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Information Criterion for Nonparametric Model-Assisted Survey

Estimators

1 Introduction

In statistical problems, a sample is assumed to be a collection of realizations from

an infinite population. An example of this is rolling a fair die multiple times and record-

ing the outcome. The die can be repeatedly rolled, with no fixed sample size, since the

die represents an infinite population. Another common assumption is that observations

from each draw are independent and follow an identical distribution. In the die ex-

ample, each roll does not affect the outcome of the next roll. However, in sampling a

finite setting, a subset of elements in a fixed population size is selected to represent the

whole population.

1.1 Survey Sampling

The survey sampling paradigm assumes a sample is a collection of elements drawn

randomly from a fixed finite population. The population consists of elements, each

having a fixed value or a set of values. In a simple random sample, each element has

the same chance of selection. However, elements of the population can be randomly

selected with varying probabilities usually due to selecting units in various stages or

phases of sampling. Survey sampling methodology was developed to properly analyze

and draw valid inference to account for how the sample was selected.
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In stratification, elements in a population can be grouped into strata and elements

are selected within strata. This can be used to ensure the sample consists of elements

taken from known subgroups (or strata) in the population. However, attempts to pur-

posely select elements to represent specific subclasses without a probability design

were shown by Neyman (1934) to be unsatisfactory for achieving a representative sam-

ple, while stratified random samples were shown to accurately represent the population.

Another feature commonly used to reduce costs of surveys across a wide geographic

area is multistage sampling. Mahalanobis (2015) gave methods for maximizing the

precision of large-scale multistage samples with respect to the unit cost.

Data collected from survey samples are often used to estimate population param-

eters, such as the mean or total of the population. Horvitz and Thompson (1952)

proposed a design-unbiased estimator of the population total and a design-unbiased

estimator of its variance. Although the total estimate was widely used, its variance es-

timator was inefficient and could produce negative estimates under certain conditions.

Yates and Gundy (1953) derived a nonnegative design-unbiased variance estimator that

was more efficient than the Horvitz-Thompson variance estimator.

Applications of sampling methods and survey methodology emerged over the next

25 years to provide guidance to practitioners conducting surveys. A comprehensive

summary of commonly used survey methods was given in Yates (1946), where the

author compared the available methods and showed how they relate to each other. Ap-

plications of survey methods were found in the economic and social sciences, as well

as in agriculture and biology. Later, Yates (1949) gave a more extensive and less math-

ematical summary of applications for census surveys. Deming (1950) discussed both
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sampling theory and practical applications requiring the reader to only know college

algebra. Cochran (1953) followed this work with extensive proofs of the sampling the-

ory results. Hansen et al. (1953) provided a two volume book with details of sampling

applications in volume 1 and provided theory and proofs in volume 2. A summary of

the applications of sampling methods to agriculture was given by Panse and Sukhatme

(1954). Sampling techniques, with applications to surveying human subjects, were

discussed by Kish (1965).

A shift in the sampling literature started with Brewer (1963) when he considered

the fixed population to be the realization of an underlying stochastic processes. This

concept was extended to certain linear models by Royall (1970). The theory of model-

assisted estimation assumes that the underlying stochastic process is a superpopulation

model that describes the distribution of the variable of interest conditioned on the aux-

iliary variables [Isaki and Fuller (1982)]. When auxiliary information is available for

all elements in the population, such as satellite data or government records, a more

efficient estimator of population estimates can be achieved through model-assisted es-

timation [e.g. Cochran (1953), Cassel et al. (1976), Wright (1983)]. The first examples

of model-assisted approaches were ratio and regression estimation. The best linear

unbiased estimator properties of the ratio estimator were developed in Brewer (1963),

including an expression of the conditional variance of the ratio estimator. Estimation

techniques, such as ratio and regression estimation, assume a linear relationship be-

tween the response and auxiliary variables.

A broader concept called generalized linear regression estimation was introduced to

finite population sampling by Cassel et al. (1977). Generalized linear models allowed
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for the error structures to take many forms beyond the normal distribution. Robinson

and Särndal (1983) established the asymptotic properties of generalized linear mod-

els for finite populations. By considering the case where the superpopulation model

is a degenerate random variable, Robinson and Särndal (1983) unified the theory of

traditional sampling theory with the superpopulation approach. Another connection

in sampling theory was made by Deville and Särndal (1992), who showed that gener-

alized regression estimation can be written as a weighted sum using weights that are

calibrated for population totals. A summary of these model-assisted developments can

found in Särdnal et al. (1992).

Not all relationships between the response and auxiliary variables are linear. Non-

parametric models can be used to better approximate nonlinear relationships. These

models relax assumptions on the functional form of the relationship which is necessary

when the relationship is nonlinear. The nonparametric models provide more robust

estimation with respect to model misspecification.

1.2 Nonparametric Modeling

Nonparametric modeling has recently gained popularity due to its ability in de-

tecting relatively complex nonlinear relationships. In literature, a variety of smooth-

ing techniques have been developed to estimate nonparametric functions, which in-

cludes kernel based methods such as kernel smoothing, local polynomial smoothing

[Fan (1993)], locally weighted scatter plot smoothing [Cleveland (1979)], and meth-

ods based on spline approximations such as regression spline [Stone (1985)], smooth-
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ing spline [Wahba (1978)], and penalized regression spline [Ruppert et al. (2003)].

All aforementioned smoothing methods are useful in estimating univariate or low di-

mensional nonparametric functions. However, there are challenges in estimating non-

parametric functions with a large number of predictor variables due to the “curse of

dimensionality”, which refers to the phenomena that available data becomes too sparse

in high-dimensions and it requires exponentially more data points to achieve reliable

estimation results.

To partly alleviate the “curse of dimensionality”, many semi-parametric models

have been proposed that specify additional structures on the nonparametric functions.

In this paper, we focus on the additive model ([Stone (1985)], [Hastie and Tibshirani

(1986)]). The additive model has been used in a variety of applications including mor-

tality in open heart surgery [Parsonnet et al. (1989)], shadow fading in signal strength

[Salo et al. (2007)], and genetic modeling [Lo et al. (1993)] . The additive model

assumes the contribution of each covariate to be additive, but the form of each contri-

bution is an unspecified univariate function. [Hastie and Tibshirani (1986)] proposed to

estimate the functions through backfitting. Cleveland and Devlin (1988) extended local

polynomial regression estimation to multivariate functions using the additive model.

Other proposed estimation methods for additive model estimation include marginal

integration [Linton and Nielsen (1995)], smooth backfitting [Mammen et al. (1999)],

regression spline estimators [Stone (1985), Stone (1994)], and spline-backfitted kernel

smoothing [Wang and Yang (2007)].

Developments in nonparametric methods have been adapted to survey sampling to

improve the finite population estimates. Kuo (1988) introduced the use of nonparamet-
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ric methods to estimate distribution functions from survey data. Nonparametric regres-

sion was extended to model-assisted estimation by Dorfman (1992) and was also used

for estimation finite population distribution functions by Dorfman and Hall (1993).

Chambers et al. (1993) proposed a bias robust nonparametric calibration method for

estimating population totals. Chambers (1996) used a nonparametric regression bias

correction factor to improve case-weighting. Univariate local polynomial regression

was extended to model-assisted estimators by Breidt and Opsomer (2000). They proved

the total estimate is asymptotically design-unbiased and consistent. Breidt et al. (2005)

proposed a class of univariate estimators based on penalized polynomial splines using

a data-driven penalty parameter. Multivariate methods were considered by Opsomer et

al. (2007) assuming a generalized additive model and by Breidt et al. (2007) assuming

a semiparametric model.

Wang and Wang (2011) used the spline-backfitted local linear (SBLL) estimator to

estimate additive functions in data collected using a design based sample. The proce-

dure is shown to have high computational speed and efficiency for large data sets with

a large number of observations and auxiliary variables. A variable selection method

based on asymptotic mean squared error is presented and the authors state that it is

design consistent under simple random sampling.

Nonparametric model-assisted estimation is a flexible approach to build a regres-

sion model. The shape of the relationship between the auxiliary information with the

response variable need not be known. The drawback is that the model may be overfit,

resulting in higher sampling variability [Burnham and Anderson (2003)]. Procedures,

such as variable selection, can be used to remove unrelevant variables.



7

1.3 Variable Selection

Variable selection is a statistical procedure used to select the ”best” subset of avail-

able variables to be included in the model. It not only reduces model complexity, but

also improves prediction accuracy of statistical models. It plays an important role in

statistical learning and modeling of high dimensional data arising in many scientific

areas. One challenge in variable selection is that the number of candidate models (2p)

is too large that prohibits a full search even with moderate number of variables p.

One fundamental approach to perform variable selection is through stepwise deletion

or subset selection using criteria such as Marrows’ Cp, Akaike Information Criterion

(AIC), or Bayesian Information Criterion (BIC). The AIC [Akaike (1974)] minimizes

the Kullback-Leibler distance between distributions under the candidate model space

and the true model. Schwarz (1978) motivated BIC from a Bayesian point of view and

it favors the model that is most plausible according the data at hand. Both information

criteria balances the goodness fit of a model with its complexity.

The AIC and BIC that were introduced by Akaike (1974) and Schwarz (1978) did

not consider data selected by an unequal probability sampling design. In order to pro-

duce the best possible model-based estimator, it is necessary to use a variable selection

method that accounts for the sampling design. Hens et al. (2006) proposed an AIC for

missing observations and single-stage design based samples. An approximation to the

BIC for design-based samples was proposed by Fabrizi and Lahari (2007). Xu et al.

(2013) gave an alternative BIC for survey sampled data using a non-Bayesian justifica-

tion. Theoretically justified derivations for both the AIC and BIC are given by Lumley

and Scott (2015) for complex design-based samples. They show the asymptotic prop-
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erties of these estimators assuming a linear model.

Model selection approaches have been adapted to nonparametric models. Chen and

Tsay (1993) extended the idea of best subset regression to additive models for select-

ing lagged variables in time series models. Shively et al. (1999) used a hierarchical

Bayesian approach for variable selection on the additive model and then estimated its

functions with model averaging. Huang and Yang (2004) generalized the AIC and BIC

to nonparametric models estimated with spline-smoothing. Lin and Zhang (2006) pro-

posed component selection and smoothing operator for model selection on functional

ANOVA models. Xue (2009) introduced consistent variable selection for the additive

model using penalized polynomial spline. Huang et al. (2010) applied the adaptive

LASSO additive models and proved that it is a consistent method of variable selection.

A wide range of research has focused on variable selection for nonparametric mod-

els. Other research focused on variable section in design based samples. Wang and

Wang (2011) combined these two areas in their recent paper and proposed a BIC for

variable selection in additive models with design based samples. Their BIC is based

on asymptotic mean squared errors and the asymptotic theory of variable selection to

samples using unequal selection probabilities has not been examined.

In this dissertation, we extended the information criterion of Huang and Yang

(2004) to samples from finite populations. We proposed a Bayesian information cri-

terion for consistent variable selection in additive model-assisted estimation. Our

proposed method is applicable for data generated from a broad range of survey de-

signs. It is challenging to establish the consistency of the proposed variable selection

method under the framework of survey sampling. One difficulty arises from the fact
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that the nonparametric model was approximated using a finite set of parameters which

increased in size as a function of the sample size. Another difficulty is due to the need

to account for two sources of variations the probability sampling design and the data

generating process from the superpopulation model. The variable selection method

proposed by Wang and Wang (2011) was similar to our method since it assumed an

additive model and was applicable to data sampled from finite populations. However,

it differed from our method in that our BIC was based on the likelihood function rather

than asymptotic mean squared error as in Wang and Wang (2011). Furthermore, our

method is consistent under more complex designs beyond the simple random sample.

Our numerical study demonstrated that our method had better performance than Wang

and Wang (2011) for small sample sizes.

Chapter 2 introduces model-assisted estimation, the additive model, and estimation

of the model using splines. We derive an AIC and BIC for nonparametric models, eval-

uate the numerical performance through simulation, and apply the BIC to the Academic

Performance Index (API) Growth data set in Chapter 3. The consistency theorem for

the proposed BIC is stated and proved in Chapter 4.
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2 Additive Model-Assisted Estimation

2.1 Introduction

Model-assisted estimation uses auxiliary information at the estimation stage by

considering the finite population as realizations from a superpopulation. This is typi-

cally done assuming a linear model. To accurately capture any nonlinear relationships

between the auxiliary information and variable of interest, we can instead assume the

superpopulation model has a nonparametric form. Estimation of nonparametric mod-

els requires special techniques. In this chapter we introduce the additive model for

model-assisted estimation and how to estimate the model using polynomial splines.

2.2 The Model

Let UN = {1, ...,N} be a finite population. A sample, S, of fixed-size nN is drawn

from UN using a probability sampling design DN . Assume auxiliary information xi =

(xi1, ...,xid)
′ is known for all i ∈ UN . The variable of interest, yi, is known only for

the elements sampled from the population. Define the indicator Ii equal 1 if i ∈ S and

0 otherwise. We will denote the first order inclusion probability as π i,N = PDN (i ∈

S) = PDN (Ii = 1) and the second order inclusion probability as π i j,N = PDN (i, j ∈ S) =

PDN (IiI j = 1). The subscript N will be omitted to simplify the notation.

Our objective is to efficiently and accurately estimate the finite population total
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ty = ∑i∈U yi. The Horvitz-Thompson (HT) estimator [Horvitz and Thompson (1952)],

t̂HT = ∑
i∈S

yi

π i

is unbiased for the population total. The design variance of the HT estimator is

Var(t̂HT ) = ∑
i∈U

∑
j∈U

(π i j−π iπ j)
yi

π i

y j

π j

and its design-unbiased sample estimate is

V̂ar(t̂HT ) = ∑
i∈S

∑
j∈S

π i j−π iπ j

π i j

yi

π i

y j

π j
.

An important feature to consider in sampling is the development of sampling weights

associated with each sampled element. The sample weight accounts for the number of

elements in the population that the sampled element represents. In this dissertation, we

consider only the sampling weights in the analysis.

An estimator that takes advantage of the known auxiliary information may produce

more design-efficient estimates. Model-assisted estimation uses auxiliary information

at the estimation stage by considering {yi}N
i=1 as realizations from a superpopulation,

ξ , written as

Yi = m(Xi)+ ε i, i = 1, ...,N

where m is true relationship between the variable of interest and the auxiliary variables,

and {ε i}N
i=1 are independent and identically distributed mean zero. The model-assisted
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estimator takes the form,

t̂MA = ∑
i∈U

m̂(xi)+∑
i∈S

yi− m̂(xi)

π i
, (2.1)

where m̂ is an estimate of m using the available sample [Särdnal et al. (1992)].

To accurately capture any nonlinear relationships between the auxiliary informa-

tion and variable of interest, we will assume m to be of an additive form [Hastie and

Tibshirani (1986)], written as

m(X) = α0 +
d

∑
l=1

α l(Xl), (2.2)

where α0 is an unknown constant and {α l}d
l=1 are unknown smooth univariate func-

tions. For identifiability purposes and without loss of generality, it will be assumed

that Xl ∈ [0,1] and E[α l(Xl)] = 0, for l = 1, ...,d. The additive model can improve the

efficiency of the total estimator because its flexibility makes it more robust to model

misspecification.

A major challenge in estimating nonparametric functions with more than one vari-

able is dealing with the slow convergence rate, commonly referred to as the “curse of

dimensionality.” However, the additive structure in model (2.2) allows the estimation

of the additive model at the same optimal rate of convergence as the univariate case

(Stone, 1985).
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2.3 Polynomial Splines

Our goal is to estimate the unknown functions of the additive model using polyno-

mial splines. We define the following notation to denote these estimates. Let Cp([0,1])

be the space of p-times continuously differentiable functions. For each auxiliary vari-

able l = 1, ...,d, define a knot sequence κ ln = {kl0 = 0 < kl1 < · · · < klJn < klJn+1 =

1}, where Jn is the number of interior knots, for some integer p > 0. Denote φ l =

φ
p([0,1],κ l,n) ⊂ Cp−1([0,1]) as the space of polynomial splines that are piece-wise

polynomials of degree p or less on the intervals
[
kl(i−1),kli

)
, i= 1, ...,Jn, and [klJn,kl(Jn+1)],

and connect smoothly at the knots such that they are (p−1) times continuously differ-

entiable on [0,1]. With an appropriate choice of knots, such polynomial splines often

provide accurate approximations of smooth functions and have better convergence rates

than regular polynomials without knots [see De Boor (1978) p. 149].

For a fixed p and Jn, let

Γ
∗
l (xl) = (xl, ...,x

p
l ,(xl− kl1)

p
+, ...,(xl− klJn)

p
+)
′

be the degree p truncated power basis for the spline space φ l with Jn knots, and (x)+= x

if x > 0, else (x)+ = 0. Let Γ∗l j(Xl) be the jth element of the vector Γ∗l (Xl). De-

fine the centered basis Γl(Xl) = (Γl1(Xl), ...,Γl(Jn+p)(Xl))
′, where Γl j(Xli) = Γ∗l j(Xli)−

N−1
∑i∈S π

−1
i Γ∗l j(Xli). The centered basis for all d variables X = {X1, ...,Xd} is then,

Γ(X) = (1,Γ1(X1)
′, ...,Γd(Xd)

′)′.
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Suppose each additive component can be approximated by

α l(Xl)≈ gl(Xl) =
Jn+p

∑
j=1

θ l jΓl j(Xl).

Define g = θ 0 +∑
d
l=1 gl as the spline approximation of m. Let θ l = (θ l1, ...,θ l(Jn+p))

′

be the Jn + p parameter vector for gl . The unknown coefficients

θ = (θ 0,θ
′
1, ...,θ

′
d)
′ (2.3)

can then be estimated simultaneously using least squares.

Suppose y = {y1, ...yN} is known, then the population estimate of θ is

θ̃ = argminθ

N

∑
i=1

(
yi−θ 0−

d

∑
l=1

Jn+p

∑
j=1

θ l jΓl j(xli)

)2

, (2.4)

and

θ̃ = [Γ′Γ]−1Γy

where Γ=(1,Γ(x1), ...,Γ(xN))
′
is the design matrix for the truncated power basis using

the entire population. For a fixed x, the population based estimate of m is given as,

m̃(x) = θ̃ 0 +
d

∑
l=1

Jn+p

∑
j=1

θ̃ l jΓl j(xl).

Since only the sampled values of the variable of interest are observed, yS = (yi, i ∈
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S)′, then an appropriate sample estimate of θ is

θ̂ = argminθ N−1
∑
i∈S

π
−1
i

(
yi−θ 0−

d

∑
l=1

Jn+p

∑
j=1

θ l jΓl j(xli)

)2

, (2.5)

and

θ̂ = [Γ′SΠ
−1
S ΓS]

−1Γ′SΠ
−1
S yS, (2.6)

where Π−1
S = diag({π−1

i }i∈S) and ΓS = (Γ(xi)
′, i ∈ S)′ is the design matrix for the

truncated power basis using only the sample data. For a fixed x, it gives the sample

estimate of m as,

m̂(x) = θ̂ 0 +
d

∑
l=1

Jn+p

∑
j=1

θ̂ l jΓl j(xl). (2.7)

The model estimated from the sample, m̂, in (2.7) can be applied to the model-assisted

estimator as given in (2.1). In practice, the population estimate m̃ is not available since

we do not observe each element of the population, but serves as the theoretical expected

value of m̂ under the sampling design when the population is fixed. This notation is

useful for understanding the asymptotic properties of the estimator, as discussed in

Section 4.3.

2.4 Discussion

Wang and Wang (2011) suggested a similar method for estimating the total using

the SBLL estimate of the additive model in (2.1). The SBLL estimator has two stages.

The first stage applies polynomial spline regression to generate a pilot estimate, which

is then used to construct pseudo-response values for each auxiliary variable. At the sec-
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ond stage, univariate local polynomial smoothing is applied to each pseudo-response

and auxiliary variable pair. The resulting model-assisted estimator is asymptotically

design unbiased, consistent, can be written as a weighted sum of calibrated weights

[see Särdnal et al. (1992)], and asymptotically attains the Godambe-Joshi lower bound

[Godambe and Joshi (1965)]. The authors proposed a “BIC-based method” of vari-

able selection based on the asymptotic mean squared error (AMSE) and stated it is

consistent under simple random sampling, but no proof was provided.

The two-stage SBLL method has superior properties for estimating the additive

components, but is computationally intensive since local polynomial smoothing needs

to be conducted on each variable in every model. Our goal focuses on variable selec-

tion, rather than estimation. In our research we use only a single step of polynomial

spline estimates and reduce the number of computations per model. In the next sec-

tion, we propose a BIC based on the likelihood function for design-based samples with

unequal selection probabilities and provide theoretical justification for its consistency.
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3 Deriving Information Criteria

3.1 Introduction

In this chapter, we derive the AIC and BIC for the additive model under a com-

plex sampling design and present our simulation results. The derivations establish

the underlying assumptions and approximation of each information criterion, and their

differences become clear. The simulations establish the finite sample performance of

the proposed AIC and BIC. Our method is also compared to other literature and brief

discussion is provided of adjustments to account for the sampling design.

3.2 Derivation of the AIC

This derivation is based on the work of Lumley and Scott (2015), and loosely fol-

lows the derivation given in Burnham and Anderson (2003). Consider a sample S

drawn from finite population U using a probability design. The notation E[·|U ] is

adopted to denote the sampling design expectation by conditioning on the population

U . The general E[·] will denote the expectation with respect to the joint distribution

of the superpopulation model and the sampling design. Let f be the true model. Con-

sider a candidate model g with parameter vector θ n. The length of the parameter vec-

tor depends on the sample size since we are considering nonparametric models. The
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Kullback-Leibler (KL) divergence of f and g is defined as

KL( f ,g) = E
[

log
f (X)

g(X|θ n)

]
= E[log f (X)]−E[logg(X|θ n)].

A finite population sampling approach is to consider the KL divergence in the popula-

tion, defined as

KLU( f ,g) =
1
N ∑

i∈U
log f (Xi)−

1
N ∑

i∈U
logg(Xi|θ n). (3.1)

We write the population log-likelihood of θ n with respect to g as

`(θ n) =
1
N ∑

i∈U
logg(Xi|θ n),

where π i is the first order inclusion probability of element i. The quantity `(θ n) is a

population mean, so it can be estimated from the sample using the Horvitz-Thompson

(HT) estimator,

ˆ̀(θ n) =
1
N ∑

i∈S
π
−1
i logg(Xi|θ n).

However, θ n is also unknown. We can estimate θ n with θ̂ n = argmaxθ n
ˆ̀(θ n), the

weighted maximum likelihood estimator.

Our goal is to the select the model that minimizes the KL divergence of f and

g. Since f does not depend on θ n, we ignore the first term in (3.1) and focus on

maximizing the population log-likelihood in expectation.
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Let

`(θ n) =
1
N ∑

i∈U
`i(θ n)

and define it’s naive estimator as,

ˆ̀(θ̂ n) =
1
N ∑

i∈S
π
−1
i `i(θ̂ n),

where `i(θ n) = logg(Xi|θ n).

At this point, we will omit the n subscript from the parameter vector to make

the notation less cumbersome. Consider the Taylor expansion of ˆ̀(θ̂ n) around θ 0 =

argminθ n KLU( f ,g),

ˆ̀(θ̂ n) ≈
1
N ∑

i∈S
π
−1
i `i(θ 0)+

1
N ∑

i∈S
π
−1
i

[
∂`i(θ 0)

∂θ n

]
(θ̂ n−θ 0)

+
1

2N ∑
i∈S

(θ̂ n−θ 0)
′
[

∂ 2`i(θ 0)

∂θ n∂θ
′
n

]
(θ̂ n−θ 0).

The expectation of ˆ̀(θ̂ n) is E[ ˆ̀(θ̂ n)] = E[E[ ˆ̀(θ̂ n)|U ]]. First consider the conditional

expectation,

E
[ ˆ̀(θ̂ n)|U

]
≈ E

[
1
N ∑

i∈S
π
−1
i `i(θ 0)

∣∣∣∣∣U
]
+E

[
1
N ∑

i∈S
π
−1
i

[
∂`i(θ 0)

∂θ n

]
(θ̂ n−θ 0)

∣∣∣∣∣U
]

+ E

[
1

2N ∑
i∈S

π
−1
i (θ̂ n−θ 0)

′
[

∂ 2`i(θ 0)

∂θ n∂θ
′
n

]
(θ̂ n−θ 0)

∣∣∣∣∣U
]

=
1
N ∑

i∈U
`i(θ 0)−

1
2
(θ̂ n−θ 0)

′ 1
N ∑

i∈U

[
∂ 2`i(θ 0)

∂θ n∂θ
′
n

]
(θ̂ n−θ 0).
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Next we examine the entire term,

E
[
E
[ ˆ̀(θ̂ n)

∣∣U]] ≈ E

[
1
N ∑

i∈U
`i(θ 0)

]
−E

[
1
2
(θ̂ n−θ 0)

′ 1
N ∑

i∈U

[
∂ 2`i(θ 0)

∂θ n∂θ
′
n

]
(θ̂ n−θ 0)

]

= E

[
1
N ∑

i∈U
`i(θ 0)

]
− 1

2
tr
{

I(θ 0)E
[
(θ̂ n−θ 0)(θ̂ n−θ 0)

′]} .
= E

[
1
N ∑

i∈U
`i(θ 0)

]
− 1

2
tr[I(θ 0)Σ]. (3.2)

The first term of (3.2) cannot be computed from data. However, an approximation

is possible by taking a Taylor expansion about θ̂ n,

1
N ∑

i∈U
`i(θ 0) ≈

1
N ∑

i∈U
`i(θ̂ n)+

1
N ∑

i∈U

[
∂`i(θ̂ n)

∂θ n

]
(θ 0− θ̂ n)

+
1

2N ∑
i∈U

(θ 0− θ̂ n)
′

[
∂ 2`i(θ̂ n)

∂θ n∂θ
′
n

]
(θ 0− θ̂ n)

=
1
N ∑

i∈U
`i(θ̂ n)−

1
2
(θ 0− θ̂ n)

′Î(θ̂ n)(θ 0− θ̂ n)

Thus, the expectation is

E

[
1
N ∑

i∈U
`i(θ 0)

]
≈ E

[
1
N ∑

i∈S
π
−1
i `i(θ̂ n)

]
− 1

2
E
[
(θ 0− θ̂ n)

′Î(θ̂ n)(θ 0− θ̂ n)
]

≈ E[`(θ̂ n)]−
1
2

tr
{

I(θ 0)ED[(θ 0− θ̂ n)(θ 0− θ̂ n)
′]
}

= E[`(θ̂ n)]−
1
2

tr[I(θ 0)Σ]. (3.3)



21

Combining the results of (3.2) and (3.3),

E[ ˆ̀(θ̂ n)]≈ `(θ n)− tr[I(θ 0)Σ].

Therefore, an approximately unbiased estimator of `(θ n) is ˆ̀(θ̂ n)+ tr[I(θ 0)Σ].

For large samples, I(θ 0)Σ is approximately equal to the identity matrix. Multiply-

ing both side by −2n results in the finite population analog for additive models,

AICD =−2n ˆ̀(θ̂ n)+2qn,

where qn is the number of estimated parameters.

If we assume that the superpopulation model is Yi = g(Xi|θ n)+ε i, where ε i∼N(0,σ2),

then

ˆ̀(θ̂ n) =
1
N ∑

i∈S
π
−1
i `i(θ̂ n|yi)

= − 1
N ∑

i∈S
π
−1
i

[
1
2

log2π +
1
2

log σ̂
2 +

1
2σ̂

2 (yi−µ(xi|θ̂ n))
2
]

=
1

2N ∑
i∈S

π
−1
i (log2π− log σ̂

2)− 1
2

where σ̂
2 = N−1

∑i∈S π
−1
i (yi−g(xi|θ̂ n))

2.

If we discard the constant terms, then the resulting AIC is

AIC∗ =
n
N

(
∑
i∈S

π
−1
i

)
log

(
∑i∈S π

−1
i (yi−g(xi|θ̂ n))

2

N

)
+2qn.
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For a more efficient estimator of σ̂
2, we can use the Hajek estimator, which results

in

AIC =
n
N

(
∑
i∈S

π
−1
i

)
log

(
∑i∈S π

−1
i (yi−g(xi|θ̂ n))

2

∑i∈S π
−1
i

)
+2qn.

3.3 Derivation of the BIC

Consider a set of candidate models {Mk}, each with a vector of parameters θ k

of length qk,n = dk(Jn + p), where Jn � n1/(2p+3) and dk are the number of auxiliary

variables in model Mk. To simplify the notation, k will be omitted from qk,n = qn. Let

p(k) be the prior probability for model Mk and g(θ k|k) denote the prior of θ k given

model Mk. We assume that the second order derivatives of the likelihood, L(θ k|y),

exist and are continuous. Using Bayes’ Theorem, we can write the joint posterior of

the model and parameter vector as

f (k,θ k|y) =
p(k)L(θ k|y)g(θ k|k)

f (y)
.

Integrating over θ k yields the posterior probability for model Mk,

P(k|y) = p(k)
∫

L(θ k|y)g(θ k|k)dθ k

f (y)
.

The objective is to choose the model with the highest posterior probability, which

is equivalent to minimizing

−2logP(k|y) = 2log f (y)−2log p(k)−2log
∫

L(θ k|y)g(θ k|k)dθ k. (3.4)
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Since 2log f (y) is constant for all models, it can be discarded. Since we have no prior

information on important variables, we will assume that all models are equally likely,

−2log p(k) is discarded as well. Therefore, the final term is the focus of this derivation.

In order to understand the asymptotic behavior of the likelihood, we write the like-

lihood as,

L(θ k|y) = exp{logL(θ k|y)}

and take a second order Taylor Expansion about the maximum likelihood estimate, θ̂ k,

logL(θ k|y) ≈ logL(θ̂ k|y)+(θ k− θ̂ k)
′∂ logL(θ k|y)

∂θ k

∣∣∣∣
θ k=θ̂ k

+
1
2
(θ k− θ̂ k)

′

[
∂ 2 logL(θ k|y)

∂θ k∂θ
′
k

∣∣∣∣
θ k=θ̂ k

]
(θ k− θ̂ k)

= logL(θ̂ k|y)−
1
2
(θ k− θ̂ k)

′Î(θ̂ k)(θ k− θ̂ k) (3.5)

where,

Î(θ̂ k) =

[
−∂ 2 logL(θ k|y)

∂θ k∂θ
′
k

∣∣∣∣
θ k=θ̂ k

]
is the observed Fisher information matrix. The linear term disappeared in (3.5) because

θ̂ k maximizes the likelihood.

The sample likelihood can be expressed as,

logL(θ k|y) = n

[
1
N ∑

i∈S
π
−1
i logL(θ k|yi)

]
,
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and hence,

Î(θ̂ k) =

[
−n

∂ 2

∂θ k∂θ
′
k

1
N ∑

i∈S
π
−1
i logL(θ k|yi)

∣∣∣∣
θ k=θ̂ k

]
= nĪ(θ̂ k),

where Ī(θ̂ k) is the weighted average observed Fisher information.

Since the Horvitz-Thompson estimator is a consistent estimator of population means,

1
N ∑

i∈S
π
−1
i logL(θ k|yi)

p→ 1
N

N

∑
i=1

logL(θ k|yi). (3.6)

By the Weak Law of Large Numbers,

1
N

N

∑
i=1

logL(θ k|yi)
p→ E[L(θ k|y)] (3.7)

Combining (3.6) and (3.7),

1
n

logL(θ k|y)
p→ E[L(θ k|y)]. (3.8)

Therefore, by (3.8) n−1 logL(θ k|y) is a consistent estimator of E[L(θ k|y)] and

1
n
Î(θ̂ k)

p→ I(θ k),

where I(θ k) is the Fisher information in a single observation y.

Next, we focus on the integral from (3.4). Using the Laplace approximation at θ̂ k



25

and (3.5),

∫
L(θ k|y)g(θ k|k)dθ k ≈ L(θ̂ k|y)g(θ̂ k|k)

∫
exp
[
−1

2
(θ k− θ̂ k)

′Î(θ̂ k)(θ k− θ̂ k)

]
dθ k

= L(θ̂ k|y)g(θ̂ k|k)
∫

exp
[
−1

2
(θ k− θ̂ k)

′nĪ(θ̂ k)(θ k− θ̂ k)

]
dθ k

= L(θ̂ k|y)g(θ̂ k)(2π)qn/2 ∣∣nĪ(θ̂ k)
∣∣−1/2

= L(θ̂ k|y)g(θ̂ k)(2π/n)qn/2 ∣∣Ī(θ̂ k)
∣∣−1/2

. (3.9)

Substituting this into (3.4) and applying the integral approximation from (3.9),

−2logP(k|y) ≈ −2log
(

L(θ̂ k|y))g(θ̂ k)(2π/n)qn/2 ∣∣Ī(θ̂ k)
∣∣−1/2

)
= −2logL(θ̂ k|y)−2logg(θ̂ k)−qn log(2π)

+ qn logn+ log
∣∣Ī(θ̂ k)

∣∣ . (3.10)

Dropping terms from (3.10) that do not depend on n,

−2logP(k|y)≈−2logL(θ̂ k|y)−qn log(2π)+qn logn.

Although qn log(2π) depends on n, it is asymptotically dominated by qn logn so it

is discarded. The remaining terms form the nonparametric finite sample analog to the

original BIC,

BIC(Mk) =−2logL(θ̂ k|y)+qn logn (3.11)

This is the BIC presented in Chapter 3 which is proved to be consistent in Chapter 4.
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3.3.1 An Alternative Approach

A correction was proposed by Lumley and Scott (2015) for small samples with a

large design effect. We have extended this to our BIC for nonparametric equations.

Consider (3.11) without dropping the Fisher information term from (3.10). Let Ĩ(θ k)

be the Fisher information from one observation if a simple random sample had been

drawn. If we add and subtract the logarithm of this term,

−2logP(k|y) ≈ −2logL(θ̂ k|y)+qn logn+ log
∣∣Ī(θ̂ k)

∣∣− log
∣∣Ĩ(θ̂ k)

∣∣+ log
∣∣Ĩ(θ̂ k)

∣∣
= −2logL(θ̂ k|y)+qn logn+ log

(∣∣Ī(θ̂ k)
∣∣ ∣∣Ĩ(θ̂ k)

∣∣−1
)
+ log

∣∣Ĩ(θ̂ k)
∣∣

= −2logL(θ̂ k|y)+qn logn+ log(D)+ log
∣∣Ĩ(θ̂ k)

∣∣
where

D =
∣∣Ī(θ̂ k)

∣∣ ∣∣Ĩ(θ̂ k)
∣∣−1

is the design effect.

We drop log
∣∣Ĩ(θ̂ k)

∣∣ since it does not depend on n yielding the design effect correct

BIC,

BICD(Mk) =−2logL(θ̂ k|y)+qn logn+ log(D). (3.12)

The design effect, D, goes to zero as the sample size increases, and hence is asymp-

totically equivalent to our proposed BIC.
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3.4 Simulation Results

3.4.1 BIC on Simple Random Sampling

We ran simulations to evaluate the numerical performance of our proposed model

selection criterion assuming a finite population. The setup of our simulation is iden-

tical to that used by Wang and Wang (2011) so that the variable selection criterion

for the two-step SBLL estimator could be directly compared to our proposed selection

criterion.

Following Wang and Wang (2011), the following four superpopulation models were

considered to generate observations of the population.

1. Y =−1+2X3 +4X6 +σ0ε ,

2. Y = 5.5−6X2 +8(X2− .5)2−3X10 +32(X10− .5)3 +σ0ε ,

3. Y = 8(X2− .5)2 + exp(2X5−1)+2sin{2π(X8− .5)}+σ0ε ,

4. Y = ∑
5
α=1 sin{2π(Xα − .5)}+ σ0

2 (∑5
α=1 Xα)

1/2ε

In all four models, auxiliary variables, Xi = (Xi,1,Xi,2, ...,Xi,10)
T were indepen-

dently generated from the [Uniform(0,1)]10 distribution for i = 1, . . . ,N = 1000. The

noise realizations, {ε i}N
i=1, were independently simulated from the standard normal

distribution. The scale parameter, σ0, took values 0.1 and 0.4. Simple random samples

of size n=50, 100, and 200 were drawn without replacement from the finite population.

For each sample, the proposed variable selection method was applied. The model

with the lowest BIC score will be referred to as the selected model. The selected model
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was then used to estimate the finite population total of interest, ty, through the additive

model-assisted method (2.1). For comparison, we also estimated ty using the Horvitz-

Thompson estimator t̂y,HT = ∑i∈s yi/π i, where π i is the first order inclusion probability

of element i (see Section 2.2).

The additive model was estimated using splines. We considered both linear and

quadratic splines with knots spaced evenly between 0 and 1. To illustrate how well

splines approximate smooth functions, we considered the stronger nonlinear polyno-

mial spline estimates of superpopulation models 3 and 4 using the oracle model with

n = 100. The oracle model estimates the additive model from the data using only

the correct variables. Figure 3.1 shows a partial residual plot with spline estimates of

α5(X5) = exp(X5−1) from superpopulation model 3 and α1(X1) = sin(2π(X1−0.5))

from superpopulation model 4. Partial residuals enable the effect of a particular aux-

iliary variable to be seen after accounting for the others. This is accomplished by

subtracting the estimated effect of the other auxiliary variables not in the plot from

the response value. For this simulation, the linear spline was chosen to have 2 interior

knots and the quadratic spline was chosen to have 1 interior knot. The model selection

criterion was applied through forward selection and backward selection that we discuss

next.

3.4.1.1 Implementation

In the forward selection process, the initial model fit includes only the intercept and

the proposed BIC value is calculated. Next, candidate models are generated by adding
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(a) (b)

(c) (d)

Figure 3.1: Partial residual plots with overlaid spline approximations of the marginal
function α5(X5) = exp(2X5 − 1) under superpopulation model 3 and α1(X1) =
sin(2π(X1− 0.5)) under superpopulation model 4 for n = 100. The dotted line is the
true underlying marginal function and the solid line is the spline estimate under the
oracle model. (a) Superpopulation model 3: linear spline. (b) Superpopulation model
3: quadratic spline. (c) Superpopulation model 4: linear spline. (d) Superpopulation
model 4: quadratic spline.



30

each auxiliary variable to the model, one at a time, and the candidate model with the

lowest proposed BIC value is retained provided its BIC value is lower than the BIC

for initial model. If a candidate model is retained, the process continues adding in the

remaining variables one at a time and retaining the model with the lowest BIC value,

as seen in Figure 3.2a.

(a) (b)

Figure 3.2: Example of the (a) forward and (b) backward selection process when 5
of 10 auxiliary variables are in the true model. The dots are the BIC value for each
model considered. The red dots indicate the lowest BIC value for a particular number
of parameters and the arrows indicate the direction of how the process moves from one
model to the next.

The backward selection process is the reverse of the forward process.The initial

model is the full model including all auxiliary variables. The proposed polynomial

spline method is used to estimate the model, and the resulting BIC of the full model

is calculated. The candidate models are fit by removing each variable one at a time

and the BIC values are calculated. The candidate model with the lowest BIC value is
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retained, provided it is lower than the current model’s BIC. The process of removing

variables one at time continues until the current model has a lower BIC than any of the

candidate models or there are no variables left in the model. Figure 3.2b illustrates this

process.

The variable selection yields a model that, on average, minimizes the mean squared

error of total estimate as shown in Figure 3.3c. For example, the bias, variance, and

mean squared error are shown for each candidate model in the backward selection

processes under superpopulation 4 with σ0 = 0.4 for sample size n = 200 because it

is the most challenging to estimate (Figures 3.3a, 3.3b, and 3.3c, respectively). The

pattern is similar for the other models. The backward selection process should have

terminated with a model with 5 variables, however, the entire subset of models for the

backward selection method is shown.

3.4.1.2 Results

The results of the number of correct fitting models in 100 replications for both

forward and backward approaches in the linear and quadratic models are summarized

and compared to the simulation results from Wang and Wang (2011) in Table A.1.

A correct fitting model is defined as selecting all of the correct auxiliary variables

and none of the incorrect ones, as defined in the superpopulation model. Figure 3.4

provides a graphical comparison of the number of correct fits between the forward and

backward methods for Superpopulation Model 4 with σ0 = 0.4.

For all four superpopulation models and two noise levels, the percentage of correct
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(a) (b)

(c)

Figure 3.3: The bias, log of variance, and log of mean squared error of the total, shown
for each candidate model during the backward selection processes under superpopu-
lation 4 with σ0 = 0.4 for sample size n = 200 because it is the most challenging to
estimate. The pattern is similar for the other models. (a) Bias. (b) Log of Variance. (c)
Log of Mean Squared Error.

fitting models increases to 100% as the sample size increases. This is expected for

a consistent method. Our method identifies the correct variables more often than the



33

SBLL method, especially at smaller sample sizes (Table A.1). This can be seen in both

the linear and quadratic splines, indicating that linear and quadratic choices for p do

not influence the results.

(a) (b)

Figure 3.4: Graphical comparison of the number of correct fits for (a) forward and (b)
backward selection between the approaches under superpopulation 4 for σ0 = 0.4. The
solid and dashed line are the number of correct fits using a linear and quadratic spline,
respectively. The dotted line is the number of correct fits using the SBLL method.

The bias and standard error of the total estimate for each model is compared to the

oracle model, using linear splines in Table A.2, and quadratic splines in Table A.3. The

Horvitz-Thompson estimator, equivalent to using the null model, is also presented in

the tables. The number of replications was increased to 1000 in order to obtain bias

and variance estimates with minimal Monte Carlo error.

These results show that the bias and standard error of the total estimate for each

model decrease as the sample size increases. The bias and standard error using the

selected model are almost identical to using the oracle model for most comparisons.
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(a) (b)

Figure 3.5: Graphical comparison of the standard error between selection method and
choice of p under simple random sampling. Both figures are using results from Super-
population Model 4 with σ0 = 0.1. The additive model is estimated with (a) Linear
Splines and (b) Quadratic Splines.

The selected model, except for superpopulation 4, achieves a much lower variance than

the Horvitz-Thompson estimator. For example, results from superpopulation model 4

with σ = 0.4 are presented in Figure 3.5. At sample size n = 200 using a linear spline,

the selected model reduced the standard error of the estimate by 71% compared to the

Horvitz-Thompson estimator. The choice of the degree of the splines, p, did not affect

these results.

3.4.2 BIC on Stratified Sampling

We ran simulations assuming a stratified sampling design to demonstrate the perfor-

mance of our proposed selection method using unequal selection probabilities. Other
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than incorporating features of the the sampling design, the setup and implementation

of these simulations were the same as those described in section 3.4.1. The population

was divided into strata of equal size Nh = 250,h = 1, ...,4. For each strata, a percentage

of the total sample size was allocated: 10% to Strata 1, 20% to Strata 2, 30% to Strata

3, and 40% to Strata 4. This created unequal first order inclusion probabilities.

3.4.2.1 Results

(a) (b)

Figure 3.6: Graphical comparison of the number of correct fits between the selection
method and choice of p under stratified sampling. (a) Superpopulation Model 1, σ0 =
0.1. (b) Superpopulation Model 4, σ0 = 0.4.

The percentage of correct fitting models in 1000 replications is summarized in Ta-

ble A.4. We see that the percentage of correct fitting models increases to 100% as the

sample size increases, demonstrating the consistency of our method under stratified
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sampling. This can be seen for both the linear and quadratic splines in Figure 3.6,

indicating that the choices for p do not influence the results for stratified samples.

(a) (b)

Figure 3.7: Graphical comparison of the standard error between the selection method
and choice of p under stratified sampling. Both figures are using results from Super-
population 2 with σ0 = 0.1. The additive model is estimated with (a) Linear Splines
and (b) Quadratic Splines.

The bias and variance of the total estimate for each model is compared to the oracle

and full model using linear splines in Table A.5 and quadratic splines in Table A.6. The

Horvitz-Thompson estimator is also presented each table.

The results from Tables A.5 and A.6 show that the standard error of the total esti-

mate using the selected model decreases as the sample size increases. Under superpop-

ulation models 1, 2 and 3, the bias decreases with sample size; however, it is unclear

from this simulation if the linear spline bias under superpopulation 4 is decreasing. The

bias and standard error of the selected and oracle model are almost identical for most

comparisons. All models achieve a much lower variance than the Horvitz-Thompson
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estimator and the full model. For example, for superpopulation 1 with σ = 0.1 and

sample size n = 200 using a linear spline, the selected model reduced the standard

error of the estimate by 93% compared to the Horvitz-Thompson estimator and 17%

compared to the full model. The choice of the degree of the splines, p, as seen in Figure

3.10, did not affect these results.

3.4.2.2 Alternative Approach Results

We briefly introduced an alternative approach by Lumley and Scott (2015) in Sec-

tion 3.3.1. We ran simulations under the same setup as described in Section 3.4.2 using

the design BIC presented in (3.12), which includes the design effect. The results, pre-

sented in Table A.7, showed minimal improvement in the percentage of correct fitting

models over our proposed BIC without the design effect given in (4.2). This is due to

the increased penalty term in (3.12) and the BIC in (4.2) tended to overfit. The minor

improvement in the percentage of correct fits came at the cost of extra calculations in

(3.12). At sample size n = 200, there was almost no difference in the percentage of

correct fitting models between the proposed BIC and the alternative approach. This is

expected because they are asymptotically equivalent.

To understand how the alternative approach performs in a situation where our BIC

tends to underfit, we consider the following two superpopulation models that contained

one variable with a relatively weaker signal.

5. Y =−1+2X3 +0.2X6 +σ0ε ,

6. Y = 8(X2− .5)2 + exp(0.4X5−1)+2sin{2π(X8− .5)}+σ0ε ,
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Note that α6(X6) in superpopulation model 5 and α5(X5) in superpopulation model 6

term have lower signal compared to the other variables in the model. We ran stratified

sampling simulations as described in Section 3.3.1 using the two additional superpop-

ulation models. The results are presented in Table A.8. As expected, our proposed BIC

in (4.2) tended to underfit. The alternative approach in (3.12) showed decreased per-

formance because it tended to underfit more than (4.2) without the design effect. For

example, for superpopulation model 5 at noise level σ0 = 0.1 and sample size n = 50,

our BIC without the design effect underfit in 24% of samples, whereas the BIC with

the design effect underfit in 52% correct fits.

The results of this simulation suggest that the design effect proposed by Lumley

and Scott (2015) may be unnecessary. Not only does the design effect involve more

calculations, it does not yield better results than our proposed method. Furthermore,

we cannot theoretically justify the design effect. There may exist a different way to

implement a design effect. It would be interesting to justify and account for a design

effect in the BIC for future research.

3.4.3 AIC on Stratified Sampling

We ran simulations with the AIC derived in Section 3.2. The same setup was used

as Section 3.4.2, including the stratified sampling design, four superpopulation mod-

els, two noise levels, and 1000 replications. These simulations give insight into the

performance of this AIC when the set of available auxiliary variables include all the

important variables.
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(a) (b)

Figure 3.8: Graphical comparison of the number of correct fits for (a) forward and (b)
backward selection between the approaches and choice of p under superpopulation 1
for σ0 = 0.4.

The percentage of correct fitting models in 1000 replications is summarized in Ta-

ble A.9. For nearly all combinations of superpopulation models, splines, sample sizes,

and noise level we examined, the percent of correct fitting models is less than 75% and

does not appear to increase as the sample size increases. This can be seen for both both

the linear and quadratic splines. Note that the number of correct fits for superpopula-

tion 1 decreases with sample size, as seen in Figure 3.8. Theses results are expected

because the AIC is not a consistent variable selection method.

These simulations indicate the BIC derived in Section 3.3 may be a better choice of

variable selection method because the AIC will overfit more often. Models containing

unimportant variables will have a larger standard error for the total estimate, as demon-

strated in Figure 3.3. Therefore, we turn our attention completely to the BIC for the
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remainder of this thesis.

3.5 Application

To illustrate our procedure, we consider the 1999 to 2000 Academic Performance

Index (API) growth data set available in the R survey package [Lumley (2014)]. The

API is a measure of California schools’ academic performance. It is essential to Cal-

ifornia’s Public Schools Accountability Act of 1999 (see PSAA (2000)) to track the

changes in academic performance and growth of each school. Data is available for all

California schools with at least 100 students (see API (2000)). Information on the pro-

portion of subsidized school lunches and English language learners, parent education

level, and enrollment are included for these schools.

The data set contains a population of 6,194 California schools. In order to illus-

trate our method, and create a complete data set, we eliminated variables with missing

data. After running a correlation analysis, variables that were highly collinear were

also eliminated. Categorical variables were excluded from this analysis to focus our

attention on the relationships that could be estimated using splines. After these con-

siderations, 9 quantitative auxiliary variables remained and are described in Table 3.1.

Our goal is to estimate the average API in 2000 (api00) for the population based on a

stratified sample and to select the significant predictors for this API using the auxiliary

variables in the data set. The API is calculated by the California Department of Educa-

tion based on a standardized testing of students. The population average is estimated

using additive model-assisted estimation based on the forward and backward selection
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Table 3.1: Variable Definitions. Source: API (2000).

Variable Role Definition

api00 Response API in 2000
stype Strata School type (elementary, middle, high school)
cds Auxiliary County/District/School code
dnum Auxiliary District number
meals Auxiliary Percentage of students in the free or reduced price lunch program
eng.ll Auxiliary Percentage of students that are English language learners
mobil Auxiliary Percentage of students who first attended school this present year
col.grd Auxiliary Percentage of parents with college degree
grd.sch Auxiliary Percentage of parents with postgraduate education
enroll Auxiliary Number of students enrolled
hsg.col Auxiliary Percentage of parents with high school degree or some college

method described in Section 3.4.1.1. The Horvitz-Thompson estimate and the additive

model-assisted estimate based on the full model is calculated for comparison.

Similar to the simulations, 1000 replication samples of size n = 50, 100, and 200

were drawn from the population using stratified random sampling. For this illustration,

the sample size of each strata was selected by non-proportional allocation: 50% to

elementary schools, 30% to middle schools, and 20% to high schools. This resulted in

unequal selection probabilities due to the stratification. The percentages were chosen

such that more elements are selected from larger strata.

Figure 3.9 summarizes results for our variable selection methods. At sample size

n = 200, the variables most often selected were the number of students enrolled (en-

roll), the percentage of students eligible for subsidized meals (meals), and the per-

centage of parents with graduate school level education (grd.sch). The known noise

variables included in the analysis, the school identifier (cds), and the district number
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(a) (b)

(c) (d)

Figure 3.9: The percentage of selected models containing each auxiliary variable in the
API data set. (a) Forward Selection, Linear Splines. (b) Forward Selection, Quadratic
Splines. (c) Backward Selection, Linear Splines (d) Backward Selection, Quadratic
Splines

(dnum) were not selected for most models. The percentage of students who were in

their first year (mobil) was excluded from most models as well. About 10-25% of

models at n = 200 included the percentage of parents that are high school graduates

or have some college (hsg.col), the percentage of parents that are college graduates

(col.grd), and the percentage of English language learners (eng.ll) for both forward

and backward selection. The average model size and its standard error can be found
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(a) (b)

Figure 3.10: The standard error of the model-assisted estimates using variables result-
ing from forward and backward selection, all of the variables (full model), and none of
the variables (HT estimator). The additive model is estimated with (a) Linear Splines
and (b) Quadratic Splines.

in Table B.2 for both forward and backward selection methods. Forward selection had

less variables than backward selection at sample size n = 50. At sample size n = 200,

the average model size was about 3 for both forward and backward selection. The

standard deviation of the model size decreases as sample size increases.

The bias and standard error from estimating the mean API for the population using

the forward and backward selection process is presented in Table B.3. Models selected

from both forward and backward selection had lower standard errors than using either

the full model or the Horvitz-Thompson estimator for sample size n= 100 and n= 200,

as seen in Figure 3.10. The bias for the backward, forward and full models (n= 100 and

n = 200) had bias values nearly identical to the bias values for the Horvitz-Thompson
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estimator, which we know are unbiased estimators. However, for n = 50, there is a

negative bias for all models.

Models resulting from both the forward and backward methods reduced the stan-

dard error of thr total estimate compared to the Horvitz-Thompson estimator and the

full model with negligible bias. It successfully ruled out known noise variables from

the final model for more than 95% of simulations with larger sample sizes. This appli-

cation demonstrates that the proposed information criterion is useful in practice.
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4 Asymptotic Theory

4.1 Introduction

The inclusion of unimportant auxiliary variables in the model inflates the variance

of the total estimates and parameter estimates. Variable selection methods attempt to

select a parsimonious model that contains only relevant variables. Information criteria

such as AIC and BIC are used to select the “best model.” These information criteria

penalize the model likelihood with a function of the number of parameters in the model

and provide a useful metric for comparing candidate models.

An information criteria that is consistent when a complex survey design is used

has not been developed when assuming an additive model. The initial derivations of

the AIC and BIC do not account for a complex survey design. More recent proposals

developed for linear models from Hens et al. (2006), Xu et al. (2013), and Lumley and

Scott (2015) account for survey weights. Hens et al. (2006) propose an AIC for miss-

ing survey data, but do not present any asymptotic results. Xu et al. (2013) develop a

BIC for sampling designs with unequal weights and consider its asymptotic properties,

however the authors use a non-Bayesian derivation and do not account for the lack of

independence. Lumley and Scott (2015) derive an AIC from the Kullback-Leibler di-

vergence and a BIC with a Bayesian derivation under complex sampling designs. Both

the AIC and BIC include a term that accounts for the lack of independence resulting

from the sampling design. However, these aforementioned methods are developed for
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linear models and do not consider the additive model. The variable selection method

proposed by Wang and Wang (2011) accounts for the inclusion probabilities and as-

sumes an additive model, but it is based on the asymptotic mean squared error of the

total and a proof of its consistency is not given. In this chapter we state and prove the

asymptotic consistency of our likelihood-based BIC that accounts for sampling design

and assumes an additive model.

4.2 Proposed Information Criterion

We introduce the notation M ⊂ {1, ...,d} as the indexes of the auxiliary variables

included in a candidate model. We add the subscript M to previously defined notation

to clarify its association with the model containing auxiliary variables of index set M.

For example, θ M in (2.3) is the spline coefficients when only using the variables from

corresponding to index set M which is of size qM = dM(Jn + p) (see Chapter 2).

Taking the likelihood approach, we propose the following BIC for consistent vari-

able selection for additive models discussed in Section 2.3. For a candidate model M,

define

BIC(M) =−2n`(θ̂)+qM log(n) (4.1)

where `(θ̂) = logL(θ̂ |y j) is the log-likelihood of the maximum likelihood estimate of

parameter θ based on a single element. Since the expectation of one element is a mean,

then the Horvitz-Thompson estimator of `(θ) is ˆ̀(θ) = N−1
∑i∈S π

−1
i `i(θ) [Lumley

and Scott (2015)]. The N in the denominator can be substituted for ∑i∈S π
−1
i resulting
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in the Hajek estimator, a more efficient estimator when the weights are unequal. Under

the assumption of Normal model errors, the formula for the BIC can be given explicitly.

This likelihood estimate is similar to the one that appears for the AIC in Hens et al.

(2006).

BIC(M) =
n
N
(∑

i∈S
π
−1
i ) log(WMSEM)+qM log(n), (4.2)

where the weighted means squared error (WMSE) for candidate model M is defined

as,

WMSEM =

∑
i∈S

π
−1
i (yi− m̂M(xi))

2

∑
i∈S

π
−1
i

.

To discuss the theoretical properties of the proposed BIC, it is necessary to intro-

duce the following assumptions.

(A1) There exists a constant B > 0 such that P
(

limsup
N→∞

1
N ∑

i∈U
ε4

i ≤ B
)
= 1.

(A2) limsup
N→∞

max
i∈U
{ ∑

j∈U
(π i j−π iπ j)−}< ∞, where x− = max(0,−x).

(A3) There exists a constant λ π > 0 such that λ π ≤ liminf
N→∞

min
i∈U

π i.

(A4) There exists a constant λ f > 0 such that λ f ≤ liminf
N→∞

n/N.

(A5) For all i ∈U,E[ε i] = 0,Var(ε i) = σ2,E[ε4
i ] = µ4 < ∞, and for any i 6= j,ε i and

ε j are independent.

(A6) The support of Xi is [0,1]d for all i ∈U . Furthermore, the probability density

function of X is bounded away from 0 and infinity on the support, written as

0 < fX(x)< ∞,∀x ∈ [0,1]d .
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(A7) The number of knots is asymptotically related to the sample size such that Jn �

n1/(2p+3) and the spacing of the knots, k1, ...,kJn , is such that min j∈{1,...,Jn−1} |k j+1−

k j|/max j∈{1,...,Jn−1} |k j+1− k j|> c for some constant c > 0.

(A8) Let α l ∈ Cp+1[0,1], where Cp+1[0,1] is the set of p+1-times continuously dif-

ferential functions on the [0,1] interval.

Assumption (A1) is necessary to bound the variance of the estimator of σ2. As-

sumptions (A2) and (A4) are common in survey literature [e.g. Robinson and Särndal

(1983)] to ensure the consistency of the Horvitz Thompson estimator. In order for

estimates of population quantities to be unbiased, we assume that the first order inclu-

sion probabilities are uniformly greater than zero, as in assumption (A3). Assumptions

(A5) and (A8) make general assumptions about the superpopulation model errors that

are common in nonparametric estimation literature. The most important feature of

(A6) is assuming a compact support. Without loss of generality, data on any bounded

interval can be rescaled to unit length. Assumption (A7) ensures the number of knots

increase at an appropriate rate.

Theorem 1 Let M0 be the indexes of the auxiliary variables in the true model. Under

assumptions (A1)-(A8),

lim
N→∞

P(BIC(M0)≤ BIC(M), for all M 6= M0,M ⊂ {1, ...,d}) = 1.

Theorem 1 states that under regularity conditions, the proposed BIC is variable

selection consistent. Therefore, the correct model will have the lowest BIC among the
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candidate models with probability approaching to one as the population (and sample)

size go to infinity. A proof is provided in the following section.

4.3 Proof of Consistency

The notation of E[·|U ] and P(·|U) will be adopted to denote the sampling design ex-

pectation and probability, respectively, by conditioning on the population, U . Without

a conditional E[·] and P(·) will denote the expectation and probability, respectively,

with respect to the joint distribution of the superpopulation model and the sampling

design.

The theoretical results will be introduced after the necessary lemmas are proven.

Lemma 2 Under assumptions (A1)-(A8), one has

∣∣∣∣∣N−1
∑
i∈S

π
−1
i (yi−m(xi))

2−σ
2

∣∣∣∣∣= OP(N−1/2).

Proof. Since m is the true model of the relationship between the auxiliary infor-

mation, x, to the variable of interest, y, then ε i = yi−m(xi). Let ξ n = 1
N ∑

i∈S

ε2
i

π i
and

ξ N = 1
N ∑

i∈U
ε2

i be two quantities calculated from the sample and population, respec-

tively. For any fixed ε > 0, Chebyshev’s Inequality entails that

P(
∣∣ξ n−σ

2∣∣> ε)≤
E
∣∣ξ n−σ2

∣∣2
ε2 .

Then by adding and subtracting ξ N and applying the Cauchy-Schwarz Inequality, one
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has

E
∣∣ξ n−σ

2∣∣2 = E
∣∣ξ n−ξ N +ξ N−σ

2∣∣2
≤ 2

[
E|ξ n−ξ N |2 +E|ξ N−σ

2|2
]
. (4.3)

Examining the first term on the right hand side of (4.3),

E(ξ n−ξ N)
2 = E[E[(ξ n−ξ N)

2|U ]] = E[Var(ξ n−ξ N |U)].

Using Equation (16) in Dol et al. (1996) with assumptions (A1)-(A5), we can bound

the design variance of the Horvitz-Thompson estimator

E[Var(ξ n−ξ N |U)] ≤ E

[
λ max

N2 ∑
i∈U

ε4
i

π2
i

]
≤ E

[
λ max

N2 ∑
i∈U

ε4
i

λ
2
π

]

≤ λ max

Nλ
2
π

B = O(N−1).

For the second term in (4.3), one has

E|ξ N−σ
2|2 = Var(ξ N) = N−2

∑
i∈U

Var(ε2
i ) = N−1(µ4−σ

4) = O(N−1).

Therefore, E|ξ n−σ2|2 = O(N−1). Then for any ε > 0, there exists

C =C(ε) =

√
(µ4−σ4 +λ maxBλ

−2
π )/ε
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such that

P(N1/2|ξ n−σ
2|>C) ≤ NE|ξ n−σ2|2

C2

≤ N
C2 N−1((µ4−σ

4)+λ maxBλ
−2
π )

≤ µ4−σ4 +λ maxBλ
−2
π

C2

= ε.

Thus, it has been shown that

∣∣∣∣∣N−1
∑
i∈S

π
−1
i (yi−m(xi))

2−σ
2

∣∣∣∣∣= OP(N−1/2). �

Lemma 3 Under assumptions (A1)-(A8), one has

N−1
∑
i∈S

π
−1
i (m(xi)− m̂(xi))

2 = OP(K−2p−2
n +Kn/N).

Proof. Let Ys = (Y1, . . . ,Yn)
T be the vector of responses observed in the sample.

Then one can decompose Ys as Ys = Ms +Es, where Ms = (m(X1) , . . . ,m(Xn))
T

and Es = (ε1, . . . ,εn)
T are the mean and error vectors respectively. Define M̂s =

(m̂(X1) , . . . , m̂(Xn))
T be the estimated mean vector based on the sample. Let Ps =

ΓS[Γ
′
SΠ
−1
S ΓS]

−1Γ′SΠ
−1
S . Then one can write

M̂s = PsYs = PsMs +PsEs = M̃s + Ẽs,
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and

N−1
∑
i∈S

wi(m(xi)− m̂(xi))
2 ≤ N−1

(
Ms−M̃s

)T
Π−1

S

(
Ms−M̃s

)
+N−1ẼT

s Π
−1
S Ẽs

= I + II. (4.4)

For I in (4.4), the approximation theorem of the polynomial spline in de Boor (2001)

entails that there exists an additive spline function g(x) = ∑
d
l=1 gl (xl) , such that

max
l

sup
x
|α l (x)−gl (x)| ≤ cJp+1

n

for some constant c that does not depends on the sample size. Let Gs=(g(x1) , . . . ,g(xn))
T .

Then, by the definition of M̃s, one has

I ≤ N−1 (Ms−Gs)
T Π−1

S (Ms−Gs)≤ cK−2(p+1)
n N−1

∑
i∈s

wi = Op

(
K−2(p+1)

n

)
. (4.5)

For II in in (4.4), let
{

ϕ j

}
j=1

be a set of orthonormal basis of the additive polynomial

spline space with respect to the empirical inner product 〈 f ,g〉n =N−1
∑i∈s wi f (Xi)g(Xi).

Then one can write Ẽs as Ẽs =
Kn

∑
j=1

a jϕ j, with a j =
〈

Es,ϕ j

〉
n
= N−1

∑i∈s wiϕ j (Xi)ε i.

Thus

II =
〈

Ẽs, Ẽs

〉
n
=

Kn

∑
j=1

a2
j =

Kn

∑
j=1

(
N−1

∑
i∈s

wiϕ j (Xi)ε i

)2

Note that for any j = 1, . . . ,Kn, N−1
∑i∈U w2

i ϕ2
j (Xi)ε2

i ≤ N−1λ
−2
π ∑i∈U ϕ2

j (Xi)ε2
i ≤



53

cλ
−2
π B. Then by the consistency of HT estimator, one has

N−1
∑
i∈s

wiϕ j (Xi)ε i = N−1
∑
i∈U

ϕ j (Xi)ε i +Op

(√
1/N

)
.

Therefore,

II =
Kn

∑
j=1

(
N−1

∑
i∈U

ϕ j (Xi)ε i

)2

+Op (Kn/N) ,

in which

E

N−2
Kn

∑
j=1

(
∑
i∈U

ϕ j (Xi)ε i

)2

|X1, . . . ,Xn

= N−2
Kn

∑
j=1

∑
i∈U

ϕ
2
j (Xi)σ

2 = Op (Kn/N) .

Therefore

II = Op (Kn/N) . (4.6)

The theorem follows from equations (4.4), (4.5) and (4.6). �

Lemma 4 Under assumptions (A1)-(A8), one has

N−1
∑
i∈S

π
−1
i (yi−m(xi))(m(xi)− m̂(xi)) = OP(

√
K−2p−2

n +Kn/N).

Proof. By the Cauchy-Schwarz inequality and Lemmas 1 and 2, one has

∣∣∣∣∣N−1
∑
i∈S

wi(yi−m(xi))(m(xi)− m̂(xi))

∣∣∣∣∣
≤

√
N−1 ∑

i∈S
wi(yi−m(xi))2

√
N−1 ∑

i∈S
wi(m(xi)− m̂(xi))2

= OP(

√
K−2p−2

n +Kn/N). �
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Lemma 5 Under assumptions (A1)-(A8), one has

|N̂/N−1|= OP(N−1/2),

where N̂ = ∑i∈S π
−1
i .

Proof. Consider the expectation of N̂,

E[N̂] = E[E[N̂|U ]] = E[E[∑
i∈S

π
−1
i |U ]]

= E[E[∑
i∈U

π
−1
i Ii|U ]] = E[∑

i∈U
π
−1
i E[Ii|U ]]

= E[∑
i∈U

1] = N.

The variance,

Var(N̂) = E[Var(N̂|U)]+Var(E[N̂|U ])

= E[Var(N̂|U)]+Var(N)

= E[Var(N̂|U)]

= E

[
Var

(
∑
i∈S

π
−1
i |U

)]

= E

[
∑
i∈U

π
−1
i π i(1−π i)

]
≤ ∑

i∈U
(1−λ π)

= N(1−λ π).

Therefore,
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Var(N̂/N)≤ N−2N(1−λ π) = N−1(1−λ π) = O(N−1).

It follows from Chebyshev’s Inequality that for any ε > 0, there exists C =C(ε) =√
(1−λ π)/ε such that,

P(N1/2|N̂/N−1|>C)≤ NVar(N̂/N)

C2 =
NN−1(1−λ π)

(1−λ π)/ε
= ε.

Thus,

|N̂/N−1|= OP(N−1/2). �

Define the weighted mean squared error with respect to model M as

WMSEM =

∑
i∈S

π
−1
i (yi−mM(xi))

2

∑
i∈S

π
−1
i

.

Lemma 6 Let M0 be the true model. Under assumptions (A1)-(A8), one has

|WMSEM0−σ
2|= OP(

√
K−2p−2

n +Kn/N).

Proof. The numerator can be decomposed as,

N−1
∑
i∈S

π
−1
i e2

i = N−1
∑
i∈S

π
−1
i (yi−m(xi))

2

+ N−1
∑
i∈S

π
−1
i (m(xi)− m̂(xi))

2

+ 2N−1
∑
i∈S

π
−1
i (yi−m(xi))(m(xi)− m̂(xi))
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= I+ II+ III.

From the results of Lemmas 2, 3, and 4, and Slutsky’s Theorem, we have that

|I+ II+ III−σ
2| ≤ |I−σ

2|+ |II|+ |III|= OP(K−2p−2
n +Kn/N). (4.7)

Combining the results from Equation 4.7 with Lemma 5 using Slutsky’s Theorem

yields

∣∣∣∣∣N−1
∑i∈S π

−1
i e2

i

N−1 ∑i∈S π
−1
i
−σ

2

∣∣∣∣∣= OP(K−2p−2
n +Kn/N). (4.8)

Therefore, WMSEM0 is a consistent estimator of σ2. �

Let HM, for M⊂{1, ...,d}, be the space of all squared integrable additive functions

for variables xl , l ∈M. Let GM be the space of function with the form

g(x) = g0 + ∑
l∈M

gl(xl)

where g0 is a constant and gl is a spline function with degree p with Jn interior knots.

The resulting dimension of GM is qM = 1+ r(q+ Jn), where r is the number of aux-

iliary variables in M. For the purpose of identifiability, assume
∫

Cl
gl(x)dx = 0, for

l ∈ {1, ...,d}, where Cl is the support of Xl . Without loss of generality, it will also be

assumed that Cl is the unit interval.
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Similar to Huang (1998), inner products defined on HM are introduced below.

〈 f ,g〉 = E[ f (X)g(X)]

〈 f ,g〉N =
1
N ∑

i∈U
f (Xi)g(Xi)

〈 f ,g〉n =
1
N ∑

i∈s
π
−1
i f (Xi)g(Xi)

The first and second equations are the theoretical and empirical inner products re-

spectively. The last one, 〈 f ,g〉n, can be interpreted as the Horvitz-Thompson esti-

mator of 〈 f ,g〉N . The corresponding norms are ‖ f‖2 = 〈 f , f 〉, ‖ f‖2
N = 〈 f , f 〉N , and

‖ f‖2
n = 〈 f , f 〉n. The theoretical inner product will be used to define the orthogonal

projection onto GM and HM as ProjM,n and ProjM respectively. To reduce equation

length, let m∗M,n = ProjM,nm and m∗M = ProjMm.

Lemma 7 Let G=G{1,...,d} be the spline space using all available auxiliary variables,

then under (A1)-(A6)

sup
g∈G

∣∣∣∣‖g‖N

‖g‖
−1
∣∣∣∣= oP(1).

This was proved in Huang (1998). A variant of the proof will be present here which

closely follows the proof given in Xue and Yang (2006).

Proof. Consider the B-spline basis because it is equivalent to the truncated power

basis, but with nice local properties as shown by de Boor (2001). Denote the B-spline

basis for gl as bl = {bl0, ...,blKn}, where Kn = Jn + p.

Let,

Blk =
√

Jn

(
blk−

E(blk)

E(bl0)

)
, k = 1, ...,Kn
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and

B = (B1,1, ...,B1,Kn, ...,Bd,1, ...,Bd,Kn).

By Theorem 5.4.2 in deVore and Lorentz (1993), we know that

E[Blk] = 0, and E|Blk|r � Kr/2−1
n , for r > 1. (4.9)

Denote ξ = (En−E)[Blk(Xl)] =
1
n ∑ξ i, where ξ i = B2

lk(Xli)−E[B2
lk(Xli)].

By Minkowski’s Inequality, for r > 3,

E|ξ i|r ≤ 2r−1 [E|Blk(Xil)|2r +{E|B2
lk(Xil)|}r]

≤ 2r−1 [cr
1Kr

n + c2]

≤ crKr
n.

The second moment can be bounded as,

E|ξ i|2 = E|B2
lk(Xil)|2−{E|B2

lk(Xli)}2 ≥ cKn− c≥ cKn.

Hence, there exists a constant c > 0 such that,

E|ξ i|r ≤ crKr
n ≤ (cK2

n )
r−2r!E|ξ i|2.

This results is called Cramer’s Condition and allows the application of Theorem

1.2.2 in Bosq (1998) with Cramer’s constant cr = cK2
n . Taking h−1 � Jn � n

1
2p+3 �

N
1

2p+3 , for all ε > 0,
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P

 1
N

∣∣∣∣∣ N

∑
i=1

ξ i

∣∣∣∣∣≥ ε

√
log2(N)

Nh

≤ 2exp

− 2ε2N2 log2(N)
Nh

4σ2 + cK2
n εN

√
log2(N)

Nh

≤ cN−N p/(2p+3)
.

To finish the proof, examine the infinite sum of probabilities,

∞

∑
N=1

P

sup |〈G,G〉N−〈G,G〉| ≥ ε

√
log2(N)

Nh

 ≤
∞

∑
N=1
{dKn}2

{
cN−N p/(2p+3)

}
≤

∞

∑
N=1

cN−2

< ∞

The Lemma follows from applying the Borel-Cantelli Lemma to the above result. �

A similar relationship holds for the sample norm, ‖ f‖n.

Lemma 8 Under assumptions (A1)-(A8), supg∈G

∣∣∣‖g‖n
‖g‖ −1

∣∣∣= oP(1).

Proof. This proof is constructed using the B-spline basis defined in the previous

lemma. Consider the difference between the theoretical expectation and its correspond-

ing Horvitz-Thompson estimator. Then by Markov’s Inequality,

P

(∣∣∣∣∣ 1
N ∑

i∈S
Blk(Xli)π

−1
i −E[Blk(Xli)]

∣∣∣∣∣> ε

)

= P

(∣∣∣∣∣ 1
N

N

∑
i=1

Blk(Xli)π
−1
i Ii(i ∈ S)−E[Blk(Xli)]

∣∣∣∣∣> ε

)

≤ 1
ε2 E

∣∣∣∣∣ 1
N

N

∑
i=1

Blk(Xli)π
−1
i Ii(i ∈ S)−E[Blk(Xli)]

∣∣∣∣∣
2
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The next step is to add and subtract the population based estimate of E[Blk(Xli)].

E

∣∣∣∣∣ 1
N

N

∑
i=1

Blk(Xli)π
−1
i Ii(i ∈ S)−E[Blk(Xli)]

∣∣∣∣∣
2

= E

∣∣∣∣∣ 1
N

N

∑
i=1

Blk(Xli)π
−1
i Ii(i ∈ S)− 1

N

N

∑
i=1

Blk(Xli)+
1
N

N

∑
i=1

Blk(Xli)−E[Blk(Xli)]

∣∣∣∣∣
2

≤ 2

E

∣∣∣∣∣ 1
N

N

∑
i=1

Blk(Xli)π
−1
i Ii(i ∈ S)− 1

N

N

∑
i=1

Blk(Xli)

∣∣∣∣∣
2

+ E

∣∣∣∣∣ 1
N

N

∑
i=1

Blk(Xli)−E[Blk(Xli)]

∣∣∣∣∣
2


By Equation 4.9, E[Blk(Xli)] = 0 and

E

∣∣∣∣∣ 1
N

N

∑
i=1

Blk(Xli)−E[Blk(Xli)]

∣∣∣∣∣
2

=
1
N

E[Blk(Xli)
2] = O(N−2).

It remains to consider the asymptotic behavior of the difference between the population

and sample based estimate. Using conditional probability and the variance bound on

the Horvitz-Thompson estimator discussed previously,

E

∣∣∣∣∣ 1
N

N

∑
i=1

Blk(Xli)π
−1
i Ii(i ∈ S)− 1

N

N

∑
i=1

Blk(Xli)

∣∣∣∣∣
2

= E

E

( 1
N

N

∑
i=1

Blk(Xli)π
−1
i Ii(i ∈ S)− 1

N

N

∑
i=1

Blk(Xli)

)2
∣∣∣∣∣∣U


= E

[
Var

(
1
N

N

∑
i=1

Blk(Xli)π
−1
i Ii(i ∈ S)− 1

N

N

∑
i=1

Blk(Xli)

∣∣∣∣∣U
)]
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≤ E

[
λ max

N2

N

∑
i=1

E[Blk(Xi)
2]

π2
i

]

≤ E

[
λ max

N2λ π

N

∑
i=1

E[Blk(Xi)
2]

]

≤ E
[

1
N

c
]
= O(N−1).

Therefore,

P(sup |〈G,G〉n−〈G,G〉| ≥ ε)≤ K2
n cN−1 = oP(1). �

Lemma 9 Under assumptions (A1)-(A8), ‖m̂M−m∗s,n‖= OP

(√
K−2p−2

n +Kn/N
)
.

The proof is obtained by applying Lemma 8 to the population version given in Huang

(1998).

Lemma 10 Under assumptions (A1)-(A8), if M underfits then c(M,m) = ‖m∗M−m‖>

0.

Proof. Following the proof given in Huang and Yang (2004), if we assume that

c(M,m) = 0 and M ∩M0 = M then m = m∗M ∈ HM which contradicts the M0 being

minimal. On the other hand, if we assume that c(M,m) = 0 and M ∩M0 6= M then

m = m∗M ∈HM ∩HM0 =HM∩M0 which also contradicts the M0 being minimal. There-

fore c(M,m)> 0 for the underfitting case.

Consider a set of variables xl , l = 1, ...,d, which contain all relevant auxiliary vari-

ables and possibly other irrelevant information. Let M ⊂ (1, ...,d) represent a model

containing xl , l ∈M.
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Proof of Theorem 1. The following proof closely follows the one given in Huang

and Yang (2004).

Overfitting. Consider M ⊂ {1, ...,d}, such that M0 ⊂M. Applying Lemmas 5 and

8, as well as the orthogonal projection properties of m̂M and m̂M0 ,

WMSEM−WMSEM0 =
1
N ∑

i∈S
π
−1
i ‖m̂M− m̂M0‖

2
n = ‖m̂M− m̂M0‖

2(1+oP(1)).

Observe that m∗M = m∗M0
= m because M0 ⊂M. It follows from Lemma 9 and assump-

tion (A7) that, ‖m̂M− m̂M0‖ ≤ ‖m̂M−m∗M‖+‖m̂M0−m∗M0
‖= OP(K

−2p−2
n +Kn/N) =

oP(1). Thus,

BIC(M)−BIC(M0) =
n
N
(∑

i∈S
π
−1
i )(log(WMSEM)− log(WMSEM0))+(qM−qM0) log(n)

= n{1+op(1)}
WMSEM−WMSEM0

WMSEM0

{1+op(1)}+(qM−qM0) log(n)

= n
WMSEM−WMSEM0

σ2{1+op(1)}
{1+op(1)}+n1/(2p+3){1+op(1)} log(n)

= n
[

WMSEM−WMSEM0

σ2{1+op(1)}
+n−

2p+2
2p+3 log(n)

]
{1+op(1)}

≥ cn
[
−Op(K−2p−2

n +Kn/N)+n−
2p+2
2p+3 log(n)

]

for some constant c. For n large enough, cn
[
−Op(K

−2p−2
n +Kn/N)+n−

2p+2
2p+3 log(n)

]
>

0. Recall that Kn � n1/(2p+3). Therefore, limn→∞{P(BICM−BICM0 > 0)}= 1.

Underfitting. Let M ⊂ {1, ...,d}, such that M0 ∩M 6= M0. A lower bound for

WMSEM−WMSEM0 was established in Huang and Yang (2004) as,
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WMSEM−WMSEM0 ≥ c2(M,M0)+op(1).

The two possible cases will be considered.

Case 1: M∩M0 =M. By Lemma 5 and 8, WMSEM−WMSEM0 = ‖m̂M−m̂M0‖2(1+

oP(1)). Using Lemma 9 and assumption (A7) ‖m̂M−m∗M,n‖= oP(1) and ‖m̂M0−m‖=

oP(1). From the triangle inequality we have that

‖m̂M− m̂M0‖ ≥ ‖m
∗
M,n−m‖−‖m̂M−m∗M,n‖−‖m̂M0−m‖ ≥ ‖m∗M,n−m‖−oP(1).

Recall that GM ⊂ HM, hence ‖m∗M,n−m‖ ≤ ‖m∗M −m‖ = c(M,m) > 0. Therefore,

WMSEM−WMSEM0 ≥ c(M,m)+oP(1).

Case 2: M ∩M0 6= M. Define M ∩M0 = M′. Notice WMSEM −WMSEM′ =

− 1
N ∑i∈S π

−1
i ‖m̂M − m̂M′‖2

n and WMSEM′ −WMSEM0 = − 1
N ∑i∈S π

−1
i ‖m̂M′ − m̂M0‖2

n

by orthogonal projection properties. By Lemma 8, WMSEM −WMSEM0 = ‖m̂M −

m̂M′‖2−‖m̂M′ − m̂M0‖2 + oP(1). Lemma 9 gives us ‖m̂M −m∗M,n‖ = oP(1), ‖m̂M′ −

m∗M′,n‖= oP(1), and ‖m̂M0−m∗M0,n‖= oP(1). Applying the Triangle Inequality, ‖m̂M′−

m̂M0‖ ≥ ‖m∗M′−m∗M0,n‖−‖m̂M′−m∗M′,n‖−‖m̂M0−m∗M0,n‖ ≥ ‖m
∗
M′,n−m∗M0,n‖−oP(1)

and ‖m̂M−m̂M′‖≤‖m∗M,n−m∗M′,n‖+‖m̂M−m∗M,n‖+‖m̂M′−m∗M′,n‖= ‖m
∗
M,n−mM′,n‖+

oP(1). Hence,

WMSEM−WMSEM0 ≥ ‖m
∗
M′,n−m∗M0,n‖

2−‖m∗M,n−m∗M′,n‖
2 +oP(1).

Recall that the projections m∗M,n, m∗M0,n, and m∗M′,n onto GM, GM0 , and GM′ , respec-
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tively, are orthogonal. Hence ‖m∗M′,n−m∗M0,n‖
2 = ‖m−m∗M′,n‖

2−‖m−m∗M0,n‖
2 and

‖m∗M,n−m∗M′,n‖
2 = ‖m−m∗M′,n‖

2−‖m−m∗M,n‖2. It follows that,

‖m∗M′,n−m∗M0,n‖
2−‖m∗M,n−m∗M′,n‖

2 = ‖m−m∗M,n‖2−‖m−m∗M0,n‖
2.

Due to GM ⊂HM,

‖m−m∗M,n‖ ≥ ‖m−m∗M‖= c(M,m).

Due to assumption (A7), ‖m−m∗M0,n‖ = ρM0
= o(1). Hence MSEM −MSEM0 ≥

c2(M,M0)+oP(1).

Therefore,

BIC(M)−BIC(M0) = n log
(

1+
MSEM−MSEM0

MSEM0

)
+(qM−qM0) log(n)

≥ log
(

1+
c2(M,M0)+oP(1)

σ2
0

)
+oP(1).

Thus it has been shown that

lim
N→∞

P(BIC(M0)≤ BIC(M), for all M 6= M0,M ⊂ {1, ...,d}) = 1. �
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5 Conclusion

5.1 Conclusion

Our research further develops the theory of nonparametric modeling in survey

statistics. Our proposed BIC provides a consistent variable selection method for build-

ing additive models using data from complex samples. The additive model captures the

unknown nonlinear relationship, while the variable selection using the BIC decreases

the variance of the total estimator by removing unimportant variables.

The problem was initially investigated through simulations to determine potential

solutions using the AIC and BIC to find the important variables. These simulations also

provided insight into the finite sample performance of the variable selection methods.

Possible equations for the information criteria were developed from earlier literature.

The likelihood proposed in the AIC for linear models by Hens et al. (2006) provided a

clue on how to estimate the likelihood in a design based sample, but required modifying

the penalty term. The theoretical results developed by Huang and Yang (2004) were

essential for proving the theorem and lemmas involving our BIC.

Proving the consistency of our proposed BIC is a challenging theoretical problem,

requiring knowledge of both sampling statistics and nonparametric modeling. In ad-

dition to the increasing number of parameters when using spline approximations, we

need to incorporate two sources of variation due to the superpopulation model and

complex sampling design. The consistency proof of the proposed BIC provides under-
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standing of its large sample properties. We also provide the theoretical derivations of

the AIC and BIC, which provides understanding of the origin of their formulations and

deepens our understanding of the assumptions, approximations, and possible weak-

nesses of these variable selection methods.

We applied our method the California Academic Perforamce Index data set. Our

method produced mean estimates of the API, which demonstrated its usefulness for an

applied problem. Since the population data was available for the response value, the

results of the mean estimates were compared to its true value. Our variable selection

method resulted in lower MSE than the Horvitz-Thompson estimate and the estimate

using the full model.

Our research is very closely related to Lumley and Scott (2015), which provides an

AIC and BIC for complex samples restricted to linear models. Our method assumes

a nonparametric model and approximates the addive functions using splines. Lum-

ley and Scott (2015) propose a design effect with no rigorous theoretical justification.

Our theoretical development and simulation cannot justify their proposed design effect.

Wang and Wang (2011) provide a method for variable selection assuming an additive

model for samples from finite populations. However, our BIC is based on the likeli-

hood rather than the asymptotic mean squared error, as assumed by Wang and Wang

(2011). Furthermore, our method is consistent beyond simple random samples.

There are some weaknesses in our proposed method. First, if the assumptions of

the additive model are not satisfied, such as the true model including an interaction

term, the variable selection method may fail to select the correct set of variables. In

practice, this problem could be alleviated by adding new variables created from the
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interaction terms of existing variables. Another weakness is that our method requires

more parameters than a linear model, which means it may not always be possible to

estimate spline parameters for all available variables. Possible solutions could include

choosing a lower degree of polynomial, decreasing the number of knots, or using prior

knowledge to reduce the total number of variables considered. Lastly, our method

requires a large sample size to obtain reasonable performance. However, this will not

often be a problem because surveys that use complex designs usually have large sample

sizes.

Future research may improve our method by incorporating a theoretically justified

penalty to the likelihood based on the effective sample size resulting from the sampling

design. Lumley and Scott (2015) suggest an adjustment based on a design effect for

linear models that could be adapted to nonparametric models. Our simulations sug-

gest that their design effect can decrease the number of correct fits. Another way to

account for the design effect is to borrow ideas from longitudinal study formulations

of information criteria.

Any national survey could be improved by using our method and census data on the

population. For example, the National Health Interview Survey (NHIS) could use this

method to investigate relationships of factors correlated with disease or the National

Survey of Family Growth (NSFG) could look for links between pregnancy and socioe-

conomic factors. These surveys use complex designs with multiple stages or phases

of sampling. Additional research could include methods to account for intraclass cor-

relation in clusters which may improve results. A mixed model may be sufficient to

estimate this effect. The second order inclusion probabilities may need to be incorpo-
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rated in this model.

Another research area is examining superpopulation models that vary across strata

or clusters. Further work could examine how to extend the proposed variable selection

method to this framework. One challenge is to deal with the increase in the number of

parameters and the number of models that must be considered.

Other further research may investigate other estimation methods. Our current pro-

posed method is limited to polynomial spline estimates, while there are other methods

that may work better for this situation. For example, polynomial splines approximate a

nonparametric space using a finite parameter space, while other methods do not make

such a strong reduction. Such methods may be used to create a nonparametric infor-

mation criterion that is purely nonparametric at the estimation stage.
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Table A.1: Percent of correct fitting models using variable selection in four fixed pop-
ulations of size N = 1000. The simulation drew 100 simple random samples of size
n and selected the variables for both forward and backward approaches using the pro-
posed method. The SBLL column contain the results from Wang and Wang (2011) for
comparison.

Percent Correct Fits

Linear Spline Quadratic Spline SBLL

Model σ0 n Forward Backward Forward Backward Forward Backward

1

0.1
50 98 98 98 98 72 73

100 99 99 99 99 97 97
200 100 100 100 100 99 99

0.4
50 90 89 94 92 76 77

100 98 98 97 97 98 98
200 100 100 99 99 100 100

2

0.1
50 97 93 99 97 87 87

100 100 100 99 99 96 96
200 100 100 100 100 100 100

0.4
50 95 91 95 92 79 80

100 100 100 99 99 98 98
200 100 100 99 99 100 100

3

0.1
50 97 92 97 95 87 86

100 97 97 99 99 91 91
200 98 98 100 100 100 100

0.4
50 89 82 86 82 83 83

100 99 99 98 98 99 99
200 99 99 100 100 100 100

4

0.1
50 81 91 90 95 68 69

100 97 97 100 100 88 88
200 99 99 100 100 100 100

0.4
50 84 91 84 90 69 69

100 98 98 97 97 97 97
200 99 99 100 100 100 100
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Table A.2: Monte Carlo bias and standard error of the linear spline model-assisted es-
timators in four fixed populations of size N = 1000. The simulation drew 1000 simple
random samples of size n and selected the variables for both forward and backward
using the proposed method. The “oracle” estimates the total using the correct auxiliary
variables. The Horvitz-Thompson (HT) estimator’s Monte Carlo bias and variance are
included for comparison.

Forward Backward Oracle HT

Model σ0 n Bias SE Bias SE Bias SE Bias SE

1

0.1
50 0.46 15.32 0.44 15.56 0.49 15.25 -7.32 176.51

100 0.07 10.12 0.07 10.12 0.03 10.11 -3.43 125.18
200 0.06 6.84 0.06 6.84 0.07 6.84 -0.38 85.01

0.4
50 1.62 61.38 0.98 64.02 1.96 61.02 -5.59 182.93

100 0.20 40.60 0.20 40.60 0.10 40.44 -3.48 131.53
200 0.25 27.35 0.25 27.35 0.26 27.35 -0.12 87.79

2

0.1
50 -1.27 43.55 -1.15 44.32 -0.95 43.26 8.15 264.45

100 -1.67 29.78 -1.65 29.78 -1.67 29.73 -5.35 185.38
200 -0.36 18.83 -0.36 18.83 -0.40 18.79 2.05 126.64

0.4
50 -0.67 74.59 -0.14 77.58 -0.34 74.06 9.88 272.16

100 -2.27 49.39 -2.28 49.39 -2.15 49.26 -5.40 190.63
200 -0.16 32.70 -0.16 32.70 -0.20 32.69 2.31 129.64

3

0.1
50 -2.95 46.93 -1.68 27.77 -1.61 26.75 10.04 156.50

100 -1.33 18.11 -1.33 18.11 -1.30 18.10 -0.45 112.00
200 -0.31 11.94 -0.31 11.94 -0.32 11.94 0.32 74.53

0.4
50 -2.61 80.98 -0.07 68.60 -0.53 65.97 11.77 165.60

100 -1.84 44.00 -1.75 44.15 -1.66 44.00 -0.50 118.92
200 -0.11 29.18 -0.11 29.18 -0.11 29.18 0.58 78.91

4

0.1
50 9.27 100.19 0.52 51.56 0.19 49.63 5.19 210.22

100 0.13 30.47 0.13 30.47 0.08 30.38 -5.54 143.88
200 -0.05 19.59 -0.05 19.59 -0.06 19.60 -1.56 98.69

0.4
50 8.38 122.98 1.18 75.99 1.14 73.22 6.65 216.92

100 -0.24 45.93 -0.20 45.85 -0.39 45.78 -5.49 147.91
200 0.05 29.18 0.05 29.18 0.08 29.17 -1.30 101.27
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Table A.3: Monte Carlo bias and standard error of quadratic spline model-assisted
estimators in four fixed populations of size N = 1000. The simulation drew 1000
simple random samples of size n and selected the variables both forward and backward
using the proposed method. The “oracle” estimates the total using the correct auxiliary
variables. The Horvitz-Thompson (HT) estimator’s Monte Carlo bias and variance are
included for comparison.

Forward Backward Oracle HT

Model σ0 n Bias SE Bias SE Bias SE Bias SE

1

0.1
50 0.42 15.37 0.34 15.66 0.45 15.25 -7.32 176.51

100 0.08 10.14 0.08 10.14 0.04 10.13 -3.43 125.18
200 0.07 6.82 0.07 6.82 0.07 6.83 -0.38 85.01

0.4
50 1.88 61.72 1.11 64.07 1.78 61.00 -5.59 182.93

100 0.18 40.74 0.18 40.74 0.17 40.53 -3.48 131.53
200 0.26 27.30 0.27 27.32 0.27 27.31 -0.12 87.79

2

0.1
50 0.50 21.74 0.40 22.34 0.51 21.66 8.15 264.45

100 -0.12 14.81 -0.12 14.81 -0.13 14.80 -5.35 185.38
200 0.12 9.47 0.12 9.47 0.11 9.47 2.05 126.64

0.4
50 1.37 64.15 0.78 65.88 1.19 63.55 9.88 272.16

100 -0.52 41.67 -0.49 41.64 -0.57 41.57 -5.40 190.63
200 0.41 28.23 0.41 28.23 0.38 28.18 2.31 129.64

3

0.1
50 -1.04 36.49 0.13 16.52 0.11 16.00 10.04 156.50

100 -0.20 10.50 -0.20 10.50 -0.21 10.50 -0.45 112.00
200 0.05 7.08 0.05 7.08 0.04 7.07 0.32 74.53

0.4
50 -0.81 78.46 1.38 66.56 0.79 63.00 11.77 165.60

100 -0.65 41.21 -0.69 41.18 -0.62 41.05 -0.50 118.92
200 0.22 27.68 0.24 27.69 0.22 27.65 0.58 78.91

4

0.1
50 6.18 80.38 -0.06 16.57 0.00 16.38 5.19 210.22

100 -0.20 10.66 -0.20 10.66 -0.19 10.66 -5.54 143.88
200 -0.02 6.75 -0.02 6.75 -0.02 6.75 -1.56 98.69

0.4
50 7.45 109.44 0.29 56.97 0.41 55.12 6.65 216.92

100 -0.52 34.73 -0.49 34.80 -0.67 34.67 -5.49 147.91
200 0.02 22.68 0.02 22.68 0.03 22.70 -1.30 101.27
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Table A.4: Percent of correct fitting models using the BIC for forward and backward
approaches using the proposed information criterion based on 1000 stratified samples
of size 50, 100, and 200 from a fixed population of size 1000 with noise levels 0.1
and 0.4. Four super population models were used to generate the response values
from 10 possible predictors: (1) linear 2 predictors, (2) quadratic, 2 predictors (3)
exponential and sin function, 3 predictors, and (4) heteroskedastic sum of sin functions,
5 predictors.

Correct Fit Percentage

Linear Splines Quadratic Splines
Model σ0 n Forward Backward Forward Backward

1

0.1
50 94 93 96 92
100 99 99 99 99
200 99 99 100 100

0.4
50 79 77 87 72
100 96 95 96 96
200 96 96 97 97

2

0.1
50 91 88 98 95
100 98 98 99 99
200 99 99 99 99

0.4
50 83 80 91 80
100 95 94 96 96
200 98 98 97 97

3

0.1
50 88 86 91 88
100 98 98 98 98
200 99 99 99 99

0.4
50 76 73 77 66
100 95 94 95 95
200 97 97 98 98

4

0.1
50 78 82 75 84
100 97 97 97 97
200 99 99 99 99

0.4
50 72 76 61 70
100 96 96 95 96
200 99 99 99 99
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Table A.5: Bias and standard error of the estimates from linear splines using the pro-
posed information criterion based on 1000 stratified samples of size 50, 100, and 200
from a fixed population of size 1000 with noise levels 0.1 and 0.4. Four super popu-
lation models were used to generate the response values from 10 possible predictors:
(1) linear 2 predictors, (2) quadratic, 2 predictors (3) exponential and sin function, 3
predictors, and (4) heteroskedastic sum of sin functions, 5 predictors.

Forward Backward Oracle Full HT

Model σ0 n Bias SE Bias SE Bias SE Bias SE Bias SE

1

0.1
50 3.4 18.5 3.4 18.5 3.3 18.3 14.7 34.4 0.3 199.2
100 2.1 10.8 2.1 10.8 2.1 10.8 10.2 16.5 -1.6 134.1
200 1.4 6.9 1.4 6.9 1.4 6.9 5.8 8.3 -1.8 93.7

0.4
50 3.7 65.0 3.8 66.4 2.9 63.2 15.1 94.7 0.0 206.6
100 1.7 40.6 1.6 40.6 1.6 40.6 9.9 49.4 -2.4 139.6
200 2.0 27.0 2.0 27.1 2.0 27.0 5.9 28.5 -1.6 97.0

2

0.1
50 -6.3 49.4 -6.6 50.0 -6.2 49.0 -11.3 77.0 2.9 342.0
100 -3.3 19.9 -3.3 19.9 -3.3 19.9 -6.4 28.2 -7.7 230.2
200 -1.8 12.7 -1.8 12.7 -1.8 12.7 -4.3 14.7 2.0 160.0

0.4
50 -4.8 77.3 -5.3 77.8 -5.0 75.8 -10.9 117.1 2.6 348.7
100 -3.9 44.1 -3.8 44.1 -3.8 43.7 -6.7 55.2 -8.5 235.0
200 -1.3 28.9 -1.3 28.9 -1.2 28.8 -4.2 30.6 2.2 162.3

3

0.1
50 -3.8 42.5 -5.4 30.4 -5.6 29.8 -8.3 43.1 -0.9 187.1
100 -2.6 14.2 -2.6 14.2 -2.7 14.2 -4.9 18.9 3.8 121.9
200 -1.2 9.6 -1.2 9.6 -1.2 9.6 -2.7 10.3 3.2 83.8

0.4
50 -0.8 84.7 -3.0 71.9 -3.4 67.0 -7.9 95.7 -1.1 198.3
100 -2.9 41.3 -2.9 41.4 -3.1 41.2 -5.2 50.3 3.0 129.9
200 -0.8 28.4 -0.8 28.4 -0.8 28.4 -2.5 29.1 3.3 89.3

4

0.1
50 0.8 121.1 -2.4 61.1 -3.0 59.7 -3.7 75.5 -11.4 263.6
100 -3.0 31.7 -4.1 24.2 -4.2 24.2 -6.8 27.5 -2.5 177.6
200 -1.7 14.4 -1.7 14.4 -1.7 14.4 -3.2 15.0 0.8 116.3

0.4
50 3.9 135.6 -1.9 84.6 -2.9 81.4 -3.6 101.1 -11.6 266.7
100 -4.4 46.2 -4.8 40.7 -4.5 40.5 -6.9 45.6 -3.3 179.8
200 -1.5 25.6 -1.5 25.6 -1.6 25.6 -2.9 26.6 0.9 117.7
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Table A.6: Bias and standard error of the estimates from quadratic splines using the
proposed information criterion based on 1000 stratified samples of size 50, 100, and
200 from a fixed population of size 1000 with noise levels 0.1 and 0.4. Four super pop-
ulation models were used to generate the response values from 10 possible predictors:
(1) linear 2 predictors, (2) quadratic, 2 predictors (3) exponential and sin function, 3
predictors, and (4) heteroskedastic sum of sin functions, 5 predictors.

Forward Backward Oracle Full HT

Model σ0 n Bias SE Bias SE Bias SE Bias SE Bias SE

1

0.1
50 4.8 19.5 4.8 19.5 4.6 19.2 17.3 48.1 0.3 199.2
100 2.0 10.8 2.0 10.8 2.0 10.8 10.1 16.5 -1.6 134.1
200 1.3 6.9 1.3 6.9 1.3 6.9 5.8 8.2 -1.8 93.7

0.4
50 6.5 66.9 9.5 86.5 4.6 63.4 16.8 144.1 0.0 206.6
100 1.5 40.8 1.4 40.8 1.3 40.6 10.1 49.4 -2.4 139.6
200 1.9 26.9 1.9 26.9 1.8 27.0 6.2 28.3 -1.6 97.0

2

0.1
50 -3.2 25.1 -3.1 25.7 -3.3 25.0 -12.7 66.7 2.9 342.0
100 -2.0 12.2 -2.0 12.2 -2.0 12.2 -6.1 22.4 -7.7 230.2
200 -0.9 7.5 -0.9 7.5 -0.9 7.5 -3.8 10.5 2.0 160.0

0.4
50 -1.7 70.2 -2.1 81.6 -2.0 69.1 -13.2 151.4 2.6 348.7
100 -2.5 41.3 -2.5 41.3 -2.4 41.1 -6.3 52.1 -8.5 235.0
200 -0.4 27.4 -0.4 27.4 -0.3 27.4 -3.5 29.3 2.2 162.3

3

0.1
50 1.0 61.4 -3.3 27.8 -3.4 25.9 -9.1 55.0 -0.9 187.1
100 -2.6 14.1 -2.6 14.1 -2.6 14.0 -6.2 18.6 3.8 121.9
200 -0.9 9.3 -0.9 9.3 -0.9 9.3 -3.5 10.0 3.2 83.8

0.4
50 2.9 100.2 -1.5 91.1 -2.4 72.2 -9.7 149.1 -1.1 198.3
100 -3.1 41.7 -3.1 41.7 -3.2 41.5 -6.4 50.5 3.0 129.9
200 -0.7 28.5 -0.7 28.5 -0.6 28.4 -3.1 29.1 3.3 89.3

4

0.1
50 3.3 144.3 -7.5 55.8 -7.4 53.6 -9.2 100.8 -11.4 263.6
100 -2.7 31.1 -3.9 23.5 -3.8 23.5 -6.1 26.8 -2.5 177.6
200 -1.2 13.9 -1.2 13.9 -1.2 13.9 -2.7 14.8 0.8 116.3

0.4
50 10.4 165.8 -8.9 103.5 -7.0 79.3 -9.1 153.5 -11.6 266.7
100 -3.7 49.2 -3.8 40.3 -3.7 40.0 -6.1 44.8 -3.3 179.8
200 -0.8 24.9 -0.8 24.9 -0.8 24.9 -2.2 26.3 0.9 117.7
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Table A.7: Percent of correct fitting models using the BIC with and without the design
effect for forward and backward approaches using the proposed information criterion
based on 1000 stratified samples of size 50, 100, and 200 from a fixed population of size
1000 with noise levels 0.1 and 0.4. Four super population models were used to generate
the response values from 10 possible predictors: (1) linear 2 predictors, (2) quadratic,
2 predictors (3) exponential and sin function, 3 predictors, and (4) heteroskedastic sum
of sin functions, 5 predictors.

Correct Fit Percentage

Without Design Effect With Design Effect

Model σ0 n Forward Backward Forward Backward

1

0.1
50 94 93 95 94
100 99 99 99 99
200 99 99 99 99

0.4
50 79 77 80 77
100 96 95 96 96
200 96 96 96 96

2

0.1
50 91 88 91 89
100 98 98 99 99
200 99 99 99 99

0.4
50 83 80 84 81
100 95 94 95 94
200 98 98 98 98

3

0.1
50 88 86 89 87
100 98 98 98 98
200 99 99 99 99

0.4
50 76 73 77 75
100 95 94 96 95
200 97 97 97 97

4

0.1
50 78 82 79 83
100 97 97 97 98
200 99 99 100 100

0.4
50 72 76 73 78
100 96 96 97 97
200 99 99 99 99
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Table A.8: Investigation of weak signal performance of the BIC that includes the design
effect. Percent of correct fitting, underfitting, and overfitting models for forward and
backward approaches using the proposed information criterion with and without the
design effect based on 1000 stratified samples of size 50, 100, and 200 from a fixed
population of size 1000 with noise levels 0.1 and 0.4. Two super population models
were used to generate the response values from 10 possible predictors: (5) 1 strong
linear signal, 1 weak linear signal, (3) 1 weak exponential signal and 1 strong sin
function.

Percent of Correct Fitting Models

Without Design Effect With Design Effect

Selection Model σ0 n Correct Underfit Overfit Correct Underfit Overfit

Forward

5

0.1
50 52 24 31 40 52 12
100 86 6 8 74 22 4
200 96 0 4 96 1 3

0.4
50 4 94 26 4 95 22
100 2 98 7 1 98 7
200 2 98 4 2 98 4

6

0.1
50 11 82 28 8 90 12
100 35 61 8 28 71 2
200 74 24 3 66 33 1

0.4
50 3 95 28 2 96 21
100 2 98 5 2 98 4
200 2 98 3 2 98 3

Backward

5

0.1
50 43 22 43 37 52 17
100 86 6 9 73 22 5
200 96 0 4 96 1 3

0.4
50 3 87 37 3 90 30
100 2 97 7 1 98 7
200 2 98 4 2 98 4

6

0.1
50 9 74 40 7 87 16
100 34 60 10 27 71 3
200 74 24 3 66 33 2

0.4
50 3 88 38 2 92 27
100 2 97 6 2 97 5
200 2 98 3 2 98 3
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Table A.9: Percent of correct fitting models using the AIC for forward and backward
approaches based on 1000 stratified samples of size 50, 100, and 200 from a fixed
population of size 1000 with noise levels 0.1 and 0.4. Four super population models
were used to generate the response values from 10 possible predictors: (1) linear 2
predictors, (2) quadratic, 2 predictors (3) exponential and sin function, 3 predictors,
and (4) heteroskedastic sum of sin functions, 5 predictors.

AIC Percent of Correct Fits

Linear Quadratic

Model σ0 n Forward Backward Forward Backward

1

0.1
50 71 68 74 72

100 70 69 71 69
200 67 66 70 68

0.4
50 25 18 27 17

100 25 21 26 22
200 18 17 21 20

2

0.1
50 51 46 80 77

100 56 54 71 69
200 51 49 64 63

0.4
50 30 24 42 32

100 29 25 33 28
200 25 23 27 25

3

0.1
50 48 43 62 57

100 52 49 51 48
200 45 44 44 42

0.4
50 22 16 24 13

100 25 19 26 21
200 24 22 27 25

4

0.1
50 45 42 57 54

100 58 55 59 57
200 56 55 53 52

0.4
50 33 29 36 31

100 39 36 42 38
200 44 42 39 38
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Table B.1: Percent of models including each variable in the API set from 1000 Monte
Carlo simulations using stratified sampling.

Direction p n cds dnum meals eng.ll mobil col.grd grad.sc enroll hsg.col

Forward

1
50 9 4 86 21 7 15 43 66 13
100 1 1 97 13 1 10 46 84 7
200 6 1 100 16 1 11 79 100 7

2
50 6 3 83 16 6 13 36 53 12
100 4 1 96 12 2 11 45 83 7
200 7 1 100 17 2 13 80 100 7

Backward

1
50 22 17 72 34 20 37 60 75 35
100 9 2 88 18 3 23 56 85 17
200 7 1 98 17 1 19 79 100 13

2
50 38 31 71 45 37 55 69 71 53
100 9 2 87 18 4 26 58 84 21
200 8 1 98 17 2 22 80 99 16

Table B.2: Average model size in the API set from 1000 Monte Carlo simulations using
stratified sampling.

Direction p n Avg Size Std Dev

Forward

1
50 2.64 1.14
100 2.63 0.85
200 3.18 0.74

2
50 2.28 1.13
100 2.63 0.87
200 3.25 0.79

Backward

1
50 3.71 1.58
100 2.99 1.05
200 3.35 0.86

2
50 4.70 2.28
100 3.09 1.14
200 3.43 0.92



Table B.3: Bias and standard error of the mean estimate in the API set from 1000
Monte Carlo simulations using stratified sampling.

Forward Backward Full HT

p n Bias SE Bias SE Bias SE Bias SE

1
50 -1.44 10.93 -1.56 12.36 -2.03 13.67 -0.53 19.47
100 -0.87 6.83 -0.75 6.89 -1.01 7.86 -1 13.76
200 -0.36 4.77 -0.38 4.81 -0.48 4.83 -0.49 10.1

2
50 -2.45 14.23 -2.74 27.95 -4.09 37.32 -0.53 19.47
100 -1.04 7.37 -1 7.7 -1.08 10.63 -1 13.76
200 -0.33 4.86 -0.39 4.9 -0.46 5.33 -0.49 10.1
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