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BEHAVIOR OF ESTIMATES OF THE MEAN LIFE
OF A RADIOACTIVE SOURCE

CHAPTER I
INTRODUCTION

In an unpublished paper (6) by Dr. R. F. Link of
Oregon State University, an iterative estimation procedure
is developéd to estimate three parameters associated with
the distribution of particles emitted from a radioactive
material. The estimates were obtained by the maximum
liklihood method and the asymptotic variances are derived.
Since the variances are obtained from a limit as n—o0,
it is not known how good the estimates are for small values
of n. One consequence of this is that the estimates may
be biased for many parameter values. An additional un-
certainty associated with this estimation procedure, be-
cause it is an iterative procedure, is whether or not suc-
cessive iterations will always converge.

The objective of this thesis is to provide a bridge
between theory and practical application. It is proposed
to provide the experimenter with all the information that
is needed to apply the estimation procedure with the pos-

sible exception of the tables of multipliers for the



asymptotic variance of C. (6, p. 8) Of prime importance
in providing this bridge are investigations of bias, di-
vergence and variance of the estimates and the effects of
parameters upon these properties of the estimates. The
estimation procedure is improved to reduce the number of
divergent examples. Investigations of bias, divergence,
and variance of the estimates and comparisons between the
unmodified and the modified estimation procedures are in
chapter II.

A computer method of analysis was chosen because the
analytic analysis of the estimation equations is extreme-
ly lengthy and tedious. An additional reason is that the
computer program is needed for the practical application
of the estimation procedure. Chapter III contains a dis-
cussion of the development of the computer program and
modifications made to the estimation procedure.

The presentation would be incomplete without tying
together the program and recommendations to show how to
use them in practice. The simulated experiments in
chapter IV serve this function as well as demonstrating
how to repeat the experiment to obtain greater accuracy

of the estimates.



An insufficient amount of time was available to ob-
tain as much data on cases with background level as was
obtained for the zero background cases. A few cases with
different background levels were run to insure that the
estimation program worked for these cases and to check

the variances with the asymptotic variances.



CHAPTER II
RESULTS

Some of the notations and definitions that will be
used throughout the remaining chapters will now be intro-
duced. The average number of particles observed from the
background in an interval is A. The number of particles
contained in the source at the start of the experiment is
B. The mean life of the source is C. The number of in-
tervals of observation is K and the width of the intervals
is D. The notation var(e) will be used to denote the mean
squared deviations of 8 from true C. The notation var (C)
is used to denote the asymptotic variance of C calculated
from tables in (6). A parameter with a circumflex (M)
above it is an estimate, the true values of a parameter
are denoted without the circumflex.

A case is a set of ten examples that were run run for
one set of parameter values. The frequencies for each ex-
ample were calculated with independent sets of random num-
bers. A total of 37 cases, 370 examples, were run for
selected values of the parameters K and with zero back-
ground. A total of 10 cases were run with selected wvalues

AC
of the parameters K and %? with a background level of B~
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= .1,.2. The unmodified procedure for obtaining the esti-
mates, described in chapter I, will be referred to as pro-
cedure I. The modifications to the general procedure will
be called procedure II and procedure III.

Procedure II is essentially an improvement in the
initial estimates with which the iteration procedure is
started. Procedure III groups the frequencies and then
calculates the estimates by procedure II. Both procedures
IT and III are discussed more thoroughly in chapter III
on program development.

Table 1 gives an overall view of the parameter combi-
nations that were used for most of the tests in this
chapter. The numbers in the blocks are the levels of K
that were used and each K represents one of the 37 cases.
All 37 cases were with AC = 0 and C = 1. The condensed

B

data for all cases run are in Appendix A.
INVESTIGATIONS OF BIAS IN THE ESTIMATES

As an overall check on bias it was found that the
average estimate ¢ was below the true value of C in 29
out of 43 cases (67%) .

The number of cases where the average é was less than

C was tabulated in one table for each of the parameters



Table 1. Parameter Combinations for Cases 1 through 37.

B
100 t 500 1,000 10,000
5 4 | 3 | 3
1 8 5 5 5
8
5 3 3 3
5 4 4 5
KD 2 8 5 5
C
8 8
3 5 5 5 5
3 3 5
5 4
4
8 5
8
3
8 4
8

The numbers in the blocks are the levels
of K that were used.



7

B, K, and KD/C. The object of the tables was to test the
null hypothesis, that the parameter has no effect on bias,
for each of the three parameters. A‘X2 test at the .05
level of significance was used for each case. The null
hypotheses were accepted for the parameters B and K and
these tables were not included. The computed .x2 for
table 2 is 9.00 which is significant and KD/C is there-
fore assumed to have an effect upon bias. From observing
the changes in the proportion of cases where d<c in
table 2 it appears desirable to test for a change in the
effect of KD/C. The null hypothesis, that there is no
difference in the proportion of biased cases for KD/C = 3,
4 and 8, was accepted at the .05 level of significance.
The interpretation of these tests is that the estimates
are biased when KD/C <3 but they did not exhibit a signif-
icant amount of bias when KD/C =3.

From table 3 it can be seen that the estimates did
not have a significant amount of bias when the asymptotic

variance was less than .05.



Table 2. The Effect of KD/C on Bias.
KD/C
1,2,3,
3,4,8 4,8
1 2 3 4 8 Total Total
Numbeerf Cases
where C<C 8 12 2 5 2 9 29
Total Number of
Cases 8 16 4 12 3 19 43
Proportion of
cases C<cC 1.00 .75 .50 .42 .66 | .47 .67
Table 3. The Change in Bias with the Asymptotic Variance.

Asymptotic Proportion of
Variance Cases Where
of C ¢ <c
0 to .05 .48
.05 to 1.0 .73
over 1.0 1.00




INVESTIGATIONS OF DIVERGENCE OF THE ESTIMATES

In collecting the data several criteria were used to
determine the convergence or divergence of the estimates.
The best indicator of convergence was found to be a de-
creasing step size, where step size is defined as the abso-
lute value of the difference between é in the ith iteration
and € in the i-1 iteration. An example was judged diver-
gent if the step sizes increased in three successive itera-
tions. A limit had to be placed on the number of itera-
tions that would be allowed so that computer time would
not be wasted. This limit was set at 12 iterations.

A large number of divergent examples was encountered
in cases where KD/C or B or both were small. Divergence
was considered to be the most undesirable property of the
estimation procedure because, as shown in the experiments
in chapter IV, even a very poor estimate would enable the
parameters to be adjusted and the experiment repeated for
greater accuracy. The greatest amount of time and effort
was, therefore, devoted to reducing the number of diver-
gent examples by modifications to the estimation proce-
dure. The modifications are discussed in chapter III.

The number of divergent examples in tables 4, 5, 6
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and 7 are the results from procedure II. In order to eli-
minate interaction effects, each level of B includes data
only for cases with the possible parameter combinations of
K =5 and KD/C = 1,2,3. A test at the .05 significance
level will be made of the null hypothesis, B has no effect
on divergence. The computed )(2 is 7.55 which is signifi-
cant and the null hypothesis is rejected.

Each block of table 5 includes all the cases for the
possible parameter combinations of K = 5 and all four
levels of B. A test at the .05 level of significance will
be made of the null hypothesis, KD/C has no effect upon
divergence. The computed sz value for this test is

46.21 which is significant and the hypothesis is rejected.

Table 4. The Effect of B on Divergence

B
100 500 1,000 10,000 Total

Number Divergent 14 10 6 6 36
Total Number 30 40 30 30 130

Proportion Divergent .47 .25 .20 .20 .277
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Table 5. The Effect of KD/C on Divergence.

KD/C
1 2 3 Total
Number Divergent 27 6 3 36
Total Number 40 50 40 130
Proportion Divergent .675 .120 .075 «277

A test of the effect of K on divergence was not sig-
nificant at the .10 level.

In the discussion of the theory in (6) the only
recommendation on the interval width is that it should not
be too large. With respect to divergence of the estimates
there apparently is a minimum interval width. When the
interval width is reduced the number of counts per inter-
val decreases. As the interval size is reduced a point
will be reached where the number of counts per interval
become so small that the random variation in number of
counts between intervals would render the estimation pro-
cedure useless.

Table 6 shows the proportion divergent examples

above and below a D/C value of .50 when B = 1,000. D/C
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Table 6. Number of Divergent Examples Above and Below

D/C = .50
D/C
Below .50 Above .50
Number Divergent 22 12
Total Number 60 150
Proportion Divergent .367 .080

is the number of mean lives of the source that is contain-
ed in the interval D. The table includes only cases where
B = 1,000. The recommended value D/C = .50 may be de-
creased slightly when B > 1,000, but it should be increased

when B < 1,000.

Table 7. The Change in Fraction Divergent with the
Asymptotic Variance of C.

Asymptotic
Variance Fraction Total Number
of C Divergent of Examples
0 to .05 .06 160
.05 to .10 .23 40
.10 to .30 .33 80

over .30 .46 90
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INVESTIGATIONS OF THE VARIANCE OF C

Direct comparisons between the observed variances
and the asymptotic variances were not possible because of
the influence of the divergent examples. Almost without
exception the observed variances were smaller than the
asymptotic variances when there were two or more divergent
examples in a case. This fact coupled with the results of
table 7 lead one to believe that the examples that were
divergent would have had greater variance than the remain-
ing convergent examples in a case. This contention is
supported in tables 9 and 10.

The only attempt to compare the observed and
asymptotic variances is table 8 which shows the ratio,
the observed var(é) divided by the asymptotic var(C), for
all 37 cases.

Tables 9, 10 and 11 show the effects of the para-
meters on the observed variances and all are in accord
with the theory. The degree of effect on the variances
cannot be validly assessed because of the divergent
examples. The proportion of divergent examples for pro-
cedure II and the asymptotic variances are included in

the tables so that the effects of the divergent examples
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Table 8. The Ratios of Observed Variances of 6 to the
Asymptotic Variances of C.

100 500 ° 1,000 10,000
5 .0219 4 .0928 ‘3. .1786 3 .921
1 8 - 5 .1093 5 1712 5 . 277
8 .0644
5 .109 3 .402 3 4.198 3 3.769%
5 .315 4 .305 4 .824 5 .675
i 8 -110 5 .542 5 .353
8 .881 8 .601
KD/C 3 5 .0379 5 .511 5 1.431 5 .500
3 1.192 3 . 348 5 .857
5 1.457 4 .846
4 8 1.043 5 .671
8 .603
3 7.33
8 4 32.50
8 14.00

can be observed. The observed variances are less than the
asymptotic variances in tables 9 and 10 when the proportion

divergent is .20 or larger. Some interaction effects are
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Table 9. The Effect of B on the Observed Variance of é.

B
100 500 1,000 10,000
Average var (C) .2033 .1467 .1054 L0177
Average asymptotic
var (C) 4.09 2.045 .4090 .0409
Proportion Divergent .433 .233 .233 .200

included in table 11 but the relationship between the ob-
served and the asymptotic variances for several levels of
divergence can be seen.

The effects of B on the variance are the average of
the variances for each of the cases where K = 5 and KD/C =
1,2,3, in order to eliminate interaction effects. Similar-
ly the variances in table 10 are averages for all cases

where K = 5 and for all levels of B.
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Table 1l0. ;he Effect of KD/C on the Observed Variance of

C.
KD/C
1 2 3 4
Average var(é) . 2454 .0888 0175 .0088
Average Asymptotic
var (C) .5116 .0263 .0056 .0023
Proportion Divergent <550 .175 .100 .025

Table 11. The Effect of K on the Observed Variance of 6.

K

3 4 5 8
Average var (€) .1233 .0285 .0985 .0321
Average Asymptotic
var (C) .6135 .0320 .2070 . 3406

Proportion Divergent .150 .066 .20 .30
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THE ADVANTAGES OF THE MODIFIED ESTIMATION PROGRAM

As mentioned before, most of the time and effort was
devoted toward reducing the number of divergent examples.
Table 12 shows that a very significant reduction in number
of divergent examples was obtained. A reduction in the
number of iterations required for convergence was an ad-
ditional advantage of the particular modifications that
were utilized.

The number divergent for procedure II in table 13 is
smaller than in table 12 because procedure III was not run
for all cases. The proportion divergent in table 12 is
larger than in table 13 because cases for which all 10

examples converged were not included.

Table 12. Proportion Divergent Examples for Procedures

I and IT.
Procedure I Procedure II
(unmodified) (modified)
Number divergent 135 84
Total 360 360

Fraction Divergent .375 .233
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Table 13. Proportion Divergent Examples for Procedure

I1T.
Procedure 1II Procedure III
Number Divergent 43 6
Total 120 120
Fraction Divergent .358 .050

The method used to obtain the data for the compari-
sons in tables 12 and 13 was to run both the modified and
unmodified estimation procedures for each of the cases
number 1 through 36. Procedure III was used when proce-
dure II was divergent and K 25.

To compute the fraction divergent for the combined
modified procedures, the fraction divergent for procedure
III in table 13 is multiplied by the fraction divergent
for procedure II in table 12.

Total Fraction Divergent for

Combined Modified Procedures = (.233)-(.05) = .012
This figure is approximate since independence of the two
procedures is assumed and the fraction divergent data are
averages over observed results.

Only the examples were included in table 14 for which
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Table 14. Number of Iterations Required for Convergence.

Number of

Iterations Procedure I Procedure II
1 2 11
2 9 55
3 33 62
4 50 21
5 38 27
6 26 16
7 24 6
8 16 4
9 4 2

10 3 2
11 1 1
12 1 0

both procedures were convergent. The average number of
iterations required for procedure I is 5.1 and for proce-
dure ITI is 3.6. Procedure II requires, on the average,
1.5 less iterations than procedure I.

Due to the fact that the average number of iterations

is smaller for the modified procedure, the total program
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running time is less than for procedure I. The procedures
I and II were timed for several cases and the observed
times were averaged. When K = 5 the average times were
1.72 minutes and 1.54 for procedures I and II respectively.

When K = 8 the average times were 2.61 and 2.29.



21

CHAPTER III

THE ESTIMATION EQUATIONS

The basic exponential density function that is usually

assumed in radioactive decay problems is

-t/C

p(t) = e

Q-

When a value for the mean life (C) is given the probabil-
ity of a particle emission at any time t may be calculated.
Multiplying p(t) by the mean number of particles contained
in the source at the start of observation (B) gives g(t)
with which the expected number of particles emitted from

the source at any instant of time may be calculated.

-t/C
a(t) = Be /
C

In practical problems there usually is a small rela-
tively constant particle emission from objects in the
vicinity of the experiment which will add to the total
particle count. The average intensity of this background
emission is A. The number of particles contained in the
source is assumed to be Poisson distributed and independent

of the background particles. Similarly the number of
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particles contained in the background is assumed to be
Poisson distributed. The particles in each of the Pois-
son distributions are also assumed to be independent of
each other.

When background emission is present the expected
number of particles emitted at any instant of time is
da(t).

-t/C

da(t) = + A

Qjw
)

The probability density function of the time of arrival of

a particle at the counter when the source is observed for

a total time interval T is f(t). (6, p.25)
-t/C
B e ! + A
£(t) = &
A-T + Bl - e"T/C

The maximum liklihood estimates derived in (6) are
obtained from the joint probability density function of

.,t_) at which counts are recorded.

the times (tl, ty, - n
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where n is the total number of counts in interval T.

The emitted particles are counted for discrete in-
tervals of time. The time scale is divided in the follow-

ing manner:

where ti-ti_l = D' is the:interval length

K#D = T is the total time of observation
n, is the nuﬁber of observed counts

in interval i

The asymptotic variance of the estimates is MC2/B
where the multiplier M may be written as a function of
several parameters M(K,T/C,AC/B,D,d). There are four
tables in the paper (6) that give values for the multi-
plier for several values of T/C, AC/B, K and background
level assumed known and unknown.

The initial estimates A,, B, and C, are obtained

from the following relations:
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ny
Ag = —
c D+ 4d
° - n - A +D
1 o)
Ln| —————————
n2=-= AO-D
B = nl
o =
-D/C
1 - e o

These initial values are used in the iterative pro-

cedure to solve for improved estimates A, B; and C;.

The procedure consists of solving the following set of

equations for Aj;, By and C; and it may be repeated until

the desired accuracy is attained.

-F =
-G =
-H =
Where K
F =
i=1
K
G =

(cl— co)-M + (Bl— BO)-N + (Al-Ao)-S
(C1- C,)*N + (By- BL)-P + (A;-A,)-Q

(Cl— Co)~s + (Bl- BO)-Q + (Al—Ao)-R

) i 1
Wl
m.
1
ni—ml
Xy
m.
1
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AN -
cl B
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n
R = > N
i 2
m
i=1 1
_(i-1)24 _D/C
p = B_e ¢ Bi-l)(D+d)]2—e
i 4
C
5 2w,
{(i—l)D+d+D} - —
C
E, = "i
1 B
D
B —(i-l)‘E . -D/C
A= 2 [(i-1)D+a] - e
C
[(i—l) (D+d)+D]
m. = BX, + A-D
1 1
Y. =D
1
-(i-1) - P—EQ -D/C
X. = e l - e
1
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The quantity d has been assumed to be zero in all
cases presented in this thesis. This quantity is an
interval of non-observation of the source between each in-
terval of observation and it is assumed to be of constant
length in the equations just presented. It may be desir=-
able to include d in the estimation procedure if sources
of extremely long half lives are to be observed. It is
a simple task to insert d in the appropriate program

statements if it is needed.

GENERAL PROGRAM DEVELOPMENT

The computer used in the calculation of all the cases
was the I.B.M. 1620 with a memory capacity of 40,000
digits and card and typewriter input-output. All of the
supporting card handling equipment was also available.

The computer programs were all written in FORTRAN.

The estimation program was first written directly
from the estimation equations in the preceding section.
This program exceeded the computer memory capacity, and
it was modified to require less memory space. The program

was then checked by running 30 cases. In these cases the
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frequency counts were calculated from the function d(t)
in the previous section.

In order to investigate the behavior of the esti-
mates, frequency count data were simulated by a Monte
Carlo procedure. The fact that the number of counts in an
interval is Poisson distributed enabled the use of one
random number for simulation of each frequency count.

The Poisson distribution was used to convert random num-
bers to frequency counts when the expected count for the
interval was six or less. The normal approximation to
the Poisson distribution was used to convert random num-
bers to frequency counts when the expected count was
greater than six.

The computer program and detailed operating
instructions may be obtained from the Statistics Com-

puting Laboratory, Oregon State University.
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MODIFICATIONS TO THE ESTIMATION PROCEDURE

A number of modifications were made to the estimation
procedure most of which were aimed toward reducing the
number of divergent examples. The most significant modi-
fication was the improvement of the initial estimates Ag,

Bo and CO. The original initial estimates are:

n

k
A = —
© D
Co = D
n. - AO°D
1n
n2 - AO D
n
B = 1
o -D/C,
l - e

These initial estimates were modified to the following:

nk
A = 1
o - (1)
A' = A (2)
e} o}
' D
C = 3
o nl - A D (3)
1n 2
n2 - Ao D
" D
cC_ = 4
o n2 - A D (4)
1n o
n., — A D
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C + C
o o
Co = (5)
2
nl - AOD
1l - e
) B_ ~KD/C | - (K-1)D/C
A, = Ag + = e - e (7)

The initial estimate of A in both the modified and
the unmodified procedures is: Ao = nk/Da This estimate
for A will usually be too large and, in some cases, it may
be much too large. The quantity nk/D is an estimate of A
if the number of counts from the source in interval K is
zero, however this is seldom true and there may be an ap-
preciable number of counts from the source in interval K.
The estimate of A, is improved by subtracting the theoreti-
cal count for interval K from A,. The theoretical count
for interval K is an estimate since it is calculated with
B, and Cg,.

The initial estimate C, is obtained from the average

of Cé and C; which are estimates of Co obtained from the

ratio n;/n, and n,/n3 respectively. The reason for using
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the average of two rather than one estimate is that when
n, is close to nj in size the estimate Cé is too large.
The denominator is the logarithm of the ratio of the fre-
quency counts which becomes very small as the ratio ap-
proaches one. There are two reasons for choosing the
ratios of these particular intervals. The first reason

is that differences between frequency counts in the first
few intervals are usually greater than in the remaining
intervals. The second reason is that random variations in
the frequency counts of adjacent pairs will cancel out in
many cases. For instance, if n, assumes a high value the
difference between n; and n, is small, however the dif-
ference between n, and nj will likely be larger and there-

by effectively compensate for the high value of n,.

The estimates of C may still cause trouble, in parti-
cular if n, = n] or nj = n, the estimate of C, will be
negative or undefined and the procedure will not convérge.
The following alternative estimates of B, and C, are used
in these situations.

BO =n

2D
nl - AOD
n, - AD

Co =
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The total frequency count over all intervals of observa-
tion is n. The derivations of the modified initial esti-
mates are given in appendix B.

The estimates occasionally converge with A < O
especially when the actual background count is very slight.
Since none of the parameters can have negative values, the
computer print out of the estimate of A in these cases was
changed to zero. Because of the relationship between the
estimates A and ﬁ, B is always larger than its true value
when A < O, therefore the modification B =18 -Iﬁlwas made
for computer print out. Due to these changes, the
accuracy of the estimates A and ﬁ, when the background is
light, is better than that indicated by theory.

All the modifications discussed to this point are in-
cluded in procedure II. From table lé, the proportion
divergent for procedure II is 23.3% which was still an un-
comfortably large percentage of the examples.

It was observed that a large number of the divergent
examples occurred when the interval width was short and
the differences between the frequency counts were small.
Table 6 shows that the interval width relative to the meanl
life (D/C) has a very adverse effect upon convergence.

Procedure III was devised to enable examples to
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converge when the interval width is too small for con-
vergence by procedure II. This procedure forms new fre-

quency counts(ni) by adding adjacent pairs of frequencies.

i'=1,2,...,K!

+ n_
i’ 24" 2i'-1
The new interval width (D') is doubled and the number of

intervals is halved.

D' = 2D K' = K/2 for K even

(K + 1)/2 for K odd

A
Il

A frequency count must be created for the K + 1 interval.
This is accomplished by calculating an estimate of the
theoretical frequency count for the interval using the

modified initial estimates A,, B, and C,.

+ n

o]
il
pn}

K' 2K! 2K'-~1
nk, = ng +t g for K odd
tk
B 't/co
"= -2
nK' = nyp + c, e + Ag dt for K odd
tR+1

It may not be desirable to create artificial data; how-

ever the expected count in interval K + 1 should be small
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to the other intervals and the error in estimat-
small frequency is assumed to be small. Further-
estimation error is reduced relative to the total

the interval when ny and Ny are added together.

+1

The use of the artificial data should be avoided whenever

possible

dure III

by selecting an even number of intervals. Proce-

can be used only when K = 5. The reason for this

is that initial estimates CO and Bo cannot be obtained

when K 2

5.
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CHAPTER IV

TWO SIMULATED EXPERIMENTS

These experiments demonstrate the repeatability of
the estimation procedure to obtain accurate estimates of
the parameters. The experiments also demonstrate the use
of recommended parameter values and experiment 2 demon-
strates an additional advantage of procedure III. The trué 
values of the parameters are denoted by A, B and C. The
estimates of the parameters are denoted by @, £ and 6.

For comparisons, the true values of the parameters and
the asymptotic variance of C are listed beside each set of
estimates in the experiments.

It is assumed that a particle counter is available
that will accurately count 5,000 pafticles per unit of
time. It is also assumed that the experimenter has a suf-

ficient quantity of the radioactive material in question.
EXPERIMENT 1

This experiment assumes that the experimenter made

a poor initial guess that K =4 and D .25. The experi-
menter obtained the frequency count data and used the

estimation program.
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N —_—

A = 408 A =0

A

Bl = 250 Bl = l,OOO

N —

Cl = .401 Cl = 1.000
var(C) = 1.690

A value for KD/C of 10 was chosen and a value for D of
.40. The value for D was chosen to make the ratio D/C
approximately unity. The value for K must be calculated
from the relation KD/C=10 using él and D.

New data were obtained using the new values for K and

D, and the source size was doubled. The new estimates are:

A _ A _

A2 = 6 9 = 0

A — —

B, = 1962 B, = 2,000

A — —

C2 .935 C2 = 1.000
var (C) = .0005

New values were chosen that were KD/C=10, D=.90 and the

source size again doubled.

A

A3 =1 A3 = 0

A

By = 3,990 By = 4,000

A

Cy = .992 C, = 1.000
var(C) = .0002

The experiment could be continued for a few more
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trials until B is at a maximum of 5,000 and the estimates
exhibit very little change.

The conservative increase of B should be noted. If
the source for the second part of the experiment were in-
creased to its maximum on the basis of the estimate %l'
then the true wvalue of B, would be 20,000 and this would

introduce considerable counter error into the estimates.

EXPERIMENT 2

The experimenter in this case felt that he could not
make a sufficiently accurate guess of the values for K and
D to enable the estimation procedure to converge. He
would utilize procedure III of the program by selecting a
large even number for K and a small number for D. This
enables procedure III to be used several times to locate

a good combination of K and D without repeating the count-

ing data.
The first values chosen were K = 12 and D = .20 and
the estimates did not converge. Procedure III was used

which changed the values to K = 6 and D = .40 for which

the estimates did converge.
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A, = A, =1

L = 20 L = 100

%l = 1229 B, = 1,000

A

¢, = 1.192 ¢, = 1.000
var (C) = .0302

The new values KD/C = 10 and D = 1.0 were chosen and the

source was increased four times its original size.

A
A2 = 97 A2 = 100
A — —
B2 = 4,030 B2 = 4,000
5 = .999 C, = 1.000
var (C) = .0002
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CHAPTER V
SUMMARY

The estimates C are biased and the amount of bias in-
creases with the asymptotic variance. The bias was judged
to be not excessive since there was not a significant
amount when KD/C = 3.

Divergence of the estimates was considered to be the
most undesirable property. Through program modifications,
the number of divergent examples was reduced from 37.5% to
1.2% with K 2 5. A minimum value for D/C is recommended
to be .50 when B = 1,000. This minimum value may be
smaller when B > 1,000 but it should be larger when
B < 1,000.

Comparisons between observed variances and the
asymptotic variances were hampered by the effects of the
divergent examples. The contention that the observed
variances of ¢ were smaller when two or more examples of
a case were divergent is supported in tables 9 and 10.

The observed variances were in good agreement with the
theory when the number of divergent examples were one or
zero. The effects of the parameters B, KD/C and K were

in accord with the theory with respect to direction of
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change caused by them.
The modified procedure was better than the unmodified
procedure in all respects. As mentioned above, the number
of divergent examples was reduced considerably. The num-
ber of iterations required for convergence was 1.5 less
for the modified procedure. When K = 8 the modified pro-
cedure required, on the average, one-third of a minute
less time to run than the unmodified procedure. The re-
commended values for the parameters are summarized below.
KD/C will generally be obtained from the tables in
(6) and it should always be greater than or
equal to 3.

K must be greater than or equal to 5.

D/C should be .50 when B = 1,000. It may be smaller
when B > 1,000, but it should be larger when
B < 1,000.

B should always be as large as possible.
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Case

e}

10

11

12

B

500

500

10000

1000

1000

10000

100

100

10000

1000

500

100

@]

Kb/C

APPENDIX A

No.Divergent
by Procedure Max.

I II III e

8 7 2 .534
10 7 - 1.012
10 5 - .845
10 3 - .593
10 4 - .864
10 6 - .850
10 10 - -

4 1 - .419
0 0 - 1.127
2 2 - 1l.261
3 3 - 1.118
6 3 - 1.275

Min.

¢
.326
.311
.514
.183
.358

.681

.419
.910
.627
.621

.634

Max.é
minus
Min.é
.208
.701
.331
.410

.506

.169

.217
.634
.497

.641

2

M

B
N Asymptotic
Avg.C wvar(C) Variance

.459 .3357 3.070
.546 .3137 3.380
.642 .1414 .2340
.361 .4342 2.430
.527 .2628 1.535
.794 .0469 .1535
.419 .3364 3.070
.977 .0049 .0126
.869 .0529 .1260
.833 .0539 .1762
1.038 .0394 .1750

v
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Appendix A - Continued N M &
No.Divergent Max.C B
by Procedure »Mﬁx. Min. minus ~ Asymptotic
Case B K C KD/C I II IIT C ¢ Min.C Avg,C var(é) Variance
13 500 5 1 4 1 1 - 1.261 .866 .395 1.002 .0204 .0141
14 10000 5 1 4 2 0 - 1.027 .964 .063 .993 .0006 .0007
15 1000 5 1 4 2 0 - 1.118 .914 . 204 1.011 .0047 .0070
16 100 5 1 4 2 0 - 1.672 .779 .893 1.121 .0872 .0700
17 500 5 1 2 1 0 - 1.611 .583 1.028 .975 .0864 .1600
18 10000 5 1 2 0 0 - 1.120 . 905 .215 1.003 .0054 .0080
19 1000 5 1 2 2 2 - 1.218 .744 .474 .934 .0282 .0800
20 100 8 1 2 8 5 - 1.629 .964 .665 1.272 .1402 .6680
21 100 5 1 2 4 5 0 1.519 .341 1.178 .685 .2341 .8000
22 500 5 1 3 2 0 - 1.202 .877 .325 1.066 .0280 .0340
23 1000 5 1 3 1 1 0 1.432 .907 .525 .942 .0252 .0170
24 10000 5 1 3 0 0 - 1.032 .934 .098 .993 .0009 .0017

19874
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Appendix A - Continued ' C
No.Divergent Max.C M B
by Procedure Max. Min. Minus Asymptotic
Case B K C KD/C I II I1T ¢ ¢ Min.@& Avg.e var(e) Variance
25 1000 4 1 1 5 5 - .887 .295 .592 .477 3.1883 1.690
26 1000 8 1 1 3 4 3 .971 .487 .484 .731 .0832 1.290
27 1000 4 1 2 0 0 - 1.557 .647 .910 .974 .0726 .0881
28 1000 8 1 2 6 7 1 1.268 .594 . 674 1.041 .0420 .0668
29 1000 3 1 4 0 0 - 1.062 .941 121 .9290 .0039 .0112
30 1000 4 1 4 1 0 - l.161 <917 . 244 1.017 .0066 .0078
31 1000 8 1 4 4 1 0 1.070 .879 .191 .992 .0035 .0058
32 1000 3 1 8 4 1 - 1.088 .953 .135 1.027 .0022 .0032
33 1000 4 1 8 4 2 - 1.104 .872 .232 .958 .0065 .0021
34 1000 8 1 8 0 0 - 1.073 .940 .133 . 960 .0014 1.290
35 500 8 1 2 5 5 0 1.430 .410 1.020 .893 L1177 .1336
36 500 3 1 4 1 0 - 1.561 .744 .817 1.047 .0444 .0224

174



Appendix A - Continued

Case

37

38

Case

39

40

41

42

43

44

No.Divergent
by Procedure Max.

B K C KD/C I I1 IIT
500 8 1 4 2 3 0 1.203
500 3 1 2 3 2 - 1.346
AC _

Note: B - 0 for cases 1 through 38.
Max.

A

A B c K KD/C C
200 1000 1 5 2 1.398
200 1000 1 3 2 1.263
125 500 1 5 4 1.291
125 500 1 3 4 1.478
125 500 1 5 2 1.636
125 500 1 3 2 1.623

Min.

.901

.498

ooF
o]

.613

.569

.695

.670

.297

.867

Max.é
minus
Min.e

.302

.848

.694
.596
.808
1.339

.756

A
Avg.C

1.025

.816

Avg.é

.958
.848
1.031
.994
.786

1.144

var(e)

.0121

.1013

var(e)

.0529
.0750
.0274
.0610
.1634

.0775

C2
M =
B

Asymptotic

Variance

.0116

.2520

=
w0

.0800

.1260

.0140

.0124

.0800

.1260

Sv



Appendix A - Continued

Case

45

46

47

48

49

50

51

52

53

500

500

500

500

5000

5000

5000

5000

500

500

500

500

500

20

10

12

KD/C

Max.
A

2.219
2.205
2.125
2.113
1.110
1.236
1.1e66
1.152

1.161

Min.

e

1.839
1.848
1.906
1.917
.920
.953
.942
.890

.935

Max.e

minus
Min.é

.380
.357
.219
.196
.190
.283
.224
.262

.226

Avg.e var(é)

2.013

2.003

1.986

1.996

-.985

1.087

1.004

.982

-999

.0127

.0102

.0047

.0370

.0044

.0201

.0096

.0083

.0067

=
w0

.0008

.0013

.0006

.0006

.0010

.0011

.0225

.0015

.0011

9%
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APPENDIX B
DERIVATION OF MODIFIED INITIAL ESTIMATES

The function d(t) from chapter III is integrated be-
tween the limits ti and ti—l to give the expected count

(ni) for the interval i.

€5
B -t/C }
ni = [E e + Al dt (1)
tio1
—t. -t.
ny = B {e i-1/¢ - e l/C} + A (ti - ti—l) (2)

Letting 1 = 1 in equation (2) and solving for B gives the

modified initial estimate By -

-D/C
n, =B 1 - e + A*D (3)
nl - A-D
BO = -D/C (4)
1l ~ e

Using equation (3) and obtaining an additional equa-
tion by letting i = 2 in equation (2) yields the following

pair of equations.

-t1/c e'tz/c

+ AD (5)

il
w

ny

+ A-D (6)
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The substitution of i<D for t; is made in both equations.

-D/C
+ A°D (7)

= B (l - e

-D/C -2D/C

n. =3B le - e + A-D (8)

The ratio of equations (7) and (8) is formed and the re-

sult is solved for C.

-D/C
n, - A-D _ B (1 - e )
n, - A<D -D/C -D/C
2 Be (l - e )
n, - A-D D/C
L =
n, — A-D
n, - A-D
D = 1n 1
C n2 - A-D
' D
C =
o nl - A-D (9)
1n |[—————
n2 —--A-D

An estimate for CS was found in the same manner from
the ratio of the equations for n, and ny. The modified
initial estimate for C, is the arithmetic average of Cé
and Cg.

The initial estimate of A in both the modified and

Bk

unmodified procedures is Ay = -t The initial estimate



49
of A is improved in the modified procedure by subtract-
ing the estimated count from the source from the esti-
mate A_ . Starting from equation (2) and letting i = k
gives the total expected count for interval i. The sub-

stitution of (i-1)-D is then made for ti.

-t -t
K/C K-1/C
n, = B |e - e + A-D

-K.D/C -(K-1)-D/C

nK = B |le - e + A°D

The equation is divided by D and solved for A.

n -K-D/C -(K-1)+D/C
__IS=§- e - e + A
D D

n -K-D/C -(K-1)-D/C
A=—-I§..-B~e - e

D D

B -KD/C -(K-1)D/C

Ay = A, -p|°© - € (10)

The modified initial estimate of A is AS.
The initial estimate CO in cases when nl;>n2 is the

same as for the regular estimate of Cé except that the

ratio of nj to ni3 is formed rather than ny to n,.

-D/C

n - A'D =B (l - e
1



n, - A°D = Be_ZD/c 1 - e"D/C
n; - A-D 2D/C
= e
n3 - A-D
o n, - A-D
In( —
n3 - A-D

The restriction k 23 is necessary since n; - A'D =0

when K = 3.





