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BEHAVIOR OF ESTI}4ATES OF TIM MEAI{I LIE'E
OF A RADTOACTIVE SOURCE

CHAPTER I

INTRODUCTION

fn an unpubli-shed paper (6) by Dr" R. F. Link of

Oregon State University, an iterative estimation procedure

is developed to estimate three parameters associated with

the distribution of particles emitted from a radioactive

material. The estimates were obtained by the maximum

Iiklihood method and the asymptotic variances are derived.

Since the variances are obtained from a limit as n--+oo,

it is not known how good the estimates are for small values

of n. One consequence of this is that the estimates may

be biased for many parameter values. An additional url-

certainty associated with this estimation procedure, b€-

cause it is an iterative procedure, is whether or not suc-

cessive iterations wilL always converge.

The objective of this thesis is to provide a bridge

between theory and practical application. It is proposed

to provide the experimenter with all the information that

is needed to apply the estimation procedure with the pos-

sible exception of the tables of multipliers for the
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asymptotic variance of C. (6, p. B) of prime importance

in providing this bridge are investigations of bias, di-

vergence and variance of the estimates and the effects of

parameters upon these properties of the estimates. The

estimation procedure j-s improved to reduce the number of

divergent examples. Investigatj-ons of bias, divergence,

and variance of the estimates and comparisons between the

unmodified and the modified estimation procedures are in

chapter II.

A computer method of analysis waB chosen because the

analytic analysis of the estimation equati-ons is extreme-

ly lengthy and tedious. An additional reason is that the

computer program is needed for the practical application

of the estimation procedure. Chapter III contains a dis-

cussion of the development of the computer program and

modifications made to the estimation procedure.

The presentation wquld be incomplete without tying

together the program and reconunendations to show how to

use them in practice. The simulated experiments in

chapter fV serve this function as weII as demonstrating

how to repeat the experiment to obtain greater accuracy

of the estimates.
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An insufficient amount of time was available to ob.-

tain as much data on cases with background level as was

obtained for the zero backqround cases. A few cases with

different background levels were run to insure that the

estimation program worked for these cases and to check

the variances with the asymptotic variances.



CHAPTER II

RESULTS

Some of the notat.ions and definitions that wiLI be

used throughout the remaining chapters will now be intro-

duced. The average number of particles observed from the

background in an j-nterval is A. The number of particles

contained in the source at the start of the experiment is

B. The mean life of the source is C. The number of in-

tervals of observation is K and the wldth of the intervals

is D. The notation var(t) will be used to denote the mean

squared deviations of 0 from true C. The notation var(C)

is used to denote the asymptotJ-c variance of C calculated

from tables in (6). A parameter with a circumflex (A)

above it is an estimate, the true values of a parameter

are denoted without the circumflex.

A case is a set of ten examples that were run run for

one set of parameter values. The frequencies for each ex-

ample were calculated with independent sets of random num-

bers. A total of 37 cases , 37O examples, were run for

selected values of the parameters K and with zero back-

ground. A total of 10 cases were run with selected values

of the parameters K and $ with a background level "f #
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= .L, .2. The unmodified procedure for obtaining the esti-

mates, described in chapter I, will be referred to as pro-

cedure I. The modifications to the general procedure will

be called procedure II and procedure III.

Procedure II is essentially an improvement in the

initial estimates with which the iteration procedure is

started. Procedure III groups the frequencies and then

calculates the estimates by procedure II. Both procedures

II and III are discussed more thoroughly in chapter III

on program development.

Table I gives an overall view of the parameter combi-

nations that were used for most of the tests in this

chapter. The numbers in the blocks are the levels of K

that were used and each K represents one of the 37 cases.

AlI 37 cases were with S = O and C = 1. The condensed

data for all cases run are in Appendix A.

IN\ZESTIGATIONS OT BIAS IN THE ESTIMATES

As an overall check on bias it was found that the

average estimate 0 ,"" below the true value of C in 29

out of 43 cases (67%) .

The number of cases where the average 6 ,"= less than

C was tabulated in one table for each of the parameters



Table I. Parameter Combinations for Cases I through 37.

The numbers in the blocks are the levels
of K that were used.

5

5

8

3

4

5

I

3

5

8

3

4

I
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B, K, and KD/C. The object of the tables was to test the

nu1I hypothesis, that the parameter has no effect on bias,

for each of the three parameters" AX2 test at the .05

Ievel of significance was used for each case. fhe nuI1

hypotheses were accepted for the parameters B and K and

these tables were not included" The computed X2 for

table 2 is 9"00 which is significant and IA/C is there-

fore assumed to have an effect upon bias" From observing

the changes in the proportion of cases where 6.c in

table 2 iL appears desirable to test for a change in the

effect of KD/C. fhe null hypothesis, that there is no

difference in the proportion of biased cases for t\O/C = 3,

4 and B, was accepted at the .05 level of significanqe.

The interpretation of these tests is that the estimates

are biased when IA/C<3 but they did not exhibj-t a signif-

icant amount of bias when tA/C 7 S.

From table 3 it can be seen that the estimates did

not have a significant amount of bias when the aslrmptotic

variance was less than .05"
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Table 2. The Effect

Number of Cases
where 6 <c

Total Number of
Cases

Proportion of
cases d <c

of KD/C on Bias"

KD/c
L,2,3,

3,4,8 4,9
Total TotaI

"67

Table 3. The Change in Bias with the Asymptotic Variance.

Asymptoti-c
Variance

ofC

.47

Proportj-on of
Cases Where

d <c

0to

.05 to

over

.05

I"0

r.0

.48

.73

I .00

1.00 .75 .50 .42 .66



INVESTIGATIONS OF DI\IERGENCE OF THE ESTIMATES

In collecting the data several criteria were used to

determine the convergence or divergence of the estimates.

The best indicator of convergence was found to be a de-

creasinE step size, where step size is defined as the abso-

Iute value of the difference betwe"r, 6 in the ith iteration

ana 0 in the i-I iteration. An example was judged diver-

gent if the step sizes increased j-n three successive itera-

tions. A limit had to be placed on the number of itera-

tions that would be allowed so that computer time would

not be wasted. This limit was set at L2 iterations.

A large number of divergent examples was encountered

in cases where I<D/C or B or both were small. Divergence

was considered to be the most undesirable property of the

estimation procedure because, ds shown in the experiments

in chapter IV, even a very poor estimate would enable the

parameters to be adjusted and the experiment repeated for

greater accuracy. The greatest amount of time and effort

was, therefore, devoted to reducing the number of diver-

gent examples by modifications to the estimation proce-

dure. The modifications are discussed in chapter III.

The number of divergent examples in tables 4, 5, 6



10

and 7 are the results from procedure II. In order to e1i-

minate interaction effects, each level of B includes data

only for cases with the possible parameter combinations of

( = 5 and la/c = L,2,3. A test at the .05 significance

level will be made of the nuII hypothesis, B has no effect

on divergence. The computed X2 is 7.55 which is signifi-

'\ cant and the null hypothesis is rejected.

Each block of table 5 includes aII the cases for the

possible parameter combinations of K = 5 and aI1 four

levels of B. A test at the .05 level of significance will

be made of the nul1 hypothesis, XO/C has no effect upon

divergence. The computed { 2 value for this test is

46.21 which is significant and the hypothesis is rejected.

Tab1e 4. The Effect of B on Divergence

B

r00 500 r,000 I0,000 Total

Number Divergent

Total Number

Proportion Divergent

t4

30

.47

IO

40

.25

6

30

.20

6

30

.20

36

I30

.27 7
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Table 5. The Ef fect of lrx/C on Divergence.

KD/c
2 TotaI

Number Divergent

Total Number

Proportion Divergent

27

40

.67 5

6

50

.L20

3

40

.o7 5

36

130

.277

A test of the effect of K on divergence was not sig-

ni-f icant at the .10 level.

In the discussion of the theory in (6) the only

recorqmendatj-on pn the interval width is that it. should not

be too large. With respect to divergence of the estimates

there apparently is a minimum interval width. When the

interval width is reduced the number of counts per j-nter-

val decreases. As the interval size is reduced a point

will be reached where the number of counts per interval

become so small that the random variation in number of

counts between intervals would render the estimation pro-

cedure useless.

Table 6 shows the proportion divergent examples

above and below a D/C value of .50 when B = I,000. D/C
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Table 6. Number of Divergent Examples Above and Below
D/c = .50

D/c
Below .50 Above "50

Number Divergent

Total Number

22

60

L2

150

Proportion Divergent "367 .080

is the number of mean lives of the source that is contain-

ed in the interval D. The table includes only cases where

B - 1,000. The recommended value D/C = .50 may be de-

creased slightly when B > 1,000, but it should be increased

when B < I,000.

Table 7 . The Change in Fraction Dj-vergent with the
Asymptotic Variance of C.

Aslrmptotic
Variance Fraction Total Number

of C Diverqent of Examples

0 to .05

.05 to .I0

.10 to " 30

over .30

.06

.23

.33

.46

150

40

BO

90
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INVESTIGATIONS OF THE VARIANCE OF E

Direct comparisons between the observed variances

and the asymptotic variances were not possible because of

the influence of the divergent examples" Almost without

exception the observed variances were smaller than the

asymptotic variances when there were two or more divergent

examples in a case. This fact coupled with the results of

table 7 lead one to believe that the examples that were

divergent would have had greater variance than the remain-

ing convergent examples in a case. This contention is

supported in tables 9 and 10.

The only attempt to compare the observed and

asymptotic variances is table B which shows the ratio

the observed var (d) divided by the asymptotic var (C) , for

aII 37 cases.

Tables 9, 10 and 1I show the effects of the para-

meters on the observed variances and all are in accord

with the theory. The degree of effect on the variances

cannot be validly assessed because of the divergent

examples. The proportion of divergent examples for pro-

cedure II and the aslrmptotic variances are included in

the tables so that the effects of the divergent examples
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Table 8. The Ratios of Observed
Asymptotic Variances of

r00 500

variances or 6 to the
c.

B
r,000 10,000

3

5

4

5

5

8

.o2L9 .0928

.1093

.l-786

.L7L2

.o644

3

5

B

.92L

.277

less than the

the proportion

effects are

r<D/c 3

can be observed. The observed variances are

asymptotic variances in tables 9 and I0 when

divergent is .2O or larger. Some interaction

5 .I09 3 .402 3 4.198 3 3.769

5 .315 4 .305 4 .824 5 .675

8 .r10 s .542 5 .353

I .881 B .601

5 .0379 s .511 s r.43r 5 .50

3 1.L92

5 L.457

B 1.043

3 .348

4 .846

5 .67L

3 7.33

4 32.50

8 14.00
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C"Table 9" The Effect of B on the Observed Variance of

I00 500 r,0oo I0,000

Average var (0)

Average asymptotic
var (C )

Proportion Divergent

.2033

4 "09

.433

.L467

2.045

.233

" 10s4

.4090

.233

.o177

"0409

.200

included in table 11 but the relationship between the ob*

served and the aslmptotic variances for several levels of

divergence can be seen.

The effects of B on the variance are the average of

the variances for each of the cases where ( = 5 and KD/C =

L,2,3, in order to eliminate interaction effects. Similar*

ly the variances in table 10 are averages for alI cases

where l( = 5 and for all levels of B.
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Table I0 "
Effect of l{[./C on the Observed Variance of

t{x/c

The
C"

Average ,r.r (6)

Average AsymPtotic
var (c)

Proportion Divergent

"2454

.5I16

" 550

. OB8B

.o263

.L75

" 0175

.0056

. r00

.0088

.o023

.o25

Table 11 The Effect of K on the Observed Variance of C.

K
B5

Average var (0)

Average AslrmPtotic
var (C)

Proportion Divergent

.1233

.6r35

. r50

"o2Bs

.0320

.066

.0985

.2070

.20

.o32L

.3406

.30
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THE ADVANfAGES OF' THE MODIFIED ESTIMATION PROGRAI{

As mentioned before, most, of the time and effort was

devoted toward reducing the number of divergent examples"

Table 12 shows that a very significant reduction in number

of divergent examples was obtaj-ned. A reduction in the

number of iterations required for convergence was an ad:

ditional advantage of the particular modifications that

were utilized"

The number divergent for procedure II in table 13 is

smaller than in table 12 because procedure IItr was not run

for all cases " The proportion divergent in table L2 is

larger than in table 13 because cases for which aII 10

examples converged were not included.

Table L2. Proportion Divergent Examples for Procedures
I and Il.

Procedure I

(unmodified)

Procedure If

(modif ied)

Number divergent

Total

Fraction Divergent

I3s

360

.37 5

84

360

.233
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Table 13. Proportion Divergent Examples for Procedure
III .

Procedure II Procedure III

Number Divergent

Total

Fraction Divergent

43

L20

. 358

6

L20

.050

The method used to obtaj-n the daLa for the compari-

sons in tables 12 and 13 was to run both the modified and

unmodified estimation procedures for each of the cases

number I through 36. Procedure III was used when proce-

dure II was divergent and K 2 S.

To compute the iraction divergent for the combined

modified procedures, the fraction divergent for procedure

III in table 13 is multiplied by the fraction divergent

for procedure II in table L2.

Total Fraction Divergent for

Combined Modified Procedures = (.233) . (.05)

This figure is approximate since independence of

procedures is assumed and the fraction divergent

averages over observed results.

Only the examples were included in table L4

= .OL2

the two

data are

for which
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Table L4. Number of Iterations Required for Convergence.

Number of
Iterations Frocedure I Procedure II

I

2

3

4

5

6

7

B

9

10

1I

L2

2

9

33

50

38

26

24

16

4

3

I

1

1I

55

62

2L

27

I6

6

4

2

2

I

0

both procedures were convergent. The average number of

iterations required for procedure I is 5.1 and for proce-

dure fI is 3"6. Procedure II requires, on the average,

1.5 less iterations than procedure I.

Due to the fact that the average number of iterations

is smaller for the modified procedure, the total program
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running time is less than for procedune I " The procedures

I and II were ti-med for several cases and the observed

times were averaged" When K = 5 the average times were

L.72 minutes and L"54 for procedures I and II respectively.

When K = 8 the average times were 2"6L and 2.29"
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CHAPTER III

f,'HE ESTIMATION EQUATIONS

The basic exponential density function that is usually

assumed in radioactj-ve decay problems is

. -L/Cp(t) = 3s
C

When a value for the mean life (C) is given the probabil-

ity of a particle emission at any ti-me t may be calculated.

Multiplying p (t) by the mean number of particles contained

in the source at the start of observation (B) gives q (t)

with which the expected number of particles emitted from

the source at any instant of time may be calculated.

q(t) =
D _L/C
J3s

In practical problems there usually is a small rela-

tively constant particle emission from objects in the

vicinity of the experiment which will add to the total

partJ-cle count. The average intensity of this background

emission is A. The number of particles contained in the

source is assumed to be Poisson distributed and independent

of the background particles. Similarly the number of
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particles contained in the background is assumed to be

Poisson distributed" T'he particles in each of the Pois-

son distributions are also assumed to be independent af

each other.

When background emission is present the expected

number of particles emitted at any instant of time is

d(r) .

-t/c
d (r) +A

The probability density function of the time of arrival of

a particle at the counter when the source is observed for

a total time interval T is f (t) " (6, p.25)

-L/c
+A

f (t) =

B
-6C

B
a

The maximum li-klihood estimates

obtained from the joint probability

the times (tI, t2, . . .,t.r) at which

e.n + s(r

n

,tn,nla,r,c) = TT
i=l

"-[".r+s 
(r-e

-r/c\el
I

derived in (6) are

density function of

counts are recorded.

f (tl ' t2o

(_

J e "-'i/c
I"

.1

-.1)
nl



where n is

The emitted

tervals of time.

ing manner:

the total nurnber of counts

i = L,2,..",n

o <t"{ r
l-

particles are counted for

t'he time scale is divided

23

in interval T.

di-screte in-

in the follow-

F, -l

whqtre ti-ti_t =

Ko6D - f

D is the .interval Iength

is the total time of observation

is the number of observed counts

in interval i

n.
l_

The aslzmptotic varj-ance of the estimates Ls lttC2/S

where the multiplier M may be written as a function of

several parameters M (x,y/c ,Ac/B, D, d) . There are f our

tables in the paper (6) that give values for the multi-

plier for several values of T/c, Ac/B, K and background

Ievel assumed known and unknown.

The initial estimates Ao, Bo and Co are obtaj-ned

from the following relations:

u3 Lk-I
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nI
Ao= 

D

D+d
tvO - nr- Ao'D

nr- Ao'D

,1
Bo=

r - "-'/"o
These initial values are used in the iterative pro-

cedure to solve for improved estimates A1, BI and C1.

The procedure consists of solving the following set of

equations for A1, BI and C1 and it may be repeated until

the desired accuracy is attained.

-F - (Cr- Co).M + (Br- Bo) .m +

,"(

-e = (cI- co)"N + (B1- Bo)-P +

-fl = (cI- co) "S + (BI- Bo).Q +

(A1-Ao). S

(A1-Ao) . Q

(A1-Ao). R

!{here

F=

K

V
/_
i=1

Kv
)

/-
i=1

i".-*.\
"lffJ

\f

/.r,-*.\
X.: l-a llr- I m" I\r_l
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Y" / "r-*r\l-

\*il

K

\-H- )

/-
i-=1

a\
2(m. I

,,)

-*? 5\l- 2tm. I

',l

K(
I

'=L 1"i=r l.

-x.
l-

(

t,
n.

l-*2
m"

l_

* wiYi-

K

\-

/_
i=1

Kr
L
i=I

K

Y
L
i=I

Kt
/_.__,
i=I

[r,J =

S=

P= -*?a

n""-r
2

m.
l_

n"
" -_l

2m.
l_

- x..Y.
l- l_

a-



26

n.
__l-_

2
m.

f

K

R- ) -Y?
/-r
i=1

-D/c-(i-1)#

[,t-u 
o+a+o] 

2

1o+d)f'-"

(

, tu'-''L,ta

I-C

-o/c

'i= %"
c

E. = wi
r-B

D

B - (i-r)a
2

c
-e[ti-r) o+a]Ai=

(D+d) +

BX. + A.D
l-

D

D+d
-(a-I) . 

-
C

[t 
i-i r

m. =a

Y. =a

| -atc\

\t-e l

1

X. = e
a
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The quantity d has been assumed to be zero in all

cases presented in this thesis " This quantity is an

interval of non-observation of the source between each in-

terval of observation and it is assumed to be of constant

length in the equations just presented" It may be desir-

able to include d in the estimation procedure if sources

of extremely long half lives are to be observed. It is

a simple task to insert d in the appropriate program

statements if it is needed.

GENERAL PROGRAIVI DEVELOPMENT

The computer used in the calculation of all the cases

was the I"B"M" L62O with a memory capacity of 40,000

digits and card and typewriter input-output" A11 of the

supporting card handling equipment was also available.

The computer programs were aII written in FORTRAN"

The estimation program was first written directly

from the estimation equations in the preceding section.

This program exceeded the computer memory capacity, and

it was modified to require less memory space. The program

was then checked by running 30 cases. In these cases Lhe
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frequency counts were calculated from the function d (t)

in the prevJ-ous section.

In order to investigate the behavior of the esti-

mates, frequency count data were simulated by a l,lonte

Carlo procedure. The fact that the number of counts in an

interval is Poisson distributed enabled the use of one

random number for simulation of each frequency count.

The Poisson distribution was used to convert random num-

bers to frequency counts when the expected count for the

interval was six or less. The normal approximation to

the Poispon distribution was used to convert random num-

bers to frequency counts when the expected count was

greater than six.

The computer program and detailed operating

instructions may be obtained from the Statistics Corn-

puting Laboratory, Oregon State University.
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IVIODIFICATIONS TO THE ESTIMATTON PROCEDURN

A number of modifications were made to the estimation

procedure most of which were aimed toward reducing the

number of divergent examples. The most significant modi-

fication was the improvement of the initial estimates A6,

B andCoo The original initial estimates are:
n

A=k"oD

to the following:

,"(
rl - Ao.D

n2-AoD

n -AIo
n^-A20

n
R=foo= m1-e

These initial estimates were modified

kAo=

ilA=Aoo

(r)

(2)

(3)

(4)I

o

D

I

o

."(
;).D

/n^ - A D\rnl z o 
I

\"s - AoD 
I\/
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c'o + c"o
co (s)

N. -ADIOEo= --m
1-e

B I -t-/t o
Ao=""*;9 

\" 
-e

(6)

- (K-llorzco\

I rtt

Steps 3,4,5,5 and 7 are repeated once more letting

A&-Ao -

The initial estimate of A in both the modified and

the unmodified procedures is: Ao = nn/O" This estimate

for A will usually be too large and, in some cases, it may

be much too large. The quantity n1,/O is an estimate of A

if the number of counts from the source in interval K is

zero, however this is seldom true and there may be an ap-

preciable number of counts from the source in interval K.

The estimate of Ao is improved by subtracting the theoreti-

cal count for interval K from Ao. The theoretical count

for interval K is an estimate since it is calculated with

Bo and Co.

The initial estimate Co is obtained from the average

of Co and Co which are estimates of Co obtained from the

ratio n1/n2 and n2/n3 respectively. The reason for using
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the average of two rather than one estimate is that when

n2 is close to n1 in size the estimate Co is too large.

The denominator is the logarithm of the ratio of the fre-

quency counts which becomes very small as the ratio ap-

proaches one. There are two reasons for choosing the

ratios of these particular intervals. The first reason

j-s that differences between frequency counts in the first

few intervals are usually greater than in the remaining

intervaLs. The second reason is that random variations in

the frequency counts of adjacent pairs wiII cancel out in

many cases. For lnstance, if n2 assumes a high value the

difference between n1 and n2 is sma1l, however the dif-

ference between n2 and n3 will likely be larger and there-

by effectively compensate for the high value of n2.

The estimates of C may still cause trouble, in parti-

cular if n2 ).1 or n3 7 nZ the estimate of Co will be

negative or undefined and the procedure will not converge.

The following alternative estimates of Bo and Co are used

in these situations.

B=no

co=



The total frequency counL over

tion is n. The deri-vations of

mates are Eiven in appendix B.
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int"ervals of observa-

modi.fied initiaL esti*

The estimates occasj-onally converge with A < O

especially when the actual background count is very slight.

Since none of the parameters ean have negative values, the

computer print out of the estimate of A in these cases was

changed to zero. Becau,se of the relationship between the

estimates A and 0, fl is al.ways larger than its true value

when A < o, therefore the modification 0 = 6 *lAlrr= made

for computer print out" Due to these changes, the

accuracy of the estimates A and A, when the background is

light, is better than that indicated by theory.

A1l the modifications discussed to this point are in*

cluded in procedure fI. From table L2, the proportion

divergent for procedure II is 23"3% which was stiIl an un-

comfortably large percentage of the examples"

It was observed that a large number of the dj-vergent

examples occurred when the interval width was short and

the differences between the frequency counts were smal1.

Table 6 shows that the interval width relative to the mean

Iife (D/c) has a very adverse effect upon convergence.

Procedure III was devised to enable examples to

aI1

the
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converge when the interval width is too small for con-

vergence by procedure II. This procedure forms new fre-

quency counts (nr) by adding adjacent pairs of frequencies

n. = 11 +r' 2i'

The new interval width

intervals is halved.

ttt' = *K

n = l1--
KI K

n2L, 
-I 

i' = L '2'" ' 'K'

(D') is doubled and the number of

D' = 2D Kr = K/2 for K even

K' = (K + L)/2 for K odd

A frequency count must be created for the K + I interval.

This is accomplished by calculating an estimate of the

theoretical frequency count for the interval using the

modified initial estimates Ao, Bo and Co.

*2K' * *2K'-1*Kt =

* tK+1

tx

fle-JLd"
!tK+l

rable to

count in

It may not be desi

ever the expected

for K odd

-L/co I
*Aol u. forKodd

l

create artificial data; how-

interval K * I should be small
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relative to the other interval.s and the error in estimat-

ing this small frequency is assumed to be small. Further-

more the estimation error is reduced relative t.o the total

count in the interval when nn and tk+I are added together.

The use of the artificial data should be avoided whenever

possible by selecting an even number of intervals. Proce*

dure IIf can be used only when K > 5. fhe reason for this

is that initial estimate" Co and Bo cannot be obtained

when K 7 5.
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CHAPTER IV

TWO SI},IUI,ATED EXPERIMENTS

These experiments demonstrate the repeatability of

the estimation procedure to obtain accurate estimates of

the parameters. The experiments also demonstrate the use

of recommended parameter values and experiment 2 demon-

strates an additional advantage of procedure III. The true

values of the parameters are denoted by A, B and C. The

estimates of the parameters are denoted fV A. A "rra 
0.

For comparisons, the true values of the parameters and

the asymptotic variance of C are listed beside each set of

estimates in the experiments.

It is assumed that a particle counter is available

that will accurately count 5,000 particles per unit of

time. It is also assumed that the experimenter has a suf-

ficient quantity of the radioactive material in question.

EXPERIMENT 1

This experiment assumes that the experimenter made

a poer initial guess that K = 4 and D = .25. The experi-

menter obtained the frequency count data and used the

estimation program.
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A value for RD/C of 10 was chosen and a value for D of

.4O. The value for D was chosen to make the raLi-o D/C

approximately unity. The value for K must be calculated

from the relation KD/c=10 using d., and D.

New data were obtained using the new values for K and

D, and the source sj-ze was doubled. The new estimates are:

Al

BI

ct

408

250

.401

6

L962

.935

Al=o

81 = 1,000

ct = 1'ooo

var (C) = 1" 690

A2=o

B2 = 2,OOO

c2 = l-'ooo

var (c) = .0005

were Ia/C=LO, D:.90 and the

A2

B2

c2

New values

source size

were chosen that

again doubled.

't
I

= 3,990

= .992

A3

B3

e3

A3=

83=

c3=

var (c) =

continued

0

4,000

I .000

.0002

for aThe experiment could be few more
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trials until B is at a maximum of 5,000 and the estj-mates

exhibit very little change "

The conservative increase of B should be noted. If

the source for the second part of the experiment were in-

creased to its maximum on the basis of the estimate 01,

then the true value of 92 would be 20,000 and this would

introduce considerable counter error into the estirnates.

EXPERIIVIENT 2

The experimenter in this case felt that he could not

make a sufficiently accurate guess of the values for K and

D to enable the estimation procedure to converge " He

would utilize procedure IIl of the program by selecting a

Iarge even number for K and a small number for D. This

enables procedure IlI to be used several times to locate

a good combination of K and D without repeating the count-

ing data.

The first values chosen were K = 12 and D = .2O and

the estj-rnates did not converge. Procedure If I was used

which changed the values to K = 6 and D = .40 for which

the estimates did converge.
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The new values I\D/C =

source was increased

Ar = 1oo

BI = 1,000

ct = 1'ooo

var (C) = .O3O2

10 and D = I.0 were chosen and

four times its original size.

AI

a1

c1

20

L229

L.L92

the

A2

B2

d.2

97

4,030

"999

Az

Bz

c2

var (c)

100

4,OOO

1"000

"0002
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CTAPTER V

SUMMARY

The estimates E are biased and the amount of bias in*

creases with the aslzmptotic variance. The bias was judged

to be not excessive since there was not a significant

amount when B{J/C > 3.

Divergence of the estimates was considered to be the

most undesirable property, Through program modifications,

the number of divergent examples was reduced from 37.5% Lo

L.2% with K > 5. A minimum value for D/C is recommended

to be .50 when B = 1,000. This minimum vafue may be

smaller when B > 1,000 but it should be larger when

B < 1,000.

Comparisons between observed variances and the

asymptotic variances were hampered by the effects of the

divergent examples. The contention that the observed

variances of 6 *"r" smaller when two or more examples of

a case were divergent is supported in tables 9 and 10.

The observed variances were in good agreement with the

theory when the number of divergent examples were one or

zeyo. The effects of the parameters B, KD/C and K were

in accord with the theory with respect to direction of
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change caused by them"

The modified procedure was better than the unmodified

procedure in all respects" As mentioned above, the number

of divergent examples was reduced considerably. The num-

ber of iterations required for convergence was 1.5 less

for the modified procedure. When K = 8 the modified pro-

cedure required, on the average, one-third of a minute

less time to run than the unmodified procedure. The re-

commended values for the parameters are summarized below.

KD/C wiII generally be obtained from the tables in

(6) and it should always be greater than or

equal to 3.

K must be greater than or equal to 5.

D/C should be .50 when B = 1,OOO. It may be smaller

when B > 1,000, but it should be larger when

B < 1,000.

B should always be as large as possible.
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No.Divergent
by Procedure
I II III

APPENDIX A

Ivlax. Min.n,ACC

.534 .326

1.012 . 31r

.845 .5L4

.593 .183

.a64 .358

.8s0 .68l

.4L9 .4L9

L.L27 .910

L.26l- .627

1.118 .62L

L.275 .634

Case B

r 500

2 500

3 10000

4 1000

5 1000

6 10000

7 r00

B IOO

9 10000

10 1000

11 500

L2 lO0

c KD/c

I1

1L

1I

1l

I1

II

II

11

L2

L2

L2

13

2[&
B

I

IO

10

10

10

10

10

4

0

2

3

6

6

10

I

max.0
minus
Min.0

.208

.70r

.331

.410

.506

.169

0

.2L7

.634

.497

.64l-

n
Avg.C

.459

.546

.642

.361

.527

.794

.4L9

.977

.869

.833

I.O38

var (0)

.3357

.3137

.L4L4

.4342

.2624

.o469

.3364

.oo49

.o529

.05 39

.o394

Asymptotic
Variance

3.070

3. 380

.2340

2.430

I.53s

.1s35

3 .070

.oL25

.L260

.L762

.1750

0

2

A
N)



Appendix A -

Case B

13 500

L4 10000

15 1000

16 100

L7 500

IB IOOOO

L9 1000

20 100

2L IOO

22 500

23 1000

24 10000

Continued

K c ra/c

No. Divergent
by Procedure
I II III

uax .0
Min. minus
e uin.0

.a65 .395

.964 .063

.9L4 "204

.779 " 893

.583 1.028

" 905 .2L5

"7 44 .47 4

.964 .665

.34L 1.178

.877 .325

.907 .525

.934 .098

avg,0 var (0)

2
Mc_

B
Asymptotic
Variance

.014I

.0007

" 0070

.0700

.1600

.0080

.0800

.6680

.8000

.0340

.0I70

.0017

Max.
C

5

5

4

4

L.26L

L.O27

I. IlB

L.672

r.611

1.120

I"218

1.629

1.519

1"202

I "432

1.032

r.002

.993

1.011

L.L2L

"97 5

I.003

.934

L.272

.685

I .066

.942

.993

.o204

.0006

.oo47

.o872

.o864

.0054

.o242

"L402

.234L

"0280

.o252

.0009

5

5

5

5

5

B

I

I

I

1

I

1

1

I

I

I

1

4

4

2

2

2

2

2

2

2

1

0

2

B

4

2

1

0

0

o

0

2

0

0

2

3

3

3

5

5

5

5

5

5

0

1

o
A(,



Appendix A - Continued

CaseBKCIr.D/C

No.Divergent
by Procedure
1 II III

5

4

0

7

0

0

I

t

2

Max.C
Min. Minus
A Min "0

.295 .592

.487 .484

.647 .910

.594 "674

.94L .L2l

"9L7 .244

.879 .191

.953 . I35

.872 .232

.940 .133

.410 1.020

"744 .AL1

2
MC

B
Asymptotic

var (e ) variance
Max "

c

25

26

27

2B

29

30

31

32

33

34

3s

36

4

B

4

B

3

4

B

3

4

B

I

3

1000

1000

lo00

1000

1000

loo0

1000

1000

1000

r000

500

500

t

1

2

4

.887

.97L

L.557

L.264

L.062

I.161

I .070

1.OBB

1. r04

r.073

1 .430

1.561

Avg. C

.477

.7 3L

"974

1"041

.990

1.0I7

.992

L.O27

.958

.960

.893

L "O47

3. IBB3

.0832

"o7 26

.o420

.oo39

.0066

.0035

.oo22

.0065

.0014

.LL77

"o444

I .690

I "290

. OBBl

.0668

" 01I2

" 0078

.0058

.00 32

" 0021

L.290

.1336

.o224

4

4

B

B

B

2

4

0

5

F
A
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Case B

Continued

K C KD/C

No.Divergent
by Procedure
I II III

i{ax.0
Ivtin. minus
e Min.0 6 var (0)

.oL2l

. 1013

2

MC
B

Asymptotic
Variance

.0r16

.2520

.90r

.498

.302

.a4a

uax .0
Min. minus
A rvrin.6

.613 .785

.569 .694

.695 .596

.670 .BO8

.297 1.339

.867 .756

37

38

Case

39

40

4L

42

43

44

500

500

Note:

A

200

200

L25

L25

L25

l-25

B

1000

1000

500

500

500

500

\a/c

2

2

4

4

2

2

Max.
0

1.203

L .346

I.398

L.263

L.291

L.47A

t .636

L.623

Avg.

L.O25

.816

.958

.B4B

1.031

.994

.786

L.L44

.o529

.0750

-o274

.0610

.L634

.o77 5

.0800

.L260

.0140

.oL24

.0800

.L260

23

32

8L4

312

AC

-=uB
for cases I through 38.

2
Mc

B
Max.

c Avs.C var (6)C

1

1

I

1

I

1

K

5

3

5

3

5

3

A
(,l
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Case

Continued

B

5000

5000

5000

5000

500

500

500

500

500

uax .6
Min. minus
e Min.O avs.6 var (t)ta/c

5

5

5

5

6

6

6

6

6

Ivlax.
0

2.2L9

2.205

2.L25

2.LL3

1.110

L.236

r .166

L.L52

I. 16I

t.839

I.B4B

r .906

L.9L7

.920

.953

.942

.890

.935

.380

.357

.2L9

.L96

.190

.283

.224

.262

.226

2.OL3

2.003

1.986

1.996

.9Bs

I .087

1. O04

.982

.999

.oL27

.0102

.oo47

.0 370

.oo44

.0201

.0096

.0083

.oo67

.0008

. 00I3

.0006

.0006

.00Io

.0011

.o225

.0015

.0011

c2
tvt ;

45

46

47

4A

49

50

51

52

53

A

500

500

500

500

o

0

0

0

0

c

2

2

2

2

I

1

I

I

I

5

3

20

10

L2

B

3

4

6

A
Ol
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APPENDIX B

DERIVATION OF MODIFIED INITIAL ESTI},IATES

The function d(t) from chapter III is integrated be-

tween the limits ti and tr_, to give the expected count

(nr) for the interval i.

ri
fr -L/c Ini= lL|" *oj dr (r)

!

,'llr-rr. -rit"1 ,n1 =sL" -e "-) +a(ti .i-r) Q)

Letting i = 1 in equati-on (2) and solving for B gives the

modified initial estimate Bo.

I -D/c.r=l lt-e + A.D (3)

(4)

(s)

(6)

Using equation (3) and obtaining an additional equa-

tion by letting i = 2 Ln equation (2) yields the following

pair of equations.

n- - A.DI
"o -D/CI-e

[ -xt/c -Lz/c \rt=l \" -e /+A'D

n.=! ("-t'/" -"-"/" J*o.,2\



The substitution of i'D
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for ti is made in both equations.

I -D/cn- = B II - eI\

| -D/cnr = ! le - e
a\

n2 - A.D

/n- -A'D\q = ln I r 
I

c ln^-A'D I

\zl

+ A.D

2D/c I'/+A.D

(7)

(8)

The ratio of equations

sult is solved for C.

=A

(7) and (8) is formed and the re-

r - .-'/")nr -A.D Bl_
n^-A-D -D/cI -D/CIz Be tr - e I

.l - A.D D/c

(e)

An estimate for C] was found in the same manner from

the ratio of the equations for n, and nr. The modified

initial estimate for Co is the arithmetic average of Co

and Co.

The initial estimate of A in both the modified and

unmodified procedures is Ao = +. The initi.al estimate
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of A is improved in the modified procedure by subtract-

ing the estimated count from the sgurce from the esti*

mate Ao. Starting from equation (2) and letting i = k

gives the total expected count for interval i. The sub-

stitution of (i-1) . D is then made for t1.

| -t*/" -tx-r,/c \.K=r\" -e 
l+A'D

| -*.r/" - (K-r) . oZc 
1

tK = B le - e I + a'o
\/

The equation is divided by D and solved for A.

n I -x'o/KBI
-=-,€D D\

n i -K
A = K - E l"D D\

oo = oo - # ("-
The modified initial

The initial est

same as for the regu

ratio of n1 to n3 is

n -A.D=s[rt\

ima

alr

est

med

-D/

e

c

tim

tet

es

rme,

-D

C

c

ri
te

e

rm

e

D/

D/

ES

ma

ar

fo

KD

e

im

Ia

f

c

,.

r

i

1

D/c

1)-

1)r

A

cas

ol

er

D

c

D

S

f

)'J)

K-1

K-1

of

nc

te

the

K-

K-

of

1)

(B

(3

C

l_r

at

at

-(
e

-(
e

te

io

ima

ra

(K

e

e

rt

o

cl_

1

/C

l.o
I

D/c \
I

1

/cl
I

is Ao.

es when

Ci exce

than n1

(r0 )

nL2n2 is the

pt that the

to n2.
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.l - A.D

'3 - A'D

K )-3 (1I)2.D

is necessary since n. - A.D = 0
3

;)

3

A.

A.

/zk

t+

^3

on

"(

ri

I

ic

3.

r

co

The rest

when K =




