature sequences from original videos. We find out that

this helps to improve the overall accuracy and also results in faster convergence.

The sLSTM network is a two-layer bidirectional LSTM with 1024 hidden units. The output

is a 2-dimensional softmax layer in the case of SUM-GANsup.

Baselines: It is important to point out that considering the generative structure of our ap-

proach and the definition of the update rules in Alg. 4, it is not possible to replace subnetworks of

our model with baselines. In addition to different variations of our approach defined in sec. 4.6,

we also define SUM-GANbas which does not use the sparsity regularization.
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Method SumMe TVSum OpenVideo YouTube
SUM-GAN 38.7 50.8 71.5 58.9
SUM-GANbas 35.7 50.1 69.8 57.1
SUM-GANrep 38.5 51.9 72.3 59.6
SUM-GANdpp 39.1 51.7 72.8 60.1
SUM-GANsup 41.7 56.3 77.3 62.5

Table 4.1: Comparison of different variations of our generative video summarization on bench-
mark datasets. The result for SUM-GAN is reported for σ = 0.3.

4.7.1 Quantitative Results

Table 4.1 summarizes the accuracy of different variations of our approach. As is expected, the

model with additional frame-level supervision, SUM-GANsup, outperforms the unsupervised

variants by (2-5%).

One interesting observation is that although explicit regularization of the model with ‘diver-

sity regularizers’ (SUM-GANdpp and SUM-GANrep) performs slightly better than the variant of

our model with ‘length regularizer’ (SUM-GAN) the difference is not statistically significant.

Furthermore, in the case of SumMe, SUM-GAN performs better than SUM-GANrep. This is

particularly important because it verifies our main hypothesis that a good summary should in-

clude a subset of frames which provide similar content representation as of the original frame

sequences. This suggests that if we constrain the summary to be shorter in length, implicitly the

frames will be diverse. We also observe that SUM-GANdpp performs better than SUM-GANrep

in all four datasets. We believe that this is mainly because of the fact that unlike the repelling

regularizer, DPP is non-linear and can reinforce stronger regularization.

We are particularly interested in comparing our performance in contrast with prior unsu-

pervised and supervised methods. This comparison is presented in table 4.2. As shown, our

unsupervised SUM-GANdpp model outperforms all unsupervised approaches in all datasets. For

SumMe, our approach is almost 5% better than the state-of-the-art unsupervised approaches.

More importantly, the accuracy of SUM-GANdpp is comparably close to the supervised methods

in TVSum, OVP and YouTube datasets.

Comparing with the state-of-the-art supervised approaches, our supervised variant, SUM-

GANsup, outperforms in all datasets except OVP. Even in the case of OVP, we are statistically

close to the best reported accuracy with 0.4% margin. We hypothesize that the accuracy boost
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Learning Method SumMe TVSum OpenVideo YouTube

unsupervised

[22] 33.7 - 70.3 59.9
[92] 26.6 - - -
[74] - 36.0 - -
[136] 26.6 50.0 - -
[39] - - 63.4 -
[109] - - 57.6 -
[189] - 46.0 - -

SUM-GANdpp 39.1 51.7 72.8 60.1

(semi-)supervised

[54] 39.7 - - -
[185] 40.9 - 76.6 60.2
[53] 39.3 - - -
[186] 38.6 54.7 - -
[45] - - 77.7 60.8

SUM-GANsup 41.7 56.3 77.3 62.5

Table 4.2: Comparison of our proposed video summarization approach compared to state of the
art. The reported results from the state of the art are from published results. Note that [185, 45]
use only 39 videos of non-cartoon videos.

is mainly because of the additional learning signal from the cLSTM. Note that the discriminator

observes a longer sequence and classifies based on a learned semantic representation of the

feature sequence. This enables the discriminator to provide a more informative signal regarding

the importance of the frames for content similarity.

Zhang et al. [186] augment the SumMe and TVSum datasets with OVP and YouTube

datasets and improve the accuracy on SumMe and TVSum. Table 4.3 shows the accuracy results

in comparison with results reported in [186] when training dataset is augmented. Except for

SUM-GANsup, which we use 80% of the target dataset in training, for the unsupervised variants

of our approach we use all four datasets in training. The most important observation is that one

of our unsupervised variations, SUM-GANdpp, outperforms the state of the art in SumMe. This

shows that if trained with more unsupervised video data, our model is able to learn summaries

which are competitive with the models trained using key frame annotations.

Finally, we evaluate the performance of our approach for different percentages of σ values

for our SUM-GAN model. Fig. 4.4 shows the resulting F-score values for different σ’s on four
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Method SumMe TVSum
[185] 40.9 -
[186] 42.9 59.6

SUM-GAN 41.7 58.9
SUM-GANrep 42.5 59.3
SUM-GANdpp 43.4 59.5
SUM-GANsup 43.6 61.2

Table 4.3: Comparison of different variations of our generative video summarization with the
state of the art for SumMe and TVSum datasets when the training data is augmented with addi-
tional data from OVP and YouTube datasets.

Figure 4.4: F-score results for different values of σ on SumMe, TvSum, OpenVideo, and
YouTube.

different datasets. While the performance is consistent for 0.3 ≤ σ ≤ 0.5, it drops rapidly as

σ → 1 or σ → 0.



60

(a) Sample frames from video 15 (indexed as in [136])

(b) SUM-GAN (c) SUM-GANrep

(d) SUM-GANdpp (e) SUM-GANsup

Figure 4.5: Example summaries from a sample video in TvSum [136]. The blue bars show the
annotation importance scores. The colored segments are the selected subset of frames using the
specified method.

4.7.2 Qualitative Results

To better illustrate the temporal selection pattern of different variations of our approach, we

demonstrate the selected frames on an example video in Fig. 4.5. The blue background shows

the frame-level importance scores. The colored regions are the selected subsets for different

methods. The visualized key frames for different variants supports the result presented in Table

4.1. Despite small variations, all four approaches cover the temporal regions with high frame-

level score.

4.7.3 Comparison with Shallow Features

We verified the generalizability of our video summarization approach to non-deep features by

evaluating our model with the shallow features employed in [185, 186]. Table 4.4 shows the

performance of our model compared to the state-of-the-art models which use shallow features.
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Method SumMe TVSum
[136] - 50.0
[185] - 60.0
[186] 38.1 54.0

SUM-GAN 37.8 53.2
SUM-GANrep 38.8 54.1
SUM-GANdpp 41.2 53.9
SUM-GANsup 39.5 59.5

Table 4.4: Comparison of different variations of our generative video summarization with the
state of the art for SumMe and TVSum datasets when using shallow features.

Besides the reported results in [185] for TvSum, where the shallow features outperform the

deep features, our model consistently performs better the state of the art. Unlike [185], our

model grounded on deep features still performs better than the same model grounded on shallow

features.

4.8 Summary

We propose a generative architecture based on variational recurrent auto-encoders and generative

adversarial networks for unsupervised video summarization to select a subset of key frames. The

main hypothesis is that the learned representation of the summary video and the original video

should be similar. The summarizer aims to summarize the video such that the discriminator is

fooled and the discriminator aims to recognize the summary videos from original videos. The

entire model is trained in an adversarial manner where the GAN’s discriminator is used to learn

a discrete similarity measure for training the recurrent encoder/decoder and the frame selector

LSTMs. Variations of our approach are defined using different regularizations. Evaluation on

benchmark datasets show that all unsupervised variations of our approach outperform the state

of the art in video summarization by 2-5% and provides a comparable accuracy to the state-of-

the-art supervised approaches. We also verified that the supervised variation of our approach

outperforms the state of the art by 1-4%.
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Chapter 5: Approximate Policy Iteration for Budgeted Semantic Video

Segmentation

Abstract

This paper formulates and presents a solution to the new problem of budgeted semantic video

segmentation. Given a video, the goal is to accurately assign a semantic class label to every

pixel in the video within a specified time budget. Typical approaches to such labeling problems,

such as Conditional Random Fields (CRFs), focus on maximizing accuracy but do not provide

a principled method for satisfying a time budget. For video data, the time required by CRF and

related methods is often dominated by the time to compute low-level descriptors of supervoxels

across the video. Our key contribution is the new budgeted inference framework for CRF models

that intelligently selects the most useful subsets of descriptors to run on subsets of supervoxels

within the time budget. The objective is to maintain an accuracy as close as possible to the CRF

model with no time bound, while remaining within the time budget. Our second contribution is

the algorithm for learning a policy for the sparse selection of supervoxels and their descriptors

for budgeted CRF inference. This learning algorithm is derived by casting our problem in the

framework of Markov Decision Processes, and then instantiating a state-of-the-art policy learn-

ing algorithm known as Classification-Based Approximate Policy Iteration. Our experiments on

multiple video datasets show that our learning approach and framework is able to significantly

reduce computation time, and maintain competitive accuracy under varying budgets.

5.1 Introduction

Motivation: The design of vision approaches is typically informed by a trade-off between ef-

ficiency and accuracy. Good computational efficiency is usually achieved by taking a number

of heuristic pre- and post-processing steps and integrating them with the main approach. For

example, vision practitioners heuristically limit the types of features to be extracted (e.g., low-

cost ones), as well as locations and scales in images and video from which they are extracted.

While these steps have been satisfactory for small-scale problems, their heuristic nature makes
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an adaptation of existing systems to settings with stringent runtime requirements very difficult.

Our goal is to formulate a principled framework for optimally adapting a vision system

to varying time budgets imposed by particular application settings, so as to maximize overall

performance for any budget and maintain an accuracy as close as possible to the system’s perfor-

mance with no time bound. In this paper, we focus our presentation of theory and experiments

in the context of semantic video segmentation. Nevertheless, it is worth noting that our frame-

work is based on fairly non-restrictive assumptions, and thus is suitable for many other computer

vision problems, beyond the scope of this paper.

The Focus Vision Problem: Given a video, our goal is to assign a class label to every

pixel from the set of semantic classes seen in training, under any time budget. We call this new

problem budgeted semantic video segmentation. For example, in a video of a street, we want

to efficiently segment spatiotemporal subvolumes occupied by cars, pedestrians, and buildings

in less time than the user-specified bound. This is an important problem with a wide range

of applications (e.g., driverless cars, sports video analytics) which require highly accurate and

timely estimates of space-time extents of objects in the scene.

The key idea: We assume that a given approach to semantic video segmentation specifies

an inference procedure (e.g., loopy belief propagation, graph-cut) which takes input features

and outputs an inference result. Rather than pixels, most existing approaches, first, label su-

pervoxels, obtained from an unsupervised (low-level) video partitioning, and then transfer these

labels to the corresponding pixels. Thus, a typical input consists of supervoxels and their de-

scriptors, where the descriptors may be computed locally at every supervoxel, between pairs of

neighboring supervoxels, and globally across the entire video. Computing all descriptors for all

supevoxels is costly. Thus, a sparse section of supervoxels and choosing their most useful and

least costly descriptors is our key problem. Note that we do not modify the inference procedure.

Rather, we adapt the descriptor computation step to suit budgeted settings of a broad family of

approaches. Consequently, we do not seek to improve prediction accuracy, but rather maintain

the existing level of accuracy while reducing runtime.

Our framework is illustrated in Fig. 5.1. We assume access to a Conditional Random Field

(CRF) and associated inference procedure—one of the most popular formulations of semantic

video segmentation—and design a sequential inference policy that interacts with the given ap-

proach. Given an unsupervised video partitioning into supervoxels and a user-specified time

budget, our policy is presented with a sequence of candidate supervoxels until time expires and

must decide for each one which new descriptor to run for it, if any, with the goal of maximizing
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Figure 5.1: We formalize a sequential inference policy aimed at adopting a fairly general family
of approaches to the problem of budgeted semantic video segmentation. Our focus domain is
a holistic CRF-based inference, but other approaches to semantic video segmentation could be
considered. Given an unsupervised video partitioning into supervoxels, a set of feature extrac-
tors, and a user-specified time budget, our policy sequentially selects the best pair (supevoxel,
feature) toward maximizing performance of the CRF inference until the time expires.
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performance of the CRF inference. The sequential selection should take into account both the

immediate and long-term value of the decisions toward overall inference accuracy.

We formalize such sequential decision making in the framework of Markov Decision Pro-

cesses (MDPs), where, for a given state, the policy selects the highest value action among possi-

ble actions. The policy state is defined by the previous selections of descriptors for supervoxels,

which is conveniently represented via special policy features. The policy actions include running

a descriptor for the currently presented supervoxel or FINISHED, which specifies that no further

descriptors should be computed for the current supervoxel. The policy is defined as a linear

ranking function for balancing efficiency and expressiveness, such that its execution consumes

resources negligibly, and that it captures sufficient information about the current policy state to

support good decisions. For training the policy, we use the state-of-the-art policy learning ap-

proach of Classification-Based Approximate Policy Iteration (CAPI), which is able to leverage

state-of-the-art classification learning techniques for policy optimization.

5.2 Related Work and Our Contributions

Semantic video segmentation is mostly formulated as a graphical-model based labeling of su-

pervoxels in the video [15, 13, 12, 107, 16, 96, 143, 170]. For example, graphical models were

used for: i) Propagating manual annotations of supervoxels of the first few frames to other su-

pervoxels in the video [107, 15, 13], or ii) Supervoxel labeling based on week supervision in

training [100]. The accuracy of such labeling can be improved by CRF-based reasoning about

3D relations [82] or context [96] among object classes in the scene. Therefore, it seems reason-

able that we develop our framework for an existing CRF-based labeling of supervoxels. None

of these methods explicitly studied their runtime efficiency, except for a few empirical results of

sensitivity to the total number of supervoxels used [61].

Prior work has considered the issue of how to reduce inference runtime by specifying effi-

cient approximations to the original inference [188, 80, 11]. Their work is not related to ours,

since we keep the given inference procedure intact. A few approaches have addressed cost-

sensitive inference for activity recognition [4, 6], image classification [69, 70], and object detec-

tion [172]. Our fundamental difference is that these methods precompute all features and then

adapt the very inference procedure such that it uses only an optimal subset of the features to

meet the time budget. In contrast, we do not compute any features before our inference policy

makes the decision to do so.
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Closely related work improves runtime efficiency by reducing the costs of feature extraction

[162, 163, 129, 94, 50]. For example, CRF-based semantic scene labeling in images is made

more efficient by computing only a small subset of unary potentials for the CRF, and efficiently

predicting the missing potentials from neighbors [129]. This approach can be viewed as a special

case of our framework, since they only select superpixels and then use all features for comput-

ing the unary potentials, whereas we would select both superpixels and feature types in their

domain. In [163], a budget constrained reinforcement learning is used to select optimal features

for tracking human poses in relatively simple videos. Since they extract a chosen feature over

the entire video, this approach can be viewed as another special case of our framework, because

we would additionally make the decision about where to extract the feature in the video. This is

a crucial difference for large videos, where computing even a single feature/descriptor across an

entire video may exceed the budget constraint. Additional differences from these two approaches

are explained in Sec. 5.3. We efficiently compute low-level descriptors for a selected subset of

supervoxels in addition to the object level potentials in [94]. Unlike [50] we do not change the

inference module, which makes it possible to augment any state of the art with our approach. It

is not clear how to extend [50] to use higher order potentials. More importantly our approach is

able to exploit the high correlation among the features of neighboring supervoxels to avoid the

extra feature extraction cost if it does not help the final inference.

Contributions: 1) First formalization of the budgeted semantic video segmentation prob-

lem. 2) Design of the first learning algorithm that can tune inference policies for varying time

budgets. 3) Specification and evaluation of the inference policy representation as a linear func-

tion that supports learning.

5.3 Budgeted Semantic Video Segmentation

Our framework takes as input a time budget B and video that has been partitioned into a set of

supervoxels V . The goal is to accurately assign a label to each supervoxel in V in time less than

B. Below, we first present a common CRF formulation for semantic video segmentation, which

our framework is based on. Next, we formulate our framework for bounding the CRF inference

time.
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5.3.1 A Common CRF Formulation

We consider a standard pairwise CRF model, which specifies the following score for any labeling

{yi} of supervoxels i ∈ V and their spatiotemporal neighborhood relationships (i, j) ∈ E ⊂
V × V : ∑

i∈V
wu ·ψu(xi, yi)+

∑
(i,j)∈E

wp · ψp(xi,xj , yi, yj), (5.1)

wherewu ·ψu(xi, yi) denotes the unary potential specified in terms of an nu-dimensional unary

feature vector ψu(xi, yi) estimated for observation xi at supervoxel i when i is assigned label

yi from the set of labels L, and the corresponding weight vector wu. Also, we have that wp ·
ψp(xi,xj , yi, yj) assigns pairwise “compatibility” scores of assigning labels yi to i and yj to

neighboring supervoxel j, whereψp(xi, yi,xj , yj) is an np-dimensional pairwise feature vector

and wp as the associated weight vector. We specify nu = L = |L| and np = L2, but more

general specifications are also possible.

We consider a common form of unary features defined in terms of a probabilistic multi-class

classifier. In particular, we will learn a probabilistic classifier H that returns an L-dimensional

probability vector, such thatH(i) is a predicted distribution over all labels yi ∈ L for supervoxel

i. The input to H , used as a basis for prediction, is the concatenation of multiple descriptors of

supervoxel i. In this paper, we use logistic regression for H . Given H , the unary feature vector

ψu(xi, yi) is constructed in the standard way by setting all elements ofψu(xi, yi) to zero, except

for the element corresponding to label yi which is set to the probability H(i) of predicting yi for

i. Thus, the cost of ψu(xi, yi) is dominated by the cost of computing H(i).

The pairwise features is specified in the standard way as the difference between descrip-

tors of the pair of neighboring supervoxels. Thus, the pairwise “compatibility” score is defined

to increase as this difference becomes smaller for the supervoxels with the same label, and to

decrease for small descriptor differences when the pair of supervoxels have different labels.

Non-overlapping features are replaced by the expected features conditioned on the label.

CRF inference involves two main steps. First, unary and pairwise potentials are computed

for all combinations of supervoxels and labels. Second, a standard approximate CRF inference

procedure is applied, such as belief propagation or α-expansion (used in our experiments), which

returns a high scoring (ideally optimal) label assignment. The overall computational cost is, thus,

the total time for computing the potentials and running the inference procedure.
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Learning the CRF and H . Given labeled training data, we learn our CRF model,M, using

the unary and pairwise feature vectors computed over all training supervoxels. This is done by

computing all descriptors for all supervoxels in the training data, and then using a standard CRF

library to obtainM and the associated logistic regression H .

Recall, that the main idea of our framework is to reduce time by only computing a subset

of descriptors for some supervoxels. Thus, in order to produce the unary feature vector, H

must be able to make label predictions for a supervoxel using any subset of its descriptors. One

approach to obtaining such predictions would be to train H on all descriptors, and then use

one of a number of common strategies for making predictions with “missing information” (e.g.,

replacing the missing descriptor values with zero or expected values).

Rather, we take a more brute force approach, with the advantage of not requiring any method

for handling missing descriptors. Instead of just training a single classifier based on all descrip-

tors, we train a collection of classifiers, one classifier for each possible subset of descriptors. H

is then represented by this collection of classifiers. That is, each logistic regression is trained by

removing all descriptor information from the training set other than its assigned descriptor sub-

set. When H is asked to make a prediction for a supervoxel during budgeted inference, it uses

the classifier corresponding to the set of descriptors that have been run for that supervoxel. Given

that classifier training is very fast, this will often be practical even with thousands of possible

subsets. This is indeed the case in our experiments as described in Sec. 5.5.

5.3.2 Budgeted Unary Feature Computation

Computing the unary features ψu typically dominates overall computation time, since this in-

volves computing a number of low-level descriptors over all supervoxels. The pairwise features

ψp are much cheaper, in comparison, since they are generally based on comparing descriptors

already computed for ψu. For this reason, our framework focuses on bounding the time of com-

puting ψu, and we will let B denote this time bound for the remainder of this paper. The overall

CRF inference will typically be a small constant larger than B, when B is non-trivial.

Our hypothesis is that similar accuracies in inference can be achieved with less cost by

intelligently selecting for each supervoxel a sparse set of descriptors to compute, including the

empty set, which are then used by H to generate ψu. Below, we describe how to make these

decisions.

Alg. 3 presents our iterative approach to selecting descriptor subsets for time bounded in-
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ference. Throughout the iterations, we maintain a set of candidate supervoxels, C, which are

currently being considered for descriptor computation. C is initialized to a small random subset

of V . We also maintain a set of finished supervoxels, F , which will no longer be considered

for descriptor computation. Each iteration consists of two steps. The first step calls the function

Select(C), which returns a supervoxel i ∈ C to be considered next. As described in Sec. 5.5, we

consider two versions of Select(C): a) Random selection, and b) Priority-based selection. The

second step applies policy π for selecting either a new descriptor for i to compute, or mark i as

being finished. Specifically, π(i) returns an action for i that is either a descriptor index or FIN-

ISHED. In the latter case, i is moved from C to F , and all neighbors of i that are not already in F
are added to C. The iterations continue until the runtime reachesB. WhenB is reached, the CRF

unary features ψu(xi, yi) are computed for all supervoxels i where at least one descriptor has

been computed. For a supervoxel i, where no descriptors are computed, ψu(xi, yi) is estimated

based on the available unary features {ψu(xj , yj)} of i’s neighbors, i.e. ψu(xi, yi) is set to a

weighted sum of {ψu(xj , yj)}, where the weights are the inverse Euclidean distances between

the centroids of i and the neighbors.

Algorithm 3 Our cost-sensitive budget-aware semantic segmentation inference
1: Input:Supervoxels V , Policy π, Classifier H , Budget B
2: Output:Labeling of supervoxels
3: C ← small random subset of V ;
4: F ← ∅
5: repeat
6: i← Select(C) % select a supervoxel (see text)
7: a← π(i) % apply policy on i
8: if a == FINISHED then
9: F = F + {i}

10: C = C + Neighbors(i)−F % new candidates
11: else
12: Compute the descriptor specified by a for i
13: end if
14: until runtime < B
15: Interpolate unary features for supervoxels i with no computed descriptors (see text)
16: Apply CRF inference

The key element in the above framework is the policy π. Given a supervoxel i, π must weigh

the cost of computing a new descriptor of i versus the potential improvement in accuracy of
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the CRF inference. It is critical that π makes these decisions efficiently, otherwise the cost of

evaluating π would negate any potential reduction in descriptor computation that it provides. As

our key contributions, in the following Sec. 5.4, we specify a suitable representation and learning

algorithm for such a π.

5.4 Policy Representation and Learning

This section first describes the linear representation we use for policies, and then formulates our

policy learning algorithm within the MDP framework.

5.4.1 Policy Representation

At each iteration of our budgeted inference, π is shown a supervoxel i, and asked to decide

whether or not to run a new descriptor for i and if so which one. We call these choices actions.

π selects an action a based on the information available at the time, which we call the inference

state s, a = π(s). An inference state is a tuple s = (i, b, C,F ,D), where i is the supervoxel

currently being considered, b is the remaining budget, and C and F are the sets of candidate and

finished supervoxels as described in Sec. 5.3.2. Finally, D is the set of descriptor outputs that

have been produced so far for supervoxels in C and F .

Since π is called many times during inference, it is critical that the time required to select an

action be significantly smaller than the time required to run descriptors. To support efficiency

we represent π as a linear function that ranks the possible actions at an inference state s based

on an easy to compute vector of π-features φ(s).

Policy Features. The π-features have three subvectors φ(s) = [φ1(s),φ2(s),φ3(s)] that

capture different aspects of the inference state s. φ1(s) is a binary vector that indicates which de-

scriptors have already been run for i. φ1(s) allows the policy to learn the value of taking certain

actions, given various combinations of computed descriptors characterizing s. φ2(s) is a vector

that is equal to a weighted average of the unary potential features {ψu} of “finished” neighbors

of i that are in F . Recall thatψu corresponds to probability distributions over class labels. Thus,

φ2(s) allows the policy to base its decisions on the confidence of neighboring supervoxels about

the various semantic labels. For example, the policy can learn that if all neighbors are very con-

fident about a particular label then it is not worth computing further descriptors for i. Finally,

φ3(s) is the standard shape-context descriptor capturing the spatiotemporal layout of finished
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supervoxels in F around i. φ3(s) is computed by binning the space-time neighborhood of i (all

supervoxels that touch i) into 8 bins ({up, down, left, right}×{before, after}), and counting

the finished supervoxels that fall in each bin. φ3(s) allows the policy to base its decisions in part

on the density of surrounding finished supervoxels.

Given the π features for an inference state s, φ(s), our policy is a linear ranking function

over policy actions a, represented in terms of a weight vector wa for each action.

π(s) = arg max
a

wa · φ(s) (5.2)

Thus, training the policy entails training the weightswa so as to make the best possible decisions.

5.4.2 Policy Learning

It is important to note that ground-truth annotations of our training videos do not directly provide

ground-truth decisions that should be made by π. The supervised training data for π would need

to label inference states by best policy actions. Since this information is not available in training,

π cannot be learned via pure supervised learning. The training data does, however, provide the

means for evaluating the quality of any policy. In particular, given any π and budget B, we can

run time-bounded inference on each training video using π, as summarized in Alg. 3, and then

measure the prediction accuracy of the CRF relative to the available ground truth. In practice,

large numbers of such policy evaluations can be run quickly by precomputing all descriptors for

all supervoxels across the training videos. This allows for the budgeted inference process to be

“simulated” on the training data without requiring descriptors to be recomputed for each policy

evaluation. The question then is how to use this fast policy evaluation on the training data in

order to learn an effective policy?

Policy learning is complicated by the fact that the policy is inherently solving a sequential

decision making problem, where each decision may have long-term impacts on the overall so-

lution accuracy. Optimizing the long-term value of policies is challenging due to the fact that

each inference process will involve many policy decisions and assigning relative credit to those

decisions toward the overall accuracy is non-trivial. Such sequential decision making problems

are naturally formalized in the MDP framework [122].

MDP Formulation: An MDP specifies a set of states S, a set of actions A that can be taken

by a policy, and a transition function T , which describes how the state of the system changes
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when actions are taken. In addition, an MDP specifies a reward function, which evaluates the

relative goodness of various system states. In our time-bounded inference application, the states

correspond to inference states (i, b, C,F ,D) as described in Sec. 5.4.1. The actionsA correspond

to policy actions of either selecting to run a descriptor for the current supervoxel i, or returning

FINISHED, which indicates that we are finished computing descriptors for i.

The transition function describes how an action a changes a state s = (i, b, C,F ,D). If the

action a is to run a descriptor, then the new state is equal to s′ = (i′, b′, C,F ,D′), where D′
updates D with the newly computed descriptor information for i. In addition, the new budget

b′ will be equal to b minus the cost of a, and i′ ∈ C will be the supervoxel selected next for

processing. When the action is FINISHED, the new state is s′ = (i′, b, C′,F ′,D), where C′ and

F ′ are updated as described in Sec. 5.3.2, and i′ is the newly selected supervoxel. Note that

when b = 0, no further actions are allowed. Importantly, the reward function is zero for all

states, except for final states with b = 0, where the reward is equal to the accuracy achieved by

the CRF inference using the selected descriptors run by the π.

Given the above MDP formulation, the problem of optimizing π to maximize expected long-

term reward in the MDP is identical to finding a policy that maximizes inference accuracy within

our budgeted inference framework. Thus, in principle, any policy learning algorithm from the

MDP literature could be employed for our problems. Prior work [163] used reinforcement learn-

ing (RL) for learning an approximate Q-function. In that work, the Q-function Q(s, a) of an

MDP gives the expected future reward of being in state s and taking action a. Given Q(s, a)

the policy is defined to select the action with largest Q-value. Unfortunately, the Q-function can

be extremely complicated to represent for problems that involve long sequences of decisions. In

that prior work, the number of decisions was bounded by the number of descriptors, which is

quite small. Rather, in this paper, the number of decisions is related to the number of supervox-

els, which is substantially larger. Our early experiments showed that standard approaches for

learning Q-functions, represented using our π-features, were ineffective for the problem scales

we address here.

Classication-Based Approximate Policy Iteration (CAPI): Our approach is motivated by

the fact that we do not actually need to learn the Q-function, but only learn to rank good actions

above bad actions, e.g., using the linear policy representation described in Sec. 5.4.1. This

suggests considering approaches that directly learn the decision boundary between good and bad

actions. Classification-Based Approximate Policy Iteration (CAPI) is one such state-of-the-art

technique that we follow here.
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CAPI was originally proposed by [34, 83]. It has demonstrated a number of empirical suc-

cesses, and has been the subject of theoretical analysis providing various performance guarantees

[35, 23, 88]. A key distinction of CAPI is that it is able to leverage state-of-the-art learning al-

gorithms for classification and ranking (e.g. SVMs).

CAPI is conceptually simple. Given an initial policy π0, which is random in our experiments,

CAPI iteratively applies an approximate policy improvement operator PI, which takes an input

policy π and returns an (approximately) improved policy PI[π]. Thus, the CAPI algorithm

produces a sequence of improving policies πt+1 = PI(πt) and terminates when no further

improvement is observed or a training time bound is reached. Recall that for our linear policy

representation this will correspond to a sequence of weight vectors. It remains to describe the

approximate policy improvement operator PI.

Given a current policy π, CAPI computes the improved policy PI(π) using a two step

process:

• Step 1 – Training Set Generation.Create a training set of state-action pairs Trn = {(si, ai)}
such that ai is an “improved” action for si, i.e. better or at least as good as the current

action π(si).

• Step 2 – Classifier Learning. Apply a classifier learner to Trn to obtain a policy π′ that

achieves high accuracy in selecting the improved actions. In Step 2 we use a multi-class

SVM classifier to learn the weights of π based on the training set generated by Step 1.

Step 1 requires selecting a set of states for the training set and then computing the improved

actions. In our experiments, we have found that an effective and simple approach is to run the

current policy π on the training videos, and to let the training states correspond to all inference

states encountered during inference using π across all training videos. For each such inference

state si we must now compute a label ai that corresponds to an improved action relative to the

action selected by π.

In order to compute an improved action, CAPI uses the Monte Carlo simulation technique

of policy rollout [145]. Fig. 5.2 illustrates the main components of policy rollout. Simply stated,

policy rollout computes a score for each action a at a state si that is equal to the accuracy

achieved by the final CRF inference after taking action a in si and then taking actions according

to π until the budget is zero. The action leading to the highest accuracy is then selected. That

is, rollout considers all one-step action departures from the current policy π at si and selects
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the action that resulted in the highest final CRF accuracy. Note that the transition function for

actions may be stochastic, e.g., when the selection of the next supervoxel is implemented by

random selection. In these cases, policy rollout runs multiple simulations for each action and the

average accuracies across simulations are used to score actions.

For deterministic transition functions, policy rollout is guaranteed to return an improved

action if the current policy is not optimal in si. For stochastic transitions, in the limit of infinite

simulations, the action returned by rollout is guaranteed to be an improved action. A polynomial

sample complexity bound exists on the quality of the action returned by rollout compared to that

of π [35]. Since our classifier is linear the learning time is linear in sample size. Note that while

the training process may require significant time, the end result is a single policy π from the last

iteration of CAPI that can be used efficiently at test time for time-bounded inference.

5.5 Results

Our goal is to empirically support the claim that we can optimally adapt a given method for

semantic video segmentation to varying time budgets, such that it yields satisfactory performance

for any budget, and maintains an accuracy as close as possible to its performance for no time

bound. As the given method was originally designed to perform best without time constraints, it

is important to note that our performance is inherently upper-bounded by the method’s accuracy

for an infinite time budget. Therefore, our evaluation differs from much work in computer vision,

where the focus is on demonstrating improvements in accuracy.

Datasets. For evaluation, we use three benchmark datasets: 1) CamVid [12], 2) MPIScene

[169], and 3) SUNY Buffalo-Xiph.org 24-class [15]. CamVid consists of 5 videos with an

average length of 5000 frames. The videos are captured with a moving camera recording road

scenes. Following prior work, we focus on the 11 most common object class labels and use the

standard split of training and test frames as in [12, 96]. MPIScene consists of 4 videos with an

average length of 150 frames. The videos show driving scenes recorded from a car. Almost 25%

of the frames are labeled with 5 object classes. For MPIScene, we use the split of 1/2 training

and 1/2 test frames as in [170]. The SUNY Buffalo dataset consists of 10 videos of diverse

scenes with an average length of 80 frames. They are fully annotated with 24 class labels. As in

[61], we use one-half of the frames for training and the other half for testing.

Supervoxels and Descriptors. All videos are partitioned into supervoxels using the hierar-

chical graph-based approach of [51], and its software implementation presented in [176]. For
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Figure 5.2: Monto Carlo simulation of policy rollout. All possible actions of a current state
are evaluated by running the current policy π starting from the next states corresponding to the
actions being taken, until the time budget is reached. The CRF inference is then applied to
compute the Hamming loss. This is used to improve the current policy.
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CamVid, the video partitioning is based on the 9th level of the generated supervoxel tree, pro-

ducing on average 3500 supervoxels per video. For, MPIScene, we used the 9th level of the

supervoxel hierarchy, producing on average 1000 supervoxels per video. In this paper, we do not

consider the computation time of extracting supervoxels.

Each supervoxel has access to algorithms for computing appearance and motion descriptors,

as controlled by our inference policy. These descriptors include the following. We use dense

trajectories [153] by tracking a set of densely sampled points in two different scales on a grid.

The descriptor extraction finds the tightest cube of a given supervoxel, and uses the dense trajec-

tories to generate HOG, HOF, and MBH (motion boundary histogram) for each track. We also

use the color histogram in CIE-Lab color space for each supervoxel. In addition, we also use

object detectors as mid-level descriptors of supervoxels to identify the probability of observing

a corresponding object class in a supervoxel. Specifically, given a supervoxel, we run a Deep

Convolutional Neural Net (DCNN) on all pixels of the supervoxel’s first, middle and last frame.

Then, the output of the logistic regression layer of DCNN is used as a descriptor of the super-

pixel. For CamVid, computing HOG, HOF and MBH for the entire video takes 6-8, 15-17, 9-11

minutes, respectively; computing the color histogram for all supervoxels in a video takes 3-5

minutes; and running DCNN takes 0.1 seconds per supervoxel. On average the full descriptor

extraction for an entire video in CamVid requires 43-53 minutes. For MPIScene, computing

HOG, HOF and MBH for an entire video takes 10-12, 18-20, 11-12 seconds, respectively; com-

puting the color histogram for all supervoxels in a video takes 2-4 seconds; and running DCNN

takes 0.1 seconds per supervoxel. On average the full feature extraction for an entire video in

MPIScene requires 42-50 seconds. For SUNY Buffalo-Xiph.org 24-class computing HOG, HOF

and MBH for the entire video takes 5-7, 8-10, 5-6 seconds respectively. Computing the color

histogram over all supervoxels in a video takes 0.6-1 second. On average, full feature extraction

for the entire video from the SUNY Buffalo dataset requires 19-22 seconds.

Variations of Our Framework: We evaluate our framework using different supervoxel

selection strategies (Sec. 5.3.2) and different sets of available descriptors. We consider three

variations: 1) Budget -RndRnk randomly selects a supervoxel from C, and uses only HOG, HOF,

MBH and color histogram; 2) Budget -NhbRnk ranks the supervoxels based on the confidence

of H classifiers for neighbors in F (Sec. 5.3.2), and uses only HOG, HOF, MBH and color

histogram; 3) Budget -Full is similar to Budget -NhbRnk, but additionally uses DCNN-based

descriptor.

Upper-Bound Performance: For evaluating our upper-bound performance, we compare our
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time-bounded accuracies to two unbounded CRF models. The first model, referred to as CRF,

uses only HOG, HOF, MBH and color histogram descriptors. The second model, referred to as

CRF-Full, additionally uses DCNN-based descriptor.

Baselines: We specify a number of reasonable baseline approaches. This comparison serves

to evaluate how our proposed learning of the inference policy affects performance relative to

alternative strategies. 1) Baseline1 randomly selects a sequence of descriptors to be computed

for all supervoxels until time runs out; 2) Baseline2 randomly selects a subset of supervoxels,

such that there is time for computing all descriptors for each supervoxel in the subset, and 3)

Baseline3 is aimed to recreate the related approach of [163] in our domain, i.e., Baseline3 learns

an inference policy using Q-learning for selecting a sparse set of descriptors that are computed

for all supervoxels in the entire video.

Implementation: is done in C++. Darwin library(http://drwn.anu.edu.au/) is used for train-

ing the CRF and H . The α-expansion algorithm [11] is used for CRF inference. We perform

our experiments on an Intel quad core-i7 CPU and 16GB RAM PC. We use Caffe deep learning

framework [64] for our DCNN implementation. Fine tuning of the DCNN parameters based on

the Alexnet model is done for each dataset. The training set for the objects is obtained as in [96].

Table 5.1 compares per-class and average video labeling accuracy of the aforementioned

variations of our framework with those of time-unconstrained CRF models and baselines, for

three different time budgets, on CamVid. As can be seen, for the smallest budget, the accuracy

of all baselines is much worse than that of all our framework variations. We observed that

Baseline1 and Baseline2 were not able to use HOF and MBH, for this budget, because the cost

of computing motion descriptors for the entire video was above the budget. This demonstrates

the importance of our intelligent descriptor selection.

In Table 5.1, we also see that all variations of our framework are able to continually improve

accuracy as the time budget increases. At the largest time budget of 45 minutes, Budget -Full

achieves nearly the same accuracy as the unbounded CRF-Full which in turn requires 50-55min

for computation of all descriptors in the entire video. This demonstrates that we are able to

maintain a similar level of accuracy of the original method under reduced runtimes, namely for

a 5 min time reduction.

Interestingly, the results in Table 5.1 show that for lower budgets the variations of our frame-

work give superior accuracy for the dominant class labels relative to unbounded inference. This

is likely due to our explicit capturing of the contextual information from neighboring super-

voxels. The results suggest that our policy successfully learned to avoid computing redundant
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B Method Roa
d

Bldg Sky Tree SW
lk

Car Pole Fen
ce

Pds
tr

Bcy
l

Sign Avg

∞
CRF 90.2 74.2 95.2 79.8 69.8 75.8 10.1 29.2 59.9 35.4 50.2 60.9
CRF-Full 90.5 74.6 95.2 80.1 70.3 78.8 10.4 30.1 59.4 37.2 50.4 61.5

10

Baseline1 81.1 65.3 74.2 39.9 30.2 46.3 3.9 7.2 19.5 10.3 17.1 35.9
Baseline2 91.9 70.9 84.4 51.6 36.2 53.2 5.8 10.4 26.2 14.1 27.2 42.9
Baseline3 89.1 71.3 83.2 47.9 33.8 50.4 6.2 11.1 25.8 13.4 24.5 41.5
Budget -RndRnk 93.2 75.6 90.3 69.4 51.3 58.8 6.2 12.2 27.2 13.2 23.2 47.3
Budget -NhbRnk 91.2 76.4 91.5 71.2 50.6 56.9 7.4 13.5 28.1 15.4 25.7 48.0
Budget -Full 91.9 78.9 94.2 73.4 53.8 62.4 8.1 14.1 36.6 24.5 28.8 51.5

25

Baseline1 86.9 73.8 79.8 50.7 49.1 52.2 7.2 13.6 30.2 21.5 26.4 44.7
Baseline2 89.3 75.9 88.2 68.8 40.5 60.7 7.5 15.4 38.5 25.3 29.2 49.0
Baseline3 89.4 72.3 89.2 69.1 35.1 57.2 6.8 13.9 33.7 20.1 25.3 46.6
Budget -RndRnk 90.6 78.9 93.4 75.1 52.9 65.5 6.7 13.5 32.6 20.7 29.1 50.8
Budget -NhbRnk 92.9 77.7 93.2 76.6 57.4 67.5 8.1 16.7 37.4 24.5 28.9 52.8
Budget -Full 92.7 77.4 96.9 79.1 63.3 73.1 9.7 20.7 44.2 29.8 36.2 56.6

45

Baseline1 88.4 72.8 92.3 78.8 68.7 76.5 10.0 24.4 57.9 35.8 48.1 59.4
Baseline2 87.5 73.2 91.7 73.5 65.2 75.4 9.9 23.7 51.6 32.8 47.8 57.5
Baseline3 89.6 70.9 91.2 77.5 66.7 73.9 10.4 25.8 57.8 33.9 50.5 58.9
Budget -RndRnk 89.8 66.2 92.7 77.3 64.3 72.5 9.1 24.6 53.8 32.4 47.1 57.3
Budget -NhbRnk 90.3 72.9 89.8 76.9 64.8 76.7 9.3 27.8 56.9 34.4 46.5 58.8
Budget -Full 90.8 74.5 91.7 79.4 68.1 75.0 10.2 28.3 58.3 38.2 49.9 60.4

Table 5.1: Per-class and average accuracy on CamVid. We evaluate CamVid for B ∈{10, 25, 45
minutes}. The upper-bound accuracy for Budget -RndRnk and Budget -NhbRnk is the accuracy
of the CRF and the upper-bound accuracy for Budget -Full is the accuracy for CRF-Full. The
following abbreviations are used: Bldg = Building, SWalk = Side Walk, Pole = Column-Pole,
Pdstr = Pedestrian, Bcyl = Bicycle, Sign = Sign Symbol
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Figure 5.3: (top) Histogram of descriptors selected by Budget -Full for different budgets on
CamVid. (bottom) Histogram of descriptor selection by Budget -NhbRnk in time on CamVid,
constrained by B = 45min.

descriptors when the neighbors can provide strong evidence of the label. Thus, the main impact

of increasing the budget is to improve accuracy on the non-dominant labels.

Tables 5.2 show the per-class and average video labeling accuracy on MPI-Scene and SUNY

Buffalo-Xiph.org 24-class dataset.

Fig. 5.3(top) how decisions of our policy, learned in Budget -Full, differ across various bud-

gets for CamVid. Specifically, the figure shows the histogram of certain types of descriptors

selected for different budgets. We see that HOF and MBH are seldom used for small budgets, as

expected, since they incur higher costs. Also, the color histogram descriptor is more frequently

selected when we are given small budgets, as expected, since they incur small costs.

Fig. 5.3(bottom) shows how the distribution of descriptor selection changes in time during

our budgeted inference by Budget -NhbRnk for CamVid. Specifically, the figure shows the his-

togram of descriptor selections made by the policy at various moments in time of the inference

process. We see that the distribution changes as the inference time increases until the budget is

reached. For example, initially, the distribution is highly skewed toward selections of the cheap

color descriptor but then becomes more uniform. This suggests that the policy successfully

learned to select low-cost descriptors initially for facilitating later policy decisions.

5.6 Summary

We formulated the new problem of budgeted semantic video segmentation, where the pixels of

a video must be semantically labeled under a time budget. We presented a budgeted inference

framework for this problem that intelligently selects supervoxel descriptors to run, which are
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B Method Bkgd Road Lane Vehicle Sky Avg

∞
CRF 87.3 91.2 11.5 66.2 94.5 70.1
CRF-Full 89.8 90.4 12.1 69.8 94.9 71.4

15

Baseline1 60.3 80.4 3.6 31.4 82.4 51.6
Baseline2 63.7 81.9 3.5 32.7 83.7 53.1
Baseline3 65.9 81.8 3.9 31.9 83.5 53.4
Budget -RndRnk 70.3 82.9 7.3 39.2 84.1 56.8
Budget -NhbRnk 73.5 85.2 8.9 42.4 86.7 59.3
Budget -Full 74.6 85.6 9.1 44.8 87.2 60.3

30

Baseline1 74.8 84.2 6.9 36.4 85.5 57.6
Baseline2 75.9 87.3 6.5 39.3 84.9 58.8
Baseline3 75.0 85.7 7.2 38.9 83.5 58.1
Budget -RndRnk 80.1 83.4 9.4 49.7 88.7 62.3
Budget -NhbRnk 83.6 86.8 9.8 52.9 89.3 64.5
Budget -Full 84.1 88.4 10.1 54.9 89.4 65.4

45

Baseline1 88.3 91.4 10.9 66.4 93.2 70.0
Baseline2 86.8 90.1 9.3 63.9 94.1 68.8
Baseline3 89.2 91.3 11.1 66.6 94.7 70.6
Budget -RndRnk 86.8 90.7 10.1 64.8 93.9 69.3
Budget -NhbRnk 88.9 91.2 10.4 65.6 94.7 70.2
Budget -Full 89.8 91.5 11.1 70.9 94.9 71.6

(a) Results on MPI-Scene
B Method Acc
∞ CRF 52.1

10

Baseline1 32.2
Baseline3 32.8
Budget -RndRnk 38.7
Budget -NhbRnk 39.6

15

Baseline1 37.4
Baseline3 37.9
Budget -RndRnk 44.7
Budget -NhbRnk 46.6

20

Baseline1 49.3
Baseline3 49.8
Budget -RndRnk 48.7
Budget -NhbRnk 49.5

(b) Results on SUNY Buffalo

Table 5.2: Per-class and average accuracy on MPI-Scene (Left) and SUNY Buffalo (Right). We
evaluate MPI-Scene for B ∈{15, 30, 45 seconds} and SUNY Buffalo for B ∈{10sec, 15sec,
20sec}. The upper-bound accuracy for Budget -RndRnk and Budget -NhbRnk is the accuracy
of the CRF and the upper-bound accuracy for Budget -Full is the accuracy for CRF-Full. The
following abbreviation is used: Bkgd = Background
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then used for CRF inference. Since descriptor computation often dominates the cost of CRF

inference, our framework can provide substantial time savings in a principled manner. We for-

mulated the inference policy for selecting among descriptors to run for each supervoxel in a

video. We introduced a principled algorithm for learning such policies based on labeled training

videos by formulating budgeted inference in the framework of an MDP. Our experiments show

that we are able to learn policies for budgeted inference that significantly improve on the accu-

racies of several baselines. The results also demonstrate that we can optimally adapt a method,

design to operate with no time bound, to varying time budgets, such that it yields satisfactory

performance for any budget, and maintains an accuracy as close as possible to its performance

for no time bound.
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Chapter 6: Budget-Aware Deep Semantic Video Segmentation

Abstract

In this work, we study a poorly understood trade-off between accuracy and runtime costs for

deep semantic video segmentation. While recent work has demonstrated advantages of learning

to speed-up deep activity detection, it is not clear if similar advantages will hold for our very

different segmentation loss function, which is defined over individual pixels across the frames.

In deep video segmentation, the most time consuming step represents the application of a CNN

to every frame for assigning class labels to every pixel, typically taking 6-9 times of the video

footage. This motivates our new budget-aware framework that learns to optimally select a small

subset of frames for pixelwise labeling by a CNN, and then efficiently interpolates the obtained

segmentations to yet unprocessed frames. This interpolation may use either a simple optical-

flow guided mapping of pixel labels, or another significantly less complex and thus faster CNN.

We formalize the frame selection as a Markov Decision Process, and specify a Long Short-Term

Memory (LSTM) network to model a policy for selecting the frames. For training the LSTM,

we develop a policy-gradient reinforcement-learning approach for approximating the gradient

of our non-decomposable and non-differentiable objective. Evaluation on two benchmark video

datasets show that our new framework is able to significantly reduce computation time, and

maintain competitive video segmentation accuracy under varying budgets.

6.1 Introduction

We consider the problem of semantic video segmentation, where the goal is to assign a correct

class label to every pixel in a video. Recently deep networks have achieved state-of-the-art re-

sults for semantic video segmentation [102, 113, 73, 182, 18], where typically a Convolutional

Neural Network (CNN) is applied to directly label each pixel of each frame. In this way, they

significantly improve on the the processing time of more traditional approaches (e.g., energy

minimization), as the latter requires time for graphical-model inference and pre-processing time

for feature extraction. However, despite the feed-forward architecture of CNNs, and their paral-
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lelizable computation on GPUs, runtimes are still far from real time. For example, it takes 6-9

times the video length to execute the approach of [9] on benchmark datasets. Unfortunately, this

rules out the practical use of these approaches for applications with tighter runtime constraints.

In some situations hardware solutions can help meet the constraints. However, it is equally im-

portant to develop a better understanding of how to achieve maximal accuracy given constraints

on the compute time and resources.

In this paper, we address the above problem by introducing a framework for budget-aware

deep semantic video segmentation. Our approach is applicable to any available semantic seg-

mentation network, which is treated as a black box. Given a semantic segmentation network and

a time budget, our approach attempts to maximize accuracy within the budget. The main idea

is based on the observation that videos typically show smooth motions, and hence pixel labels

of a frame can be efficiently and accurately interpolated from neighboring segmentations. This

motivates intelligently selecting frames to be processed by a deep segmentation network and

then using fast interpolation networks to assign pixel values to unselected frames. When the in-

terpolation network is significantly faster than the segmentation network there can be significant

computational savings.

The problem of budget aware inference is receiving increasing attention as state-of-the-art

accuracies approach the needs of many applications. Recently, this problem has been studied

for activity detection in video [179], where the goal is to efficiently identify activities using

deep networks while avoiding the need to process all video frames. In that work, a recurrent

“attention model” was learned which aimed to select a small subset of the video frames for

processing, while maintaining high accuracy. The results showed that high accuracies could

be maintained while only processing approximately 2% of the video frames. While this result

suggest that intelligent frame selection is a viable way to speedup deep architectures, the problem

of activity detection is quite different from our problem of semantic segmentation. In particular,

unlike activity detection, the loss function for semantic segmentation is defined over all pixels

of a video and it is necessary to assign predicted values to all pixels. This raises the question of

what accuracy-time tradeoffs can be achieved for semantic segmentation.

Three Key Ideas: We extend the state of the art by developing: (1) A deep visual attention

model, represented as an LSTM network, aimed at optimally selecting only a subset of video

frames whose total time of processing by a segmentation network would not exceed a budget

constraint. (2) A fast interpolation model, represented by a one-layer CNN, for efficiently label-

ing the remaining unprocessed frames based on neighboring frames selected for segmentation
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by the attention model; and (3) Joint learning of main components of our approach – namely,

the attention and interpolation models, such that accuracy of the resulting video segmentation is

maximized for a given budget.

Fig. 6.1 illustrates the two stages of our approach. In Stage 1 (Fig. 6.1 left), the LSTM

policy is run to select T frames for which to apply the segmentation network f . In Stage 2

(Fig. 6.1 right), the interpolation model g is applied to the remaining video frames. As shown in

Sec. 6.4, the total execution time of our approach is a strictly increasing function of T . Hence,

from the constraint that our total runtime should be less than the budgetB, we can easily estimate

the optimal T , by simply stopping the LSTM policy before we exceed the budget.

Our joint training approach is based on recognizing that our problem is inherently one of

sequential decision making. Accordingly we draw on ideas from reinforcement learning, which

is an area that focuses on learning for sequential decision making. In particular, we derive

a policy-gradient reinforcement learning algorithm for our problem, which is shown to be an

effective approach for training our models.

In Sec. 6.5 we evaluate our approach for varying time budgets and two different semantic

segmentation netoworks. Our results show that for budgets 1
4Bmax ≤ B ≤ 1

2Bmax, we achieve

semantic segmentation accuracy that is comparable to the results obtained by directly segment-

ing each frame. This shows that our approach is able to learn to speedup the segmentation

performance by a factor of four, with little loss in accuracy. Moreover, our accuracy gracefully

degrades for B < 1
4Bmax, which is important for applications with very tight budget constraints.

6.2 Related Work

Semantic video segmentation is a long standing problem, and a thorough review of the literature

is beyond our scope. It has been traditionally formulated as an energy minimization of a graph-

ical model representing supervoxels or superpixels in the video [15, 13, 12, 107, 16, 96, 143,

170, 100, 67]. Except for a few empirical results of sensitivity to the total number of supervox-

els [61, 95] or greedy feature selection in [50], these approaches usually do not explicitly study

trade-offs between accuracy and efficiency under varying time constraints. Our main hypothesis

is that knowing the budget constraint in training provides additional information which allows

the learning algorithm to optimize its decisions toward maximizing overall labeling accuracy.

More importantly, it is hard to adapt the approaches proposed in [61, 95, 50] for deep learning

base semantic segmentation models.
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Stage 1: Running inference policy for T steps.

Stage 2: Predicted pixel labels are
propagated to remaining M − T

unlabeled frames.

Figure 6.1: Two stages of our approach. Given a video with M frames and time budget B, in
Stage 1, LSTM-based policy sequentially selects a subset of frames for segmentation by a CNN,
f . In Stage 2, the missing pixel labels are interpolated by a one-layer convolution filter, g, using
neighboring semantic segmentations.

Recent work on CNN-based semantic segmentation [9, 73, 102, 57, 113, 191, 17, 93, 116,

132] does not require unsupervised segmentation in a pre-processing step, but directly take pixels

of the image as input and output a semantic segmentation. These approaches first use a set of

(convolution + pooling) layers to generate a deep feature for the entire image. Then, they perform

a sequence of deconvolution + upsampling operations for generating an output feature map. As

these approaches [9, 73, 102, 57, 113, 191, 17, 93, 116, 132] conduct CNN-based segmentation

for every frame independently, their pixel labeling is typically not spatiotemporally smooth and

coherent. Recently, Peng el al. [90] propose a recurrent temporal field model which considers

smoothness of labels is space-time. Also, the runtime of these feed-forward CNN architectures

is typically 6-9 times the video length [113].

Efficient inference under budget has recently received much traction in many areas of com-

puter vision [188, 80, 11, 4, 69, 70, 172, 162, 163, 129, 94, 50]. These approaches typically

model a utility function of their inference steps, and economically run those steps with the max-

imum utility. Our key difference is in that we directly learn a budget aware inference policy

that achieves high utility within the deep learning framework. These approaches are not easy to

generalize to the state-of-the-art CNN based semantic segmentation, since such approaches do

not explicitly extract features during a preprocessing step. Unlike these approaches we do not

require extracting additional features for estimating the utility, but instead train our deep budget-

aware semantic segmentation model in an end-to-end fashion. Vijayanarasimhan et al. [148] use
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the idea of informative frame selection and label propagation to facilitate human annotation in

semantic video segmentation in an active learning framework. Their work is different than ours

in: 1) They approach is built on top of the traditional CRF based semantic labeling, 2) Their full

model requires solving another CRF model which takes at least a minute itself, and 3) They are

trying to improve the human labeling time which is in the order of 25 minutes per frame.

6.3 Problem Formulation

Given a video, x, with M frames and budget B, our goal is to accurately assign a label to each

pixel in x in time less than B. Let f be a segmentation function that takes the pixels xi of frame

i and returns a semantic segmentation of xi using time cf . In particular, f(xi) gives a posterior

distribution over class labels for each individual pixel. We specify f as a CNN following two

prior approaches [9, 73]. To meet the budget constraint, we apply f to only a subset of frames

and interpolating the resulting segmentations to other frames. For this we use a visual attention

policy, π, which sequentially selects frames for labeling by f (details in Section 6.4.1). Given the

output of f at the selected frames, remaining frames are labeled by an interpolation function,

g, which uses nearby outputs of f to interpolate semantic segmentations to yet unprocessed

frames. Importantly, the time cost of applying g, cg, is significantly smaller than the time cost

of applying f , cf , which allows for time savings compared to labeling all frames via f .

Since the goal is to produce a segmentation within a time budget B, we must decide when

to stop selecting frames with π in order to meet the budget constraint. For this purpose, we

can divide the total time required to compute an output into two components. The first time

component is the time required to apply the policy π for T steps and also apply f at the selected

frames. Let u(T ) ∈ {0, 1}M denote an indicator vector over video frames, where u(T )
i = 1

means that frame i has been segmented by π, and u(T )
i = 0, otherwise. Also let U (T ) = |u(T )| ≤

T be the number of distinct frames selected by π, noting that this can be less that T if π happens

to select a frame twice.1 The second time component involves applying g to frames with zero

values in u(T ). If we let cπ denote the cost of applying the policy, then the total runtime is given
1While π will rarely reselect a frame, we cannot rule out this possibility since π is learned and will have some

imperfections.
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by:

C(T )=cπT + cfU
(T ) + cg(M − U (T )) (6.1)

=cπT + (cf − cg)U (T ) + cgM

Using this runtime formula it is easy determine when to stop the policy. After T policy selections,

we must stop before running step T + 1 if this could result in C(T + 1) > B.

In our work, π, g, and f will be represented via deep neural networks. Since f is a pre-

trained model, model parameters consist of the parameters of π and g, i.e. θ = (θπ, θg. Given a

video x and time budget B, we let ŷ(x, B, θ) denote the output of the above semantic segmen-

tation process using parameters θ applied to x with budget B. When clear from context we will

denote this via ŷ. Note that ŷi gives the posterior probability over labels for each pixel in frame

i of the video. The loss of a frame labeling will be denoted by ∆(yi, ŷi), where yi is the ground

truth labeling for frame i and ∆ is an average cross-entropy loss for pixels in frame i. Further,

the loss over M video frames is defines as:

Lθ(y, ŷ) =
1

M

M∑
i=1

∆(yi, ŷi). (6.2)

Given a training set of N labeled videos {(xn,yn} the goal of learning is to find θ that

minimizes the following

θ∗ = arg min
θ

[
L(θ) = E(Lθ) ≈

1

N

N∑
n=1

Lθ(y
n, ŷn)

]
(6.3)

Unfortunately, even for simple choices for π, f , and g, the gradient of L(θ) does not have a

closed form, due to the sequential nature of the process used to construct ŷn.

6.4 Learning and Representation

In this section, we describe our representation for π and g, noting that we use existing image

segmentation models for f , SegNet [9] and BayesianSegNet [73], whose detailed specification

can be found in the respective references. We then describe our approach for jointly learning

these functions by drawing on policy-gradient estimation techniques.
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6.4.1 LSTM-based Policy

Our temporal attention policy makes a sequence of frame selections based on the local infor-

mation perceived around the most recently selected frame, which we will refer to as the current

frame. Note that the local observation input to the policy at each step only captures part of the

global state of the inference process, st. This choice to limit the observations to only a local

window around the current frame is motivated by the desire to allow for π consider long videos

of different length and to make fast decisions, since otherwise the intelligent selection would be

too costly to pay off.

However, limiting the size of local observation window can lead to sub-optimal decisions

if optimal decisions depend on a wider context. To help address this we represent π using a

recurrent neural network – namely, an LSTM, which attempts to learn a hidden state that captures

the more global context of the inference process. Due to its ability to memorize information from

previous decisions made by π, the LSTM has been shown to successfully model problems with

non-Markovian state transitions such as ours and have a number of recent empirical successes in

sequential decision making [108, 49, 179].

In particular, when the current frame at time t is i, the LSTM-based policy π makes a decision

based on:

1) The local information in a video neighborhood Ni centered around i. This is captured

in an observation vector ot = [zNi , φ(Ni), lt], where zNi is an indicator vector that indicates

whether each frame inNi has been previously selected and processed by f , φ(Nj) is the average

of per-class confidences predicted by f inNi (yielding one input image per class), and lt ∈ [0, 1]

is the normalized location of the current frame at time t (e.g. the middle frame has value 0.5).

The inclusion of lt was helpful in encouraging the policy to cover the entire video extent. The

input to the LSTM π at step t is ot.

2) The LSTM’s hidden variables ht−1, which summarizes the previous observations up to

time t.

To summarize, the global state at time t is approximated by the internal state of the LSTM,

ht, which depends on the current observation ot and the previous state ht−1. Given ht the output

of π(ht) is the location of the next observation lt+1 ∈ [0, 1]. Note that our formulation allows the

policy to perform jumps forward and backward in time. Note that π is defined as a probabilistic

policy, which is a convenient choice for our policy-gradient learning algorithm defined later. To

improve exploration at training time, instead of using lt+1, the next location is sampled from a
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Gausssian distribution with a mean equal to lt+1 and a fixed variance.

6.4.2 Interpolation Model

The goal of g is to estimate the pixel labels of frames not selected by π. Efficient and reli-

able interpolation of labels has been demonstrated on videos with smooth motions, i.e., strong

correlations between neighboring frames [13, 15, 148]. Intuitively, given the posterior of class

labels for frames j in the neighborhood of frame i, and the amount of change observed between

frames i and j, our convolution filter g is learned to estimate labels of pixels in i, i.e. to output a

posterior distribution over class labels for each pixel in i. The input to g is defined as an ordered

set of pixel label predictions for the closest labeled frames j on two sides of frame i along with

the additional channels containing pixel-wise frame differences between frames j and i. In our

experiments, g is defined as a single layer convolution filter of size 5×5 with 2 · (# classes + 1)

input channels.

6.4.3 Joint Learning of the Parameters

The goal is to jointly learn the parameters of π and g (θ = {θπ,θg}) by minimizing the labeling

loss of a sequence of policy actions, taken from the initial state s0 when no frames are selected

until sT , when the total runtime C(T ) ≤ B ≤ C(T + 1).

Recall that ŷni is the estimated output for frame i in video xn. Let u(t) be the indicator

vector showing the selected frames in the entire video after running the policy for t steps. We

can formally define the estimated output at each time step t as:

ŷni (t) =
[
u

(t)
ni f(xni ) + (1− u(t)

ni )g(xn))
]

(6.4)

The main difficulty is that the estimated output ŷ for the entire video, is computed through a

sequence of decisions made by the policy which results in a non-decomposable, non-differentiable

objective function. The decisions that the policy makes at any time depends on a history of de-

cisions that the policy made in previous time steps and influences the decisions available to the

policy in the future. This is a long-standing problem in the study of reinforcement learning al-

gorithms. To address this problem, the REINFORCE algorithm [168] and the recurrent policy

gradient approach [166] approximate the gradients of the non-decomposable objective function
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which helps to efficiently learn the policy using stochastic gradient descent.

To follow the general reinforcement learning formulation, let rt be the immediate reward

associated with state st. Since st ≈ ht we define rt as :

rt(ht) = Lθ(y, ŷ(t))− Lθ(y, ŷ(t− 1)), (6.5)

where Lθ is the labeling loss for the video defined in eq. (6.2). Intuitively, eq. (6.5) states

that the policy earns an immediate reward equal to the decrease in labeling error achieved by

selecting a frame (or pay a penalty if the labeling error increases). Let Rt(Ht) be the discounted

accumulated reward starting from state st and continuing the policy up to final state, sT :

Rt(Ht) =
T∑
t′=t

λt−t
′
rt(ht), (6.6)

where λ ∈ (0, 1) is the discount factor and Ht = {ht,ht+1, ...,hT } represents a history of

LSTM’s hidden variables. H0 can be interpreted as the trajectory of observations for a sample

run of the policy from the initial state. For simplification purposes we use H for H0 and R for

R0 in the rest of this paper. The goal is to find the parameters θ∗, that maximizes J(θ) redefined

as:

J(θ) = E[R(H)] =

∫
p(H|θ)Rθ(H)dH, (6.7)

where p(H|θ) is the probability of observing a sequence of hidden states H , given a policy

defined by parameters θ. It is easy to show that minimizing L(θ) in eq. (6.3) is equivalent to

maximizing J(θ) in eq. (6.7). Let θπ and θg define the gradient of the objective function J(θ)

in eq. (6.7) with respect to the LSTM policy and interpolation networks parameters. Although

it is possible to jointly learn the parameters of the LSTM policy and the interpolation networks,

given the stochastic nature of the policy, in practice we observed that the iterative approach

works better. Alg .4 shows our proposed training procedure:

Computing5θπJ : The gradient with respect to the policy parameters is given by:

5θπJ =

∫ [
Oθπp(H|θ)Rθ(H) + p(H|θ)OθπRθ(H)

]
dH (6.8)

Note that given the hidden state sequence H , which determines the history of selected

frames, the reward function does not depend on the policy parameters, yielding5θπRθ(H) = 0.
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Algorithm 4 Training procedure for our Budget-Aware semantic segmentation model
Input: N Training videos
Output:Learned parameters {θπ, θg}.

1: pre-train the interpolation network, g % note: training examples are generated from uniform
sampling of frames in each video.

2: initialize the policy parameters, θπ
3: for number of iterations do

% generate trajectories to train π
4: {Hn}Nn=1 ← aplly π for T steps

% interpolate labels for each video
5: {ŷn}Nn=1 ← using eq. (6.4)

% Update policy parameters:
6: θπ ← −5θπ J

% generate trajectories to train g
7: {Hn}Nn=1 ← aplly π for T steps

% Update interpolation parameters:
8: θg ← −5θg J
9: end for

To further simplify (6.8) we need to define 5θπp(H|θ). Note that p(H|θ) can be factorized as

p(H|θ) = p(h0)
∏T
t=1 p(ht|ht−1)π(lt|ht−1, ot), where ot = [z

(t)
Nj , φ(f

(t)
Nj ), lt] and the same

notation π is used to denote the last softmax layer of the LSTM. From the above we have

log p(H|θ) = const+
∑T

t=0 log π(lt|ht−1, ot) which results in the following gradient:

5θπ log p(H|θ) =
T∑
t=0

Oθ log π(lt|ht−1, ot)

Monte Carlo integration is used to approximate the integration over the probability of observ-

ing a sequence of hidden states. Particularly the approximate gradient is computed by running

the current policy on N given videos to generate N trajectories which result in the following

approximate gradient:

5θπJ ≈
1

N

N∑
n=1

T∑
t=0

[
Oθπ log π(lnt |hnt−1, o

n
t )Rt(h

n
t )
]
. (6.9)

Policy gradient approaches suffer from the high variance of the gradient estimates. Following
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the common practice [168] we subtract a bias from the expected reward, R. Instead of a constant

bias, we set the bias value to be the reward obtained following a random jump policy.

Computing 5θgJ : Analogous to eq. (6.8), the gradient with respect to the interpolation

parameters is defined as 5θgJ =
∫ [

Oθgp(H|θ)Rθ(H) + p(H|θ)OθgRθ(H)
]
dH . Note that

since g is applied after frames are selected, the hidden state probability does not depend on the

interpolation function, i.e. 5θgp(H|θ) = 0 which results in:

5θgJ =

∫
p(H|θ)OθgRθ(H)dH. (6.10)

Recall that ∆ is the average cross-entropy loss for pixels in frame i. It is easy to derive the

following gradient:

5θgLθ(y, ŷ(t)) =
1

|u(t)|
∑

{i|u(t)i =0}

5θg∆(yi, g(x)). (6.11)

Intuitively the labeling error of the frames which have not been selected by the policy is

considered in computing the gradient with respect to the parameters of g. Given a video x and

applying (6.5), (6.7), and (6.11), it is easy to derive the following:

5θgRθ(H) =
T∑
t=0

λtOθg [Lθ(y, ŷ(t))− Lθ(y, ŷ(t− 1))] (6.12)

Using the same Monte Carlo integration technique we derive the following approximate

gradient:

5θgJ ≈
1

N

N∑
n=1

T∑
t=0

λtOθg [Lθ(y
n, ŷn(t))− Lθ(yn, ŷn(t− 1))] (6.13)

6.5 Results

We use the following datasets: 1) CamVid [12], and 2) KITTI [40]. Both datasets are recorded

in uncontrolled environment, and present challenges in terms of occlusions, and variations of

motions, shapes, and lighting.

Implementation: The LSTM model contains two hidden layers of 1024 hidden units . For
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training, we generate sequences of continuous frames per each training video where the sequence

size is set to be 90 frames in both datasets. Also since two of the video data sets for semantic

segmentation do not provide ground truth for all frames (e.g. CamVid provides labels for every

30 frames), the output of f is considered as ground truth for frames without human annotated

labels. Note that since the goal is to perform as well as a model that uses f across the entire

video, it is reasonable to consider outputs of f as the ground truth. In our evaluation, the budget

is defined in terms of the percentage of the maximum required budget needed to apply f for all

video frames. Following [37], to improve convergence properties, we start with λ = 0.9 and

gradually update it after each epoch using: λe+1 = 1− 0.98(1− λe).

We implement our interpolation and policy modules in tensorflow2 and use the publicly

available code for implementations of f . Experiments are performed on an Intel quad core-i7

CPU and 16GB RAM on a single Tesla k80.

Variations of our approach and the baselines: We define two variants for the policy: i)

REG: deterministically selects T frames uniformly starting from the first frame, ii) LSTM: learns

the proposed model in Sec. 6.4.1. For interpolation we define the following variants: i) OPT: is

the baseline approach proposed in [148] which uses dense optical flow to track the points from

both forward and backward directions and then propagates the labels from the closest labeled

points. More sophisticated label propagation approaches [97, 32, 36] are more expensive and

are not suitable as a low-cost interpolation baseline. ii) CNN: learns the proposed interpolation

filter in Sec. 6.4.2. The combination of [π = LSTM:g = CNN] is our approach and all other

combinations are considered as baselines. We evaluate the validity of our approach on two deep

semantic image segmentation models, i) SegNet[9] and ii) BayesianSegNet[73]. We would like

to reemphasize that, f is considered as a black-box in our framework. The above two models are

only chosen because of the large variation in their accuracies and processing times which allows

us to explore the generalizability of our framework in various settings.

6.5.1 Results on CamVid

The CamVid dataset has five videos of road scenes from a moving camera of length up to 6120

frames. Following prior work, we focus on the 11 most common object class labels. Ground-

truth labels are available at every 30 frames. We use the standard test-train split as in [9] and

similarly resize the frames to 360× 280 pixels. The average per frame inference time is 165 ms
2https://www.tensorflow.org/
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Avg Class
Confidence

Selected Frames

Figure 6.2: An example trajectory of running our learn budget-aware policy on a sample video
from CamVid. The top row shows frames 5090 to 05180 from ‘0016E5’ video. The second row
shows the color coded average confidence score for each frame where the darker means higher
confidence. The third row shows the selected frames by our policy π. The policy is trained for
B = 0.25Bmax using Bayesian SegNet f =[73].

.

for SegNet and 1450 ms for BayesianSegNet.

Table 6.1 shows the results for three different budgets and N = 7. For B = 0.1 · Bmax

and B = 0.25 · Bmax our [LSTM:CNN] outperforms all other variants in both class average

accuracy and mean intersection over union 3. One interesting observation is the contribution of

each module in the accuracy. Based on the result, although both LSTM and CNN provides slight

improvement in accuracy when applied independent of each other, they improve the accuracy

with a larger margin when learned together. For B = 0.5 ·Bmax, we observe a different pattern.

Although our [LSTM:CNN] provides a better result, considering the relative accuracy between

[LSTM:OPT] and [REG:OPT] and the same comparison between [REG:CNN] and [REG:OPT]

it seems that accuracy boost is mostly due to the interpolation model.

Table 6.2 shows the processing time for policy execution, label interpolation using g, and

semantic labeling using f for video ‘seq16E5’ under different budget constraints. We observe

that using f =[9], the policy selects almost 30% of the frames whenB = 0.25·Bmax and 50% of

the frames when 0.5 ·Bmax. For f =[73] which takes longer to run, the policy selects only 15%

of the frames when B = 0.25 · Bmax and 40% of the frames when 0.5 · Bmax. This verifies our

main hypothesis that the prior knowledge of the budget changes the behavior of the intelligent

system and helps the intelligent agent to learn a particular frame selection pattern that improves

the labeling accuracy for that budget.

Fig. 6.3 shows the class-average accuracy for different user-defined budgets. Despite a small

accuracy drop, our approach keeps a consistent level of accuracy which shows the effectiveness
3Intersection over Union (I/U) for one class = tp

tp+fp+fn
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f = SegNet [9]
Bmax All Frames 88.0 87.3 92.3 80.0 29.5 97.6 57.2 49.4 27.8 84.8 30.7 65.9 50.2

0.1 ·Bmax

[REG:OPT] 56.4 46.4 53.7 42.7 10.3 60.3 29.3 18.5 9.5 36.8 10.7 34.1 26.7
[REG:CNN] 57.2 47.0 51.5 43.8 11.2 60.9 28.4 19.3 9.8 37.9 11.1 34.4 26.9
[LSTM:OPT] 60.8 50.3 54.9 51.2 16.8 70.1 32.7 25.6 15.7 44.2 14.7 39.7 30.2
[LSTM:CNN] 63.4 58.8 61.9 54.9 17.3 73.9 38.1 31.3 19.5 51.7 20.8 44.7 33.8

0.25 ·Bmax

[REG:OPT] 70.4 69.1 73.2 63.8 23.6 81.9 45.4 39.1 20.9 65.9 23.8 52.5 40.2
[REG:CNN] 70.8 68.9 75.4 64.2 24.8 78.6 45.8 39.4 22.1 66.8 24.5 52.8 40.5
[LSTM:OPT] 83.4 70.4 83.7 72.3 25.4 88.1 52.3 45.2 24.6 78.6 26.8 59.2 45.4
[LSTM:CNN] 81.1 80.3 82.9 73.7 27.6 89.8 54.2 45.9 25.8 78.0 28.4 60.7 46.2

0.5 ·Bmax

[REG:OPT] 83.2 82.6 86.3 75.4 27.5 93.2 53.7 46.8 25.9 80.1 29.1 62.2 47.0
[REG:CNN] 81.6 82.1 86.0 75.7 27.4 90.8 53.1 46.9 25.8 81.4 27.6 61.7 46.9
[LSTM:OPT] 81.5 82.0 86.7 75.8 27.1 91.4 52.9 46.4 25.2 80.6 27.5 61.6 46.7
[LSTM:CNN] 84.1 83.7 87.4 76.2 27.9 93.4 54.3 46.3 26.3 80.5 29.3 62.7 47.7

f = Bayesian SegNet [73]
Bmax All Frames 80.4 85.5 90.1 86.4 67.9 93.8 73.8 64.5 50.8 91.7 54.6 76.3 63.1

0.1 ·Bmax

[REG:OPT] 51.6 49.3 59.6 41.9 44.7 46.9 34.4 35.8 24.5 45.2 20.7 41.3 34.8
[REG:CNN] 52.7 52.8 57.8 44.7 46.2 50.3 36.8 36.9 25.2 46.7 21.6 42.9 36.1
[LSTM:OPT] 59.2 57.8 63.2 54.9 49.1 57.6 42.4 40.1 31.3 56.7 30.5 49.3 40.8
[LSTM:CNN] 60.3 60.1 64.8 56.7 50.3 60.1 46.8 42.3 33.7 59.4 31.6 51.5 42.3

0.25 ·Bmax

[REG:OPT] 60.8 65.8 70.1 66.3 51.6 70.8 57.1 49.7 38.3 70.9 41.5 58.4 47.9
[REG:CNN] 62.5 65.2 71.5 68.4 52.3 71.2 60.3 52.2 39.9 70.4 41.9 59.6 49.3
[LSTM:OPT] 76.3 81.1 83.8 81.4 63.1 87.5 68.9 60.9 47.3 85.1 51.3 71.5 58.7
[LSTM:CNN] 76.0 80.9 85.7 82.8 64.6 88.1 70.4 61.2 48.8 84.6 52.5 72.3 59.4

0.5 ·Bmax

[REG:OPT] 75.7 80.4 83.8 82.1 64.3 89.5 69.5 60.2 48.2 86.3 51.3 71.9 59.0
[REG:CNN] 75.8 80.9 86.4 82.5 64.8 89.8 69.5 61.1 48.5 87.5 51.8 72.6 59.6
[LSTM:OPT] 75.2 80.5 85.6 82.4 63.9 89.0 70.2 60.1 47.9 85.8 51.1 72.0 58.8
[LSTM:CNN] 77.1 81.9 86.2 81.7 65.1 88.7 69.3 61.8 49.1 88.2 52.8 72.9 59.8

Table 6.1: Comparison with different variations of our budget-aware inference on CamVid. The
budget is defined as a fraction of the maximum budget required to run the original methods,
[9, 73] for each frame, denoted as Bmax
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Method Time for π Time for g Time for f Class-Avg
f = SegNet [9]

REG+CNN(0.25 ·Bmax) 0 130.4 251.3 53.5
REG+CNN(0.5 ·Bmax) 0 90.6 567.2 61.7

LSTM+CNN(0.25 ·Bmax) 23.1 125.8 256.7 61.7
LSTM+CNN(0.5 ·Bmax) 5.2 92.1 441.6 62.8

f= Bayesian SegNet [73]
REG+CNN(0.25 ·Bmax) 0 184.5 2928.4 62.3
REG+CNN(0.5 ·Bmax) 0 97.3 4170.8 72.6

LSTM+CNN(0.25 ·Bmax) 20.4 196.8 2934.7 72.3
LSTM+CNN(0.5 ·Bmax) 8.8 113.9 4181.3 73.3

Table 6.2: Comparison of the total processing time for different variations of our framework on
CamVid for B = 0.25Bmax.

Figure 6.3: The class-average accuracy for different budget constraints using [1] =[73], [2] =[9].

of the learned frame selection and interpolation when 1
4Bmax < B < 1

2Bmax.

Fig. 6.2 shows the percentage of the frames selected in different temporal regions of video

‘0016E5’ in CamVid. For better visualization, only 90 frames (frames 5090 to 05180) are pre-

sented. the video is divided into equal segments of 10 frames. To better reflect the behavior of

the policy with respect to its observations, we provide a color coded average class confident for

each temporal segment.

Qualitative results on the CamVid dataset are shown in Fig .6.4. The columns represent four

consecutive frames of a sample video.

Results on KITTI: The KITTI dataset consists of videos from road scenes where eight
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orginal

SegNet[9]

ours

Figure 6.4: Sample results from video ‘0006R0’ on CamVid. The top row shows the input and
the middle row shows the result of applying SegNet on individual frames. The bottom row shows
the outputs of our LSTM:CNN approach. While only the frame in the fourth column is selected
in our approach, qualitatively the results look very similar for other frames.

class labels, (Building, Tree, Sign, Road, Fence, Pole, Sidewalk), are annotated in a subset of

frames. Since the number of ground-truth annotations is much less than the number total of

frames in videos. Instead of comparing with ground truth, for evaluating KITTI, we compare

our approach with a method which applies f on all video frames. Considering the fact that we

are ultimately upper-bounded by the accuracy of the full run of f on the entire video this is a

reasonable evaluation. Note that that during training we also use the very same outputs from

applying f as the ground truth for training the policy and the interpolation. As in [73], we resize

the images size to 360 × 280 and re-train only the fourth layer of the SegNet. Table 6.3 shows

the per-class and class-average accuracy compared to results obtain from f . ForB = 0.25 ·Bmax

our budget-aware inference achieves 88.4% accuracy and for B = 0.5 · Bmax we achieve 90%

accuracy. For a 4-fold speed up we have an accuracy reduction of only 11.5%.

6.6 Summary

We have addressed the problem of budgeted semantic video segmentation, where pixels of a

video must be labeled within a time budget. We have specified a budget-aware inference for this

problem that intelligently selects a subset of frames to run a deep CNN for semantic segmenta-
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Budget Method Building Tree Sign Road Fence Pole Sidewalk Class Avg

0.25 ·Bmax

[REG:OPT] 89.7 81.2 74.2 83.3 61.5 72.2 85.3 78.2
[REG:CNN] 90.5 82.3 77.4 86.9 67.3 74.7 86.8 80.8
[LSTM:OPT] 91.2 86.8 80.2 90.2 71.2 78.4 89.2 83.9
[LSTM:CNN] 91.9 92.1 89.5 93.5 78.3 83.2 90.2 88.4

0.5 ·Bmax

[REG:OPT] 92.2 91.2 91.8 95.8 88.9 87.5 93.9 91.6
[REG:CNN] 94.4 90.6 91.1 94.1 89.7 87.1 91.8 91.3
[LSTM:OPT] 93.7 89.3 90.8 93.7 89.7 86.6 90.3 90.6
[LSTM:CNN] 93.0 94.1 92.6 96.1 90.2 89.1 94.0 92.7

Table 6.3: Comparison of different variation of our budget-aware inference on KITTI. The bud-
get is defined as a fraction of the maximum budget required to run the original method, [9] for
each frame, denoted as Bmax.

tion. Since CNN computation often dominates the cost of inference, our framework can provide

substantial time savings in a principled manner. For selecting the subset of frames, we have for-

mulated a visual-attention policy within the MDP framework, and used an LSTM as the policy

model. We have also specified a new segmentation propagation function to label the unselected

frames as a one-layer CNN. Our experiments show that our approach significantly improves on

the accuracies of several strong baselines. The results also demonstrate that we can optimally

adapt our method, from operating with no time bound to varying time budgets, such that it yields

satisfactory performance for one-forth of the maximum budget, while maintaining an accuracy

as close as possible to its performance for no time bound.
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Chapter 7: Concluding Remarks and Future Work

In this thesis, we addressed the problems of human action classification, summarization and

semantic labeling in videos captured in real-world settings. We made a number of contributions.

First, we improved the state of the art performance on multi-view action classification using

a multi-task learning framework in which each task represents a single viewpoint. We specified

a group regularization for our Latent Multitask Learning (LMTL). LMTL identifies groupings of

correlated viewpoints and jointly regularizes the models in the same group to identify the most

informative feature subspace for each group. Finally, the parameters of the entire model are

learned using a coordinate descent algorithm. We verified that in the case of a limited number of

training instances in a subset of viewpoints our model is able to perform comparable to a model

which accesses the entire data.

Second, we showed that the accuracy of the state of the art deep learning action classification

is improved using a limited number of additional training data from a different modality, par-

ticularly 3D human skeleton sequences. Our novel deep multimodal learning framework which

consists of a video model and a 3D model learns to classify videos by exploiting representation of

the encoded 3D skeletons sequences. Specifically, our 3D model is an encoder LSTM (eLSTM)

which is used to encode human skeleton sequences and is trained in a standard encoder/decoder

framework. Our video model is an LSTM network grounded on top of frame-level DCNN fea-

tures with an additional video representation layer which is used to introduce class-specific and

class independent similarity constraints. We proposed a new hybrid gradient descent learning for

training regularized LSTM networks. We verified that the accuracy improvement is not because

of the amount of the additional training data but its modality.

Third, we illustrated that our unsupervised video summarization approach, built on top of

variational recurrent auto-encoders and generative adversarial networks (GAN) performs equally

as good as the state of the art supervised approaches. The main hypothesis is that the learned

representation of the summary video and the original video should be similar. Two subnetworks

of our model, ‘summarizer’ and the ‘discriminator’ are trained in an adversarial manner where

the summarizer aims to summarize the video such that the discriminator is fooled and the dis-

criminator aims to recognize the summary videos from original videos. Particularly we use the
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GAN’s discriminator to learn a discrete similarity measure. Through extensive evaluation, we

verified that even without the supervision of keyframes we are able to achieve comparable accu-

racy to the state of the art supervised video summarization approaches. We also showed that in

the case of additional supervision we outperform the state of the art.

Fourth, we defined the new problem of budget-aware semantic video segmentation, where

the pixels of a video must be semantically labeled under a time budget. We verified that a learned

intelligent policy helps in reaching a tradeoff between accuracy and efficiency. Since the tradeoff

between accuracy and efficiency is not well-defined, we believe an intelligent system should be

informed about the users’ expectations regarding the acceptable tradeoff. We formulated the

budgeted inference in a reinforcement learning framework and proposed two different models.

Our first model is grounded on the traditional CRF architecture. Since descriptor computation

often dominates the cost of CRF inference, our framework provides substantial time savings by

formulating the inference policy for selecting among descriptors to run for each supervoxel in a

video. Classification-Based Policy Iteration (CAPI) is used to learn the policy.

Unlike the CRF-Based scene labeling the state of the art uses Convolutional Neural Network

(CNN) for pixel labeling at the frame level. Since applying CNN is the most expensive computa-

tion, we reduced the processing cost by limiting the number of times CNN is applied in a video.

We leveraged the fact that videos typically show smooth motions, and hence pixel labels of a

frame can be efficiently and accurately interpolated from neighboring segmentations. A policy

is learned to select a subset of frames to apply CNN and an interpolation network is learned to

propagate the label posterior to the remaining frames. Particularly we used a Long Short-Term

Memory (LSTM) to implement the policy, where the LSTM’s architecture allows it to memo-

rize the partial observations in time. We verified that our budget-aware semantic segmentation

achieves 4X speedup for a 10% accuracy drop.
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Appendix A: Redundancy

This appendix is inoperable.




