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High counts of fecal indicators, used to signal the potential presence of pathogens 

associated with untreated waste, result in the classification of water bodies throughout 

the United States as impaired. Nonpoint sources of unknown origin that contribute to 

fecal contamination make management of impaired waters challenging, as they are 

difficult to distinguish, and it is thus problematic to correctly target mitigation efforts. 

Genetic markers used for microbial source tracking provide valuable information by 

identifying hosts that contribute to fecal loading, but do not provide a method to 

detect specific sources that contribute to impairment of water bodies. Spatial 

modelling efforts have been proposed for use in conjunction with fecal indicators and 

host-specific markers, but have been limited by a lack of adequate modeling for the 

complex processes that cause indicator decay.  

We conducted a quantitative meta-analysis of published decay rate estimates for 

several common indicators using Bayesian hierarchical linear modeling. The meta-

analysis revealed a large amount of variability across studies, including in findings of 



 

 

significance for environmental parameters that impact persistence. Additionally, the 

meta-analysis revealed gaps in the data for genetic markers, while sufficient data was 

available for the traditional, culture-based indicators. We determined that temperature 

was consistently a significant predictor of decay rate estimates for all indicators, but 

light was only significant for culture-based indicators. We provided synthesized 

estimates for the selected indicators, but recommend caution in their application for 

source tracking or quantitative risk assessment due to high variability in parameter 

estimates and uncertainty in their extension beyond artificial settings.  

We compared the decay profiles for general fecal indicators and markers associated 

with ruminants and cattle. We determined best fitting non-linear models based on 

information theory and used global model fitting to test for differences in curves for 

each combination of indicators. Additionally, we investigated the potential of the 

selected ruminant markers for use in source allocation using the ratio method, based 

on difference in the observed decay profiles. We found statistical differences between 

the decay curves of E. coli and all but one genetic marker. The differences across 

decay profiles suggest caution is necessary when interpreting microbial source 

tracking results using these markers, as differential decay may result in different 

findings depending on the marker selected. 

We assessed the possibility of studying fecal indicator persistence in a truly open 

system using simulations. Using the concept of a Continuous-flow Stirred Tank 

Reactor, we developed an adjustment that can be applied to observed fecal indicator 

concentrations from an open system so that only loss due to decay is considered. The 

simulations showed that this adjustment is an effective way to account for loss for this 



 

 

system. However, implementation of this system has limitations, as the removal of 

indicators through flow contributes to a decreased period of observations before a 

given indicator drops below the limits of detection.  

We used the results from the simulations to design and implement an open system for 

decay studies. We compared decay profiles generated for several indicators from two 

open systems with different flow rates to those of closed and partially closed systems 

that have been previously used in decay studies. We used the results of these 

comparisons to investigate the effects of artificial settings used to study decay for 

fecal indicators. We found that the systems used in decay studies significantly 

influence the results for all indicators used. 
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Fecal Contamination, Fecal Indicators, and Microbial Source Tracking 

Fecal contamination is the number one cause of water impairment in the United States 

(USEPA, 2015). Responsible for the impairment of over 10,000 streams, fecal contamination 

poses a great challenge to water quality managers, health departments, and other concerned 

parties. Fecal matter can contain numerous pathogens leading to infections or gastrointestinal 

illnesses. These pathogens are typically low in abundance in water samples, making it 

challenging to detect individual pathogens of concern. Additionally, as a large number of 

pathogens need to be monitored in a body of water, it is not feasible to directly monitor for 

pathogens associated with fecal contamination.  

The presence of fecal matter is detected through the use of non-pathogenic, abundant, and 

easily cultured fecal indicator bacteria (FIB), such as E. coli and Enterococcus spp. FIB have 

been used for decades for water quality monitoring (Geldreich, 1970), but with the rise of 

molecular tools, methods for enumeration of genetic markers associated with fecal indicators 

have been developed. Genetic markers have been identified for traditional FIB (Chern et al., 

2011; Haugland et al., 2005; Ludwig and Schleifer, 2000), additional groups of indicator 

organisms like Bacteroidales ( Bernhard and Field, 2000; Siefring et al., 2008, and host specific 

markers that provide information regarding sources contributing to the loading. Host specific 

genetic markers target a range of organisms, but typically rely on viruses (Fong and Lipp, 2005; 

Jofre et al., 2014; Ley et al., 2002), specific groups of bacteria (Bernhard and Field, 2000; Green 

et al., 2012; Kreader, 1995; Mieszkin et al., 2010; Schriewer et al., 2013), or functional genes 

(Shanks et al., 2007).   

The ability to identify sources contributing to fecal contamination can help efforts to 

assess human-health risks. Poor correlations between traditional FIB and gastrointestinal 

illnesses have been reported (Colford et al., 2007; Wade et al., 2003), while stronger correlations 



3 

 

 

have been found between GI and human specific sources of fecal contamination (Schoen and 

Ashbolt, 2010; Soller et al., 2010). These findings support the idea that human health risks may 

not be as high for other animal sources of contamination (World Health Organization, 1999).  

Fecal contamination can be broadly divided into point and non-point sources. Point sources are 

identifiable, stationary sources of a contaminant, such as a wastewater treatment plant discharge 

or a storm drain, and are heavily regulated. In contrast, non-point sources are more challenging 

to manage, as they are difficult to identify and may come from a combination of many sources, 

including, but not limited to, wildlife, leaking septic tanks, agricultural fields, and storm water. 

Additionally, contributions of non-point sources are hard to quantify, as they may be transient 

across time and space.  

A number of approaches have been developed to identify contributors of nonpoint 

sources of fecal matter. Traditional approaches, such as sanitary surveys, are time and labor 

intensive, and rely on repeated sampling of potential sources of contamination. Attempts to use 

microbial source tracking (MST) markers for source identification have primarily centered on 

listing the host species that contribute to fecal loading (Anderson et al., 2005; Chase et al., 2012; 

Gordon et al., 2013; Harwood et al., 2009; Lee et al., 2010; McQuaig et al., 2012; Rodriguez, 

2012). Additionally, some effort has been made to address the topic of source allocation, which 

would rank the proportional contribution of sources found to contribute to fecal loading (Wang et 

al., 2013), but this method has not been applied for genetic markers outside of experimental 

testing.  

The coupling of MST markers with spatial modeling has shown promise for identifying 

sources contributing to pathogen or FIB loading. Spatial models used to simulate watershed scale 

hydrological processes, such as nutrient or sediment transport, have been implemented to attempt 
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to simulate the transport of FIB or pathogens (Baffaut and Sadeghi, 2010; Benham et al., 2006; 

Cho et al., 2012). However, the model most often used, a variation on the Soil and Water 

Assessment Tool, has failed to adequately simulate FIB loading (Frey et al., 2013). If FIB and 

MST marker loading were modeled effectively, not only could risk assessments based on the 

sources of contamination be improved, but also mitigation efforts could be targeted at sources 

that are most likely contributing to the fecal loading. 

The survival of selected indicators or pathogens in the water column has been largely 

neglected or overly simplified in spatial modeling attempts (Cho et al., 2016). Spatial models 

that incorporate a decay term into their watershed based modeling effort, assume a single decay 

rate for all modeled FIB (Baffaut and Sadeghi, 2010; Bougeard et al., 2011; Coffey et al., 2013; 

Collins and Rutherford, 2004; Gautam et al., 2006). Cho and colleagues improved on this effort 

by incorporating a correction term for temperature, which has been shown to improve modeling 

results (Cho et al., 2016), but neglected a number of other parameters that have demonstrated the 

potential to impact decay rates in the environment. Thus, an improved understanding of the “in 

stream parameters” that affect FIB and pathogen survival is necessary to further improve 

modeling efforts (Cho et al., 2016).  

Current understanding of FIB and MST marker fate in waters 

Numerous studies have identified factors that affect the fate of fecal indicators in the 

environment, using artificial systems intended to model the environments of interest. As fecal 

bacteria exit the host and enter secondary environments, they experience a dramatic change from 

the nutrient rich primary environment of the gut. In general, measurable fecal bacteria decline 

over time in secondary environments. This decline is often referred to as decay, although the 

exact interpretation depends on the indicator selected, as it is used both to refer to loss of 
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cultivability for culture based indicators, and to simply a decline in measurable markers for 

culture independent approaches. The extent and rate of decay in secondary environments 

depends largely on a combination of factors intrinsic to the bacteria, and extrinsic factors of the 

environment. Some environments have been found to support growth (Gerba and McLeod, 1976; 

Haller et al., 2009; Muirhead et al., 2005), but typically in aquatic environments decay is 

observed.  

Variables that impact indicator decay begin in the host gut, where a number of potential 

differences can shape the fate of the fecal microorganisms. The concentration of indicators used 

to signal fecal contamination can vary within and between host species (Dick et al., 2005; 

Haugland et al., 2010; Layton et al., 2010; Savichtcheva and Okabe, 2006; Shanks et al., 2007) . 

Additionally, other factors such as diet or health of the host may influence concentrations of 

indicators in the gut (Claesson et al., 2012; Wu et al., 2011), thus influencing their detection and 

decay in the environment.  

The source of the fecal bacteria has been suggested to lead to significantly different decay 

rates, but the reports on what fecal sources decay the fastest are conflicting. For instance, Liang 

and colleagues (2012) found that E. coli from cattle decayed faster than E. coli from sewage, 

while the opposite was found in another study for both E. coli and enterococci  (Korajkic et al., 

2013a). Anderson and colleagues (2005) reported enterococci from soils as having the lowest 

decay rates, followed by those sourced from sewage. In that study, enterococci sourced from dog 

feces had the highest decay rate. In addition to these contradictory results, no differences 

between enterococci decay sources from sewage influent, effluent, or urban runoff have also 

been reported (Noble et al., 2004).  
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Environmental factors that affect the decay of fecal indicators largely depend on the 

intrinsic properties of the selected indicator. For instance, factors affecting the detection of 

Bacteroidales survival in the environment differ from those that affect E. coli. Members of the 

order Bacteroidales are obligate anaerobes, meaning they are less likely to multiply in the 

environment, although this has been reported (Walters and Field, 2009). Some strains of FIB 

may be better adapted for survival outside the host, further complicating the use of indicators, as 

there is variation even within a single Operational Taxonomic Unit (Maraccini et al., 2012). 

Measurement techniques can also impact decay observations. While cell counts detect only live, 

cultivable cells, qPCR detects genetic markers, which can vary in concentration within the cell 

based on the physiological conditions of the bacterium (Ludwig and Schleifer, 2000; Muela et 

al., 1999). 

Properties of the secondary habitat also have been reported to impact decay, but again, 

differences across findings make the interpretations of these results challenging. Most 

investigators have used artificial, controlled environments, such as in micro- or mesocosms, to 

examine these properties. The type of water into which the fecal bacteria are released has been 

shown by some to increase decay of E. coli (Darakas et al., 2009; Jeanneau et al., 2012; Korajkic 

et al., 2013a; Solecki et al., 2011) and Enterococcus (Anderson et al., 2005; Jeanneau et al., 

2012; Solecki et al., 2011), while others have found the salinity of the water to have no effect 

(Ahmed et al., 2014; Noble et al., 2004). Conversely, longer persistence of human associated 

markers has been reported in marine waters (Green et al., 2011; Jeanneau et al., 2012), while 

again, others have reported no differences (Ahmed et al., 2014). Potential mechanisms for 

differences in observed decay in different water types include the effects of osmotic pressures on 

the cell membranes (Carlucci and Pramer, 1960) or potential effects of different microbial 
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communities (Green et al., 2011), but these mechanisms have not been tested in decay studies 

using natural waters.  

Findings on the effects of differing temperatures on indicator decay have been much 

more consistent both for specific markers and across markers. In general, decreases in 

temperature seem to be associated with lowered decay for E. coli (Craig et al., 2004; Noble et al., 

2004; Sokolova et al., 2012), Enterococcus spp. (Noble et al., 2004), and genetic markers 

(Kreader, 1998; Sokolova et al., 2012). However, Dick and colleagues reported no differences 

for the tested genetic markers or E. coli when comparing decay rates at 15°C and 25°C (Dick et 

al., 2010).  

Another environmental variable that has been demonstrated to impact survival of FIB is 

ultraviolet radiation from sunlight. Light can directly damage DNA, resulting in loss of cellular 

functions, and thus increasing decay (Blatchley et al., 2001). While the effect of light on decay 

rates has been studied in great detail, there is little agreement across indicators. For culture based 

indicators E. coli and Enterococcus, light increased decay (Bae and Wuertz, 2009a; Boehm et al., 

2009; Davies-Colley et al., 1994; Dick et al., 2010; Kay et al., 2005; Korajkic et al., 2013b; 

Noble et al., 2004; Sinton et al., 2007, 2002, 1999; Walters and Field, 2009; Whitman et al., 

2004), or, in one study, had no effect (Walters and Field, 2009). However, light reportedly 

increased the decay of some molecular markers (Bae and Wuertz, 2009a; Green et al., 2011; 

Korajkic et al., 2014; Walters et al., 2009; Walters and Field, 2009), while others reported that 

sunlight exposure had no effects on some markers (Bae and Wuertz, 2009a; Boehm et al., 2009; 

Dick et al., 2010; Green et al., 2011; Sokolova et al., 2012; Walters and Field, 2009).   

The effects of nutrient levels on E. coli and Enterococcus spp. have been studied 

previously, while data are lacking for genetic markers. Several studies have reported that 
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increasing nutrient concentrations in river waters did not alter decay (Lim and Flint, 1989; Noble 

et al., 2004), while others found that lower concentrations of nutrients such as carbon, nitrogen, 

and phosphorous led to decreased survival of E. coli (Carrillo et al., 1985; Haller et al., 2009; 

Hendricks, 1972).  Differences in nutrient concentrations have been proposed as at least a partial 

explanation of different decay profiles observed for FIB from sewage versus cattle feces 

(Korajkic et al., 2013a), but this was not tested directly.  

Interactions of the microbial community have been shown to significantly impact fecal 

indicator persistence. Menon and colleagues reported that grazing of predatory microorganisms 

was responsible for a majority of mortality in both fresh and marine waters (Menon et al., 2003). 

Additionally, studies that removed the indigenous water microbial community found a 

significant reduction in the decay of FIB (Bell et al., 2009; Korajkic et al., 2014). Thus, the 

activity of predators, a variable that is complex and difficult to quantify, plays a role in shaping 

decay in the environment as well.  

A factor may only be significant in the presence or absence of another factor. For 

instance, Walters and Field (2009) reported that E. coli from cattle sources decayed faster in 

light, while sunlight exposure had no effect on E. coli sourced from sewage. Thus, while many 

decay studies only intentionally address one variable at a time, additional confounding measures 

resulting from the selection of experimental design may introduce unintentional variables into 

decay studies.  

Statistical analyses for decay studies 

Decay studies are labor-intensive and costly, making it difficult to collect and process a 

large number of samples. As a result, all FIB decay studies discussed above have been conducted 

with three or fewer biological replicates. With only three replicates, the statistical power to 
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compare differences in decay profiles is low, but can vary depending on the statistical tests used 

for comparison.  

Many decay studies fit the observed data to a decay model, most commonly the Chick 

Watson model for log linear decay (Ahmed et al., 2014; Anderson et al., 2005; Bae and Wuertz, 

2011; Bell et al., 2009; Jeanneau et al., 2012; Liang et al., 2012; Noble et al., 2004; Schulz and 

Childers, 2011; Sokolova et al., 2012; Tambalo et al., 2012; Walters et al., 2009; Walters and 

Field, 2009). Following curve fitting, some studies compare parameter estimates for different 

curves using a Student’s t-test to test for statistical significance (Ahmed et al., 2014; Anderson et 

al., 2005; Bell et al., 2009; Jeanneau et al., 2012; Sokolova et al., 2012; Solecki et al., 2011) . 

Other studies, particularly those that find a non-log-linear decay shape, have tested for 

differences based on differences in individual time points through a repeated measures analysis 

of variance (Bae and Wuertz, 2011; Liang et al., 2012; Solecki et al., 2011). Both of these 

statistical methods are dependent on the selection of time points, which may influence the shape 

and parameter estimates if using curve fitting, or result in making comparisons on only a select 

few days if using repeated measures. 

None of the decay studies in the literature have reported conducting power analyses to 

determine whether or not the methods used to assess differences between environmental 

variables were capable of detecting differences. Additionally, no uncertainty analyses have been 

reported; these would provide valuable information about the variability introduced as a result of 

limitations of experimental design, such as sampling frequency. Thus, it is possible that 

inadequate statistical methods for comparing decay across treatments have contributed to the 

discrepancies reported throughout the literature.  
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Ruminant sources of fecal contamination and ruminant associated markers 

Despite the abundant literature available on FIB decay, studies using ruminant sources of 

fecal material are underrepresented in the available data. Ruminants are herbivorous mammals 

with a specialized digestive tract for processing plant-based food. Ruminants include a number 

of animals of agricultural significance, such as cattle, goats, and sheep, as well as wild animals, 

such as elk and deer. Extrapolation of decay rates estimated from other sources, such as sewage, 

to ruminant sources should be done with caution, as differences in E. coli and enterococci 

persistence from sewage and cattle have been reported (Korajkic et al., 2013a).  

While it is believed that public health is most endangered by human sources of fecal 

matter, such as sewage, some studies have found similar or increased risk for illness with fecal 

matter from cattle. Soller and colleagues (2010) found that fecal material from cattle poses 

similar threats as sewage, although this varies by region and cattle type (Zhao et al., 1995). 

Differences in pathogen levels may coordinate with shifts in the microbial community, correlated 

with cattle age (Shanks et al., 2014) and diet (Shanks et al., 2011). Given the prevalence of 

ruminant sources of fecal contamination, and the high human health risks that result from 

exposure, it is essential to use reliable methods to detect ruminant sources contributing to water 

contamination.  

A number of genetic markers have been identified to identify fecal contamination from 

ruminant sources (Bernhard and Field, 2000; Mieszkin et al., 2010), and their decay has been 

estimated in a limited number of studies (Bae and Wuertz, 2009b; Walters and Field, 2009). 

However, different markers were found to display different decay properties in these studies, 

even when directly compared to one another in the same system (Walters and Field, 2009). 

Cattle specific markers, that can distinguish fecal contamination from cattle and other ruminants, 
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have also been identified (Shanks et al., 2006), but even less data are available investigating their 

decay properties (Tambalo et al., 2012).  

As the field of MST advances from novel techniques towards widespread use, it is 

necessary to streamline the methodology used for these studies, and understand the properties 

associated with markers selected for this standardization. Comparisons among potential markers 

for use in MST have addressed the sensitivity and specificity of ruminant markers (Boehm et al., 

2013; Raith et al., 2013; Reischer et al., 2013). However, while these studies made 

recommendations for marker use based on these properties, the decay of the indicators was not 

included when making these recommendations. Prior to use for source tracking studies, the 

decay properties of these indicators should be understood.  

Extending model systems to environmental processes 

Ideally, decay studies could be conducted in situ for a given water body, so that the exact 

characteristics of that environment could be recreated for the study. However, aquatic systems of 

interest involve complex hydrological phenomena, including dispersion, mixing, and settling, 

making it difficult to study decay in these systems. Thus, simplified reactors are employed to 

model the environments of interest, and observations made in these artificial settings are 

assumed to be applicable to the environments of interest.   

While the systems selected to study decay have varied, there has been no investigation of 

how the model system selected to study FIB or marker decay impacts findings. Most decay 

studies are conducted using a homogenously mixed microcosm consisting of a volume of water 

seeded with fecal matter from a selected source (Ahmed et al., 2014; Anderson et al., 2005; 

Green et al., 2011; Jeanneau et al., 2012; Noble et al., 2004; Schulz and Childers, 2011; Sinton et 

al., 2002; Sokolova et al., 2012; Solecki et al., 2011; Tambalo et al., 2012). An alternative 
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approach employs dialysis bags attached to a submersible mesocosm (Bae and Wuertz, 2011, 

2009b, Korajkic et al., 2014, 2013a) , thus allowing for exchange of small materials with the 

environment. However, both of these systems constrain microorganisms within the system being 

studied, introducing a potentially significant difference between the model systems and the 

environments they are intended to model. To date, no study has explored the biases introduced 

by conducting decay studies in these closed systems.  

Objectives 

Although a large volume of research on indicator decay is available in the literature, 

many inconsistencies and data gaps remain, making it difficult to incorporate FIB or genetic 

marker decay into environmental applications, such as nonpoint source pollution models. Major 

limitations to such use include confounding results regarding significant environmental factors, 

statistical limitations, a lack of data for ruminant sources of fecal contamination, and uncertainty 

regarding applicability of estimates generated from artificial systems to the environments of 

interest. The objectives of this research were to use a combination of mathematical modeling and 

novel experimental designs to address these obstacles.  

In the following chapters, I attempt to untangle the confusion in the literature by 

conducting a meta-analysis of published decay rates. Through this study, I determine trends in 

the available literature and find areas where more research is needed. I also use a sensitive 

statistical technique for decay profile comparison to detect differences in decay curves for 

genetic markers and FIB from dairy cattle. Finally, I develop an adjustment term that can be 

applied to concentrations observed for indicators in an open system, so that loss due to decay can 

be identified separately from loss due to removal. This enables the use of an open system to 

study decay, thus allowing differences in decay profiles generated from open and closed systems 
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to be compared. The results presented here are not only important and applicable in the field of 

water quality, but they have widespread implications for microbiology and environmental 

science in general.   
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Abstract 

For decades, fecal indicator bacteria have been used as proxies to quantitatively estimate 

fecal loading into water bodies. Widely used cultured indicators (e.g. E. coli and Enterococcus 

spp.) and more recently developed genetic markers are well studied, but their decay in the 

environment is still poorly understood. We used Hierarchical Bayesian Linear Modeling to 

conduct a series of meta-analyses using published decay rate constant estimates, to synthesize 

findings into pooled estimates and identify gaps in the data preventing reliable estimates. In 

addition to the meta-analysis assuming all estimates come from the same population, meta-

regressions including covariates believed to contribute to decay were fit and used to provided 

synthesized estimates for specific combinations of significant variables. Additionally, statements 

regarding the significance of variables across studies were made using the 95% confidence 

interval for meta-regression coefficients. These models were used to construct a mean decay rate 

constant estimate as well as credible intervals for the mean and the distribution of all likely data 

points. While synthesized estimates for each targeted indicator bacteria were developed, the 

amount of data available varied widely for each target, as did the predictive power of the models 

as determined by testing with additional data not included in the modeling. Temperature was 

found to be significant for all selected indicators, while light was found to be significant only for 

culture-based indicators. Results from the models must be interpreted with caution, as they are 

based only on the data available, which may not be representative of decay in other scenarios. 
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1. Introduction 

Differences between the persistence of fecal indicator bacteria (FIB) used to detect the 

presence of fecal contamination and enteric pathogens in water could limit the ability to 

accurately predict public exposure and health risks. As a result, the public could be exposed to 

pathogens at higher levels than predicted using these measures, or, conversely, unwarranted 

precautions such as closures to the public could be implemented. Having an accurate range of 

plausible values for the decay of FIB in the environment is vital to the success of their use as 

proxies for assessing contamination.  

In addition to cultured E. coli and Enterococcus spp., genetic markers detected by 

quantitative Polymerase Chain Reaction (qPCR) are used with increasing frequency. Genetic 

markers provide advantages over culture-based enumeration, including a shorter period between 

sample collection and quantification (Dick and Field, 2004; Haugland et al., 2005). Additionally, 

host specific markers have been identified that are able to distinguish host species of origin for 

microbial source tracking (Bernhard and Field, 2000). As the use of genetic markers for 

microbial source tracking increases, it has become important to understand decay of these 

markers as related to traditional FIB and pathogens as well as to each other for source allocation 

(Wang et al., 2013). 

Previous studies have investigated the decay of FIB in controlled environments (Anderson et 

al., 2005; Bae and Wuertz, 2009, 2015; Bell et al., 2009; Dick et al., 2010; Green et al., 2011). 

Additionally, specific environmental conditions, such as sunlight, salinity, temperature and 

predation, have been studied to determine their effect on decay of FIB and genetic markers (e.g. 

Bell et al., 2009; Korajkic et al., 2014; Okabe and Shimazu, 2007; Schulz and Childers, 2011; 

Walters and Field, 2009). While these studies have provided valuable information, major 
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disagreements among both decay rate constant estimates (Figure  2.1) and the significance of 

environmental conditions make it difficult to forecast how FIB will persist in the environment.  

Meta-analysis is a statistical approach for synthesizing prior studies estimating the same 

parameter (Sutton and Abrams, 2001). Meta-analyses can include defined study characteristics 

(fixed effects), unexplained variance (random effects), or a combination of the two (mixed 

effects). Fixed effects meta-analyses assume that studies to be synthesized not only estimate the 

same parameter, but that all studies are exchangeable as estimates of that parameter. Conversely, 

random effects models assume no exchangeability between studies. By using a mixed effects 

model, it is possible to assign variance in the data to predictor variables, leaving remaining 

variation accounted for by the undefined random effects.  

The Bayesian approach to meta-analysis allows for, and can explicitly model, parameter 

uncertainty. Under the Bayesian paradigm, both the data and the parameters in the model are 

treated as unknowns with their own distributions. Using Bayes’ Theorem, the likelihood 

function, which defines the plausibility of the data values given the model parameters, is 

combined with prior estimates and used to construct the posterior credible interval. Unlike 

Frequentist confidence intervals, direct probability statements about the posterior distribution can 

be made, allowing for easier interpretation of the posterior credible interval (Thompson and 

Higgins, 2002). 

This study used Bayesian hierarchical linear models to analyze and synthesize existing decay 

rate constant estimates for common FIB. We selected FIB targets of significance for water 

quality monitoring or microbial source tracking for which sufficient data were available for 

synthesis via meta-analysis. Fixed effects meta-analysis models for the general decay rate 

constant, excluding predictor variables, provided a synthesized estimate of decay rate constants 
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for the selected indicators of fecal contamination. Mixed effects meta-regression models, 

including predictor variables provided in the description of each published study, were used to 

determine which variables included in the model were significant. Synthesized estimates for 

decay rate constants from combinations of significant variables were also generated. Our 

objectives were to provide synthesized decay rate constant estimates, improve our understanding 

of decay rates by determining what variables significantly alter decay rate estimates, and identify 

gaps in the current data that limit applications of FIB and molecular markers. 

 

2. Methods 

2.1 Literature Search and Data Selection 

Two classic indicators, cultivable E. coli and Enterococcus spp., were selected for this 

analysis, as they have been used for decades and have been the focus of many studies (e.g. Kay 

et al., 2005; Noble et al., 2004; Sinton et al., 2002). More recently, Bacteroides associated 

markers have become the focus of a number of studies, as both indicators of general 

contamination, and to distinguish sources of contamination (Ahmed et al., 2014; Green et al., 

2011; Jeanneau et al., 2012; Tambalo et al., 2012; Walters and Field, 2009). To ensure enough 

data points were available, Bacteroides associated markers from the same general hosts (e.g. 

“Bacteroides ruminant- associated markers” or “Bacteroides human-associated markers”) were 

grouped together for the meta-analyses, although they do not necessarily target the same 

phylogenetic groups or match the same coverage within these clades (see Table S2 for complete 

list of primers included). 

Data from the literature were compiled for the selected FIB or genetic markers using 

databases available through the Web of Science citation indexing service. The literature search 
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was conducted using a combination of the search terms “Fecal Indicator Bacteria” or “Microbial 

Source Tracking” combined with either “persistence”, “decay”, or “inactivation”, and “water”. 

This initial screening returned 411 results (Supplemental Table 2.1). To assess inclusion for the 

meta-analysis, titles and abstracts for all papers were reviewed and analyzed to determine if they 

included original data relevant to the decay of FIB or microbial source tracking markers in water 

bodies. Following this initial screening, full papers were read and screened for inclusion based 

on the following criteria: 

Experimental Design Selected papers were screened based on several key features of the 

experimental design. As the purpose of this meta-analysis was to synthesize results for the decay 

rate constants of FIB as indicators of fecal contamination, we included studies that used fecal 

material, including sewage influent and effluent as well as raw fecal material, as a spike source 

and excluded studies that seeded waters using laboratory strains or isolated environmental 

strains. Additionally, studies that tested persistence under artificial pressures, such as chlorine, 

were excluded. Finally, the persistence data reported in a study must have been from a natural 

water body or from a microcosm that was constructed using natural waters. While microcosms 

that included sediment were included, data collected from the sediments were not included in 

this analysis.   

Data Format Papers that graphically represented data but did not report any quantitative analysis 

(e.g. decay rate constants) were excluded from this meta-analysis. While these papers 

qualitatively provide valuable information, it could not be used for synthesis performed here.  

Additionally, to be included in the models, first order decay rate estimates (k) must have been 

presented in the form k = ln(C0/Ct) in units of day-1 with corresponding estimates of variance 

(e.g. standard error, 95% confidence interval) for each data point. Studies presenting first-order 
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decay rates in other units (e.g. hour-1) were transformed into compatible format. Papers that did 

not present data in the form of the first order decay model or did not provide variance estimates, 

but did provide a value for T90 or T99, the time necessary for 90% or 99%, respectively, of the 

initial measurement to decay, were used to assess the ability of the model to predict data not used 

to generate the model.  

Minor data conversions such as unit conversions were performed both for decay rate estimates 

and for metadata. Major changes to data, however, such as calculating a first order decay rate 

from a T90 value, were not performed in order to respect the initial decisions of the authors not 

to represent the data using a first order decay model.  

Metadata Another criteria for inclusion in this study was the reporting of metadata. Data were 

compiled for a number of possible covariates (Supplemental Table 2.2), but few studies included 

all possible categories of metadata. For mixed effects models, predictor variables presented in 

the original papers were selected to explain variance. Variables that have been suggested to 

impact decay of FIB in the environment (light, salinity, temperature) were included in the models 

to assess significance across studies. In addition to environmental conditions that have been 

tested, variables for experimental design effects (sampling duration, size of experiment) were 

included to measure the significance of any unintended variables as a result of experimental 

design. Categorical indicator variables for each of these terms were constructed and used as 

terms in the meta-regression model.  

For quantitative variables, such as temperature or length of experiment, categories were 

constructed by identifying breaks in the data points using the ClassIntervals package in R 

(Bivand et al., 2015). For temperature, breaks were identified at 16ᵒC and 30ᵒC, providing 

categorical variables for low temperature < 16ᵒC, mid temperature between 16 and 30ᵒC, and 
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high temperature > 30ᵒC. Duration of experiment was similarly categorized (breaks at 7 days and 

15 days) as was size (breaks at 10 L and 50 L). Indicator variables were constructed for each 

category and used in the mixed effects model.  

2.2. Model definition 

All models were constructed as Normal-Normal Hierarchical models, meaning that an 

assumption was made that all estimates came from a normally distributed population. The 

Central Limit Theorem states that estimates of a mean will be normally distributed, even if the 

values themselves do not come from a normal distribution. To check for normality, data for each 

individual target were assessed using histograms and QQ-plots (not shown). Outliers (k > 3 day-

1) were detected for E. coli and Enterococcus spp. but were not removed from analyses.  

2.2.1. Fixed Effects Meta-analysis  

Models for each target were constructed in which the observed decay rate estimates were the 

first level parameters, defined as coming from a second level distribution with mean µ and 

variance τ (Equation 1). Weakly informative normal prior densities with mean = 0.5 day-1 and 

high variance (variance = 10 day-1) values were assigned to µ. A non-informative prior gamma 

density was assigned for τ estimates in all models, and values were estimated using the posterior 

density generated from the output of the model (Equation 1).  All models were coded using the 

r2jags package in RStudio (Su and Yajima, 2014) and output for each model was visualized 

using the mcmcplots package in RStudio (Goldin, 2012).  

Equation 1: Meta-analysis (no-covariates) 

𝑦𝑖 ~ 𝑁𝑜𝑟𝑚(𝜇, 𝜏) 

Prior Densities:  

μ ~ Norm(0.5 , 10 ) 
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𝜏~𝐺𝑎𝑚𝑚𝑎(0.001, 0.001) 

 

2.2.2. Meta-Regression 

Models for meta-regression were defined similarly to the meta-analysis, with the exception 

that data from a specific combination of variables were assigned to come from unique 

distributions, with mean θi and variance τi (Equation 2). A unique theta value was given for each 

combination of predictor variables (denoted by i), representing the higher-level distribution of 

the observed data. Non-informative priors were used for all parameters estimated in the model to 

provide unbiased estimates of θ. Variables to be included in the final model were determined 

based on significance of the coefficients (β values). If the 95% confidence interval for 

coefficients included zero, variables were not considered significant, and were left out of further 

analyses to model decay rates under specific conditions.  

Equation 2: Meta-regression (covariates included) 

𝑦𝑖  ~ 𝑁𝑜𝑟𝑚(𝜃𝑖 , 𝜏) 

𝜃𝑖 =  𝛽0 + 𝛽𝑗 × 𝑥                      where 𝑥 is a predictor variable 

Prior Densities:  

𝜃𝑖  ~ Norm(0.5, 10) 

𝜏~𝐺𝑎𝑚𝑚𝑎(0.001, 0.001) 

𝛽𝑗~𝑁𝑜𝑟𝑚(0, 1000) 

 

2.3. Model Assessment 

Convergence was assessed using the Gelman-Rubin Statistic (Gelman and Rubin, 1992) 

produced by R2jags for all parameters in all models. A value of one was used to indicate 
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complete convergence. Additionally, plots produced with the mcmcplots package were viewed 

for each parameter to visually assess convergence and autocorrelation. To ensure convergence 

and minimize auto-correlation, a burn-in value (the number of iterations before data were 

collected) of 1000, a thinning value of 30 (1 of every 30 values was used in the model), and a 

total of 100,000 iterations were used for all models. Deviance Information Criterion (DIC) 

values produced by R2jags, a measure of deviance in the model, were assessed to compare 

models. A lower DIC value indicates lower deviance, and was used to select the best fitting 

models.  

The fit of each model was assessed by posterior predictive checking using the data points 

included in the models (Meng, 1994). Additionally, the predictive intervals generated from the 

model were constructed by creating simulations for the output from the models, and tested with 

additional T90 and T99 values that had not been included in the original analysis. The I2 statistic 

(Higgins et al., 2003), presented as a percentage of variation that is not explained in the model, 

was used to assess heterogeneity within estimates for a given parameter.  

 

3. Results  

3.1. Overall Model Performance 

Models for all targets were successful in reaching convergence with minimal autocorrelation. 

DIC values were lower for all mixed effects models when compared to the corresponding fixed 

effect model for each target, suggesting mixed effects models including covariates fit the data 

better even when accounting for a penalty based on inclusion of additional parameters. Posterior 

checking showed that for most models, all data used to construct the model fell within the 

posterior distribution.  Models constructed for Enterococcus spp. and one of the combinations 
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for Bacteroides Human-Associated Markers failed to encompass all constructive data points, 

each with one point lying outside of the credible interval.   

Fixed effects models resulted in output for posterior intervals for the mean that were nearly 

identical to a simple averaging of the data. The posterior predictive distribution for all data was 

wider than ranges estimated for the mean in all cases (Table 2.2). The model definition for the 

mixed effects model used a shared variance term among all combinations of significant variables 

for a target FIB, resulting in different distributions for estimates of the mean decay rate of 

specific combinations as compared to simple frequentist averaging (data not shown). These 

differences were not consistent across targets, with some models providing wider confidence 

intervals for the mean than frequentist estimates, while others resulted in narrower ranges of 

credible estimates.  

 

3.2. Model Performance by Target 

3.2.1. E. coli 

Because E. coli has been used as an indicator for decades, there are many studies focusing on 

decay in the environment. Of these studies, 21 data points from 6 papers reported first order 

decay rates with estimates of variance and could therefore be included in the model. Two data 

points were notably higher than other values and were not included in the final models (see 

Discussion), resulting in 19 data points being used to construct the model. Additionally, 21 data 

points from 7 papers presenting either T90 or T99 values were used to assess the model fit.  

Estimates of distributions for the mean and credible distribution centered on the mean value 

of µ = 0.74 day-1, but the credible interval had a much wider range (Figure 2.2).  Posterior 

checking suggested the model fit the data well, with 100% inclusion of points used to construct 
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the model. However, using data points that were not included in the model, only 43% of the 21 

data points fell within the posterior credible distribution.  

Incorporation of covariates for the mixed effects model suggested that temperature was the 

best predictor variable for decay rate. Additionally, light was included as a variable in the final 

model, as inclusion resulted in a lower DIC value, although it was not statistically significant if 

the outliers were not included in the model. Increased temperature and the inclusion of light both 

resulted in an increased rate of decay, although temperature had a larger effect on the decay rate 

than light. Inclusion of predictor variables explained some of the heterogeneity in the data points, 

as measured by lower I2 values, but large amounts of variance remained unexplained. Posterior 

checking of the model using T90 and T99 values not included in the model had mixed results, 

with a range of 20%- 67% inclusion of points used to assess fit (Table 2.2).  

3.2.2. Enterococcus spp. 

Like E. coli, Enterococcus spp. has been used as an indicator for decades, resulting in many 

studies addressing decay after leaving the host. Sixteen data points from 6 papers were used to 

construct the model (Table 2.1) and an additional 28 data points from 7 papers were used to 

assess the predictive power of the model.  

The fixed effects meta-analysis resulted in wide credible intervals for both the mean (µ = 

0.84 day-1) and for the distribution (-0.5 to 2.18). Large amounts of variation in the data resulted 

in a high variance term, leading to negative decay rate constant values in the credible interval. 

Only 94% of the data points used to construct the model fell within this wide posterior interval, 

and only 54% of T90/T99 data fell within this wide interval, with all points above the estimated 

T90/T99 ranges, suggesting the model overestimated decay rate.  
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Using covariates to explain variance indicated that both temperatures and exposure to light 

were significant predictors of decay rate for Enterococcus spp. Explanation of variance as 

indicated by the I2 statistic was slightly improved with the inclusion of these predictor variables, 

but heterogeneity remained high. Posterior predictive checking showed that the model did a good 

job of predicting estimates for both temperature categories in the dark, with 100% of data points 

used to test the model falling within the credible interval, while no data points in the light 

category for either temperature category fell within the posterior distribution. Additional data 

points were not included in the posterior checking as they were generated in the high temperature 

category, which was not assessed in the model.  

3.2.3. General Bacteroides Associated Markers 

As a newer indicator, qPCR primer sets targeting Bacteroides Associated Markers had fewer 

data available for inclusion in the model. Only 11 data points from 2 studies were available to 

construct the model, while 19 data points from 5 studies were used for assessing the model fit. 

The data that were available were limited in scope (Table 2.1); only one data point included 

light, and no studies conducted in saline water fit the requirements to be used to construct the 

model. Additionally, each of the studies used to construct and test the model relied on different 

primer sets, making it impossible to test the effects of combining these markers into one target.  

Possibly as a result of these limits to the available data, the fixed effects model provided 

relatively narrow confidence intervals for the mean (0.71 day-1) and distribution (0.19 to 1.24), 

relative to those constructed for E. coli and Enterococcus spp. (Figure 2.2). All data points used 

to construct the model fell within the posterior distribution, and the model output distribution 

included 74% of T90/T99 data points used to test the model.  
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The mixed effects model showed that temperature category was a significant predictor of 

decay rate for General Bacteroides Associated Markers. The model output showed a significant 

difference between data points between the two studies, but the source of that difference (e.g., 

primer targets, experimental design) was impossible to identify given limitations in the data. As 

the source of this variation was not able to be determined, temperature was used as the only 

significant variable for the mixed effects model even though this resulted in a higher DIC for the 

model. Using temperature alone, the model output included three data points available for 

checking the model in the low temperature category, but could only predict 33% of data points in 

the mid temperature range.  

3.2.4. Bacteroides Human-Associated Markers 

As was the case for general Bacteroides associated markers, Bacteroides human-associated 

markers have been the focus of fewer studies than the traditional FIB. A total of 12 data points 

from 5 studies were available for construction of the model, using primer sets BacH, BacHum-

UCD, and HF183. Additionally, 16 data points from 6 studies were used to check the fit of the 

model.  

The fixed effects model provided a tight interval for the mean (0.95 day-1), but a wide 

distribution for the credible interval (-0.08, 1.99), including negative values for k. In spite of this 

wide interval, only 56% of the data available for checking fell into the T90/T99 boundaries 

defined by the model output.  

Inclusion of predictor variables again found that temperature was the most significant 

variable for predicting decay rates, although all but 2 of the data points used to construct the 

model fell into the low temperature category. The two low temperature estimates were very 

close, resulting in a very low amount of heterogeneity (I2 = 0). However, with the inclusion of 
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temperature as a predictor variable, fewer data points used to check model fit fell inside the 

boundaries predicted by the corresponding model, with no data points from the low temperature 

category falling within the credible interval and only 62% of the mid temperature category 

falling into the posterior interval.  

3.2.5. Ruminant Associated Bacteroides Markers 

While there were enough data from Ruminant Associated Bacteroides markers to construct 

the model, only 7 data points were available to assess the model fit. Data consisted of 12 data 

points from 3 different papers, using four different primer sets targeting different markers. The 

variables included in the model were limited by the fact that all studies were conducted in fresh 

water, making it impossible to include salinity as a potential significant variable.  

The posterior interval for the mean (0.76) was narrow while the credible distribution was 

wide (-0.14, 1.65), again including negative values as part of the distribution credible interval. 

Inclusion of temperature, the only significant predictor variable, failed to either narrow the 

credible intervals, or improve the remaining heterogeneity. Additionally, while 5 of the 7 data 

points available for checking the fit of the model fell within the bounds of the fixed effects 

model output, the mixed effects models did a poor job of predicting the additional data points 

with only 66% fitting from the low temperature category and 50% fitting from the mid 

temperature category.  

 

4. Discussion 

4.1. Model limitations 

While meta-analysis can be a useful tool to synthesize estimates of a parameter, 

interpretations should be made with caution and an awareness of the limitations. First, this study 
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was hampered by the reliance on first order decay rates. First order decay rates were selected for 

this study because the majority of papers report decay rate estimates in the first order format. 

First order decay rates are readily interpreted, as there is only one parameter, yet they are not 

always the best fitting model for describing the data (Bae and Wuertz, 2009, 2011; Green et al., 

2011). When non-linear data are forced into the first order decay model, there is potential not 

only to present a poorly fitting model, but also to lose valuable information. For instance, many 

studies report a shoulder or lag period prior to decay that may be related to the health of the 

microbial community (Green et al., 2011). For this reason, we opted not to calculate first order 

decay rates based on a provided T90/T99 value in papers that observed non-linear decay curves, 

and instead used only the data calculated and presented by the original authors. By selecting only 

first order decay rates in this model, it is possible that data are biased towards estimates that fit 

linear models best, possibly explaining the poor fit of data not used to construct the models.  

In addition to the limited data available for construction of the models, in order to synthesize 

papers to measure for significant covariates metadata provided by the original authors was 

necessary. While all papers included provided information with respect to temperature, other 

potential covariates were not provided in all or were provided without quantitative information. 

For instance, due to reporting methods of the original papers, light was defined here as a binary 

variable (i.e. light or dark). However, as light intensity has a wide range within the “natural 

light” category, this may not be an accurate reflection of the true experimental design. However, 

few studies reported data for light intensity, making it necessary to treat light as a categorical 

variable. Another inherent limitation in the construction of the models presented here is the 

grouping of similar targets as though they were exchangeable. This merging was done primarily 

as a way to collect enough data for synthesis, but may introduce additional variance into the data 
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that would not exist for a single marker. For culture based methods, different enumeration 

techniques were used (e.g. Colilert and plate counts), which may introduce discrepancies in the 

data, but generally target overlapping or closely related organisms. However, for the genetic 

markers, discrepancies between the coverage are more prevalent. While all of the markers 

selected for this study focus on a broad class (i.e. “Bacteroides Human-Associated Markers”) 

there are known differences among the coverage of taxa that amplify with each primer set (Dick 

et al., 2005; Kildare et al., 2007; Layton et al., 2006). While sequences targeted by these primer 

sets fall within the phylum Bacteroidetes, discrepancy exists between the coverage of sequences 

within this taxonomic grouping, and possible biological differences between targets are poorly 

understood. 

In addition to the limitations in collecting data used to construct the model, there are 

limitations within the model definition. The variance term for combinations in the meta-

regression analysis was defined as the same for all combinations, leading to wide credible 

intervals even when the data appeared to be tight (e.g. Bacteroides Human-Associated Markers – 

Low Temperature). As defined, the models assume that all combinations are actually from the 

same population, rather than different populations with their own variance terms. While this 

makes the credible interval wider, it could actually be more appropriate to assume the same 

variance for all groups, even if the data available were tightly bound.  

4.2. Posterior Distributions and Model Checking 

4.2.1. Posterior Distributions 

Output from the models provided mean decay rate constant estimates and credible ranges for 

both the mean values as well as the distribution. While the ranges of posterior intervals for the 

mean decay rate constants were smaller, credible intervals for the distribution resulted in wide 
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ranges for all targets in both fixed effects and mixed effects models. The broad credible intervals 

reflect the high amounts of variation in estimates from the literature, and were often only slightly 

improved by the incorporation of predictor variables. Even using these broad distribution ranges, 

it is clear that the credible ranges determined by the models encompass different values, and thus 

the targets likely experience differences in decay. This becomes more evident as the credible 

ranges for decay rate constants are transformed into T90 and T99 credible ranges (Figure 2.3). 

While having a wide credible range may not be useful for predicting future values, narrower 

ranges for credible intervals of the mean could be useful for predicting average values. Such 

averages have potential for use in source tracking and allocation. The ratio method of source 

apportionment was effective only when contamination was fresh, while variation in decay over 

time led to difficulties in correctly assigning relative source amounts (Wang et al., 2013). It is 

possible that using average values, such as those presented here, may be useful for source 

apportionment, although future work is needed to test this idea.  

4.2.2. Posterior Checking 

Although model output for credible intervals provided wide ranges, in many cases the 

posterior distribution was not able to predict values checked by T90 and T99 estimates from 

outside studies. One possible explanation of this poor predictive power was the use of data points 

that came from data fit to different models, suggesting that even by using T90/T99, which can be 

compared across different models, the linear decay model did a poor job of predicting other 

models. However, the poor predictive power of the models can also be explored to draw 

additional conclusions that cannot be ascertained mathematically using the models.  

Two papers (Sinton et al., 2007, 2002) contained data points that fell outside of the credible 

ranges, likely due to experimental design not accounted for in the model. T90 estimates 
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presented in these papers for both Enterococcus spp. and E. coli in natural light fell below the 

credible range for fixed effects models as well as the corresponding mixed effects models. 

Samples for both papers were collected within a period of hours following the addition of the 

fecal spike, in contrast to days or weeks long experiments for most of the other papers. While 

duration of the experiment was one of the variables tested, none of the studies used to construct 

the model consisted of such a short duration, possibly explaining why the model output failed to 

encompass these data (Figure 2.3).  

In addition to the data collected from experiments using a short sampling scheme, there were 

two other papers that contained points that were not predicted by the data. One paper (Noble et 

al., 2004) reported data points that mostly fit well within the model, with the exception of data 

from one experiment. These data points were identified as outliers above, and had decay rate 

constant estimates considerably higher than those reported elsewhere. For E. coli, only the data 

points that were tested under “High Solar Irradiation” fell outside of the credible ranges, while 

for Enterococcus spp., data points collected in this experiment fell outside of the credible ranges 

regardless of light treatment (data points collected under both low and high solar irradiation).   

While there are possible explanations for the lack of fit for the papers mentioned above, 

additional data points presented in the paper by Dick et al. (2010) also consistently fell outside of 

the ranges for the corresponding targets. Data points presented in this study from experiments 

where the microbial community was removed from the receiving water fell into credible ranges 

produced from the models, while all other data points from non-sterile water estimated 

significantly lower T99 estimates (higher decay) than estimated by the model output. Unlike the 

other estimates that fell outside the credible ranges, no additional explanatory variables were 
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reported that could help explain this discrepancy, suggesting an unidentified difference between 

this study and others incorporated in the model.  

For the genetic markers, limited data were available to assess the fit of the models, and for 

General Bacteroides Associated Markers and Bacteroides Human-Associated Markers, most of 

the data used to check the model fit failed to fall within the credible ranges of the model. 

However, as there was little other available data to check the posterior fit of the model, it is 

difficult to assess whether these data points were truly different or if the model just did a poor 

job of predicting credible distributions. Future testing and additional studies for these genetic 

markers are necessary to truly assess significant variables impacting decay of these targets in the 

environment.  

4.3. Variables 

One of the main objectives of this paper was to determine which predictor variables have a 

significant role in predicting the rate of decay. Mixed effects models relied on covariate 

information presented in the papers, and thus were limited to the variables that were reported in 

all or most papers. Potentially relevant environmental parameters such as DO, nutrients, and TSS 

were not reported in the majority of papers, and were therefore not included in the analysis. 

Additionally, for some of the variables tested, only one study had different values for several 

variables; as a result, the source of any explained variance could not be identified. For example, 

in the E. coli model, data points from studies reporting inclusion of sediment, small volume, and 

short experiment were all the same data points, making detection of significance more difficult, 

as these data points only represent that particular combination. For many of the models, there 

were not enough data available to test the significance of some variables, leaving unanswered 

questions that need to be addressed in future studies.  
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Some variables that have been shown to influence decay were left out of this model due to 

restrictions for the study inclusion. For example, the microbial community has been shown to 

play a major role in the removal of FIB (Korajkic et al., 2014a). Most studies measuring this 

effect have compared the differences when the environmental microbial community is removed 

from the system, thereby showing that is the microbial community is significant, but not 

providing information with respect to the mechanisms contributing to the significance of the 

microbial community. As a result, while the microbial community of the receiving water is likely 

to play a large role in the removal of FIB, it cannot be incorporated into modelling efforts as 

anything other than a binary variable (microbial community present or absent) without a better 

understanding of how the microbial community contributes to decay.  

Temperature was a significant predictor of decay rate constants for all models tested. Simple 

Linear Regressions using temperature as the sole predictor variables were conducted to assess 

the predictive power of temperature as a stand-alone variable (Figure 2.4). An ANCOVA to 

assess the difference between the slopes of these regression lines suggested there was no 

difference in slope (p = 0.455) but that the intercept of the regression line was significant (p = 

0.028). This difference in intercepts but not slope suggests that the FIB and markers have a 

similar response to changes in temperature, but the rate at which they decay is different from one 

another across all temperatures. The significance of temperature on decay of FIB in the 

environment has been reported previously (Bae and Wuertz, 2015; Noble et al., 2004). Bae and 

Wuertz (2015) provided a way to adjust decay rate constants estimated based on the significance 

of temperature, using an Arhennius correction to extrapolate decay rate constant estimates for 

comparison across temperatures. The findings presented here use a simple way to assess the 
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impact of temperature on the decay rate constant estimates, but incorporate data from multiple 

studies to assess the broader impact of temperature.  

While temperature was found to be a good predictor across targets, the impacts of light on 

decay were less clear. For both culture based targets, light was included in the best fitting model 

as a predictor variable, while for genetic markers, it was not significant nor did it improve model 

fit. It is important to note that as many studies did not report the amount of solar radiation 

observed under light treatments, light was treated as a binary variable rather than a continuous 

scale, possibly introducing variation as some light treatments may have been stronger than 

others. Additionally, due to the lack of data available for the genetic markers, it is difficult to say 

whether light has no impact on decay or if there simply have not been enough data collected to 

detect significant effects.  

Even with the inclusion of significant variables, most of the models did a poor job of 

explaining variation, as evidenced by the high I2 values in the output of model models. This high 

unexplained variance suggests that the models are not including all, if any, of the most 

significant variables affecting decay in the environment. Possible additional sources of variation 

include strain specific differences of the FIB themselves (Maraccini et al., 2012; Noble et al., 

2004). Additionally, it is possible that within even the same sources of spiking material, there 

could be a large amount of variation in the types and concentrations of FIB in the feces, leading 

to differences in decay in the environment. As the microbial community of the receiving water 

has been demonstrated to significantly impact decay of FIB (Korajkic et al., 2014b), it is possible 

that differences in microbial communities that degrade contaminants are also contributing to 

observed differences.  

5. Conclusions 
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The data and models presented here synthesize data collected in previous studies to 

summarize what is known about decay of FIB in the environment, while highlighting the many 

data gaps that prevent accurate estimates for decay of FIB and the associated risks associated 

with fecal pathogens in the environment. Here, we focused on 5 FIB and genetic markers that 

have relevance for monitoring efforts and potential source allocation. However, given enough 

data, similar analyses for pathogens of concern could also be conducted.  

Large amounts of unexplained variation found in the data suggest that in spite of numerous 

studies, identification of additional predictors for decay is necessary to generate more precise 

credible intervals for decay rate estimates. Our findings suggest that more data is needed before 

synthesized estimates for decay rate constants can be generated with confidence. Specifically, 

additional research is needed with respect to the host specific genetic markers, as even the two 

most heavily studied source organisms, human and ruminant, did not have sufficient data to 

provide useful estimates.  

While more data is needed, it is crucial to make sure that future studies provide data that can 

be used by other researchers. For instance, providing the raw data for decay studies as 

supplemental information would be helpful for researchers attempting to compare their data 

quantitatively to past studies. It is also recommended that researchers provide all available 

metadata so that effects of environmental variables could be better understood. Finally, as with 

all scientific studies, it is crucial that researchers choose experimental designs that are sufficient 

to answer lingering questions regarding FIB and genetic marker persistence. Specifically, the 

number of replicates chosen for a given type of analysis should be investigated with power 

analyses when conducting a study comparing the effects of environmental variables on decay 

rates.   
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This study is not intended to end the discussion of FIB decay, but rather to summarize what 

is known to date and draw attention to unknowns to be addressed. The data gathered for this 

analysis should be used as a starting point, upon which additional data could be added and 

evaluated as the field continues to grow. Researchers are cautioned about using these data as a 

synthesized estimate, as many unknowns remain about the assumption that all decay rate 

constant estimates are from a single population. Although temperature and, in some cases, light 

were the only covariates found to be significant, other covariates that were not tested, or not 

identified, are likely to be present and should be included in future analyses.  

Finally, nearly all of these studies have been conducted in artificial environments rather than 

in an open-system, suggesting possible limitations in the applicability of these estimates in the 

environment. Before decay rate constant estimates such as those synthesized in this study can be 

used with confidence in the environment, the impacts of conducting studies in a closed system 

should be examined and where possible, minimized using experimental designs that better 

simulate the environment.  

 

The major findings of this study are as follows: 

 Sufficient data are only available to synthesize first-order decay rate constants, and 

are not available to model individual genetic markers separately. 

 Large amounts of variation exist in the data, leading to wide credible intervals for 

estimates of decay rate constants. 

 Significant predictor variables included temperature for all targets, and light for 

culture based E. coli and Enterococcus spp.  
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 Inclusion of significant variables tested in this study failed to explain heterogeneity, 

and sources of large amounts of variation in the data remain unidentified. 

 Future studies are necessary to not only understand decay in artificial environments, 

but also to assess the applicability of these rates to environments of interest. 
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Figures and Tables:  

 
Figure 2.1 First order decay rate estimates and standard errors from published papers for selected 

FIB reveal inconsistency in the literature among decay rate estimates.  
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Figure 2.2 95% Credible Intervals for the mean (solid line) and distribution (dashed line) generated from each model output. 
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Figure 2.3 Data points used for posterior predictive checking and credible T90/T99 ranges generated by each model. Lines represent 

the ranges predicted from the output of the models.  
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Figure 2.4 Simple linear regression showing effect of temperature on decay rate estimates with a 

distinction for data points generated under light treatments (○) and dark treatments (●). Circle 

size corresponds to standard error estimates. 
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Table 2.1 References for data used to construct and test models. Variables were defined as either 

binary (b), or categorical (c) 

Target Model Data Paper 

References 

Variables Tested 

 

Checking Data Paper 

References 

 Culturable E. coli Ahmed et al. 2014 

Jeanneau et al. 2012 

Noble et al. 2004 

Sinton et al. 2002 

Sokolova et al. 2012 

Walters and Field 2009 

 

Lightb 

Water Typec 

Temperaturec 

Fecal Spikec 

Sediment Inclusionb 

Culture Mediac 

Experiment Sizec 

Experiment Lengthc 

Dick et al. 2010 

Jeanneau et al. 2012 

Liang et al. 2012 

Sinton et al. 2002 

Sinton et al. 2007 

Solecki et al. 2011 

Tambalo et al. 2012 

 Culturable Enterococcus Ahmed et al. 2014 

Bae and Wurtz 2011 

Sinton et al. 2002 

Sokolova et al. 2012 

Walters and Field 2009 

Walters et al. 2009 

Lightb 

Water Typec 

Temperaturec 

Fecal Spikec 

Culture Mediac 

Experiment Sizec 

Experiment Lengthc 

Anderson et al. 2005 

Bae and Wurtz 2011 

Bordalo et al. 2002 

Jeanneau et al. 2012 

Noble et al. 2004 

Sinton et al. 2002 

Solecki et al. 2011 

General Bacteroides 

Associated Markers 

Bae and Wurtz 2011 

 Bell et al. 2009 

Lightb 

Temperaturec 

 Experiment Lengthc 

Primer setc 

Bae and Wuertz, 2009 

Bae and Wurtz 2015 

Dick et al. 2010 

Schulz and Childers 2011 

Tambalo et al. 2012 

Bacteroides Human-

Associated  Markers 

Ahmed et al. 2014 

Bae and Wurtz 2011 

Jeanneau et al. 2012 

Sokolova et al. 2012 

Walters et al. 2009 

Lightb 

Water Typec 

Temperature c 

(Low and Mid only) 

Fecal Spikec 

Experiment Sizec 

Experiment Lengthc 

Bae and Wuertz, 2009 

Bae and Wurtz 2015 

Dick et al. 2010 

Liang et al. 2012 

Sokolova et al. 2012 

Tambalo et al. 2012 

Bacteroides Ruminant-

Associated Markers 

Bae and Wurtz 2011 

Sokolova et al. 2012 

Walters and Field 2009 

 

Lightb 

Temperaturec 

Experiment Lengthc 

Bae and Wuertz, 2009 

Bae and Wurtz 2015 

Liang et al. 2012 

Tambalo et al. 2012 
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Table 2.2 Output from meta-analyses 

 

      

Target N Mean  

(95% Credible 

Interval) 

Variance  

(95% Credible 

Interval) 

DIC I2 Distribution 

95% 

Credible 

Interval 

% of 

Data in 

Credible 

Interval 

T90 95% 

Credible 

Interval (T99) 

% of T90/99 Data in 

Credible Interval 

(proportion) 

E. coli 19 0.74  

(0.57, 0.91) 

0.13  

(0.07, 0.25) 

16.87 100 0.04, 1.44 100 1.6, 55.7  

(3.2, 129.2) 

43  

(9/21) 

Mid Temperature, Dark 4 0.83  

(0.61, 1.06) 

0.07  

(0.03, 0.15) 

7.58 98 0.32, 1.35 100 1.7, 7.2  

(3.4, 14.4) 

57  

(4/7) 

Low Temperature, Dark 7 0.46  

(0.28, 0.65) 

0.07  

(0.03, 0.15) 

7.58 70 -.06, 0.98 100 2.4, NA  

(4.7,  NA) 

67  

(2/3) 

Low Temperature, Light 5 0.79 

(0.58, 1) 

0.07  

(0.03, 0.15) 

7.58 99 0.27, 1.31 80 1.8, 8.4  

(3.5, 16.8) 

20  

(2/10) 

Mid Temperature, Light 3 1.16  

(0.92, 1.41) 

0.07  

(0.03, 0.15) 

7.58 98 0.65, 1.68 100 1.4, 3.5  

(2.7, 7.1) 

50  

(1/2) 

          

Enterococcus 

16 

0.84 

(0.5, 1.18) 

0.48  

(0.23, 0.99) 34.77 100 -0.5, 2.18 94 

1.1, NA  

(2.1, NA) 

54 

(15/28) 

Low Temperature, Dark 6 

0.3  

(-0.06, 0.66) 

0.23  

(0.1, 0.5) 25.6 93 -0.61, 1.21 100 

1.9, NA  

(3.8, NA) 

100 

(2/2) 

Mid Temperature, Dark 2 

1.09  

(0.56, 1.63) 

0.23  

(0.1, 0.5) 25.6 96 0.18, 2.01 100 

1.1, 12.8  

(2.3, 25.6) 

100  

(7/7) 

Low Temperature, Light 6 

0.99  

(0.63, 1.36) 

0.23  

(0.1, 0.5) 25.6 98 0.08, 1.9 100 

1.2, 28.3  

(2.4, 56.6) 

0  

(0/4) 

Mid Temperature, Light 2 

1.79 

(1.26, 2.31) 

0.23  

(0.1, 0.5) 25.6 99 0.88, 2.7 100 

0.9, 2.6  

(1.7, 5.3) 

0  

(0/4) 

          

General Bacteroides 

Associated Markers 11 

0.71  

(0.55, 0.88) 

0.08  

(0.03, 0.19) 3.76 99 0.19, 1.24 100 

1.9, 12  

(3.7, 24) 

74 

(14/19) 

Mid Temperature 8 

0.78  

(0.63, 0.94) 

0.05  

(0.02, 0.14) 1.33 99 0.35, 1.22 100 

1.9, 6.6  

(3.8, 13.1) 

33  

(3/9) 

Low Temperature 2 

0.41  

(0.08, 0.73) 

0.05  

(0.02, 0.14) 1.33 65 -0.03, 0.84  100 

2.8, NA 

(5.5, NA) 

100  

(3/3) 

          

Bacteroides Human-

Associated Markers 12 

0.95  

(0.65, 1.27) 

0.29  

(0.12, 0.7) 20.33 99 -0.08, 1.99 100 

1.2, NA  

(2.3, NA) 

56 

(9/16) 
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Low Temperature 4 

0.54  

(0.1, 0.98) 1.16 (0.85, 1.48) 16.88 95 -0.52, 1.59 100 

14, NA 

(2.9, NA) 
0 (0/3) 

 

Mid Temperature 8 

1.16  

(0.85, 1.48)   98 0.11, 2.22 100 

1, 21.2  

(2.1, 42.3) 

62 

(8/13) 
 

          

Bacteroides Ruminant-

Associated Markers 12 

0.76  

(0.48, 1.03) 0.22 (0.09, 0.51) 16.73 95 -0.14, 1.65 100 

1.4, NA  

(2.8, NA) 

74 (5/7) 

 

 
 

Low Temperature 8 

0.57  

(0.3, 0.84) 0.14 (0.06, 0.36) 13.26 89 -0.15, 1.29 100 

1.8, NA  

(3.6, NA) 

66 (2/3) 

 

Mid Temperature 4 

1.13  

(0.76, 1.5)   96 0.41, 1.85 100 

1.2, 5.6  

(2.5, 11.2) 

50 (2/4) 
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Abstract  

The environmental decay of molecular markers for fecal contamination impacts their utility for 

microbial source tracking, and must be understood before recommendations for genetic markers 

can be made. We conducted a decay study to describe the decay profiles of cultivable E. coli, a 

general Bacteroidales marker (GenBac3), ruminant associated markers (CF128, Rum2Bac), and 

cattle associated markers (CowM2, CowM3). We selected best fitting models for the decay 

profile of each marker and tested for differences between decay profiles of different indicators 

using Global Model Fitting techniques to directly test for differences between curves. Initial 

concentrations varied across targets, leading to variability in the time to non-detection, despite 

similar survival profiles for some markers. After normalizing for initial concentration, we found 

statistically significant differences between the decay curves of E. coli and all genetic markers 

except for CowM3. The decay curves for CF128 compared to GenBac3 and Rum2Bac also 

differed, but no differences were observed between Rum2Bac and GenBac3 decay profiles. The 

differences across decay profiles and time to non-detection suggest caution is necessary when 

interpreting microbial source tracking results using these markers, as differential decay may 

result in different findings depending on the marker selected. However, as the Rum2Bac and 

GenBac3 marker had similar decay profiles, these two markers could potentially be used reliably 

over time for source allocation using the ratio method.  
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Introduction 

Identification of fecal contamination from ruminant sources can affect the interpretation 

of water quality monitoring results for both public risk assessment and source mitigation. As 

ruminant sources of fecal contamination have been shown to contribute to elevated incidents of 

gastrointestinal illnesses (Soller et al., 2010), elevated fecal indicator counts from these sources 

could be of greater risk to the public. Additionally, as agricultural contributions of nonpoint 

sources of contaminants are the leading cause of stream impairments (USEPA, 2010), it is 

important to have methods that are capable of detecting fecal contamination from agricultural 

ruminants, such as cattle and sheep.  

Host specific genetic markers have been identified that can distinguish sources of fecal 

contamination. However, the characteristics of selected markers, such as decay in the 

environment, impact interpretation of results. As host specific markers are typically used to 

identify sources that contribute to impairment in a given water body, variations in the ability to 

detect marker presence in the period of time following loading to the water body can lead to 

different results, and thus different actions taken depending on the marker selected for use. 

Efforts are underway to standardize the use of genetic markers, including making 

recommendations for markers to be used for microbial source tracking (MST) (Ahmed et al., 

2016; Boehm et al., 2013; Schriewer et al., 2013; Shanks et al., 2010; Staley et al., 2012; Ahmed 

et al., 2015).  

Based on their assay sensitivity and specificity, primers targeting ruminant associated 

Bacteroidales (Rum2Bac) or targeting bacterial genes involved in host interactions (CowM2 and 

CowM3) have been recommended for MST studies involving ruminant fecal contamination 

(Raith et al., 2013; Shanks et al., 2010). However, information on decay is lacking for these three 
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recommended markers, while numerous studies have addressed decay for other fecal indicators 

(Bae and Wuertz, 2011; Green et al., 2011; Jeanneau et al., 2012; Sinton et al., 2007, 2002; 

Sokolova et al., 2012; Tambalo et al., 2012; Walters and Field, 2009), including a different 

marker targeting ruminant sources of contamination, CF128 ( Bernhard and Field, 2000; Walters 

and Field, 2009). While CF128, like Rum2Bac, targets microbes from the order Bacteroidales, 

differences between organisms detected by the two primer sets are not well defined. 

 This paper reports findings of a decay study to assess persistence of ruminant markers in 

freshwater mesocosms spiked with a slurry of cattle feces. Additionally, we measured decay of 

GenBac3, a general marker for members of the group Bacteroidales (Dick and Field, 2004; 

Siefring et al., 2008), and cultivable E. coli, a long-used general indicator of microbial 

contamination (Geldreich, 1970). Decay profiles for the markers were described with 

mathematical models individually as well as in comparison to one another and cultivable E. coli. 

We used global model fitting (GMF) to compare decay profiles as whole curves, rather than 

assessing individual time points or parameters. Additionally, the concentration ratios of different 

host specific markers compared to the GenBac3 assay over time were compared to assess the 

feasibility of the ratio method for source allocation (Wang et al., 2013) with these selected 

markers.  

 

Methods  

Mesocosm construction 

Decay was studied in a simulated freshwater system at the John D. Fryer Aquatic Animal 

Health Laboratory (AAHL, Corvallis OR), using three replicate 100 L mesocosms. Indoor tanks 

exposed to ambient sunlight were filled with unfiltered river water pumped from the Willamette 
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River. Water quality parameters were recorded using a YSI ProPlus Multiparameter meter 

(Yellow Springs International, Yellow Springs, OH) throughout the experiment (mean pH = 

7.74, mean DO = 9.88 mg/l, mean temperature = 11°C).  Constant mixing was achieved using a 

Koralia Circulation and Wave Pump (Hydror, Sacramento, CA) and an air-stone was added to 

the tanks to ensure aerobic conditions.  

To simulate contamination typical of runoff from a dairy farm, 200 ml feces were collected from 

each of 10 separate patties at the OSU Dairy Cattle Farm. The fecal samples were transported on 

ice to the laboratory and immediately mixed together with 3.8 L river water to create a fecal 

slurry (5% V:V dilution). The slurry was homogenized and 500 ml were dispensed into 

individual tanks and allowed to mix prior to sampling  

Sample Collection, Enumeration of FIB and Genetic Markers 

Water samples from each tank were collected in sterile 500 ml polypropylene bottles and 

brought to the laboratory on ice for immediate processing. Samples were collected daily from 

days 0-7 for E. coli analysis, and filters for DNA extraction were collected on days 0, 1, 3, 5, and 

7. To enumerate E. coli, 100 ml of sample was combined with a Colilert packet in a disposable 

120 ml tear-off vessel without sodium thiosulfate and mixed until the reagents were dissolved. 

Mixed samples were then poured into a Quanti-Tray/2000 (Idexx Technologies, Westbrook, ME) 

and heat sealed prior to incubating for 24 hours at 37°C. All observations were below the upper 

range of quantitation (2419.2 CFU/100 ml) for this methodology, and samples were collected 

until all tanks fell below the lower range (1 CFU/100 ml).   

To collect bacteria for the enumeration of genetic markers, 50 ml of collected samples 

were filtered onto 0.4 µm polycarbonate filters (Pall Corporation, Fort Washington, NY) and 

frozen at -80°C for less than one year until DNA extractions could be performed. DNA 
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extractions were performed following the manufacturer’s protocols using the Gene-Rite DNA 

extraction kit with modifications and processing controls implemented as recommended for 

analysis of human specific markers (Shanks et al., 2016), including the addition of a Sample 

Processing Control (Haugland et al., 2005). Extracted DNA was stored at -20°C until used for 

qPCR amplification 

qPCR assays 

To establish a standard curve for absolute quantitation, synthetic plasmids (Integrated 

DNA Technologies, Coralville, IA) containing sequences corresponding to the targeted regions 

for each primer set were diluted from a range of 108 to 101. Calibration curves were constructed 

for single runs using serially diluted synthesized standards containing the target. Two separate 

standards were generated, one of which contained matching regions for GenBac3 (Dick and 

Field, 2004; Siefring et al., 2008), CF128 (Bernhard and Field, 2000; Seurinck et al., 2005), and 

Rum2Bac (Mieszkin et al., 2010), and the other contained CowM2 and CowM3 (Shanks et al., 

2007). All runs achieved acceptable linearity as noted by the R2 value being >0.9, and all runs 

maintained an efficiency between 90 and 100%, with the exception of CF128, which had an 

efficiency of 82% (Table S3.1).  

To enumerate marker concentration, 2 µl of extracted DNA samples were amplified using 

qPCR. Each 25 µl reaction consisted of 10 µl Quanta PerfeCTa Toughmix, 500 nmol l-1 each 

primer, and 250 nmol l-1 of probe (Table 3.1). For CF128, 0.1× SYBR green I dye (Life 

Technologies, Gaithersburg, MD) was used as a general probe for double stranded DNA, while 

for other assays TaqMan probes were designed based on published sequences (Table 3.1).  All 

reactions were performed in triplicate in MicroAmp optical 96-well plates with optical adhesive 

film (Thermo Scientific, Wilmington, DE), using the ABI 7500 Fast Real-Time PCR system with 
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cycling parameters consisting of a 2 minute start at 94°C followed by 40 cycles of 15s at 94°C 

and 32s at 60°C. Cycle threshold was determined by the software provided with the ABI 7500 

Fast Real-Time PCR system and used to calculate the concentration using equations fit from the 

standard curves (Table S3.1). Results were exported to Microsoft Excel for analysis.  

Quality Controls 

To ensure quality of data for analysis, several quality control steps were implemented at 

various stages of sample processing. To measure potential contamination during filtration as well 

as to create extraction blanks for comparisons using a sample processing control, 3 filters were 

used to collect 100 ml deionized water instead of a sample. To detect contamination and provide 

inhibition free samples to establish a metric for amplification inhibition, 9 no template controls 

(NTCs) were added to each plate. Extraction blanks and NTCs were found to be free of 

contamination for all samples. 

To detect variation in extraction efficiency, a sample processing control spiked into the 

extraction buffer for all samples was measured and compared to extraction blanks as described 

previously (Haugland et al., 2005). The cycle thresholds (Ct) of the extraction blanks were 

compared to the Ct for each samples for the Sketa22 assay to measure for inhibition from the 

sample matrix. The extraction blanks had a mean Ct of 32.5 (SD = 1.13), creating an acceptable 

range of 29.1 to 35.9 cycles for samples. All samples fell well within the bounds generated by 

the blanks. 

In addition to the sample processing controls, an internal amplification control (Haugland 

et al., 2010) was tested by conducting a multiplex assay for the GenBac3 assay, measuring both 

the GenBac3 marker and the IAC marker (UCP1). The mean from the no template controls 

(mean = 27.4, SD = 1.2) was used to construct acceptable bounds for the samples, with a range 
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from 23.7 to 31.1. All samples fell within this bound as well, suggesting there were no problems 

with inhibition in the samples.   

 Decay Profiles and Statistical Calculations 

To compare markers, decay profiles were constructed for all markers and indicators. All 

statistical analyses and curve fitting were conducted using R (R Core Team, 2015) through the 

Rstudio interface (2015). Raw concentration data were normalized by dividing by the initial 

concentration for each replicate tank to generate the Survival Ratio (St = Ct/C0) for each replicate 

at each time point.  

Visual inspection of the data indicated the presence of a shoulder period, so in addition to 

the commonly used Chick Watson model (Eq. 1), data were fit using two models with shoulders, 

the Delayed Chick Watson (DCW, Eq. 2) model, as used previously to model indicator decay 

(Green et al., 2011), and the Geeraerd Shoulder (GS, Eq.3) model (Geeraerd et al., 2000). 

Concentrations from each replicate tank were treated individually, resulting in three data points 

for each time point.  

Eq. 1:  𝑆𝑡 =  𝑒−𝑘𝑡, where k = decay rate (hour-1), t = time (hours) 

Eq. 2: If t <= lag:  𝑆𝑡 =  1  

If t > lag: 𝑆𝑡 =  𝑒−𝑘(𝑡−𝑙𝑎𝑔), where lag = duration of no decay period (hours) 

Eq. 3:   𝑆𝑡 =  𝑒−𝑘𝑡 (
𝑒𝑘𝑠

1+(𝑒𝑘𝑠−1)𝑒−𝑘𝑡) , where s = shoulder period (hours) 

Models were coded and fit in R using the r2ADMB package (Bolker et al., 2015). This 

package allows interface through R with Automatic-Differentiation Model Builder (Fournier et 

al., 2012). Best fitting model selection was made based on Akaike Information Criterion (AIC) 

values (Table 3.2), which account for not only the sum of squared errors, but also penalize for 

the incorporation of additional model parameters (Akaike, 1992). AIC values for different model 
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fits were directly compared, and the probability of choosing the correct model was calculated for 

each dataset: 

Eq. 4  𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑀𝑜𝑑𝑒𝑙 1 𝑖𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 =  
𝑒−0.5(𝐴𝐼𝐶2−𝐴𝐼𝐶1)

1+𝑒
−0.5(𝐴𝐼𝐶2−𝐴𝐼𝐶1

) 

Once the best fitting model for individual markers or FIB was determined, statistical 

comparisons to detect changes in survival profiles were made using GMF. Prior to conducting 

this experiment, we conducted a power analysis (data not shown) to determine sensitivity of this 

statistical method versus other methods of fitting non-log linear data (e.g. repeated measures 

ANOVA). In our application of GMF, separate datasets from different markers are combined and 

fit using models (Table S3.2) as described in detail by Motulsky and Christopoulos (Motulsky 

and Christopoulos, 2004). 

Results  

Significant differences (p < 0.05) were detected among all initial concentrations 

(concentrations of markers in seeded tanks at time zero) except for GenBac3 compared with 

Rum2Bac (p = 0.054); differences between these two markers were nearly significant. The 

GenBac3 marker had the highest initial concentration (mean log10 C0/100 ml= 6.96), followed by 

the two markers that target ruminant-specific Bacteroidales ribosomal genes, Rum2Bac (mean 

log10 C0/100 ml = 6.61) and CF128 (mean log10 C0/100 ml = 6.04). Less abundant were the 

markers targeted by the CowM2 (mean log10 C0/100 ml = 4.14) and CowM3 (mean log10 C0/100 

ml = 3.79) assays. Cultured E. coli had the lowest initial concentration. Although for cultured E. 

coli concentration is measured as CFU, as opposed to marker copy number for the markers, and 

is thus not strictly comparable, its concentration is useful because of the information it provides 

about relative ability to detect the indicators (Table 3.3).  
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After normalizing for the initial concentration using the survival ratio for each tank, 

decay profiles revealed a period of little or no decay for all datasets (Figure 3.1). However, the 

models selected to best represent this feature varied for the indicators. Decay profiles for the 

CowM2 assay and E. coli were best described by the inclusion of a lag period with no decay, as 

defined in the DCW model, while the decay profiles for all Bacteroidales associated markers 

were fit best by the GS decay model. High residual errors were detected on day 1 for CF128, 

Rum2Bac, and GenBac3, suggesting the best fitting model underestimated concentrations on day 

1 (Figure 3.2). Models fit to the E. coli dataset did the poorest job of fitting the data, despite 

having a higher number of sample points.  

Interpretation of the lag period from the DCW model is relatively straightforward, as it 

assumes no decay takes place before that point. For CowM3, a lag period was visible in the 

decay profile, but was not depicted by the best fitting model for the CowM3 dataset (Table 3.3). 

Probabilities of selecting the correct model for the dataset revealed the models chosen for each 

dataset significantly improved fit over the alternative model that incorporates a lag or shoulder 

period (Table 3.2). Different lag periods observed for CowM2 and cultivable E. coli supported 

the detection of significant differences in the overall curve shape by GMF (Table 3.4).  

The shoulder term in the GS model is less intuitive, as it does not correspond precisely to 

a notable shift in the data. Shoulder estimates for the three Bacteroidales associated markers 

were similar, while the decay rate estimates varied, with Rum2Bac and GenBac3 having higher 

estimated decay. These differences were supported by GMF, which found moderately significant 

(p<0.1) differences between decay profiles for CF128 compared with Rum2Bac or GenBac3, 

while no differences (p>0.1) were found for Rum2Bac and GenBac3. 
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Making comparisons across parameter estimates from different decay models is 

challenging, but the overall curves shape can be compared using GMF. Although the best fitting 

model differed for CowM3, no significant differences were detected for CowM3 compared to 

any of the decay profiles for the other indicators Additionally, differences between CowM2, 

GenBac3, and Rum2Bac were not significant (p>0.1), while differences were detected between 

decay profiles for CowM2 and CF128.  

 

Discussion  

The differences observed in the initial concentrations of the indicators highlight the fact 

that even though these markers may all be used to indicate the presence of fecal contamination, 

they target different organisms, and will not necessarily have the same properties. The higher 

concentrations of the markers targeting organisms from the order Bacteroidales is supported by 

other reports finding high concentrations of Bacteroidales in the guts of animals (Fiksdal et al., 

1985; Kreader, 1998), including ruminants (Shanks et al., 2011), while the markers targeting 

functional genes typically have lower concentrations in the gut of animals (Raith et al., 2013). 

This difference in abundance affects the sensitivity of these markers for use in source tracking 

(Raith et al., 2013; Shanks et al., 2010), as the ability to detect markers over time depends on 

both the initial concentration and the decay in the environment.  

While decay profiles were standardized by initial fecal slurry seeding concentration prior 

to fitting the data to the curves, the differences among initial concentrations for each indicator 

still had a pronounced effect on the shape of the curves by limiting the number of data points 

collected for lower abundance markers. For the CowM2 and CowM3 markers, only two data 

points past the initial measurement were reported, as concentrations from subsequent days were 
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below the range of quantitation (Table S3.1). A past study measuring CowM2 concentrations 

over time was limited by the same issue, with data only collected through 24 hours before it was 

below the limit of detection (Tambalo et al., 2012). While CowM2 and CowM3 markers are 

highly specific for cattle (Raith et al., 2013), they may only be suitable for microbial source 

tracking studies of recent contamination events  

We made statistical comparisons using GMF, a sensitive statistical technique that 

compares the fit of models to the data when the data from two separate datasets are grouped as a 

shared dataset to those fits generated by treating the data separately. Other techniques that have 

been employed for comparison of decay profiles exhibiting non-linear patterns rely on 

comparing estimates for individual model parameters or time points (Ahmed et al., 2014; 

Anderson et al., 2005; Bell et al., 2009; Jeanneau et al., 2012; Sokolova et al., 2012; Solecki et 

al., 2011) or comparing individual concentration estimates at sampling points using repeated 

measures ANOVA (Bae and Wuertz, 2011; Liang et al., 2012; Solecki et al., 2011). While those 

techniques provide valuable data, they fail to test whether or not there is a difference between the 

overall shapes of the curves.  

While the GMF approach is a more sensitive method, it requires fitting the data to 

mathematical models for decay, and any lack of fit for the models chosen can decrease the power 

of the GMF approach. Thus, it is essential to select well-fitting mathematical models for any 

dataset being compared with GMF. The different model shapes that were selected to represent 

our data may be a reflection of truly different biological phenomena (i.e. the different targets are 

truly experiencing a difference in persistence), or they may be artifacts of the sampling scheme 

and the particular time-points selected.  



69 

 

 

Both models chosen in this study estimate two terms, the log linear decay rate (k) and the 

lag or shoulder period (lag or s), although the interpretation of these parameters differs between 

the two models. The DCW model has been used previously to describe data in fecal indicator 

decay studies (Bae and Wuertz, 2011; Green et al., 2011), and has been proposed to result from a 

buildup of predators necessary for decay to take place (Green et al., 2011). The GS model has 

predominantly been used in food science (Swinnen et al., 2004), and was designed to reflect a 

decline in a “critical component” necessary for the survival of the indicator (Geeraerd et al., 

2000). Our selection of best fitting model was strongly supported by the high probabilities 

calculated for selecting the correct model for a given dataset (Table 3.2). However, this was 

based only on the mathematical description of these data, and cannot be used to support claims 

regarding the mechanisms or interpretation of these models.   

It is likely that the lack of a shoulder or lag period detected for the CowM3 dataset 

resulted from the sampling scheme rather than truly indicating that the decay rate was uniform at 

all times, as implied by the CW model. The DCW model described the data well, but the 

standard error estimates were wide ranging, resulting in the log linear model being selected, 

although there is a clear discrepancy in the predicted and observed values (Figure 3.2).  

Differences observed between E. coli and all other markers highlight the need to use 

caution when interpreting microbial source tracking results, even when doing a presence/absence 

screening for host specific markers. Results from our comparisons using GMF revealed 

statistical differences in the data when combining E. coli and all markers with the exception of 

CowM3. This may be a result of the poor fit of the CowM3 model to the data, rather than a 

suggestion that E. coli and CowM3 truly have the same shape. Past studies comparing the decay 

of E. coli and general Bacteroidales markers have found no differences (Dick et al., 2010; 
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Tambalo et al., 2012), in contrast to our findings here. However, some studies have reported 

differences between E. coli and ruminant associated markers (Tambalo et al., 2012), while others 

reported no difference (Sokolova et al., 2012). While no data were available comparing GenBac3 

to ruminant markers, past studies reported that different ruminant markers decay at different rates 

(Walters and Field, 2009).  

Previous work has assessed feasibility of source allocation using ratios between host 

specific and more general indicators, such as E. coli (Wang et al., 2013) or, potentially GenBac3. 

Under this method, the concentration of a host specific marker is divided by the concentration of 

the general indicator or marker, thus establishing a ratio. However, in order for the ratio method 

to work, the markers quantified in the ratio must have similar decay patterns across time (Field 

and Samadpour, 2007). Of the ruminant and cattle markers tested in this study, only Rum2Bac 

had a curve that was not different than that of GenBac3 (p > 0.1).  

When the ratios of host specific markers versus GenBac3, as determined from the best 

fitting models, are plotted over time, it is clear that Rum2Bac has the most consistent ratio over 

time, although neither the GenBac3 nor Rum2Bac models decay in a linear fashion (Figure 3.3). 

However, the initial concentrations of Rum2Bac and GenBac3 were similar, suggesting that at 

least in cattle feces, the two assays are detecting similar targets, explaining their similar decay. If 

additional sources were added, such as human feces, GenBac3 would presumably detect more 

diverse targets, and thus its decay might not behave similarly to the decay of GenBac3 from 

ruminant sources. This has been shown for other indicators (Korajkic et al., 2013). Thus, more 

work is necessary to assess the potential applicability of these markers in source allocation by the 

ratio method.  
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Our data were collected using samples from a single herd of dairy cattle. Past studies 

have found variability in concentrations of FIB based on feeding practices (Shanks et al., 2011) 

and animal age (Shanks et al., 2014). Thus, the shapes described here may not be applicable with 

fecal matter from other types of cattle. Additionally, this study tested decay in one setting, using 

mesocosms filled with river water. Results obtained here may not be applicable in other water 

sources. Finally, as with all experiments conducted in artificial settings, it is important to 

understand what effects are induced by the experimental design. While the mesocosms used in 

this study were large and filled with unaltered river water, it is possible that the closed system 

induced artifacts that are reflected in the measurements, and may not make decay estimates 

applicable in natural settings.  
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Figures and Tables 

 

Figure 3.1 Mathematical models fit to measured concentrations for different indicators. 

Concentration values represent CFU/100 ml for E. coli or copies/100 ml for markers.  
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Figure 3. 2 Residual errors plotted for best fitting models reveal discrepancy between observed 

and predicted.  
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Figure 3.3 Ratios of the concentration of ruminant or cattle associated markers to the GenBac3 

marker (predicted by model fits) were plotted over time to assess the feasibility of source 

allocation.   
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Table 3.1 Primers and probes used in this study 

Target Primers and Probes Reference 

GenBac3 

(General 

Bacteroidales) 

Forward: GGGGTTCTGAGAGGAAGGT 

Reverse:CCGTCATCCTTCACGCTACT 

Probe:[FAM]CAATATTCCTCACTGCTGCCTCCCGTA[TAMRA] 

 

(Dick and 

Field, 

2004; 

Siefring et 

al., 2008) 

CF128 

(Ruminant Associated 

Bacteroidales) 

Forward:CCAACYTTCCCGWTACTC 

Reverse: ACCCCGCCTACTATCTAATG 

 

(Bernhard 

and Field, 

2000; 

Seurinck et 

al., 2005)  

Rum2Bac 

(Ruminant Associated 

Bacteroidales) 

Forward: ACAGCCCGCGATTGATACTGGTAA 

Reverse: CAATCGGAGTTCTTCGTGAT 

Probe: [FAM]-ATGAGGTGGATGGAATTCGTGGTGT-[BHQ-1] 

 

(Mieszkin 

et al., 

2010) 

 

CowM2 

(Bovine Associated 

HDIG domain protein) 

Forward: CGGCCAAATACTCCTGATCGT 

Reverse: GCTTGTTGCGTTCCTTGAGATAAT 

Probe: [FAM]-

AGGCACCTATGTCCTTTACCTCATCAACTACAGACA-

[TAMRA] 

(Shanks et 

al., 2007) 

CowM3 

(Bovine Associated 

sialic acid-specific 9-0 

acetylesterase secretory 

protein homolog) 

Forward: CCTCTAATGGAAAATGGATGGTATCT 

Reverse: CCATACTTCGCCTGCTAATACCTT 

Probe: [FAM]-TTATGCATTGAGCATCGAGGCC-[TAMRA] 

(Shanks et 

al., 2007) 
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Table 3. 2 Statistics of Delayed Chick Watson (DCW) and Geeraerd Shoulder (GS) model fits 

for individual datasets. 

 

Dataset Best Fitting 

Model 

Degrees 

of 

Freedom 

Sum of 

Squared 

Errors 

Akaike 

Information 

Criterion 

Probably 

DCW 

Best 

Model 

Probably 

GS Best 

Model 

E. coli DCW 21 12.8596 -10.4037 100 <1 

CF128 GS 8 1.97298 -13.4019 <1 100 

GenBac GS 8 1.70465 -15.0099 <1 100 

Rum2Bac GS 7 0.903411 -18.3273 <1 100 

CowM2 DCW 5 0.55874 -14.8921 100 <1 

CowM3 CW 6 1.27413 -12.0308 100 <1 
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Table 3.3 Summary statistics for individual curves fit with the Delayed Chick Watson (DCW) 

and Geeraerd Shoulder (GS) models. Standard error estimates are shown in parentheses. 

Target Best 

Fitting 

Model 

Mean 

log10(C0) / 

100 ml 

Lag or 

Shoulder  

(Hours) 

Decay 

Rate 

(Hour-1) 

Last Time 

Point (Hours) 

Cultivable  

E. coli 

DCW 3.26 

(2.60) 

44.5 

(0.094) 

0.0520 

(0.0022) 

168 

GenBac3 GS 6.96 

(6.34) 

52.0 (5.4) 0.130 

(0.015) 

120 

CF128 GS 6.04 

(4.73) 

45.4 (9.1) 0.0994 

(0.017) 

120 

Rum2Bac GS 6.61 

(5.60) 

50.4 (6.0) 0.129 

(0.019) 

120 

CowM2 DCW 4.14 

(3.17) 

19.9 (8.5) 0.0639 

(0.0131) 

72 

CowM3 CW 3.79 

(3.10) 

NA 0.0227 

(0.0063) 

72 
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Table 3.4 Global Model Fitting results for comparisons of different markers or indicator bacteria. 

Bolded values represent significance.  

Dataset E. coli GenBac3 CF128 Rum2Bac CowM2 

E. coli      

GenBac3 P <0.001     

CF128 P <0.001 P < 0.1    

Rum2Bac P <0.001 P > 0.1 P < 0.1   

CowM2 P <0.001 P > 0.1 P < 0.05 P > 0.1  

CowM3 P > 0.1 P > 0.1 P > 0.1 P > 0.1 P > 0.1 
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Table S3.1 Standard curve calibration equations and range of quantitation for general and host-

specific qPCR assays 

Assay Standard curve 

equation 

Efficiency R2 Range of 

quantitation 

Range of 

quantitation 

(/100 ml) 

GenBac3 Y = -3.535x+36.95 91.806 .991 108-102 109-103 

CF128 Y = -3.834x +37.358 82.234 .999 107-102 108-103 

Rum2Bac Y = -3.455x+39.055 94.305 .996 108-101 109-102 

CowM2 Y = -3.499x+38.193 93.099 .998 108-101 109-102 

CowM3 Y = -3.464x + 35.212 94.391 .993 106-102 107-103 
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Table S3.2 Statistics of best fitting models for curve comparisons 

Target 1 

 

Target 2 Separate 

Sum of 

Squared 

Errors 

Separate 

Degrees 

of 

Freedom 

Shared 

Sum of 

Squared 

Errors 

Shared 

Degrees 

of 

Freedom 

Sum of 

Squares 

Relative 

Difference 

Degrees 

of 

Freedom 

Relative 

Difference 

F Ratio P value 

E. coli GenBac3 14.56425 29 66.827 32 358.8427 10.34483 34.68813 3.57E-10 

E. coli Rum2Bac 13.76301 28 42.5255 32 208.984 14.28571 14.62888 6.75E-07 

E. coli CF128 14.83258 29 58.6835 33 295.6392 13.7931 21.43384 8.63E-09 

E. coli CowM2 13.41834 26 22.7508 29 69.55003 11.53846 6.02767 0.002544 

E. coli CowM3 14.13373 27 15.7249 30 11.25796 11.11111 1.013217 0.40057 

GenBac3 Rum2Bac 2.608061 15 2.64431 18 1.389883 20 0.069494 0.975479 

GenBac3 CF128 3.67763 16 5.72312 19 55.61979 18.75 2.966389 0.058053 

GenBac3 CowM2 2.26339 13 2.82787 16 24.93958 23.07692 1.080715 0.385386 

GenBac3 CowM3 2.97878 14 3.06592 17 2.925359 21.42857 0.136517 0.936857 

Rum2Bac CF128 2.876391 15 4.42915 18 53.98289 20 2.699145 0.076422 

Rum2Bac CowM2 1.462151 12 1.80727 15 23.60351 25 0.944141 0.444075 

Rum2Bac CowM3 2.177541 13 2.47435 16 13.63047 23.07692 0.590654 0.630006 

CF128 CowM2 2.53172 13 5.59767 16 121.1015 23.07692 5.24773 0.010324 

CF128 CowM3 3.24711 14 3.25469 17 0.233438 21.42857 0.010894 0.998379 

CowM2 CowM3 1.83287 11 3.32864 14 81.60808 27.27273 2.992296 0.066777 
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Abstract 

Model systems used to investigate the decay of fecal indicator bacteria differ in many respects 

from the environments they are intended to simulate. One major difference is the reactor type 

used to conduct decay studies, which typically relies on closed, recirculating conditions. Open 

systems are usually avoided in decay studies, as it is challenging to distinguish between removal 

from the system and loss due to decay. Here, we present an adjustment to observed concentration 

data generated from a Continuous-flow Stirred Tank Reactor that could be used to distinguish 

removal and decay. We tested the performance of this adjustment across a range of decay shapes 

and flow rates to assess the feasibility of this type of system for use in decay studies. Our 

simulations revealed that the proposed adjustment provides a reliable way to compare closed and 

open systems. 
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Introduction 

Fecal indicator bacteria (FIB) and molecular markers are used to signify the presence of 

fecal matter in recreational waters. To be used as reliable indicators of fecal contamination, the 

loss of measurability, referred to as decay, of indicators must be understood. While the systems 

selected to study decay have varied, there has been no investigation of how the model system 

selected to study FIB or marker decay impacts findings. Most decay studies are conducted using 

a homogenously mixed microcosm consisting of a volume of water seeded with fecal matter 

from a selected source (Ahmed et al., 2014; Anderson et al., 2005; Green et al., 2011; Jeanneau 

et al., 2012; Noble et al., 2004; Schulz and Childers, 2011; Sinton et al., 2002; Sokolova et al., 

2012; Solecki et al., 2011; Tambalo et al., 2012). An alternative approach employs dialysis bags 

attached to a submersible mesocosm (Bae and Wuertz, 2011, 2009b, Korajkic et al., 2014, 

2013a) , thus allowing for exchange of small materials with the environment. However, both of 

these systems constrain microorganisms within the system being studied, introducing a 

potentially significant difference between the model systems and the environments they are 

intended to model. To date, no study has explored the biases introduced by conducting decay 

studies in these closed systems. 

The Continuous-flow Stirred Tank Reactor (CSTR) is a mixed reactor with homogenous 

water matrix composition throughout the reactor volume. Additionally, in a CSTR, a controlled 

volume is continuously added to the reactor, which is held at constant volume, and thus an 

equivalent volume is continuously removed. This setup is commonly used as a model for well 

mixed ponds or lakes, but can also be used as a preliminary step for studying more complex 

systems, as it eliminates the need to account for processes that occur in the environment, such as 

dispersion. By using an idealized reactor, certain characteristics of interest, such as fate of a 
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contaminant, can be studied, while other properties, such as dispersion, can be controlled and 

thus explicitly accounted for by modeling efforts.  

In an open system, changes in concentration are not only caused by decay, but also by 

removal from the system as a result of flow. Open systems are usually avoided in decay studies, 

as it is challenging to distinguish between removal from the system and loss due to decay. To use 

such a system to study persistence of FIB, adjustments to the measured concentration must be 

made to account for loss due to removal, allowing for modeling of loss due to decay. Here, we 

establish an adjustment that can be incorporated into previously developed decay models, and 

calculate an adjusted concentration for use in decay calculations and models. Our objective was 

to use simulations to evaluate the possibility of using a CSTR as an alternative experimental 

design for the study of FIB, in which the system is open with respect to all water constituents.  

 

Methods 

Theoretical development of the concentration adjustment 

To develop the adjustment that could distinguish loss as a result of decay from loss due to 

removal, we started with mass balance calculations associated with CSTRs: 

Eq. 1: Accumulation (time rate of change) = ± transport ± sources/sinks ± kinetic changes 

Assuming proper mixing within the tank, and negligible inputs relative to the high concentration 

of FIB added, the equation can be simplified and rewritten specifically for a decay study:  

Eq 2: -∆C/∆t = Ct-1 –Ct = Total Loss = Decay + Removal  

Defining total loss as the change in the observed concentration during time t, this will include 

removal of FIB from the system as well as loss due to a loss of measurability. This can be written 
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dynamically as shown in Equation 2, or as is more common for decay studies, it can be written 

statically based on the concentration at time 0 (C0) 

Eq 3: Ct = C0*Decay*Removal 

Additionally, making the assumption that homogenous mixing has been achieved, and as a result, 

each bacterium has an equally likely chance of being removed from the system, removal can be 

modeled using a first order model with the rate of removal being equal to the flow rate (Q) 

divided by the volume (V) of the reactor (Ramaswami et al., 2005). If we let the rate of removal 

be expressed as kf = Q/V, then the static equation can be rewritten as: 

Eq 4: Ct = C0*Decay*exp(-kf*time) 

Finally, we rearrange this equation by dividing both sides by the removal term, resulting in: 

Eq 5: Cadj = Ct/exp(-kf*time) = C0*Decay  

This is equivalent to the typical models used to describe data collected in decay studies with Cadj 

in place of Ct. The decay term can then be modeled by an appropriate decay model using the 

adjusted concentration data.  

 Simulations to verify concept 

We conducted a series of simulations to test the ability of decay models to estimate decay 

parameters from an open system using adjusted concentrations. All simulations and analyses 

were conducted in R (R Core Team, 2015) using the Rstudio interface (2015). Data were 

generated with no replicates and negligible variability, and were intended to represent idealized 

data that could be observed from a decay study.  

Prior to conducting the open system simulations, we tested the ability of the models to fit 

the data generated by combinations of the decay parameters in a simulated closed system (i.e. no 

simulated flow). Decay profiles were simulated using parameters based on the range of values 
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for common decay shapes, including those with a shoulder and a tailing feature (Table 4.1). 

Decay models simulated included the Chick Watson (CW) model, the Delayed Chick Watson 

model (DCW), and the Chick Watson with Tail model (CWT). Combinations of decay 

parameters resulted in 5 simulations from the CW model, 25 from the DCW model, and 15 from 

the CWT model.  

Data were generated using the equation for each decay model (Table 4.1), assuming a 

sampling frequency of every 24 hours for 14 days, or until the simulated concentration was less 

than 1. Datasets consisting of three or fewer data points were removed from analysis. For each 

simulated data set, decay models were fit using the R2ADMB package (Bolker et al., 2015), both 

with the flow adjustment and without.  

Models fit to each simulated dataset were screened for successful fits based on whether or 

not estimates were provided for each parameter in the model. Additionally, fits were screened for 

imprecise estimates, as determined by wide ranging standard errors for the estimates. Models 

that provided estimates with standard errors greater than the model parameter were not 

considered to be successfully fit. For some combinations of model parameters, simulated model 

features (i.e. lag period or tailing) were not evident in the data, and the simulated model failed to 

fit the dataset. Combinations of parameters that were not successfully fit by the correct model 

were excluded from further analysis.  

Combinations of decay parameters that were successfully fit by the simulated model for a 

no flow system were combined with simulated flow rates to generate concentrations observed 

from an open system. Flow rates were simulated ranging from 0 to 10 L per hour with the 

simulated volume set to 100 L. Final counts of simulations were 99 from the CW model, 233 

from the DCW model, and 101 from the CWT model. 
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Simulated concentrations were fit to both the observed concentration with no adjustment 

and the adjusted concentrations and assessed for accuracy of parameter estimates. Additionally, 

to assess whether inaccurate estimates were the result of the adjustment or the shortened 

experiment resulting from removal in addition to decay, end point fits were calculated using the 

same model parameters under a no flow scenario, but datasets were shortened to the same 

duration as observed for the simulated datasets that included a flow rate.  

The simulations were assessed based on the ability of the best fitting model to accurately 

estimate the simulated decay parameters as well as to correctly describe the simulated data 

shape, as determined using Akaike Information Criterion (AIC) values (Akaike, 1992) to 

determine the best fitting model for each simulated dataset. Simulations for each shape were 

summarized by the percent of simulations that correctly described the data shape, and the 

correlation coefficient (R2) between the simulated or end point values and estimated values.  

 

Results and Discussion  

We simulated data for common decay models in a CSTR under a range of flow rates to 

assess the possibility of using an open system to study fecal indicator decay. Because of 

contaminant removal by flow-through, the contaminant of interest becomes undetectable in a 

CSTR earlier than in a closed system with an identical decay profile, shortening the duration of 

experiments. Our simulations demonstrated that the effects of this shortened duration had 

different impacts on our ability to detect and estimate decay parameters, varying across decay 

shapes. 

For data simulated from the CW decay model, when no adjustment was made to the 

concentration there was a poor correlation between the estimated decay rate and the simulated 
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decay rate (R2 = 0.3883). However, when the adjustment was made, regardless of the duration of 

the experiment there was a perfect correlation between the simulated and estimated values. This 

similarity suggests that the adjustment provided a reliable method for estimating the decay rate, 

and that the duration does not matter for linear decay data. The DCW model was selected to 

represent decay profiles that include a lag or shoulder period in the data. Decay curves with this 

shape have a period of little to no change in the beginning, followed by exponential decay. 

Simulations conducted based on a DCW model of decay showed a poor correlation between the 

estimated decay parameters (decay rate and lag duration) when no correction was made (Table 

4.1). Unlike the CW based simulations, those that included a lag period were still not perfectly 

correlated once the adjustment term was included in the models (R2 = .8505 for decay rate, 

0.5018 for lag duration).  

As the decay shape is not identical throughout time for this model, estimates of model 

parameters appeared inaccurate when duration of the experiment was not considered. However, 

if instead of comparing the estimated values to the simulated values, the data are compared to the 

endpoint value, in which the data were generated based on no flow, but were cut off so that the 

simulation only lasted the same duration as those with flow, perfect correlation (R2 = 1) was 

observed. Thus, when fitting decay rate models of the DCW shape, the estimates are only valid 

for the time frame modeled, and cannot be compared past this period.  

The ability to detect the lag feature in the data depended on the simulated flow rate. 

Dataset simulated for the DCW model high flow rates were not fit by the correct model (Figure 

4.1). Instead, only 48% of the simulations correctly identified the lag feature, but those estimates 

were accurate based on the endpoint values. This is because the shortened experimental duration 

results in inadequate data points to justify the inclusion of the lag parameter in the model.  
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Data simulated from the Chick Watson with Tail (CWT) model also experience 

differential decay rates throughout the data. In this shape, however, the period of minimal decay 

occurs following the exponential decay period, rather than before. The tailing feature was not 

detected by 58% of the simulations from the CWT model, the majority of which were at high 

flow rates (Figure 4.1). However, the datasets that were fit successfully by the CWT model 

accurately estimated the simulated values, regardless of duration. Thus, the tailing feature, if 

reached during the shortened experimental duration of the open system, was accurately 

estimated.  

While numerous studies have been conducted to measure FIB decay, characterization of 

potential biases introduced by a closed system to study FIB decay has never been studied. Before 

any conclusions drawn from decay studies can be extended to the environment, it is essential to 

understand the effects of the closed system on decay rate estimates. Here, we have provided an 

adjustment to the typical decay models that allows for the use of an open system to study FIB 

decay, thus enabling comparisons to be made between open and closed systems. The correction 

we defined is based on a known flow rate, and still required a simplified artificial setting in the 

form of a CSTR, but is an improvement over the classic methods of measuring FIB decay, as it 

allows for an exchange of the microbial community between the contaminated and clean waters. 

This adjustment can be applied to any cultivated bacterial indicator or genetic marker used to 

estimate decay rates for any target of interest.  
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Table 4.1 Models and parameter values simulated to test the utility of the adjustment. Performance was assessed using the R2 

correlation coefficient for each comparison (simulated values and raw data, simulated values and adjusted data, and end point 

estimates and adjusted data) and the percent of simulations that were matched to the correct model. 

Simulated 

Model 

Static Decay Model Simulated Values Simulated 

parameters / 

Estimated 

(no 

adjustment)

R2  

Simulated 

parameter/ 

Estimated 

(adjustmen

t) R2 

Estimated 

(end point)/ 

Estimated 

(adjustmen

t) R2 

Corrected 

%  Shape 

Match 

Chick 

Watson 

 

𝐶𝑡 =  𝐶0𝑒−𝑘𝑡 

k (hr-1) = 0.001, 0.005, 

0.01, 0.05, 0.1 

k: 0.3883 k: 1 k: 1 100% 

Delayed 

Chick 

Watson 

If t <= lag:  

𝐶𝑡 =  𝐶0 

If t > lag:  

𝐶𝑡 =  𝐶0𝑒−𝑘(𝑡−𝑙𝑎𝑔) 

k (hr-1) = 0.001, 0.005, 

0.01, 0.05, 0.1 

lag (hr) = 25, 75, 100, 

250, 500 

k: 0.5101 

Lag: 0.102 

k: 0.774 

Lag: 0.404 

k: 1 

Lag: 1 

48% 

Chick 

Watson with 

Tail 

𝐶𝑡

=  (𝐶0 − 𝐶𝑟𝑒𝑠)𝑒−𝑘𝑡

+ 𝐶𝑟𝑒𝑠 

k (hr-1) = 0.001, 0.005, 

0.01, 0.05, 0.1 

Cres (% of C0) = 1, 10, 

25 

k: 0.1029 

Tail: 0.123 

k: 1 

Tail: 1 

k: 1 

Tail: 1 

58% 
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Figure 4.1 Changes in the best fitting model for non-linear simulated data with simulated flow 

rate (Q) 
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Abstract  

 

Estimates of fecal indicator bacteria decay are primarily generated in artificial systems, making it 

difficult to extend findings to environments of interest. While numerous studies have 

investigated decay and the causes of decay for fecal indicator bacteria, the potential biases 

introduced through the use of closed systems, such as microcosms, or partially closed systems, 

using dialysis bags, have not been studied. To investigate effects of these systems, we conducted 

simultaneous decay studies for several fecal indicators using closed, partially closed, and 

analogous Continuous-flow Stirred Tank Reactor systems. Significantly different decay profiles 

for indicators measured in each of the different systems were observed. These differences could 

have serious ramifications for water quality applications.  
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Introduction 

Fecal indicators (FI) are used to monitor water quality. Traditionally, culture based 

techniques to grow and count FI bacteria, such as E. coli, are the preferred methods for 

enumeration, but recently genetic markers that target specific bacteria (Bernhard and Field, 2000; 

Chern et al., 2009, 2011; Haugland et al., 2005; Ludwig and Schleifer, 2000; Mieszkin et al., 

2010; Seurinck et al., 2005; Shanks et al., 2007, 2009)Siefring et al., 2008) have received 

increased attention. However, uncertainty regarding indicator persistence in the environment 

limits their applications (Ahmed et al., 2016). 

The results of past studies investigating the decay of FI have identified a number of 

environmental variables that impact their decay, such as the origin of fecal material (Anderson et 

al., 2005; Korajkic et al., 2013a; Liang et al., 2012), water matrix (Darakas et al., 2009; Green et 

al., 2011; Jeanneau et al., 2012; Korajkic et al., 2013b; Solecki et al., 2011), temperature (Craig 

et al., 2004; Kreader, 1998; Noble et al., 2004; Sokolova et al., 2012), light (Bae and Wuertz, 

2009; Davies-Colley et al., 1994; Dick et al., 2010; Green et al., 2011; Korajkic et al., 2013b; 

Walters and Field, 2009), and microbial community (Korajkic et al., 2013b). These studies vary 

with respect to the shape of the decay profile and estimates of decay rate (Ahmed et al., 2010; 

Dick and Field, 2004; Liang et al., 2012; Noble et al., 2004; Sinton et al., 2002; Sokolova et al., 

2012; Solecki et al., 2011; Tambalo et al., 2012; Walters and Field, 2009). While variability 

across studies is to be expected, it is likely that some inconsistency is due to the experimental 

decay system selection, not intended environmental stressors.  

FI decay is typically studied using a closed system, in which a microcosm spiked with 

fecal matter is sampled over time (Ahmed et al., 2014; Anderson et al., 2005; Green et al., 2011; 

Jeanneau et al., 2012; Noble et al., 2004; Schulz and Childers, 2011; Sinton et al., 2002; 
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Sokolova et al., 2012; Solecki et al., 2011; Tambalo et al., 2012). Alternatively, to avoid the 

effects of a closed system, some studies have used dialysis bags attached to a submersible 

support frame (Bae and Wuertz, 2009, 2011, Korajkic et al., 2013a, 2014). This system is only 

partially closed, as it allows for some exchange between the spiked water and the surrounding 

water, but still restricts exchange of the microbial community, including predators, which have 

been shown to have significant effects on the decay of FIB (Dick et al., 2010; Korajkic et al., 

2014; Rhodes and Kator, 1988; Wanjugi and Harwood, 2013).   

In an open system, mass can be lost or gained from the environment, allowing water 

constituents to be freely exchanged between the reactor and the surrounding environment. One 

example of an open system is a Continuous-flow Stirred Tank Reactor (CSTR). Implementing 

this system for studying FI decay may help to alleviate some potential biases in closed and 

partially closed systems, such as continual exposure of the indigenous water microbial 

community to the seeded water. However, a direct comparison of decay in closed, partially 

closed, and open systems is not possible, as in an open system, changes in FI concentration are 

the result of both decay, and the removal that results from simply leaving the system. To isolate 

the influence of decay only, so that the different systems could be compared, we accounted for 

removal through mathematical adjustment.  

In this study, we report the development and implementation of a novel open system 

reactor strategy to measure FI decomposition in ambient freshwater. Parallel decay experiments 

with closed and partially closed systems were conducted to identify potential similarities and 

differences related to the system selected to study decay. We conducted uncertainty analyses 

specifically using the observations for each FI to demonstrate the ranges of estimates that can be 

accurately detected given our experimental design. Observed differences in decay trends between 
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systems could have serious ramifications for water quality applications that rely on accurate 

indicator decay information.  

 

Methods 

Construction of different water systems 

Open system replicate tanks consisted of 125 L plastic sink basins with standpipes 

connected to a drain to accommodate a total volume of 100 L prior to overflow. To continuously 

add water to the open system, we utilized pre-existing infrastructure at the Aquatic Animal 

Health Laboratory (AAHL; Corvallis, OR) to pump water from the Willamette River to a 9500 L 

holding tank. Water was pumped from the holding tank through a 2 in (5.08 cm) diameter pipe 

located above the tanks, to which tubing couplers were added for insertion of ½ in (1.27 cm) 

diameter tubing (Figure 1). Flow reducers (VWR International, Arlington Heights, IL) were 

added to each line to create a connection onto the 1.27 cm tubing, to which was added ¼ in 

(0.635 cm) inner diameter Nalgene 180 Clear Plastic Metric Tubing (Nalge Nunc International, 

Rochester, NY).  

To regulate flow, pressure dependent button drippers were added onto the ¼ in (0.635 

cm) tubes, allowing flow rates to be adjusted via the inclusion of additional tubes or through 

increasing or decreasing the pressure in the pipe. Two flow rates were selected; the low flow 

setting contained only one inflow per tank, consisting of one DIG 1gph button dripper (Model 

#W221B, Home Depot, Atlanta, GA). The high flow setting was made by adding a 120° y-

connector (VWR International, Arlington Heights, IL) to the tube, onto which two 2gph button 

drippers (Model #W222B, Home Depot, Atlanta, GA) were added. A high level of pressure was 

maintained throughout the experiment by adding an additional discharge area that was placed 
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higher than the barbs used to transport water to the tanks (Figure 1), thus ensuring the pressure 

gradient was constant across time.  

Three replicate tanks were assigned to each of the following treatments: low flow, 

control; low flow with spike; high flow, control; and high flow with spike. Flow rate 

measurements were recorded daily by measuring discharge from the standpipe for one hour for 

each tank. The average hourly flow rate for the high flow setup was 5331 ml/hour (SD = 122 

ml/hour, range from 5178 to 5424), while the low flow setup had an average hourly flow rate of 

1308 (SD = 37 ml/hour, range from 1248 to 1352).  

Closed system replicates were constructed identically to the open systems, but with no 

water continuously added to the system. A partially-closed system was constructing using 

dialysis bags with a molecular weight cutoff of 14000 Molecular Weight Standards (Aldon Corp 

SE, Avon, NY). For each bag, 45 cm of 47.7 x 45 mm dialysis tubing was measured and soaked 

in DI water prior to receiving the sample. One end of the dialysis tubing was closed off by tying 

two knots on one end, and tightly wrapping a rubber band around the tubing between the two 

knots. Dialysis bags were stored in DI water until use.  

Inoculation of water systems with fecal slurry 

All systems were filled with river water from the adjacent Willamette River on day 0 of 

this experiment, approximately 2 hours before the addition of the slurry.  We combined 1 L of 

fresh cow feces, collected from the Oregon State University Dairy Cattle Farm and transported 

on ice to the AAHL, with 4 L of unfiltered river water, to create a 20% V:V dilution of feces to 

river water in an 18.9 L bucket. The slurry was mixed by shaking, and 500 ml of the slurry was 

immediately added to each spiked water system tank. Control tanks with no fecal slurry were 
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used to monitor the input levels from the water. All tanks were continuously mixed with a 

Koralia Circulation and Wave Pump (Hydror, Sacramento, CA). 

To fill the dialysis bags, 200 ml were subsampled from each of the recirculating tanks 

and added to the prepared dialysis bags. The tubing was then closed on the other end as 

described above, and added to additional tanks that were constructed identically to the high-flow 

open system tanks, but were not seeded with any fecal slurry. Three tanks containing 15 dialysis 

bags each were treated as replicates.  

Sampling and E. coli Enumeration 

Water samples were collected from recirculating and open-system tanks from the surface 

of the water near the location of the standpipe. Dialysis bags were sampled using destructive 

sampling in which the dialysis tubing was cut open and contents poured into a sample bottle. All 

samples were collected in sterile 500 ml polypropylene bottles and transported on ice for 

immediate processing. Samples were processed within six hours of collection.  

Samples for E. coli enumeration were collected twice daily on days 0 through 3, then 

daily from days 4 until day 7 for the closed and partially closed system, or until the concentration 

matched the un-spiked controls for the open systems. The closed and partially closed systems 

were also sampled every other day from days 7 through 14.  

To enumerate E. coli, 100 ml of sample was combined with a Colilert (Idexx 

Technologies, Westbrook, ME) packet in a disposable 120 ml tear-off vessel without sodium 

thiosulfate and mixed until the reagents were dissolved. When concentrations were expected to 

be above the range of quantification, serial dilutions were made from the raw samples prior to 

adding the Colilert packet. Mixed samples were then poured into a Quanti-Tray/2000 and heat 

sealed prior to incubating for 24 hours at 37°C. The number of large and small fluorescent wells 
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in the Quanti-Tray/2000 were counted and converted to E. coli MPN using the IDEXX Quanti-

Tray/2000 MPN Table.  

Marker Enumeration 

Samples were processed for genetic marker analysis at time 0 followed by every 48 hours 

for 9 days, and again on day 12. To concentrate bacteria, 50 ml of each water sample was 

collected on a 0.4 µm disposable polycarbonate filter (Pall Corporation, Fort Washington, NY) 

and frozen at -80°C until DNA was extracted. DNA extractions were performed following the 

manufacturer’s protocols using the Gene-Rite DNA extraction kit with modifications and 

processing controls implemented as recommended previously (Haugland et al., 2005). Extracted 

DNA was stored at -20°C for approximately one month until used for qPCR amplification. 

We quantified genetic markers from two indicators of general fecal contamination (Table 

5.1): the EC23S857 marker for E. coli (Chern et al., 2011), and the Bacteroidales associated 

marker (GenBac3; (Dick and Field, 2004; Siefring et al., 2008) combined with an Internal 

Amplification Control (Haugland et al., 2010). Additionally, we quantified the presence of the 

Rum2Bac marker (Mieszkin et al., 2010), as an indicator of ruminant fecal contamination (Raith 

et al., 2013). Details for qPCR runs and quality assurance and quality control measures are 

provided in supplemental materials (Appendix 1).  

Additional measurements 

Temperature, dissolved oxygen, and pH were monitored throughout the experiment using 

an YSI ProPlus Multiparameter meter (Yellow Springs International, Yellow Springs, OH) and 

revealed no significant differences (p>0.05) in water parameters between systems (mean 

temperature = 11°C, mean dissolved oxygen = 9.994 mg/L). All tanks were exposed to ambient 
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light within the AAHL, which is covered, but lined with windows, resulting in some light 

exposure during the experiment.  

Control tanks were analyzed for both the high flow and low flow open system to monitor 

for influxes of FI from sources other than the fecal slurry, such as elevated FI concentrations in 

the river water. FI levels in the control tanks were negligible relative to the spike levels 

throughout the experiment (Supplemental Materials).  

Uncertainty analysis  

We used simulations based on the observed concentrations and variability from our study 

to determine the range of parameters that could be accurately estimated given our study design. 

Simulations are described in depth in supplemental materials (Appendix 2). Briefly, using initial 

concentrations, sampling times, and variability observed specifically for the indicators used for 

this study, we generated confidence intervals for each estimate from the simulations, assuming a 

t-distribution with the degrees of freedom observed for each simulation. Estimates were 

classified as inaccurate when the simulated value fell outside the confidence interval generated 

from the model parameter estimate mean and standard error.  

Open system concentration adjustment and statistical comparison 

To generate comparable decay profiles between the open and closed systems, we adjusted 

the observed concentration data for each target from the open systems. To adjust observed 

concentration data (Ct), we divide the concentration observed by the concentration removed, as 

calculated using assumptions for a CSTR, resulting in: 

Eq 1: CAdjusted = CObserved/exp(-kf*time) 

where kf is calculated as Flow Rate/Volume using average flow rates for each tank (Figure 5.3).  
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Following this adjustment, we made statistical comparisons between the adjusted decay 

profiles. Decay models were fit to the survival ratio (St = C/C0) for each system using individual 

data points generated. Decay models fit to the data included the Chick Watson model (CW), 

Delayed Chick Watson (DCW), and Delayed Chick Watson with Tail (DCWT; Equations S1-

S3). Best fitting models were assigned based on the model that had the lowest Akaike 

Information Criterion (AIC) value (Table S5.2), which incorporates a penalty for the inclusion of 

additional parameters to be estimated, thus avoiding using unnecessarily complex models. 

Goodness of fit was assessed visually using residual errors for each best fitting model (data not 

shown). 

Statistical comparisons were made between the decay profiles for each FI across all 

systems using Global Model Fitting, as recommended for comparing nonlinear curves (Motulsky 

and Christopoulos, 2004). Briefly, data generated from different treatments were combined into 

one dataset, and the null hypothesis that the two datasets should be combined was compared to 

the alternative hypothesis that there was enough difference in the datasets to support separation 

into two different models. For all comparisons, data were cut short based on the duration of the 

shortest dataset used in the comparison. Using the sum of squared errors and the degrees of 

freedom for data fit separately or as one shared model, we generated the F-ratio and used it to 

determine the P-value for each comparison. To determine which features differed between  decay 

profiles generated for different systems, we used parameter means and standard errors to 

compute a t-statistic, which was then used to generate P-values for each comparison.  

 

Results 
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Uncertainty analysis 

An analysis of uncertainty for our estimates revealed that the accuracy of model 

parameter estimates and the ability of the models to fit the data varied depending on the 

simulated value, even when no flow was simulated (Figure 5.2). Simulations with high decay 

rates did not contain enough data points to fit the models, resulting in no model estimates for 

many simulations. Simulations based on the sampling and initial concentrations observed for 

cultivable E. coli had the fewest errors, likely due to the increased frequency of sampling, but the 

DCW model still fit the data poorly under the high flow scenario. No simulations for the 

EC23S857 contained enough data to be fit by models for the high flow system. Errors were 

generally lower for simulations conducted using the initial concentration of the two 

Bacteroidales associated markers (GenBac3 and Rum2Bac), but were still detected and were 

more prevalent for the open systems. However, high flow simulations resulted in more 

inaccurate estimates or an inability to fit the data, as the shortened datasets resulted in an 

inability to fit the DCW model to the data.   

FI decay in different water systems   

Differences in duration of the experiment were the result of different starting 

concentrations (C0) (Table 5.1), system, and the limits of detection for each FI (Table S5.1). Data 

were unavailable at later time points from the open systems, and in the case of the EC23S857 

marker, not enough data were available for analyses from the high flow system.  

Decay profiles generally consisted of a combination of a lag period, followed by 

exponential decay, followed in some profiles by a tailing feature (Figure 5.4). For datasets 

generated from the high flow systems, no lag periods were detected, while lag periods were 

detected for all other indicators in all other systems, with the exception of the EC23S857 marker 

in the closed system (Table 5.1). No tailing features were detected from any indicator in either of 
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the open systems, but tailing features were detected for most FI in the closed and partially closed 

systems.  

Statistical comparisons for all designs except for the high flow open system indicated 

highly significant differences (p< 0.00001) in decay profiles for cultivable E. coli. Statistical 

comparisons made between model parameters using the t-test revealed that there was no 

significant difference in the decay rates of the closed, partially closed, and low flow systems 

(p>0.05)(Figure 5.5). Duration of the lag period was significantly different between the closed 

and partially closed systems (p = < 0.01), but not significant between the low flow system and 

either the closed or partially closed systems (p > .05). For both the closed and partially closed 

systems, a tailing effect was detected and found to be significantly different (p = < 0.00001), 

with the dialysis treatment having a much higher residual concentration (10% of C0 for the 

partially closed system, <1% for the closed system) at the end of the experiment on day 14.  

Significant differences were detected in the decay profiles of EC23S857 between all 

systems (Table 5.2). The only feature detected for this marker in the closed system was the 

exponential decay. No significant differences were detected in the estimated decay rates between 

the closed and partially closed (p = 0.30) or low flow (p = 0.08) systems, while a difference was 

observed between the partially closed and low flow system (p = 0.029; Figure 5.5). Lag periods 

were detected for both the partially closed and low flow systems, but did not differ significantly 

from one another (p = 0.28). The decay profile for EC23S857 from the partially closed dataset 

was the only profile that exhibited a tail, with nearly 10% of the initial concentration remaining 

at the end of the experiment (Table 5.1).  

A comparison of decay profiles generated for the GenBac3 marker revealed no 

differences between the high flow system and the closed systems, but a difference was detected 
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between low flow and all other systems. For the low flow system, the decay rate estimate was 

significantly higher than estimates from the closed and partially closed systems, while it was 

significantly lower than the high flow system (Figure 5.5; Tables S5.3 and S5.4). A lag period 

was detected for the low flow system, even when shortened to the duration of the high flow 

experiment. Additionally, the observed lag period was significantly longer for the low flow 

system than the closed system (p = 0.012), while it did not differ from the partially closed system 

(p = 0.92). Comparisons between the closed and partially closed systems revealed no significant 

differences between the decay rate or lag duration, but did indicate a significant difference in the 

residual concentration (p = 0.031). 

For the Rum2Bac marker, differences were detected for all comparisons made across 

systems. No lag period was observed for the high flow system, while lag periods were observed 

for each of the other systems even when cut off to the duration of the high flow system (Table 

S5.4). No significant difference was observed between the lag period for the low flow system 

and either the closed or partially closed systems (p>0.05). However, there was a difference 

between both the lag estimates (p = 0.0074) for the closed and partially closed systems. The 

closed and partially closed systems, however, did not experience a significant difference in decay 

rates (p = 0.49) or residual concentrations (p = 0.094).  

 

Discussion 

Paired experiments measuring the decay of select cultivated and genetic FI demonstrated 

that different experiment systems used to study decay can lead to significantly different results. 

Causes of FIB decay are often attributed to environmental variables like temperature and light 

(Craig et al., 2004; Dick et al., 2010; Noble et al., 2004; Walters and Field, 2009; Whitman et al., 
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2004). In this experiment, the only variable tested was system type, and all other known 

covariates were equivalent for all experiments. Thus, differences between the data can be 

attributed to the effects of the closed, partially closed, or open systems.   

The number of inaccurate estimates parameter combinations from our uncertainty 

analysis revealed the difficulties associated with making estimates of model parameters, 

regardless of the system choice. The accuracy of estimates varied with the value of the model 

parameter, as well as indicator specific settings such as starting concentration (C0). Typically, 

when the Chick Watson model was successfully fit to the data, it did a good job of estimating the 

simulated value, but many of the simulations failed to be fit due to either high variability or a 

poor fit, even when trying to fit the same model that had been simulated. Experimental design 

features such as sampling frequency also impacted the accuracy of model parameter estimates, 

highlighting the need to assess uncertainty when conducting decay studies or comparing reported 

estimates from different studies. We proceeded with estimates generated from best fitting 

models, but used caution in comparisons that rely on precise estimates for our parameters. 

At the beginning of the experiment, prior to exponential decay, the survival ratios from 

the FI were similar across systems, suggesting the adjustment term was a reliable way to correct 

for removal from the system. Thus, we feel confident that the adjustment was successful and the 

discrepancies between the curves are the result of biological differences rather than a failure of 

the adjustment term. However, one disadvantage to implementing the open system experimental 

design is the shortening of the experiment, as due to marker removal, marker concentrations drop 

below the lower limit of quantitation earlier than in closed systems, regardless of the shape of 

decay profiles. Thus, estimates from the open systems can only be generated for the beginning of 

the decay profile, and cannot be extended past the last data point.  
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The log-linear relationship between concentration and time is often modeled for decay 

studies (Ahmed et al., 2014; Bell et al., 2009; Jeanneau et al., 2012; Noble et al., 2004; Schulz 

and Childers, 2011; Sinton et al., 2007, 2002; Sokolova et al., 2012; Walters and Field, 2009). 

While additional features were detected for most decay profiles, some portion of nearly all decay 

profiles were found to undergo exponential decay that was modeled using a log-linear 

relationship for either a portion of the experiment or a portion of the initial concentration.  

The partially closed system allowed for the removal of small materials, while 

constraining the microbial community, and experienced no difference in decay rate for any 

marker relative to the closed system. This suggests that the cause or causes of decay were not 

being removed from the system in the partially closed system, and were thus larger than the 

dialysis bag molecular weight cutoff.  

As decay rates observed for the high flow systems were low, and for E. coli, not 

significantly different from zero, it appeared that the indicators in the high flow systems did not 

enter the exponential decay phase, and were instead only observed in a period of little to no 

decay. Additionally, lag periods tended to be longer for low flow and partially closed systems 

relative to the closed system, suggesting that the causes of exponential decay took longer to take 

effect as the system became more open. Both these observations suggest that diluting cells 

prevents or delays their decay; observed decay was thus density dependent. The presence of a lag 

period before the exponential decay phase has been observed previously in experimental designs 

using the partially closed system deployed into freshwater (Bae and Wuertz, 2011; Korajkic et 

al., 2014). While possible explanations for the lag period have been proposed to be a buildup of 

predators (Green et al., 2011) or the breakdown of a critical component key to the survival of the 

indicator (Geeraerd et al., 2000), no cause has been demonstrated to directly cause the lag period.  
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Tails have previously been detected using a closed system (Jeanneau et al., 2012; Solecki 

et al., 2011) and have been hypothesized to be the result of a resistant sub population that fails to 

succumb to the pressures that lead to exponential decay (Cerf, 1977). However, it is also 

conceivable that the tail could result from a decreased potency in the cause(s) of decay over time, 

leading to decreased decay again at the later hours of the experiment. While no tailing effects 

were detected in the open systems, likely as a result of removal even if a tail were present, 

significantly different tailing effects were observed for the closed and partially closed systems. 

Higher residual concentrations were found for the partially closed systems, suggesting that the 

exchange of small materials provided an environment in which indicators were not being 

removed from the system.  

Our results suggest that the less closed the system, the longer the persistence of the 

indicators tested in this study. This result implies that since the environment is an open system, 

we may be overestimating how recent a contamination event is, if we use decay rates derived 

from closed systems experiments. This study focused on fecal indicators, and did not measure 

the decay of any associated fecal pathogens. However, it is possible that the same extended 

persistence could occur for pathogens. Future research is warranted to characterize the influence 

of open system conditions on public health relevant pathogens.  

Although the open system approach described here clearly demonstrates how 

experimental design can influence decay findings, it is important to recognize limitations in this 

novel approach. Uncertainty analysis indicated a shortened duration of measurable 

concentrations and a loss of indicator measurement sensitivity, likely due to the additional 

variability in an open system. Despite these limitations, using an open system to study decay has 

several advantages over traditional setups. The exchange of all water constituents has the 
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possibility to influence estimates of decay, as was reported in this study. Here we used flow rates 

at both ends of the feasible ranges, resulting in different decay profiles for each flow rate. The 

flow rates set in this experiment were determined based on the results of the simulations, rather 

than with any environmental considerations.  

The results from this study provide a good starting point to further investigate differences 

between estimates of decay profiles generated from an artificial setting and what is likely to 

occur in the environments of interest. Our findings demonstrate that the system used to study 

decay can greatly influence results, but do not fully model the environments of interest, as a 

CSTR differs greatly from natural water bodies. In future studies, flow rates could be simulated 

based on observed hydrological phenomena, and used to more accurately estimate decay, thus 

better simulating the environment. Additionally, this type of modelling could be adjusted from 

the perfect mixing assumption to incorporate other hydrological phenomena, such as dispersion 

or settling, thus allowing decay studies to be conducted in the environments of interest.  
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Figures and Tables: 

 

 
Figure 5.1 Schematic diagram of the low-flow and high-flow CTSRs. Water from the Willamette 

River passed from a holding tank through a series of connectors into the tanks, through either a 

single 1 gph button dripper (low flow tanks), or two 2 gph drippers (high flow tanks). A 

standpipe in each tank kept the volume within the tanks constant at 100L. 
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Figure 5.2 Counts of inaccurate estimates of model parameters detected when simulating 

combinations of model parameters from the Chick Watson (decay rate estimate), Delayed Chick 

Watson decay rate estimate, and lag period estimate. Estimates were classified as inaccurate 

when the simulated value was not within the confidence intervals for the estimates. Y axis 

represents simulated decay rates, x axis represents simulated lag durations (0 for Chick Watson 

Model). Gray blocks mean no values could be calculated for that combination of parameters. 
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Figure 5.3 Concentrations per 100 ml measured from the open systems before (closed shapes) 

and after (open shapes) the adjustment to the data.  
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Figure 5.4 Different decay profiles generated from adjusted concentrations measured from each 

of the four systems as estimated using the best fitting models. Error bars on mean values 

represent standard deviation estimates for the three replicates. Decay rate estimates were 

calculated using natural log, but lines displayed here were adjusted and are displayed here on the 

log10 scale for ease of interpretation.  
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Figure 5.5 Summary of differences observed for all targets across all systems. Stars indicate 

significance levels (* indicates significance at α = 0.1, ** indicates significance at α = 0.05, and 

*** indicates significance at α < 0.01) 
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Table 5.1 Summary results for the best fitting models for each system. Values in parentheses 

represent standard error of the estimates.  

 
Indicator System Best Fitting 

Model 

Log 10 

Mean C0 

/ 100 ml 

Lag 

(Hours) 

Decay 

Rate 

(Hour-1) 

Tail (% 

of C0) 

Duratio

n 

(hours) 

Cultivable 

E. coli 

Closed Delayed Chick 

Watson with Tail 

4.16 

(3.56) 

48.68 

(13.99) 

.0204 

(.0033) 

.0066 

(.0052) 

336 

 Partially 

Closed 

 

Delayed Chick 

Watson with Tail 

4.16 

(3.56) 

96.0 (.022) .0444  

(.018) 

 

.10 

(.00048) 

336 

 Open –  

Low Flow 

Delayed Chick 

Watson 

4.10 

(3.63) 

82.28 (8.14) .0528 

(.0076) 

-- 168 

 Open –  

High Flow 

Chick Watson 4.02 

(3.22) 

1.9e-9 

 (1.93 e-6) 

-- -- 120 

EC23S857 Closed Chick Watson 5.54 

(4.99) 

0.012 

(0.00097) 

-- -- 288 

 Partially 

Closed  

Delayed Chick 

Watson with Tail 

5.54 

(4.99) 

0.030 

(0.017)  

28  

(0.092) 

9.2  

(3.5) 

288 

 Open –  

Low Flow 

Delayed Chick 

Watson  

5.49 

(5.02) 

0.033 

(0.012) 

51 (19) -- 120 

 Open –  

High Flow 

NA 5.39 

(4.77) 

-- -- -- 24 

GenBac3 Closed Delayed Chick 

Watson with Tail 

7.87 

(7.30) 

0.058 

(0.0084) 

79  

(12) 

0.02 

(0.01) 

288 

 Partially 

Closed 

Delayed Chick 

Watson with Tail 

7.87 

(7.30) 

0.055 

(0.093) 

102  

(9.4) 

0.23 

(0.088) 

288 

 Low Flow Delayed Chick 

Watson 

7.83 

(7.43) 

0.88 (0.012) 98  

(7.1) 

-- 168 

 High Flow Chick Watson 7.64 

(7.17) 

0.0091 

(0.0029) 

-- -- 120 

Rum2Bac Closed Delayed Chick 

Watson with Tail 

7.25 

(6.80) 

0.087 

(0.0087) 

72  

(0.15) 

0.057 

(0.029) 

288 

 Partially 

Closed 

Delayed Chick 

Watson with Tail 

7.25 

(6.80) 

0.075 

(0.015) 

98  

(9.0) 

0.16 

(0.049) 

288 

 Open –  

Low Flow 

Delayed Chick 

Watson 

7.26 

(6.87) 

0.068 

(0.017) 

81  

(14) 

-- 168 

 Open –  

High Flow 

Chick Watson 7.05 

(6.63) 

0.015 

(0.0029) 

-- -- 120 
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Table 5.2 Summary for P-values comparing curves for each combination of systems.  
 

System 1 System 2 Cultivable E. 

coli 

EC23S857 GenBac3 Rum2Bac 

Closed Partially 

Closed 

< 0.000001 0.00010 < 0.000001 < 0.000001 

Closed Open – Low 

Flow 

< 0.000001 0.012 0.0072 0.0076 

Closed Open – High 

Flow 

< 0.000001 0.39 0.31 0.000053 

Partially 

Closed 

Open – Low 

Flow 

< 0.000001 0.000012 < 0.000001 0.0050 

Partially 

Closed 

Open – High 

Flow 

< 0.000001 0.094 0.60 0.014 

Open – 

Low 

Flow 

Open – High 

Flow 

< 0.000001 0.37 0.0038 0.00029 
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Supplemental Materials: 

 

Appendix 1: qPCR Methods 

 

Quantitative PCR was conducted using an ABI 7500 Fast Real-Time PCR system 

(Thermo Fisher Scientific, Carlsbad, CA). Individual plates were run for all samples for the first 

5 days, and one plate containing the remaining samples was analyzed for days 7, 9 and 12, 

resulting in 5 runs per marker. A single plasmid was constructed to contain sequences for all 

targeted sequences. Serial dilutions of the standard were used to construct calibration curves for 

each run on the instrument. For each assay, a 20 µl reaction consisted of 10 µl TaqMan Fast 

Universal Master Mix, 500 nmol l-1 of each primer, and 250 nmol l-1 of probe. All reactions were 

performed in triplicate in MicroAmp optical 96-well plates with optical adhesive film (Thermo 

Fisher Scientific, Carlsbad, CA). Cycling parameters for all assays included a 2 minute start at 

94°C followed by 40 cycles of 15s at 94°C and 32s at 60°C. Cycle threshold for each run was 

determined by the software provided with the ABI 7500 Fast Real-Time PCR system and used to 

calculate the concentration using equations fit from the standard curves (Table S5.1).  

Quality controls were implemented across several steps of the sample processing. 

Unspiked control tanks monitored for the addition of genetic markers from water added to the 

open system revealed negligible inputs for Rum2Bac and EC23S857, and a consistently 

detectable presence of GenBac3 (mean = 25000 markers/100 ml). Extraction blanks were created 

and analyzed to detect contamination as well as a baseline for the sample processing control. A 

sample processing control (Haugland et al., 2005) added to the extraction buffer was measured 

for all samples. Cycle thresholds from extraction blanks were used to create a range equal to the 

mean +/- 3*standard deviation for extraction blanks for each plate of acceptable cycle thresholds 

for samples. Cycle thresholds for all samples were within this range. Internal amplification 
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controls (AIC) were used to measure the effects of inhibition. The GenBac3 assay was conducted 

as a multiplex reaction, in which 100 copies of IAC (Haugland et al., 2010) was spiked into each 

sample, and inhibition to the samples was measured by creating acceptable bounds. Some 

samples were outside the bounds of the acceptable cycle thresholds, but not beyond the extent 

that was observed for samples at those concentrations, suggesting acceptable levels of inhibition.  

Negative Template Controls were included for all plates, revealing no contamination of qPCR 

reactions.  
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Table S5.1 Primers and Probes used to quantify markers in this study 

Target Primers and Probes Range of 

Quantitation / 

100 ml 

Reference 

EC23S857 

(E. coli) 

Forward: GGTAGAGCACTGTTTTGGCA 

Reverse: TGTCTCCCGTGATAACTTTCTC 

Probe: [FAM]TCATCCCGACTTACCAACCCG-[TAMRA] 

108-103
 Chern et al. 

2012 

GenBac3 

(General 

Bacteroidales) 

Forward: GGGGTTCTGAGAGGAAGGT 

Reverse: CCGTCATCCTTCACGCTACT 

Probe: 

[FAM]CAATATTCCTCACTGCTGCCTCCCGTA[TAMRA] 

  

109-103
 (Dick and 

Field, 

2004; 

Siefring et 

al., 2008) 

Rum2Bac 

(Ruminant 

Associated 

Bacteroidales) 

Forward: ACAGCCCGCGATTGATACTGGTAA 

Reverse: CAATCGGAGTTCTTCGTGAT 

Probe: [FAM]-ATGAGGTGGATGGAATTCGTGGTGT-[BHQ-1] 

  

109-102
 Mieszkin et 

al. 2009 
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Appendix 2: Uncertainty Analysis Methods 

Based on the results of the decay study, we conducted additional simulations specific for 

the initial concentration observed, the variability measured in flow rates and fecal indicator 

measurements, and the sampling times selected for this study. For these simulations, three 

identical replicate datasets were generated, assuming mean concentrations as calculated from the 

following decay models: 

Equation S1: Chick Watson Model  

𝐶𝑡 =  𝐶0𝑒−𝑘𝑡, where k = decay rate (hour-1), t = time (hours) 

Equation S2: Delayed Chick Watson Model  

If t <= lag: 𝐶𝑡 =  𝐶0  

If t > lag: 𝐶𝑡 =  𝐶0𝑒−𝑘(𝑡−𝑙𝑎𝑔), where lag = duration of no decay period (hours),  

Equation S3: Delayed Chick Watson with Tail  

If t <= lag: 𝐶𝑡 =  𝐶0  

If t > lag: 𝐶𝑡 = (𝐶0 − 𝑇𝑎𝑖𝑙)𝑒−𝑘(𝑡−𝑙𝑎𝑔) + 𝑇𝑎𝑖𝑙, where Tail = proportion of C0 

(unitless, (Copy number/100 ml)/C0) 

 Time points and ranges of quantitation for these simulations were identical to our sampling 

scheme for the simulated indicator. Error terms were then added to each simulated value, 

assuming a distribution of the errors as Normal(0, .25*Ct). The 25% standard deviation was 

based on the observed variability in the data generated for the closed system observations from 

our decay study. Decay models were then fit to the generated datasets to provide a no flow 

assessment of fit including the variability.  

To simulate flow similar to what was observed in our study, we added a flow term to the 

simulated data based on flow rate values and errors detected in our study. Variable flow rates 
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were simulated for each hour based on the observed flow rates (i.e. a Normal(5331,122) 

distribution for the high flow simulations, and Normal(1308,27) for the low flow simulations). 

We used the average flow rate (5331 or 1308 ml/hour) to adjust the data, which was fit by decay 

models. Comparisons were made to the accuracy of the model parameter estimates based on the 

simulated values. The range of accuracy was determined based on the range of decay rate 

parameters that were fit by the confidence interval for each estimate. Simulations were repeated 

each time for each combination of parameters. 
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Additional Supplemental Tables 

Table S5.2 Best fits for datasets shortened to low flow last sampling point 

Marker Dataset Best Fitting Models Decay Rate  

(per hour) 

Lag (hours) Tail  

Cultivable 

E. coli 

Open – Low 

Flow 

Delayed Chick Watson 0.053 

(0.0076) 

82 (8.1) -- 

 Closed Delayed Chick Watson 

with Tail 

0.044 

(0.026) 

65 (13) 9.3 (5.2) 

 Partially 

Closed 

Delayed Chick Watson 

with Tail 

0.068 

(0.020) 

96 (0.017) 10 (0.26) 

EC23S857 Partially 

Closed 

Chick Watson 0.0041 

(0.0029) 

--  -- 

 Low Flow Delayed Chick Watson 0.033 

(0.012) 

51 (19) -- 

 Closed Chick Watson 0.012 

(0.0029) 

--  -- 

GenBac3 Partially 

Closed 

Delayed Chick Watson 0.050 

(0.012) 

99 (12) -- 

 Low Flow Delayed Chick Watson 0.088 

(0.012) 

98 (7.1) -- 

 Closed Delayed Chick Watson 0.051 

(0.0060) 

70 (7.5) -- 

Rum2Bac Partially 

Closed 

Delayed Chick Watson 0.076 

(0.012) 

102 (7.7) -- 

 Low Flow Delayed Chick Watson 0.068 

(0.017) 

81 (14) -- 

 Closed Delayed Chick Watson 0.074 

(0.0060) 

70 (6.13) -- 
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Table S5.3 Best Fits for datasets shortened to high flow last sampling point. Analyses for 

EC23S857 are not included as there was not enough data to fit the models. No tailing effects 

were detected for datasets shortened to this duration.  
 

Marker System Best Fitting 

Model 

Decay Rate 

Estimate 

(hour-1) 

Lag (Hours) 

Cultivable  

E. coli 

Closed Delayed Chick 

Watson 

0.032 (0.012) 62 (15) 

 Partially 

Closed 

Delayed Chick 

Watson 

0.078 (0.012) 96 (0.023) 

 Low Flow Delayed Chick 

Watson 

0.065 (0.024) 87 (9.0) 

 High Flow Chick Watson 1.9e-9 (1.93e-6)  

GenBac3 Closed Chick Watson 0.125084  

 Partially 

Closed 

Chick Watson 0.0065  

(0.0029) 

-- 

 Low Flow Delayed Chick 

Watson 

0.035 (0.012) 65 (13) 

 High Flow Chick Watson 0.0091 

(0.0029) 

-- 

Rum2Bac Closed Delayed Chick 

Watson 

0.090 (0.0084) 72 (0.55) 

 Partially 

Closed 

Delayed Chick 

Watson 

0.083 (0.020) 99 (0.33) 

 Low Flow Delayed Chick 

Watson 

0.053 (0.012) 70 (8.0) 

 High Flow Chick Watson 0.015443 

(0.029) 

-- 
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The interpretation of fecal indicator data gathered for water quality monitoring can 

depend on the survival characteristics of the selected indicator. Different decay properties for 

indicators make statements regarding human health risks and identification of contributing fecal 

sources challenging. Despite a large body of literature, uncertainties regarding indicator decay in 

the environment limit some applications of indicator data, such as inclusion in spatial modelling 

efforts for identification of nonpoint sources. Information addressing unidentified sources of 

variability in decay estimates is essential to making advances in the use of this type of water 

quality monitoring.  

We used Bayesian meta-analysis and meta-regression techniques to synthesize existing 

decay rate estimates for a number of indicators. This allowed us to identify credible ranges for 

published decay rate estimates in the environment and identify environmental variables that 

affect decay rate estimates. Temperature was found to be significant for all indicators, while light 

was only significant for culture-based indicators. The results show that despite the inclusion of 

significant variables, high amounts of unexplained variation across decay rate estimates exist, 

leading to wide credible intervals. Additionally, gaps in the data were detected, especially for 

ruminant specific markers, meaning application of the synthesized decay rate estimates beyond 

the specific experimental designs tested previously is not advised.  

We observed differential decay for ruminant-associated markers, cattle-associated 

markers, and general indicators, using a mesocosm seeded with fecal matter from dairy cattle. 

Differences were noted in the overall shape of the decay profiles using global model fitting, 

demonstrating the effectiveness of this technique for comparison of nonlinear decay curves. 

Cattle-associated markers were present at low abundance, and crossed the lower limit of 

quantitation within the first three days of the experiment, while other markers were detected for 
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five days, and culturable E. coli persisted for seven days. Bacteroidales associated markers 

displayed similar decay profiles to one another, but differed from E. coli and CowM2. The decay 

profile from CowM3 did not differ from any other indicator, possibly due to the limited data 

available before the concentration passed below the limit of quantitation. These findings 

highlight the need for caution when selecting markers for source tracking, as differential 

persistence can lead to different interpretations regarding sources contributing to fecal 

contamination.  

We used simulations to verify the feasibility of conducting decay studies in an open 

system. We found that while it is possible to adjust for loss caused by removal from the system, 

thus allowing only decay to be considered, the openness of the system results in a loss of 

sensitivity, as the duration of measurable concentrations is inherently shortened. Building upon 

the simulations, we designed an open system and compared decay profiles for several fecal 

indicators in open, closed, and partially closed systems. We found different decay profiles across 

systems, with a general trend of increased lag period prior to exponential decay as the system 

became more open. Our findings demonstrate one example of the effects that experimental 

design, specifically system selection, has on our understanding of fecal indicator decay. 

While a large volume of data is available addressing fecal indicator decay, we have 

demonstrated that additional variables, such as experimental design, including marker and 

system selection, as well as techniques chosen for statistical comparisons, influence the results of 

decay studies, and thus, interpretation of water quality monitoring results. As the use of fecal 

indicators continues, more research is necessary to continue to identify additional sources of 

discrepancy in decay study findings and observe decay in more realistic environments.  

 

 


