

AN ABSTRACT OF THE DISSERTATION OF

Kevin A. Makinson for the degree of Doctor of Philosophy in Radiation Health Physics

presented on April 19, 2013.

Title: Preliminary Framework for the Run-Ahead Predictive Simulation Software

(RAPSS)

Abstract approved:

__

Andrew C. Klein

The Run-Ahead Predictive Simulation Software (RAPSS) is an architecture designed

for faster-than-real-time decision support for operators of complex networks. To enable

further development of the RAPSS methodology, the necessary proof of principle is

illustrated in two applications: decision support for shift technical advisors in nuclear

power plant control rooms (RAPSS-STA), and in the event of a release outside of

containment, decision support for emergency operation centers (RAPSS-EOC).

©Copyright by Kevin A. Makinson

April 19, 2013

All Rights Reserved

Preliminary Framework for the Run-Ahead Predictive Simulation Software (RAPSS)

by
Kevin A. Makinson

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Presented April 19, 2013
Commencement June 2013

Doctor of Philosophy dissertation of Kevin A. Makinson presented on April 19, 2013.

APPROVED:

__

Major Professor, representing Radiation Health Physics

__

Head of the Department of Nuclear Engineering and Radiation Health Physics

__

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection of Oregon

State University libraries. My signature below authorizes release of my dissertation to

any reader upon request.

__

Kevin A. Makinson, Author

ACKNOWLEDGEMENTS

I would first like to express my sincerest appreciation to Dr. Andrew Klein, my

advisor, for his guidance and support throughout this process. To my other committee

members, Drs. Kathryn Higley, Qiao Wu, Henri Jansen, and Ken Krane, thank you for all

you’ve done and support throughout the process. My parents, Clyde and Gretchen

Makinson, thank you for your unconditional love and for supporting my participation in

recreational extracurricular activities (e.g., ski coaching). Thank you Robyn Mills for the

love, patience, and tolerance while I finished my degree. Thank you Diego Mandelli for

many thought provoking discussions and handfuls of dimensionality reduction and

clustering emails. Bob Youngblood also deserves thanks for suggesting the connection

with weather prediction, and for mentoring me during my time at Idaho National Lab.

Thanks also to Curtis Smith, Nam Dinh, and many other important researchers at INL for

their guidance as well as financial support for this project. Thanks to Tom Riley for

building the RELAP5 models and being my go-to guy for RELAP questions. I’d

particularly like to give a shout out to my undergraduate computer science, math, and

physics professors: Drs. Lynda Danielson, Robin Cruz, and James Dull for putting up

with me for four years and teaching me the foundations that allowed me to be successful

now. Thanks to Bert Martin for his work on the LiteFTA module, and for helping me

through computer science labs as an undergrad. Finally, Chris Thompson’s guidance has

been incalculably beneficial in the last few years. This department would come to a

grinding halt if not for Chris’s computer expertise. Thanks also to everyone else that I’ve

had a pleasure getting to know in the last six years. Peace and love!

TABLE OF CONTENTS Page

1 Introduction ..1

1.1 RAPSS-STA ..1

1.1.1 RAPSS-STA Simulation Timeline ..5

1.2 RAPSS-EOC ...7

1.2.1 RAPSS-EOC Simulation Timeline ..10

1.3 Programming Languages ...12

2 Literature Review ...14

2.1 History of Formal Safety Assessment in Commercial Nuclear Power14

2.1.1 WASH-1400 and Event/Fault Trees ..14

2.1.2 Post WASH-1400...19

2.1.3 NUREG-1150 and Accident Progression Event Trees21

2.1.4 Post NUREG-1150...23

2.2 Probabilistic Risk Assessment (PRA) ...23

2.2.1 PRA Levels 1, 2, and 3 ..26

2.2.2 SAPHIRE ...27

2.2.3 OpenFTA and LiteFTA..29

2.3 Severe Accident/Thermal Hydraulic Codes: ...30

2.3.1 MELCOR/MACCS2 ..30

2.3.2 RELAP/SCDAP ...31

2.3.3 TRAC ...32

TABLE OF CONTENTS (Continued) Page

2.3.4 TRACE ..33

2.3.5 CATHARE ...33

2.3.6 Assessment of Existing Codes for RAPSS application34

2.4 Dynamic Probabilistic Risk Assessment (DPRA) ..34

2.4.1 DYnamic Logical Analytical Methodology (DYLAM)35

2.4.2 Accident Dynamic Simulation (ADS) ...35

2.4.3 Monte Carlo Dynamic Event Tree (MCDET) ...36

2.4.4 Analysis of Dynamic Accident Progression Trees (ADAPT)37

2.5 Data Management ...38

2.5.1 Principal Component Analysis (PCA) ...38

2.5.2 Linear Approximation Intervals ...40

2.5.3 The Mean Shift Algorithm ...40

2.6 Atmospheric Transport Modeling ...42

2.6.1 Gaussian Puff/Plume Modeling ...42

2.6.2 Extensions of the Gaussian Plume/Puff Models ..45

2.6.3 Pasquill Stability Classes ...48

2.6.4 RASCAL ..51

2.6.5 GENII ...52

2.7 Risk Informed Safety Margin Characterization (RISMC)52

2.7.1 The Determinator ...54

2.8 Numerical Weather Prediction (NWP) ...55

TABLE OF CONTENTS (Continued) Page

2.8.1 Ensemble Forecasting ..55

2.8.2 Data Assimilation ...57

2.8.3 Bayesian Networks ..57

2.8.4 Kalman filters ...60

2.9 Parallel Computing ..63

2.9.1 Parallelism Vocabulary ..63

2.9.2 Task Division ...64

2.9.3 Application Programming Interfaces (APIs) ...65

2.9.4 Open Multi-Processing (OpenMP) ..65

2.9.5 Message Passing Interface (MPI) ..66

2.10 R ..66

2.10.1 Parallel Computing in R ...67

2.11 Decision Making ...68

2.11.1 Decision Making in Nuclear Power Plants ..69

2.12 Risk and Perception of Risk ..74

2.12.1 Probability Aided Decision Making ..74

2.12.2 Optimizing the Presentation of Uncertainty for Decision Makers75

3 RAPSS Philosophy ...77

3.1 Preliminary research ..77

3.2 Implementation Path and Challenges ..81

TABLE OF CONTENTS (Continued) Page

4 RAPSS-STA Facility Models ...84

4.1 The Cook Model ..84

4.1.1 The Cook Plant Fault Tree ...87

4.2 The MASLWR Facility ...89

4.2.1 The MASLWR Real Time Simulator ..90

4.2.2 The MASLWR RELAP5 Model ..91

4.2.3 The MASLWR Model Fault Tree ..93

5 RAPSS-STA Structure ...95

5.1 RAPSmain.cpp ..95

5.1.1 RAPSS Input file..95

5.2 CycleR5.h ..96

5.3 BloodAndGuts.h ..96

5.4 OrganizeR5Output.h ...96

6 Data Processing ..97

6.1 Output from a single RAPSS-STA cycle ..97

6.2 Organizational structure of PCA and MSA ...99

6.3 PCA and MCA Sample “Toy” Problem ..105

6.4 Organizing, linear approximation intervals, and PCA in R111

6.4.1 Determining Linear Approximation Intervals ...111

6.5 Principal Component Analysis (PCA) ..113

TABLE OF CONTENTS (Continued) Page

6.6 The Mean Shift Algorithm in C++ ..114

6.7 unMSAPCA.R ...114

7 RAPSS-STA User Interface and Display ...115

8 RAPSS-STA Results ..123

8.1 The MASLWR Standard Problem 3 Experiment ..123

8.2 Comparing SP-3 Experiment and the R5 Model ...124

8.3 Simulating SP-3 Experiment Operator Actions ..126

8.4 RAPSS-STA and the SP-3 Experiment ...129

8.5 Results Summary...132

9 RAPSS-EOC ...134

9.1 RAPSS-EOC Structure ..135

9.2 The Plume Program ...135

9.2.1 Estimating the Current State of the System ...136

9.2.2 Predicting the Future State of the System ..137

9.3 Data Processing ...138

9.4 The RAPSS-EOC User Interface and Display ..141

10 Discussion and Conclusion ...147

10.1 Limitations ..148

10.2 Future Work ..149

10.2.1 Future Work RAPSS-STA ...150

10.2.2 Future Work RAPSS-EOC ..151

TABLE OF CONTENTS (Continued) Page

10.2.3 Generalizing RAPSS ..152

Bibliography ..155

A. Appendix A: RAPSS-STA Source Code ..168

A.1. RAPSmain.cpp Source Code ...169

A.2. CycleR5.h Source Code ..180

A.3. BloodAndGuts.h Source Code ..193

A.4. OrganizeR5Output.h Source Code ..255

A.5. initPCA.r Source Code ..260

A.6. PCA.r Source Code: ..261

A.7. unMSAPCA.r Source Code: ...270

A.8. UpdateRwindex.r Source Code: ..273

A.9. Display.r Source Code: ...274

A.10. Cluster.h Source Code ...282

A.11. MeanShift.h Source Code ...285

A.12. RAPSS-STA Example Input File ..292

B. Appendix B: RAPPS-STA Source Code Explanation ..294

B.1. RAPSmain.cpp Source Code Explanation ..295

B.2. CycleR5.h Source Code Explanation ..296

B.3. BloodAndGuts.h Source Code Explanation ..300

B.3.1 RstIptGen() ..306

B.4. OrganizeR5Output.h Source Code Explanation ..310

TABLE OF CONTENTS (Continued) Page

B.5. initPCA.r Source Code Explanation ..314

B.6. PCA.r Source Code Explanation ...315

B.6.1 The Automated Linear Approximation Interval Sequencer (ALAIS)317

B.7. unMSAPCA.r Source Code Explanation ..319

B.8. UpdateRwindex.r Source Code Explanation ...320

B.9. Display.r Source Code Explanation ..320

B.10. Cluster.h Source Code Explanation ..321

B.11. MeanShift.h Source Code Explanation ...321

B.12. RAPSS-STA Input File Explanation ...322

C. Appendix C: RAPPS-EOC Source Code..328

C.1. Pmain.cpp Source Code ..329

C.2. CyclePlume.h Source Code ...335

C.3. FunctionsEOC.h Souce Code ..343

C.4. PlumeProgram.h Source Code ..367

C.5. GridOrganizer.R Source Code ..369

C.6. PlumeDisplay.R Source Code ...371

C.7. initR.r Source Code ...376

C.8. updateRwindex.R Source Code ...377

C.9. Sample RAPSS-EOC Input File ..378

D. Appendix D: RAPPS-EOC Source Code Explanation ...380

D.1. Pmain.cpp Source Code Explanation ..380

TABLE OF CONTENTS (Continued) Page

D.2. CyclePlume.h Code Explanation ...380

D.3. FunctionsEOC.h Code Explanation ..381

D.4. PlumeProgram.h Code Explanation ..385

D.5. GridOrganizer.r Code Explanation ...386

D.6. PlumeDisplay.r Code Explanation ..386

D.7. initR.r Code Explanation ...386

D.8. updateRwindex.R Code Explanation ..387

D.9. Sample RAPSS-EOC Input File Explanation ...387

Figure LIST OF FIGURES Page

1.1 Conceptual outline of RAPSS-STA implementation in a nuclear power plant 3

1.2 RAPSS-STA conceptual timeline ... 6

1.3 Conceptual outline of RAPSS-EOC implementation in an emergency operation

center .. 9

1.4 RAPSS-EOC conceptual timeline ... 11

2.1 A simple example of a pumping system ... 16

2.2 A simple example of a fault tree constructed from the pumping system in Figure

2.1 ... 17

2.3 A simple example of an event tree .. 19

2.4 Gaussian plume dispersion model for a continuous point source 42

2.5 Gaussian puff model ... 44

2.6 Horizontal diffusion standard deviation versus downwind distance from a point

source. ... 49

2.7 Vertical diffusion standard deviation versus downwind distance from a point

source .. 50

2.8 A Simple Bayesian network .. 58

2.9 Probability tree representation of a Bayesian model .. 59

2.10 Color coding of the Significance Determination Process used by the NRC 69

3.1 A visual representation of the behavior of Equation (3.1) 79

3.2 A typical graphical output of the first demonstration of the RAPSS philosophy ... 80

4.1 Schematic of the R5 Cook model used for the first-generation RAPSS-STA

architecture ... 85

4.2 A generic fault tree built for the first-generation RAPSS-STA architecture 88

4.3 Conceptual design of the MASLWR test facility. .. 90

4.4 Schematic of the MASLWR RELAP5 model .. 92

Figure LIST OF FIGURES (Continued) Page

4.5 A generic fault tree built for the MASLWR facility for the first-generation RAPSS-
STA architecture ... 94

6.1 An illustration of sample data after performing PCA ... 106

6.2 Data formatted for the Mean Shift Algorithm before and after clustering 107

6.3 Principal components before and after clustering ... 107

6.4 Original data with dimensionality 35,136, and processed data with dimensionality

17,568 ... 108

7.1 An example user interface for RAPSS-STA ... 116

7.2 An example of a RAPSS plot of a parameter of interest falling below a user defined

threshold ... 118

7.3 Example output of the “No Thresholds Tripped” data from RAPSS-STA 119

7.4 Example output for “R5 Model Became Unstable” Box for the RAPSS-STA

display .. 120

7.5 Example output “Miscellaneous Information” Box for RAPSS-STA display 121

7.6 Normalized RAPSS data clusters for state variables of interest 122

8.1 Core temperature shown for the MASLWR facility and the R5 model 125

8.2 Core pressure shown for the MASLWR facility and the R5 model 126

8.3 Linear regressions of flow velocity were determined from the MASLWR data to

match the operator actions. Figure compliments of Thomas Riley. 127

8.4 A plot of core temperature from a special R5 run designed to reflect small operator

actions ... 128

8.5 A plot of core pressure from a special R5 run designed to reflect small operator

actions ... 128

8.6 Core temperature from a normal R5 run plotted with core temperature from the

MASLWR facility .. 130

Figure LIST OF FIGURES (Continued) Page

8.7 Core pressure from a normal R5 run plotted with core temperature from the
MASLWR facility .. 130

8.8 Core temperature from a representative RAPSS cluster plotted with core

temperature from the MASLWR facility ... 131

8.9 Core pressure from a representative RAPSS cluster plotted with core pressure from

the MASLWR facility .. 132

9.1 Example wind rose for Juniper Dunes .. 138

9.2 An example RAPSS-EOC user interface. ... 142

9.3 An example of an estimate of the current state of a plume from RAPSS-EOC ... 143

9.4 An example of an estimate of the future state of a plume from RAPSS-EOC 144

9.5 An example of an estimate of No Thresholds Tripped from RAPSS-EOC 144

9.6 An example the instabilities screen from RAPSS-EOC 145

9.7 An example the miscellaneous information screen from RAPSS-EOC 146

10.1 An illustration of a future RAPSS configuration that allows a researcher to apply

RAPSS to other situations without significant rewriting of the code 153

Table LIST OF TABLES Page

2.1 Pasquill Stability Classes .. 48

2.2 Gaussian Plume Model Dispersion Parameters .. 51

2.3 Values used in the Gaussian Puff Model for q, px, py, and pz 51

6.1 Example R5 output, showing one set, composed of two sections. 98

6.2 Raw R5 example data for a 3x4x4 R5 run .. 100

6.3 Example data reorganized for PCA .. 101

6.4 Principal components for example problem data.. 102

6.5 Three principal components for the example problem data 103

6.6 Example data reorganized for MSA ... 104

6.7 Clustered example data ... 105

6.8 Benchmarking PCA and MSA with 24x24x61 sample data 108

6.9 Sample problem cluster membership with and without PCA 110

9.1 Example 3 x 3 grid used to demonstrate the organizational structure of the MSA for

RAPSS-EOC .. 139

9.2 Example organized data ready for clustering by the mean shift algorithm 140

9.3 Example clustered data output from the mean shift algorithm 140

LIST OF ACRONYMS

Acronym Definition

ADAPT Analysis of Dynamic Accident Progression Trees

ADS Accident Dynamic Simulation

AEC Atomic Energy Commission

ALAIS Automated Linear Approximation Interval Sequencer

API Application Programming Interface

APS American Physical Society

ATWS Anticipated Transients Without Scram

BDBA Beyond Design Basis Accident

BWR Boiling Water Reactor

CAMP Code Applications and Maintenance Program

CATHARE Code for Analysis of THermalhydraulics during an Accident of
Reactor and safety Evaluation

CDF Cumulative distribution function

CDF Core Damage Frequency

CFR Code of Federal Regulation

CPU Central Processing Unit

DET Dynamic Event Tree

DOE Department of Energy

DYLAM DYnamic Logical Analytical Methodology

EF Ensemble Forecasting

EnsKF Ensemble Kalman Filter

LIST OF ACRONYMS (Continued)

Acronym Definition

FCM Fuzzy C-Means

FormalFTA Formal Fault Tree Analysis

FR Federal Register

FRAMES Framework for Risk Analysis in Multimedia Environmental Systems

F-V Fussell-Vesely

GIP Generic Issues Program

GNU General Public License; synonymous with GPL

GPL General Public License synonymous with GNU

GPM Gaussian Plume Model

GUI Graphical User Interface

ICAP International Code Assessment and Applications Program

IDAC Information Decision and Action in Crew

INPO Institute of Nuclear Power Operations

IPE Individual Plant Examination

KF Kalman Filter

LB Licensing Basis

LB LOCA Large-Break Loss of Coolant Accident

LERF Large Early Release Frequency

LiteFTA Lite Fault Tree Analysis

LLEnsF Local-Local Ensemble Filter

LWR Light Water Reactors

LIST OF ACRONYMS (Continued)

Acronym Definition

MASLWR Multi Application Small Light Water Reactor

MAUT Multi-Attribute Utility Theory

MCDET Monte Carlo Dynamic Event Tree

MELCOR Methods for Estimation of Leakages and Consequences of Releases

MPI Message Passing Interface

NPP Nuclear Power Plant

NS-EnsKF Normal-Score Ensemble Kalman Filter

NUREG NUclear REGulation

NWP Numerical Weather Prediction

OpenFTA Open Fault Tree Analysis

OpenMP Open Multi-processing

PDF Plant Damage Frequency

PDS Plant Damage States

PRA Probabilistic Risk Assessment

PVM Parallel Virtual Machine

PWR Pressurized Water Reactor

R7 RELAP 7

RAP Reliability/Availability/Performance

RAPSS Run-Ahead Predictive Simulation Software

RAPSS-EOC Run-Ahead Predictive Simulation Software for Emergency

Operations Centers

LIST OF ACRONYMS (Continued)

Acronym Definition

RAPSS-STA Run-Ahead Predictive Simulation Software for Shift Technical

Advisors

RELAP Reactor Excursion and Leak Analysis Program

RHRS Residual Heat Removal System

RISMC Risk Informed Safety Margin Characterization

RPV Reactor pressure vessel

SB LOCA Small-Break Loss of Coolant Accident

SDP Significance Determination Process

SGTR Steam Generator Tube Rupture

Preliminary Framework for the Run-Ahead Predictive Simulation Software (RAPSS)

1 Introduction

The Fukishima Diiachi accident in April 2011 was the most recent reminder of

what catastrophic failure of nuclear power generating stations looks like. In the aftermath

of the disaster, the American Nuclear Society (ANS) published a report outlining their

recommendations for upgrades to the current generation of nuclear power plants to

decrease the probability of another Fukishima. Recommendation V.D. for accident

diagnostics tools from the ANS Committee Report (March 2012) recommends that

plants:

“Provide operators with information regarding the accident progression
which can then allow them to identify the most effective strategy to
manage a prolonged [station black out] or [beyond design basis accident]
sequence. This information might be provided in the form of pre-prepared
charts or generated for the actual conditions of the NPP by a faster-than-
real-time simulator that can predict the gross behavior of the essential
NPP subsystems under beyond-design basis conditions, especially before
substantial core damage occurs, so that core damage can actually be
prevented.”

The Run-Ahead Predictive Simulation Software (RAPSS) is an architecture

designed specifically for this purpose: faster-than-real-time decision support for operators

of complex networks.

1.1 RAPSS-STA

The first and most developed application of the RAPSS methodology was designed

to assist the senior members of a nuclear power plant (NPP) operating crew (i.e., the

plant’s Shift or Unit Supervisor and the Shift Technical Advisor (STA)) in the assessment

of current and potential future reactor system conditions. This application has thus been

Page: 2

named RAPSS-STA. This tool generates a set of scenarios to predict what could happen

in the near future (with associated probabilities) by continuously performing a faster-

than-real-time probabilistic risk assessment including outcome and consequence

analyses.

When fully implemented and connected to a reactor system, RAPSS-STA will

utilize current plant data to generate a set of inputs for an advanced systems modeling

code, such as: TRACE, RELAP5, MELCOR, or CATHARE (see Section 2.3). In

contrast to the slower-running comprehensive dynamic probabilistic risk analysis codes,

these parallel “potential futures” calculations are determined utilizing a small number of

streamlined, risk-informed algorithms that repeatedly initiate, identify, analyze, and

disposition possible near future scenarios in a probabilistic manner as plant conditions

evolve. Results are presented to senior operating staff (i.e., Unit Supervisor and STA),

who can make use of these risk-informed projections to help guide plant operations

decisions. Such an approach provides a degree of safety margin monitoring by

presenting the unit leadership with a real-time predictive analysis of future plant

conditions. An outline of both the existing NPP structure and the new RAPSS-STA

methodology is presented in Figure 1.1.

Page: 3
Figure 1.1 Conceptual outline of RAPSS-STA implementation in a nuclear power plant

Page: 4

The diagram in Figure 1.1 starts with a "physical engine", which can be the

reactor itself, a test facility, a research reactor, or a reactor simulator. While the physical

engine can be represented in a number of ways, it is important that the faster-than-real-

time "calculation engine" provide a reasonable fidelity physical engine simulation, and

very quickly. The "physical engine" will be influenced both by external events, such as

off-site power failures, earthquakes, tornados, and tsunamis, or by internal conditions and

the physical controls, such as opening valves or starting pumps. The physical engine

will continuously feed data to its physical sensors (e.g., temperature, pressure gauges,

etc.), which are archived, displayed, and used to drive automatic logic and actions. Those

automatic decisions activate the physical controls, which, in turn, change plant

configuration and conditions. The physical displays and alerts are read by plant

operators, the unit supervisor, and the STAs who can influence the operators, but the

operators otherwise follow procedures, which utilize the physical controls to change

conditions in the plant.

The RAPSS methodology incorporates a “decision engine,” which digests current

plant data into a suitable input format for the “calculation engine,” which performs

simultaneous outcome assessments across several parallel computing nodes. The

calculation engine is a systems modeling code capable of faster-than-real-time

performance. The decision engine first decides which future plant scenarios to run using

combinations of sensor input data, the plant’s own probabilistic risk assessment (PRA),

component availability and reliability data, and other useful inputs. The calculation

engine continuously runs an ensemble of parallel calculations with appropriately

perturbed initial conditions, projecting a short time in the future based on current plant

Page: 5

conditions. The decision engine takes these outputs, compiles and organizes the large

volume of output data from the calculation engine utilizing dimensionality reduction

techniques among others, and decides which of these scenarios is different enough from

current conditions or might lead to a sufficiently consequential, negative outcome to

warrant alerting the STA or unit supervisor. The scenarios are flagged, organized by risk,

and displayed to the shift supervisors and STA in a way that promotes understanding

under high cognitive load.

1.1.1 RAPSS-STA Simulation Timeline

Figure 1.2 is useful to conceptually visualize the series of cycles RAPSS-STA

performs.

Page: 6

Figure 1.2 RAPSS-STA conceptual timeline

Page: 7

The timeline begins with run 0, whose initialization is not displayed on the chart.

Run 0 predicts events happening past the point where run 1 starts, providing plenty of

overlap to avoid any dead time. The lag time required to run the simulation is colored in

red. If the simulation did not predict past physical time to run the program, it would be

considered slower-than-real-time. The point at which the predicted time passes real time

is colored green. This is what is referred to as faster-than-real-time.

After a run is finished, there is a small amount of processing time to collect and

organize the thread information, pass the information to R (the tool used for statistical

analysis) perform data analysis, write to output files, and plot the results. Immediately

following is the earliest time that a senior operator could be alerted to RAPSS-STA’s

predictions of deleterious future events. The beginning of each cycle also involves some

processing time to sample the plant, spawn new threads, load information on the threads,

and write the appropriate scripts to run RELAP5 with the given conditions on each

thread. Because the threads run with slightly, or drastically different conditions, each

simulation takes different amounts of physical time to complete. If one finishes early, the

master thread will wait until all slave threads have finished before performing the data

analysis (see Section 2.9 for parallel computing terminology). While it does take some

time to complete the RELAP5 simulations, the previous cycle’s prediction should overlap

the current simulation by plenty of time.

1.2 RAPSS-EOC

The second application described in this dissertation focuses on applying the

RAPSS architecture to plume modeling for emergency operations centers in the event of

a release of radioactive material outside of a nuclear power plant, spent fuel storage pools

Page: 8

and casks, fuel cycle facilities, and radioactive handling facilities (See Figure 1.3). While

the majority of the research focused on RAPSS-STA, it is important to realize that there

are infinite possibilities for future applications of the RAPSS methodology in a similar

fashion to what was illustrated in RAPSS-EOC. See Section 9 for more information on

RAPSS-EOC.

Page: 9

Figure 1.3 Conceptual outline of RAPSS-EOC implementation in an emergency operation center

Page: 10

The flow diagram for RAPSS-EOC (Figure 1.3) is very similar to the one for

RAPSS-STA (Figure 1.1). The physical engine, in this case, is the atmosphere conditions

in addition to estimates of release rate and type of radionuclides from the plant. An

estimate of the current state is generated from sampled atmospheric conditions using the

plume modeling program, labeled as the “calculation engine” in Figure 1.3. After an

estimate of the current state is generated, wind rose data are sampled to determine

probabilities for future wind speeds and directions. The possible future wind speeds and

directions are run ahead in time across many parallel computational nodes. These data

are output in the form of a grid of ground-level concentrations per unit area. These grids

are added to the current state estimate, clustered with other similar scenarios, and checks

are run to determine if a given population center is at risk. Once these determinations of

risk are made, they are presented to senior emergency operations staff, who can notify

prominent authority figures, such as city mayors, or state governors. These authority

figures can then make the call of whether or not to evacuate the population center.

1.2.1 RAPSS-EOC Simulation Timeline

Figure 1.4 is useful to conceptually visualize the series of cycles RAPSS-EOC performs.

Page: 11

Figure 1.4 RAPSS-EOC conceptual timeline

Page: 12

While the majority of the RAPSS-EOC timeline displayed in Figure 1.4 is

identical to the one displayed for RAPSS-STA in Figure 1.2, it is presented again to

illustrate how similar the architecture is under different systems. The change in the case

of RAPSS-EOC comes with sampling atmospheric conditions instead of plant conditions,

and predicting ground level concentrations using a plume modeling program instead of

future plant conditions using a thermal hydraulic simulation software.

1.3 Programming Languages

RAPSS was written in a combination of C++, Java, html, and R. The majority of

the program and primary control structure was written in C++. It was compiled using

g++ (GCC) 4.4.6, although other similar versions of g++ can be used.

R was used for data processing and for plot generation. R was convenient

because it had the statistical tools such as principal component analysis and matrix

multiplication already imbedded, allowing the researcher to avoid “reinventing the

wheel.”

The user interface for RAPSS-STA was written in html. This was convenient

because it allowed the user to interact with the display by “clicking” on certain sections

to obtain more information.

One module of RAPSS-STA was written in Java, LiteFTA, the stripped down

version of OpenFTA (from http://www.openfta.com/) (see section 2.2.3). It served as the

engine for calculating cuts sets, and probabilities based on the fault tree information

provided by the user in the form of .fta and .ped files. LiteFTA generated .prp (cut sets

and probability) and .mrp (Monte Carlo) files, which were read by RAPSS-STA and used

to determine which transients to run. LiteFTA was precompiled using Java Runtime

http://www.openfta.com/

Page: 13

Environment 1.6.0, and is not intended for modification. LiteFTA has similar

functionality to OpenFTA, but operated by a UNIX terminal window instead of a

Windows GUI.

What follows is an exhaustive literature review of the history of formal safety

assessment in nuclear power, probabilistic risk assessment (PRA), thermal hydraulic

simulation software, data management tools, atmospheric transport modeling techniques,

numerical techniques used in numerical weather prediction, an introduction to parallel

computing, a brief description of R, an overview of formal decision making, and risk and

perception of risk. Discussion of RAPSS continues in Section 3. RAPSS-STA begins

with Section 4, and RAPSS-EOC is detailed in Section 9.

Page: 14

2 Literature Review

2.1 History of Formal Safety Assessment in Commercial Nuclear Power

 Prior to 1975, nuclear safety regulations in the US were written from

deterministic conservative margins and models based on experience, test results, and

expert judgment. Specifically, WASH-740, or the “Brookhaven Report,” (U.S. Atomic

Energy Commission (USAEC), 1957) estimated the maximum possible damage from a

meltdown at a large reactor with no containment building, the worst possible

meteorological conditions, and half the reactor core released into the atmosphere as 1 μm

particles without much explanation of how this might occur. Needless to say, the results

these assumptions yielded were unrealistic (i.e., 45,000 deaths, 100,000 injuries, and $17

billion in property damage). The industry was ready for a more detailed and realistic look

at NPP risk.

2.1.1 WASH-1400 and Event/Fault Trees

 WASH-1400, or the “Rasmussen Report” (USNRC, 1975), was a pivotal event in

reactor safety analysis because it established the pattern for future nuclear power plant

probabilistic risk assessments (see Section 2.2). WASH-1400 provided comparison with

other non-nuclear risks, identified transients (loss of flow, rod withdrawal, etc.) and

small-break loss of coolant accidents (SB LOCA) as major risk contributors (rather than

just large-break (LB) LOCAs). It also identified human error as a major contributor, and

showed the impact of testing, maintenance and common mode interactions. The

Rasmussen Report further predicted that radiological risks from nuclear power plants

were small when compared to societal risks. However, The American Physical Society

(APS, 1984) later criticized WASH-1400’s handling of radiological risks noting that the

Page: 15

fatality estimates had considered only deaths during the first 24 hours after the accident,

completely neglecting cancer deaths and radiation poisoning deaths after several weeks.

 None the less, WASH-1400 was the first attempt to apply the methods of fault-

tree/event-tree analysis to a nuclear reactor to determine the overall probability and

consequences of an accident. The fault tree approach is a deductive process where an

undesirable event, called the top event, is postulated, and the possible ways for this event

to occur are systematically deduced. The fault tree does not necessarily contain all

possible components failure modes; only the failure modes contributing to the top event

occurrence are modeled (Modarres et al. 2010).

 For instance, a top event may be, “no water delivered,” from a simple pumping

system, such as the one displayed in Figure 2.1. This system consists of five valves, two

pumps, a water source, and a sensing and control system, all which must run on AC

power. Valves V-1 and V-2, V-4 and V-5, and pumps P-1 and P-2 are in parallel with

one another, meaning, the failure of one doesn’t necessarily predict the failure of the

entire system. However, failure of the water source (T-1), the sensing and control system

(S), or the AC power would result in water delivery failure.

Page: 16

Figure 2.1 A simple example of a pumping system (from Modarres et al., 2010)

To construct a fault tree, one would write the top event, in this example, “no water

delivered,” at the top of the tree, and proceed down by writing the logical statements (if,

and, or, xor, etc.) leading to the top event. An example is shown below in Figure 2.2:

basic events are illustrated as circles, intermediate events are represented by rectangles,

and undeveloped events are shown as rhombuses; logic gates are represented by their

standard symbols.

Page: 17

Figure 2.2 A simple example of a fault tree constructed from the pumping system in Figure 2.1 (from Modarres
et al., 2010)

By starting with “no water delivered,” there are four immediate paths to follow:

either the AC fails, the sensors fail, there is no water at V-1, or no water is delivered from

the pumping branch. While there are further reasons for the AC or the sensors to fail,

they are outside the scope of this analysis and thus are represented by the undeveloped

rhombuses. In order for no water to be delivered at V-1, either the tank ruptures, or V-1

fails. The pumping branch will only fail to deliver water if both the P-1 and P-2 branches

fail. For this to happen in the P-1 branch, either P-1, V-2, or V-4 would have to fail. In

the P-2 branch, either P-2, V-3, or V-5 would have to fail. Fault trees such as this assist

Page: 18

decision makers by explicitly detailing the possible ways to arrive at an undesirable end

state.

The evaluation of fault trees is anything but straight forward. Development of a

simple fault tree requires only a minimum understanding of the system; however,

development of a more compact version for computational efficiency sake requires a

much better understanding of the overall system logic. This involves the determination

of cut sets which represent a single path that leads to the occurrence of the top event. A

minimum cut set represents the minimum path that leads to the occurrence of the top

event. Top event probability determination from cut sets involves the use of Boolean

logic. The tree OR-gate represents the union of the input (e.g., A, B) events (AUB),

where the probabilities of A and B are added (A+B), and the tree AND-gate represents

the intersection of the input events (A∩B), where the probabilities of A and B are

multiplied (A·B). Determining the probability of top events is challenging, especially

when the number of cut sets is large. In general, there are 2n-1 such terms in cut sets,

where n is the number of cut sets (Modarres, Kaminskiy, & Krivtsov, 2010). For

example, for the 13 cut sets generated for the pumping example (Figure 2.2) there are

8191 such terms (213-1). For larger fault trees, the exponential growth of cut sets can be

challenging for even the most powerful mainframe computers.

Similar to fault trees, event trees help deduce the logical sequence of events leading

to a failure. However, unlike fault trees, event trees start with an initiating event and

show many different end states. To construct an event tree, one would start on the left

with an initiating event, and proceed chronologically to the right passing through several

“branch points” or points where systems could either succeed or fail. At each branch

Page: 19

point, the upper branch shows the success of the event at that branch, and the lower

shows failure. An example is shown in Figure 2.3. For the example sequence logic,

components are shown in failure mode (e.g., AC implies the AC failed), while their

compliments illustrate the component not failing (e.g., AC implies the AC did not fail).

Figure 2.3 A simple example of an event tree (from Modarres et al., 2010)

Both fault trees (such as Figure 2.2), and event trees (such as Figure 2.3) are used in

WASH-1400 to detail the sequence of events leading to core damage in nuclear power

plants.

2.1.2 Post WASH-1400

 The Energy Reorganization Act of 1974 created the Nuclear Regulatory

Commission (NRC) and the Department of Energy (DOE) out of the old Atomic Energy

Commission (AEC). The NRC appointed a review group to assess the quality of WASH-

1400. This group concluded that “The uncertainties in WASH-1400’s estimates of the

probabilities of severe accidents were… greatly understated” (Lewis et al., 1978).

Reasons given were inadequate data base, a poor statistical treatment, lack of peer

Page: 20

review, and an inconsistent propagation of uncertainties throughout the calculation. “In

summary, we find that the fault-tree/event-tree methodology is sound, and both can and

should be more widely used by the NRC. The implementation of this methodology in

WASH-1400 was a pioneering step, but leaves much to be desired.”

 The Three Mile Island (TMI) accident in March, 1979 prompted many changes in

the field of safety assessment. Up until this point, only design basis accidents (DBAs)

were considered in the licensing process. TMI forced the industry and the regulators to

take a closer look at severe, or beyond design basis accidents (BDBAs). A design basis

accident is a postulated accident that a facility is designed to withstand without exceeding

the offsite exposure guidelines of 10CFR100.11 (25 rem whole body dose or 300 rem to

the thyroid from radioactive iodine) (USNRC 2002a). Beyond design basis accidents are

more challenging to quantify because they usually involve multiple simultaneous failures

and are defined by everything not planned for that results in significant core damage.

 TMI caused the industry to rethink its safety goals. While the TMI release did not

exceed the 10CFR100 limits, it did cause intense public outrage, which effectively

undermined 10CRF100. As a result, the NRC set out to answer the question, “How safe

is safe enough?” and published NUREG-880 (USNRC, 1983), which gave qualitative

goals and suggested a quantitative goal of less than one core melt per 10,000 years. The

NRC then issued a formal statement in 51 FR (Federal Register) 30028 (USNRC, 1986)

which specifically defined two qualitative goals and two quantitative goals for 10CFR50

(USNRC 2002a). The quantitative goals of 51FR30028 were:

• The risk to an average individual in the vicinity of a nuclear power plant of

prompt fatalities that might result from reactor accidents should not exceed 0.1%

Page: 21

of the sum of prompt fatality risks from other accidents to which members of the

U.S. population are generally exposed; and

• The risk to the population in the area near a nuclear power plant of cancer

fatalities that might result from nuclear power plant operation should not exceed

0.1% of the sum of cancer fatality risk resulting from all other causes.

And the qualitative goals were:

• Individual members of the public should be provided a level of protection from

the consequences of nuclear power plant operation such that individuals bear no

significant additional risk to life and health; and

• Societal risk to life and health from nuclear power plant operation should be

comparable to or less than the risks of generating electricity by viable competing

technologies and should bear no significant addition to other societal risks.

51FR20028 also recommended that, “The overall mean frequency of a large release of

radioactive materials to the environment should be less than 1 in 1,000,000 years of

reactor operation,” which is now used in 10CFR50.109 (USNRC 2002a) for evaluating

facility changes and updates.

2.1.3 NUREG-1150 and Accident Progression Event Trees

In 1988, the NRC requested each plant to assess its severe accident

vulnerabilities. This Individual Plant Examination (IPE) would supplement the

replacement for WASH-1400, NUREG-1150 (USNRC 1990). NUREG-1150 surveyed

five plants, Surry Power Station near Newport News, Virginia, Peach Bottom Atomic

Power Station near Lancaster, Pennsylvania, Zion Nuclear Power Station near Chicago,

Page: 22

Illinois, Sequoyah Nuclear Generating Station near Soddy-Daisy, Tennessee, and Grand

Gulf Nuclear Generating Station near Port Gibson Mississippi. The intent was to survey

the spectrum of U.S. nuclear generating stations including three- and four-loop

Westinghouse Pressurized Water Reactors (PWR, W3 & W4), as well as a variety of

four- and six-loop Boiling Water Reactors (BWR- 4 & 6).

 NUREG-1150 used the Accident Progression Event Tree (APET) approach to

quantify accident progression and containment response. An APET identifies the variety

of ways in which containment failure or bypass can occur, as well as the various severe

accident processes that affect the mode of failure, timing of failure, and magnitude of

environmental radioactive material release (Hakobyan et al. 2008). Unlike the WASH-

1400 event trees, where branchings are based on the failure or success of safety systems

in demand, APETs address questions such as, “Type of vessel breach?”, and “Amount of

hydrogen released in-vessel during core damage?”, etc. Each question in an APET

analysis has two or more answers, creating two or more branches to follow after each

branch point. APETs are intended to determine environmental radiological release due to

containment failure or bypass. In order to initiate an APET, prior analysis is necessary

about the Plant Damage States (PDS) to be used as initial conditions for the analysis.

Normally, fault tree analysis is not used to estimate branching probabilities in APETs;

instead, branching probabilities are determined by comparing physical conditions

obtained in the severe accident scenario with the branching criteria (Hakobyan, 2006).

However, because of the uncertainties (epistemic and aleatory) in the analysis, there is

not a deterministic outcome of “failure” or “no failure” for a scenario. Thus, uncertainty

Page: 23

analysis is used to determine failure probability by performing several accident

progression calculations using different modeling or input assumptions.

2.1.4 Post NUREG-1150

 NUREG-1150 was eventually replaced by the NRC with the State-of-the-Art

Reactor Consequence Analyses (SOARCA) report (USNRC 2011). The SOARCA

analyzed two plants that the NRC believes are typical of the two basic types of U.S.

commercial nuclear power plants: The Peach Bottom Atomic Power Station, and the

Surry Power Station. This report greatly builds on NUREG-1150, incorporating onsite

and offsite actions – including the implementation of mitigation measures and protective

actions for the public (such as evacuation and sheltering) – that may prevent or mitigate

accident consequences. It also used computer modeling techniques (MELCOR and

MACCS2, see section 2.3) to understand how a reactor might behave under severe

accident conditions, and how a release of radioactive material might impact the public.

2.2 Probabilistic Risk Assessment (PRA)

 Probabilistic Risk Assessment (PRA) is a systematic procedure for investigating

the ways in which complex systems are built and operated (Modarres et al. 2010). Kaplan

and Garrick (1981) reduce the definition of PRA to three1 basic questions, commonly

referred to as “the set of triplets” definition:

1. What can go wrong that could lead to the exposure of hazards?

2. How likely is this to happen?

3. If it happens, what consequences are expected?

1 Some authors (Garrick 2006) have added additional questions such as, “What are the uncertainties?” and
“What corrective actions should be taken?”

Page: 24

 The most significant result of the PRA is not the so-called bottom line value of

the risk computed, but the determination of the system elements that substantially

contribute to the risks of that system, the uncertainties associated with such estimates,

and the effectiveness of various available risk reduction strategies (Modarres et al.,

2010).

 PRA, however, does contain some inherent limitations, struggling to quantify the

items listed below (Apostolakis, 2004).

• Human error during accident conditions. These are both errors of omission (the

crew failed to take prescribed actions) and errors of commission (the crew did

something that worsened the situation). These errors are not handled well by

PRA and research is underway to better quantify these sources. Some examples

include the Technique of Human Error Rate Prediction (THERP) (Swain &

Guttman, 1983), the Accident Sequence Evaluation Program (ASEP) (Wilson,

1993), and more recently, the Standardized Plant Analysis Risk (SPAR) (Gertman

et al., 2005).

• Digital software failures. Historically, software systems were seen as black boxes

with ascribed failure rates. While research is still ongoing (Li et al., 2005; Li et

al., 2006; Stutzke & Smidts, 2001, Tumer & Smidts, 2011), traditional methods

such as requiring extensive testing and the use of diverse software systems are

making progress toward a more complete understanding of software failure

modes.

• Safety culture. Defined by the Institute of Nuclear Power Operations (INPO,

2004) as “An organization’s values and behaviors… that serve to make nuclear

Page: 25

safety the overriding priority.” While it is relatively easy to blame an accident on

a “bad safety culture,” identifying the indicators of a “bad” or “good” safety

culture is much more challenging. INPO, made progress towards safety culture

quantitation by outlining the generic principles for a strong nuclear safety culture.

INPO states that while safety culture is an intangible quantity, when thought of as

a continuum, it is possible to determine, based on observable attributes (e.g.,

safety role modeling by leaders, cultivation of a questioning environment, the

embracement of organizational learning, constant nuclear safety examination,

etc.), whether a station tends toward one end of the continuum or the other.

• Design and manufacturing errors. Traditional safety methods of testing and

equipment qualification address these errors; however, these are become

especially challenging to quantify for equipment operating under unusual

conditions, such as accident environments.

 Surprisingly, there are no PRA requirements for the current generation of Light

Water Reactors (LWRs). But in an odd bit of regulation, Regulatory Guide 1.174

(USNRC 2002b) requires the use of PRA for risk-informed decisions regarding changes

to the plant’s Licensing Basis (LB). Licensing basis changes are modifications to plant’s

design, operation, or other activities that require NRC approval. Since it is safe to

assume that all plants will have many LB changes throughout their lifetime, all current

generation LWRs are essentially required to keep an updated PRA. For all next

generation (Gen III and beyond) reactors, 10CFR52 (USNRC 2009) requires the original

license application to contain a PRA.

Page: 26

2.2.1 PRA Levels 1, 2, and 3

 PRA is divided into three levels to help narrow the scope for the user’s intent.

Level 1 PRA contains accident frequency estimation only. It involves event/fault trees,

which are used to define plant damage states in terms of scenarios leading to core damage

and estimate the plant damage state frequencies (Core Damage Frequency (CDF)) based

on success criteria for assuring core coolability. It starts with an initiating event (e.g.,

station black-out or loss of coolant accident) and proceeds until the reactor core is

damaged. In comparison to the other two levels, once the right data are obtained, it is

quick and cheap.

 Level 2 PRA starts from the situation of core damage, and is carried out until

containment is breached. It includes accident progression and radioactive materials

transport analysis. Event/fault trees primarily address the occurrence of

phenomenological events, such as hydrogen explosion or containment building failure.

Accidents can be quantified by the severity of the radioactive material release. This

determines the frequency and timing of core damage. The goal is to quantify probabilities

and progression of the accident scenarios. Because accident progression differs for each

plant damage state, accident progression analysis is necessary for each of the Plant

Damage States (PDS). Regulatory Guide 1.174 (USNRC 2002b) provides a basis for

making level 2 PRA risk-informed regulatory decisions using CDF and LERF to

determine the acceptability of changes in risk.

 Level 3 PRA starts from a radioactive release outside of containment. In

conjunction with levels 1 and 2 PRA, a level 3 PRA estimates the health effects from

radiation doses to the population around the plant, and land contamination from

Page: 27

radioactive material released. These depend on several factors. For example, health

effects depend on the population in the plant vicinity, evacuation conditions, and the path

of the radioactive plume. The plume, in turn, is affected by wind speed and direction, as

well as rain and snowfall. In a similar manner, land contamination depends on the

characteristics of the radioactive release and how the surrounding land is used (NRC

Website, 2011b). Level 3 PRA estimates the final measure of risk by combining

consequence analysis with frequency. It is expensive, and thus performed only when the

most accurate and detailed assessment of risk is required.

 Apostolakis, (2004) cautions that PRA results should never be the sole basis for

decision making by responsible groups. PRA is meant to inform human decision makers,

not replace them.

2.2.2 SAPHIRE

 SAPHIRE (Systems Analysis Programs for Hands-on Integrated Reliability

Evaluations) (Smith et al., 2008) is a PRA software tool designed for reliability

assessment (e.g., fault trees) and risk/safety assessment (e.g., event trees, core damage

frequency), used by agencies such as the NRC, NASA, and the DOE for their risk-

informed activities. SAPHIRE can be used for Level 1 PRA analysis to model a plant’s

response to initiating events, quantify associated core damage frequencies, and identify

important contributors to core damage. It can also be used for Level 2 PRA severe

accident evaluations by starting with the core damage state, and evaluating containment

failure and/or release models. It can assume the reactor is at full power, low power, or in

shutdown conditions. SAPHIRE’s capabilities for performing PRA are:

• Graphical event/fault tree construction;

Page: 28

• Rule-based fault tree linking;

• Fast cut set generation;

• Fault tree flag sets;

• Failure data;

• Uncertainty analysis;

• Cut set editor, slice, display and recovery analysis tools;

• Cut set path tracing;

• Cut set comparison;

• Cut set and end-state partitioning;

• End-state analysis; and

• User-defined analysis types.

 The primary functionality for most users of SAPHIRE lies in generating minimal

cut sets for extremely large and complex event/fault tree logic models. Once the

dominant cut sets are determined, they are used to quantify the overall probability of

basic events. Three methods are available for this function. Fist, is the “rare event”

approximation where the cut set values are simply summed. Second is the “minimal cut

set upper bound approximation,” which is used in SAPHIRE as the default quantification

method. Third, is the exact calculation method termed the “inclusion approach.”

However, this method is exact only if the number of iteration passes is equal to the total

number of cut sets, which can be achieved only for a limited number of cut sets.

 After cut sets are generated, they can be used to obtain standard importance

measures (e.g., Fussell-Vesely importance, Birnbaum importance, or the Risk Increase

Ratio (see Section 2.11.1) for each basic event. They also can be used to propagate the

Page: 29

epistemic uncertainty through the use of Monte Carlo or Latin Hypercube sampling.

However, one limitation of SAPHIRE is lack of functionality for models explicitly

capturing dynamic or time-dependent situations. For a discussion of software intended

for this purpose, see Section 2.4.

2.2.3 OpenFTA and LiteFTA

OpenFTA is an advanced tool for fault tree analysis, similar in nature to

SAPHIRE. OpenFTA is the open source product name for Formal-FTA, a product

developed by Auvation. OpenFTA has the distinct advantage of being open source and

uncopywritten, which made it a prime candidate for RAPSS integration.

OpenFTA is not hindered by artificial limitations such as a maximum number of

gates of events. Events may appear in any number of transferred-in trees because during

analysis transferred-in trees are treated as one large fault tree.

Minimal cut set generation is also very fast, and have been verified by the

implementation of two independent cut set generators as well as by Monte Carlo

Simulation (OpenFTA Website, 2012). After minimal cut sets are determined, the

logically reduced tree can be quantitatively analyzed. OpenFTA provides the probability

of system failure as well as the importance to the failure of each minimal cut set and

event.

Fault trees can be built in the GUI, or typed manually. Once the tree is built in the

GUI, OpenFTA generates *.fta and *.ped files, The *.fta file contains the information

about the shape of the tree, and the *ped files contain the probability information about

basic and undeveloped events. After the tree has been constructed, OpenFTA will

Page: 30

determine minimal cut sets, both by Boolean logic and Monte Carlo simulation. The

output files from these calculations are *.prp and *.mrp files.

While most users utilize the OpenFTA’s GUI, RAPSS takes a different route.

Because the code is open source, the cut set and Monte Carlo engines were extracted and

pared down to only the necessary components and compiled to run via a UNIX terminal

window. This new version of OpenFTA is appropriately named, LiteFTA. RAPSS calls

shell scripts that runs LiteFTA with user specified conditions. LiteFTA reads *.fta and

*.ped files and outputs *.prp and *.mrp files in the same directory. RAPSS then reads the

*.prp and *.mrp files to determine the most probable transients to run.

2.3 Severe Accident/Thermal Hydraulic Codes:

 While there are plenty of simulation codes that have historically been used to

model thermal hydraulics and severe accidents in NPPs, the two heavyweights in the U.S.

(serving slightly different functions) are MELCOR (Methods for Estimation of Leakages

and Consequences of Releases) and RELAP5 (Reactor Excursion and Leak Analysis

Program). Internationally, CATHARE (Code for Analysis of THermalhydraulics during

an Accident of Reactor and safety Evaluation) is also widely used.

2.3.1 MELCOR/MACCS2

 MELCOR is an engineering-level computer code that models the progression of

severe accidents in LWRs. It is a successor to the Source Term Code Package (STCP)

(Soffer et al., 1995). A broad spectrum of severe accident phenomena in both BWRs and

PWRs are treated in MELCOR. These include thermal-hydraulic (TH) response in the

reactor coolant system, reactor cavity containment, and confinement buildings; core

heatup, degradation and relocation; core-concrete attack; hydrogen production, transport,

Page: 31

and combustion; and fission product release and transport behavior. Current uses of

MELCOR include estimation of severe accident source terms and their

sensitivities/uncertainties in a variety of applications (Sandia National Lab, 2000).

 If users of MELCOR are interested in simulating the accident progression outside

of the containment structure, MACCS2 (MELCOR Accident Consequence Code System)

(Sandia National Lab, 1998) is the answer. MACCS2 is a successor to MACCS, and

CRAC2 (Calculation of Reactor Accident Consequences) (Aldrich et al., 1982).

MACCS2 facilitates level 3 PRA analyses by considering atmospheric transport, short-

and long-term mitigative actions/exposure pathways, deterministic/stochastic health

effects, and economic costs of nuclear power plant disasters.

2.3.2 RELAP/SCDAP

 RELAP5 is a thermal-hydraulic simulation code for LWRs developed at Idaho

National Lab under sponsorship by the USNRC and USDOE, and a consortium of several

countries and domestic organizations that were members of the International Code

Assessment and Applications Program (ICAP) and its successor, the Code Applications

and Maintenance Program (CAMP).

 Specific applications include simulations of transients such as loss of coolant,

anticipated transients without scram (ATWS), and operational transients such as loss of

feedwater, loss of offsite power, station blackout, and turbine trip. In addition to

calculating the behavior of the reactor coolant system during a transient, it can be used

for simulation of a wide variety of hydraulic and thermal transients in both nuclear and

nonnuclear systems involving mixtures of vapor, liquid, non-condensable gases, and

nonvolatile solute (Idaho National Lab, 2003). While REALP5 still enjoys widespread

Page: 32

use across the nuclear community, active maintenance will be phased out in the next few

years (NRC Website, 2011) as usage of the more modern TRACE code grows (see

Section 2.3.4).

 Because RELAP5 was limited to transients that do not result in core damage,

RELAP/SCDAP (Severe Core Damage Analysis Package) was developed by ISS

(Innovative Systems Software) to model core damage in conjunction with TH phenomena

as part of the international SCDAP Development Training Program (SDTP). SDTP

consists of nearly 60 organizations in 28 countries supporting the development of

technology, software, and training materials for the nuclear industry (Allison & Hohorst,

2008). SCDAP includes detailed modeling LWR core components, upper plenum

structures, and is capable of modeling core debris and molten pools as well as lower

plenum debris and vessel structures (ISS website, 2011), allowing a RELAP/SCDAP to

serve similar functions to MELCOR.

2.3.3 TRAC

 TRAC (Transient Reactor Analysis Code) (Spore et al., 1981), is a legacy thermal

hydraulics simulation software and was, in 1980, split into two flavors, TRAC-P (for

PWRs) and TRAC-B (for BWRs). TRAC-P analyzed LB LOCAS as well as modeled

TH phenomena in 1- or 3-D components for PWRs. TRAC-B could also model TH

phenomena in 1 or 3-D (for BWRs), and could analyze SB as well as LB LOCAS. The

original intent of TRAC was to include significantly more detail than RELAP, and as a

consequence of increased computational time, only be used to spot check RELAP results.

However, over the years, TRAC became much faster without loss of detail, and RELAP

became significantly more detailed. As a result the codes evolved similar capabilities.

Page: 33

2.3.4 TRACE

 In the mid-nineties, the NRC sought to consolidate RELAP5, TRAC-P, TRAC-P,

and a special purpose BWR code, RAMONA (H. S. Cheng & Rohatgi, 1996) due to the

overhead involved in maintaining these codes. The result was a software package named

TRAC/RELAP Advanced Computational Engine (TRACE). TRACE is a component-

oriented reactor systems analysis code designed to analyze reactor transients and

accidents up to the point of significant fuel damage, and is considered the NRC’s current

flagship thermal hydraulics code (NRC Website, 2011). TRACE is a finite-volume, two-

fluid compressible flow code utilizing a combination of one-, two-, and three-

dimensional flow geometries to model heat structures and control systems that interact

with component models and the fluid solution (Murray, 2007).

2.3.5 CATHARE

 In the international community, French researchers at AREVA, CEA (French

Atomic Energy Commission), EDF (French utility), and IRSN (French Nuclear Safety

Institute) released the Code for Analysis of THermalhydraulics during an Accident of

Reactor and safety Evaluation (CATHARE) (CEA Website, 2011). CATHARE is a

system code for safety analysis, accident management, definition of plant operating

procedures, and research and development. It is also used to quantify conservative

analysis margins and for licensing. Since France does not have any BWRs, CATHARE

only deals with PWR analysis. The main objectives of CATHARE are to model LB

LOCAS, SB LOCAS, intermediate break LOCAS, Steam Generate Tube Rupture

(SGTR), and as well as other transients (i.e., loss of residual heat removal system

(RHRS), loss of SG feed water, etc.)

Page: 34

2.3.6 Assessment of Existing Codes for RAPSS application

 While TRACE, RELAP5, MELCOR, or CATHARE could all theoretically be

used to in RAPSS, the question would be if any of the codes could run fast enough with

enough precision to provide useful information to the user. Since these codes were not

written for this intent, it is not believed at this time that the full implementation of any of

the aforementioned codes will have the ability to run in a faster-than-real-time

environment. However, opportunities still exist for running ensembles of streamlined,

lower-resolution versions of the codes, or using newer, faster, cutting edge simulations

software.

2.4 Dynamic Probabilistic Risk Assessment (DPRA)

 The word, “dynamic” has several different meanings when applied to

probabilistic risk assessment. Some use it to describe a “living PRA,” or periodic updates

of the plant’s PRA to reflect any changes in the plant configuration. Another version is

used to explicitly account for equipment aging. The third is a PRA that can be used as an

instantaneous or average “risk meter” to help operators and plant personnel in making

daily decisions regarding plant configuration changes and possibly as a decision aid in

accident conditions (Hsueh & Mosleh, 1996). And the fourth is used to describe an

approach that includes explicit modeling of deterministic dynamic processes taking place

during plant system evolution combined with stochastic modeling (Hakobyan et al.,

2008). It is the fourth definition that will be the focus of the majority of this section.

 In the Dynamic Event Tree (DET) analysis, event trees are run simultaneously

starting from a single set of initial conditions. In most cases, DETs are generated by

direct coupling with a dynamic model of the plant using system simulation codes (e.g.,

Page: 35

MELCOR, RELAP5), probabilistic behavior of system components and parameters, and

human action (Mandelli, 2011). Branching occurs either when specified by the user, or

when action is required by the system or operator (Hakobyan et al., 2008). The plant

simulator evaluates the temporal behavior of the plant and determines the timing and

natures of each branch. The results of these analyses are usually very difficult to

organize without risk contributor identification algorithms for each initiating event (see

Section 2.5).

2.4.1 DYnamic Logical Analytical Methodology (DYLAM)

 Software development for DETs began in the 1980s at the Joint European Center

in Ispra, Italy. They developed the DYnamic Logical Analytical Methodology

(DYLAM) (Cojazzi, 1996), which was not only used for nuclear power plant simulations,

but also in the chemical, aeronautical and other industries (Hakobyan et al., 2008). The

intent of DYLAM was to couple the probabilistic and physical behavior of a system for

more detailed reliability analysis. DYLAM acted as a driver for a system simulation

code by assigning initial states to each branch and triggering stochastic transitions in the

component states. For each branch, the probability of the system achieving that branch

was evaluated from the user-provided branching probabilities. The probability of

consequence occurrence (or top event) was the sum of all branch probabilities leading to

the top event (Cojazzi, 1996).

2.4.2 Accident Dynamic Simulation (ADS)

 Accident Dynamic Simulation (ADS) methodology was developed by Hsueh and

Mosleh in the early 90s (Hsueh & Mosleh, 1996). ADS was novel because it broke down

the accident analysis model into different paths according to the nature of the processes

Page: 36

involved, simplifying each part while retaining its essential features. ADS was originally

designed to run in serial, following a single path to an end point, then retrace to the last

branch point, and choose a new path to follow.

 Performance was greatly improved when Zhu et al. (2008) proposed a

multiprocessor version of ADS. Aside from parallel processing capabilities, this version

had several efficiency improvements. For instance, a reduction of the number of risk

scenarios was achieved by combining system and operator states that lead to similar end

states, and biasing the system and operator states toward interesting or risk significant

end states.

 ADS had another leap forward when researchers at the University of Maryland

paired it with the Information, Decision and Action in a Crew (ADS-IDAC) cognitive

model (Chang & Mosleh, 2007; Coyne, 2009; Coyne & Mosleh, 2009), which assisted in

predicting situational contexts that might lead to human errors. ADS-IDAC generated

discrete DETs by applying branching rules to reflect variations in crew response to plant

events, for example, slow or fast procedure execution speed, skipping steps, reliance on

memorized information, and activation of mental beliefs among others. ADS-IDAC

provided a more realistic assessment of human error events by directly determining the

effect of operator behaviors on plant parameters.

2.4.3 Monte Carlo Dynamic Event Tree (MCDET)

 In the early 2000s, German researchers developed a novel Monte Carlo technique

of DET simply named Monte Carlo Dynamic Event Tree (MCDET) (Hofer et al., 2004;

Kloos & Peschke, 2008). Its intent was to model the response of the safety features of

the plant and the reaction of the operating crew during severe accident progression.

Page: 37

MCDET was implemented as a stochastic model that could be operated in tandem with

any deterministic dynamics code, (e.g., MELCOR, RELAP, see Section 2.3). The

dynamics code would generate a discrete DET and compute the time histories of all

variables along each path together with the path probability. MCDET focused on

transitions (or branching points) of the event trees. Each transition had two

characteristics: “when” it occurred, and “where to” it went, which may be either

deterministic, discrete and random, or continuous and random. MCDET sampled all

combinations of the “when” and “where to” for each transition. Discrete and random

“when and/or “where to” were generally accounted for by dynamic DET analysis, while

continuous and random “when” and/or “where to” were sampled with Monte Carlo

simulation. Probabilistic “cutoff” values were utilized to allow termination of any braches

below the specified probability.

2.4.4 Analysis of Dynamic Accident Progression Trees (ADAPT)

 More recently, researchers at the Ohio State University developed Analysis of

Dynamic Accident Progression Trees (ADAPT) (Hakobyan, 2006; Hakobyan et al.,

2008). This methodology sought to account for uncertainties that arise from lack of

experience and knowledge (i.e., epistemic), as well as stochastic phenomena such as

creep rupture and hydrogen burn (i.e., aleatory). Similar to the other DETs mentioned

above, the philosophy was to let a system simulation code determine the pathway of the

scenario within a probabilistic context. When conditions were achieved leading to

alternative accident pathways, a driver generated new scenario threads (or branches) for

parallel processing. To avoid unacceptable run times due to exponential growth of

branches, there were user defined truncation rules such as branch probabilities falling

Page: 38

below a cutoff value, or the simulation exceeding a given time limit. ADAPT is plant

simulator independent as long as the simulator had the following four features: (1) it

reads itDims input from command-lines and/or text file, (2) it has check-pointing feature,

(3) it allow user-defined control-functions (e.g., stopping if a certain condition is true),

and (4) its output can be utilized to detect stopping condition.

2.5 Data Management

 The major challenge in using DETs is the heavy computational and memory

requirements; each new branch can contain the time evolution of a large number of

variables. This yields hundreds to thousands of scenarios that often lead to very similar

end-states.

2.5.1 Principal Component Analysis (PCA)

 It becomes necessary to preprocess the data in most practical applications to

reduce the dimensionality. Due to the often correlated nature of the data, methods such

as Principal Component Analysis (PCA) (Ramsey & Schafer, 2002) or Multi-

Dimensional Scaling (MDS) (Borg & Groenen, 2005) are often used to transform the

original set of possibly oblique coordinate axes to a new set of orthogonal axis. The

variables of interest may differ in units (e.g., temperature, pressure, etc.), as well as

range. This can be overcome by either: normalizing each dimension onto the [0, 1]

interval, or normalizing each dimension by dividing it by its standard deviation

(Mandelli, 2011). In PCA, a new set of orthogonal axes is obtained by finding the

eigenvectors of the covariance matrix of the data (dimension x observation) in order to

project the data onto the new coordinate system. This not only reduces the

Page: 39

dimensionality, but also allows for traditional Euclidean distances (Equation (2.1)) to be

used for clustering analysis.

The steps to perform PCA are fairly straightforward:

• Get some data.

• Subtract the mean from each dimension. This produces a data set whose mean

is zero.

• Normalize the data by dividing by diving by the standard deviation of each

dimension.

• Calculate the covariance matrix.

• Calculate the eigenvectors and eigenvalues of the covariance matrix.

• Trim dimensions that represent smaller than a given threshold of variance

(e.g., 5% or less). The eigenvectors that correspond to the largest eigenvalues

represent the most variance in the data. To determine the proportion of

variance, add the eigenvalues and divide by the one of interest. The

remaining matrix of eigenvectors is called the feature vector and is not square.

• Multiply the feature vector matrix by the normalized data to project the data

onto a new set of axes.

This yields the original data only in terms of the axes that represent the most variability.

To obtain the original data back

• Multiply the inverse of the feature vector by the projected data. This yields a

data set that is the same size as the original data.

• Multiply by the standard deviation of each dimension.

Page: 40

• Add back in the mean of each dimension.

2.5.2 Linear Approximation Intervals

However, both PCA and MDS have the disadvantage of only allowing for linear

correlations. Mandelli et al. (2011) sidestepped this issue by dividing the data into small

subintervals for linear approximation. The interval size was determined by comparing

the covariance matrices between the intervals; when the covariance was similar between

intervals, the interval size was increased; if the covariance differed significantly, the

interval could be decreased.

2.5.3 The Mean Shift Algorithm

 Once the initial dimensionality is reduced, grouping can be performed. Milano et

al. (2009) use a probabilistic Fuzzy C-means (FCM) approach to group data from an

ADS-REALP5 DET simulation. Because FCM is based on fuzzy sets, it allows a data

point to belong to more than one cluster. However, FCM is only able to identify a

predetermined number of clusters, having ellipsoidal or spherical geometry. This and

other similar approaches (Zio et al., 2009) implement classification rather than clustering

algorithms, which imply that the number of clusters have been set a priori by the user

and the algorithm simply performs the group membership.

 In clustering, however, the algorithm determines the number of clusters based on

a set of similarity rules specified by the user (Mandelli, 2011). Similarity can be found

by measuring the distance, i jd(x ,x) 

, between two data points, ix , and jx using the

Euclidian distance formula:

Page: 41

1

22

1
(,) () ()i j i j

d
d x x x d x d

δ

=

 
 
 

= −∑  (2.1)

where δ is the dimensionality.

 The idea of clustering can be summarized as the process of finding partitions of

the original data set and characterizing each partition by a representative data point.

Scenario clustering aims to:

• Identify the scenarios that have similar behavior (i.e., identify the most evident

classes); and

• Decide cluster membership for each event sequence (i.e., classification).

 Mandelli (2011) applied clustering analysis to DETs through the use of the Mean

Shift Algorithm (Cheng, 1995) to drastically reduce the amount of information yield from

an ADAPT-MELCOR simulation. The Mean-Shift algorithm is a kernel-based, non-

parametric density estimation technique used to find the modes of unknown distributions,

which correspond to regions with high data density, separated by areas of low density. It

is a fairly simple iterative procedure that shifts each data point to the average of data

points in its neighborhood (Cheng, 1995). The Mean Shift Algorithm is able to identify

clusters of arbitrary shapes, and hence, clusters are not limited by topological figures

such as spheres or ellipsoids. The cluster centers obtained by Mandelli (2011) illustrated

the most representative scenarios from a ADAPT-MELCOR simulation, allowing the

analysis to be carried out on a much smaller set of representative scenarios.

Page: 42

2.6 Atmospheric Transport Modeling

Modeling a radioactive material release outside of a nuclear power plant is a

complex process. The ultimate goal is to determine the quantity of radionuclides

reaching man or other biota. This is calculated by estimating quantities such as external

submersion dose from a contaminated cloud, external dose from contaminated soil

deposition, internal inhalation dose from the cloud, and internal dose from ingestion of

contaminated water and/or foodstuff.

2.6.1 Gaussian Puff/Plume Modeling

The most widely used diffusion model is the Gaussian Plume/Puff model (GPM)

(Figure 2.4).

Figure 2.4 Gaussian plume dispersion model for a continuous point source (Cember & Johnson, 2009)

Page: 43

For the purposes of this discussion, a plume is defined as a continuous release

from a point source for an arbitrarily long amount of time. The most common form of the

GPM is expressed similarly to Equation (2.2) (Martin, 2006):

2
2 21 1

2 2
1
2QX(x,y,z)

2π

z h z he e
z zy

y

y z

e e e
u

σ σσ

σ σ

   − +
− −      

   

 
−   

 
 
 = +
  

 (2.2)

Where:

• X(x,y,z) is the steady state concentration at a point (x, y, z), expressed in g m-3 or

Ci m-3;

• Q is the source emission rate (Bq/s or Ci/s);

• σy, σz are crosswind and vertical plume standard deviations of distances, usually

determined by the Pasquill Stability Class (m) (see section 2.6.3) ;

• u is the average wind speed (m/s); and

• he is the effective stack height, as described by Equation (2.3).

For the ground contamination (z=0) case, the concentration is effectively doubled by

combining the exponential terms in the brackets of Equation (2.2). This can be thought

of as accounting for reflection of the plume with the ground. The plume essentially folds

over on itself to double the ground-level concentration (Martin, 2006).

To account for variables such as the exit velocity of the gas, the term, effective

stack height, he, is calculated by Equation (2.3):

1.4

ΔTh+d 1
Te

vh
µ

   = +     
 (2.3)

Page: 44

Where:

• h is the actual chimney height (m);

• d is the chimney outlet diameter (m);

• v is the exit velocity of the gas (m s-1);

• μ is the mean wind speed at the top of the chimney (m s-1);

• ΔT is the difference between ambient and effluent gas temperatures (K); and

• T is the absolute temperature of the effluent gas (K).

A puff is defined as a single point source release, modeled with respect to time and

position. The Gaussian Puff Model is commonly used for a single, instantaneous release,

illustrated in Figure 2.5.

Figure 2.5 Gaussian puff model (Martin, 2006)

 Another way to look at the Gaussian Puff Model is as the derivative of the plume

model with respect to time. In other words, the plume model is made up of an infinite

Page: 45

number of arbitrarily small puffs for an infinite amount of time. The puff model is

described analytically by Equation (2.4) (Martin, 2006):

()

2 2 21
2

1 1
2 2

3
2

Q
X(x,y,z,t)

2π

z he
zy x

y x ut
p

y z x

e e e
σσ σ

σ σ σ

 −
−   ′ 

   −−   −   ′ ′   = ⋅ ⋅
′ ′ ′

 (2.4)

Where:

• X(x,y,z,t) is concentration at a point and time (x, y, z, t), expressed in g m-3,

Ci m-3, or Bq m-3;

• Qp is the total release of material (Bq or Ci);

• σ'y, σ’z σ’x are crosswind, vertical, and horizontal (respectively) puff standard

deviations of distances (m). These are not the same as for the plume model;

• u is the average wind speed (m/s); and

• he is the effective stack height (m).

In order to calculate a plume over a certain time interval (t1,t2), one simply integrates

the puff model, as shown in Equation (2.5).

2

1

X X (x,y,z,t)
t

plume pufft
dt= ∫ (2.5)

2.6.2 Extensions of the Gaussian Plume/Puff Models

One limitation of the puff and plume models is that the equations are limited to

expressing the plume behavior only in the direction of the wind. With real-world

situations, involving changing wind direction, a few adjustments need to be made.

Page: 46

In certain situations it is useful to convert the GPM into cylindrical coordinate

system, similar in nature to Green et al. (1980). Assuming that the observation line is at

angle θ with respect to the direction of the wind, the following approximations can be

used:

2

cos 1
2

x r r θθ
 

= ≅ − 
 

 (2.6)

And

2

sin 1
6

y r r θθ θ
 

= ≅ − 
 

 (2.7)

Retaining terms in expansions through θ2 it is possible to represent the diffusion terms as:

2

2

1 1
2

2

1
2

11 1
2

pr
a r

y p p

Kr
Kr e

rr
aa

θ

θ

σ
θ

 − − + 

 
− 

 = ≈
     ++ −        

 (2.8)

and

2

2

1 1
2

2

1
2

11 1
2

qr
a r

z q q

Lr
Lr e

rr
aa

θ

θ

σ
θ

 − − + 

 
− 

 = ≈
     ++ −        

 (2.9)

By substituting Equations (2.8) and (2.9) into Equation (2.2), after some reduction, the

GPM can be expressed in cylindrical coordinates as:

Page: 47

 ()
2 22 2 2 1 1

2 222 2, , ,
z h z he e

z z
r

T
e

Qr z h e e e e
u T

σ σ
θ θ

χ θ
π

   − +
− −      

   − −Ω  
 = +

Ξ   
 (2.10)

where Ω is a correction term given by:

2

2() () Hr rα βΩ = +
Ξ

 (2.11)

with

 () 2 pr qrr
a r a r

α = − + +
+ +

 (2.12)

 () 1 qrr
a r

β = −
+

 (2.13)

And T and Ξ are functionally identical to the dispersion parameters σy and σz but with x

replaced by r.

 However, for the sake of simplicity, a rotated Cartesian coordinate system in the

direction of the wind for a single wind direction at a time was chosen instead of the GPM

in cylindrical coordinates. Where the rotations:

cos() sin()
sin() cos()

x x y
y x y

θ θ
θ θ

′ = ⋅ − ⋅
′ = ⋅ + ⋅

 (2.14)

are used with θ equaling the wind direction in radians. There are two particularly

interesting features of these rotations. First, while it may make sense to some that θ

describes the direction the wind is blowing, wind is usually expressed in the direction the

wind is coming from, or 180 degrees different than the value of θ. Second, common

Page: 48

practice is to describe North as 0 degrees, and East as 270 degrees. In mathematics,

however, the direction commonly thought of as East is along the positive X axis, referred

to as 0 degrees, and north as 90 degrees. While it ultimately doesn’t matter which system

(mathematical, or directional) the plume model user takes, it is important that one decides

on one system and sticks with it (similar to driving on the right or left hand side of the

road). For the sake of this dissertation, the mathematical model of East equaling 0

degrees was used, and everything else was converted accordingly.

2.6.3 Pasquill Stability Classes

Turbulence in ambient air greatly affects the rise and dispersion of plumes.

Turbulence can be categorized into increments, or “stability classes.” These Pasquill

Stability Classes range from A-F, where A represents the least stable/most turbulent

conditions, and F represents the most stable/lest turbulent conditions. Table 2.1 is used

as a rule of thumb for determining Stability classes:

Table 2.1 Pasquill Stability Classes

Surface Wind Speed Daytime Incoming Solar Radiation Nighttime Cloud Cover

(m/s) (mi/hr) Strong Moderate Slight >50% <50%
<2 <5 A A-B B E F
2-3 5-7 A-B B C E F
3-5 7-11 B B-C C D E
5-6 11-13 C C-D D D D
>6 >13 C D D D D

For a given stability class, Figure 2.6 and Figure 2.7 are used to determine horizontal and

vertical diffusion standard deviation coefficients (respectively).

Page: 49

Figure 2.6 Horizontal diffusion standard deviation versus downwind distance from a point source (Cember &
Johnson, 2009).

The curves in Figure 2.6 correspond to the analytic approximation given in Equation

(2.15):

1
plumez q

Lx
x
a

σ =
 +  

 (2.15)

Where x is the downwind distance in meters, and the values of L, a, q, are given in Table

2.2.

Page: 50

Figure 2.7 vertical diffusion standard deviation versus downwind distance from a point source (Cember &
Johnson, 2009).

The curves in Figure 2.6 correspond to the analytic approximation given in Equation

(2.16):

1
plumey p

Kx
x
a

σ =
 +  

 (2.16)

Where x is the downwind distance in meters, and the values of K, a, P, are given in Table

2.2.

Page: 51

Table 2.2 Gaussian Plume Model Dispersion Parameters (Green et al., 1980)

 a (km) L (m/km) q K (m/km) p

A 0.927 102.0 -1.918 250 0.189
B 0.370 96.2 -0.101 202 0.162
C 0.283 72.2 0.102 134 0.134
D 0.707 47.5 0.465 78.7 0.135
E 1.07 33.5 0.624 56.6 0.137
F 1.17 22.0 0.700 37.0 0.134

For the Gaussian Puff model, the curves are generated from a different set of simple

exponential equations (2.17), (2.18), and (2.19).

puff

q
x xp xσ = ⋅ (2.17)

puff

q
y yp xσ = ⋅ (2.18)

puff

q
z zp xσ = ⋅ (2.19)

Where q, px, py, and pz are given by Table 2.3:

Table 2.3 Values used in the Gaussian Puff Model for q, px, py, and pz

 q px, py pz

A 0.92 0.14 0.53
B 0.92 0.14 0.53
C 0.92 0.06 0.15
D 0.92 0.06 0.15
E 0.92 0.02 0.04
F 0.92 0.02 0.04

2.6.4 RASCAL

The current flagship code used by the NRC’s emergency operations centers is

RASCAL (Radiological Assessment System for Consequence AnaLysis). It was

designed for making dose projections for atmospheric releases during radiological

Page: 52

emergencies (McGuire, Ramsdell, & Athey, 2007). RASCAL evaluates releases from

nuclear power plants, spent fuel storage pools and casks, fuel cycle facilities, and

radioactive handling facilities. RASCAL is compiled for a Windows environment using

a graphical user interface.

2.6.5 GENII

GENII (Napier, 2012) is a computer code developed for the Environmental

Protection Agency (EPA) at Pacific Northwest National Laboratory (PNNL) to

incorporate state-of-the-art internal and external dosimetry models into updated versions

of environmental pathway analysis models. The primary purpose of GENII is for

calculating radiation doses for individuals or populations following chronic or acute

releases. This is accomplished by modeling radionuclide transport via air, water, or

biological activity. Air transport options include puff or plume models, calculation of

effective stack height, plume rise from buoyant or atmospheric releases, and building

wake effects. GENII is compiled for a Windows environment, and is run through a user

interface using the Framework for Risk Analysis in Multimedia Environmental Systems

(FRAMES).

2.7 Risk Informed Safety Margin Characterization (RISMC)

As part of the Department of Energy’s (DOE) Light Water Reactor Sustainability

Program (LWRSP), a team at Idaho National Lab (INL) is working on Risk-Informed

Safety Margin Characterization (RISMC) (Youngblood et al., 2010) to evaluate long term

changes in plant safety margins, with special emphasis on the integrated treatment of

aleatory and epistemic uncertainty.

Page: 53

 The overarching objectives of RISMC are to support plant life-extension decision-

making by providing a state of knowledge characterization of safety margins in key

Systems, Structures, and Components (SSCs) (Fleming et al., 2010), and to develop and

apply advanced analysis methods to predict and manage plant safety margins as an

essential part of operational and regulatory decision making for commercial NPPs (Hess

et al., 2009).

The RISMC team uses the terms “load” and “capacity” to refer respectively to the

magnitude and nature of the physical challenge imposed on particular SSCs and the

capability of the SSC to withstand a given challenge. Margin is explicitly related to the

probability that a load applied to an item exceeds the capacity of that item to withstand

the load without failing. However, it is not enough to characterize margin as a distance

between two mean values. Load and capacity are both distributions with associated

uncertainties, which yield an overlap in the low probability/high distribution consequence

tails.

The term “risk-informed” has several meanings depending on its intended use. The

NRC describes risk informed regulation as, “An approach to regulation… which

incorporates an assessment of safety significance or relative risk. This approach ensures

that the regulatory burden imposed by an individual regulation or process is appropriate

to its importance in protecting the health and safety of the public and the environment”

(USNRC 2011a). Because considering only design basis accidents and single failure

events leads to over-investment in some areas, and under-investment in others, a risk-

informed approach considers the margins in the context of the full scenario set (i.e.,

including non-design basis accidents) (Youngblood et al., 2010).

Page: 54

2.7.1 The Determinator

In 2011, as under the umbrella of the RISMC goals, researchers at Idaho National

Lab began work on a concept called the “Determinator.” This was originally designed to

be a component of the next generation safety analysis code, RELAP7 (also known as R7).

While its applicability has evolved over the last few years, the concepts that make up the

Determinator are still novel. Aside from simply simulating physical plant properties, a

next generation safety analysis code should also have the ability to simulate human

(operator) behavior. The goal of the Determinator is to represent plant procedures,

guidelines, and the plant operator priorities that inform goal-seeking behavior within the

constraints imposed by the procedures (Nourgaliev et al., 2011). In other words, the

Determinator uses artificial intelligence engines (similar to those employed by the by the

video game industry) to put a simulated operator in the simulated plant.

A future nuclear power plant simulation code will encompass everything inside a

Gaussian surface that includes the plant, the license commitments, procedures, PRA, and

thermal fluids codes. While these areas typically have sockets where one would insert

models of particular actions one finds relevant to the situation, the Derminator ideally

will be capable of simulating a more complete and comprehensive set of actions than

one’s own imagination may be capable of. For instance, the operators at Fukushima shut

off the isolation condensers in some of the units during the accident. The Determinator

could conceivably have predicted this because written procedures outline this action in

the event of an overcooling transient (Youngblood, 2011).

Page: 55

2.8 Numerical Weather Prediction (NWP)

 The tools from Numerical Weather Prediction (NWP) are essential for the

construction of the RAPSS decision engine. In NWP, the earth is sampled through a

combination of weather balloons, ocean buoys, and satellite images among others. These

measurements are fed into NWP models that project a short time into the future by use of

ensemble modeling. These forecasts are continuously updated by the use of data

assimilation. RAPSS uses similar methodology, except the power plant takes the place of

the earth as the system, and a severe accident code is used instead of NWP models.

2.8.1 Ensemble Forecasting

 Because the atmosphere is a chaotic system (Lorenz 1963), small errors in initial

conditions of any NWP model will amplify as the forecast evolves. Since all atmospheric

measurements inherently contain some error, an infinite spectrum of plausible initial

conditions and hence possible (often drastically) different futures exist. Running a single

NWP model is insufficient because it only shows one of many possible futures.

 A common way to account for this is through the use of Ensemble Forecasting

(EF) (Du et al., 1997; Ghile & Schulze, 2009; Pozo et al., 2010; Roebber et al., 2009;

Snyder & Zhang, 2003; Stensurd et al., 2000; etc.), which involves running multiple

forecasts simultaneously from equally probable initial conditions, physical

parameterization, or numerical models, or a combination of two or more of the

aforementioned methods. The output is a spectrum of possible forecasts that gives a

much better picture of possible futures than a single, highly detailed run combined with

uncertainty.

Page: 56

 Roebber et al. (2004) point out a number of important questions to be addressed

when utilizing EF tools; the sub-bullets were added later.

• What is the best way to construct an ensemble?

o How are the initial conditions going to be varied? What else will be

varied?

• What is the relative role of initial conditions versus model formulation in

constructing ensembles?

o Because the ensemble is generally made up of lower-resolution models

with more simplified physics packages, the initial conditions may not

provide enough information to obtain any sharpness in the probability

distribution.

• For what temporal scales are ensembles best suited?

o Typically, ensemble forecasts have been used for medium range and

longer time scales. Do the models have sufficient resolution on the

proposed temporal scale?

• What is the best way to produce probabilistic forecasts from the ensemble output?

o What are the model biases? Do the ensemble members need to be

weighted using various statistical processing techniques?

• What is the source of the underdispersion of ensemble system, and how can this

best be corrected?

o Generally, it is difficult to encompass all of reality, especially for low

probability, high impact scenarios. How does one account for this?

Page: 57

A primary advantage of ensembles is that they are inherently probabilistic and

hence can express uncertainty directly. Therefore, users can make informed decisions

based on these probabilities and their own cost/loss ratios (Roebber et al., 2004).

2.8.2 Data Assimilation

 Assimilation of new data into models is an essential feature of NWP, giving

models the ability to update predictions in real time. Data assimilation, according to

Mackenzie (2003) is the glue that binds raw data with the physics-based equations that go

into computer weather models. The most basic form of mathematical updating is derived

from Bayesian networks and serves as the foundation for more recent data assimilation

techniques, such as Kalman filters.

2.8.3 Bayesian Networks

 Bayesian networks constitute a class of probabilistic models for modeling logic

and dependency among variables representing a system. According to Ayyub (2003),

Bayesian networks consist of the following:

• A set of variables;

• A graphical structure connecting the variables; and

• A set of conditional distributions.

 Bayesian networks are commonly represented graphically consisting of a set of

nodes and arcs (see Figure 2.8). The nodes represent the variables and the arcs represent

the conditional dependencies in the model. If there is no arc between nodes, it implies

the variables are conditionally independent.

Page: 58

Figure 2.8 A Simple Bayesian network

 For example, say that there are two reasons for the grass to be wet. Either it could

be raining, or the sprinkler is on. Suppose further that rain influences how much the

sprinkler is used, namely, that the sprinkler is used less when it is raining. Models such

as this can be used to answer questions such as, “Given that the grass is wet, what is the

probability it is raining?”

In mathematical form, Bayes Theorem (Bayes, 1763) states:

(|) ()(|)

()
P B A P AP A B

P B
= (2.20)

where P(A) and P(B) are the probabilities of events A and occurring, respectively.

P(A|B) is the conditional probability, or the probability of A occurring given that B has

occurred, and P(B|A) is the probability of event B occurring given that A has occurred.

 P(B) can be computed based on the compliment of P(A) in the following manner:

 () (|) () (|) ()P B P A B P B P A B P B= + (2.21)

where A and B are the compliments of A and B respectively, also expressed as (1-A)

and (1-B). Equation (2.20), then can then be rewritten as:

Page: 59

(|) ()(|)

(|) () (|) ()
P B A P AP A B

P A B P B P A B P B
=

+
 (2.22)

 The “prior” probability in Equation (2.20), P(A), represents relevant prior

knowledge, or beliefs originally encoded in the model. Application of other relevant

information such as tests and observations generate the “posterior” probability, P(A|B);

they reflect the levels of beliefs computed in light of the new evidence, illustrated below

in Figure 2.9.

Figure 2.9 Probability tree representation of a Bayesian model; from Ayyub (2003)

The logic to follow one branch in Figure 2.9 is as follows. In this case, we will

start with the prior probability of event B occurring as 0.0001. The prior probability of A

Page: 60

occurring is 0.01094, shown in the lower left of Figure 2.9. However, if B does occur,

then the probability of A occurring, P(A|B), is 0.95, totaling a joint probability of

0.00095, (P(B) x P(A|B)). The posterior probability is the updated probability of B

occurring if A occurs, or P(B|A), and is calculated using of Equation (2.20) as follows:

 ()()
()

0.95 0.0001(|) ()(|) 0.009412
() 0.01094

P A B P BP B A
P A

= = = (2.23)

Bayesian networks allow for one to update probability calculations as new data arrives.

2.8.4 Kalman filters

A Recursive Bayesian Estimator, also known as a Bayes filter is a general

probabilistic approach for estimating an unknown Probability Density Function (PDF)

recursively using indirect, inaccurate, or uncertain incoming measurements and a

mathematical process model. When the differential predication equations are linear,

yielding Gaussian PDFs, the Bayes filter becomes the more widely used Kalman filter

(Kalman, 1960). Kalman filters are commonly used in a variety of fields from robotics

and computer graphics, to weather and economic modeling, and even to famously

guiding the Apollo spacecrafts to the moon (Andreasen, 2008; Huntley & Miller, 2009;

Mackenzie 2003; Strid & Walentin, 2008; Welch & Bishop).

The idea behind Kalman filters can be traced back to a simple statistics problem.

As explained by Mackenzie (2003), given two measurements, x1 and x2, of an unknown

variable, x, what combination of x1 and x2 gives the best estimate of x? The answer

depends on how much uncertainty (expressed by the variances σ1
2

 and σ2
2) one would

expect in each of the measurements. The combination of x1 and x2 that yields the least

variance, then, is expressed by Equation (2.24):

Page: 61

2 2
2 1

1 22 2 2 2
1 2 1 2

x̂ x xσ σ
σ σ σ σ

= +
+ +

 (2.24)

If the variance of one measurement is infinite, then one would only use the other variable

as the estimate. In most cases, however, when the variances are finite, Equation (2.24)

shows the correct weights to assign to each variable.

 In Kalman filtering, the first measurement, x1, comes from sensor data at the

current time, tk, and the second “measurement,” x2, is actually not a measurement but the

last prediction, made at time tk-1, of the model at time tk. In real applications, these

measurements (i.e., x1 and x2) are not numbers, but vectors with, in the case of NWP,

millions of components. The variances, σ1
2

 and σ2
2, are replaced by covariance matrices,

which represent the uncertainty in the measurements and the uncertainty in the

forecasting model, respectively. The groundbreaking discovery by Kalman (1960) was

that when the weights attached to the data and the previous forecast are chosen in a way

that minimizes the new forecast variance, the weights attached to all previous data are

automatically optimized as well. It is this unique feature that allows users to update

future predictions based only on the previous prediction, and current sensor data,

completely eliminating the need for data older than tk-1.

 Kalman filters are limited by size and non-linearity. Size limitations in NWP

comes from the immense state vectors (i.e., on the order of 75 million components) and

the even larger covariance matrices (i.e., 75 million x 75 million). The user also needs

the predictive computer model errors to be Gaussian. While measurement errors are

typically Gaussian, prediction errors are only Gaussian if the differential equations used

to make the predictions are linear. Unfortunately, weather pattern equations are

Page: 62

notoriously non-linear in nature. As time passes, and many state observations are

assimilated by the Kalman filter, the predictive distributions start to become more

Gaussian, even if the initial distributions were clearly non-Gaussian.

Evensen (1994) proposed (later clarified by Burgers et al., 1998) a way around the

size issue by use of an Ensemble Kalman Filter (EnKF). EnKFs represent the

distribution of the system state using ensembles (a.k.a., random samples, or Monte Carlo

methods) and replacing the enormous covariance matrix by the much smaller sample

covariance of the ensemble.

EnKFs, however, still rely on the Gaussian assumption, though they are still used

in practice for nonlinear differential predictors. The extended Kalmen filter (Ribeiro,

2004) attempted to correct for non-linearity by linearizing the prediction equations via

Taylor expansions. However, for highly non-linear prediction equations, this too

deteriorated as time progressed. Other work involved filters such as the Local-Local

Ensemble Filter (LLEnsF) (Bengtsson et al., 2002). While the LLEnsF produced more

accurate state estimates than the EnsKF when the forecast distributions were sufficiently

non-Gaussian, the LLEnsF also to broke down after many cycles because it ignores

spatial continuity (smoothness) between local state estimates (Bengtsson et al., 2003).

Recently, however, Zhou et al. (2011) proposed a promising correction method for

EnsKFs called the Normal-Score Ensemble Kalman Filter (NS-EnsKF) which transforms

the original state vector into a new univariate Gaussian vector, performs the filtering

using an EnsKF, and back transforms the vector ensuring state-vector components are

preserved throughout.

Page: 63

2.9 Parallel Computing

 Due to the large amount of computer power required to implement the above

methodologies, parallel computing strategies must be utilized to make predictions with

any resolution in an acceptable amount of time.

 Ordinary computer programs run sequentially, meaning a program command is

executed only if the former command is finished. It can be thought of as a single worker

performing tasks step by step. If instead there was a whole team of workers, they would

be analogous multiple processors working simultaneously. Knaus and Porzelius (2009)

provide a useful analogy:

“Imagine the building of a wall. A single worker places the bricks one
after another. A team of workers can place several bricks at the same time.
But there is a limit: the wall will not be done faster if adding a huge
number of workers, there is a limit – in this case the amount of bricks per
wall row (which is called ‘scalability’ of the problem, which basically
describes the benefit of adding additional processors).”

2.9.1 Parallelism Vocabulary

 The average computer user performs parallel computing every day, usually

without knowledge of it. This is because most modern programs are written using

implicit parallelism, meaning the system controls parallelism details such as task division

or process communication. Matlab M-code is an example of a computation code that

utilizes implicit parallelism (Burkardt & Cliff, 2009; Moler, 2007). While this is very

convenient for the user, it oftentimes produces less-than-optimal parallel efficiency.

 To increase the efficiency, one could utilize explicit parallelism, meaning the user

controls the parallelism details (e.g., spawning of computation nodes, task division,

synchronization of concurrent processes, etc.). Message Passing Interface (MPI) and

OpenMP are examples of explicit parallel structures (see Section 2.9.3). While this can

Page: 64

produce highly efficient codes, it is often times difficult for non-computer scientists (e.g.,

health physicists) to code.

 Parallel computing makes use of a workstation cluster or a set of machines (called

cores or processors2) that are interconnected and share resources as if they were one

larger computer. The master in the cluster is the system that controls the cluster and the

slave3 (also called a worker) is a machine that performs computations and responds to the

master’s requests. Threads are the smallest units of processing that can be scheduled by

the operating system. On a single processor, multithreading occurs when the processor

switches between different threads fast enough that the user perceives simultaneous

execution. However, when systems have multiple cores, the threads can actually run at

the same time, which is generally called multiprocessing to distinguishing it from

multithreading.

2.9.2 Task Division

 Task division is divided into three categories: brute force, task push, and task pull.

Brute force is commonly used for “embarrassingly parallel” problems, which is slang in

the computation world for dividing the task into n subproblems and assigning one task to

each slave. The glaring disadvantage of this technique is that the number of tasks must

be less than or equal to the number of slaves. If the number of tasks are greater than the

number of slaves, one could use task push, where the number of tasks is equally divided

between slaves a priori from the master. The slaves loop and retrieve these tasks until

there are no messages left to process. Task pull is commonly used when the number of

2 While some refer to the “processor” the physical chip, possibly containing multiple cores, it is also used
synonymously with the term “core”, making its use ambiguous and context dependent.
3 In Los Angeles, officials have asked that manufacturers, suppliers, and contractors stop using the terms
“slave” and “master,” saying they are unacceptable and offensive (CNN 2003).

Page: 65

tasks is much greater than the number of slaves. In this case, the tasks are only delivered

to the slaves when they have completed their previous task. This is especially useful

when the tasks are either not load-balanced, or the slaves have unequal computing power.

Task pull cuts down on the wait time task push creates when one or more slaves complete

their tasks while others are still working.

2.9.3 Application Programming Interfaces (APIs)

 Similar to the way user interfaces facilitate interaction between humans and the

computer, Application Programming Interfaces (APIs) provide a medium for

communication between programs. APIs for parallel processing can be divided into two

basic categories: shared memory and distributed memory. Shared memory offers a single

memory space that may be simultaneously accessed by multiple programs or processors.

Distributed memory allows each processor to have its own private memory, enabling

computational tasks to operate solely on local data until remote data are required.

2.9.4 Open Multi-Processing (OpenMP)

 One of the most common examples of parallel processing API using shared

memory is OpenMP (Open Multi-Processing). OpenMP supports multi-platform

multiprocessing in C/C++ and Fortran using open source compilers in many architectures

(e.g., Unix, Solaris, MacOS X, Windows, etc.) and across a wide variety of platforms

(e.g., laptops, desktops, super computers, etc.) (OpenMP website, 2011). It consists of a

set of compiler directives, library routines, and environment variables that influence

runtime behavior (Mandelli, 2011). For example, when using OpenMP, the section of

code that is meant to run in parallel is marked with a preprocessor directive causing the

threads to form before the section is executed (Schmidberger et al., 2009). OpenMP is

Page: 66

straight-forward because the user does not dictate message passing between programs;

instead, there is a set location that all programs look to for information.

2.9.5 Message Passing Interface (MPI)

 The distributed memory parallel processing API of choice for applications

running on large-scale clusters is Message Passing Interface (MPI) (Sur et al., 2006).

MPI defines an environment in Fortran or C/C++ where programs can run in parallel and

communicate with each other by passing messages (Snir, 1996). Simply speaking, MPI

creates mail boxes for each program, called queues. Any program can put messages into

another program’s mailbox. When a program is ready to process a message, it receives a

message from its own mailbox. Like OpenMP, MPI is also capable of running on a

variety of platforms and architectures. However, unlike OpenMP, the processors need

not be of similar architecture; the MPI implementation will automatically do any

necessary data conversion and use the correct communications protocol (Snir et al.,

2006).

2.10 R

 R is a language and environment for statistical computing and graphics. It is a

General Public License (GPL, commonly called GNU, a free software license) project,

similar to the S language and environment, developed by Bell Laboratories. The

software (in source code form) compiles and runs on a wide variety of UNIX platforms,

as well as Windows and MacOS. While the R environment is most often used on its

own, for computationally-intensive tasks, C/C++ and Fortran code can be linked and

called at run time. Advanced users can even write C code to manipulate R objects

directly (The R Project Webpage, 2011).

Page: 67

 One major limitation of R is that regardless of the number of cores in the Central

Processing Unit (CPU), R will only use one on a default build. According to The R

Journal (Knaus et al., 2009):

“R itself does not allow parallel execution. There are some existing
solutions… However, these solutions require the user to setup and manage
the cluster on his own and therefore deeper knowledge about cluster
computing is needed. From our experience this is a barrier for lots of R
users…”

The obvious solution to this problem, then, is to obtain a deeper understanding of cluster

computing (see Section 2.9). Thankfully, R is highly extensible through the use of

packages, which are libraries for specific functions or specific areas of study, frequently

created by R users and distributed under suitable licenses (Schmidberger et al., 2009).

2.10.1 Parallel Computing in R

The Simple Network Of Workstations (SNOW) (Tierney et al., 2011) is an R

package that provides a high-level interface for using a workstation cluster for parallel

computing. It allows users to implement explicit parallelism without interfacing with C

or Fortran. However, most tend to use a wrapper package for easier development:

SNOWfall (Knaus, 2011). Aside from syntax, SNOW and SNOWfall differ because

SNOWfall does not require the user to create and handle the R cluster object directly.

Both SNOW and SNOWfall can be executed in sequential mode, making debugging

easier when no cluster is present (Schmidberger et al., 2009). Using SNOW/SNOWfall,

a variety of parallel APIs are possible including socket, Parallel Virtual Machine (PVM),

and MPI.

 While some view R as a simple tool for statistical modeling, the above discussion

has shown that through the use of packages, it can be used to serve a variety of purposes.

Page: 68

It is precisely the simplicity of this program that makes it useful. As will be described in

Section 2.12, oftentimes, simpler is better.

2.11 Decision Making

 Decision making has historically focused on guessing the potential outcomes of

the apparent choices at hand. With the realization of probabilistic phenomena, modern

statistical theory was born out of the European Renaissance, circa 1600 to 1700.

However, many important decision making concepts did not become widely regarded

until much later with the publication of von Neumann and Morgenstern’s text on game

theory and economic behavior (von Neumann & Morgenstern, 1944), where Expected

Utility Theory (EUT) was defined for the first time. In EUT, a utility function is meant to

represent a decision maker’s beliefs about the value of a particular attribute of a decision

outcome. In EUTs most basic form, subjects are presented with “betting preferences”

with regard to uncertain outcomes, or gambles. For example, suppose there is a gamble

where the probability of receiving $100 is 1 in 50. The alternative is to receive nothing,

with much higher odds. The expected utility of this gamble would be $2.00, suggesting

that it is worthwhile to take this gamble. Later, Raiffa and Schlaifer (1968) introduced

the concept of decision trees and Baysian analysis (see Section 2.8.3) to decision theory,

which laid the foundation for the event trees of WASH-1400 (see Section 2.1.1). A PRA

event tree can be seen as simply a decision tree without decisions. Today, decision trees

are essential to formalized decision analysis in a variety of business and engineering

fields (Clemen, 1997).

Page: 69

2.11.1 Decision Making in Nuclear Power Plants

Every day, numerous decisions are made at nuclear power plants. Since NPPs have

both large capital and operational costs, even small, or routine decisions can lead to

potentially large economic consequences. Until fairly recently (Horng, 2004; Pagani et

al., 2004; Smith, 2002; Weil & Apostolakis, 2001) there has been little investigation into

formal decision making at NPP; instead ad hoc, or informal decision making is mostly

used. These take the form of three risk metrics advocated by the NRC: Significance

Determination Process (SDP), the Generic Issue Program (GIP), and Risk-Informing

Special Treatment Requirements.

 The Significance Determination Process is a method of evaluating the

significance of a previous plant condition that has since been corrected but could have

threatened the plant’s safety. The SDP is used to determine the change (or delta, Δ) in

the CDF and LERF with and without the condition. Based on the Δ CDF and Δ LERF,

the NRC determines the significance of the condition, which is color-coded as green,

white, yellow, or red in increasing order of significance as illustrated below:

Figure 2.10 Color coding of the Significance Determination Process used by the NRC (Dwivedy et al., 2007)

Page: 70

The color of the finding identifies the severity of the condition and is used by the NRC to

determine the scope and extent of future inspections, enforcement actions, and

communications in order to help avoid similar future conditions in the plant (Dwivedy et

al., 2007).

The NRC’s Revised Oversight Process uses these risk metrics to determine an

“action matrix” of outcomes for measures such as initiating events and mitigating

systems. However, Smith (2002) pointed out that these action matrices raise questions

about the consistency between categorical outcomes. For example, are two “white”

outcomes in one quarter comparable to a “yellow” outcome in another category?

The NRC also employs a Generic Issues Program, which uses a slightly more

quantitative approach to not only asses the CDF, but also an impact/value ratio (USNRC,

2011). The impact/value ratio, R, reflects the relationship between the risk reduction

value expected and the associated cost impact in dollars, C:

 R C NFTD= = (2.25)

Where:

• N is the number of reactors involved;

• F is the accident frequency reduction (in event per reactor-year);

• T is the average remaining life (in years) of the affected plants, based on an

original license period of 40 years; and

• D is the public dose from the radioactive material released from containment (in

person-rem).

Page: 71

Using this methodology, it is possible to generate a conversion factor for the monetary

worth of radiation exposure. The NRC currently recommends a conversion factor of

$2000 per person-rem (USNRC 2004).

The Risk-Informing Special Treatment Requirements process is a fairly new

methodology being used by the NRC to categorize certain SSCs as “safety-significant.”

In order for an SSC to be classified as safety-significant, according to 10CFR50.2

(USNRC 2003), it must be relied upon to remain functional during and following design

basis events to assure:

• The integrity of the reactor coolant pressure boundary;

• The capability to shut down the reactor and maintain it in a safe shutdown

condition; or

• The capability to prevent or mitigate the consequences of accidents which could

result in potential offsite exposures comparable to the applicable guideline

exposures set for in10CFR50.34, or 10CFR100.11.

The NRC further clarifies this by suggesting the safety-significant classification

of an SSC can be determined using factors such as the Fussell-Vesely (F-V) importance

and the Risk Achievement Worth (RAW) (Travers, 2000) for either the CDF or LERF.

The F-V importance of an SSC is defined as the fractional decrease in total risk level

when the plant feature is assumed perfectly reliable. The RAW of an SSC is the increase

in risk if the feature is assumed to be failed at all times, and is expressed as the ratio of

the risk with the event failed to the baseline risk level (NUCE Glossary, 2002). If the F-

V or RAW of an SSC exhibit a larger value than the target:

Page: 72

• F-V > 0.005; or

• RAW > 2,

then the component is deemed safety significant.

In general, Smith (2002) points out several issues that all ad-hoc methods of

decision making suffer from:

• Only focusing on a single metric (e.g., CDF) as a primary decision-driver;

• Lacking consideration of other decision alternatives outside the initial focus;

• Ignoring decision maker preferences for key attributes; and

• Not using methods such as “sanity checks” to question the validity of decision

results.

Formal decision making, Smith (2002) argues, while still subjective, forces one to not

only indicate what attribute is important, but also why it is important, and how much

emphasis should be paid to the attribute as it relates to decision making.

As a possible future alternative, Smith (2002) developed a novel internet-based

incident management (i.e., prior to core melt) advisory system tool for formalized

decision making, simply named, “The Prototype.” The goal of The Prototype was to

facilitate selection of a preferential decision alternative in response to an incident and

provide technical justification for the decision. Interface with the Prototype involves the

user manually entering data such as the type of incident (component or initiator related),

the current reactor state, the time until the next outage, impacts to the plant operations

through component degradations, as well as a variety of other incident specific

information. The Prototype then analyzes the data using precompiled knowledge base

Page: 73

containing a variety of potential decision alternatives such as shutting the plant down to

fix the problem, repairing the problem at power, etc. Next, The Prototype constructs a

decision model to evaluate a generic influence diagram/decision tree via a static,

sequence based “roll-back” calculation (Clemen, 1997) and recommends decisions with

the goal of assisting human judgment.

In a further evolution of Smith’s (2002) work, MIDAS (Minor Incident Decision

Analysis Software) (Horng, 2004) is a standalone, window-driven GUI that adds further

options, models, and a more modulator analysis structure. MIDAS uses Muli-Attribute

Utility Theory (MAUT) (Keeney & Railla, 1993) with the intent of assisting decision

making in a wide spectrum of minor incidents ranging from preventative maintenance to

minor failure and repair of various components. While MIDAS is written specifically for

nuclear power plant incident management, the intent was to lay the foundation for

applications in other decision making situations. However, the decision making

architecture of MIDAS was embedded in the source code and thus cannot be modified by

general users.

Although The Prototype and MIDAS are not feasible in it their current forms for

implementation in control rooms (due to the time involved in manual data entry) they do

reflect the desire to shift the industry to more formalized decision making processes.

Page: 74

2.12 Risk and Perception of Risk

 While some would argue that more information is always better for decision

making, those in the psychology literature would disagree. They argue: to avoid biases,

simpler is better, especially under high cognitive load.

2.12.1 Probability Aided Decision Making

 Previous research has shown that people err when making judgments aided by

probability information (Edwards, 1962; Ibrekk & Morgan, 1987; Kleinmuntz, 1990; Van

Dijk & Zeelenberg, 2003). Many biases, such as the tendency to incorrectly estimate the

probability of low likelihood, high consequence events have been identified among both

experts and non-experts (Dawes, 1998; Tversky & Kahneman, 1974). This may surprise

some who believe that experts are immune to this bias. For example, physicians who

have considerable knowledge of incidence rates of diseases have been shown to reliably

overestimate the annual number of deaths due to rare conditions such as Botulism

(Christensen-Szalanski et al., 1983; Lichtenstein et al., 1978)

 Cognitive resource constraints from time pressure or cognitive load have also

been shown to further hinder people’s ability to process decision making information

(Ariely & Zakay, 2001; Edland & Svenson, 1993; Snyder et al., 2010). Gerhardt et al.

(2011) explained that because risk is the outcome of (at least) two interacting systems

(i.e., emotional/instinctive, and cognitive), when cognitive load is increased, the brain

more actively relies on emotional responses, which leads to an increase in risk aversion

tendencies. Another consequence of a cognitive load increase is a decrease in self-

control. For example, Fudenberg & Levine (2009) showed that when participants were

given a choice between cake and fruit salad for dessert, an increase in cognitive load led

Page: 75

to a significant increase in cake choice. This is not surprising when one considers the

cranial dual-system approach described above. Cake most likely generates a greater

emotional response. When the cognitive brain is busy, emotions can take over without the

interference of cognitive thoughts. This is especially evident in harrowing personal

stories of the Chernobyl disaster in the Chernobyl Notebook (Medvedev, 1989), where

reactor crew chief, Alexander Akmov, believed the reactor was still intact (after the

explosion) despite indisputable evidence to the contrary (i.e., reactor graphite and fuel

lying around the building).

2.12.2 Optimizing the Presentation of Uncertainty for Decision Makers

 Research on optimizing the presentation of uncertainty information to decision

makers has primarily focused on presenting probability in different ways. For example,

researchers have tried presenting probability information as color variations, verbal

expressions, frequencies, odds, visual objects with varying degrees of degradation, and

graphical presentations (Ibrekk & Morgan, 1987; Johnson & Slovic, 1995; Kirschenbaum

& Arruda, 1994; Schapira et al., 2001; Schwarz & Howell, 1985; Wickens et al., 2000).

While most methods have met equivocal success, certain trends have been identified. For

instance, graphical displays of uncertainty are superior to verbal descriptions

(Kirschenbaum & Arruda, 1994; Stone et al., 1997).

 Simply displaying a probability and consequence is not sufficient to communicate

the risk. Several psychological studies of anxiety show the relatively small role

probability plays in anticipatory emotions (Loewenstein et al., 2001). One might assume

that people would use probability to optimize outcomes; however, Slovic (1995) showed

that no optimization principles of any sort lie behind even the simplest of human choices.

Page: 76

Because risk is also feeling, the probability of an event is not necessarily related to the

moral dimension of acceptability (Drottz-Sjoberg & Persson, 1993; Loewenstein et al.,

2001). One approach that hasn’t gotten much attention outside of the psychology

literature is, in conjunction with probability and consequence, facilitating an emotional

reaction from the display. It has been shown (Dougherty, Gettys, & Thomas, 1997) that

imagining these outcomes makes them appear more likely. Perhaps showing nuclear

power plant shift supervisors and technical associates the spectrum of consequences from

decisions will invoke a greater emotional response, than simply following procedures.

 A recent psychology study at Oregon State University investigated a variety of

uncertainty display methods and found that in general, simpler portrayals of probability

work better than complex multivariate or familiar approaches (Snyder et al., 2010). And

consistent with Ibrekk and Morgan (1987), background knowledge of statistics did not

enhance performance.

 While the bulk of this work is focused on detailed prediction of future events, it is

not lost on the author of this work that it is useless without the proper communication

method to the humans who will use it to make decisions. Biases naturally are generated

by any display method, especially under high cognitive load. However, work can be

done to correct for these biases, as long as they are identified before the decision take

place.

Page: 77

3 RAPSS Philosophy

When building a structure as large as RAPSS, it is important to segregate the

process into a series of important but achievable steps, that when completed in

succession, incrementally progress the user closer to the goal. RAPSS was developed in

this manner. As RAPSS should be primarily thought of as a sampling and simulating

technique, independent of a system, the first iteration was to sample and simulate a

system of non-linear differential equations. From there, the first physical system was

chosen (i.e., RAPSS-STA for NPPs). The main requirement for the system was having

access to a method of modeling with reasonable enough fidelity and speed to make useful

predictions about the system. Once the prediction data were generated, data analysis

techniques were developed and implemented to parse the useful and representative

information out for communication to the user. After data and plots were generated, a

user interface was developed to communicate important information to aid in decision

making. A second application (RAPSS-EOC) was developed in a similar fashion to

RAPSS-STA to demonstrate the generalizability of the methodology (see Section 9 for

more on RAPSS-EOC).

3.1 Preliminary research

The equation chosen to demonstrate a prediction method for non-linear

differential equations was borrowed from insect outbreak modeling of spruce budworms,

shown in Equation (3.1).

2

2() 1
1

dx x xr t x
dt k x

  = ⋅ ⋅ − −    +   
 (3.1)

Where:

Page: 78

• r(t) is the rate of bug population increase, proportional to the forest growth rate.

As the leaves grow, more food is available for the bugs, which causes the bugs to

grow more;

• x is the population of bugs at time t; and

• k is the carrying capacity of the forest, arbitrarily set at 30 for this exercise, and

was held constant.

Equation (3.1) was chosen both for its simplicity, and ability to demonstrate bifurcations

(a.k.a., tipping points) where small perturbations in initial conditions cause the bug

population to either explode into an outbreak condition, or contract to the refuge state.

The behavior of Equation (3.1) is best explained by setting the derivative equal to zero to

find equilibrium points by identifying intersections between the two remaining functions,

as illustrated in Figure 3.1.

Page: 79

Figure 3.1 A visual representation of the behavior of Equation (3.1)

 Figure 3.1 shows the two curves from Equation (3.1) after the derivative was set

to zero, labeled h(x) and g(x). The curve h(x) is only dependent on the bug population

while g(x) is dependent on both the carrying capacity, k, and the bug/forest growth rate, r.

The carrying capacity was fixed, so r was the only parameter besides the bug population,

x, varying with time. By starting at the bottom of the figure, when r is small, any

population of bugs tended towards the stable refuge state, x1. As r increased, two other

equilibrium points appeared: the stable outbreak condition of x3, and the unstable

Page: 80

bifurcation point of x2. As r increased further, x1 and x2 disappeared and all populations,

according to this model, tended towards outbreak conditions.

Equation (3.1) was coded in R (see Section 2.10), with randomly sampled initial

conditions. Each run was therefore unique from the last, illustrating the population either

passing a tipping point and increasing to outbreak conditions, or remaining at the refuge

population. At each time step, the script fit a linear projection of the curve to predict

when the curve would pass a “critical value,” arbitrarily set at k-5. A typical graphical

output of this demonstration is illustrated in Figure 3.2:

Figure 3.2 A typical graphical output of the first demonstration of the RAPSS philosophy

Page: 81

In this case, the non-linear differential equations functioned as the system, and the linear

approximation at each point functioned as the predictive mechanism. At each timestep,

the system was sampled, and projected ahead to determine if any thresholds were

exceeded in the future. It was this simple structure that functioned as the foundation of

the RAPSS methodology.

3.2 Implementation Path and Challenges

The first physical system that was chosen to apply the RAPSS architecture was

for nuclear power plants (RAPSS-STA). In this case, the standard code for simulating

these systems was RELAP5 (see Section 2.3.2). It should be noted that the version of

RELAP5 that was integrated into RAPSS-STA was not designed for speed, or to handle

any type of large changes in component conditions mid-simulation. These are tasks that

reactor simulators are designed for. In this context, a reactor simulator is the underlying

software in a reactor simulator control room (used for operator training). Softwares such

as these handle operator actions, such as opening valves or starting pumps, by robustly

translating the change in the model to the thermal fluids modeling software. RELAP5, on

the other hand, is primarily used for detailed simulations where initial conditions are set

and the user “lets it run”, with little opportunity for operator action modeling.

RELAP5 has always been the limiting factor in RAPSS-STA, primarily because

the code was not originally designed for the type of implementation that RAPSS requires.

However, as a proof of principle, RELAP5 acts as the perfect placeholder until more

modern software is made available to the RAPSS team.

Page: 82

During a RAPSS-STA cycle, the software samples the system to define the initial

conditions of the system, and runs ahead a given amount of time. Due to the limitations

of RELAP5, RAPSS-STA is not capable of robustly simulating operator actions,

especially over small time scales. When an operator acts, the physical properties of the

model changes, and thus makes all previous predictions invalid. This is an especially

challenging aspect of the RAPSS methodology that requires more robust reactor

simulation software to address.

In the future, RAPSS-STA would be integrated directly into the physical controls

of the facility. In the event of operator action, RAPSS-STA would stop the current

prediction cycle, archive old predictions, update the physical properties of the model to

match the new system properties, and begin a new ensemble of predictions. If the

operator constantly “tweaked” system properties, even robust simulation software would

have a difficult time predicting very far ahead before those predictions were invalidated

by operator action. That is, unless the operator action could be predicted in a reliable

manner by coding procedures combined with sampled human reliability data. The name

given to this type of modeling is the “Determinator” (See Section 2.7.1).

The second system that the RAPSS architecture was applied to was for modeling

a release of radioactive material outside of a nuclear power plant, spent fuel storage

pools/casks, fuel cycle facilities, or radioactive handling facilities. In each of these cases

an emergency operations center would be set up to monitor the release of material.

RAPSS-EOC is intended to be used in this setting to give the staff of the emergency

operations center an idea of where the current state of contamination plume is, and where

it could be in the near future.

Page: 83

Because the system was inherently different than a nuclear power plant, some of

the limitation of RAPSS-STA did not transfer to RAPSS-EOC. For instance, operator

actions in RAPSS-EOC do not change the model, as human actions do not influence

near-term meteorological conditions. Therefore, updating the physical properties of the

model is only necessary for changing atmospheric conditions, which are predicted

probabilistically from current and historic meteorological conditions data.

Page: 84

4 RAPSS-STA Facility Models

During the construction of RAPSS-STA, two primary RELAP5 models were

used. The Cook model and the MASLWR (Multi Application Small Light Water

Reactor) model. A description of each follows.

4.1 The Cook Model

For initial design of the RAPSS-STA system, an in-house RELAP5 model,

written by Thomas Riley, of a generic pressurized water reactor was used (see Figure

4.1). This model was based on the Donald C. Cook Nuclear Generating System near

Bridgman, Michigan. The RAPSS-STA system ran the model from a set of initial

conditions under a variety of conditions looking for scenarios that could compromise the

safety of the plant.

Page: 85

Figure 4.1 Schematic of the R5 Cook model used for the first-generation RAPSS-STA architecture

The model was built as a four leg plant, with a reactor coolant pump, steam

generator, and connections to the reactor pressure vessel on each leg. For speed of

simulation, the model was kept simple, to allow it to run significantly faster than real

time. This was done so that multiple simulations of various conditions could be run

simultaneously, producing a variety of predictions for scenarios before they happen. The

model produced data for temperature and pressure of several key components of the plant

that the RAPSS-STA system examined as part of the basis for its predictions.

To break the model in various ways, a number of valves were included to enable the

RAPSS-STA system to disconnect various components from each other. Under normal

circumstances, valves connecting functioning components to each other were set to open

Page: 86

and valves connecting functioning components to atmospheric conditions were

closed. To simulate a loss of coolant accident, valves could be opened to vent coolant

into containment. Additionally, these “breaker valves” could be resized to allow for

leaks of all sizes to occur. Similarly, to simulate a loss of flow accident, normally open

valves could be partially or fully shut to restrict the coolant flow through a leg of the

plant. To simulate Emergency core cooling system (ECCS) failures, ECCS subsystems

could be shut by setting the connecting valves to the core to stay closed, rather than

opening at appropriate pressure levels.

RAPSS-STA is capable of simulating eleven flavors of transients and safety

system failures for the Cook model. Each transient was given a code (e.g., HPI_F for

high pressure injection failure) that was used in the fault tree (see Figure 4.2):

• High pressure injection failure (HPI_F);

• Low pressure injection failure (LPI_F);

• Blockage of accumulator tank to lower plenum connection (ACUM_F);

• Partial blockage of accumulator tank to lower plenum connection

(ACUM_F1);

• Small break loss of coolant accident in eight locations (SB_LOCA) ;

• Traditional large break loss of coolant accident in eight locations

(LB_LOCA);

• Double guillotine large break loss of coolant accident in two locations

(LB_LOCA1);

• Partial double guillotine large break loss of coolant accident in two locations

(LB_LOCA1);

Page: 87

• Loss of heat sink accident in two locations (LOHA);

• Loss of flow accident in five locations (LOFA);

• And partial loss of flow accident in five locations (LOFA1).

4.1.1 The Cook Plant Fault Tree

 To determine which transients to activate, RAPSS-STA used a generic PWR fault

tree (Figure 4.2). It consisted of a top event, “core damage,” and an and gate separating

the tree into two legs. The left leg consisted of safety systems such as high-pressure

injection among others. The right side consisted of various common transients that could

occur in multiple locations within the plant. If a transient occurred, and the safety

systems operated normally, core damage would likely not occur; likewise, if the safety

systems failed, but no transient occurred, the plant would also not be in danger. It is only

when both transients occur and safety systems fail that the core is in risk of damage.

 The tree was kept very generic, consisting of many undeveloped events,

(rhombuses in Figure 4.2) such as “SB LOCA somewhere.” They were left undeveloped

at this stage of proof of principle to focus on the structure and communication to RAPSS-

STA, rather than dwell on specifics in the fault tree. Probabilities for undeveloped events

were fixed at arbitrary values for the same reason.

 RAPSS-STA used the module, LiteFTA (see section 2.2.3), to determine the cut

sets and probabilities from the fault tree. It used this information to determine which

transient to simulate.

Page: 88

Figure 4.2 A generic fault tree built for the first-generation RAPSS-STA architecture

Page: 89

4.2 The MASLWR Facility

The Multi-Application Small Light Water Reactor (MASLWR) facility at Oregon

State University was used as the system for RAPSS-STA calibration and

experimentation. The MASLWR facility is an electrically-heated, scale model of a small

modulator integral pressurized light water reactor, which relies on natural circulation

during both steady-state and transient operation (See Figure 4.3). It is scaled at 1:3

length, 1:254.7 volume, and 1:1 time scale. It is also designed for full pressure (11.4

MPa) and full temperature (590 K) operation (Galvin & Bowser, 2010). MASLWR’s

safety systems are designed to operate passively, requiring no emergency cooling pumps

or offsite power. The steam generators are located in the upper region of the vessel

outside of the hot leg chimney and consist of sets of vertical helical tubes. The feedwater

is fully vaporized inside the tubes resulting in superheated steam before entrance into the

turbine generator.

The inherent safety structures in the MASLWR facility make it much more

challenging to “break.” A delicate balance was struck between simulating transients that

lead to interesting results, but were not so severe that they caused the model to become

unstable. Loss of coolant accidents (LOCAs) were significantly less likely because there

are so few penetrations into the MASLWR reactor pressure vessel. However, if a

significant hole between the reactor pressure vessel (RPV) and the pressurized

containment developed, and the pressurized containment was also leaking, it would

probably lead to a LOCA. Although even it that case, it may not lead to core melt

because the pressurized containment itself is sitting in a tank of water which lives inside a

secondary containment (Figure 4.3).

Page: 90

Figure 4.3 Conceptual design of the MASLWR test facility (Galvin & Bowser, 2010).

4.2.1 The MASLWR Real Time Simulator

The real time simulator was a simple program written to simulate the data output

of the MASLWR facility. Because the modeling software (RELAP5) used in RAPSS-

STA was not fast enough for real-time integration with the MASLWR facility, it was

decided that writing software to behave as if the facility was running was the next best

route. The software fetched measurements of temperature, pressure, and flow rates from

the OSU MASLWR test facility output from the July 2011 IAEA experiments (Mai &

Luo, 2011) as its data source to generate realistic initial conditions for the MASLWR R5

model. The output took the form of a tabbed separated values document.

From the start of the program, RAPSS-STA keeps track of the time elapsed to

know where to sample from the MASLWR data. For example, if the “seed” run took 30

Page: 91

seconds, to begin the next cycle, RAPSS-STA samples from 30 seconds into the

MASLWR experiment to set the current conditions for the RELAP5 model. Due to the

rather complicated nature of timing a highly parallelized program, OpenMP’s (see section

2.9.4) built in function, omp_get_wtime(), was used to produce accurate values of time

elapsed during RAPSS-STA runs.

4.2.2 The MASLWR RELAP5 Model

A RELAP5 model of the MASLWR facility was used for simulation purposes.

This model was originally built by Oregon State University facility and students: Dr.

Brian Woods, Jordan Bowser, and recently for RAPSS-STA purposes by Thomas Riley.

Page: 92

Figure 4.4 Schematic of the MASLWR RELAP5 model

To effectively simulate a variety of transients, a series of “Breaker Valves” were

added to the RELAP5 model of the MASLWR facility, similar to the Cook model. These

valves could either cut off flow between specific components to simulate flow blockages,

or introduce flow between components that are not normally connected, to simulate leaks.

An example of a flow blockage valve was the junction connecting the core components

and the lower plenum. To simulate a partial flow blockage, this valve, which is open

during normal operations, could be partially or completely closed. An example of a

normally closed breaker valve is the component that is connecting the chimney hot leg to

Page: 93

the downcomer cold leg. When closed, the two have no thermal hydraulic connectivity

beyond the already present flow of heat across the temperature gradient in the steel; when

opened, water can flow between the two freely, altering the thermal profile of the core

coolant.

This specially modified MASLWR R5 model is capable of simulating ten flavors

of transients. Each transient was given a code (e.g., VV_O for vent valve open) that is

used in the fault tree (see Figure 4.5))

• Vent valve open (VV_O);

• Vent valve closed (VV_C);

• Hot channel chimney hole (HCC_F);

• Reactor pressure vessel (RPV) leak (RPV_F);

• Primary containment leak (CONT_F);

• Flow blockage (FLOW_B);

• Partial flow blockage (FLOW_B1);

• Sump water makeup failure (SWMup_F);

• Sump Open (SUMP_O); and

• Secondary loop failure (SECOND_F).

4.2.3 The MASLWR Model Fault Tree

The simplified fault tree illustrated in Figure 4.5 outlines the ten transients that

were capable of being simulated in the MASLWR R5 model. The tree was kept simple

to focus on application the RAPSS concept. Future work will incorporate more

developed fault trees.

Page: 94

Figure 4.5 A generic fault tree built for the MASLWR facility for the first-generation RAPSS-STA architecture

Page: 95

5 RAPSS-STA Structure

The following are broad descriptions of the functions of each file used by

RAPSS-STA. Source code is contained in Appendix A and detailed descriptions are

contained in Appendix B. Readers with some familiarity of computer science are highly

encouraged to explore the appendices for a more in depth understanding of the nuts and

bolts of RAPSS.

5.1 RAPSmain.cpp

RAPSmain.cpp (see Appendices A.1 and B.1) was the file that “runs” RAPSS-

STA. It mainly consisted of a user interface, and a function for reading user defined

variables from the input file, RAPSinputFile(). These variables were then passed onto a

single function, CycleR5(). The real meat of the program resided in CycleR5(), which

was defined in CycleR5.h (see Appendices A.2 and B.2), one level below

RAPSmain.cpp.

5.1.1 RAPSS Input file

The RAPSS input file consisted of three sections: R5 parameters; PCA, and MSA

parameters; and RAPSS parameters. An example input file was included in Appendix

A.12, and detailed explanations of each parameter are contained in Appendix B.12.

Lines that begun with the comment character “*” were not read. Lines that begun with a

three-digit number were read, allowing the user to pass information to RAPSS without

recompiling.

Page: 96

5.2 CycleR5.h

CycleR5.h (see Appendices A.2 and B.2) was the first level below RAPSmain.cpp

and consisted of a single function, CycleR5(),which was composed of a large while-

statement and was the primary control mechanism for RAPSS-STA. Among many other

things, this section allowed the user to specify how many cycles she wished to run before

stopping. When fully implemented, RAPSS-STA would be continually running in the

background, but for the purposes of this project, the user specifies how many cycles to

run.

5.3 BloodAndGuts.h

As suggested by the title of this header file, this file contained the “blood and

guts” of RAPSS-STA. It was basically a collection of various functions used in other

parts of the program. This file can be considered the third layer below RAPSmain.cpp.

Readers are highly encouraged to read Appendices A.3 and B.3 for more information.

5.4 OrganizeR5Output.h

OrganizeR5Output.h was written to search a RELAP5 output for state variable

time series information and write to a .csv file. It entailed some rather complex

organizational structures and is included in Appendices A.4 and B.4.

.

Page: 97

6 Data Processing

Each run of RELAP5 yields enormous amounts of data. Combine that with many,

many continuously cycling simultaneous parallel runs, and the amount of data quickly

becomes overwhelming. Further analysis and manipulation was necessary for display to

the senior operators. RAPSS performs several tasks to boil down the monstrous amount

of data into simple charts that a senior operator under high cognitive load can read and

understand.

OrganizeR5Output.h (see Appendices A.4 and B.4) is a crucial module of

RAPSS-STA that transformed the very long-winded R5 output file into a concise, .csv

file. Since it was difficult to tell one run from another if no thresholds were tripped, these

scenarios were passed for clustering using the mean shift algorithm (see Section 2.5.3).

Due to the computationally intensive nature of MSA, principle component analysis (see

Section 2.5.1) was first performed to reduce its dimensionality. This sped up the mean

shift algorithm immensely (for benchmarking results see Table 6.8, Section 6.3).

6.1 Output from a single RAPSS-STA cycle

For a given RAPSS-STA cycle an R5 output (.p) file for each thread was

genearted. Unfortunately, these outputs were rather challenging to digest, as they were

10,000 lines or more, and often contained state variable time series information parsed

into many sections, which were further parsed into many sets. In this context, a set refers

to a grouping of state variables, always beginning with time, up to 10 (including time)

columns across, and up to 50 time steps (rows) long. A section refers to a grouping of

sets, which represent the entirety of state variables for the same 50 time steps. Table 6.1

displays a single section from an R5 output, composed of two sets.

Page: 98

Table 6.1 Example R5 output, showing one set, composed of two sections.

0---Restart no. 1274 written, block no. 3, at time= 45.0272 ---

1 time p p tempf tempf voidg voidg velgj velfj httemp

 (sec) 100010000 101010000 100010000 101010000 100010000 101010000 209000000 209000000 5000001 1

 (Pa) (Pa) (K) (K) (m/sec) (m/sec) (K)

 0.00000 1.54100E+07 1.54100E+07 577.60 577.60 0.0000 0.0000 0.0000 0.0000 581.83

 1.02723 1.53191E+07 1.53196E+07 538.69 537.01 0.0000 0.0000 3.0466 3.0466 578.86

 2.02723 1.52711E+07 1.52714E+07 534.90 534.18 0.0000 0.0000 1.5288 1.5288 572.98

...

 47.0272 1.31546E+07 1.31546E+07 587.22 590.39 0.0000 6.06593E-03 0.44576 0.44576 593.24

 48.0272 1.31074E+07 1.31073E+07 587.35 590.17 0.0000 6.30375E-03 0.46531 0.46531 593.74

 49.0272 1.30601E+07 1.30601E+07 587.48 589.97 0.0000 6.58475E-03 0.48352 0.48352 594.23

1 time httemp

 (sec) 5010001 1

 (K)

 0.00000 726.05

 1.02723 723.32

 2.02723 719.22

 47.0272 750.24

 48.0272 750.00

 49.0272 749.76

1 RELAP5/3.3gl Reactor Loss Of Coolant Analysis Program

Page: 99

Sections are often separated by thousands of lines of R5 output. OrganizeR5Output() (see

Appendix A.4 for source code) was written to search a RELAP5 output for state variable

time series information and write to a .csv file. A detailed description of the

organizational algorithms is covered in Appendix B.4.

6.2 Organizational structure of PCA and MSA

An illustrative example will help by breaking down the organizational steps and

using a small number of time steps, threads, and state variables. In this hypothetical

RAPSS-STA simulation, R5 was run on three threads, with four time steps, and four state

variables. The raw data would look similar to Table 6.2:

Page: 100

Table 6.2 Raw R5 example data for a 3x4x4 R5 run

Time (Scenario 1) Pressure Temperature Liq/Vap Velocity

1Sc1 P1 T1 L1 V1

2Sc1 P2 T2 L2 V2

3Sc1 P3 T3 L3 V3

4Sc1 P4 T4 L4 V4

Time (Scenario 2) Pressure Temperature Liq/Vap Velocity

1Sc2 P1 T1 L1 V1

2Sc2 P2 T2 L2 V2

3Sc2 P3 T3 L3 V3

4Sc2 P4 T4 L4 V4

Time (Scenario 2) Pressure Temperature Liq/Vap Velocity

1Sc3 P1 T1 L1 V1

2Sc3 P2 T2 L2 V2

3Sc3 P3 T3 L3 V3

4Sc3 P4 T4 L4 V4

If PCA was performed on each scenario individually, one would obtain an eigenvector

matrix for each scenario. The inverse eigenvector matrix is used to transform the data

back into physically meaningful numbers. If there was one eigenvector matrix per

scenario, the inverse eigenvector matrices would be useless after clustering the scenarios

because the clustered scenarios would not be the same as the unclustered. For this

Page: 101

reason, the data was reorganized to obtain the same eigenvector matrix for every

scenario. The example data would look similar to Table 6.3.

Table 6.3 Example data reorganized for PCA

Time Pressure Temperature Liq/Vap Velocity

1Sc1 P1 T1 L1 V1

1Sc2 P1 T1 L1 V1

1Sc3 P1 T1 L1 V1

2Sc1 P2 T2 L2 V2

2Sc2 P2 T2 L2 V2

2Sc3 P2 T2 L2 V2

3Sc1 P3 T3 L3 V3

3Sc2 P3 T3 L3 V3

3Sc3 P3 T3 L3 V3

4Sc1 P4 T4 L4 V4

4Sc2 P4 T4 L4 V4

4Sc3 P4 T4 L4 V4

The purpose of PCA was to reduce the number of state variables by looking for linear

correlations among the data. At this point, the data would be broken into linear

approximation intervals (see Section 6.4.1 for details), but for the sake of simplicity, this

step was omitted in this example. After PCA, without any trimming, the user is left with

one principal component per state variable, organized by the amount of variance each

represents, resembling Table 6.4,

Page: 102

Table 6.4 Principal components for example problem data

Time PC1 PC2 PC3 PC4

1Sc1 PC1(s1t1) PC2(s1t1) PC3(s1t1) PC4(s1t1)

1Sc2 PC1(s2t1) PC2(s2t1) PC3(s2t1) PC4(s2t1)

1Sc3 PC1(s3t1) PC2(s3t1) PC3(s3t1) PC4(s3t1)

2Sc1 PC1(s1t2) PC2(s1t2) PC3(s1t2) PC4(s1t2)

2Sc2 PC1(s2t2) PC2(s2t2) PC3(s2t2) PC4(s2t2)

2Sc3 PC1(s3t2) PC2(s3t2) PC3(s3t2) PC4(s3t2)

3Sc1 PC1(s1t3) PC2(s1t3) PC3(s1t3) PC4(s1t3)

3Sc2 PC1(s2t3) PC2(s2t3) PC3(s2t3) PC4(s2t3)

3Sc3 PC1(s3t3) PC2(s3t3) PC3(s3t3) PC4(s3t3)

4Sc1 PC1(s1t4) PC2(s1t4) PC3(s1t4) PC4(s1t4)

4Sc2 PC1(s2t4) PC2(s2t4) PC3(s2t4) PC4(s2t4)

4Sc3 PC1(s3t4) PC2(s3t4) PC3(s3t4) PC4(s3t4)

% Variance 70% 87% 95% 100%

The amount of variance to trim is the user’s judgment call. For the purpose of this

demonstration, one principal component will be trimmed, and 95% of the variability will

be retained, as shown in Table 6.5.

Page: 103

Table 6.5 Three principal components for the example problem data

Time PC1 PC2 PC3

1Sc1 PC1(s1t1) PC2(s1t1) PC3(s1t1)

1Sc2 PC1(s2t1) PC2(s2t1) PC3(s2t1)

1Sc3 PC1(s3t1) PC2(s3t1) PC3(s3t1)

2Sc1 PC1(s1t2) PC2(s1t2) PC3(s1t2)

2Sc2 PC1(s2t2) PC2(s2t2) PC3(s2t2)

2Sc3 PC1(s3t2) PC2(s3t2) PC3(s3t2)

3Sc1 PC1(s1t3) PC2(s1t3) PC3(s1t3)

3Sc2 PC1(s2t3) PC2(s2t3) PC3(s2t3)

3Sc3 PC1(s3t3) PC2(s3t3) PC3(s3t3)

4Sc1 PC1(s1t4) PC2(s1t4) PC3(s1t4)

4Sc2 PC1(s2t4) PC2(s2t4) PC3(s2t4)

4Sc3 PC1(s3t4) PC2(s3t4) PC3(s3t4)

% Variance 70% 87% 95%

Before MSA can be performed, the data must to be regrouped according to

Equation (6.1) (Diego Mandelli, 2011). Each scenario, ()1,..., Iix i= =


, is represented by

M state variables, xim (m= 1,…M) plus time t (ranging from 0 to T) as the state variable:

 () () () ()1 1 1 1,..., ,... ,...,i i iM i K iM Kx x t x t x t x t =  


 (6.1)

Where xim(tk) corresponds to the value of the variable xm (e.g., temperature, pressure, etc.

at a computational node) sampled at time tk (e.g., t1 = 0 and tk = T) for scenario i.

Page: 104

The reorganized example data would look similar to Table 6.8

Table 6.6 Example data reorganized for MSA

Scenario 1 Scenario 2 Scenario 3

PC1(s1t1) PC1(s2t1) PC3(s3t1)

PC1(s1t2) PC1(s2t2) PC1(s3t2)

PC1(s1t3) PC1(s2t3) PC1(s3t3)

PC1(s1t4) PC1(s2t4) PC1(s3t4)

PC2(s1t1) PC2(s2t1) PC2(s3t1)

PC2(s1t2) PC2(s2t2) PC2(s3t2)

PC2(s1t3) PC2(s2t3) PC2(s3t3)

PC2(s1t4) PC2(s2t4) PC2(s3t4)

PC3(s1t1) PC3(s2t1) PC3(s3t1)

PC3(s1t2) PC3(s2t2) PC3(s3t2)

PC3(s1t3) PC3(s2t3) PC3(s3t3)

PC3(s1t4) PC3(s2t4) PC3(s3t4)

And finally, after clustering, similar scenarios are clustered together yielding data looking

similar to Table 6.7.

Page: 105

Table 6.7 Clustered example data

Cluster 1 Cluster 2

PC1(s1t1) PC1(s2t1) & PC3(s3t1)

PC1(s1t2) PC1(s2t2) & PC1(s3t2)

PC1(s1t3) PC1(s2t3) & PC1(s3t3)

PC1(s1t4) PC1(s2t4) & PC1(s3t4)

PC2(s1t1) PC2(s2t1) & PC2(s3t1)

PC2(s1t2) PC2(s2t2) & PC2(s3t2)

PC2(s1t3) PC2(s2t3) & PC2(s3t3)

PC2(s1t4) PC2(s2t4) & PC2(s3t4)

PC3(s1t1) PC3(s2t1) & PC3(s3t1)

PC3(s1t2) PC3(s2t2) & PC3(s3t2)

PC3(s1t3) PC3(s2t3) & PC3(s3t3)

PC3(s1t4) PC3(s2t4) & PC3(s3t4)

In this case, the dimensionality was reduced from 48 to 24, yielding a 50% reduction.

6.3 PCA and MCA Sample “Toy” Problem

A second illustrative example using real RELAP5 data are presented to show how

the process scales. This example also provides visualization of the data via plots to form

a better understanding of how the data are behaving under manipulation. In this example,

PCA and MCA were performed on a 24 threads, running a 24 state variable (SV), and 61

time steps.

Page: 106

The first step was to normalize the data, and perform PCA, as shown in Figure

6.1.

Figure 6.1 An illustration of sample data after performing PCA

Notice that the PC data are representative combinations of state variables that attempt to

incorporate all the variability. The variability threshold was set to 95% for this

experiment and reduced the state variables from 24 to 8. This showed heavy correlation

among state variables and drastic dimensionality reduction.

 The mean shift algorithm plots were much more difficult to discern to the naked

eye, shown in Figure 6.2.

Page: 107

Figure 6.2 Data formatted for the Mean Shift Algorithm before and after clustering

In this case, the 24 scenarios were reduced to 12 representative scenarios by using the

mean shift algorithm. Once the data was clustered, it was rearranged back into principal

components, shown in Figure 6.3

Figure 6.3 Principal components before and after clustering

Notice that the principal components before and after clustering look almost identical.

The original data can also be retrieved, and is shown in Figure 6.4.

Page: 108

Figure 6.4 Original data with dimensionality 35,136, and processed data with dimensionality 17,568

Notice how closely the processed data resembles the original data, but with a

dimensionality reduction of around 50%.

To test the speed of the algorithms, a simple benchmark was performed on the

sample data; speeds were averaged over ten runs, and the results are displayed in Table

6.8.

Table 6.8 Benchmarking PCA and MSA with 24x24x61 sample data

MSA

w/o PCA (s)
Organization
w/o PCA (s)

MSA w/ PCA
(s)

Organization
w/ PCA (s)

Average
(10 runs):

0.077 0.825 0.048 0.70

Totals
(MSA+R):

0.902 0.750

% reduction
(Only MSA)

37.5%

% reduction
(Only PCA)

14.9%

% reduction
(MSA & PCA) 16.9%

Page: 109

This table illustrates how much time each process took. Performing MSA without

PCA and the organizational steps took 0.077 seconds. Just the organization by itself took

0.825 seconds. Surprisingly, performing PCA and organizing actually took less time

(0.70 seconds, a decrease of 14.9 percent) than organizing the data without performing

PCA. This is due to the fact that after PCA (dimensionality reduction) there are less data,

so organization isn’t as computationally intensive. The combination of organization,

PCA, and MSA took 0.75 seconds, down from 0.902 seconds of MSA and organization

without PCA. That saved 16.9 percent by first doing PCA, then MSA, versus just

organizing the data, doing MSA, then reorganizing it. This is the reason PCA is a critical

component of RAPSS – it sped up MSA by at least 17 percent. It is further expected to

significantly increase this percentage with larger dimensionality.

Before making any conclusions about the utility of PCA, a final check was

performed. Cluster membership should be the same in MSA for the raw data and the

principal components, as illustrated in Table 6.9 or else PCA is not accurately

representing the data.

Page: 110

Table 6.9 Sample problem cluster membership with and without PCA

Cluster # Membership w/PCA
BW=5

Membership w/o PCA
BW=5

1 [1,20] [1,20]

2 [2,3,5,12,16,18,21] [2,5,12,16,18,21]

3 4 4

4 [6,8,9] [6,8,9]

5 7 7

6 [10,22] [10,22]

7 11 11

8 13 13

9 [14,19,23] [14,19,23]

10 15 15

11 17 17

12 24 24

13

3

Cluster membership, for this example, was almost identical. One can conclude

that scenario three was probably on the edge of cluster two, and got bumped into its own

cluster after PCA. One can observe, from this example that PCA not only significantly

reduced the amount of computational time, but also accurately preserved the data in such

a way that cluster membership was nearly identical.

Page: 111

6.4 Organizing, linear approximation intervals, and PCA in R

The first script executed by R, initPCA.r loaded the libraries and initial

parameters into the R memory (see Appendices A.5 and B.5). This was separated from

the rest because it was slow, and it is not necessary to reinstall all libraries with every

cycle of RAPSS. Because PCA relies on the assumption of linear correlation between

state variables, and state variables are not always linearly correlated, the data was split

into linear approximation intervals before performing PCA.

6.4.1 Determining Linear Approximation Intervals

While the idea to use linear approximation intervals was described by Mandelli

(2011); the automation of the process was the original work of the author.

Principal component analysis is only capable of determining linear correlations

among state variables. Because thermal fluids simulation codes are characteristically

non-linear in nature (especially during transients), if PCA were performed over the entire

length of simulation, the linear correlation requirement would not be satisfied and large

errors would be introduced. However, if the time history was broken into small enough

chunks that the data looked linear over that interval when compared with the next, PCA

could still be utilized. These intervals do not have to be the same size. For instance,

during steady state conditions, the intervals should be large to save processing time;

during transients, the intervals should be small to maintain the linearity assumption. To

determine how linear a data set is, the norm of the change in the covariance matrix is

determined. A detailed explanation follows.

The covariance of matrix A, cov(A), shows how one variable is correlated to

another. The variances appear along the diagonal and the covariances appear in the off-

Page: 112

diagonal elements, shown in Equation (6.2). After normalization, the diagonals take on

values of 1, as normalized data has a variance of 1.

2
11 1 2

2
22 1 2

2
1 2 2

...

...cov(A)
...

...

n

n

n n

x xx x x
N N N

x xx x x
N N N

x x xx x
N N N

 
 
 
 

=  
 
 
 
 

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

 (6.2)

For perfectly correlated data, the derivative of the covariance matrix is zero:

 ()cov() 0d A
dt

=


 (6.3)

We can use the limit definition of the derivative to reduce Equation (6.3) further:

0

() ()lim cov 0
t

A t t A t
t∆ →

 + ∆ −   =  ∆  



 (6.4)

Or presented differently, if the time-series data are broken into two, arbitrarily

small, sequential blocks, A and B, (formally A(t+Δt) and A(t) in Equation (6.4)) and the

data are perfectly correlated, then:

 cov(A) cov(B) 0
t
−

=
∆



 (6.5)

The data, however, are rarely perfectly correlated. To determine how correlated the data

actually are, a measurement of the norm is used. In Euclidian space, the norm is often

thought of as the intuitive notion of the length of a vector, namely:

 2 2
1 ... nx x x= + + (6.6)

Page: 113

But can be more generally thought of as the square root of the inner product of the vector

and itself:

 *x x x=
 

 (6.7)

Where *x denotes the conjugate transpose of x . We can use the norm to determine the

“length” of the difference in covariance matrices. If the length is small, the matrices can

be assumed to be correlated enough to perform principal component analysis. In

summary, if the norm of the difference in covariance matrices divided by the change in

time is less than a small, user defined threshold, ɛ, (Equation (6.8)) then the data are

linearly correlated enough for principal component analysis.

 cov(A) cov(B)
t

ε−
<

∆
 (6.8)

6.5 Principal Component Analysis (PCA)

After the linear approximation intervals are found, PCA is performed (see section

2.5.1) on each interval. The same number of principal components are used for each

interval, or else it would be impossible to compare later with MSA. The number of

principal components was fond by comparing the percent variation for the entire interval

(not the linear approximation interval) to the user defined threshold (usually 95%). The

number of components that add up to the desired level of variance representation were

used for each interval. This relied on the conservative assumption that if the intervals

were more linearly correlated than the entire data set, then the same number of principal

components would represent more variability for the linear approximation intervals than

for the entire data set.

Page: 114

The final step was to organize the data in a way that can be read by the mean shift

algorithm (see Section 6.2, Equation (6.1)). Since PCA was meant to reduce the number

of state variables, MSA was used to reduce (cluster) the scenarios. Instead of organizing

the data by state variable, and incorporating the scenarios into the state variables, the data

was organized by scenario, and the principal components (formally state variables) were

grouped similar to Equation (6.1). This was written to a .csv file as “PC,” followed by the

restart number that it was analyzing from RAPSS-STA, to be read by the mean shift

algorithm.

6.6 The Mean Shift Algorithm in C++

Rather than spend time “reinventing the wheel”, RAPSS used a version of the

mean shift algorithm written by Mandelli (2011), however, the code was adapted in

several places to serve RAPSS. While cluster.h remained relatively untouched, several

key changes were made to MeanShift.h (formally MeanShift.cpp in Mandelli (2011)).

Please see Appendices A.10, A.11, B.10, and B.11 for details.

6.7 unMSAPCA.R

The purpose of unMSAPCA.R was to take the clustered data, organized for MSA,

reorganize it for PCA, perform operations to convert from principal components to state

variables, and finally to unnormalize the data. Please see Appendices A.7 and B.7 for

further details.

Page: 115

7 RAPSS-STA User Interface and Display

In order to determine how “risky” a certain scenario is, RAPSS-STA reads user

defined criteria for thresholds of concern for certain components. These “red” and

“yellow” threshold values are used to determine that a R5 run ended by trip (causing a

red threshold indicator), or is to be continued on to the next cycle (causing a yellow

threshold indicator). When a run ends by exceeding a red threshold, RAPSS-STA alerts

the STA, and generates plots of the behavior of the component before exceeding the

threshold to give the STA an idea of what a particular component might look like before

exceeding a safety threshold.

Unlike the other modules, the user interface for RAPSS-STA was written in html.

This turned out to be an ideal language for the interactive nature required by RAPSS-

STA. The user is first presented with the scenarios of immediate concern, highlighted by

a flashing “alert” animated .gif. Figure 7.1 illustrates an example user interface of

RAPSS-STA.

Page: 116

Figure 7.1 An example user interface for RAPSS-STA

Page: 117

Each of the links provides the user with more information about the scenario of

interest. By clicking on the plot links, it takes the user to graphs of the sensor, or sensors

that cause the run to exceed a “red” threshold. Clicking on the “Data” link takes the user

to the time-series data produced from that run of RELAP5. Any scenarios that had

sensors exceed “yellow” thresholds, but not “red” thresholds, meaning there might be a

problem later but not immediately, are organized in the Yellow Thresholds Tripped

section. This output was similar in nature to the boxes in the Red Thresholds Tripped

section.

By clicking on the “Scenario 20 plots” link, the user is taken to a plot similar to

Figure 7.2:

Page: 118

Figure 7.2 an example of a RAPSS plot of a parameter of interest falling below a user defined threshold

 The green boxes below the yellow and red thresholds on the main user interface in

Figure 7.1 contains extra information about the scenarios that did not trip any thresholds.

Clicking on the “No Thresholds Tripped” box takes the user to a screen similar to Figure

7.3.

Page: 119

Figure 7.3 Example output of the “No Thresholds Tripped” data from RAPSS-STA

The green next box, named, “R5 Model Became Unstable” in Figure 7.1, is for any R5

simulations that ended by errors. This screen resembles Figure 7.4.

Page: 120

Figure 7.4 Example output for “R5 Model Became Unstable” Box for the RAPSS-STA display

The final green box, in Figure 7.1, “Miscellaneous Information,” contained information

regarding the scenario/cluster membership. The output resembled Figure 7.5.

Page: 121

Figure 7.5 Example output for “Miscellaneous Information” Box for the RAPSS-STA display

By clicking on the “Cluster 1 Plot” link shown in Figure 7.5, the user is taken to a view

of the normalized state variables contained in the given cluster. While this plot (Figure

7.6) is not intended for direct use by the senior reactor operators, it can be useful for

debugging purposes, and may shed light on the behavior (e.g, increasing/decreasing) of

the state variables when other methods fail, or if the STA is interested in reviewing the

possible outcomes of a specific scenario considered by RAPSS.

Page: 122

Figure 7.6 Normalized RAPSS data clusters for state variables of interest

Page: 123

8 RAPSS-STA Results

The Real Time Simulator (see Section 4.2.1) was used to sample a former

MASLWR facility output and made the data available to RAPSS-STA in a similar

fashion to the facility output as if it were running. The following experiments were

performed using the Standard Problem 3 MASLWR experiment.

8.1 The MASLWR Standard Problem 3 Experiment

The MASLWR experiment used for RAPSS-STA benchmarking was the

Standard Problem (SP) 3 test, originally performed in July 2011, as a way to characterize

the steady-state natural circulation in the primary side of the facility during various core

power configurations. In this experiment, the power inputs of the core heaters were

increased from 10 percent of full power to 80 percent of full power in 10 percent

increments over a roughly 6000 second run time. Each time the power was increased,

flow rate and temperatures were monitored to determine whether flow stabilization was

achieved. According to the test procedures, if the core subcooled margin degraded below

20 degrees F for each power interval, the operator was to take action by decreasing the

core heater setpoint until steady state was achieved (Mai & Luo, 2011).

While the operator action for each interval was not ideal for benchmarking

purposes, the SP-3 experiment was the simplest experiment available to the RAPSS team

due to the proprietary nature of most of the facility experiments. A RELAP5 model of

the facility (see Section 4.2.2) was used as the modeling software, and the SP-3

experiment was plugged into the Real Time Simulator, acting as the system. The

RAPSS-STA data and the MASLWR model were then compared to determine how well

the simulation represented the facility.

Page: 124

8.2 Comparing SP-3 Experiment and the R5 Model

Determining the difference between two state variables (e.g., core temperature

between the RELAP5 run and the facility) required several steps. First, both variables

needed to be run to the same point in time. This required trimming one of the time series

to match with the other. Next, the time steps needed to be identical. The MASLWR

data used time steps of one second. Since using this small of time step caused RELAP5

to run painfully slow, larger time steps for the RELAP model were used. However, this

required trimming the MASLWR data to match with similar time steps. A simple R

script was written for this purpose. The script compared the modulus (remainder) of the

time steps. For example, if R5 was set to output every 2.5 seconds, the series would look

like 2.5, 5, 7.5, 10… etc. Since the MASLWR data was composed of the natural numbers

(i.e., 1, 2, 3...), everything that was not a natural number from the R5 data needed to be

trimmed. After that, any number in the MASLWR data that did not have a comparable

time step in the R5 data was trimmed, leaving 5, 10, 15, 20, etc... for both data sets.

 After the two vectors (A


, the MASLWR data, and B


, the R5 data) were rendered

comparable, the maximum error was measured by calculating the individual error for

each time step, and taking the L-infinity norm (maximum) of the resulting vector,

described analytically by Equation (8.1):

 MaxError 100%
A B

x
A

−
=

 

 (8.1)

This yielded a single measurement of error, used for benchmarking between the R5 and

MASLWR experiments.

Page: 125

 Before RAPSS-STA was implemented, a simple comparison of core temperature

and pressure was performed between the R5 and MASLWR data over the full length of

the MASLWR experiment run time, 6000 seconds. This served as a benchmark for how

accurately later runs of RAPSS-STA were capable of reproducing the data.

As can be observed by Figure 8.1, the core temperature between the R5 model

and the facility do not align very closely, yielding a maximum error from Equation (8.1)

of 21.2%.

Figure 8.1 Core temperature shown for the MASLWR facility and the R5 model

Core pressure was even worse, varying by roughly an order of magnitude, yielding a

maximum error of 96.6% as seen in Figure 8.2:

400
420
440
460
480
500
520
540
560
580

0 1000 2000 3000 4000 5000 6000

Te
m

p
(k

)

Time (s)

Core Temp (K)

R5

MASLWR

Page: 126

Figure 8.2 Core pressure shown for the MASLWR facility and the R5 model

While these errors were certainly not ideal, they serve as an important reminder of how

crucial it is that the model accurately reflect the facility. In the SP-3 experiment, there

was an operator tweaking parameters to maintain fairly constant core pressure and

temperature. In order to accurately represent the experiment, an attempt was made to

simulate the operator actions.

8.3 Simulating SP-3 Experiment Operator Actions

There was an attempt to model the exact operator actions performed in the SP-3

experiment. However, this required constant adjusting of the main steam mass flow rate

(FVM-602M in the MASLWR facility) to maintain constant pressure and temperature.

To simulate this, linear regressions (Figure 8.3) of the main steam mass flow rate were fit

to the MASLWR output:

1.00E+05

1.00E+06

1.00E+07

0 1000 2000 3000 4000 5000 6000

Pr
es

su
e

(P
a)

Time (s)

Core Pressure (Pa)

R5

MASLWR

Page: 127

Figure 8.3 Linear regressions of flow velocity were determined from the MASLWR data to match the operator
actions. Figure compliments of Thomas Riley.

After these adjustments were made for a 3600 second run, the core temperature and

pressure aligned much closer with the facility, yielding maximum errors for temperature

and pressure of 2.37 percent and 17.4 percent, respectfully, displayed in Figure 8.4 and

Figure 8.5:

Page: 128

Figure 8.4 A plot of core temperature from a special R5 run designed to reflect small operator actions

Figure 8.5 A plot of core pressure from a special R5 run designed to reflect small operator actions

While this was indeed encouraging for a single run, the model became unstable

with restart runs, the primary control mechanism for RAPSS-STA. During a MASLWR

experiment, if an operator adjusted a parameter, there was no way to communicate that

change to the RELAP5 model using the current RAPSS architecture. RAPSS samples the

current conditions and projects them ahead. Without accounting for the change in model

400
420
440
460
480
500
520
540
560
580

0 1000 2000 3000

Co
re

 T
em

p
(K

)

Time (s)

Core Temp R5special-MASLWR

R5

MASLWR

0.0E+00
1.0E+06
2.0E+06
3.0E+06
4.0E+06
5.0E+06
6.0E+06
7.0E+06
8.0E+06
9.0E+06
1.0E+07

0 1000 2000 3000

Pr
es

su
re

 (P
a)

Time (s)

Core Pressure R5special-MASLWR

R5

MASLWR

Page: 129

parameters, restarting the model from the facility’s “current conditions” caused the model

to “jump” from its previous state, and usually resulted in RELAP5 ending by errors. For

this reason, the constant flow velocity, but changing temperature and pressure model was

chosen for RAPSS-STA demonstrations. This model was used with the

acknowledgement that the core temperature and pressure will be most likely show greater

errors than the aforementioned special case of the R5 model.

8.4 RAPSS-STA and the SP-3 Experiment

An experiment was performed to explore how closely RAPSS-STA representative

scenarios simulated the MASLWR facility. The experiment duration in this case was

1000 seconds.

For the R5 model without modeling operator actions, the core temperature

decreased at a fairly consistent rate, while the MASLWR facility was modified by the

operator during the run to maintain a steady temperature, yielding a maximum error from

Equation (8.1) of 16.3 percent, displayed in Figure 8.6:

Page: 130

Figure 8.6 Core temperature from a normal R5 run plotted with core temperature from the MASLWR facility

Similar behavior was observed in the core pressure. However, the core pressure

displayed an even stronger departure from the MASLWR data with a maximum error

from Equation (8.1) of 91.7 percent, illustrated in Figure 8.7:

Figure 8.7 Core pressure from a normal R5 run plotted with core temperature from the MASLWR facility

400
420
440
460
480
500
520
540
560
580
600

0 200 400 600 800 1000

Co
re

 T
em

p
(K

)

Time (s)

Core Temp R5-MASLWR

R5

MASLWR

0.0E+00
1.0E+06
2.0E+06
3.0E+06
4.0E+06
5.0E+06
6.0E+06
7.0E+06
8.0E+06
9.0E+06
1.0E+07

0 200 400 600 800 1000

Co
re

 P
re

ss
ur

e
(P

a)

Time (s)

Core Pressure R5-MASLWR

R5

MASLWR

Page: 131

When RAPSS-STA modeled the facility, it output a representative scenario based

on many different starting conditions and configurations. Figure 8.7 and Figure 8.8

display the core temperature and pressure from a RAPSS-STA cluster, potted with the

temperature and pressure from the MASLWR facility. For this simulation, the maximum

error for temperature and pressure were 12.4 percent 7.92 percent respectfully.

Figure 8.8 Core temperature from a representative RAPSS cluster plotted with core temperature from the
MASLWR facility

400
420
440
460
480
500
520
540
560
580

0 200 400 600 800 1000

Co
re

 T
em

p
(K

)

Time (s)

Core Temp

RAPSS

MASLWR

Page: 132

Figure 8.9 Core pressure from a representative RAPSS cluster plotted with core pressure from the MASLWR
facility

8.5 Results Summary

A normal RELAP5 run wandered quite far from the conditions of the facility due

to the unaccounted operator actions. For a 6000 second experiment, this led to a

maximum error for core temperature and pressure of 21.2 and 96.6 percent, respectively.

When operator actions were modeled explicitly for 3600 seconds, the error dropped to

2.37 percent and 17.4 percent, respectfully, for the duration of the experiment. While

these errors were encouraging, it was not possible to integrate this type of “constant

tweaking” model into the RAPSS-STA architecture.

 Instead, the R5 model that did not include operator actions was used for RAPSS-

STA benchmarking. For a 1000 second experiment on this R5 model, the core

temperature and pressure maximum errors were 16.3 and 91.7 percent respectfully.

When the same model was used, but in RAPSS-STA, the representative scenarios yielded

maximum errors for core temperature and pressure of 12.4 and 7.92 percent, respectfully.

0.0E+00
1.0E+06
2.0E+06
3.0E+06
4.0E+06
5.0E+06
6.0E+06
7.0E+06
8.0E+06
9.0E+06
1.0E+07

0 200 400 600 800 1000

Pr
es

su
re

 (P
a)

Time (s)

Core Pressure

RAPSS

MASLWR

Page: 133

A significant improvement. It is expected that using a model that accurately reflects

operator actions would reduce the error even further.

From a big-picture perspective, this demonstration of RAPSS-STA has exposed

two important prerequisites for future real-time decision support. First, the model must

accurately reproduce the system. RAPSS heavily relies on the assumption that the

modeling software can accurately simulate system conditions. If this is not the case, no

matter what fancy numeric tricks are performed, RAPSS will never be able to make

accurate predictions, especially when operator actions can change the plant status. The

RELAP5 model used for MASLWR was adequate for the purpose of this demonstration,

but greater model fidelity is paramount for complete RAPSS-STA implementation with

the MASLWR facility. If a better model were to become available (through NuScale, for

example), it is expected that RAPSS-STA would be able to more accurately predict future

system conditions. However, as the current model stands, it does a poor job of modeling

the system conditions, and is not satisfactory for real-time decision support.

The second prerequisite is the ability to accurately follow and represent operator

actions. When an operator acts, he changes the physical properties of the system. This

invalidates all predictions up until that point because the previous predictions were based

on a model and a system that does not exist anymore. If an operator constantly

“tweaked” the system, RAPSS would need to wait until the operator did not act for a

predetermined amount of time to provide any meaningful analysis, system assessment,

and plant status predictions.

Page: 134

9 RAPSS-EOC

An emergency operations center (EOC) is the primary command and control

facility responsible for carrying out emergency management in the event of a large-scale

disaster (like a catastrophic failure and radioactive contamination release at a nuclear

power station, for instance). Emergency operations centers are responsible for

understanding the “big picture,” of the disaster and are primarily responsible for

gathering and analyzing data, and making decisions to protect life and property.

 To illustrate an extension of RAPSS methodology, RAPSS was applied to

emergency operations centers (RAPSS-EOC). Instead of the system being a nuclear

power plant and the simulation software being RELAP5, in RAPSS-EOC the system was

atmospheric conditions, and the modeling software was a plume program written by the

author specifically for this purpose.

The output of RAPSS-STA was color-coded plot of the current plume

concentrations, followed by plots of clustered scenarios of future plume behavior based

on wind rose data. The underlying data structure was a grid of log-scaled concentrations,

generated from the plume program. The plot also displayed a hypothetical city at a user-

defined location. The display alerted the user when a “red” threshold was reached by

concentrations at the city location exceeding a user defined threshold. The display also

alerted the user when a “yellow” threshold was reached, but not a red. This signified that

the plume was close to the city, and concentrations might be rising, but the city was not

in danger yet.

Page: 135

9.1 RAPSS-EOC Structure

RAPSS-EOC contained six C++ files and two R scripts. Of the six C++ files, two

of them were identical to those used in RAPSS-STA, cluster.h and MeanShift.h,

originally written by Diego Mandelli. FunctionsEOC.h (see Appendices C.3 and D.3)

was similar in nature to bloodandguts.h in RAPS-STA. CyclePlume.h (see Appendices

C.2 and D.2) was similar in functionality to CycleR5.h in RAPS-STA.

PlumeProgram.h (see Section 9.2, Appendices C.4 and D.4) was the original work

of the author and was analogous to RELAP5 in RAPSS-STA. The plume program was

used as a substitute for a modeling software such as GENII or RASCAL. GENII and

RASCAL are both compiled for Windows and operated through a Windows GUI. This

was not appropriate for RAPSS integration, as RAPSS was designed to run in a high

performance UNIX environment.

Pmain.cpp (see Appendices C.1 and D.1) was the main control mechanism for the

program, and was relatively short and simple. GridOrganizer.R (see Section 9.3,

Appendices C.5 and D.5) was a fairly simple R script that organizes the grid output by

the plume program to prepare it for mean shift analysis. The final two R scripts were

created at run time, initR.r, and unpdateRWindex.r (see Appendices C.7, C.8, D.7, and

D.8). As the names suggest, these function identically to the R scripts that share the same

name in RAPSS-STA.

9.2 The Plume Program

The main driver behind the plume program was the integrated puff model (see

Section 2.6.1). The output of this model was organized as a grid of squares, each

assigned a concentration for a given time. X and Y were lateral and horizontal distance

Page: 136

from the source along the direction the wind was blowing. A negative X value denoted

an area behind the plume, and was assigned a value of 0.0001 instead of zero for ease of

log-scaling. A positive Y value denoted an area to the left of the wind center line, and

negative to the right. For this proof of principle, Z, the vertical distance, was set to zero

to measure ground concretion, but could easily be changed for later applications.

Historical atmospheric data was used from the Remote Automated Weather

Station (RAWS) USA Climate Archive4 for both current state estimation and future

condition prediction of the system. The RAWS Climate Archive is a network of weather

stations run by the U.S. Forest Service and Bureau of Land Management mainly to

observe potential wildfire conditions. The data chosen for this demonstration was the

Juniper Dunes (near Pasco, Washington) data set. This area was chosen for its simple

terrain and proximity to Columbia Generation Station commercial nuclear power plant, as

well as a handful of other research facilities that could potentially cause the need for an

emergency operation center in the event of a release.

9.2.1 Estimating the Current State of the System

Before predictions about the system could be made, the current state of the system

was estimated as a starting point. In weather prediction, estimating the current state of a

system as complex as atmospheric conditions, is equally as critical as the model

predicting ahead, as small variations in initial conditions could cascade into huge changes

later for chaotic systems. For this proof of principle, however, only wind direction and

wind speed were sampled. The RAWS data produced hourly observations of these data

for nearly every day since 1987. After selecting the location, the user could click on the

http://www.raws.dri.edu/index.html4

Page: 137

“Daily Summary” link on the left side of the screen, followed by selecting the day and

English or metric units. This produced a text file that could be read by RAPSS-EOC.

An estimate of the duration the plume has been active is provided by the user

when writing a RAPSS-EOC input file. RAPSS-EOC reads the wind speed and direction

from the RAWS data file, and reproduces the plume using the integrated puff model. This

was expressed as a grid, the resolution of which can be changed by the user. This current

state was then added to any predictions by simply adding equivalent sections in the grid.

9.2.2 Predicting the Future State of the System

Similar to reading a fault tree for predicting transient probabilities in RAPSS-

STA, RAPSS-EOC read wind rose data from RAWS to predict wind speed and direction.

After selecting the location, the user can click on the “Wind Rose Graph and Tables” link

on the left side of the screen, followed by selecting the month, English or metric units,

and the format of the output tables (RAPSS-EOC requires downloadable ASCII instead

of html). This produces a text file that can be read by RAPSS-EOC. The wind rose

diagram that the downloadable data generated looked similar to Figure 9.1:

Page: 138

Figure 9.1 Example wind rose for Juniper Dunes from http://www.raws.dri.edu/cgi-bin/rawMAIN.pl?waWJUN
(US Forest Service and Bureau of Land Management, 2012)

The longer arms of the wind rose expressed greater probability of the wind coming from

that direction, and the thickness of the arms expressed the probability of a given speed.

9.3 Data Processing

In the case of simply looking at concentration per area, it did not make sense to

use PCA. Principal component analysis looks for correlations among state variables,

since there was only one state variable of interest, ground level concentration, no

reduction was possible or necessary.

http://www.raws.dri.edu/cgi-bin/rawMAIN.pl?waWJUN

Page: 139

However, since there were many different scenarios that sample various wind

speeds and directions, a version of the mean shift algorithm was utilized to reduce the

scenario output size by determining representative scenarios.

An illustrative example follows to describe the process of converting a grid of

concentration measurements into a format that can be used as an input for the mean shift

algorithm. In this example, the user starts with an n x n matrix of concentration

measurements across the X and Y directions, shown in Table 9.1.

Table 9.1 Example 3 x 3 grid used to demonstrate the organizational structure of the MSA for RAPSS-EOC

Scenario 1 Scenario 2 Scenario 3

Y1X1S1 Y1X2S1 Y1X3S1 Y1X1S2 Y1X2S2 Y1X3S2 Y1X1S2 Y1X2S2 Y1X3S2

Y2X1S1 Y2X2S1 Y2X3S1 Y2X1S2 Y2X2S2 Y2X3S2 Y2X1S2 Y2X2S2 Y2X3S2

Y2X1S1 Y2X2S1 Y2X3S1 Y2X1S2 Y2X2S2 Y2X3S2 Y2X1S2 Y2X2S2 Y2X3S2

Similarly to how the data was organized in Equation (6.1), the X and Y values

were stacked on top of each other so one scenario was fully represented by one column,

as shown in Table 9.2.

Page: 140

Table 9.2 Example organized data ready for clustering by the mean shift algorithm

Scenario 1 Scenario 2 Scenario 3

Y1X1S1 Y1X1S2 Y1X1S3

Y2X1S1 Y2X1S2 Y2X1S3

Y2X1S1 Y2X1S2 Y2X1S3

Y1X2S1 Y1X2S2 Y1X2S3

Y2X2S1 Y2X2S2 Y2X2S3

Y2X2S1 Y2X2S2 Y2X2S3

Y1X3S1 Y1X3S2 Y1X3S3

Y2X3S1 Y2X3S2 Y2X3S3

Y2X3S1 Y2X3S2 Y2X3S3

The mean shift algorithm was used to eventually generate representative clusters of

similar scenarios similar to Table 9.3.

Table 9.3 Example clustered data output from the mean shift algorithm

Cluster 1 Cluster 2

Y1X1C1 Y1X1C2

Y2X1C1 Y2X1C2

Y2X1C1 Y2X1C2

Y1X2C1 Y1X2C2

Y2X2C1 Y2X2C2

Y2X2C1 Y2X2C2

Y1X3C1 Y1X3C2

Y2X3C1 Y2X3C2

Y2X3C1 Y2X3C2

Page: 141

The data could then be reorganized to look similar to Table 9.1, but for a reduced number

of representative scenarios.

9.4 The RAPSS-EOC User Interface and Display

After loading RAPSS-EOC, the user is asked to enter the name of the input file,

followed by how many cycles he or she wishes to run. RAPSS-EOC reproduces the

current state from the wind data specified in the input file, and makes predictions across

several parallel computational nodes to predict the future state of the system. While this

is happening, a timer is running in the background to know when to update the estimate

of the current state. A user specified real-time-speed-up-factor was used to generate

more frequent updates of the state estimation than one hour in real time.

R was used as the primary graphics engine. The data was log-scaled with each

order of magnitude assigned a shade of color starting with white to represent

concentrations of 0.0001, up to dark red, which was used to represent concentrations of

the maximum release rate used for this demonstration, 1x1030 Bq/s. A simple polar grid

with the usual 16 directions (N, NNW, etc…) was overlain on the rectangular grid of

concentration measurements yielding an output similar to Figure 9.3.

After the data from a desired number of cycles was obtained, the user accessed

the predictions through an interface, written in html, similar to the RAPSS-STA interface,

displayed in Figure 9.2:

Page: 142

Figure 9.2 An example RAPSS-EOC user interface.

Page: 143

The risk of a given scenario was based on the proximity to a user defined

hypothetical city. When the user clicks on one of the plots links in the red boxes of

Figure 9.2, she is taken to a 2-paged PDF where the first page is an estimate of the

current state of the plume, with the city marked as a black dot, similar to Figure 9.3:

Figure 9.3 An example of an estimate of the current state of a plume from RAPSS-EOC

The second page shows an estimate of the plume that either crossed or came close to the

city in question similar to Figure 9.4:

Page: 144

Figure 9.4 An example of an estimate of the future state of a plume from RAPSS-EOC

The green “No Thresholds Tripped” box of Figure 9.2, takes the user to a screen that

details the clusters that did not endanger the city, similar to Figure 9.5:

Figure 9.5 An example of an estimate of No Thresholds Tripped screen from RAPSS-EOC

Page: 145

The green “Instabilities” box of Figure 9.2 in RAPSS-EOC simply takes the user to a

screen that displays no instabilities in the model, similar to Figure 9.6. RAPSS-EOC

used a simple plume program that was not prone to the same instabilities as RELAP5.

Figure 9.6 An example the instabilities screen from RAPSS-EOC

The green “Miscellaneous Information” box of Figure 9.2 took the user to a screen that

details which scenarios were contained in each cluster, similar to Figure 9.7:

Page: 146

Figure 9.7 An example the miscellaneous information screen from RAPSS-EOC

This user interface allowed the user to quickly page through important displays,

and provided more in depth information accessed by a simple click of the mouse.

Page: 147

10 Discussion and Conclusion

The beauty of RAPSS is that it is not simply dependent on a particular modeling

code or system. It is generalizable across many fields, from manned space missions, to

air traffic controllers. Anything that can be modeled and sampled can be integrated into

the RAPSS methodology. This dissertation has shown that it is possible to apply the

RAPSS methodology to two significantly different situations, RAPSS-STA and RAPSS-

EOC.

In a field that is dominated by risk-adverse attitudes, a methodology to

revolutionize risk assessment performance in nuclear power plants (i.e., RAPSS-STA)

would certainly be beneficial, if not critical to the success of the industry. We cannot

continue forever to rely on legacy computer codes and traditional methods of risk

assessment. The worst commercial nuclear power disaster in the United Sates (Three

Mile Island) could have been prevented by a better understanding of system conditions

by the operators, and the future impacts of their decisions. While there have been great

improvements in some areas post Three Mile Island, shift technical advisors and unit

supervisors still use ad hoc decision making in situations that have the potential to take

lives, or cause billions of dollars worth of damage. This needs to change. RAPSS-STA

directly addresses this issue by offering STAs and unit supervisors real-time model-

driven decision support.

As was seen during the Fukushima accident, adequate assessment and

management of a disaster is crucial to minimize the damage to lives and property.

RAPSS-EOC does illustrate the promise of improving ecological modeling in emergency

operations centers using high performance computing. For now, however, RAPSS-EOC

Page: 148

was used mainly to illustrate the flexibility of the RAPSS architecture across a new

system. RAPSS-EOC also serves another important purpose by hinting at the possibility

of generalizing RAPSS for other systems.

The long term goal of RAPSS development is real-time, model-drive decision

support for operators of nearly any type of complex network. While this is a monumental

task, and certainly not realistic given the time constraints of a single dissertation, this

research did lay the foundation and proved the principles necessary for further

development of the RAPSS architecture. This research has opened the door for a flood of

possible future applications by not only developing the principles, but proving them in

two distinctly different situations: nuclear power plant control rooms, and emergency

operations centers.

10.1 Limitations

While RAPSS-STA and RAPSS-EOC have both shown great potential throughout

the course of this research, they are still are susceptible to limitations. RAPSS-STA has

underscored how important it is that the model of the environment accurately represent

the system. RAPSS will never produce accurate predictions if the model it uses does not

adequately reflect the operational fundamentals of the system. For the preceding

experiments, it was seen that the model did not represent the system well, and RAPSS-

STA struggled to make meaningful predictions as a result. It is interesting, though, to

observe how much better predictions RAPSS-STA made than a normal R5 model,

especially core pressure measurement (91.7 percent error without RAPSS to only 7.92

error with RAPSS).

Page: 149

In cases where the user can influence the system (i.e., in nuclear power plants, but

not in environmental modeling), the changes the user makes to the model are not

currently communicated to the model. This is especially challenging for situations where

the operator makes several changes over a short time-span. For the proof of principle,

this lack of communication was acceptable to illustrate the architecture, but future work

requires this communication.

RAPSS-EOC also shows limitations in key areas. Firstly, no radiological release

event data was used to calibrate RAPSS-EOC predictions. Environmental monitoring is

significantly harder to simulate in a laboratory environment, so past radiological

dispersion events would need to be used. The most recent and obvious candidate would

be data from the Fukishima accident.

RAPSS-EOC also does not use an industry-standard plume modeling code. The

plume program written to demonstrate the proof of principle was purposely simplified to

focus attention on the application of the methodology, rather than get caught up in

duplicating the intricacies and functionality of industry standard codes that have decades

of advantage in development time.

10.2 Future Work

While this proof of principle has exposed the limitations of the RAPSS

methodology in two applications, it is precisely this type of research that moves the

concept forward. Any new methodology begins with a limited scope, and as researchers

spend more time exposing more new limitations, paths are made to overcome those

limitations. In order to progress RAPSS into a usable architecture for real-time model-

Page: 150

driven support for operators of complex networks, several tasks, outlined next, are

required.

10.2.1 Future Work RAPSS-STA

The next task for RAPSS-STA is to break free of the limitations of RELAP5. It is

absolutely essential that RAPSS-STA gain the ability to translate operator actions into

changes in the model. The way that makes the most sense at this time is to use control

room simulation software. This has the ability to not only speed up RAPSS-STA, but

also allows for real time operator actions to be reflected in the model.

The other main missing piece of RAPSS-STA is an ability to “look back” at

previous facility data and compare it current transient predictions to identify if the facility

might be in a transient without the operator’s knowledge. Once a transient begins, that

information must be communicated to the model, or else RAPSS-STA would predict that

the model would restabilize when in fact, it would travel farther down the transient path.

Looking further into the future, the next steps are to optimize RAPSS-STA to run

much faster than real time. This can be done by either lowering the resolution in the

modeling code, or, perhaps using a new, state of the art, much faster thermal fluids code

such as R7.

Another route would be to use Gaussian process model emulators instead of

running instances of large thermal fluids models in real time. When using emulators, one

would run many transients under many different conditions before the software is

installed. Once the software is installed and running, it would use extrapolations and

interpolations from the preloaded libraries to determine any scenarios that it has not seen

before, and output a display of uncertainty associated with the analysis. This holds the

Page: 151

prospect of a very light and fast program without the enormous resources required to

continually run multiple instances of a thermal fluids code. More information about

Gaussian process modeling can be found at: http://www.mucm.ac.uk/.

 Once truly faster-than-real-time and operator action translation methodologies

have been adopted, RAPSS-STA can be integrated with the MASLWR facility at Oregon

State University for real-time decision support. After RAPSS-STA has been successfully

integrated with MASLWR, it could be adapted to run with the APEX facility at Oregon

State University to increase the complexity of the model. After APEX integration, the

next goal is to integrate RAPSS-STA into a regulated control room, namely the Oregon

State University TRIGA reactor. While the TRIGA reactor is fairly simple, and will most

likely yield fairly uninteresting results, it will serve as another credential to move to the

next phase: integration into a simulated control room of a real plant. Similar steps will be

taken to integrate RAPSS-STA into the simulated control room, as were taken to

integrate it into the MASLWR, APEX, and TRIGA facilities. The final step, and the end-

goal of the project, is RAPSS-STA control room integration for STA and unit supervisor

decision support.

10.2.2 Future Work RAPSS-EOC

RAPSS-EOC is a much younger program than RAPSS-STA, and still has plenty

of potential left to be realized. In the near term, RAPSS-EOC should be connected to a

standardized radiological plume modeling program such as GENII or RASCAL. This is

problematic because neither of these programs were designed to be used in a high-

performance and UNIX environment. Recent efforts have focused on using an emulator-

style program, Wine, for UNIX, which has the potential to run programs compiled for

http://www.mucm.ac.uk/

Page: 152

DOS/Windows in a UNIX environment. While the RAPSS team has had some success

with this, parts of the program written in Visual Basic would not function due to missing

libraries. This became the challenge of using Wine. When a program is compiled for

Windows, it depends on many .dll and .ocx files that are buried deep in the Windows

system. To run one of these programs requires accounting for every single dependency,

and creating the appropriate paths and directories (e.g., C:/Windows/system32/..) for the

programs to function correctly.

What appears most feasible at this point is accessing a version of GENII compiled

for UNIX. While there are rumors of a UNIX version of GENII floating around in

Europe, for RAPSS-EOC applications, GENII will most likely have to be rebuilt in a

UNIX environment with help from the original development team.

10.2.3 Generalizing RAPSS

One of the most ambitious future goals of the RAPSS team is to generalize the

architecture, so other researchers, with a minimal amount of overhead can apply the

RAPSS methodology to a system of their choosing. The secret is to rewrite RAPSS to

contain connectors for inputs, outputs, and the modeling code (Figure 10.1).

Page: 153

Figure 10.1 An illustration of a future RAPSS configuration that allows a researcher to apply RAPSS to other
situations without significant rewriting of the code

There still would require some system-specific modules to be written, such as a

real time data reader. This is the algorithm that fetches the data from the system. In the

case of RAPSS-EOC, this was the wind data from remote automated weather stations; for

RAPSS-STA, this was the algorithm that read the data in real time from the thermal

hydraulic test facility. The predictive data reader is how one obtains probabilities for the

future scenarios. In RAPSS-EOC, this was the wind rose data, and for RAPSS-STA, this

was the fault tree processor, LiteFTA. For each system, the user input would need to

change as well, depending on the needs of the modeling code, among many other factors.

On the output side, the process of risk assessment is different for every system.

For example, pressure exceeding a threshold would be risky in a nuclear power plant, but

would be useless in an emergency operation center. The display is also an important

factor that the user of generalized RAPSS would be responsible for. This would change

based on the needs of the user and scenario. For example, it is appropriate to display a

polar grid of radioactive contamination for RAPSS-EOC, but would be useless for a shift

technical advisor monitoring core temperature.

Page: 154

Once RAPSS has been generalized, there are limitless possibilities of

applications. Recent discussions have yielded jet engine failure prediction and power

grid modeling as promising systems for the next generation of RAPSS.

For the jet engine system, it is understood that the jet engine industry collects

real-time data on their fleet of turbine engines. While they monitor this data, there is

little ability beyond traditional failure/time probabilities to “run-ahead” and make future

predictions about the state of the engine. Doing so would not only increase the safety of

the engines, by requiring service before malfunctions happen, but also save money, by

allowing perfectly functioning engines, to continue running past their scheduled

maintenance if it is deemed necessary.

 Power grid modeling is very similar to the operation of a nuclear power plant in

many key ways. Both are highly complex systems with human operators. The decisions

the senior operators make in both cases are largely based on experience with limited real-

time decision support. With the added challenges from intermittent energy sources,

there is a significant need for robust decision support and failure prediction software for

power grid operators.

 Other applications include fossil fuel power plants, gas pipeline systems,

telecommunication systems, aviation networks, subway/train networks, manned space

flight, financial markets, social diffusion event prediction, or virtually anything that can

be sampled and modeled faster-than-real-time.

Page: 155

Bibliography

Aldrich, D. C., Sprung, J. L., Alpert, D. J., Diegert, K., Ostmeyer, R. M., Ritchie, L. T.,
& Strip, D. R. (1982). Technical Guidance for Siting Criteria Development,
NUREG/CR-2239, SAND81-1539. Sandia National Laboratories.

Allison, C. M., & Hohorst, J. K. (2008). Role of RELAP/SCDAPSIM in Nuclear Safety.

Presented at the International Topical Meeting of Safety of Nuclear Installations,
Dubrovnik, Croatia: TOPSAFE.

Andreasen, M. M. (2008). Non-linear DSGE Models, The Central Difference Kalman

Filter, and The Mean Shifted Particle Filter. Center for Research in Econometric
Analysis of Time Series- 33.

Apostolakis, G. E. (2004). How Useful is Quantitative Risk Assessment? Risk Analysis,

24(3), 515–520.

Ariely, D., & Zakay, D. (2001). A timely account of the role of duration in decision

making. Acta Psychologica (in English), 108, 187–207.

Atomic Energy and Alternative Energies Commission (CEA) Website. (2011).

CATHARE : Advanced Safety Code for Pressurized Water Reactors (PWR).
Retrieved October 7, 2011, from http://www-
cathare.cea.fr/scripts/home/publigen/content/templates/show.asp?L=EN&P=134

Ayyub, B. M. (2003). Risk Analysis in Engineering and Economics. Bpca Ratpm,

Florida: CRC Press LLC.

Bayes, T. (1763). An Essay towards solving a Problem in the Doctrine of Chances.

Philosophical Transactions of the Royal Society of London, 53, 370–418.

Bengtsson, T., Snyder, C., & Nychka, D. (2002). A nonlinear filter that extends to high

dimensional systems. National Center for Atmospheric Research.

Bengtsson, T., Snyder, C., & Nychka, D. (2003). Toward a nonlinear ensemble filter for

high-dimensional systems. Journal of Geophysical Research, 108(D24).

Borg, I., & Groenen, P. (2005). Modern Multidimensional Scaling: theory and

applications (2nd ed., pp. 207–212). New York, NY: Springer-Verlag.

Burgers, G., Jan van Leeuwen, P., & Evensen, G. (1998). Analysis scheme in the

ensemble Kalman filter. Monthly Weather Review, 126(6), 1719–1724.

Burkardt, J., & Cliff, G. (2009, September 9). MATLAB Parallel Computing. FDI Fall

Short Course: Introduction to Parallel MATLAB. Virginia Tech.

Page: 156

Cember, H., & Johnson, T. E. (2009). Introduction to Health Physics (4th ed.). New
York, NY: The McGraw-Hill Companies.

Chang, Y. H., & Mosleh, A. (2007). Cognitive modeling and dynamic probabilistic

simulation of operating crew response to complex system accidents - Part 2:
IDAC performance influencing factors model. Reliability Engineering & System
Safety, 92, 1014–1040.

Cheng, H. S., & Rohatgi, U. S. (1996). RAMONA-4B Code for BWR Systems and

Analysis BNL-NUREG-63265. Brookhaven National Laboratory.

Cheng, Y. (1995). Mean Shift, Mode Seeking, and Clustering. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 17(8), 790–799.

Christensen-Szalanski, J. J., Beck, D. E., Christensen-Szalanski, M., & Koepsell, T. D.

(1983). Effects of Expertise and Experience on Risk Judgments. Journal of
Applied Psychology, 68(2), 278–284.

Clemen, R. (1997). Making Hard Decisions: An Introduction to Decision Analysis (2nd

ed.). Duxbury.

CNN. (2003, November 26). “Master” and “slave” computer labels unacceptable,

officials say. CNN Technology. Los Angeles, California.

Cojazzi, G. (1996). The DYLAM approach for the dynamic reliability analysis of

systems. Reliability and Safety Analysis of Dynamic Process Systems, 52(3), 279–
296.

Coyne, K. (2009). A Predictive Model of Nuclear Power Plant Crew Decision-Making

and Performance in a Dynamic Simulation Environment (PhD Dissertation).
University of Maryland.

Coyne, K., & Mosleh, A. (2009). Dynamic PRA Approach for the Prediction of Operator

Errors. Presented at the Center for Risk and Reliability, University of Maryland,
College Park, MD.

Dawes, R. M. (1998). Behavioral decision making and judgment (4th ed.). Boston, MA:

McGraw-Hill.

Dougherty, M. R. P., Gettys, C. F., & Thomas, R. P. (1997). The Role of Mental

Simulation in Judgments of Likelihood. Organizational Behavior and Human
Decision Processes, 70(2), 135–148.

Drottz-Sjoberg, B.-M., & Persson, L. (1993). Public Reaction to Radiation: Fear,

Anxiety, or Phobia? Health Physics, 64(3), 223–231.

Page: 157

Du, J., Mullen, S. L., & Sanders, F. (1997). Short-Range Ensemble Forecasting of
Quantitative Precipitation. American Meteorological Society, 2427–2459.

Dwivedy, K. K., Bhargava, D., & Hook, T. G. (2007). Significance Determination

Process for Plant Condition Assessment. In Structural Mechanics in Reactor
Technology (SMiRT) 19. Toronto, Canada.

Edland, A., & Svenson, O. (1993). Judgment and decision making under time pressure:

Studies and findings. New York, NY: Plenum Press.

Edwards, J. A., Snyder, F. J., Allen, P. M., Makinson, K. A., & Hamby, D. M. (2012).

Decision Making for Risk Management: A Comparison of Graphical Methods for
Presenting Quantitative Uncertainty. Risk Analysis.

Edwards, W. (1962). Dynamic decision theory and probabilistic information processing.

Human Factors, 4(14).

Evensen, G. (1994). Sequential data assimilation with a nonlinear quasi-geostrophic

model using Mote Carlo Methods to forecast error statistics. Journal of
Geophysical Research, 99(C5), 143–162.

Evensen, G. (2003). The Ensemble Kalman Filter: theoretical formulation and practical

implementation. Ocean Dynamics, 53, 343–367.

Fleming, K. N., Unwin, S. D., Kelly, D., Lowry, P. P., Toloczko, M. B., Layton, R. F., …

Heasler, P. G. (2010). Treatment of Passive Component Reliability in Risk-
Informed Safety Margin Characterization: FY2010 Report. Idaho National Lab.

Fudenberg, D., & Levine, D. (2009, October 14). Self Control, Risk Aversion, and the

Allais Paradox. Retrieved from http://www.dklevine.com/econ506/allais-
slides.pdf

Galvin, M. R., & Bowser, J. C. (2010). OSU MASLWR Test Facility Modification

Description Report IAEA Contract Number USA-13386. Oregon State University.

Garrick, J. B. (2006). Warren K. Sinclair Keynote Address: Contemporary Issues in Risk-

Informed decision Making on the Disposition of Radioactive Waste. Health
Physics Journal, 91(5), 430–439.

Gerhardt, H., Biele, G., Uhlig, H., & Heekeren, H. (2011). Cognitive Load Increases Risk

Aversion. In Deutsche Forschungsgemeinschaft. Presented at the Research Center
649 “Economic Risk.”

Gertman, D., Blackman, H., Marble, J., Byers, J., & Smith, C. (2005). The SPAR-H

Human Reliability Analysis Method, NUREG/CR-6883. Idaho National Lab.

Page: 158

Ghile, Y. B., & Schulze, R. (2009). Evaluation of Three Numerical Weather Prediction
Models for Short and Medium Range Agrohydrological Applications. Water
Resource Management, 24, 1005–1028.

Green, A. E. S., Singhal, R. P., & Venkateswar, R. (1980). Analytic Extensions of the

Gaussian Plume Model. Journal of the Air Pollution Control Association, 30(7),
773–776.

Hakobyan, A. (2006). Severe Accident Analysis Using Dynamic Accident Progression

Event Trees (PhD Dissertation). The Ohio State University.

Hakobyan, A., Aldemir, T., Denning, R., Dunagan, S., Kunsman, D., Rutt, B., &

Catalyurek, U. (2008). Dynamic generation of accident progression event trees.

Hess, S. M., Dinh, N., Gaertner, J. P., & Szilard, R. (2009). Risk-Informed Safety Margin

Characterization. Presented at the Proceedings of the 17th International
Conference on Nuclear Engineering, Brussels, Belgium: The Idaho National Lab.

Hofer, E., Kloos, M., Krzykacz-Hausmann, J., Peschke, J., & Sonnenkalb, M. (2004).

Dynamic Event Trees for Probabilistic Safety Analysis. Gesellschaft fur Anlagen
und Reacktorsicherheit (GRS) (in English).

Horng, T.-C. (2004). MIDAS: Minor Incident Decision Analysis Software (Masters

Thesis). Massachusetts Institute of Technology, Cambridge Massachusetts.

Hsueh, K.-S., & Mosleh, A. (1996). The development and application of the accident

dynamic simulator for dynamic probabilistic risk assessment of nuclear power
plants. Reliability Engineering and System Safety, 52, 297–314.

Huntley, J., & Miller, E. (2009). Using DSGE Models. Congressional Budget Office.

Ibrekk, H., & Morgan, M. G. (1987). Graphical communication of uncertain quantities to

nontechnical people. Risk Analysis, 7(4), 519–529.

Idaho National Lab. (2003). RELAP5-3D Code Manual, Vol 1-3. NUREG/CR-

5535/Rev1.

Innovative Systems Software (ISS) Website. (2011). SCDAP Development and Training

Program (SDTP). Retrieved October 7, 2011, from
http://www.sdtp.org/software.html#top

INPO. (2004). Principles for a Strong Nuclear Safety Culture. Institute of Nuclear

Operations.

Page: 159

Johnson, B. B., & Slovic, P. (1995). Presenting uncertainty in health risk assessment:
Initial studies of its effects on risk perception and trust. Risk Analysis, 15, 485–
494.

Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction Problems.

Journal of Basic Engineering, 82(D), 35–45.

Kaplan, S., & Garrick, J. (1981). On the Quantitative Definition of Risk. Risk Analysis,

1(1), 11–28.

Keeney, R., & Railla, H. (1993). Decisions with Multiple Objectives. New York, NY:

Cambridge University Press.

Keller, T. S., & Reese, S. R. (2009). Going from HEU to LEU: Conversion of the Oregon

State TRIGA Reactor. In RERTR 2009. Presented at the 31st International
Meeting on Reduced Enrichment for Research and Test Reactors, Beijing, China.

Kirschenbaum, S. S., & Arruda, J. E. (1994). Effects of graphic and verbal probability

information on command decision making. Human Factors: The Journal of the
Human Factors and Ergonomics Society, 36(3), 406–418.

Kleinmuntz, B. (1990). Why we still use our heads instead of formulas: toward an

integrative approach. Psychological Bulletin, (107), 296–310.

Kloos, M., & Peschke, j. (2008). Consideration of human actions in combination with

the probabilistic dynamics method Monte Carlo dynamic event tree. Proceedings
of the IMechE: Risk and Reliability, 222, 303–313.

Knaus, J. (2011). Package “snowfall”: Easier cluster computing (based on snow) (User

Manual). Comprehensive R Archive Network (CRAN).

Knaus, J., & Porzelius, C. (2009). Tutorial: Parallel computing using R package snowfall.

Knaus, J., Porzelius, C., Binder, H., & Schwarzer, G. (2009). Easier Parallel Computing

in R with Snowfall and sfCluster. The R Journal: Contributed Research Articles,
1(1), 54–59.

Lewis, H. W., Budnitz, R. J., Kouts, H. J. C., Loewenstein, W. B., Rowe, W. D., Von

Hippel, F., & Zachariasen, F. (1978). Risk Assessment Review Group Report to
the U.S. Nuclear Regulatory Commission (Ad Hoc Risk Assessment Review
Group).

Li, B., Li, M., Chen, K., & Smidts, C. (2006). Integrating Software into PRA: A

Software-Related Failure Mode Taxonomy. Risk Analysis, 26(4), 997–1012.

Page: 160

Li, B., Li, M., & Smidts, C. (2005). Integrating Software into PRA: A Test-Based
Approach. Risk Analysis, 25(4), 1061–1077.

Lichtenstein, S., Slovic, P., Fischhoff, B., Laymen, M., & Combs, B. (1978). Judged

Frequency of Lethal Events. Journal of Experimental Social Psychology: Human
Learning and Memory, (6), 551–578.

Loewenstein, G. F., Weber, E. U., Hsee, C. K., & Welch, N. (2001). Risk as Feelings.

Psychological Bulletin, 127(2), 267–286.

Lorenz, E. N. (1963). Deterministic Nonperiodic Flow. Journal of Atmospheric Sciences,

20, 130–141.

Mackenzie, D. (2003). Ensemble Kalman Filters Bring Weather Models Up to Date.

Society for Industrial and Applied Mathematics (SIAM) News.

Mai, A. T., & Luo, H. (2011). OSU MASLWR Test Facility Quick Look Report (No.

OSU-MASLWR-QLR-SP3). Corvallis, OR: Oregon State University.

Mandel, J. (2006). Efficient Implementation of the Ensemble Kalman Filter. Center for

Computational Mathematics Reports. No. 231.

Mandelli, D, Yilmaz, A., & Aldemir, T. (2011). Clustering on Manifolds: An Application

to Scenario Analysis. Presented at the 2011 ANS Winter Meeting and Nuclear
Technology Expo, “The Status of Global Nuclear Deployment”, Washington,
D.C.

Mandelli, Diego. (2011). Scenario Clustering and Dynamic Probabilistic Risk

Assessment (PhD Dissertation). The Ohio State University.

Martin, J. E. (2006). Physics for Radiation Protection (2nd ed.). Weinheim, Germany:

Wiley-VCH.

McGuire, S. A., Ramsdell, J. V. J., & Athey, G. F. (2007). RASCAL 3.0.5: Description of

Models and Methods (No. NUREG-1887). Washington, DC: U.S. Nuclear
Regulatory Commission (USNRC).

Medvedev, G. (1989). Chernobyl Notebook (in English). Novy Mir, 6, 3–108.

Mercurio, D., Podofillini, L., Zio, L., & Dang, V. (2009). Identification and classification

of dynamic event tree scenarios via possibilistic clustering: application to a steam
generator tube rupture event. Accident Analysis and Prevention, 41, 1180–1191.

Mesina, G., Hykes, J., & Guillen, D. (2007). Streamlining of the RELAP5-3D Code

INL/CON-07-12089. Presented at the The 12th International Topical Meeting on

Page: 161

Nuclear Reactor Thermal Hydraulics (NURETH-12), Sheraton Station Square,
Pittsburgh, Pennsylvania, U.S.A.

Modarres, M., Kaminskiy, M., & Krivtsov, V. (2010). Reliability Engineering and Risk

Analysis: A Practical Guide (2nd ed.). Boca Raton, Florida: CRC Press.

Modro, M. S., Fisher, J., Kavan, W., Babka, P., Reyes, J., Groome, J., & Wilson, G.

(2002). Generation-IV Multi-Application Small Light Water Reactor (MASLWR)
NEEL/CON-02-00017. In Proceedings of ICONE 10. Presented at the Tenth
International Conference on Nuclear Energy, Arlington, Virginia, USA: Idaho
National Engineering and Environmental Laboratory (INEEL).

Moler, C. (2007). Cleve’s Corner - Parallel Matlab: Multiple Processors and Multiple

Cores. The MathWorks News.

Murray, C. (2007). Overview of TRACE V5.0. Presented at the Regulatory Information

Conference.

Napier, B. A. (2012). GENII Version 2 Users’ Guide (No. PNNL-14583). Richland, WA.

Nourgaliev, R. R., Bui, A. V., Ougouag, A. M., Cogliati, J. J., Gleicher, G., Phillips, J.

H., … Dinh, N. T. (2011). Summary Report on NGSAC (Next-Generation Safety
Analysis Code) Development and Testing (No. 412.09). Idaho Falls, ID: Idaho
National Lab.

NRC Website. (2011a). NRC: Computer Codes. Retrieved October 5, 2011, from

http://www.nrc.gov/about-nrc/regulatory/research/comp-codes.html

NRC Website. (2011b). NRC: Probabilistic Risk Assessment (PRA). Retrieved October

6, 2011, from http://www.nrc.gov/about-nrc/regulatory/risk-informed/pra.html

NUCE. (2002). PSA Glossary. PSAM 6: International Conference on Probabilistic Safety

Assessment and Management.

Office of Technology Assessment. (1984). Nuclear Power in an Age of Uncertainty.

Chapter 8: Public Attitudes Toward Nuclear Power.

OpenFTA Website. (2012). OpenFTA.com. Retrieved August 8, 2012, from

http://www.openfta.com/

OpenMP Website. (2011). OpenMP.org. Retrieved October 3, 2011, from

http://openmp.org/

Osei, E. K., Amoh, G. E. A., & Schandorf, C. (1997). Risk Ranking by Perception.

Health Physics, 72(2), 195–203.

Page: 162

Pagani, L., Smith, C. L., & Apostolakis, G. E. (2004). Making Decision for incident
management in nuclear power plants using probabilistic safety assessment. Risk
Decision and Policy, 9(4), 271–295.

Pozo, J. T., Pappenberger, F., Salamon, P., Bogner, K., Burek, P., & De Roo, A. (2010).

The state of the art of flood forecasting – Hydrological Ensemble Prediction
Systems. Presented at the European Meeting of Statisticians Annual Meeting,
Zurich, Switzerland.

Raiffa, H., & Schlaifer, R. (1968). Applied Statistical Decision Theory. Cambridge,

Massachusetts: MIT Press.

Ramsey, F., & Schafer, D. (2002). The Statistical Sleuth (2nd ed.). Pacific Grove, CA:

Duxbury.

Ribeiro, M. I. (2004). Kalman and Extended Kalman Filters: Concept, Derivation and

Properties. Instituto Superior Tecnico, Lisboa Portugal.

Roebber, P. J., Schultz, D. M., Colle, B., & Stensrud, D. J. (2004). Toward Improved

Prediction: High-Resolution and Ensemble Modeling Systems in Operations.
American Meteorological Society, 19, 936–949.

Sandia National Lab. (1998). Code Manual for MACCS2: Volume 1, User’s Guide

NUREG/CR-6613. U.S. Nuclear Regulatory Commission (USNRC).

Sandia National Lab. (2000). MELCOR Computer Code Manual: Primer and User’s

Guide- NUREG/CR-6119. U.S. Nuclear Regulatory Commission (USNRC).

Schapira, M. M., Nattinger, A. B., & McHorney, C. A. (2001). Frequency or probability?

A qualitative study of risk communication formats used in health care. Medical
Decision Making, 21, 459–467.

Schmidberger, M., Morgan, M., Eddelbuettel, D., Yu, H., Tierney, L., & Mansmann, U.

(2009). State of the Art in Parallel Computing with R. Journal of Statistical
Software, 31(1), 1–27.

Schultz, E. E., & Johnson, G. L. (1988). User Interface Design in Safety Parameter

Display Systems: Directions for Enhancement. Presented at the Fourth IEEE
Conference on Human Factors and Power Plants, Monterey, California: Lawrence
Livermore National Laboratory.

Schwarz, D. R., & Howell, W. C. (1985). Optional stopping performance under graphic

and numeric CRT formatting. Human factor, 27(4), 433–44.

Siu, N. (1994). Risk assessment for dynamic systems: An overview. Reliability

Engineering and System Safety, 43(1), 43–73.

Page: 163

Slovic, P. (1995). The Construction of Preference. American Psychologist, 50(5), 364–

371.

Smith, C., Knudsen, J., Kvarfordt, K., & Wood, T. (2008). Key attributes of the

SAPHIRE risk and reliability analysis software for risk-informed probabilistic
applications. Reliability Engineering and System Safety, 93, 1151–1164.

Smith, C. L. (2002). Risk-Informed Incident Management for Nuclear Power Plants (PhD

Dissertation). Massachusetts Institute of Technology.

Snir, M., Otto, S., Huss-Lederman, S., Walker, D., & Dongarra, J. (1996). MPI: The

Complete Reference. Cambridge Massachusetts: The MIT Press.

Snyder, C., & Zhang, F. (2003). Assimilation of Simulated Doppler Radar Observations

with an Ensemble Kalman Filter. American Meteorological Society, 1663–1677.

Soffer, L., Burson, S. B., Ferrell, C. M., Lee, R. Y., & Ridgely, J. N. (1995). Accident

Source Terms for Light-Water Nuclear Power Plants, NUREG-1465. U.S.
Nuclear Regulatory Commission (USNRC).

Spore, J. W., Weaver, W. L., Shumway, R. W., Giles, M. M., Phillips, R. E., Mohr, C.

M., … Fischer, S. R. (1981). TRAC-BD1 - Transient Reactor Analysis Code for
Boiling-Water Systems. Idaho National Engineering Laboratory (INEL).

Stensrud, D. J., Bao, J.-W., & Warner, T. (2000). Using Initial Condition and Model

Physics Perturbations in Short-Range Ensemble Simulations of Mesoscale
Convective Systems. American Meteorological Society, 2077–2107.

Stone, E. R., Yates, J. F., & Parker, A. M. (1997). Effects of numerical and graphical

displays on professed risk-taking behavior. Journal of Experimental Psychology:
Applied, 3, 243–256.

Strid, I., & Walentin, K. (2008). Block Kalman filtering for large-scale DSGE models.

Sveriges Riksbank Working Paper Series 224.

Stutzke, M., & Smidts, C. (2001). A Stochastic Model of Human Error During Software

Development. IEEE Transactions on Reliability, 50(2), 184–193.

Sur, S., Koop, M., & Panda, D. (2006). High-Performance and Scalable MPI over

InfiniBand with Reduced Memory Usage: An In-Depth Performance Analysis. In
SC ’06 Proceedings of the 2006 ACM/IEEE conference on Supercomputing.

Swain, A. D., & Guttman, H. E. (1983). Handbook of human reliability analysis with

emphasis on nuclear power plant applications. NUREG/CR-1278, Washington
D.C.

Page: 164

The R Project Webpage. (2011). The R Project for Statistical Computing. Retrieved

October 3, 2011, from http://www.r-project.org/

Tierney, L., Rossini, A. J., & Li, N. (2003, March 13). Simple Parallel Statistical

Computing in R. University of Iowa.

Tierney, L., Rossini, A. J., Li, N., & Sevcikova, H. (2011). Package “snow”: Simple

Network of Workstations (user manual). Comprehensive R Archive Network
(CRAN).

Travers, W. D. (2000). Risk-Informing Special Treatment Requirements SECY-00-0194.

Policy Issue Information Memo to the USNRC.

Tumer, I. Y., & Smidts, C. (2011). Integrated Design-Stage Failure Analysis of Software-

Driven Hardware Systems. IEEE Transactions on Computers, 60(8), 1072–1084.

Tversky, A., & Kahneman, D. (1974). Judgment under Uncertainty: Heuristics and

Biases. Science, 185(4157), 1124–1131.

US Atomic Energy Commission (USAEC). (1957). Theoretical Possibilities and

Consequences of Major Accidents in Large Nuclear Power Plants (WASH-740).
United States Energy Research and Development Administration.

US Forest Service and Bureau of Land Management. (2012). RAWS USA Climate

Archive State Selection Map. Retrieved February 19, 2013, from
http://www.raws.dri.edu/index.html

US Nuclear Regulatory Commission (USNRC). (1975). Reactor Safety Study - An

Assessment of Accident Risks in U.S. Commercial Nuclear Power Plants,
WASH-1400, (NUREG-75/014).

US Nuclear Regulatory Commission (USNRC). (1983). Discussion Paper on Safety

Goals for Nuclear Power Plants, NUREG-880.

US Nuclear Regulatory Commission (USNRC). (1986). Safety Goals for the Operations

of Nuclear Power Plants; Policy Statement; Republication (51FR30028).

US Nuclear Regulatory Commission (USNRC). (1990). Severe Accident Risks: An

Assessment for Five U.S. Nuclear Power Plants, NUREG-1150.

US Nuclear Regulatory Commission (USNRC). (2002a). NRC Regulations (10CFR) Part

100 -- Reactor Site Criteria, 10CFR100.11.

Page: 165

US Nuclear Regulatory Commission (USNRC). (2002b). Regulatory Guide 1.174 - An
approach for Using Probabilistic Risk Assessment in Risk-Informed Decisions on
Plant-Specific Changes to the Licensing Basis.

US Nuclear Regulatory Commission (USNRC). (2003a). NRC Regulations (10CFR) Part

50 -- Domestic Licensing of Production and Utilization Facilities. Sec. 50.109
Backfitting.

US Nuclear Regulatory Commission (USNRC). (2003b). Domestic Licensing of

Production and Utilization Facilities 10CFR50. U.S. Government Printing Office.

US Nuclear Regulatory Commission (USNRC). (2009). NRC Regulations (10CFR) Part

52 -- Licenses, Certifications, and Approvals for Nuclear Power Plants.

US Nuclear Regulatory Commission (USNRC). (2011a). State-of-the-Art Reactor

Consequence Analyses (SOARCA).

US Nuclear Regulatory Commission (USNRC). (2011b). Risk-Informed Regulation.

NRC: Glossary. Retrieved from http://www.nrc.gov/reading-rm/basic-
ref/glossary/risk-informed-regulation.html

US Nuclear Regulatory Commission (USNRC). (2011c). Resolution of Generic Safety

Issues: Appendix G. Generic Issues Program Current and Historical Procedures
(NUREG-0933, Main Report with Supplements 1–33). Retrieved from
http://www.nrc.gov/reading-rm/doc-
collections/nuregs/staff/sr0933/appendices/appg.html#sec-1

USNRC. (2004). Regulatory Analysis Guidelines of the U.S. Nuclear Regulatory

Commission NUREG/BR-0058.

Van Dijk, E., & Zeelenberg, M. (2003). The discounting of ambiguous information in

economic decision making. Journal of Behavioral Decision Making, 16(5), 341–
352.

Von Neumann, J., & Morgenstern, O. (1944). Theory of Games and Economic Behavior.

Princeton University Press.

Weary, G., Vaughn, L., Stewart, B., & Edwards, J. A. (2006). Adjusting for the

correspondence bias: Effects of causal uncertainty, cognitive busyness, and causal
strength of situational information. Journal of Experimental Social Psychology,
(42), 87–94.

Weil, R., & Apostolakis, G. E. (2001). A methodology for the prioritization of operating

experience in nuclear power plants. Reliability Engineering & System Safety,
74(1), 23–42.

Page: 166

Welch, G., & Bishop, G. (1997). SCAAT: Incremental Tracking with Incomplete
Information. Association for Computing Machinery (ACM).

Wickens, C. D., Gempler, K., & Morphew, M. E. (2000). Workload and reliability of

predictor displays in aircraft traffic avoidance. Transportation Human Factors
Journal, 2(2), 99–126.

Wilson, J. R. (1993). SHEAN (Simplified Human Error Analysis code) and automated

THERP. Presented at the GOCO database meeting, Augusta, GA: Westinghouse
Idaho Nuclear Company.

Youngblood, R. W. (2011, August 8). Post RAPS Presentation Discussion at Idaho

National Lab.

Youngblood, R. W., Mousseau, V. A., Kelly, D. L., & Dinh, T.-N. (2010a). Risk-

Informed Safety Margin Characterization (RISMC): Integrated Treatment of
Aleatory and Epistemic Uncertainty in Safety Analysis. Presented at the 8th
international Topical Meeting on Nuclear Thermal-Hydraulics, Operation and
Safety (NUTHOS-8), Shanghai, China.

Youngblood, R. W., Mousseau, V. A., Kelly, D. L., & Dinh, T.-N. (2010b, October 10).

Risk-Informed Safety Margin Characterization (RISMC): Integrated Treatment of
Aleatory and Epistemic Uncertainty in Safety Analysis. Presented at the 8th
international Topical Meeting on Nuclear Thermal-Hydraulics, Operation and
Safety (NUTHOS-8), Shanghai, China.

Youngblood, R. W., Nourgaliev, R. R., Kelly, D. L., Smith, C. L., & Dinh, T.-N. (2011).

Heartbeat Model for Component Failure Time in Simulation of Plant Behavior. In
ANSA PSA 2011. Presented at the International Topical Meeting on Probabilistic
Safety Assessment and Analysis, Wilmington, NC: American Nuclear Society.

Zhou, H., Gomez-Hernandez, J. J., Hendricks Franssen, H.-J., & Li, L. (2011). An

Approach to Handling Non-Gaussianity of Parameters and State Variables in
Ensemble Kalman Filtering. Advances in Water Resources.

Zhu, D., Chang, Y. H., & Mosleh, A. (2008). The Use of Distributed Computing for

Dynamic PRA: The ADS Approach. Presented at the International Conference on
Probability Safety Assessment and Management (PSAM 9), Hong Kong, China.

Zio, E., & Maio, F. D. (2009). Processing dynamic scenarios from a reliability analysis of

a nuclear power plant digital instrumentation and control system. Annals of
Nuclear Energy, 36, 1386–1399.

Page: 167

Appendices

Page: 168

A. Appendix A: RAPSS-STA Source Code

This Appendix contains 12 sections. Appendices A.1-A.4 are C++ main and

header files written by Kevin Makinson. Appendices A.5-A.9 are R scripts written by

Kevin Makinson. Appendices A.10 and A.11 contain the C++ main and header files for

the mean shift algorithm, originally written by Diego Mandelli, and modified by Kevin

Makinson. Appendix A.12 is a sample input file for RAPSS-STA. Readers are

encouraged to read through Appendix B, while referencing Appendix A. Appendix B

contains valuable explanations of the nuts and bolts of RAPSS-STA, Specifically

Appendix B.6.1contains an explanation of the Automated Linear Approximation Interval

Sequencer, which was crucial to the success of principal components analysis.

Page: 169

A.1. RAPSmain.cpp Source Code

001
002 // 3/6/12
003 // Oregon State University
004 // Written by Kevin Makinson
005 // This is the main control structure for RAPSS
006
007 #include <iostream>
008 #include <string>
009 #include <fstream>
010 #include "BloodAndGuts.h"
011 #include "CycleR5.h"
012 #include <stdlib.h> //for system calls in UNIX
013 #include <stdio.h> //for removing shell files.
014
015 //R5 parameters 100 cards
016 string R5Input;
017 string R5Output;
018 string R5H2oData;
019 double EndTime;
020 string MinTimeStep;
021 double MinTimeStepTemp;
022 double MaxTimeStep;
023 int CtlMode;
024 int MinEdit;
025 int MajEdit;
026 int RstFreq;
027 //R, PCA, MSA parameters 200 cards
028 double PCAthreshold; //for PCA - how much variance do you want to capture?
029 double BW; //for MSA - How big do you want your clusters?
030 string libloc; //for R library files to download into
031 string Rrepos;
032 //RAPS parameters 300 cards
033 string R5ExePath;
034 string InDir;
035 bool dataOut;

Page: 170

036 int requestTh=1;
037 double TStep;//troubleshooting
038 double T1Step;
039 void RAPSinputFile(string RAPSinput); //function that reads input file, defined below
040 string FTAdir;
041 string FTAfileName;
042 string realTimeSimData;
043 int numOfCutSets;
044 vector <string> stateVarTripNames;
045 vector <string> stateVarCodes;
046 vector <string> stateVarEquiv;
047 vector <double> yellowTripThresh;
048 vector <double> redTripThresh;
049 vector <double> FTApars;
050 vector<size_t> positions;
051 size_t pos;
052 double temp;
053
054 int main () {
055 const char *InitShOutput = "InitRun.sh";
056 const char *RstShOutput = "rst.sh";
057 string ProbType = "restart";
058 string ProbOpt = "transnt";
059 string R5RstData = "rst.r";
060 string answer = "y";
061 string RAPSinput;
062 string dos2unixInput;
063
064 system(ChangeFont(2));
065 cout << "Welcome to RAPSS" << endl << "Written by Kevin Makinson" << endl
066 << "Last compiled on " << __DATE__ << " at " << __TIME__ << endl
067 << "Begin run? (y/n)" << endl;
068 cin >> answer;
069
070 if ((answer == "n") || (answer == "N") || (answer == "no") || (answer=="No")) {
071 cout << "Thank you for running RAPSS" << endl;
072 system(ResetFont());
073 return 0;

Page: 171

074 }
075 while ((answer != "n") && (answer != "y") && (answer != "Y") && (answer != "N") &&
076 (answer != "yes") && (answer != "no") && (answer != "Yes") && (answer != "No")) {
077 cout << "You did not enter a \"y\" or an \"n\"!" << endl;
078 cout << "Begin run? (y/n)" << endl;
079 cin >> answer;
080 }
081
082 cout << "Please type the name of RAPSS input file (e.g., input.raps): ";
083 cin >> RAPSinput;
084 cout << endl;
085
086 ifstream fin(RAPSinput.c_str());
087 while (!fin) { //added the break statement
088 cout << "File does not exist!" << endl
089 << "Please carefully type the name of RAPS input file, or type \"exit\": ";
090 cin >> RAPSinput;
091 cout << endl;
092 ifstream fin(RAPSinput.c_str());
093 if (RAPSinput=="exit") {
094 cout << "Thank you for running RAPS" << endl;
095 system(ResetFont());
096 fin.close();
097 return 0;
098 }
099 else if (fin.good()) {break;} //added because the "while" statement doesn't work
100 }
101 fin.close();
102
103 RAPSinputFile(RAPSinput); //reads input file
104 string OutDir = (InDir + "/RAPS_data"); //Assigning Output Directory inside input directory
105 system(("rm -rf " + OutDir).c_str()); //this removes it if it already exists (to overwrite)
106 string CreateDataDir= ("mkdir -p " + OutDir);
107 system(CreateDataDir.c_str()); //creates a directory for data output
108 CycleR5(answer, ProbType, ProbOpt, EndTime, MinTimeStep, MaxTimeStep, CtlMode, MinEdit,
109 MajEdit, RstFreq, R5ExePath, R5RstData, R5H2oData, InitShOutput, RstShOutput, Rrepos,
110 libloc, PCAthreshold, BW, dataOut, InDir, OutDir, R5Input, R5Output, requestTh,
111 TStep, T1Step, FTAdir, FTAfileName, numOfCutSets, stateVarTripNames, stateVarCodes,

Page: 172

112 stateVarEquiv, yellowTripThresh, redTripThresh, FTApars, realTimeSimData);
113
114 cout << "Thank you for running RAPS" << endl;
115
116 system(ResetFont());
117 remove("ChangeFont.sh");
118 remove("ResetFont.sh");
119 remove("runFTA.sh");
120
121 return 0;
122 }
123
124
125 void RAPSinputFile(string RAPSinput) {
126 //variables for this program
127 int cardNo;
128 vector <string> inputVec;
129 inputVec = LoadFile(RAPSinput);
130
131 for (unsigned int i=0; i<(inputVec.size()); i++) {
132 if (inputVec[i][0] != '*') {
133 istringstream(string(inputVec[i].begin(), inputVec[i].begin()+3)) >> cardNo;
134 switch (cardNo) {
135 case 101: //R5 Parameters: Cards 100-199
136 R5Input = string((inputVec[i].begin()+4), inputVec[i].end());
137 break;
138 case 102:
139 R5Output= string((inputVec[i].begin()+4), inputVec[i].end());
140 break;
141 case 103:
142 R5H2oData= string((inputVec[i].begin()+4), inputVec[i].end());
143 break;
144 case 104:
145 istringstream(string((inputVec[i].begin()+4), inputVec[i].end())) >> EndTime;
146 break;
147 case 105:
148 istringstream(string((inputVec[i].begin()+4), inputVec[i].end())) >>
149 MinTimeStepTemp;

Page: 173

150 MinTimeStep=R5SciConv(MinTimeStepTemp);
151 break;
152 case 106:
153 istringstream(string((inputVec[i].begin()+4), inputVec[i].end()))
154 >> MaxTimeStep;
155 break;
156 case 107:
157 istringstream(string((inputVec[i].begin()+4), inputVec[i].end())) >> CtlMode;
158 break;
159 case 108:
160 istringstream(string((inputVec[i].begin()+4), inputVec[i].end())) >> MinEdit;
161 break;
162 case 109:
163 istringstream(string((inputVec[i].begin()+4), inputVec[i].end())) >> MajEdit;
164 break;
165 case 110:
166 istringstream(string((inputVec[i].begin()+4), inputVec[i].end())) >> RstFreq;
167 break;
168 case 201://R, PCA and MSA Parameters Cards 200-299
169 istringstream(string((inputVec[i].begin()+4), inputVec[i].end()))
170 >> PCAthreshold;
171 break;
172 case 202:
173 istringstream(string((inputVec[i].begin()+4), inputVec[i].end())) >> BW;
174 break;
175 case 203:
176 libloc=string((inputVec[i].begin()+4), inputVec[i].end());
177 break;
178 case 204:
179 Rrepos=string((inputVec[i].begin()+4), inputVec[i].end());
180 break;
181 case 301: //RAPS parameters 300 cards
182 R5ExePath=string((inputVec[i].begin()+4), inputVec[i].end());
183 break;
184 case 302:
185 istringstream(string((inputVec[i].begin()+4), inputVec[i].end())) >> dataOut;
186 break;
187 case 303:

Page: 174

188 InDir = string((inputVec[i].begin()+4), inputVec[i].end());
189 break;
190 case 304:
191 istringstream(string((inputVec[i].begin()+4), inputVec[i].end()))
192 >> requestTh;
193 break;
194 case 305:
195 istringstream(string((inputVec[i].begin()+4), inputVec[i].end())) >> TStep;
196 break;
197 case 306:
198 istringstream(string((inputVec[i].begin()+4), inputVec[i].end())) >> T1Step;
199 break;
200 case 307:
201 FTAdir = string((inputVec[i].begin()+4), inputVec[i].end());
202 break;
203 case 308:
204 FTAfileName = string((inputVec[i].begin()+4), inputVec[i].end());
205 break;
206 case 309:
207 istringstream(string((inputVec[i].begin()+4), inputVec[i].end()))
208 >> numOfCutSets;
209 break;
210 case 310:
211 positions.clear();
212 positions.push_back(0);
213 pos = string((inputVec[i].begin()+4), inputVec[i].end()).find(" ", 0);
214 if (pos==string::npos) {
215 stateVarTripNames.push_back(string((inputVec[i].begin()+4),
216 inputVec[i].end()));
217 } else {
218 while(pos !=string::npos) {
219 positions.push_back(pos);
220 pos = string((inputVec[i].begin()+4),
221 inputVec[i].end()).find(" ", pos+1);
222 }
223 for (int j=0; j<positions.size(); j++) {
224 if (j==0) {
225 stateVarTripNames.push_back(

Page: 175

226 string((inputVec[i].begin()+4+positions[j]),
227 (inputVec[i].begin()+4+positions[j+1])));
228 } else if (j==(positions.size()-1)) {
229 stateVarTripNames.push_back(
230 string((inputVec[i].begin()+5+positions[j]),
231 (inputVec[i].end())));
232 } else {
233 stateVarTripNames.push_back(
234 string((inputVec[i].begin()+5+positions[j]),
235 (inputVec[i].begin()+4+positions[j+1])));
236 }
237 }
238 }
239 break;
240 case 311:
241 positions.clear();
242 positions.push_back(0);
243 pos = string((inputVec[i].begin()+4), inputVec[i].end()).find(" ", 0);
244 if (pos==string::npos) {
245 stateVarCodes.push_back(string((inputVec[i].begin()+4),
246 inputVec[i].end()));
247 } else {
248 while(pos !=string::npos) {
249 positions.push_back(pos);
250 pos = string((inputVec[i].begin()+4),
251 inputVec[i].end()).find(" ", pos+1);
252 }
253 for (int j=0; j<positions.size(); j++) {
254 if (j==0) {
255 stateVarCodes.push_back(string((inputVec[i].begin()+
256 4+positions[j]),
257 (inputVec[i].begin()+4+positions[j+1])));
258 } else if (j==(positions.size()-1)) {
259 stateVarCodes.push_back(string((inputVec[i].begin()+
260 5+positions[j]),
261 (inputVec[i].end())));
262 } else {
263 stateVarCodes.push_back(string((inputVec[i].begin()+

Page: 176

264 5+positions[j]),
265 (inputVec[i].begin()+4+positions[j+1])));
266 }
267 }
268 }
269 break;
270 case 312:
271 positions.clear();
272 positions.push_back(0);
273 pos = string((inputVec[i].begin()+4), inputVec[i].end()).find(" ", 0);
274 if (pos==string::npos) {
275 stateVarEquiv.push_back(string((inputVec[i].begin()+4),
276 inputVec[i].end()));
277 } else {
278 while(pos !=string::npos) {
279 positions.push_back(pos);
280 pos = string((inputVec[i].begin()+4),
281 inputVec[i].end()).find(" ", pos+1);
282 }
283 for (int j=0; j<positions.size(); j++) {
284 if (j==0) {
285 stateVarEquiv.push_back(string((inputVec[i].begin()+
286 4+positions[j]),
287 (inputVec[i].begin()+4+positions[j+1])));
288 } else if (j==(positions.size()-1)) {
289 stateVarEquiv.push_back(string((inputVec[i].begin()+
290 5+positions[j]),
291 (inputVec[i].end())));
292 } else {
293 stateVarEquiv.push_back(string((inputVec[i].begin()+
294 5+positions[j]),
295 (inputVec[i].begin()+4+positions[j+1])));
296 }
297 }
298 }
299 break;
300 case 313:
301 positions.clear();

Page: 177

302 positions.push_back(0);
303 pos = string((inputVec[i].begin()+4),
304 inputVec[i].end()).find(" ", 0);
305 if (pos==string::npos) {
306 istringstream(string((inputVec[i].begin()+4),
307 inputVec[i].end())) >> temp;
308 yellowTripThresh.push_back(temp);
309 } else {
310 while(pos !=string::npos) {
311 positions.push_back(pos);
312 pos = string((inputVec[i].begin()+4),
313 inputVec[i].end()).find(" ", pos+1);
314 }
315 for (int j=0; j<positions.size(); j++) {
316 if (j==0) {
317 istringstream(string((inputVec[i].begin()+4+positions[j]),
318 (inputVec[i].begin()+4+positions[j+1]))) >> temp;
319 yellowTripThresh.push_back(temp);
320 } else if (j==(positions.size()-1)) {
321 istringstream(string((inputVec[i].begin()+5+positions[j]),
322 (inputVec[i].end()))) >> temp;
323 yellowTripThresh.push_back(temp);
324 } else {
325 istringstream(string((inputVec[i].begin()+5+positions[j]),
326 (inputVec[i].begin()+4+positions[j+1]))) >> temp;
327 yellowTripThresh.push_back(temp);
328 }
329 }
330 }
331 break;
332 case 314:
333 positions.clear();
334 positions.push_back(0);
335 pos = string((inputVec[i].begin()+4), inputVec[i].end()).find(" ", 0);
336 if (pos==string::npos) {
337 istringstream(string((inputVec[i].begin()+4),
338 inputVec[i].end())) >> temp;
339 redTripThresh.push_back(temp);

Page: 178

340 } else {
341 while(pos !=string::npos) {
342 positions.push_back(pos);
343 pos = string((inputVec[i].begin()+4),
344 inputVec[i].end()).find(" ", pos+1);
345 }
346 for (int j=0; j<positions.size(); j++) {
347 if (j==0) {
348 istringstream(string((inputVec[i].begin()+4+positions[j]),
349 (inputVec[i].begin()+4+positions[j+1]))) >> temp;
350 redTripThresh.push_back(temp);
351 } else if (j==(positions.size()-1)) {
352 istringstream(string((inputVec[i].begin()+5+positions[j]),
353 (inputVec[i].end()))) >> temp;
354 redTripThresh.push_back(temp);
355 } else {
356 istringstream(string((inputVec[i].begin()+5+positions[j]),
357 (inputVec[i].begin()+4+positions[j+1]))) >> temp;
358 redTripThresh.push_back(temp);
359 }
360 }
361 }
362 break;
363 case 315:
364 positions.clear();
365 positions.push_back(0);
366 pos = string((inputVec[i].begin()+4), inputVec[i].end()).find(" ", 0);
367 if (pos==string::npos) {
368 istringstream(string((inputVec[i].begin()+4),
369 inputVec[i].end())) >> temp;
370 FTApars.push_back(temp);
371 } else {
372 while(pos !=string::npos) {
373 positions.push_back(pos);
374 pos = string((inputVec[i].begin()+4),
375 inputVec[i].end()).find(" ", pos+1);
376 }
377 for (int j=0; j<positions.size(); j++) {

Page: 179

378 if (j==0) {
379 istringstream(string((inputVec[i].begin()+4+positions[j]),
380 (inputVec[i].begin()+4+positions[j+1]))) >> temp;
381 FTApars.push_back(temp);
382 } else if (j==(positions.size()-1)) {
383 istringstream(string((inputVec[i].begin()+5+positions[j]),
384 (inputVec[i].end()))) >> temp;
385 FTApars.push_back(temp);
386 } else {
387 istringstream(string((inputVec[i].begin()+5+positions[j]),
388 (inputVec[i].begin()+4+positions[j+1]))) >> temp;
389 FTApars.push_back(temp);
390 }
391 }
392 }
393 break;
394 case 316:
395 realTimeSimData = string((inputVec[i].begin()+4), inputVec[i].end());
396 break;
397 default:
398 cout << "Card not read:" << endl;
399 cout << string(inputVec[i].begin(), inputVec[i].begin()+3) << endl;
400 }
401 }
402 }
403 }

Page: 180

A.2. CycleR5.h Source Code

001 //Written By Kevin Makinson
002 //Oregon State University
003 //2/24/12
004 //This the structure that Cycles R5 and controls the parallel structure
005
006 #ifndef CycleR5_h
007 #define CycleR5_h
008 #include <sstream> //for appending strings
009 #include <stdlib.h> //for system calls in UNIX
010 #include <omp.h>
011 #include <time.h>
012 #include "OrganizeR5Output.h"
013 #include "MeanShift.h"
014
015 //using namespace std;
016
017 void CycleR5(string answer, string ProbType, string ProbOpt, double EndTime, string MinTimeStep,
018 double MaxTimeStep, int CtlMode, int MinEdit, int MajEdit, int RstFreq, string R5ExePath,
019 string R5RstData, string R5H2oData, const char *InitShOutput, const char *RstShOutput,
020 string Rrepos, string libloc, double PCAthreshold, double BW, bool dataOut, string InDir,
021 string OutDir, string R5Input, string R5Output, int requestTh, double TStep,
022 double T1Step, string FTAdir, string FTAfileName, int numOfCutSets,
023 vector <string> stateVarTripNames, vector <string> stateVarCodes,
024 vector <string> stateVarEquiv, vector <double> yellowTripThresh,
025 vector <double> redTripThresh, vector <double> FTApars, string realTimeSimData) {
026
027 //local defs
028 stringstream sstm;
029 bool next=false;
030 bool counted=false;
031 int th_id, nthreads; //thread identifier & # of threads
032 int Windex=0;
033 int timestep=1;
034 int numOfCycles=0;
035 int cycleCounter=1;

Page: 181

036 double p1; //threshold variables
037 double httemp; //threshold variables
038 double voidg; //threshold variables
039 double velgj; //threshold variables
040 double PStep = 2;
041 double firstRstNbr=0;
042 double t1, t2;
043 vector <double> keepGoingEndTime(requestTh, (EndTime+T1Step));
044 vector <double> RstNbr;
045 vector <int> EndByVec; //Terminate by Trip, Timestep, or Errors?
046 vector <vector <int> > EndBySumVec; //summary of how the scenarios terminated
047 vector <vector<string> > FormatData; //this is the data in string format
048 vector <int> translator; //translates scenario numbers to real scenario names
049 vector <string> ThDir; //name of thread directory
050 vector <int> keepGoing;
051 vector <int> prevKeepGoing(requestTh, 0);
052 vector <string> stateVarCodes2=stateVarCodes; //for when R5 deletes the 7th character
053 vector <int> stateVarNum(stateVarTripNames.size());
054 vector <double> R5Values (stateVarTripNames.size());
055 vector <vector <int> > clustMembers;
056 vector <vector <string> > cutSetVec;
057 vector <vector <string> > MCdataVec;
058 vector <vector <string > > fullSysData;
059 vector <vector <string > > realTimeData;
060 vector <vector <string> > transientExplanation; //explains transient in words
061 transientExplanation.resize(requestTh, vector<string> (0, " "));
062 vector<string> singleTransientExplanation;
063
064 string InitShFullPath;
065 string RstShFullPath;
066 string chmod = "chmod +x ";
067 string MkThDirPath; //make thread directory path
068 string MkThODirPath;
069 string MkThIDirPath;
070 string CsvFile;
071 string CsvFilePath;
072 string PrevR5RstOutput;
073 string R5RstInput;

Page: 182

074 string R5RstOutput;
075 string R5RstOutputPath;
076 string prpFile;
077 string mrpFile;
078 string sysDataFileName = (InDir + "/" + realTimeSimData);
079 string copyPath;
080 string extraTripInfo;
081
082 //deleting 7th character and adding " " to account for R5's funkiness
083 for (unsigned int i=0; i<stateVarCodes2.size(); i++) {
084 stateVarCodes2[i].replace(7, 1, " ");
085 }
086
087 //start by determining which transients to run from fault tree
088 cout << "Processing fault tree information..." << endl;
089 ftaFileFixer(FTAdir+ "/" +FTAfileName + "/" +FTAfileName+".fta");
090 doFTA(FTApars, FTAfileName, FTAdir);
091 prpFile=(FTAdir+ "/" +FTAfileName + "/" +FTAfileName+".prp");
092 mrpFile=(FTAdir+ "/" +FTAfileName + "/" +FTAfileName+".mrp");
093 cutSetVec= getCutSetData(prpFile);
094 MCdataVec= getMCdata(mrpFile);
095 if (numOfCutSets>cutSetVec.size()) {
096 cerr << endl <<
097 "Input error! Number of requested cutsets greater than size of cutsets"
098 << endl << "setting cutsets to maximum value" << endl;
099 numOfCutSets=cutSetVec.size();
100 }
101
102 vector <int> ThTransientTranslator(requestTh);
103 for (int i=0; i<requestTh; i++) {
104 ThTransientTranslator[i]=(i%numOfCutSets);
105 }
106
107 //---
108 //Control structure for RAPS, gigantic while-loop
109 while ((answer == "y") || (answer == "yes") || (answer == "Y") || (answer == "Yes")) {
110 Windex++;
111 sstm << "rst" << Windex << ".p"; //adding index to the string

Page: 183

112 R5RstOutput = sstm.str();
113 sstm.str(""); //clearing stringstream
114 sstm << "rst" << Windex << ".i"; //adding index to the string
115 R5RstInput = sstm.str();
116 sstm.str("");
117 sstm << "rst" << Windex-1 << ".p"; //adding previous index to the string
118 PrevR5RstOutput = sstm.str();
119 sstm.str("");
120 sstm << "rst" << Windex << ".csv";
121 CsvFile = sstm.str();
122 sstm.str("");
123 RstNbr.clear(); //resets RstNbr
124 EndByVec.clear(); //resets EndByVec
125
126 //User interface
127 if (Windex == 1) {
128 RstNbr.push_back(0);
129 }
130
131 else if (Windex==2) { //if it's the second time through (first restart)
132 firstRstNbr=FindRstNbr(OutDir + "/" + R5Output);
133 switch (R5EndBy(OutDir + "/" + R5Output)) {
134 case 1:
135 EndTime += T1Step;
136 cout << "Transient ended by end of alloted time." << endl;
137 break;
138 case 2:
139 cout << "Transient ended by trip" << endl;
140 break;
141 case 3:
142 cout << "Transient ended by reaching steady state." << endl;
143 break;
144 case 0:
145 cout << "Transient ended by errors!" << endl;
146 }
147 }
148
149 //Run RELAP with the given parameters

Page: 184

150 if (Windex == 1) {
151 cout << endl <<
152 "The RAPSS engine will first perform the initial run for a RELAP5 file."
153 << endl;
154 cout << "End time: " << fixed << setprecision(2) << EndTime << " s" << endl
155 << endl;
156 system("read -p \"Press the [Enter] key to continue...\"");
157 cout << "initializing RAPSS;" << endl
158 << "downloading and installing R libraries from the internet..." << endl;
159 t1=omp_get_wtime(); //starts timer
160 initR(Rrepos, libloc, PCAthreshold, dataOut, OutDir, stateVarTripNames,
161 stateVarCodes, stateVarEquiv, yellowTripThresh, redTripThresh);
162 system("R CMD BATCH --slave R_data/initPCA.r R_data/initPCA.Rout");
163 cout << "Performing initial RELAP5 run..." << endl;
164 InitShFullPath = WriteInitShFile(InitShOutput, InDir, R5ExePath, R5Input,
165 R5Output, R5RstData, R5H2oData, OutDir);
166 system((chmod + InitShFullPath).c_str());
167 system(ChangeFont(4));
168 system(InitShFullPath.c_str());
169 system(ChangeFont(2));
170 cout << "Reorganizing RELAP5 output into csv file..." << endl;
171 CsvFilePath = (OutDir + "/" + "initout.csv");
172 OrganizeR5Output((OutDir + "/" + R5Output), CsvFilePath, 0);
173 cout << endl;
174 }
175 else {
176 if (numOfCycles<=cycleCounter) {
177 cout << "Next run index is " << Windex << ". Continue run? (y/n)" << endl;
178 cin >> answer;
179 //if the program doesn't recognize, continue to tell the use to enter a y or n
180 while ((answer != "n") && (answer != "y") && (answer != "Y") && (answer != "N")
181 && (answer != "yes") && (answer != "no") && (answer != "Yes") &&
182 (answer != "No")) {
183 cout << "You did not enter a \"y\" or an \"n\"!" << endl;
184 cout << "Next run index is " << Windex << " Continue run? (y/n)" << endl;
185 cin >> answer;
186 }
187 if ((answer == "n") || (answer == "no") || (answer == "N") || (answer == "No")) {

Page: 185

188 break;
189 }
190 cout << "How many cycles would you like to run? " << endl;
191 cin >> numOfCycles;
192 if (numOfCycles<1) {break;}
193 cycleCounter=0;
194 system("read -p \"Press the [Enter] key to continue...\"");
195 }
196 cycleCounter++;
197 cout << endl << "The RAPS engine will now perform the restart run" << endl;
198 cout << "End time for one cycle: " << fixed << setprecision(2)
199 << EndTime << " s" << endl;
200 cout << "Input file: " << R5RstInput << endl;
201 cout << "Output file: " << R5RstOutput << endl;
202 vector <string> ThDir; //resets the vector
203
204 if (Windex==2) {
205 fullSysData=loadSystemData(sysDataFileName);
206 timestep=1; //writes a single timestep to "realTimeData.txt"
207 realTimeData=realTimeSimulator(fullSysData, timestep, OutDir);
208 } else {
209 realTimeData=realTimeSimulator(fullSysData, timestep, OutDir);
210 }
211
212
213 t2=omp_get_wtime(); //grabs time
214 timestep = int(t2-t1);
215 cout << "Time sampled: " << timestep << " s" << endl << endl;
216 //start parallel processing for restart runs.
217 if (requestTh>omp_get_max_threads()) { //need ()?
218 requestTh=omp_get_max_threads();
219 omp_set_num_threads(requestTh);
220 cerr <<
221 "Number of threads greater than maximum allowable by the system."
222 << endl << "Setting number of threads to " <<
223 omp_get_max_threads() << endl;
224 system("read -p \"Press the [Enter] key to continue...\"");
225 }

Page: 186

226 else if (requestTh>1) {
227 omp_set_dynamic(0); // turn off dynamic teams
228 omp_set_num_threads(requestTh);
229 }
230 else {
231 cerr << "Invalid thread number request. Setting number of threads to 2."
232 <<endl;
233 omp_set_num_threads(2);
234 system("read -p \"Press the [Enter] key to continue...\"");
235 }
236 cout << "Spawning threads, sampling MASLWR data, writing restart files..."
237 << endl;
238 cout << "Prepare for RELAP..." << endl;
239 //Begin parallel processing section
240 system(ChangeFont(4));
241 #pragma omp parallel private(th_id, RstShFullPath, singleTransientExplanation)
242 shared(nthreads, transientExplanation) //only on this line for print version
243 {
244 th_id = omp_get_thread_num();
245 #pragma omp critical //restricts the execution of the associated statement
246 {
247 srand(time(NULL));
248 ThDir.push_back(NameDir(th_id)); //puts in directory names
249 if (Windex== 2) {
250 MkThDirPath = ("mkdir " + OutDir + "/" + NameDir(th_id));
251 MkThODirPath = ("mkdir " + OutDir + "/" + NameDir(th_id) +
252 "/outputs");
253 MkThIDirPath = ("mkdir " + OutDir + "/" + NameDir(th_id) +
254 "/inputs");
255 system(MkThDirPath.c_str());
256 system(MkThODirPath.c_str());
257 system(MkThIDirPath.c_str());
258 singleTransientExplanation=RstIptGen(R5Output, R5RstInput,
259 NameDir(th_id), ProbType, ProbOpt,
260 firstRstNbr, EndTime, MinTimeStep, MaxTimeStep, CtlMode, MinEdit,
261 MajEdit, RstFreq, th_id, OutDir, prevKeepGoing,
262 MCdataVec[ThTransientTranslator[th_id]], stateVarTripNames,
263 stateVarCodes, stateVarEquiv, yellowTripThresh, redTripThresh,

Page: 187

264 requestTh, realTimeData);
265 } else if (prevKeepGoing[th_id]==1) { //continue's from spot left off
266 keepGoingEndTime[th_id]+=TStep;
267 singleTransientExplanation=RstIptGen(R5Output, R5RstInput,
268 NameDir(th_id), ProbType, ProbOpt,
269 RstNbr[th_id], keepGoingEndTime[th_id], MinTimeStep, MaxTimeStep,
270 CtlMode, MinEdit, MajEdit, RstFreq, th_id, OutDir,
271 prevKeepGoing, MCdataVec[ThTransientTranslator[th_id]],
272 stateVarTripNames, stateVarCodes, stateVarEquiv,
273 yellowTripThresh, redTripThresh, requestTh, realTimeData);
274 } else {
275 singleTransientExplanation=RstIptGen(R5Output, R5RstInput,
276 NameDir(th_id), ProbType, ProbOpt,
277 firstRstNbr, EndTime, MinTimeStep, MaxTimeStep, CtlMode, MinEdit,
278 MajEdit, RstFreq, th_id, OutDir, prevKeepGoing,
279 MCdataVec[ThTransientTranslator[th_id]], stateVarTripNames,
280 stateVarCodes, stateVarEquiv, yellowTripThresh, redTripThresh,
281 requestTh, realTimeData);
282 }
283 RstShFullPath = WriteRstShFile(RstShOutput, InDir, R5ExePath,
284 NameDir(th_id), R5RstData, R5RstInput, R5RstOutput,
285 R5H2oData, Windex, OutDir);
286 }
287
288 #pragma omp barrier //wait to run until all the restart files are written
289 system((chmod + RstShFullPath).c_str());
290 system(RstShFullPath.c_str());//this actually runs it
291 #pragma omp single
292 {
293 nthreads = omp_get_num_threads();
294 }
295
296 #pragma omp critical //maybe atomic?
297 {
298 transientExplanation[th_id]=singleTransientExplanation;
299
300 }
301

Page: 188

302 } // end of parallel section!
303
304 system(ChangeFont(2));
305 cout << endl << "RELAP run on " << nthreads << " simultaneous threads" << endl;
306 EndByVec.clear(); //resets EndByVec
307 RstNbr.clear(); //resets RstNbr
308 for (int i=0; i<nthreads; i++) {
309 EndByVec.push_back(R5EndBy(OutDir + "/" + NameDir(i) +
310 "/outputs/" +R5RstOutput));
311 RstNbr.push_back(FindRstNbr(OutDir + "/" + NameDir(i) +
312 "/outputs/" +R5RstOutput));
313 }
314 EndBySumVec=EndBySummary(EndByVec, nthreads);
315 for (unsigned int j=0; j<EndBySumVec.size()-1; j++) {
316 if (!EndBySumVec[j].empty()) {
317 cout << "Scenarios: " << endl;
318 for (unsigned int i=0; i<EndBySumVec[j].size(); i++) {
319 if (EndBySumVec[j][i]==1) {
320 cout << i << ", ";
321 }
322 }
323 cout << endl;
324 cout << "ended by ";
325 switch (j) {
326 case 0:
327 cout << "errors!" << endl;
328 break;
329 case 1:
330 cout << "end of allotted time." << endl;
331 break;
332 case 2:
333 cout << "trip " << endl;
334 // break;
335 //case 3:
336 // cout << "reaching steady state." << endl;
337 }
338 cout << endl;
339 }

Page: 189

340 }
341
342 //structure of updating keepGoing[]
343 for (int i=0; i<nthreads; i++) {
344 next=false;
345 CsvFilePath = (OutDir + "/" + NameDir(i) + "/outputs/" + CsvFile);
346 R5RstOutputPath = (OutDir + "/" + NameDir(i) + "/outputs/" + R5RstOutput);
347 if (EndBySumVec[0][i]==0) { //if it did not end by errors, then organize.
348 FormatData=OrganizeR5Output(R5RstOutputPath, CsvFilePath, i);
349 }
350 int counter=0;
351 if (EndBySumVec[0][i]==0 && counted==false) {
352 for (int k=0; k<FormatData[0].size(); k++) {
353 if ((FormatData[0][k]==(stateVarTripNames[counter])) &&
354 (FormatData[1][k]==(stateVarCodes[counter]) ||
355 FormatData[1][k]==(stateVarCodes2[counter]))) {
356 stateVarNum[counter] = k;
357 if (counter==(stateVarCodes.size()-1)) {
358 counted=true;
359 break;
360 }
361 else {counter++;} //counter is the position of the state var
362 }
363 }
364 }
365 //checks thresholds and pushes "keep going" threads on to a vector
366 for (unsigned int j=4; j<(FormatData.size()); j++) {
367 if (next==true) {break;}
368 for (int n=0; n<stateVarCodes.size(); n++) {
369 //coercing strings to doubles
370 double temp;
371 istringstream(FormatData[j][stateVarNum[n]]) >> temp;
372 R5Values[n]=temp;
373 if ((stateVarEquiv[n]=="lt") && (R5Values[n]<yellowTripThresh[n]) &&
374 (FormatData[j][stateVarNum[n]]!="")) {
375 keepGoing.push_back(1);
376 next=true;
377 break;

Page: 190

378 }
379 if ((stateVarEquiv[n]=="gt") && (R5Values[n]>yellowTripThresh[n]) &&
380 (FormatData[j][stateVarNum[n]]!="")) {
381 keepGoing.push_back(1);
382 next=true;
383 break;
384 }
385 if (j==(FormatData.size()-1)) {
386 keepGoing.push_back(0); //if nothing needs to be flagged, push 0
387 break;
388 }
389 }
390 }
391 }
392 for (unsigned int i=0; i<EndBySumVec[2].size(); i++) {
393 if (EndBySumVec[2][i] == 1) { //if it's been flagged to keep going, & tripped
394 keepGoing[i]=0; //remove the keep going flag
395 keepGoingEndTime[i]=EndTime; //resets keepGoingEndTime for flagged
396 }
397 }
398 if (Windex>=3) { // if something is flagged, don't cluster it
399 for (unsigned int i=0; i<prevKeepGoing.size(); i++) {
400 if (prevKeepGoing[i]==1) {
401 EndBySumVec[1][i]=0; //don't do clustering on this element
402 }
403 }
404 }
405
406 int EndByTimeStepCounter=0;
407 int EndByTripCounter=0;
408 for (unsigned int i=0; i<EndBySumVec[1].size(); i++) {
409 if (EndBySumVec[1][i]==1) {EndByTimeStepCounter++;}
410 }
411 for (unsigned int i=0; i<EndBySumVec[2].size(); i++) {
412 if (EndBySumVec[2][i]==1) {EndByTripCounter++;}
413 }
414
415 translator=updateRwindex(Windex, nthreads, EndBySumVec, EndByTripCounter,

Page: 191

416 EndByTimeStepCounter, prevKeepGoing, MCdataVec, ThTransientTranslator,
417 timestep);
418
419 //goes between MSA indexes and thread indexes
420 system("R CMD BATCH R_data/updateRwindex.r R_data/updateRwindex.Rout");
421
422 if (EndByTripCounter==0) {
423 cerr <<"No scenarios ended by trip, skipping plotting alerts ..." << endl;
424 } else {
425 cout << "Plotting tripped data..." << endl;
426 system("R CMD BATCH display.r R_data/display.Rout");
427 }
428
429 //adding extra info about the trip from a txt file written by R
430 //-------
431 for (int i=0; i<nthreads; i++) {
432 if (EndBySumVec[2][i]==1) {
433 sstm << OutDir << "/tripRst" << Windex << "_Sc" << i << ".txt";
434 extraTripInfo = sstm.str();
435 sstm.str("");
436 transientExplanation[i].push_back(LoadFile(extraTripInfo)[0]);
437 system(("rm " + extraTripInfo).c_str()); //removing temporary file
438 }
439 }
440
441 if (EndByTimeStepCounter<2) {
442 cerr << "Less than two scenarios completed time histories without flags."
443 << endl << "Skipping scenario clustering..." << endl;
444 } else {
445 cout << "Extracting and organizing data; performing PCA..." << endl;
446 system("R CMD BATCH PCA.R R_data/PCA.Rout");
447 cout << "Performing MSA..." << endl;
448 clustMembers=MeanShift(Windex, BW, OutDir, EndBySumVec[1], translator);
449 cout << "Rearranging, outputting and plotting data..." << endl;
450 system("R CMD BATCH unMSAPCA.R R_data/unMSAPCA.Rout");
451 //output
452 htmlDisplayWriter(OutDir, InDir, Windex, EndBySumVec, keepGoing,
453 clustMembers, transientExplanation);

Page: 192

454 }
455 //clear keepGoing[]
456 prevKeepGoing.clear();
457 prevKeepGoing=keepGoing;
458 keepGoing.clear();
459 }
460 }
461 }
462
463 #endif

Page: 193

A.3. BloodAndGuts.h Source Code

0001 // Created by Kevin Makinson
0002 // 2/22/12
0003 // This files contains the misc functions for RAPSS-STA
0004
0005 #ifndef BloodAndGuts_h
0006 #define BloodAndGuts_h
0007 #include <time.h>
0008 #include <vector>
0009 #include <sstream> //for appending strings
0010 #include <iomanip> // for showpoint
0011 #include <stdlib.h> //for system calls in UNIX
0012 #include <fstream>
0013 #include <algorithm>
0014 #include <sstream>
0015 using namespace std;
0016 string author = "Kevin Makinson";
0017
0018 //Serch function returns a vector with the line numbers of where the key is
0019 vector<int> SearchVec(vector<string> &text, string key) {
0020 //returns a vector of the line numbers of the search term.
0021 vector<int> LineNums;
0022 size_t found;
0023 bool FoundOne = false;
0024 int size = text.size();
0025 for (int i=0; i<size; i++) {
0026 found=text[i].find(key);
0027 if (found!=string::npos) {
0028 LineNums.push_back(i);
0029 FoundOne = true;
0030 }
0031 else if (FoundOne == false && i==(size-1)) {
0032 //Since there is no line "0" this will signify an error
0033 LineNums.push_back(0);
0034 }
0035 }

Page: 194

0036 return LineNums;
0037 }
0038
0039 vector<string> LoadFile(string FullFilePath) {
0040 string line;
0041 int size = 0;
0042 ifstream fin(FullFilePath.c_str());
0043 //counting lines
0044 while (getline(fin, line)) {
0045 size++;
0046 }
0047 vector<string> text(size, "n/a");
0048 //This resets fin to the begining
0049 fin.clear();
0050 fin.seekg(0);
0051 //loading the file into a vector of strings: "text"
0052 for (int i=0; i<size; i++) {
0053 getline(fin, text[i]);
0054 }
0055 fin.close();
0056 return text;
0057 }
0058
0059 //This function searches for the restart number in an R5 output file
0060 //and returns the restart number
0061 double FindRstNbr(string R5OutputFile) {
0062 //local Declartions
0063 string key = "0---Restart no.";
0064 double RstNbr;
0065 string RstNbrString;
0066 int KeyStringSize=15;
0067 vector<int> LineNums;
0068 //Loading the file into a vector called "text"
0069 vector<string> text = LoadFile(R5OutputFile);
0070 //Search for the line number of the key
0071 LineNums = SearchVec(text, key);
0072 //Start at the end of the key string character on the line
0073 for (int i=KeyStringSize; i<(KeyStringSize+10); i++) {

Page: 195

0074 RstNbrString += text[LineNums.back()][i];
0075 if ((text[LineNums.back()][i])==('w'))
0076 break;
0077 }
0078 //change the string to a double
0079 istringstream(RstNbrString) >> RstNbr;
0080 return (RstNbr);
0081 }
0082
0083 //This tells the outside world how the R5 terminated
0084 //1=TimeStep, 2=Trip, 3=Steady State, 0=Error
0085 int R5EndBy(string FileName) {
0086 vector<string> text = LoadFile(FileName);
0087 string TimeStep = "0Transient terminated by end of time step cards.";
0088 string TimeStep3D = " Transient terminated by end of time step cards.";
0089 string Trip = "0Transient terminated by trip.";
0090 string Trip3D = " Transient terminated by trip.";
0091 string sState = "0Transient has reached steady state.";
0092 string fail = "0******** Transient terminated by failure.";
0093 int EndBy;
0094 if (text.back()==fail) { //can't use a switch statement for strings
0095 EndBy=0;
0096 } else if((text.back()==TimeStep) || (text.back()==TimeStep3D)) {
0097 EndBy=1;
0098 } else if ((text.back()==Trip) || (text.back()==Trip3D)) {
0099 EndBy=2;
0100 } else if (text.back()==sState) {
0101 EndBy=3;
0102 }
0103 return EndBy;
0104 }
0105
0106 //This function expects a vector EndByVec, and returns a 2D vector with a summary of the
0107 //threads that ended a certain way, 1: time, 2:Trip, 3: Steady State, 0: Errors
0108 //9/4/12 changed to just output 0s and 1s instead of th numbers
0109 vector <vector <int> > EndBySummary(vector<int> EndByVec, int nthreads) {
0110 vector <int> temp0;
0111 vector <int> temp1;

Page: 196

0112 vector <int> temp2;
0113 vector <int> temp3;
0114 vector <vector <int> > EndBySumVec;
0115 for (int i=0; i<nthreads; i++) {
0116 switch (EndByVec[i]) {
0117 case 0:
0118 temp0.push_back(1);
0119 temp1.push_back(0);
0120 temp2.push_back(0);
0121 temp3.push_back(0);
0122 break;
0123 case 1:
0124 temp0.push_back(0);
0125 temp1.push_back(1);
0126 temp2.push_back(0);
0127 temp3.push_back(0);
0128 break;
0129 case 2:
0130 temp0.push_back(0);
0131 temp1.push_back(0);
0132 temp2.push_back(1);
0133 temp3.push_back(0);
0134 break;
0135 case 3:
0136 temp0.push_back(0);
0137 temp1.push_back(0);
0138 temp2.push_back(0);
0139 temp3.push_back(1);
0140 }
0141 }
0142 EndBySumVec.push_back(temp0);
0143 EndBySumVec.push_back(temp1);
0144 EndBySumVec.push_back(temp2);
0145 EndBySumVec.push_back(temp3);
0146 return EndBySumVec;
0147 }
0148
0149 //This guy converts between how the rest of the world does scientific notation

Page: 197

0150 //and how R5 does it.
0151 string R5SciConv(double num) {
0152 //convert double to string
0153 stringstream sstm;
0154 sstm << scientific << setprecision(2) << num;
0155 string StringNum = sstm.str();
0156 sstm.str("");
0157 //removing the "e"
0158 return StringNum.erase(4,1);
0159 }
0160
0161 string WriteInitShFile (const char *ShOutput, string InDir, string R5ExePath, string R5Input,
0162 string R5Output, string R5RstData, string R5H2oData, string OutDir) {
0163 string FullFilePath = (OutDir + "/" + ShOutput);
0164 ofstream fout (FullFilePath.c_str());
0165 fout << "cd " << R5ExePath << endl;
0166 fout << "relap5.x " << "-i " << InDir << "/" << R5Input << " -o " << OutDir << "/"
0167 << R5Output << " -r " << OutDir << "/" << R5RstData << endl;
0168 return (FullFilePath);
0169 }
0170
0171 string WriteRstShFile (const char *RstShOutput, string InDir, string R5ExePath, string ThDir,
0172 string R5RstData, string R5RstInput, string R5RstOutput, string R5H2oData,
0173 int Windex, string OutDir) {
0174 string FullFilePath = (OutDir + "/" + ThDir + "/" + RstShOutput);
0175 ofstream fout (FullFilePath.c_str());
0176 if (Windex==2) {
0177 fout << "cp " << OutDir << "/" << R5RstData << " " << OutDir << "/" << ThDir << endl;
0178 fout << "cp " << InDir << "/Alert.gif " << OutDir << endl; //alerts
0179 fout << "cp " << InDir << "/tswtabs.css " << OutDir << endl; //buttons
0180 }
0181 fout << "cd " << R5ExePath << endl;
0182 fout << "relap5.x " << "-i " << OutDir << "/" << ThDir << "/inputs/" << R5RstInput
0183 << " -o " << OutDir << "/" << ThDir << "/outputs/" << R5RstOutput << " -r "
0184 << OutDir << "/" << ThDir << "/" << R5RstData << endl;
0185 return (FullFilePath);
0186 }
0187

Page: 198

0188 //this initializes R with the correct libraries and initial conditions for PCA
0189 void initR(string Rrepos, string libloc, double PCAthreshold, bool dataOut, string OutDir,
0190 vector <string> stateVarTripNames, vector <string> stateVarCodes,
0191 vector <string> stateVarEquiv, vector <double> yellowTripThresh,
0192 vector <double> redTripThresh) {
0193 string MkLibDir = ("mkdir -p " + libloc);
0194 string MkRdataDir = ("mkdir -p R_data");
0195 string RinpPath= ("R_data/initPCA.r");
0196 system(MkLibDir.c_str());
0197 system(MkRdataDir.c_str());
0198 ofstream fout (RinpPath.c_str());
0199 ifstream fin((libloc+ "/abind").c_str());
0200 //comments section of input file
0201 fout << "#!/usr/bin/Rscript" << endl;
0202 fout << "#" << string(3, ' ') << __DATE__ << endl;
0203 fout << "#" << string(3, ' ') << "Written by " << author << endl;
0204 fout << "#" << string(3, ' ')
0205 <<"This file loads the libraries and initial parameters in R"<< endl;
0206 fout << "#\n#\n#" << string(70, '-') << endl; //end comments
0207 fout << "rm(list=ls())" << endl << endl;
0208 fout << "Rrepos<-\"" << Rrepos << "\"" << endl << "libloc<-\"" << libloc << "\"" << endl;
0209 fout << "threshold<-" << PCAthreshold << endl;
0210 fout << "IODir<-\"" << OutDir <<"\"" << endl << "libloc<-\"" << libloc <<"\"" << endl;
0211 fout << "dataOut<-" << dataOut << endl;
0212 if(!fin.good()) { //don't install if already installed
0213 fout << "install.packages(\"corpcor\", repos=Rrepos, lib=libloc)" << endl;
0214 fout << "install.packages(\"abind\", repos=Rrepos, lib=libloc)" << endl;
0215 fout << "install.packages(\"MASS\", repos=Rrepos, lib=libloc)" << endl;
0216 fin.close();
0217 }
0218
0219 //thresholds
0220 fout << "thresholds<-rbind(" << yellowTripThresh[0] << ","
0221 << redTripThresh[0] << ")" << endl;
0222 for (unsigned int i=1; i<yellowTripThresh.size(); i++) {
0223 fout << "thresholds<-cbind(thresholds, rbind(" << yellowTripThresh[i] << ","
0224 << redTripThresh[i] << "))" << endl;
0225 }

Page: 199

0226
0227 fout << "stateVarTripNames <- c(\"";
0228 for (unsigned int i=0; i<stateVarTripNames.size(); i++) {
0229 if (i==0) {
0230 fout << stateVarTripNames[i];
0231 } else {
0232 fout << "\", \"" << stateVarTripNames[i];
0233 }
0234 }
0235 fout << "\")" << endl;
0236
0237 fout << "equivalence <- c(\"";
0238 for (unsigned int i=0; i<stateVarEquiv.size(); i++) {
0239 if (i==0) {
0240 fout << stateVarEquiv[i];
0241 } else {
0242 fout << "\", \"" << stateVarEquiv[i];
0243 }
0244 }
0245 fout << "\")" << endl;
0246
0247 fout << "stateVarCodes <- c(\"";
0248 for (unsigned int i=0; i<stateVarCodes.size(); i++) {
0249 if (i==0) {
0250 fout << stateVarCodes[i];
0251 } else {
0252 fout << "\", \"" << stateVarCodes[i];
0253 }
0254 }
0255 fout << "\")" << endl;
0256 //--end of thesholds section
0257 fout << "save.image(\"R_data/RAPSspace.RData\")" << endl;
0258 fin.close();
0259 fout.close();
0260 }
0261
0262 //this updates R with each cycle
0263 vector <int> updateRwindex(int Windex, int nthreads, vector <vector <int> > EndBySumVec,

Page: 200

0264 int EndByTripCounter, int EndByTimeStepCounter, vector <int> prevKeepGoing,
0265 vector < vector <string> > cutSetVec, vector <int> ThTransientTranslator, int timestep) {
0266 vector <int> translator;
0267 int counter=0;
0268 string file= ("R_data/updateRwindex.r");
0269 ofstream fout (file.c_str());
0270 fout << "load(\"R_data/RAPSspace.RData\")" << endl;
0271 fout << "rstNum<-" << Windex << endl;
0272 fout << "thNum<-" << nthreads << endl;
0273 fout << "IncludeTh<- c(";
0274 for (unsigned int i=0; i<EndBySumVec[1].size(); i++) {
0275 if (EndBySumVec[1][i]==1) {
0276 if (counter==0) {
0277 fout << i;
0278 translator.push_back(i);
0279 } else {
0280 fout << ", " << i;
0281 translator.push_back(i);
0282 }
0283 counter++;
0284 }
0285 }
0286 fout << ")" << endl;
0287 counter=0; //reset counter for next loop
0288 fout << "EndByTrip<- c(";
0289 for (unsigned int i=0; i<EndBySumVec[2].size(); i++) {
0290 if (EndBySumVec[2][i]==1) {
0291 if (counter==0) {
0292 fout << i;
0293 } else {
0294 fout << ", " << i;
0295 }
0296 counter++;
0297 }
0298 }
0299 fout << ")" << endl;
0300
0301 counter=0; //reset counter for next loop

Page: 201

0302 fout << "prevKeepGoing<- c(";
0303 for (unsigned int i=0; i<prevKeepGoing.size(); i++) {
0304 if (prevKeepGoing[i]==1) {
0305 if (counter==0) {
0306 fout << i;
0307 } else {
0308 fout << ", " << i;
0309 }
0310 counter++;
0311 }
0312 }
0313 fout << ")" << endl;
0314 fout << "cutSetProbs<- c(\"";
0315 for (unsigned int i=0; i<cutSetVec.size(); i++) {
0316 if (i==0) {
0317 cutSetVec[i].pop_back();
0318 fout << cutSetVec[i].back();
0319 } else {
0320 cutSetVec[i].pop_back();
0321 fout << "\",\" " << cutSetVec[i].back();
0322 }
0323 }
0324 fout << "\")" << endl;
0325 fout << "ThTransientTranslator<- c(";
0326 for (unsigned int i=0; i<ThTransientTranslator.size(); i++) {
0327 if (i==0) {
0328 fout << ThTransientTranslator[i];
0329 } else {
0330 fout << ", " << ThTransientTranslator[i];
0331 }
0332 }
0333 fout << ")" << endl;
0334 fout << "timestep <- " << timestep << endl;
0335 fout << "save.image(\"R_data/RAPSspace.RData\")" << endl;
0336 return translator;
0337 }
0338
0339 const char *ChangeFont(int ColorCode) {

Page: 202

0340 string FullFilePath = "ChangeFont.sh";
0341 ofstream fout (FullFilePath.c_str());
0342 fout << "tput setf " << ColorCode << endl << "tput bold" << endl << "exit 0";
0343 string chmod = ("chmod +x " + FullFilePath);
0344 system(chmod.c_str()); //creating executable
0345 return(FullFilePath.c_str());
0346 }
0347
0348 const char *ResetFont() {
0349 string FullFilePath = "ResetFont.sh";
0350 ofstream fout (FullFilePath.c_str());
0351 fout << "tput sgr0" << endl << "exit 0" << endl;
0352 string chmod = ("chmod +x " + FullFilePath);
0353 system(chmod.c_str()); //creating executable
0354 return(FullFilePath.c_str());
0355 }
0356
0357 //makes a directory based on the thread ID, and returns a string of directory name
0358 string NameDir(int th_id) {
0359 stringstream sstm;
0360 sstm << "Th_" << th_id << "_data";
0361 string ThDir = sstm.str();
0362 sstm.str("");
0363 return (ThDir);
0364 }
0365
0366
0367 //Trims white space around words grabbed from R5
0368 string TrimSpace(string MyString) {
0369 string whitespaces (" \t\f\v\n\r");
0370 size_t endpos = MyString.find_last_not_of(whitespaces);
0371 size_t startpos = MyString.find_first_not_of(whitespaces);
0372 if(string::npos != endpos)
0373 MyString = MyString.substr(0, endpos+1);
0374 else
0375 MyString.clear(); // if string is all whitespace
0376 if(string::npos != startpos)
0377 MyString = MyString.substr(startpos);

Page: 203

0378 else
0379 MyString.clear(); // if string is all whitespace
0380 return MyString;
0381 }
0382
0383 //gets probability info from prp file
0384 vector < vector <string > > getCutSetData(string prpFile) {
0385 vector <string> textP = LoadFile(prpFile);
0386 string key = "Minimal cut set probabilities :";
0387 string prob;
0388 string word;
0389 vector <int> keyLocVec = SearchVec(textP, key);
0390 int keyLoc = keyLocVec[0];
0391 int linePlace=0;
0392 bool multiLine=false;
0393 bool lastLineInSet=false;
0394 int i=6;
0395 int keyLocAdder=2;
0396 int count; //counts how many lines the multline algorithm uses
0397 vector <vector <string> > cutSetVec;
0398 vector <string> eventVec; //a single event of a cutset
0399 keyLocAdder=2;
0400
0401 while (!textP[keyLoc+keyLocAdder].empty()) {
0402 count = 0;
0403 if (!textP[keyLoc+keyLocAdder+1].empty()) {
0404 if ((textP[keyLoc+keyLocAdder][i-4] != ' ') &&
0405 (textP[keyLoc+keyLocAdder+1][i-4] == ' ')
0406 && multiLine==false) {
0407 multiLine=true;
0408 }
0409 }
0410 if (multiLine==false) { // this statement is only for single lines
0411 while ((textP[keyLoc+keyLocAdder][i] !=' ') ||
0412 (textP[keyLoc+keyLocAdder][i+1] != ' ')) {
0413 word.clear();
0414 i++;
0415 while (textP[keyLoc+keyLocAdder][i] != ' ') {

Page: 204

0416 word += textP[keyLoc+keyLocAdder][i];
0417 i++;
0418 }
0419 eventVec.push_back(word);
0420 word.clear();
0421 }
0422 for (int k=39; k<52; k++) {
0423 prob += (textP[keyLoc+keyLocAdder][k]);
0424 }
0425 eventVec.push_back(prob);
0426 prob.clear();
0427 } else { //for multiline cutsets
0428 i=6; //resets to the beginning of the cutsets line
0429 lastLineInSet=false;
0430 while (lastLineInSet == false) {// this goes to the next cut set number
0431 if (textP[keyLoc+keyLocAdder+1][2] != ' ') {
0432 lastLineInSet=true;
0433 for (int k=39; k<52; k++) {
0434 prob += (textP[keyLoc+keyLocAdder-count][k]);
0435 }
0436 }
0437 while ((textP[keyLoc+keyLocAdder][i] !=' ') ||
0438 (textP[keyLoc+keyLocAdder][i+1] != ' ')) {
0439 // this goes to the end of the line
0440 string word;
0441 i++;
0442 while (textP[keyLoc+keyLocAdder][i] != ' ') { //goes through individual words
0443 word += textP[keyLoc+keyLocAdder][i];
0444 i++;
0445 }
0446 eventVec.push_back(word);
0447 }
0448 if (lastLineInSet == false) {
0449 keyLocAdder++;
0450 }
0451 i=6; //resets to the beginning of the cutsets line
0452 count++;
0453 }

Page: 205

0454 }
0455 eventVec.push_back(prob);
0456 cutSetVec.push_back(eventVec);
0457 eventVec.clear(); //clears event vec
0458 prob.clear();
0459 keyLocAdder++; //procedes to next line
0460 i=6; //resets to the beginning of the cutsets line
0461 }
0462 return cutSetVec;
0463 }
0464
0465 //gets Monte Carlo data from mrp file
0466 vector < vector <string > > getMCdata(string mrpFile) {
0467 vector < vector <string > > MCvec;
0468 vector <string> textM = LoadFile(mrpFile);
0469 //below this is pasted data from above
0470 string key = "Compressed:";
0471 string prob;
0472 string word;
0473 vector <int> keyLocVec = SearchVec(textM, key);
0474 int keyLoc = keyLocVec[0];
0475 int linePlace=0;
0476 bool multiLine=false;
0477 bool lastLineInSet=false;
0478 int i=6;
0479 int keyLocAdder;
0480 int count; //counts how many lines the multline algorithm uses
0481 vector <string> eventVec; //a single event of a cutset
0482 keyLocAdder=4;
0483
0484 while (!textM[keyLoc+keyLocAdder].empty()) {
0485 count = 0;
0486 if (!textM[keyLoc+keyLocAdder+1].empty()) {
0487 if ((textM[keyLoc+keyLocAdder][i-4] != ' ') &&
0488 (textM[keyLoc+keyLocAdder+1][i-4] == ' ')
0489 && multiLine==false) {
0490 multiLine=true;
0491 }

Page: 206

0492 }
0493 if (multiLine==false) { // this statement is only for single lines
0494 while ((textM[keyLoc+keyLocAdder][i] !=' ') ||
0495 (textM[keyLoc+keyLocAdder][i+1] != ' ')) {
0496 word.clear();
0497 i++;
0498 while (textM[keyLoc+keyLocAdder][i] != ' ') {
0499 word += textM[keyLoc+keyLocAdder][i];
0500 i++;
0501 }
0502 eventVec.push_back(word);
0503 word.clear();
0504 }
0505 for (int k=38; k<73; k++) {
0506 prob += (textM[keyLoc+keyLocAdder][k]);
0507 }
0508 eventVec.push_back(prob);
0509 prob.clear();
0510 }
0511 else { //for multiline cutsets
0512 i=6; //resets to the beginning of the cutsets line
0513 lastLineInSet=false;
0514 while (lastLineInSet == false) {// this goes to the next cut set number
0515 if (textM[keyLoc+keyLocAdder+1][2] != ' ') {
0516 lastLineInSet=true;
0517 for (int k=38; k<73; k++) {
0518 prob += (textM[keyLoc+keyLocAdder-count][k]);
0519 }
0520 }
0521 while ((textM[keyLoc+keyLocAdder][i] !=' ') ||
0522 (textM[keyLoc+keyLocAdder][i+1] != ' ')) {
0523 // this goes to the end of the line
0524 string word;
0525 i++;
0526 while (textM[keyLoc+keyLocAdder][i] != ' ') { //goes through individual words
0527 word += textM[keyLoc+keyLocAdder][i];
0528 i++;
0529 }

Page: 207

0530 eventVec.push_back(word);
0531 }
0532 if (lastLineInSet == false) {
0533 keyLocAdder++;
0534 }
0535 i=6; //resets to the beginning of the cutsets line
0536 count++;
0537 }
0538 }
0539 eventVec.push_back(prob);
0540 MCvec.push_back(eventVec);
0541 eventVec.clear(); //clears event vec
0542 prob.clear();
0543 keyLocAdder++; //procedes to next line
0544 i=6; //resets to the beginning of the cutsets line
0545 }
0546 reverse(MCvec.begin(), MCvec.end()); //puts high probability events on top.
0547 return MCvec;
0548 }
0549
0550 void doFTA(vector <double> FTApars, string FTAfileName, string FTAdir) {
0551 string FTAinput = "FTA/fta_input_file";
0552 ofstream fout1 (FTAinput.c_str());
0553 fout1 << FTAdir << "/" << FTAfileName << "/" << FTAfileName << ".fta," << FTApars[0] <<
0554 "," << FTApars[1] << "," << FTApars[2] << "," << FTApars[3];
0555 fout1.close();
0556
0557 string cdFilePath = "runFTA.sh";
0558 ofstream fout (cdFilePath.c_str());
0559 // if it's already done, don't do it
0560 ifstream ifile((FTAdir +"/" + FTAfileName + "/" + FTAfileName + ".prp").c_str());
0561 if (!ifile) {
0562 fout << "dos2unix " << FTAdir << "/" << FTAfileName << "/"
0563 << FTAfileName <<".fta" << endl;
0564 fout << "dos2unix " << FTAdir << "/" << FTAfileName << "/"
0565 << FTAfileName <<".ped" << endl;
0566 }
0567 ifile.close();

Page: 208

0568
0569 fout << "cd " << FTAdir << endl;
0570 fout << "run.sh fta_input_file" << endl;
0571 fout << "exit 0" << endl;
0572 fout.close();
0573 string chmoder = ("chmod +x runFTA.sh");
0574 system(chmoder.c_str());
0575 system(cdFilePath.c_str());
0576 }
0577
0578 void ftaFileFixer(string filename) { //this deletes the stuff that LiteFTA doesn't like
0579 vector <string> text;
0580 string temp;
0581 text = LoadFile(filename);
0582 int i=text[0].size()-1;
0583 while (text[0][i] != ('\\')) {
0584 i--;
0585 if(i==0) {break;}
0586 }
0587 if (i!=0) {
0588 for (int j=(i+1); j<text[0].size(); j++) {
0589 temp+=text[0][j];
0590 }
0591 text[0]=temp;
0592 ofstream fout(filename.c_str());
0593 for (int i=0; i<text.size(); i++) {
0594 fout << text[i] << endl;
0595 }
0596 fout.close();
0597 }
0598 }
0599
0600 vector <vector <string > > loadSystemData(string sysDataFileName) {
0601 string word;
0602 vector <string> row;
0603 vector <vector <string > > sysData;
0604 vector<string> text;
0605 text=LoadFile(sysDataFileName);

Page: 209

0606 for (int j=0; j<text.size(); j++) {
0607 for (int i=0; i<text[j].size(); i++) {
0608 word+=text[j][i];
0609 if ((text[j][i]== ('\t')) || (i==(text[j].size()-1))) {
0610 row.push_back(word.substr(0, word.size()-1));
0611 word.clear();
0612 }
0613 }
0614 sysData.push_back(row);
0615 row.clear();
0616 }
0617 return sysData;
0618 }
0619
0620 double qualConverter(double LDP301, int vol) {
0621 double water;
0622 if (vol==1 && LDP301>0.6681) {
0623 water=1.0;
0624 } else {
0625 water=7.0E-3;
0626 }
0627 if (vol==2 && LDP301>0.5800) {
0628 water=1.0;
0629 } else {
0630 water=7.0E-3;
0631 }
0632 if (vol==3 && LDP301>0.5240) {
0633 water=1.0;
0634 } else {
0635 water=7.0E-3;
0636 }
0637 if (vol==4 && LDP301>0.4072) {
0638 water=1.0;
0639 } else {
0640 water=7.0E-3;
0641 }
0642 if (vol==5 && LDP301>0.2904) {
0643 water=1.0;

Page: 210

0644 } else {
0645 water=7.0E-3;
0646 }
0647 if (vol==6 && LDP301>0.1736) {
0648 water=1.0;
0649 } else {
0650 water=7.0E-3;
0651 }
0652 if (vol==7 && LDP301>0.0868) {
0653 water=1.0;
0654 } else {
0655 water=1.0;
0656 }
0657 return water;
0658 }
0659
0660 double Linterpolate(double A1, double A2, double B1, double B2, double B3) {
0661 double A3;
0662 A3=((A1-A2)*((B3-B2)/(B1-B2))+A2);
0663 return A3;
0664 }
0665
0666 vector <vector <string > > realTimeSimulator(vector<vector<string > > sysData,
0667 int timestep, string OutDir) {
0668 vector <vector <string > > realTimeData;
0669 ofstream fout ((OutDir + "/realTimeData.txt").c_str());
0670 for (int i=0; i<sysData[0].size(); i++) {
0671 fout << sysData[0][i] << "\t";
0672 }
0673 fout << endl;
0674 for (int i=0; i<sysData[0].size(); i++) {
0675 fout << sysData[timestep][i] << "\t";
0676 }
0677 fout.close();
0678 realTimeData=loadSystemData((OutDir + "/realTimeData.txt").c_str());
0679 return realTimeData;
0680 }
0681

Page: 211

0682 //Generates Restart Input files
0683 vector <string> RstIptGen(string R5Output, string R5RstInput, string ThDir,
0684 string ProbType, string ProbOpt, double RstNbr, double EndTime, string MinTimeStep,
0685 double MaxTimeStep, int CtlMode, int MinEdit, int MajEdit, int RstFreq, int th_id,
0686 string OutDir, vector <int> prevKeepGoing, vector <string> transient,
0687 vector <string> stateVarTripNames, vector <string> stateVarCodes,
0688 vector <string> stateVarEquiv, vector <double> yellowTripThresh,
0689 vector <double> redTripThresh, int requestTh, vector<vector<string > > sysData) {
0690
0691 double U;
0692 double InitPres;
0693 vector <int> Vbreak;
0694 int numOfValves;
0695 srand(time(NULL));
0696 U=(double)(rand())/(RAND_MAX); //uniform distribution 0.5
0697 string FullFilePath= (OutDir + "/" + ThDir + "/inputs/" + R5RstInput);
0698 ofstream fout (FullFilePath.c_str());
0699 int varNum=16;
0700 int varCount=0;
0701 int loopCount=0;
0702 double TFavg1, TFavg2;
0703 double PT301, PT511, PT602, LDP301, FVM602M, FVM602T, TF111, TF121, TF122,
0704 TF123, TF124, TF131, TF132, TF133, TF134, TF501;
0705 vector <double> TFlin1;
0706 vector <vector <string> > transientExplanation;
0707 transientExplanation.resize(requestTh, vector<string> (0, " "));
0708 vector<string> singleTransientExplanation;
0709
0710 while (varCount<varNum) {
0711 if(sysData[0][loopCount]==("\"PT301_PressurizerPressure\"")) {
0712 istringstream(sysData[1][loopCount]) >> PT301;
0713 varCount++;
0714 } else if (sysData[0][loopCount]==("\"PT511_SGInletPressure_Bundle_1\"")) {
0715 istringstream(sysData[1][loopCount]) >> PT511;
0716 varCount++;
0717 } else if (sysData[0][loopCount]==("\"LDP301_Uncompensated_Level\"")) {
0718 istringstream(sysData[1][loopCount]) >> LDP301;
0719 varCount++;

Page: 212

0720 } else if (sysData[0][loopCount]==("\"FVM602M_Steam_MassFlow\"")) {
0721 istringstream(sysData[1][loopCount]) >> FVM602M;
0722 varCount++;
0723 } else if (sysData[0][loopCount]==("\"TF111\"")) {
0724 istringstream(sysData[1][loopCount]) >> TF111;
0725 varCount++;
0726 } else if (sysData[0][loopCount]==("\"TF121\"")) {
0727 istringstream(sysData[1][loopCount]) >> TF121;
0728 varCount++;
0729 } else if (sysData[0][loopCount]==("\"TF122\"")) {
0730 istringstream(sysData[1][loopCount]) >> TF122;
0731 varCount++;
0732 } else if (sysData[0][loopCount]==("\"TF123\"")) {
0733 istringstream(sysData[1][loopCount]) >> TF123;
0734 varCount++;
0735 } else if (sysData[0][loopCount]==("\"TF124\"")) {
0736 istringstream(sysData[1][loopCount]) >> TF124;
0737 varCount++;
0738 } else if (sysData[0][loopCount]==("\"TF131\"")) {
0739 istringstream(sysData[1][loopCount]) >> TF131;
0740 varCount++;
0741 } else if (sysData[0][loopCount]==("\"TF132\"")) {
0742 istringstream(sysData[1][loopCount]) >> TF132;
0743 varCount++;
0744 } else if (sysData[0][loopCount]==("\"TF133\"")) {
0745 istringstream(sysData[1][loopCount]) >> TF133;
0746 varCount++;
0747 } else if (sysData[0][loopCount]==("\"TF134\"")) {
0748 istringstream(sysData[1][loopCount]) >> TF134;
0749 varCount++;
0750 } else if (sysData[0][loopCount]==("\"TF501\"")) {
0751 istringstream(sysData[1][loopCount]) >> TF501;
0752 varCount++;
0753 //} else if (sysData[0][loopCount]==("\"IO_FVM602T\"")) {
0754 } else if (sysData[0][loopCount]==("\"FVM602T_Steam_Temperature\"")) {
0755 istringstream(sysData[1][loopCount]) >> FVM602T;
0756 varCount++;
0757 //} else if (sysData[0][loopCount]==("\"IO_PT602\"")) {

Page: 213

0758 } else if (sysData[0][loopCount]==("\"PT602_StemPressure\"")) {
0759 istringstream(sysData[1][loopCount]) >> PT602;
0760 varCount++;
0761 } else if (loopCount==sysData[0].size()) {
0762 cerr << "something's funky!" << endl;
0763 break;
0764 }
0765 loopCount++;
0766 }
0767
0768 singleTransientExplanation.push_back("Initial conditions perturbed");
0769
0770 //getting units right and varying initial conditions
0771 srand(time(NULL)*8311344973*th_id);//resetting random numbers
0772 U=(double)(rand())/(RAND_MAX);
0773 U=(U/10)+0.90;
0774
0775 PT301=(PT301*6894.757*U);
0776
0777 srand(time(NULL)*2345745*th_id);//resetting random numbers
0778 U=(double)(rand())/(RAND_MAX);
0779 U=(U/10)+0.90;
0780
0781 PT511=(PT511*6894.757*U);
0782
0783 srand(time(NULL)*831176245*th_id);//resetting random numbers
0784 U=(double)(rand())/(RAND_MAX);
0785 U=(U/10)+0.90;
0786
0787 PT602=(PT602*6894.757*U);
0788
0789 //F to K (temp)
0790 TF111=((TF111-32)*5/9)+273.15;
0791 TF121=((TF121-32)*5/9)+273.15;
0792 TF122=((TF122-32)*5/9)+273.15;
0793 TF123=((TF123-32)*5/9)+273.15;
0794 TF124=((TF124-32)*5/9)+273.15;
0795 TF131=((TF131-32)*5/9)+273.15;

Page: 214

0796 TF132=((TF132-32)*5/9)+273.15;
0797 TF133=((TF133-32)*5/9)+273.15;
0798 TF134=((TF134-32)*5/9)+273.15;
0799 TF501=((TF501-32)*5/9)+273.15;
0800 TFavg1=(TF121+TF122+TF123+TF124)*U/4;
0801
0802 srand(time(NULL)*987654321*th_id);//resetting random numbers
0803 U=(double)(rand())/(RAND_MAX);
0804 U=(U/10)+0.90;
0805
0806 TFavg2=(TF121+TF123+TF124)*U/3;
0807 //converting to meters
0808 LDP301=LDP301*U/39.3701;
0809 //converting lbm/s to kg/s
0810 FVM602M=FVM602M*U/2.205;
0811
0812 //comments section of input file
0813 fout << "*" << string(70, '=') << "\n*\n*\n";
0814 fout << "*" << string(3, ' ') << __DATE__ << endl;
0815 fout << "*" << string(3, ' ') << "Written by " << author << endl;
0816 fout << "*\n*\n*" << string(70, '=') << endl;
0817 //100 card
0818 fout << "100 "<< ProbType << " " << ProbOpt << endl;
0819 //103 (restart) card
0820 //RstNbr will change after the first time
0821 fout << "103 " << RstNbr << endl;
0822 //203 (time) card
0823 fout << "203 " << showpoint << EndTime << ", " << noshowpoint << MinTimeStep << ", "
0824 << showpoint << MaxTimeStep << ", " << noshowpoint << CtlMode << ", " << MinEdit
0825 << ", " << MajEdit << ", " << RstFreq << endl;
0826
0827 //-- Trips section
0828 //This section reduces n trips into a form that R5 can understand
0829 if ((stateVarTripNames.size()!=stateVarCodes.size()) ||
0830 (stateVarTripNames.size()!=stateVarEquiv.size()) ||
0831 (stateVarTripNames.size()!=yellowTripThresh.size()) ||
0832 (stateVarTripNames.size()!=redTripThresh.size())) {
0833 cerr << "RAPS input file error!" << endl <<

Page: 215

0834 "State variables, variable codes, equivalence, or thresholds are not of same size!"
0835 << endl;
0836 } else {
0837 for (unsigned int i=0; i<stateVarTripNames.size(); i++) {
0838 fout << 500 + i+1 << " " << showpoint << stateVarTripNames[i] << " " <<
0839 stateVarCodes[i] << " " << stateVarEquiv[i] << " null 0 "<<
0840 R5SciConv(redTripThresh[i]) << " l" << endl;
0841 }
0842 int index=0;
0843 int index60=1;
0844 int cardCount=0;
0845 int adder=0;
0846 while (index<(stateVarTripNames.size()/2)) { //collect up the 500's
0847 fout << 600 + index60 << " " << 500 + (index*2)+1 << " or " << 500 + (index*2)+2
0848 << " l -1.0" << endl;
0849 index60++;
0850 index++;
0851 if ((stateVarTripNames.size()%2==1) && (index==stateVarTripNames.size()/2)) {
0852 fout << 600 + index60 << " " << 500 + (index*2)+1 << " or " << 500 + (index*2)+1
0853 << " l -1.0" << endl;
0854 index60++;
0855 }
0856 }
0857 if(stateVarTripNames.size()>2) {
0858 index=0;
0859 cardCount=index60-1;
0860 for (int k=7; k<=stateVarTripNames.size(); k++) {
0861 if ((k%4)==3) {adder++;}
0862 }
0863 while (index<(adder + cardCount/2 + cardCount%2)) { //collect up the 600's
0864 fout << 600 + index60 << " " << 600 + (index*2)+1 << " or " << 600 + (index*2)+2
0865 << " l -1.0" << endl;
0866 index60++;
0867 index++;
0868 }
0869 }
0870 if (stateVarTripNames.size()==1) {
0871 fout << "600 501" << endl;

Page: 216

0872 } else {
0873 fout << "600" << " " << 600 + index60-1 <<endl;
0874 }
0875 }
0876
0877 //--- Next section is defining initial conditions from MASLWR data
0878 fout << "*==" <<endl;
0879 fout << "* Primary System" <<endl;
0880 fout << "*==" <<endl;
0881 fout << "* component 100" <<endl;
0882 fout << "* Core including flow plates and regions 1-3" <<endl;
0883 fout << "* Total Length from Problem Specification is 63.01 cm" <<endl;
0884 fout << "*crdno name type" <<endl;
0885 fout << "100 coreflow pipe" <<endl;
0886 fout << "*crdno nv " <<endl;
0887 fout << "101 6" <<endl;
0888 fout << "*crdno area vol" <<endl;
0889 fout << "1000101 8.422-3 6" <<endl;
0890 fout << "*crdno area jun" <<endl;
0891 fout << "1000201 0 5" <<endl;
0892 fout << "*crdno length vol " <<endl;
0893 fout << "1000301 0.105 6" <<endl;
0894 fout << "*crdno volume vol " <<endl;
0895 fout << "1000401 0 6" <<endl;
0896 fout << "*crdno h-ang vol " <<endl;
0897 fout << "1000501 0.0 6" <<endl;
0898 fout << "*crdno v-ang vol " <<endl;
0899 fout << "1000601 90.0 6" <<endl;
0900 fout << "*crdno delz vol " <<endl;
0901 fout << "1000701 0.105 6" <<endl;
0902 fout << "*crdno rough dhy vol" <<endl;
0903 fout << "1000801 2.0-6 9.59-3 6" <<endl;
0904 fout << "*Additional Wall Friction from pg 386 Todreas and Kazimi" <<endl;
0905 fout << "*crdno A1 B1 C1 A2 B2 C2 A3 B3 C3 vol" <<endl;
0906 fout << "1002601 0 0 0 0 0 0 0 0.146432 0.18 1" <<endl;
0907 fout << "1002602 0 0 0 0 0 0 0 0.146432 0.18 2" <<endl;
0908 fout << "1002603 0 0 0 0 0 0 0 0.146432 0.18 3" <<endl;
0909 fout << "1002604 0 0 0 0 0 0 0 0.146432 0.18 4" <<endl;

Page: 217

0910 fout << "1002605 0 0 0 0 0 0 0 0.146432 0.18 5" <<endl;
0911 fout << "1002606 0 0 0 0 0 0 0 0.146432 0.18 6" <<endl;
0912 fout << "*Junction 3 is used to simulate the extra losses at the grid wires" <<endl;
0913 fout << "*crdno floss rloss jun" <<endl;
0914 fout << "1000901 0 0 2 " <<endl;
0915 fout << "1000902 10.0 10.0 3" <<endl;
0916 fout << "1000903 0 0 5 " <<endl;
0917 fout << "*crdno ctl vol " <<endl;
0918 fout << "1001001 0 6" <<endl;
0919 fout << "*crdno ctl jun " <<endl;
0920 fout << "1001101 0 5" <<endl;
0921 fout << "*crdno ctl p temp vol" <<endl;
0922 fout << "1001201 3 " << R5SciConv(PT301) << " "
0923 << Linterpolate(TFavg1, TF132, 1, 6, 1) << " 0 0 0 1" <<endl;
0924 fout << "1001202 3 " << R5SciConv(PT301) << " "
0925 << Linterpolate(TFavg1, TF132, 1, 6, 2) << " 0 0 0 2" <<endl;
0926 fout << "1001203 3 " << R5SciConv(PT301) << " "
0927 << Linterpolate(TFavg1, TF132, 1, 6, 3) << " 0 0 0 3" <<endl;
0928 fout << "1001204 3 " << R5SciConv(PT301) << " "
0929 << Linterpolate(TFavg1, TF132, 1, 6, 4) << " 0 0 0 4" <<endl;
0930 fout << "1001205 3 " << R5SciConv(PT301) << " "
0931 << Linterpolate(TFavg1, TF132, 1, 6, 5) << " 0 0 0 5" <<endl;
0932 fout << "1001206 3 " << R5SciConv(PT301) << " "
0933 << Linterpolate(TFavg1, TF132, 1, 6, 6) << " 0 0 0 6" <<endl;
0934 fout << "*==" <<endl;
0935 fout << "*TOMNOTE: For all of these, pull data from PT-301 for the pressure column" <<endl;
0936 fout << "*Multiply PT-301 by 6894.757 to get the right units" <<endl;
0937 fout << "*For temperature, set volume 1 to TF-121, TF-122, TF-123, and TF-124" <<endl;
0938 fout << "*Don't forget to convert to Kelvin for everything, K = (F * 5/9) �0.93" <<endl;
0939 fout << "*Set Volume 6 temperature to TF-132" <<endl;
0940 fout << "*For volumes 2-5, just do a straight linear average from volume 1 to 6" <<endl;
0941 fout << "*==" <<endl;
0942 fout << "*crdno ctl " <<endl;
0943 fout << "1001300 1" <<endl;
0944 fout << "*crdno mflowf mflowg velj jun" <<endl;
0945 fout << "1001301 1.50 0.0 0 5" <<endl;
0946 fout << "*--" <<endl;
0947 fout << "* component 110" <<endl;

Page: 218

0948 fout << "* Entirety of the Hot Leg" <<endl;
0949 fout << "*crdno name type" <<endl;
0950 fout << "110 hotleg pipe" <<endl;
0951 fout << "*crdno nv " <<endl;
0952 fout << "111 29" <<endl;
0953 fout << "*crdno area vol " <<endl;
0954 fout << "1100101 3.051-2 5" <<endl;
0955 fout << "1100102 2.308-2 6" <<endl;
0956 fout << "1100103 1.565-2 7" <<endl;
0957 fout << "1100104 8.213-3 29" <<endl;
0958 fout << "*crdno area jun" <<endl;
0959 fout << "1100201 0 28" <<endl;
0960 fout << "*crdno length vol " <<endl;
0961 fout << "1100301 0.0445 1" <<endl;
0962 fout << "1100302 0.0762 3" <<endl;
0963 fout << "1100303 0.1112 4" <<endl;
0964 fout << "1100304 0.1111 5" <<endl;
0965 fout << "1100306 0.1223 7" <<endl;
0966 fout << "1100307 0.1020 14" <<endl;
0967 fout << "1100308 0.1019 15" <<endl;
0968 fout << "1100309 0.0540 16" <<endl;
0969 fout << "1100310 0.0384 17" <<endl;
0970 fout << "1100311 0.1011 18" <<endl;
0971 fout << "1100312 0.1052 26" <<endl;
0972 fout << "1100313 0.1050 27" <<endl;
0973 fout << "1100314 0.1011 28" <<endl;
0974 fout << "1100315 0.1433 29" <<endl;
0975 fout << "*crdno volume vol " <<endl;
0976 fout << "1100401 0 29" <<endl;
0977 fout << "*crdno h-ang vol " <<endl;
0978 fout << "1100501 0.0 29" <<endl;
0979 fout << "*crdno v-ang vol " <<endl;
0980 fout << "1100601 90.0 29" <<endl;
0981 fout << "*crdno rough dhy vol" <<endl;
0982 fout << "1100801 2.0-6 0.1971 5" <<endl;
0983 fout << "1100802 2.0-6 0.1776 6" <<endl;
0984 fout << "1100803 2.0-6 0.1488 7" <<endl;
0985 fout << "1100804 2.0-6 0.1022 29" <<endl;

Page: 219

0986 fout << "*crdno floss rloss jun" <<endl;
0987 fout << "1100901 0 0 16" <<endl;
0988 fout << "1100902 10.0 10.0 17" <<endl;
0989 fout << "1100903 0 0 28 " <<endl;
0990 fout << "*crdno ctl vol " <<endl;
0991 fout << "1101001 0 29" <<endl;
0992 fout << "*crdno ctl jun " <<endl;
0993 fout << "1101101 0 28" <<endl;
0994 fout << "*crdno ctl p temp vol " <<endl;
0995 fout << "1101201 3 " << R5SciConv(PT301) << " " << TF132
0996 << " 0 0 0 29" <<endl;
0997 fout << "*==" <<endl;
0998 fout << "*TOMNOTE: Set pressure to PT-301, temperature to TF-132" <<endl;
0999 fout << "*==" <<endl;
1000 fout << "*crdno ctl " <<endl;
1001 fout << "1101300 1" <<endl;
1002 fout << "*crdno mflowf mflowg velj jun" <<endl;
1003 fout << "1101301 1.50 0.0 0 28" <<endl;
1004 fout << "*--" <<endl;
1005 fout << "* component 300" <<endl;
1006 fout << "* Upper Plenum" <<endl;
1007 fout << "*crdno name type" <<endl;
1008 fout << "300 luplenum branch" <<endl;
1009 fout << "*crdno nj ctl" <<endl;
1010 fout << "301 2 1" <<endl;
1011 fout << "*crdno area length volume h-ang v-ang delz rough " <<endl;
1012 fout << "3000101 6.7-2 0.1205 0 0.0 90.0 0.1205 2.0-6 " <<endl;
1013 fout << "*crdno dhy ctl" <<endl;
1014 fout << "3000102 0.292 0" <<endl;
1015 fout << "*crdno ctl p temp" <<endl;
1016 fout << "3000200 3 " << R5SciConv(PT301) << " " << TF111 << endl;
1017 fout << "*==" <<endl;
1018 fout << "*TOMNOTE: Set pressure to PT-301, temperature to TF-111" <<endl;
1019 fout << "*==" <<endl;
1020 fout << "*crdno from to area floss rloss ctl" <<endl;
1021 fout << "3001101 3 201010001 5.675-2 0 0 0 " <<endl;
1022 fout << "3002101 30001 301010001 6.70-2 0 0 0" <<endl;
1023 fout << "*3003101 110290002 3 8.213-3 0 0 0" <<endl;

Page: 220

1024 fout << "*crdno mflowf mflowg velj" <<endl;
1025 fout << "3001201 1.50 0.0 0 " <<endl;
1026 fout << "3002201 0.0 0.0 0" <<endl;
1027 fout << "*3003201 1.50 0.0 0" <<endl;
1028 fout << "*--" <<endl;
1029 fout << "* component 301" <<endl;
1030 fout << "* Pressurizer " <<endl;
1031 fout << "*crdno name type" <<endl;
1032 fout << "301 pzr pipe" <<endl;
1033 fout << "*crdno nv " <<endl;
1034 fout << "3010001 8" <<endl;
1035 fout << "*crdno area vol " <<endl;
1036 fout << "3010101 6.70-2 1" <<endl;
1037 fout << "3010102 4.05-3 2" <<endl;
1038 fout << "3010103 6.70-2 8" <<endl;
1039 fout << "*3010104 5.025-2 9" <<endl;
1040 fout << "*crdno area jun" <<endl;
1041 fout << "3010201 0 7" <<endl;
1042 fout << "*crdno length vol " <<endl;
1043 fout << "3010301 0.0881 1" <<endl;
1044 fout << "3010302 0.0352 2" <<endl;
1045 fout << "3010303 0.0560 3" <<endl;
1046 fout << "3010304 0.1168 6" <<endl;
1047 fout << "3010305 0.0868 8" <<endl;
1048 fout << "*3010306 0.1 9" <<endl;
1049 fout << "*crdno volume vol " <<endl;
1050 fout << "3010401 0 8" <<endl;
1051 fout << "*crdno h-ang vol " <<endl;
1052 fout << "3010501 0.0 8" <<endl;
1053 fout << "*crdno v-ang vol " <<endl;
1054 fout << "3010601 90.0 8" <<endl;
1055 fout << "*crdno rough dhy vol" <<endl;
1056 fout << "3010801 2.0-6 0.292 1" <<endl;
1057 fout << "3010802 2.0-6 2.54-2 2" <<endl;
1058 fout << "3010803 2.0-6 0.292 8" <<endl;
1059 fout << "*3010804 2.0-6 0.219 9" <<endl;
1060 fout << "*crdno floss rloss jun" <<endl;
1061 fout << "3010901 20.0 20.0 1" <<endl;

Page: 221

1062 fout << "3010902 0.0 0.0 7 " <<endl;
1063 fout << "*crdno ctl vol " <<endl;
1064 fout << "3011001 0 8" <<endl;
1065 fout << "*crdno ctl jun " <<endl;
1066 fout << "3011101 0 1" <<endl;
1067 fout << "3011102 0 2" <<endl;
1068 fout << "3011103 0 3" <<endl;
1069 fout << "3011104 0 4" <<endl;
1070 fout << "3011105 0 5" <<endl;
1071 fout << "3011106 0 6" <<endl;
1072 fout << "3011107 0 7" <<endl;
1073 fout << "*crdno ctl p qual vol" <<endl;
1074 fout << "3011201 2 " << R5SciConv(PT301) << " "
1075 << qualConverter(LDP301, 1) << " 0 0 0 1 " <<endl;
1076 fout << "3011202 2 " << R5SciConv(PT301) << " "
1077 << qualConverter(LDP301, 2) << " 0 0 0 2" <<endl;
1078 fout << "3011203 2 " << R5SciConv(PT301) << " "
1079 << qualConverter(LDP301, 3) << " 0 0 0 3" <<endl;
1080 fout << "3011204 2 " << R5SciConv(PT301) << " "
1081 << qualConverter(LDP301, 4) << " 0 0 0 4" <<endl;
1082 fout << "3011205 2 " << R5SciConv(PT301) << " "
1083 << qualConverter(LDP301, 5) << " 0 0 0 5" <<endl;
1084 fout << "3011206 2 " << R5SciConv(PT301) << " "
1085 << qualConverter(LDP301, 6) << " 0 0 0 6" <<endl;
1086 fout << "3011207 2 " << R5SciConv(PT301) << " "
1087 << qualConverter(LDP301, 7) << " 0 0 0 7" <<endl;
1088 fout << "3011208 2 " << R5SciConv(PT301) << " "
1089 << qualConverter(LDP301, 8) << " 0 0 0 8" <<endl;
1090 fout << "*==" <<endl;
1091 fout << "*TOMNOTE: Set pressure to PT-301" <<endl;
1092 fout << "*==" <<endl;
1093 fout << "*crdno ctl " <<endl;
1094 fout << "3011300 1" <<endl;
1095 fout << "*crdno flowf flowg velj jun" <<endl;
1096 fout << "3011301 0.0 0.0 0 7" <<endl;
1097 fout << "*--" <<endl;
1098 fout << "* component 302" <<endl;
1099 fout << "* ADS Vent Line Steam Space" <<endl;

Page: 222

1100 fout << "*crdno name type" <<endl;
1101 fout << "302 PZRsteam branch" <<endl;
1102 fout << "*crdno nj " <<endl;
1103 fout << "3020001 0" <<endl;
1104 fout << "*crdno area length volume h-ang v-ang delz rough " <<endl;
1105 fout << "3020101 5.025-2 0.10 0 0.0 90.0 0.10 2.0-6" <<endl;
1106 fout << "*crdno dhy ctl" <<endl;
1107 fout << "3020102 0.219 0" <<endl;
1108 fout << "*crdno ctl p qual" <<endl;
1109 fout << "3020200 2 " << R5SciConv(PT301) << " 1.0 " <<endl;
1110 fout << "*==" <<endl;
1111 fout << "*TOMNOTE: Set pressure to PT-301 as usual" <<endl;
1112 fout << "*==" <<endl;
1113 fout << "*--" <<endl;
1114 fout << "* component 201" <<endl;
1115 fout << "* Cold Leg" <<endl;
1116 fout << "*crdno name type" <<endl;
1117 fout << "201 coldleg pipe" <<endl;
1118 fout << "*crdno nv " <<endl;
1119 fout << "2010001 35" << endl;
1120 fout << "*crdno area vol " << endl;
1121 fout << "2010101 5.675-2 1" << endl;
1122 fout << "2010102 4.564-2 2" << endl;
1123 fout << "2010103 4.114-2 11" << endl;
1124 fout << "2010104 4.564-2 12" << endl;
1125 fout << "2010105 5.675-2 22" << endl;
1126 fout << "2010106 4.936-2 23" << endl;
1127 fout << "2010107 4.197-2 24" << endl;
1128 fout << "2010108 3.458-2 35" << endl;
1129 fout << "*crdno area jun" << endl;
1130 fout << "2010201 0 34" << endl;
1131 fout << "*crdno length vol " << endl;
1132 fout << "2010301 0.1433 1" << endl;
1133 fout << "2010302 0.1011 2" << endl;
1134 fout << "2010303 0.1050 3" << endl;
1135 fout << "2010304 0.1052 11" << endl;
1136 fout << "2010305 0.1011 12" << endl;
1137 fout << "2010306 0.0384 13" << endl;

Page: 223

1138 fout << "2010307 0.0540 14" << endl;
1139 fout << "2010308 0.1019 15" << endl;
1140 fout << "2010309 0.1020 22" << endl;
1141 fout << "2010310 0.1223 24" << endl;
1142 fout << "2010311 0.1111 25" << endl;
1143 fout << "2010312 0.1112 26" << endl;
1144 fout << "2010313 0.0762 28" << endl;
1145 fout << "2010314 0.0445 29" << endl;
1146 fout << "2010315 0.1050 35" << endl;
1147 fout << "*crdno volume vol " << endl;
1148 fout << "2010401 0 35" << endl;
1149 fout << "*crdno h-ang vol " << endl;
1150 fout << "2010501 0.0 35" << endl;
1151 fout << "*crdno v-ang vol " << endl;
1152 fout << "2010601 -90.0 35" << endl;
1153 fout << "*crdno rough dhy vol" << endl;
1154 fout << "2010801 2.0-6 0.1778 1" << endl;
1155 fout << "2010802 2.0-6 4.474-2 2" << endl;
1156 fout << "2010803 2.0-6 3.156-2 11" << endl;
1157 fout << "2010804 2.0-6 4.474-2 12" << endl;
1158 fout << "2010805 2.0-6 0.1778 22" << endl;
1159 fout << "2010806 2.0-6 0.1441 23" << endl;
1160 fout << "2010807 2.0-6 0.1148 24" << endl;
1161 fout << "2010808 2.0-6 8.89-2 35" << endl;
1162 fout << "*crdno floss rloss jun" << endl;
1163 fout << "2010901 0 0 34 " << endl;
1164 fout << "*crdno ctl vol " << endl;
1165 fout << "2011001 0 35" << endl;
1166 fout << "*crdno ctl jun " << endl;
1167 fout << "2011101 0 34" << endl;
1168 fout << "*crdno ctl p temp vol " << endl;
1169 fout << "2011201 3 " << R5SciConv(PT301) << " "
1170 << Linterpolate(TF111, TFavg2, 1, 12, 1) << " 0 0 0 1" << endl;
1171 fout << "2011202 3 " << R5SciConv(PT301) << " "
1172 << Linterpolate(TF111, TFavg2, 1, 12, 2) << " 0 0 0 2" << endl;
1173 fout << "2011203 3 " << R5SciConv(PT301) << " "
1174 << Linterpolate(TF111, TFavg2, 1, 12, 3) << " 0 0 0 3" << endl;
1175 fout << "2011204 3 " << R5SciConv(PT301) << " "

Page: 224

1176 << Linterpolate(TF111, TFavg2, 1, 12, 4) << " 0 0 0 4" << endl;
1177 fout << "2011205 3 " << R5SciConv(PT301) << " "
1178 << Linterpolate(TF111, TFavg2, 1, 12, 5) << " 0 0 0 5" << endl;
1179 fout << "2011206 3 " << R5SciConv(PT301) << " "
1180 << Linterpolate(TF111, TFavg2, 1, 12, 6) << " 0 0 0 6" << endl;
1181 fout << "2011207 3 " << R5SciConv(PT301) << " "
1182 << Linterpolate(TF111, TFavg2, 1, 12, 7) << " 0 0 0 7" << endl;
1183 fout << "2011208 3 " << R5SciConv(PT301) << " "
1184 << Linterpolate(TF111, TFavg2, 1, 12, 8) << " 0 0 0 8" << endl;
1185 fout << "2011209 3 " << R5SciConv(PT301) << " "
1186 << Linterpolate(TF111, TFavg2, 1, 12, 9) << " 0 0 0 9" << endl;
1187 fout << "2011210 3 " << R5SciConv(PT301) << " "
1188 << Linterpolate(TF111, TFavg2, 1, 12, 10) << " 0 0 0 10" << endl;
1189 fout << "2011211 3 " << R5SciConv(PT301) << " "
1190 << Linterpolate(TF111, TFavg2, 1, 12, 11) << " 0 0 0 11" << endl;
1191 fout << "2011212 3 " << R5SciConv(PT301) << " "
1192 << Linterpolate(TF111, TFavg2, 1, 12, 12) << " 0 0 0 12" << endl;
1193 fout << "2011213 3 " << R5SciConv(PT301)
1194 << " " << TFavg2 << " 0 0 0 35" << endl;
1195 fout << "*==" << endl;
1196 fout << "*TOMNOTE: Set pressure to PT-301" << endl;
1197 fout << "*==" << endl;
1198 fout << "*crdno ctl " << endl;
1199 fout << "2011300 1" << endl;
1200 fout << "*crdno mflowf mflowg velj jun" << endl;
1201 fout << "2011301 1.50 0.0 0 34" << endl;
1202 fout << "*--" << endl;
1203 fout << "* component 202" << endl;
1204 fout << "* Lower Plenum " << endl;
1205 fout << "*crdno name type" << endl;
1206 fout << "202 lplenum branch" << endl;
1207 fout << "*crdno nj ctl" << endl;
1208 fout << "2020001 0 1" << endl;
1209 fout << "*crdno area length volume h-ang v-ang delz rough " << endl;
1210 fout << "2020101 0 6.2-2 2.63-3 0.0 -90.0 -6.2-2 2.0-6" << endl;
1211 fout << "*crdno dhy ctl" << endl;
1212 fout << "2020102 7.61-2 0" << endl;
1213 fout << "*crdno ctl p temp" << endl;

Page: 225

1214 fout << "2020200 3 " << R5SciConv(PT301) << " " << TFavg2 << endl;
1215 fout << "*==" << endl;
1216 fout << "*TOMNOTE: Set pressure to PT-301" << endl;
1217 fout << "*Set temperature to TF-131, TF-133, TF-134" << endl;
1218 fout << "*==" << endl;
1219 fout << "*==" << endl;
1220 fout << "* Secondary System" << endl;
1221 fout << "*==" << endl;
1222 fout << "*--" << endl;
1223 fout << "* component 510" << endl;
1224 fout << "* Feedwater Pump Cheat " << endl;
1225 fout << "*crdno name type" << endl;
1226 fout << "510 feedw1 tmdpvol" << endl;
1227 fout << "*crdno area length volume h-ang v-ang delz rough " << endl;
1228 fout << "5100101 6.94-5 1.0 0 0.0 90.0 1.0 0.0" << endl;
1229 fout << "*crdno dhy ctl" << endl;
1230 fout << "5100102 0.0 0" << endl;
1231 fout << "*crdno ctl " << endl;
1232 fout << "5100200 3 " << endl;
1233 fout << "*crdno time pres temp time pres temp" << endl;
1234 fout << "5100201 0.0 "<< R5SciConv(PT511) << " " << TF501 << " 362.0 "
1235 << R5SciConv(PT511) << " " << TF501 << endl;
1236 fout << "5100202 376.0 "<< R5SciConv(PT511) << " " << TF501 << " 774.0 "
1237 << R5SciConv(PT511) << " " << TF501 << endl;
1238 fout << "5100203 780.0 "<< R5SciConv(PT511) << " " << TF501 << " 1476.0 "
1239 << R5SciConv(PT511) << " " << TF501 << endl;
1240 fout << "5100204 1503.0 "<< R5SciConv(PT511) << " " << TF501 << " 5.0+4 "
1241 << R5SciConv(PT511) << " " << TF501 << endl;
1242 fout << "*==" << endl;
1243 fout << "*TOMNOTE: Set pressure to PT-511" << endl;
1244 fout << "*==" << endl;
1245 fout << "*--" << endl;
1246 fout << "* component 051" << endl;
1247 fout << "* Feedwater Supply" << endl;
1248 fout << "*crdno name type" << endl;
1249 fout << "051 fwin tmdpjun" << endl;
1250 fout << "*crdno from to area " << endl;
1251 fout << "0510101 51001 500010001 0 " << endl;

Page: 226

1252 fout << "*crdno ctl " << endl;
1253 fout << "0510200 1 " << endl;
1254 fout << "*crdno time flowf flowv velj time flowf flowv velj" << endl;
1255 fout << "0510201 0.0 "<< FVM602M << " 0.0 0.0 5.0+4 "
1256 << FVM602M << " 0.0 0.0" << endl;
1257 fout << "0510202 5.0+4 "<< FVM602M << " 0.0 0.0 5.0+5 "
1258 << FVM602M << " 0.0 0.0" << endl;
1259 fout << "*==" << endl;
1260 fout << "*TOMNOTE: Set all of the flowfs to FVM-602M" << endl;
1261 fout << "*The number is in lbm/s, divide by 2.205 to switch to kg/s" << endl;
1262 fout << "*==" << endl;
1263 fout << "*--" << endl;
1264 fout << "* component 500" << endl;
1265 fout << "* Feedwater line before FRV" << endl;
1266 fout << "*crdno name type" << endl;
1267 fout << "500 fwline pipe" << endl;
1268 fout << "*crdno nv " << endl;
1269 fout << "501 2" << endl;
1270 fout << "*crdno area vol " << endl;
1271 fout << "5000101 6.94-5 2" << endl;
1272 fout << "*crdno area jun" << endl;
1273 fout << "5000201 0 1" << endl;
1274 fout << "*crdno length vol " << endl;
1275 fout << "5000301 0.25 2" << endl;
1276 fout << "*crdno volume vol " << endl;
1277 fout << "5000401 0 2" << endl;
1278 fout << "*crdno h-ang vol " << endl;
1279 fout << "5000501 0.0 2" << endl;
1280 fout << "*crdno v-ang vol " << endl;
1281 fout << "5000601 90.0 2" << endl;
1282 fout << "*crdno delz vol " << endl;
1283 fout << "5000701 0.25 2" << endl;
1284 fout << "*crdno rough dhy vol" << endl;
1285 fout << "5000801 2.0-6 0.0127 2" << endl;
1286 fout << "*crdno floss rloss jun" << endl;
1287 fout << "*INPUT LOSS COEFFICIENTS FOR PIPE BENDS" << endl;
1288 fout << "5000901 0 0 1 " << endl;
1289 fout << "*crdno ctl vol " << endl;

Page: 227

1290 fout << "5001001 0 2" << endl;
1291 fout << "*crdno ctl jun " << endl;
1292 fout << "5001101 0 1" << endl;
1293 fout << "*crdno ctl p temp vol" << endl;
1294 fout << "5001201 3 "<< R5SciConv(PT511) << " " << TF501 << " 0 0 0 2" << endl;
1295 fout << "*==" << endl;
1296 fout << "*TOMNOTE: Set pressure to PT-511" << endl;
1297 fout << "*Set temperature to TF-501" << endl;
1298 fout << "*==" << endl;
1299 fout << "*crdno ctl " << endl;
1300 fout << "5001300 1" << endl;
1301 fout << "*crdno mflowf mflowg velj jun" << endl;
1302 fout << "5001301 4.50-1 0.0 0 1" << endl;
1303 fout << "*--" << endl;
1304 fout << "* component 053" << endl;
1305 fout << "* Feedwater Regulating Valve" << endl;
1306 fout << "*crdno name type" << endl;
1307 fout << "053 msv valve" << endl;
1308 fout << "*crdno from to area floss rloss ctl" << endl;
1309 fout << "0530101 500020002 501010001 6.94-5 0 0 1100" << endl;
1310 fout << "*crdno ctl flowf flowg velj" << endl;
1311 fout << "0530201 1 "<< FVM602M << " 0.0 0.0 " << endl;
1312 fout << "*==" << endl;
1313 fout << "*TOMNOTE: Set flowf to FVM-602M" << endl;
1314 fout << "*==" << endl;
1315 fout << "*crdno type " << endl;
1316 fout << "0530300 srvvlv " << endl;
1317 fout << "*crdno ctlno table no" << endl;
1318 fout << "0530301 4 0" << endl;
1319 fout << "*--" << endl;
1320 fout << "* component 501" << endl;
1321 fout << "* Single Feedwater Line for Modeling of FRV to Branch before SGs " << endl;
1322 fout << "*crdno name type" << endl;
1323 fout << "501 fwline pipe" << endl;
1324 fout << "*crdno nv " << endl;
1325 fout << "5010001 4" << endl;
1326 fout << "*crdno area vol" << endl;
1327 fout << "5010101 1.24-4 4" << endl;

Page: 228

1328 fout << "*crdno area jun" << endl;
1329 fout << "5010201 0 3" << endl;
1330 fout << "*crdno length vol" << endl;
1331 fout << "5010301 1.53 1" << endl;
1332 fout << "5010302 0.61 2" << endl;
1333 fout << "5010303 0.22 3" << endl;
1334 fout << "5010304 0.16 4" << endl;
1335 fout << "*crdno volume vol" << endl;
1336 fout << "5010401 0 4" << endl;
1337 fout << "*crdno h-ang vol" << endl;
1338 fout << "5010501 0.0 1" << endl;
1339 fout << "5010502 0.0 2" << endl;
1340 fout << "5010503 0.0 3" << endl;
1341 fout << "5010504 0.0 4" << endl;
1342 fout << "*crdno v-ang vol" << endl;
1343 fout << "5010601 90.0 1" << endl;
1344 fout << "5010602 0.0 2" << endl;
1345 fout << "5010603 90.0 3" << endl;
1346 fout << "5010604 0.0 4" << endl;
1347 fout << "*crdno delz vol" << endl;
1348 fout << "5010701 1.53 1" << endl;
1349 fout << "5010702 0.0 2" << endl;
1350 fout << "5010703 0.22 3" << endl;
1351 fout << "5010704 0.0 4" << endl;
1352 fout << "*crdno rough dhy vol" << endl;
1353 fout << "5010801 2.0-6 0.0127 4" << endl;
1354 fout << "*crdno floss rloss jun" << endl;
1355 fout << "*INPUT LOSS COEFFICIENTS FOR PIPE BENDS" << endl;
1356 fout << "5010901 0 0 3 " << endl;
1357 fout << "*crdno ctl vol" << endl;
1358 fout << "5011001 0 4" << endl;
1359 fout << "*crdno ctl jun" << endl;
1360 fout << "5011101 0 3" << endl;
1361 fout << "*crdno ctl p temp vol" << endl;
1362 fout << "5011201 3 "<< R5SciConv(PT511) << " " << TF501 << " 0 0 0 4" << endl;
1363 fout << "*==" << endl;
1364 fout << "*TOMNOTE: Set pressure to PT-511" << endl;
1365 fout << "*Set temperature to TF-501" << endl;

Page: 229

1366 fout << "*==" << endl;
1367 fout << "*crdno ctl " << endl;
1368 fout << "5011300 1" << endl;
1369 fout << "*crdno mflowf mflowg velj jun" << endl;
1370 fout << "5011301 4.50-1 0.0 0 3" << endl;
1371 fout << "*--" << endl;
1372 fout << "* component 057" << endl;
1373 fout << "* Junction with SG inlet" << endl;
1374 fout << "*crdno name type" << endl;
1375 fout << "057 SGin valve" << endl;
1376 fout << "*crdno from to area floss rloss ctl" << endl;
1377 fout << "0570101 501040002 505010001 0 0 0 0" << endl;
1378 fout << "*crdno ctl flowf flowg velj" << endl;
1379 fout << "0570201 1 "<< FVM602M << " 0.0 0.0" << endl;
1380 fout << "*==" << endl;
1381 fout << "*TOMNOTE: Set flowf to FVM-602M" << endl;
1382 fout << "*==" << endl;
1383 fout << "*crdno valve" << endl;
1384 fout << "0570300 trpvlv" << endl;
1385 fout << "*crdno trip --- 498 is OPEN, 499 is CLOSED" << endl;
1386 fout << "0570301 498" << endl;
1387 fout << "*--" << endl;
1388 fout << "* component 505" << endl;
1389 fout << "* Steam generator--tube " << endl;
1390 fout << "*crdno name type" << endl;
1391 fout << "505 SGtube pipe" << endl;
1392 fout << "*crdno nv " << endl;
1393 fout << "5050001 11" << endl;
1394 fout << "*crdno area vol " << endl;
1395 fout << "5050101 1.746-3 11" << endl;
1396 fout << "*crdno area jun" << endl;
1397 fout << "5050201 0 10" << endl;
1398 fout << "*crdno length vol " << endl;
1399 fout << "5050301 0.35 1" << endl;
1400 fout << "5050302 0.6048 10" << endl;
1401 fout << "5050303 0.35 11" << endl;
1402 fout << "*crdno volume vol " << endl;
1403 fout << "5050401 0 11" << endl;

Page: 230

1404 fout << "*crdno h-ang vol " << endl;
1405 fout << "5050501 0.0 11" << endl;
1406 fout << "*crdno v-ang vol " << endl;
1407 fout << "5050601 90.0 11" << endl;
1408 fout << "*crdno delz vol " << endl;
1409 fout << "5050701 0.06545 1" << endl;
1410 fout << "5050702 0.1131 10" << endl;
1411 fout << "5050703 0.06545 11" << endl;
1412 fout << "*crdno rough dhy vol" << endl;
1413 fout << "5050801 2.0-6 0.0126 11" << endl;
1414 fout << "*crdno floss rloss jun" << endl;
1415 fout << "5050901 0 0 10 " << endl;
1416 fout << "*crdno ctl vol " << endl;
1417 fout << "5051001 0 11" << endl;
1418 fout << "*crdno ctl jun " << endl;
1419 fout << "5051101 0 10" << endl;
1420 fout << "*crdno ctl p temp vol " << endl;
1421 fout << "5051201 3 " << R5SciConv(PT511) << " "
1422 << Linterpolate(TF501, FVM602T, 1, 11, 1) << " 0 0 0 1" << endl;
1423 fout << "5051202 3 " << R5SciConv(PT511) << " "
1424 << Linterpolate(TF501, FVM602T, 1, 11, 2) << " 0 0 0 2" << endl;
1425 fout << "5051203 3 " << R5SciConv(PT511) << " "
1426 << Linterpolate(TF501, FVM602T, 1, 11, 3) << " 0 0 0 3" << endl;
1427 fout << "5051204 3 " << R5SciConv(PT511) << " "
1428 << Linterpolate(TF501, FVM602T, 1, 11, 4) << " 0 0 0 4" << endl;
1429 fout << "5051205 3 " << R5SciConv(PT511) << " "
1430 << Linterpolate(TF501, FVM602T, 1, 11, 5) << " 0 0 0 5" << endl;
1431 fout << "5051206 3 " << R5SciConv(PT511) << " "
1432 << Linterpolate(TF501, FVM602T, 1, 11, 6) << " 0 0 0 6" << endl;
1433 fout << "5051207 3 " << R5SciConv(PT511) << " "
1434 << Linterpolate(TF501, FVM602T, 1, 11, 7) << " 0 0 0 7" << endl;
1435 fout << "5051208 3 " << R5SciConv(PT511) << " "
1436 << Linterpolate(TF501, FVM602T, 1, 11, 8) << " 0 0 0 8" << endl;
1437 fout << "5051209 3 " << R5SciConv(PT511) << " "
1438 << Linterpolate(TF501, FVM602T, 1, 11, 9) << " 0 0 0 9" << endl;
1439 fout << "5051210 3 " << R5SciConv(PT511) << " "
1440 << Linterpolate(TF501, FVM602T, 1, 11, 10) << " 0 0 0 10" << endl;
1441 fout << "5051211 3 " << R5SciConv(PT511) << " "

Page: 231

1442 << Linterpolate(TF501, FVM602T, 1, 11, 11) << " 0 0 0 11" << endl;
1443 fout << "*==" << endl;
1444 fout << "*TOMNOTE: Set pressure to PT-511" << endl;
1445 fout << "*Set volume 1 temperature to TF-501" << endl;
1446 fout << "*Set volume 11 temperature to FVM-602T" << endl;
1447 fout << "*Linear Interpolation for the others" << endl;
1448 fout << "*==" << endl;
1449 fout << "*crdno ctl " << endl;
1450 fout << "5051300 1" << endl;
1451 fout << "*crdno flowf flowg velj jun" << endl;
1452 fout << "5051301 4.50-1 0.0 0 6" << endl;
1453 fout << "5051302 0.0 4.50-1 0 10" << endl;
1454 fout << "*--" << endl;
1455 fout << "* component 058" << endl;
1456 fout << "* Junction with SG Outlet to Main Steam Line" << endl;
1457 fout << "*crdno name type" << endl;
1458 fout << "058 SGout valve" << endl;
1459 fout << "*crdno from to area floss rloss ctl" << endl;
1460 fout << "0580101 505110004 507010001 0 0 0 0" << endl;
1461 fout << "*crdno ctl flowf flowg velj" << endl;
1462 fout << "0580201 1 "<< FVM602M << " 4.50-1 0.0" << endl;
1463 fout << "*==" << endl;
1464 fout << "*TOMNOTE: Set flowf to FVM-602M" << endl;
1465 fout << "*==" << endl;
1466 fout << "*crdno valve" << endl;
1467 fout << "0580300 trpvlv" << endl;
1468 fout << "*crdno trip --- 498 is OPEN, 499 is CLOSED" << endl;
1469 fout << "0580301 498" << endl;
1470 fout << "*--" << endl;
1471 fout << "* component 507" << endl;
1472 fout << "* Main Steam Line from Steam Drum to Vortex Meter Inlet" << endl;
1473 fout << "*crdno name type" << endl;
1474 fout << "507 MSteam pipe" << endl;
1475 fout << "*crdno nv " << endl;
1476 fout << "5070001 8" << endl;
1477 fout << "*crdno area vol " << endl;
1478 fout << "5070101 9.64-4 8" << endl;
1479 fout << "*crdno area jun" << endl;

Page: 232

1480 fout << "5070201 0 7" << endl;
1481 fout << "*crdno length vol " << endl;
1482 fout << "5070301 0.2 1" << endl;
1483 fout << "5070302 0.35 2" << endl;
1484 fout << "5070303 0.34 3" << endl;
1485 fout << "5070304 0.10 4" << endl;
1486 fout << "5070305 0.26 8" << endl;
1487 fout << "*crdno volume vol " << endl;
1488 fout << "5070401 0 8" << endl;
1489 fout << "*crdno h-ang vol " << endl;
1490 fout << "5070501 0.0 3" << endl;
1491 fout << "5070502 0.0 4" << endl;
1492 fout << "5070503 0.0 8" << endl;
1493 fout << "*crdno v-ang vol " << endl;
1494 fout << "5070601 0.0 3" << endl;
1495 fout << "5070602 90.0 4" << endl;
1496 fout << "5070603 0.0 8" << endl;
1497 fout << "*crdno delz vol " << endl;
1498 fout << "5070701 0.0 3" << endl;
1499 fout << "5070702 0.1 4" << endl;
1500 fout << "5070703 0.0 8" << endl;
1501 fout << "*crdno rough dhy vol" << endl;
1502 fout << "5070801 2.0-6 3.5-2 8" << endl;
1503 fout << "*crdno floss rloss jun" << endl;
1504 fout << "*90 degree pipe bend loss" << endl;
1505 fout << "5070901 0 0 1 " << endl;
1506 fout << "5070902 0 0 2" << endl;
1507 fout << "*180 pipe bend loss " << endl;
1508 fout << "5070903 0 0 3" << endl;
1509 fout << "5070904 0 0 7" << endl;
1510 fout << "*crdno ctl vol " << endl;
1511 fout << "5071001 0 8" << endl;
1512 fout << "*crdno ctl jun " << endl;
1513 fout << "5071101 0 7" << endl;
1514 fout << "*crdno ctl p temp vol " << endl;
1515 fout << "5071201 3 "<< R5SciConv(PT602) << " " << FVM602T <<" 0 0 0 8" << endl;
1516 fout << "*==" << endl;
1517 fout << "*TOMNOTE: Set pressure to PT-602" << endl;

Page: 233

1518 fout << "*Set temperature to FVM-602T" << endl;
1519 fout << "*==" << endl;
1520 fout << "*crdno ctl " << endl;
1521 fout << "5071300 1" << endl;
1522 fout << "*crdno flowf flowg velj jun" << endl;
1523 fout << "5071301 0.0 4.50-1 0 7" << endl;
1524 fout << "*--" << endl;
1525 fout << "* component 060" << endl;
1526 fout << "* Main Steam Outlet to Back Pressure Regulator" << endl;
1527 fout << "*crdno name type" << endl;
1528 fout << "060 BPRin sngljun" << endl;
1529 fout << "*crdno from to area floss rloss ctl" << endl;
1530 fout << "0600101 507080004 50800 0 0 0 0" << endl;
1531 fout << "*crdno ctl flowf flowg velj" << endl;
1532 fout << "0600201 1 0.0 "<< FVM602M << " 0.0" << endl;
1533 fout << "*==" << endl;
1534 fout << "*TOMNOTE: Set flowg (NOT flowf) to FVM-602M" << endl;
1535 fout << "*==" << endl;
1536 fout << "*--" << endl;
1537 fout << "* component 508" << endl;
1538 fout << "* Steam generator--secondary outlet-Backpressure Regulator " << endl;
1539 fout << "*crdno name type" << endl;
1540 fout << "508 SGoutlet tmdpvol" << endl;
1541 fout << "*crdno area length volume h-ang v-ang delz rough " << endl;
1542 fout << "5080101 0.01 1.0 0 0.0 90.0 1.0 0.0 " << endl;
1543 fout << "*crdno dhy ctl" << endl;
1544 fout << "5080102 0.0 0" << endl;
1545 fout << "*crdno ctl " << endl;
1546 fout << "5080200 2 " << endl;
1547 fout << "*crdno time p qual time p qual" << endl;
1548 fout << "5080201 0.0 "<< R5SciConv(PT602) << " 1.0 362.0 "
1549 << R5SciConv(PT602) << " 1.0" << endl;
1550 fout << "5080202 376.0 "<< R5SciConv(PT602) << " 1.0 774.0 "
1551 << R5SciConv(PT602) << " 1.0" << endl;
1552 fout << "5080203 780.0 "<< R5SciConv(PT602) << " 1.0 1476.0 "
1553 << R5SciConv(PT602) << " 1.0" << endl;
1554 fout << "5080204 1503.0 "<< R5SciConv(PT602) << " 1.0 1779.0 "
1555 << R5SciConv(PT602) << " 1.0" << endl;

Page: 234

1556 fout << "5080205 1786.0 "<< R5SciConv(PT602) << " 1.0 5.0+4 "
1557 << R5SciConv(PT602) << " 1.0" << endl;
1558 fout << "*==" << endl;
1559 fout << "*TOMNOTE: Set pressure to PT-602 for all times" << endl;
1560 fout << "*Leave quality at 1.0" << endl;
1561 fout << "*==" << endl;
1562 //--
1563
1564 if (th_id>=(requestTh/2)) { //only second half of threads are used for transients
1565 for (int i=0; i<(transient.size()-2); i++) {
1566 if (transient[i]==("VV_O")) { //Vent Valve open
1567 fout << "* RAPSS simulating VentValve Open" << endl;
1568 singleTransientExplanation.push_back("RAPSS simulating VentValve Open");
1569 numOfValves=2;
1570 srand(time(NULL));
1571 switch(rand()%(numOfValves-1)+1) {
1572 case 1:
1573 Vbreak.push_back(4720);
1574 break;
1575 case 2:
1576 Vbreak.push_back(4820);
1577 }
1578 }
1579 if (transient[i]==("VV_C")) { //Vent Valve closed
1580 fout << "* RAPSS simulating VentValve closed" << endl;
1581 singleTransientExplanation.push_back("RAPSS simulating VentValve closed");
1582 numOfValves=3;
1583 srand(time(NULL));
1584 switch(rand()%(numOfValves-1)+1) {
1585 case 1:
1586 Vbreak.push_back(4721);
1587 break;
1588 case 2:
1589 Vbreak.push_back(4821);
1590 break;
1591 case 3:
1592 Vbreak.push_back(90);
1593 }

Page: 235

1594 }
1595 if (transient[i]==("HCC_F")) { //Hot channel chimney hole
1596 fout << "* RAPSS simulating Hot channel chimney hole" << endl;
1597 singleTransientExplanation.push_back("RAPSS simulating Hot channel chimney
hole");
1598 Vbreak.push_back(7510);
1599 }
1600 if (transient[i]==("RPV_F")) { //RPV leak
1601 fout << "* RAPSS simulating RPV leak" << endl;
1602 singleTransientExplanation.push_back("RAPSS simulating RPV leak");
1603 Vbreak.push_back(7520);
1604 }
1605 if (transient[i]==("CONT_F")) { //Containment Leak
1606 fout << "* RAPSS simulating Containment Leak" << endl;
1607 singleTransientExplanation.push_back("RAPSS simulating Containment Leak");
1608 Vbreak.push_back(7540);
1609 }
1610 if (transient[i]==("FLOW_B")) { //Flow blockage
1611 fout << "* RAPSS simulating Flow Blockage" << endl;
1612 singleTransientExplanation.push_back("RAPSS simulating Flow Blockage");
1613 numOfValves=4;
1614 srand(time(NULL));
1615 switch(rand()%(numOfValves-1)+1) {
1616 case 1:
1617 Vbreak.push_back(0010);
1618 break;
1619 case 2:
1620 Vbreak.push_back(0020);
1621 break;
1622 case 3:
1623 Vbreak.push_back(0030);
1624 break;
1625 case 4:
1626 Vbreak.push_back(0040);
1627 }
1628 }
1629 if (transient[i]==("FLOW_B1")) { //partial Flow blockage
1630 fout << "* RAPSS simulating partial Flow Blockage" << endl;

Page: 236

1631 singleTransientExplanation.push_back("RAPSS simulating partial Flow Blockage");
1632 numOfValves=4;
1633 srand(time(NULL));
1634 switch(rand()%(numOfValves-1)+1) {
1635 case 1:
1636 Vbreak.push_back(0011);
1637 break;
1638 case 2:
1639 Vbreak.push_back(0021);
1640 break;
1641 case 3:
1642 Vbreak.push_back(0031);
1643 break;
1644 case 4:
1645 Vbreak.push_back(0041);
1646 }
1647 }
1648 if (transient[i]==("SWMup_F")) { //Sump Water Makeup failure
1649 fout << "* RAPSS simulating Sump Water Makeup failure" << endl;
1650 singleTransientExplanation.push_back("RAPSS simulating Sump H20 Makeup failure");
1651 Vbreak.push_back(4520);
1652 Vbreak.push_back(4620);
1653 }
1654 if (transient[i]==("SUMP_O")) { //Sump Open
1655 fout << "* RAPSS simulating sump open" << endl;
1656 singleTransientExplanation.push_back("RAPSS simulating Sump Open");
1657 Vbreak.push_back(4521);
1658 Vbreak.push_back(4621);
1659 }
1660 if (transient[i]==("SECOND_F")) { //secondary loop failure
1661 fout << "* RAPSS secondary loop failure" << endl;
1662 singleTransientExplanation.push_back("RAPSS simulating Secondary Loop Failure");
1663 numOfValves=2;
1664 srand(time(NULL));
1665 switch(rand()%(numOfValves-1)+1) {
1666 case 1:
1667 Vbreak.push_back(0570);
1668 break;

Page: 237

1669 case 2:
1670 Vbreak.push_back(580);
1671 }
1672 }
1673
1674 }
1675 }
1676 for (unsigned int i=0; i<Vbreak.size(); i++) {
1677 if (prevKeepGoing[th_id]==0) { //if keep going is true, don't start a new transient
1678 switch (Vbreak[i]) {
1679 case 4720:
1680 singleTransientExplanation.push_back(
1681 "Component 472 Vent Valve disabled due to problems");
1682 fout << "*---" << endl;
1683 fout << "* component 472" << endl;
1684 fout << "* disabled due to problems" << endl;
1685 //fout << "* PCS-106A" << endl;
1686 //fout << "*crdno name type" << endl;
1687 //fout << "472 PCS106A valve" << endl;
1688 //fout << "*crdno from to area floss rloss ctl" << endl;
1689 //fout << "4720101 420020004 421010003 3.18-5 14.0 14.0 1100" << endl;
1690 //fout << "*crdno ctl flowf flowg velj" << endl;
1691 //fout << "4720201 1 0.0 0.0 0.0" << endl;
1692 //fout << "*crdno type" << endl;
1693 //fout << "4720300 trpvlv " << endl;
1694 //fout << "*crdno trpno 403 is Normal Ops, 499 is blocked, 498 is open"
1695 // << endl;
1696 //fout << "4720301 498" << endl;
1697 break;
1698 case 4820:
1699 singleTransientExplanation.push_back("Component 482 Vent Valve OPEN");
1700 fout << "*---" << endl;
1701 fout << "* component 482" << endl;
1702 fout << "* PCS-106B" << endl;
1703 fout << "*crdno name type" << endl;
1704 fout << "482 PCS106A valve" << endl;
1705 fout << "*crdno from to area floss rloss ctl" << endl;
1706 fout << "4820101 430020004 431010003 3.18-5 14.0 14.0 1100" << endl;

Page: 238

1707 fout << "*crdno ctl flowf flowg velj" << endl;
1708 fout << "4820201 1 0.0 0.0 0.0" << endl;
1709 fout << "*crdno type " << endl;
1710 fout << "4820300 trpvlv " << endl;
1711 fout << "*crdno trpno 404 is Normal Ops, 499 is blocked, 498 is open"
1712 << endl;
1713 fout << "4820301 498" << endl;
1714 break;
1715 case 4721:
1716 singleTransientExplanation.push_back("Component 472 Vent Valve CLOSED");
1717 fout << "*---" << endl;
1718 fout << "* component 472" << endl;
1719 fout << "* PCS-106A" << endl;
1720 fout << "*crdno name type" << endl;
1721 fout << "472 PCS106A valve" << endl;
1722 fout << "*crdno from to area floss rloss ctl" << endl;
1723 fout << "4720101 420020004 421010003 3.18-5 14.0 14.0 1100" << endl;
1724 fout << "*crdno ctl flowf flowg velj" << endl;
1725 fout << "4720201 1 0.0 0.0 0.0" << endl;
1726 fout << "*crdno type " << endl;
1727 fout << "4720300 trpvlv " << endl;
1728 fout << "*crdno trpno 403 is Normal Ops, 499 is blocked, 498 is open"
1729 << endl;
1730 fout << "4720301 499" << endl;
1731 break;
1732 case 4821:
1733 singleTransientExplanation.push_back("Component 482 Vent Valve CLOSED");
1734 fout << "*---" << endl;
1735 fout << "* component 482" << endl;
1736 fout << "* PCS-106B" << endl;
1737 fout << "*crdno name type" << endl;
1738 fout << "482 PCS106A valve" << endl;
1739 fout << "*crdno from to area floss rloss ctl" << endl;
1740 fout << "4820101 430020004 431010003 3.18-5 14.0 14.0 1100" << endl;
1741 fout << "*crdno ctl flowf flowg velj" << endl;
1742 fout << "4820201 1 0.0 0.0 0.0" << endl;
1743 fout << "*crdno type " << endl;
1744 fout << "4820300 trpvlv " << endl;

Page: 239

1745 fout << "*crdno trpno 404 is Normal Ops, 499 is blocked, 498 is open"
1746 << endl;
1747 fout << "4820301 499" << endl;
1748 break;
1749 case 90:
1750 singleTransientExplanation.push_back(
1751 "Component 009 Connection Pres & ADS Vent Line Steam Space CLOSED");
1752 fout << "*---" << endl;
1753 fout << "* component 009" << endl;
1754 fout << "* Connection Pres & ADS Vent Line Steam Space" << endl;
1755 fout << "*crdno name type" << endl;
1756 fout << "009 PZRADSv valve" << endl;
1757 fout << "*crdno from to area floss rloss ctl" << endl;
1758 fout << "0090101 301080002 30200 0 0 0 0" << endl;
1759 fout << "*crdno ctl mflowf mflowg velj" << endl;
1760 fout << "0090201 1 0.00 0.0 0" << endl;
1761 fout << "*crdno valve" << endl;
1762 fout << "0090300 trpvlv" << endl;
1763 fout << "*crdno trip --- 498 is OPEN, 499 is CLOSED" << endl;
1764 fout << "0090301 499" << endl;
1765 break;
1766 case 7510:
1767 singleTransientExplanation.push_back(
1768 "Component 110 Hot Leg Leak Valve OPEN");
1769 fout << "*---" << endl;
1770 fout << "*Component 751 --- Component 110 (Hot Leg) Leak Valve" << endl;
1771 fout << "*---" << endl;
1772 fout << "*crdno name type" << endl;
1773 fout << "751 HLLkVl valve" << endl;
1774 fout << "*cardno FROM TO area floss rloss ctl" << endl;
1775 fout << "7510101 110150002 201150001 5.0-5 0 0 0" << endl;
1776 fout << "*cardno ctl fvel gvel zero" << endl;
1777 fout << "7510201 0 0.0 0.0 0" << endl;
1778 fout << "*cardno valve" << endl;
1779 fout << "7510300 trpvlv" << endl;
1780 fout << "*cardno trip 498 is OPEN, 499 is CLOSED" << endl;
1781 fout << "7510301 498" << endl;
1782 break;

Page: 240

1783 case 7520:
1784 singleTransientExplanation.push_back(
1785 "Component 201 Cold Leg Leak Valve OPEN");
1786 fout << "*---" << endl;
1787 fout << "*Component 752 --- Component 201 (Cold Leg) Leak Valve" << endl;
1788 fout << "*---" << endl;
1789 fout << "*crdno name type" << endl;
1790 fout << "752 CLLkVl valve" << endl;
1791 fout << "*cardno FROM TO area floss rloss ctl" << endl;
1792 fout << "7520101 201230002 852010001 5.0-5 0 0 0" << endl;
1793 fout << "*cardno ctl fvel gvel zero" << endl;
1794 fout << "7520201 0 0.0 0.0 0" << endl;
1795 fout << "*cardno valve" << endl;
1796 fout << "7520300 trpvlv" << endl;
1797 fout << "*cardno trip 498 is OPEN, 499 is CLOSED" << endl;
1798 fout << "7520301 498" << endl;
1799 break;
1800 case 7540:
1801 singleTransientExplanation.push_back(
1802 "Component 754 Containment to Cooling Pool Leak Valve OPEN");
1803 fout << "*---" << endl;
1804 fout << "* Component 754 - Containment to Cooling Pool leak valve"<<endl;
1805 fout << "*---" << endl;
1806 fout << "*cardno name type" << endl;
1807 fout << "754 ConCPLk valve" << endl;
1808 fout << "*cardno FROM TO area floss rloss ctl" << endl;
1809 fout << "7540101 700010002 800010001 5.0-4 0 0 0" << endl;
1810 fout << "*cardno ctl fvel gvel zero" << endl;
1811 fout << "7540201 0 0.0 0.0 0" << endl;
1812 fout << "*cardno valve" << endl;
1813 fout << "7540300 trpvlv" << endl;
1814 fout << "*cardno trip 498 is OPEN, 499 is CLOSED" << endl;
1815 fout << "7540301 498" << endl;
1816 break;
1817 case 0010:
1818 singleTransientExplanation.push_back(
1819 "Component 001 Flow Blockage Connection from Core to Hotleg");
1820 fout << "*---" << endl;

Page: 241

1821 fout << "* component 001 Flow Blockage" << endl;
1822 fout << "*Connection from Core to Hotleg" << endl;
1823 fout << "* disabled due problems" << endl;
1824 //fout << "*crdno name type" << endl;
1825 //fout << "001 coreout valve" << endl;
1826 //fout << "*crdno from to area floss rloss ctl" << endl;
1827 //fout << "0010101 100060002 110010001 0 0 0 0" << endl;
1828 //fout << "*crdno ctl flowf flowg velj" << endl;
1829 //fout << "0010201 1 1.50 0.0 0" << endl;
1830 //fout << "*crdno valve" << endl;
1831 //fout << "0010300 trpvlv" << endl;
1832 //fout << "*crdno trip --- 498 is OPEN, 499 is CLOSED" << endl;
1833 //fout << "0010301 499" << endl;
1834
1835 break;
1836 case 0020:
1837 singleTransientExplanation.push_back(
1838 "Flow Blockage Connection from Hotleg to Upper Plenum");
1839 fout << "*---" << endl;
1840 fout << "* component 002 Flow Blockage" << endl;
1841 fout << "*Connection from Hotleg to Upper Plenum" << endl;
1842 fout << "* disabled due problems" << endl;
1843 //fout << "*crdno name type" << endl;
1844 //fout << "002 hotplen valve" << endl;
1845 //fout << "*crdno from to area floss rloss ctl" << endl;
1846 //fout << "0020101 110290002 3 8.213-3 0 0 0" << endl;
1847 //fout << "*crdno ctl flowf flowg velj" << endl;
1848 //fout << "0020201 1 1.50 0.0 0" << endl;
1849 //fout << "*crdno valve" << endl;
1850 //fout << "0020300 trpvlv" << endl;
1851 //fout << "*crdno trip --- 498 is OPEN, 499 is CLOSED" << endl;
1852 //fout << "0020301 499" << endl;
1853 break;
1854 case 0030:
1855 singleTransientExplanation.push_back(
1856 "Component 003 Flow Blockage Lower cold leg outlet");
1857 fout << "*---" << endl;
1858 fout << "* component 003 Flow Blockage" << endl;

Page: 242

1859 fout << "* disabled due problems" << endl;
1860 //fout << "* Lower cold leg outlet" << endl;
1861 //fout << "*crdno name type" << endl;
1862 //fout << "003 lclout valve" << endl;
1863 //fout << "*crdno from to area floss rloss ctl" << endl;
1864 //fout << "0030101 201350002 20200 0 0 0 0" << endl;
1865 //fout << "*crdno ctl flowf flowg velj" << endl;
1866 //fout << "0030201 1 1.50 0.0 0" << endl;
1867 //fout << "*crdno valve" << endl;
1868 //fout << "0030300 trpvlv" << endl;
1869 //fout << "*crdno trip --- 498 is OPEN, 499 is CLOSED" << endl;
1870 //fout << "0030301 499" << endl;
1871 break;
1872 case 0040:
1873 singleTransientExplanation.push_back(
1874 "Flow Blockage Connection Plenum into the Core CLOSED");
1875 fout << "*---" << endl;
1876 fout << "* component 004 Flow Blockage" << endl;
1877 fout << "* disabled due problems" << endl;
1878 //fout << "*crdno name type" << endl;
1879 //fout << "004 corein valve" << endl;
1880 //fout << "*crdno from to area floss rloss ctl" << endl;
1881 //fout << "0040101 20200 1 0 0 0 100" << endl;
1882 //fout << "*crdno ctl flowf flowg velj" << endl;
1883 //fout << "0040201 1 1.50 0.0 0" << endl;
1884 //fout << "*crdno valve" << endl;
1885 //fout << "0040300 trpvlv" << endl;
1886 //fout << "*crdno trip --- 498 is OPEN, 499 is CLOSED" << endl;
1887 //fout << "0040301 499" << endl;
1888 break;
1889 case 0011:
1890 singleTransientExplanation.push_back(
1891 "ParitialFlowBlockage Connection from Core to Hotleg CLOSED");
1892 fout << "*---" << endl;
1893 fout << "* component 001 ParitialFlowBlockage" << endl;
1894 fout << "*Connection from Core to Hotleg" << endl;
1895 fout << "*crdno name type" << endl;
1896 fout << "001 coreout valve" << endl;

Page: 243

1897 fout << "*crdno from to area floss rloss ctl" << endl;
1898 fout << "0010101 100060002 110010001 1.5-2 0 0 0" << endl;
1899 fout << "*crdno ctl flowf flowg velj" << endl;
1900 fout << "0010201 1 1.50 0.0 0" << endl;
1901 fout << "*crdno valve" << endl;
1902 fout << "0010300 trpvlv" << endl;
1903 fout << "*crdno trip --- 498 is OPEN, 499 is CLOSED" << endl;
1904 fout << "0010301 499" << endl;
1905 break;
1906 case 0021:
1907 singleTransientExplanation.push_back(
1908 "ParitialFlowBlockage Connection Hotleg to Upper Plenum CLOSED");
1909 fout << "*---" << endl;
1910 fout << "* component 002 ParitialFlowBlockage" << endl;
1911 fout << "*Connection from Hotleg to Upper Plenum" << endl;
1912 fout << "*crdno name type" << endl;
1913 fout << "002 hotplen valve" << endl;
1914 fout << "*crdno from to area floss rloss ctl" << endl;
1915 fout << "0020101 110290002 3 4.0-3 0 0 0" << endl;
1916 fout << "*crdno ctl flowf flowg velj" << endl;
1917 fout << "0020201 1 1.50 0.0 0" << endl;
1918 fout << "*crdno valve" << endl;
1919 fout << "0020300 trpvlv" << endl;
1920 fout << "*crdno trip --- 498 is OPEN, 499 is CLOSED" << endl;
1921 fout << "0020301 499" << endl;
1922 break;
1923 case 0031:
1924 //commented out due to errors
1925 singleTransientExplanation.push_back(
1926 "Component 003 ParitialFlowBlockage Lower Cold Leg Outlet CLOSED");
1927 //fout << "*---"<<endl;
1928 //fout << "* component 003 ParitialFlowBlockage"<<endl;
1929 //fout << "* Lower cold leg outlet" << endl;
1930 //fout << "*crdno name type" << endl;
1931 //fout << "003 lclout valve" << endl;
1932 //fout << "*crdno from to area floss rloss ctl" << endl;
1933 //fout << "0030101 201350002 20200 1.7-2 0 0 0" << endl;
1934 //fout << "*crdno ctl flowf flowg velj" << endl;

Page: 244

1935 //fout << "0030201 1 1.50 0.0 0" << endl;
1936 //fout << "*crdno valve" << endl;
1937 //fout << "0030300 trpvlv" << endl;
1938 //fout << "*crdno trip --- 498 is OPEN, 499 is CLOSED" << endl;
1939 //fout << "0030301 499" << endl;
1940 break;
1941 case 0041:
1942 singleTransientExplanation.push_back(
1943 "Component 004 ParitialFlowBlockage Core Inlet CLOSED");
1944 fout << "*---" << endl;
1945 fout << "* component 004 ParitialFlowBlockage" << endl;
1946 fout << "*crdno name type" << endl;
1947 fout << "004 corein valve" << endl;
1948 fout << "*crdno from to area floss rloss ctl" << endl;
1949 fout << "0040101 20200 1 4.2-3 0 0 100" << endl;
1950 fout << "*crdno ctl flowf flowg velj" << endl;
1951 fout << "0040201 1 1.50 0.0 0" << endl;
1952 fout << "*crdno valve" << endl;
1953 fout << "0040300 trpvlv" << endl;
1954 fout << "*crdno trip --- 498 is OPEN, 499 is CLOSED" << endl;
1955 fout << "0040301 499" << endl;
1956 break;
1957 case 4520:
1958 singleTransientExplanation.push_back(
1959 "Component 452 Sump Water Makeup CLOSED");
1960 fout << "*---" << endl;
1961 fout << "* component 452 Sump Water Makeup Fail" << endl;
1962 fout << "* PCS 108-A" << endl;
1963 fout << "*crdno name type" << endl;
1964 fout << "452 PCS108A valve" << endl;
1965 fout << "*crdno from to area floss rloss ctl" << endl;
1966 fout << "4520101 401020004 402010003 3.18-5 14.0 14.0 1100" << endl;
1967 fout << "*crdno ctl flowf flowg velj" << endl;
1968 fout << "4520201 1 0.0 0.0 0.0" << endl;
1969 fout << "*crdno type " << endl;
1970 fout << "4520300 trpvlv " << endl;
1971 fout << "*crdno trpno 401 is Normal Ops, 499 is blocked " << endl;
1972 fout << "4520301 499" << endl;

Page: 245

1973 break;
1974 case 4620:
1975 singleTransientExplanation.push_back(
1976 "Component 462 Sump Water Makeup CLOSED");
1977 fout << "*---" << endl;
1978 fout << "* component 462 Sump Water Makeup Fail" << endl;
1979 fout << "* PCS 108-B" << endl;
1980 fout << "*crdno name type" << endl;
1981 fout << "462 PCS108B valve" << endl;
1982 fout << "*crdno from to area floss rloss ctl" << endl;
1983 fout << "4620101 410020004 411010003 3.18-5 14.0 14.0 1100" << endl;
1984 fout << "*crdno ctl flowf flowg velj" << endl;
1985 fout << "4620201 1 0.0 0.0 0.0" << endl;
1986 fout << "*crdno type " << endl;
1987 fout << "4620300 trpvlv " << endl;
1988 fout << "*crdno trpno 402 is Normal Ops, 499 is blocked" << endl;
1989 fout << "4620301 499" << endl;
1990 break;
1991 case 4521:
1992 singleTransientExplanation.push_back(
1993 "Component 452 disabled due to problems");
1994 fout << "*---" << endl;
1995 fout << "* component 452 SumpOpen" << endl;
1996 fout << "* disabled due to problems" << endl;
1997
1998 //fout << "* PCS 108-A" << endl;
1999 //fout << "*crdno name type" << endl;
2000 //fout << "452 PCS108A valve" << endl;
2001 //fout << "*crdno from to area floss rloss ctl" << endl;
2002 //fout << "4520101 401020004 402010003 3.18-5 14.0 14.0 1100" << endl;
2003 //fout << "*crdno ctl flowf flowg velj" << endl;
2004 //fout << "4520201 1 0.0 0.0 0.0" << endl;
2005 //fout << "*crdno type " << endl;
2006 //fout << "4520300 trpvlv " << endl;
2007 //fout << "*crdno trpno 401 is Normal Ops, 499 is blocked " << endl;
2008 //fout << "4520301 498" << endl;
2009 break;
2010 case 4621:

Page: 246

2011 singleTransientExplanation.push_back(
2012 "Component 462 disabled due to problems");
2013 fout << "*---" << endl;
2014 fout << "* component 462 SumpOpen" << endl;
2015 fout << "* disabled due to problems" << endl;
2016 //fout << "* PCS 108-B" << endl;
2017 //fout << "*crdno name type" << endl;
2018 //fout << "462 PCS108B valve" << endl;
2019 //fout << "*crdno from to area floss rloss ctl" << endl;
2020 //fout << "4620101 410020004 411010003 3.18-5 14.0 14.0 1100" << endl;
2021 //fout << "*crdno ctl flowf flowg velj" << endl;
2022 //fout << "4620201 1 0.0 0.0 0.0" << endl;
2023 //fout << "*crdno type " << endl;
2024 //fout << "4620300 trpvlv " << endl;
2025 //fout << "*crdno trpno 402 is Normal Ops, 499 is blocked" << endl;
2026 //fout << "4620301 498" << endl;
2027 break;
2028 case 0570:
2029 singleTransientExplanation.push_back(
2030 "Component 057 Junction with SG inlet CLOSED");
2031 fout << "*---" << endl;
2032 fout << "* component 057 Secondary Loop Failure" << endl;
2033 fout << "* Junction with SG inlet" << endl;
2034 fout << "*crdno name type" << endl;
2035 fout << "057 SGin valve" << endl;
2036 fout << "*crdno from to area floss rloss ctl" << endl;
2037 fout << "0570101 501040002 505010001 0 0 0 0" << endl;
2038 fout << "*crdno ctl flowf flowg velj" << endl;
2039 fout << "0570201 1 4.50-1 0.0 0.0" << endl;
2040 fout << "*crdno valve" << endl;
2041 fout << "0570300 trpvlv" << endl;
2042 fout << "*crdno trip --- 498 is OPEN, 499 is CLOSED" << endl;
2043 fout << "0570301 499" << endl;
2044 break;
2045 case 580:
2046 singleTransientExplanation.push_back(
2047 "Component 058 Junction with SG Outlet to Main Steam Line CLOSED");
2048 fout << "*---" << endl;

Page: 247

2049 fout << "* component 058" << endl;
2050 fout << "* Junction with SG Outlet to Main Steam Line" << endl;
2051 fout << "*crdno name type" << endl;
2052 fout << "058 SGout valve" << endl;
2053 fout << "*crdno from to area floss rloss ctl" << endl;
2054 fout << "0580101 505110004 507010001 0 0 0 0" << endl;
2055 fout << "*crdno ctl flowf flowg velj" << endl;
2056 fout << "0580201 1 0.0 4.50-1 0.0" << endl;
2057 fout << "*crdno valve" << endl;
2058 fout << "0580300 trpvlv" << endl;
2059 fout << "*crdno trip --- 498 is OPEN, 499 is CLOSED" << endl;
2060 fout << "0580301 499" << endl;
2061 break;
2062 default:
2063 singleTransientExplanation.push_back("No transients run");
2064 fout <<"* No transients run" << endl;
2065 }
2066 }
2067 }
2068 //end card (don't comment out on accident!)
2069 fout <<". end of data" << endl;
2070 return singleTransientExplanation;
2071 }
2072
2073 //This functions writes the user display in html
2074 void htmlDisplayWriter(string OutDir, string InDir, double RstNum,
2075 vector <vector <int> > EndBySumVec, vector <int> keepGoing,
2076 vector<vector<int> > clustMembers, vector<vector<string > > transientExplanation) {
2077 string displayOutFilePath;
2078 string displayOutFile;
2079 string greenOutFile;
2080 string greenOutFilePath;
2081 string unstableOutFile;
2082 string unstableOutFilePath;
2083 string miscOutFile;
2084 string miscOutFilePath;
2085 int redTableCols=0;
2086 int yellowTableCols=0;

Page: 248

2087
2088 for (int i=0; i<EndBySumVec[2].size(); i++) {
2089 if (EndBySumVec[2][i]==1) {
2090 redTableCols++;
2091 }
2092 }
2093 if (redTableCols==0) {
2094 redTableCols=1;
2095 }
2096
2097 for (int i=0; i<keepGoing.size(); i++) {
2098 if (keepGoing[i]==1) {
2099 yellowTableCols++;
2100 }
2101 }
2102 if (yellowTableCols==0) {
2103 yellowTableCols=1;
2104 }
2105
2106 stringstream sstm;
2107 sstm << "DISPLAY" << RstNum << ".html"; //adding index to the string
2108 displayOutFile = sstm.str();
2109 sstm.str("");
2110 displayOutFilePath = (OutDir + "/" + displayOutFile);
2111
2112 sstm << "green" << RstNum << ".html"; //adding index to the string
2113 greenOutFile = sstm.str();
2114 sstm.str("");
2115 greenOutFilePath = (OutDir + "/" + greenOutFile);
2116
2117 sstm << "unstable" << RstNum << ".html"; //adding index to the string
2118 unstableOutFile = sstm.str();
2119 sstm.str("");
2120 unstableOutFilePath = (OutDir + "/" + unstableOutFile);
2121
2122 sstm << "misc" << RstNum << ".html"; //adding index to the string
2123 miscOutFile = sstm.str();
2124 sstm.str("");

Page: 249

2125 miscOutFilePath = (OutDir + "/" + miscOutFile);
2126
2127
2128 bool output=false;
2129 ofstream fout(displayOutFilePath.c_str());
2130 //cout << displayOutFilePath << endl;
2131 fout << "<!--Display Engine For RAPSS-STA - Written by Kevin Makinson-->" << endl;
2132 fout << "<html><head>" << endl;
2133 fout << "<meta content=\"text/html; charset=ISO-8859-1\" http-equiv=\"content-type\">";
2134 fout << "<title>RAPSS-STA Display</title>" << endl;
2135 fout << "<link rel=\"stylesheet\" type=\"text/css\" href=\"tswtabs.css\">" << endl;
2136 fout << "</head>" << endl;
2137 fout << "<body>" << endl;
2138 fout << "RAPSS-STA Output Restart "
2139 << RstNum << "
" << endl;
2140 fout << "
" << endl;
2141 fout << "";
2142 fout << "Red Thresholds Tripped<p>
" << endl;
2143 fout << "<table style=\"border-color: rgb(255, 0, 0); text-align: left; width: "
2144 << 500*redTableCols <<"px;\" border=\"10\" cellpadding=\"2\" cellspacing=\"2\">"<< endl;
2145 fout << "<tbody>"<< endl;
2146 fout << "<tr>"<< endl;
2147 for (unsigned int i=0; i<EndBySumVec[2].size(); i++) {
2148 if (EndBySumVec[2][i]==1) {
2149 //red threshold logic
2150 //scenario i has red threshold reached
2151 output=true;
2152 fout << "<td>" << endl;
2153 fout << "<ul style=\"color: red;\">" << endl;
2154 fout << "";
2155 fout << "
<ul style=\"color: red;\">" << endl;
2156 fout << "<a href=\"alerts" << RstNum <<".pdf\">Secnario " << i
2157 << " Plots" << endl;
2158 fout << "" << endl;
2159 fout << "<a href=\"Th_" << i <<"_data/outputs/rst"<< RstNum
2160 <<".csv\">Data" << endl;
2161 fout << "" << endl;
2162 fout << "<ul style=\"color: red;\">" << endl;

Page: 250

2163 for (unsigned int k=0; k<transientExplanation[i].size(); k++) {
2164 fout << "" << transientExplanation[i][k] << " " << endl;
2165 }
2166 //fout << "Other information" << endl;//transient information goes here
2167 fout << "" << endl;
2168 fout << "" << endl;
2169 fout << "</td>" << endl;
2170 } else if (i==(EndBySumVec[2].size()-1) && (output==false)) {
2171 //fout << "<ul style=\"color: red;\">" << endl;
2172 fout << "<td>" << endl;
2173 fout << " No red trips " << endl;
2174 fout << "</td>" << endl;
2175 fout << "</u1>" << endl;
2176 }
2177 }
2178 fout << "</td>" << endl;
2179 fout << "</tr>" << endl;
2180 fout << "</tbody>" << endl;
2181 fout << "</table>" << endl;
2182 fout << "<p>" << endl;
2183 output=false;
2184
2185 fout << "";
2186 fout << "Yellow Thesholds Tripped<p>
" << endl;
2187 //change this one to be similar to the one above
2188 fout << "<table style=\"border-color: rgb(255, 180, 0); text-align: left; width: "
2189 << 500*yellowTableCols <<"px;\" border=\"10\" cellpadding=\"2\" cellspacing=\"2\">"
2190 << endl;
2191 fout << "<tbody>" << endl;
2192 fout << "<tr>" << endl;
2193 for (unsigned int i=0; i<keepGoing.size(); i++) {
2194 if (keepGoing[i]==1) {
2195 //yellow threshold logic
2196 //scenario i has yellow threshold reached
2197 output=true;
2198 //fout << "<td style=\"width: 500px;\">" << endl; //just added
2199 fout << "<td>" << endl;
2200 fout << "<ul style=\"color: rgb(225, 180, 0);\">" << endl;

Page: 251

2201 fout << "Scenario " << i << "" << endl;
2202 fout << "" << endl;
2203 fout << "<a href=\"Th_" << i <<"_data/outputs/rst" << RstNum
2204 << ".csv\">Data" << endl;
2205 fout << "" << endl;
2206 fout << "" << endl;
2207 for (unsigned int k=0; k<transientExplanation[i].size(); k++) {
2208 fout << "" << transientExplanation[i][k] << " " << endl;
2209 }
2210 fout << "" << endl;
2211 fout << "</td>" << endl;
2212 } else if (i==(keepGoing.size()-1) && (output==false)) {
2213 fout << "<td>" << endl;
2214 fout << " No yellow trips " << endl;
2215 fout << "</td>" << endl;
2216 fout << "</u1>" << endl;
2217 }
2218 }
2219 fout << "</td>" << endl;
2220 fout << "</tr>" << endl;
2221 fout << "</tbody>" << endl;
2222 fout << "</table>" << endl;
2223 fout << "" << endl;
2224 output=false;
2225
2226 fout << "<p>
" << endl;
2227 fout << "
<div id=\"tswcsstabs\">" << endl;
2228 fout << "" << endl;
2229 fout << "<a href=\"green" << RstNum
2230 << ".html\">No Thresholds Tripped" << endl;
2231 fout << "<a href=\"unstable" << RstNum
2232 << ".html\">R5 Model Became Unstable" << endl;
2233 fout << "<a href=\"misc" << RstNum
2234 << ".html\">Miscellaneous Information" << endl;
2235 fout << "" << endl;
2236 fout << "</div>" << endl;
2237 fout << "</body></html>" << endl;
2238 fout.close();

Page: 252

2239 fout.clear();
2240 //this ends the main page.
2241
2242 fout.open(greenOutFilePath.c_str()); //double check this does what I want it to.
2243 fout << "<!--Display Engine For RAPSS-STA - Written by Kevin Makinson-->" << endl;
2244 fout << "<html><head>" << endl;
2245 fout << "<meta content=\"text/html; charset=ISO-8859-1\" http-equiv=\"content-type\">";
2246 fout << "<title>RAPSS-STA Green Thresholds</title>" << endl;
2247 fout << "</head>" << endl;
2248 fout << "<body>" << endl;
2249 fout << "RAPSS-STA Output Restart "
2250 << RstNum << "
" << endl;
2251 fout << "
" << endl;
2252 fout << "No Thesholds Tripped";
2253 fout <<"
" << endl;
2254 fout << "<ul style=\"color: rgb(0, 153, 0);\">" << endl;
2255 for (unsigned int i=0; i<EndBySumVec[1].size(); i++) {
2256 if (EndBySumVec[1][i]==1) {
2257 //green threshold logic
2258 //scenario i has no threshold reached
2259 fout << "Secnario " << i << "" << endl;
2260 fout << "" << endl;
2261 fout << "<a href=\"Th_" << i <<"_data/outputs/rst"
2262 << RstNum << ".csv\">Data" << endl;
2263 fout << "" << endl;
2264 fout << "" << endl;
2265 for (unsigned int k=0; k<transientExplanation[i].size(); k++) {
2266 fout << "" << transientExplanation[i][k] << " " << endl;
2267 }
2268 fout << "" << endl;
2269 }
2270 }
2271 fout << "</body></html>" << endl;
2272 fout.close();
2273 fout.clear();
2274 //--
2275 fout.open(miscOutFilePath.c_str());
2276 fout << "<html><head>" << endl;

Page: 253

2277 fout << "<meta content=\"text/html; charset=ISO-8859-1\" http-equiv=\"content-type\">";
2278 fout << "<title>RAPSS-STA Cluster Information</title>" << endl;
2279 fout << "</head>" << endl;
2280 fout << "<body>" << endl;
2281 fout << "RAPSS-STA Output Restart "
2282 << RstNum << "
" << endl;
2283 fout << "
" << endl;
2284 fout << "";
2285 fout << "Cluster Information";
2286 fout << "
" << endl;
2287 fout << "" << endl;
2288 fout << "" << endl;
2289 for (unsigned int j=0; j<clustMembers.size(); j++) { //j is cluster number
2290 fout << "<a href=\"clusterPlots" << RstNum
2291 <<".pdf\">Cluster " << j+1 << " Plot" << endl;
2292 fout << "" << endl;
2293 fout << "<a href=\"unMSAPCAc" << j+1 << "rst" << RstNum
2294 << ".csv\">Cluster Data" << endl;
2295 fout << "Cluster Members " << endl;
2296 fout << "" << endl;
2297 for (unsigned int i=0; i<clustMembers[j].size(); i++) { //i is scenario number
2298 fout << "<a href=\"Th_" << clustMembers[j][i] << "_data/outputs/rst" << RstNum
2299 << ".csv\">Scenario " << clustMembers[j][i] << "" << endl;
2300 fout << "" << endl;
2301 fout << "" << endl;
2302 }
2303
2304 fout << "" << endl;
2305 fout << "" << endl;
2306 fout << "" << endl;
2307 }
2308
2309 fout << "</body></html>" << endl;
2310 fout.clear();
2311 fout.close();
2312 //--
2313 fout.open(unstableOutFilePath.c_str());
2314 fout << "<!--Display Engine For RAPSS-STA - Written by Kevin Makinson-->" << endl;

Page: 254

2315 fout << "<html><head>" << endl;
2316 fout << "<meta content=\"text/html; charset=ISO-8859-1\" http-equiv=\"content-type\">";
2317 fout << "<title>RAPSS-STA Unstable Scenarios</title>" << endl;
2318 fout << "</head>" << endl;
2319 fout << "<body>" << endl;
2320 fout << "RAPSS-STA Output Restart " << RstNum
2321 << "
" << endl;
2322 fout << "<p>R5 Model Became Unstable";
2323 fout << "
" << endl;
2324 for (unsigned int i=0; i<EndBySumVec[0].size(); i++) {
2325 if (EndBySumVec[0][i]==1) {
2326 output=true;
2327 fout << "" << endl;
2328 fout << "<a href=\"Th_" << i << "_data/outputs/rst" << RstNum << ".p\">Scenario "
2329 << i << "" << endl;
2330 fout << "" << endl;
2331 for (unsigned int k=0; k<transientExplanation[i].size(); k++) {
2332 fout << "" << transientExplanation[i][k] << " " << endl;
2333 }
2334 fout << "" << endl;
2335 fout << "" << endl;
2336 }
2337 if ((i==EndBySumVec[0].size()-1) && (output==false)) { //new
2338 fout << " No model instabilities on this cycle " << endl;
2339 }
2340 }
2341 fout << "</body></html>" << endl;
2342 fout.close();
2343 fout.clear();
2344 }
2345 #endif

Page: 255

A.4. OrganizeR5Output.h Source Code

001 //Created by Kevin Makinson
002 //3/20/12
003 //This is a header file that organizes the R5 output
004
005 #ifndef OrganizeR5Output_h
006 #define OrganizeR5Output_h
007 #include "BloodAndGuts.h"
008
009 vector < vector<string> > OrganizeR5Output(string R5OutputFilePath, string CsvFilePath,
010 int th_id) {
011 vector<string> text = LoadFile(R5OutputFilePath);
012 vector<string> row;
013 vector<int> data1Sections;
014 vector< vector<string> > data1;
015 //vector< vector<string> > FormatData;
016 int StrtIndx = 1;
017 int k;
018 int FormatSectionLength;
019 int FormatDataWidth;
020 int HeaderLength=0;
021 int SectionStart;
022 int jIndex;
023 int jMult;
024 int CountTime=0; //how many times "time" appears.
025 long int StartMult=-1;
026 bool done=false;
027 int FullSections;
028 int SetsPerSection=0;
029 string word; //need to use an extra string "word" b/c no push_back += function
030 stringstream sstm;
031
032 if (SearchVec(text, "1 time ").back()==0) {
033 cerr << "No minor edit data to be read on thread " << th_id << "!" << endl
034 << "Skipping thread... " << endl;
035 } else {

Page: 256

036 //---------
037 //grabs the data from the R5 output file and organizes it exactly how it is organized
038 //in the R5 output, which is not always desirable
039 for (unsigned int h=0; h<SearchVec(text, "1 time ").size(); h++) {
040 //h is the number of tables to be grabbed from R5
041 //j is the the col of the new matrix being created
042 //k[h] is the line(row) number in the string in the R5 output file
043 k=SearchVec(text, "1 time ")[h];
044 while (CountTime!=2 && done!=true) {
045 for (unsigned int j=0; j<text[k].length()/13; j++) {
046 //last whole number after division by 13
047 for (unsigned int i=StrtIndx+(j*13); i<(StrtIndx+(j+1)*13); i++) {
048 //i is the character number line k (overloaded subscript index)
049 //take chunks of the string 13 characters at a time
050 word += text[k][i];
051 }
052 word = TrimSpace(word); //trims excess white space around 13 character blocks
053 if (word == "time") {
054 CountTime++;
055 }
056 //else if (word == "RELAP5/3.2") { //change with different versions of RELAP
057 else if ((word == "RELAP5/3.3g") || (word=="steady state")
058 || (word=="******** Tran") || (word== "******** temp")
059 || (word== "******** Trou") || (word=="ATHENA-3D Ver")
060 || (word=="Number of ele")) {
061 CountTime++; //breaks from while loop
062 word = ""; //clear the string "word"
063 break; //breaks from j for loop.
064 }
065 else if ((word == "Final time=") || (word=="---Restart Su")
066 || (word=="******** Tran") || (word== "******** temp")
067 || (word== "******** Trou")) {
068 done=true; //breaks from while loop
069 break; //breaks from j for loop.
070 }
071 row.push_back(word); //put word into row
072 word = ""; //clear the string "word"
073 }

Page: 257

074 data1.push_back(row); //put row into matrix
075 row.clear(); //clear row for next iteration
076 k++; //k is part of the "while loop"
077 }
078 CountTime=0;
079 data1.pop_back(); //Deletes the last row int the matrix; this is because the last
080 //row is always written before the test is performed to determine stop time
081 }
082 //--------------------------
083 //specialized variables for data organization
084 //this guy is tells you where the new sections are in the data.
085 for (unsigned int i=0; i<data1.size()-1; i++) {
086 if (data1[i][0] == "(sec)") {
087 data1Sections.push_back(i-1);
088 }
089 }
090 if (data1Sections.size()==1) {SetsPerSection=1;}
091
092 for (unsigned int i=1; i<SearchVec(text, "1 time ").size(); i++) {
093 //if the data has less than 54 data points (1 section):
094 if ((SearchVec(text, "1 time ")[i]-SearchVec(text, "1 time ")[i-1]) < 54) {
095 //54 is the max size of a section
096 SetsPerSection = SearchVec(text, "1 time ").size();
097 break;
098 }
099 //for data with more than 1 section:
100 //Logic: if the same index of the next section isn't the same time
101 //it's a new section
102 else if (data1[(i-1)*50+(4*i)][0] != data1[(i)*50+(4*(i+1))][0]) {
103 SetsPerSection = i;
104 break;
105 }
106 }
107
108 data1Sections.push_back(data1.size());
109 //adding a final element that is the last element that is the size
110 FormatSectionLength = data1Sections[1]-data1Sections[0];
111 FullSections = ((data1Sections.size()-1)/SetsPerSection)-1;

Page: 258

112 //The Length of the first section times the number of sections, plus 1
113 //plus the length of the final section (which is a different
114 //length than the other others)
115 int Length = FormatSectionLength*FullSections+1+
116 (data1Sections.back()-data1Sections[data1Sections.size()-2]);
117 //this allows extra space at the end just in case
118 int Width = data1[0].size()*SetsPerSection;
119 vector< vector<string> > FormatData(Length, vector<string> (Width));
120 //---
121 //Now we organize the data.
122 for (unsigned int k=0; k<data1Sections.size()-1; k++) {
123 if (k==SetsPerSection) {HeaderLength=4;}
124 //this makes it so only the first section has headers
125 if (k%SetsPerSection==0) {
126 jIndex=0;
127 jMult=0;
128 StartMult++;
129 }
130 else {
131 jIndex=1;
132 jMult=k%SetsPerSection;
133 }
134
135 SectionStart = (FormatSectionLength-HeaderLength)*StartMult;
136 FormatDataWidth = data1[data1Sections[k]].size();
137 for (int i=data1Sections[k]+HeaderLength; i<data1Sections[k+1]; i++) {
138 for (int j=jIndex; j<FormatDataWidth; j++) {
139 if (i==data1Sections[data1Sections.size()-1]-1) {break;} //for RELAP3.3 only
140 FormatData[SectionStart+(i-data1Sections[k])][j+
141 (data1[0].size()-1)*jMult] = data1[i][j];
142 }
143 }
144 }
145
146 //output to a csv file
147 ofstream fout(CsvFilePath.c_str());
148 for (int i=0; i<Length; i++) {
149 for (int j=0; j<Width; j++) {

Page: 259

150 fout << setw(13) << FormatData[i][j] << ",";
151 }
152 fout << endl;
153 }
154 return FormatData;
155 }
156
157 }
158 #endif

Page: 260

A.5. initPCA.r Source Code

01 #!/usr/bin/Rscript
02 # Mar 8 2013
03 # Written by Kevin Makinson
04 # This file loads the libraries and initial parameters in R
05 #
06 #
07 #--
08 rm(list=ls())
09 Rrepos<-"http://cran.r-project.org"
10 libloc<-"/nfs/stak/students/m/makinske/lib"
11 threshold<-0.95
12 IODir<-"/nfs/chadwick/u1/makinske/R5run/RAPS_data"
13 libloc<-"/nfs/stak/students/m/makinske/lib"
14 dataOut<-1
15 thresholds<-rbind(650,1000)
16 thresholds<-cbind(thresholds, rbind(3.5e+06,3e+06))
17 thresholds<-cbind(thresholds, rbind(1e+07,9e+07))
18 stateVarTripNames <- c("httemp", "p", "p")
19 equivalence <- c("gt", "lt", "gt")
20 stateVarCodes <- c("133000101", "100010000", "500010000")
21 save.image("R_data/RAPSspace.RData")

Page: 261

A.6. PCA.r Source Code:

001 #!/usr/bin/Rscript
002 # 7/23/12
003 # Written by Kevin Makinson
004 # Oregon State university
005 #
006 # This code takes the output from RAPS and performs PCA on it,
007 # outputting the file PC.csv for MSA to use
008 #
009 # ---------------------------------
010 load("R_data/RAPSspace.RData")
011 library(corpcor, lib.loc=libloc) #for psuedoinverse
012 library(abind, lib.loc=libloc) #for 3-d matricies
013 library(MASS, lib.loc=libloc) #for ginverse
014
015 R5OutFilePaths<-array(0,thNum)
016 #assigning file paths
017 #reading data
018 #plopping it into a 3D matrix
019
020 #need this!
021 kCount=0
022 for (i in IncludeTh) {
023 kCount=kCount+1
024 R5OutFilePaths[kCount]<-paste(IODir,"/Th_", i, "_data/outputs/rst", rstNum, ".csv", sep = "")
025 R5OutRawData<- read.csv(R5OutFilePaths[kCount], header=TRUE) #change from 1
026 if(kCount==1) {
027 R5OutRawDataC<-R5OutRawData
028 } else if ((dim(R5OutRawDataC)[1])==(dim(R5OutRawData)[1])) {
029 R5OutRawDataC<-abind(R5OutRawDataC, R5OutRawData, along=3)
030 } else if ((dim(R5OutRawDataC)[1]) > (dim(R5OutRawData)[1])) {
031 R5OutRawDataC<-abind(R5OutRawDataC[1:(dim(R5OutRawData)[1]),,], R5OutRawData, along=3)
032 } else {
033 R5OutRawDataC<-abind(R5OutRawDataC, R5OutRawData[1:(dim(R5OutRawDataC)[1]),], along=3)
034 }
035 }

Page: 262

036 thNum<-dim(R5OutRawDataC)[3]
037
038 #these two loop checks to see if there are any cols or rows that have "NA" as members.
039 naCols<-0
040 for (i in 1:dim(R5OutRawDataC[,,1])[2]) {
041 if (is.na(R5OutRawDataC[1,i,1])==TRUE) {
042 naCols<-naCols+1
043 }
044 }
045 naRows<-0
046 for (i in 4:dim(R5OutRawDataC[,,1])[1]) {
047 if(R5OutRawDataC[i,1,1]==(" ")) {
048 naRows<-naRows+1
049 }
050 }
051
052 #making syntax more readable
053 dim1<-dim(R5OutRawDataC[,,1])[1]-naRows
054 dim2<-dim(R5OutRawDataC[,,1])[2]-naCols
055 units<- R5OutRawDataC[1:3,1:dim2,1]
056
057 TrimData<-array(0,c((dim1-3), dim2, thNum), dimnames=dimnames(R5OutRawDataC[4:dim1, 1:dim2,]))
058
059 #redefining cols as numeric instead of characters
060 for (j in 1:thNum) {
061 for (i in 1:dim2) {
062 TrimData[1:(dim1-3),i,j]<-as.numeric(R5OutRawDataC[4:(dim1),i,j])
063 }
064 }
065 dim1<-dim1-3 #added 7/25/12
066
067 #this is eliminating the first and last time steps because they're funky
068 #when normalizing
069 time<-TrimData[(2:(dim(TrimData)[1]-1)),1,1]
070
071 #this next section finds the items to remove
072 #it searches for cols that have difference in sd compared to the mean of 0.00001
073 for (i in 1:thNum) {

Page: 263

074 delColTemp<-colnames(TrimData[,,i])[1]
075 for (j in 1:dim2) {
076 if ((mean(TrimData[3:(dim(TrimData)[1]-2),j,i]))==0) {
077 delColTemp<-rbind(delColTemp, colnames(TrimData[,,i])[j])
078 } else if (0.00001>abs(1-abs(mean(TrimData[3:(dim(TrimData)[1]-2),j,i])
079 -sd(TrimData[3:(dim(TrimData)[1]-2),j,i]))/
080 abs(mean(TrimData[3:(dim(TrimData)[1]-2),j,i])))) {
081 delColTemp<-rbind(delColTemp, colnames(TrimData[,,i])[j])
082 }
083 }
084 if (i==1) {
085 delcol<-delColTemp
086 } else {
087 delcol<-cbind(delColTemp, delcol)
088 }
089 }
090
091 #this loop checks to see if there are any state variables that might need to be
092 #taken out in one scenario, but not in others!
093 k<-0 #leave this k here, important
094 for (i in 1:dim(delcol)[1]) {
095 for (j in 1:thNum) {
096 if(delcol[i,1]!=delcol[i,j]) {
097 k<-k+1
098 if (k==1) {
099 deldelcol<-delcol[i,j]
100 } else if (delcol[i,j]!=tail(deldelcol, n=1)) {
101 deldelcol<- rbind(deldelcol, delcol[i,j])
102 }
103 }
104 }
105 }
106
107 #this reduces delcol down to a 1D variable
108 #delcol will never be zero because it will always have time in it.
109 if (k!=0) {
110 delcol<-delcol[-which(delcol[,1] %in% deldelcol),1]
111 }

Page: 264

112
113 for (i in 1:thNum) {
114 if (i==1) {
115 TrimDataTemp2<-TrimData[, -which(colnames(TrimData[,,i]) %in% delcol),i]
116 } else {
117 TrimDataTemp2<-abind(TrimDataTemp2,TrimData[, -which(colnames(TrimData[,,i])
118 %in% delcol),i], along=3)
119 }
120 }
121 TrimData<-TrimDataTemp2
122 rm(TrimDataTemp2)
123
124 time1<-units[,1] #added to get a better label for time.
125 units<-cbind(time1, units[, -which(colnames(units[,]) %in% delcol)])
126
127 #normalizing data
128 #dim 1 is the time steps, dim 2 is the state variables
129 dim1<-length(TrimData[,1,1])-2
130 dim2<-length(TrimData[1,,1])
131 normalized<-array(0, c((dim1-1), dim2, thNum)) #occationally there's an NA at the end
132
133
134 for (j in 1:thNum){
135 for (i in 1:(dim2)) {
136 normalized[,i,j] <- (TrimData[(2:(dim1)),i,j]-mean(TrimData[(2:(dim1)),i,j]))/
137 sd(TrimData[(2:(dim1)),i,j])
138 }
139 }
140 dim1<-(dim1-1)
141 #--
142 #reorganizing the data into 2D matrix
143 #--
144
145 for (i in 1:dim1) {
146 for (j in 1:thNum){
147 if (i==1 && j==1) {
148 TwoDnormalized<-normalized[1,1:dim2,1]
149 } else {

Page: 265

150 TwoDnormalized<-rbind(TwoDnormalized,normalized[i,1:dim2,j])
151 }
152 }
153 }
154
155 #---
156 #Linear Approximation Intervals
157 #initial conditions:
158 done<-FALSE
159 forward<-FALSE #This tells if the data intervals have reached the beginning
160 backward<-FALSE
161 adder<-(dim1)%%2
162 interval1Real<- as.integer(dim1/2)+adder
163 interval2Real<- as.integer(dim1/2) #took out -adder on this statement
164 interval1<- interval1Real*thNum
165 interval2<- interval2Real*thNum-1
166 start<- 1
167 end<-dim(TwoDnormalized)[1]
168 endReal<-dim1
169 startReal<- 0
170 adder<-0 #this is for uneven splits in intervals.
171 intervalArray<-0
172 countIntLoop<-0
173 int1Direction<-FALSE
174 moveOn<-FALSE
175 badInterval<-0
176
177 while (done==FALSE) {
178 countIntLoop<-(countIntLoop+1)
179 if (countIntLoop==100) { #to avoid infinite loops
180 cat("An error has occured while determining the PCA linear approximation intervals")
181 break
182 }
183 #check if it's gone as small as can be and isn't done yet.
184 if ((interval1Real==2) && (interval2Real==2)) {
185 cat("An interval did not converge below given threshold! Check badInterval for details.\n")
186 moveOn<-TRUE
187 badInterval<-rbind(badInterval, startReal, (startReal+interval1Real))

Page: 266

188 }
189 delTReg<- time[(startReal+interval1Real+interval2Real)] - time[(startReal+interval1Real)]
190 covMatrix1<-cov(TwoDnormalized[start:(start+interval1-1),]) #added -1
191 covMatrix2<-cov(TwoDnormalized[(start+interval1):(start-1+interval1+interval2),])
192 if ((countIntLoop==1) && (norm(covMatrix1, type="m")>norm(covMatrix2, type="m"))) {
193 int1Direction<-TRUE #checks to see which direction we initially go
194 }
195
196 if (((norm(((covMatrix2)-(covMatrix1))/(delTReg), type="m") < 0.25)
197 && (countIntLoop!=1)) || (moveOn==TRUE)) {
198 moveOn<-FALSE
199 #check if we've reached the beginning or end
200 if ((start==1) && (backward!=TRUE)) {
201 forward<-TRUE
202 intervalArray<-startReal+interval1Real
203 } else if (((start-1+interval1+interval2) == end) && (forward!=TRUE) &&
204 (end==dim(TwoDnormalized)[1])) {
205 backward<-TRUE
206 intervalArray<-(endReal-interval2Real)
207 } else if (forward==TRUE) {
208 intervalArray<-rbind(intervalArray, (startReal+interval1Real))
209 } else {
210 intervalArray<-rbind(intervalArray, (endReal-interval2Real))
211 }
212 #check if we're done
213 if ((((start+interval1+interval2) == end) && (forward==TRUE)) ||
214 (start==1) && (backward==TRUE)) { #took out -1 7/14/12
215 done<-TRUE
216 break
217 #if we're not done and below threshold look at next interval
218 } else if (forward==TRUE) {
219 #if not at the end, and the covs look good, and we're going forward advance forward
220 start<-start+interval1
221 startReal<-startReal+interval1Real
222 interval1<-interval2
223 interval1Real<- interval2Real
224 interval2<- end-start-interval1
225 interval2Real<-dim1-startReal-interval1Real

Page: 267

226 } else if (backward==TRUE) {
227 #changing end point and start point going backwards
228 interval1<-(end-interval1-interval2)
229 interval1Real<- (endReal-interval1Real-interval2Real)
230 end<-(end-interval2)
231 endReal<-endReal-interval2Real
232 interval2<-(end-interval1)
233 interval2Real<-(endReal-interval1Real)
234 start<- (end-interval1-interval2+1) #+1 is built into others because you add start into it
235 startReal<- (endReal-interval1Real-interval2Real)
236 }
237 #if above threshold:
238 } else if ((int1Direction==TRUE) && (forward==FALSE) && (backward==FALSE)) {
239 #the initial march towards the beginning.
240 adder<-(interval1Real)%%2
241 interval1Real<-(as.integer(interval1Real/2)+adder)
242 interval1<-(interval1Real*thNum)
243 interval2<-(interval1-(adder*thNum))
244 interval2Real<-(interval1Real-adder)
245 } else if ((int1Direction==FALSE) && (forward==FALSE) && (backward==FALSE)) {
246 #the initial march toward the end
247 startReal<-startReal+interval1Real
248 start<-(start+interval1)
249 adder<-interval2Real%%2
250 interval2Real<-(as.integer(interval2Real/2)+adder)
251 interval2<-(interval2Real*thNum)
252 interval1<-(interval2-(adder*thNum))
253 interval1Real<-(interval2Real-adder)
254 } else if (forward==TRUE) {
255 #going forward after backwards initially
256 #interval 1 stays the same,
257 #split up the second interval and start from the same spot.
258 adder<-interval2Real%%2
259 interval2Real<-(as.integer(interval2Real/2)+adder)
260 interval2<-(interval2Real*thNum)
261 } else if (backward==TRUE) { # if backwards=TRUE
262 #going backward after forward initially
263 adder<-interval1%%2

Page: 268

264 interval1Real<-(as.integer(interval1Real/2)+adder)
265 interval1<- (interval1Real*thNum)
266 start<-(end-interval1-interval2+1)
267 startReal<- (endReal-interval1Real-interval2Real)
268 } else {cat("Unknown Error!")}
269 }
270 #now to put in the first and last values
271 if (forward==TRUE) {
272 intervalArray<-rbind (intervalArray, dim1)
273 } else {
274 intervalArray<-append(intervalArray, dim1, after=0)
275 intervalArray<-rev(intervalArray)
276 }
277
278 #This section is needed (to get n)
279 #n is the number of principal components to use
280 for(i in 1:dim2) {
281 if ((summary(prcomp(TwoDnormalized))$importance[3,i]) > threshold) {
282 n <- i
283 if(n==1) { #the next steps won't work with one principal component
284 n<-2
285 }
286 break
287 }
288 }
289
290 #----------------------
291 #PCA step written on 12/10/12
292 for (j in 1:length(intervalArray)) {
293 if(j==1) {
294 EigenMatrix<-eigen(cov(TwoDnormalized[1:(intervalArray[1]*thNum),]))$vectors
295 RowFeatureVec<-t(EigenMatrix[,1:n])
296 RowFeatVecInv<-ginv(RowFeatureVec)
297 FinalComps<-RowFeatureVec%*%t(TwoDnormalized[1:(intervalArray[1]*thNum),])
298 } else {
299 EigenMatrix<-abind(EigenMatrix,
300 eigen(cov(TwoDnormalized[(intervalArray[j-1]*thNum+1):
301 (intervalArray[j]*thNum),]))$vectors, along=3)

Page: 269

302 RowFeatureVec<-abind(RowFeatureVec, t(EigenMatrix[,1:n,j]), along=3)
303 RowFeatVecInv<-abind(RowFeatVecInv, ginv(RowFeatureVec[,,j]), along=3)
304 FinalComps<-cbind(FinalComps, RowFeatureVec[,,j]%*%
305 t(TwoDnormalized[(intervalArray[j-1]*thNum+1):(intervalArray[j]*thNum),]))
306 }
307 }
308 #flip it around so it's compatible with later stuff
309 TwoDFeatureComps<-t(FinalComps)
310
311 #----------------------
312 #dim1 is replaced with how many timesteps are being analyzed (to break into equal intervals)
313 #this puts the data into a form so it can be MSA'd
314 dim1<-(dim(TwoDFeatureComps)[1]/thNum)
315 MeanShiftReady<-array(0, c(thNum,(dim1*n)))
316 for (j in 1:thNum) {
317 for (k in 1:n) {
318 for (i in 1:dim1) {
319 MeanShiftReady[j,i+((k-1)*dim1)] <- TwoDFeatureComps[(i-1)*thNum+j,k]
320 }
321 }
322 }
323
324 #---
325 # Export to MSA for clustering
326 # ------
327 write.table(MeanShiftReady, file=(paste(IODir, "/PC", rstNum, ".csv", sep="")),
328 row.names = FALSE, col.names=FALSE, sep=",")
329 save.image("R_data/RAPSspace.RData")

Page: 270

A.7. unMSAPCA.r Source Code:

001 # 7/25/12
002 # Written by Kevin Makinson
003 # Oregon State university
004 # This code takes the data, after performing PCA and MSA, and puts it back together again
005 # ---------------------------------
006 load("R_data/RAPSspace.RData")
007 # now importing from MSA
008 FeatureCompsClusters<-read.csv((paste(IODir, "/clustCenters", rstNum, ".csv", sep="")),
009 header=FALSE)
010 #---
011
012 Nclust<-length(FeatureCompsClusters[,1])
013 UnMeanShift<-array(0, c(Nclust*dim1, n))
014 for (i in 1:n) {
015 for (j in 1:dim1) {
016 if (j==1) {
017 UnMeanShiftTemp <- as.matrix(FeatureCompsClusters[,((i-1)*dim1)+1])
018 } else {
019 UnMeanShiftTemp<-rbind(UnMeanShiftTemp, as.matrix(FeatureCompsClusters[,((i-1)*dim1)+j]))
020 }
021 }
022 UnMeanShift[,i]<- UnMeanShiftTemp
023 }
024 UnMeanShift<-t(UnMeanShift)
025 #----------------
026 #this one's rewritten! 12/10/12
027 for (j in 1:length(intervalArray)) {
028 if (j==1) {
029 unMsTwoDNormalized<-RowFeatVecInv[,,1]%*%UnMeanShift[,1:(intervalArray[j]*Nclust)]
030 } else {
031 unMsTwoDNormalized<-cbind(unMsTwoDNormalized,
032 RowFeatVecInv[,,j]%*%UnMeanShift[,(intervalArray[j-1]*Nclust+1):(intervalArray[j]*Nclust)])
033 }
034 }
035

Page: 271

036 #This loop formats (reorganizes) the data to get into a form similar to normalized
037 FormatOrigNormData<-array(0, c(dim1,dim2,Nclust))
038 for (i in 1:dim1) {
039 for (j in 1:Nclust) {
040 FormatOrigNormData[i,,j] <- unMsTwoDNormalized[,((i-1)*Nclust+j)]
041 }
042 }
043
044 #adding back the mean and standard deviation
045 FinalData <- array(0,c(dim1,dim2,Nclust),
046 dimnames=dimnames(TrimData[(2:(dim(TrimData)[1]-2)),,j]))
047 for (j in 1:Nclust) {
048 for (i in 1:dim2) {
049 FinalData[,i,j] <- (sd(TrimData[(1:(dim(TrimData)[1]-2)),i,j])*
050 (FormatOrigNormData[,i,j]))+mean(TrimData[(1:(dim(TrimData)[1]-2)),i,j])
051 }
052 }
053
054 #R doesn't let you assign a unit labels to only 1 dimension
055 diff<-dim(array(0,c((dim1+3),(dim2+1),Nclust)))[1]-dim(units)[1]
056 unitsdiff<-rbind(units, array(NA, c(diff, dim(units)[2])))
057
058 FinalDataTemp2 <- array(0,c(dim1,(dim2+1),Nclust))
059 FinalDataTemp3 <- array(0,c((dim1+3),(dim2+1),Nclust), dimnames=dimnames(unitsdiff))
060
061 #putting in time and units. -Don't worry about error message here, works like I want
062 for (j in 1:dim(FinalData)[3]) {
063 FinalDataTemp2[,,j]<-(cbind(time, FinalData[,(1:(dim(FinalData)[2])),j]))
064 FinalDataTemp3[,,j]<-(rbind(units, FinalDataTemp2[,,j]))
065 }
066
067 FinalData<-FinalDataTemp3
068 rm(FinalDataTemp2)
069 rm(FinalDataTemp3)
070
071 #output to csv file
072 #---
073 if (dataOut==1) {

Page: 272

074 for (j in 1:dim(FinalData)[3]) {
075 write.table(FinalData[,,j],
076 file=(paste(IODir, "/unMSAPCAc", j, "rst", rstNum, ".csv", sep="")), row.names = FALSE,
077 col.names=TRUE, sep=",")
078 }
079 }
080 #---
081 # plotting algorithm
082 #--
083 if (dataOut==1) {
084 pdf(paste(IODir, "/clusterPlots", rstNum, ".pdf", sep=""),onefile=TRUE)
085 for (j in 1:dim(FormatOrigNormData)[3]) {
086 par(mar=(c(4,4,2,6.5)+0.1)) #sets dimensions
087 plot(x=time[1:(length(time)-1)], y=FormatOrigNormData[,1,j], type="l",
088 ylim=as.numeric(range(as.numeric(FormatOrigNormData[,,j]))),
089 xlab="Time (s)", ylab="Normalized data (unitless)",
090 main=paste("Normalized Data Cluster #",j,sep=""))
091 for (i in 2:dim(FormatOrigNormData)[2]) {
092 lines(x=time[1:(length(time)-1)], y=FormatOrigNormData[,i,j], col=i)
093 }
094 par(xpd=T)
095 #legend(x=(tail(time,1)+(time[2]-time[1])/2.6),
096 legend(x=tail(time,1)-7,
097 y=(0.2+max(as.numeric(FormatOrigNormData[,,j]))),
098 colnames(units[,-1]), lty=1, col = c(1:(dim(units)[2]-1)), bg="white")
099 }
100 dev.off()
101 }
102 save.image("R_data/RAPSspace.RData")

Page: 273

A.8. UpdateRwindex.r Source Code:

01 load("R_data/RAPSspace.RData")
02 rstNum<-3
03 thNum<-24
04 IncludeTh<- c(1, 2, 5, 6, 7, 11, 12, 13, 15, 16, 23)
05 EndByTrip<- c(20)
06 prevKeepGoing<- c(19)
07 cutSetProbs<- c("1.011828E-01 (+/- 1.876009E-03) "," 1.008002E-01 (+/- 1.872459E-03)
08 "," 9.937411E-02 (+/- 1.859166E-03) "," 9.857411E-02 (+/- 1.851667E-03)
09 "," 9.739150E-04 (+/- 1.840526E-04) "," 1.147828E-03 (+/- 1.998113E-04)
10 "," 9.391323E-04 (+/- 1.807361E-04) "," 8.347843E-04 (+/- 1.703996E-04)
11 "," 8.000016E-04 (+/- 1.668119E-04) "," 7.304362E-04 (+/- 1.593943E-04) ")
12 ThTransientTranslator<- c(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3)
13 timestep <- 433
14 save.image("R_data/RAPSspace.RData")

Page: 274

A.9. Display.r Source Code:

001 #-------------------------------
002 # Written by Kevin Makinson
003 # 9/7/12
004 # Oregon State University
005 # This is a test program for the display part of the decision engine
006 #-------------------------------
007
008 load("R_data/RAPSspace.RData")
009 library(abind, lib.loc=libloc)
010 #------------------
011 #this loads the seed file in
012 seedFilePath<- (paste(IODir, "/initout.csv", sep=""))
013 InitOutRawData<- read.csv(seedFilePath, header=TRUE)
014
015 naCols<-0
016 for (i in 1:dim(InitOutRawData[,])[2]) {
017 if (is.na(InitOutRawData[1,i])==TRUE) {
018 naCols<-naCols+1
019 }
020 }
021 naRows<-0
022 for (i in 4:dim(InitOutRawData[,])[1]) {
023 if(InitOutRawData[i,1]==(" ")) {
024 naRows<-naRows+1
025 }
026 }
027
028 #making syntax more readable
029 dim1<-dim(InitOutRawData[,])[1]-naRows
030 dim2<-dim(InitOutRawData[,])[2]-naCols
031 units<- InitOutRawData[1:3,1:dim2]
032
033 SeedData<-array(0,c((dim1-3), dim2), dimnames=dimnames(InitOutRawData[4:dim1, 1:dim2]))
034
035 #redefining cols as numeric instead of characters

Page: 275

036 SeedDataTemp<-as.matrix(InitOutRawData[4:dim1,1:dim2])
037 for (i in 1:dim2) {
038 for (j in 1:(dim1-3)) {
039 SeedData[j,i]<-as.numeric(SeedDataTemp[j,i])
040 }
041 }
042 #-----------
043 #new section! 10/15/12
044 #this loads the previous restart data instead of the seed data for the prevKeepGoing case
045 keepGoingTrip<-intersect(prevKeepGoing, EndByTrip)
046 if (length(keepGoingTrip)!=0) {
047 prevRstNum<-rstNum-1
048 R5OutFilePaths<-array(0,length(keepGoingTrip))
049
050 kCount=0
051 for (i in keepGoingTrip) {
052 kCount=kCount+1
053 R5OutFilePaths[kCount]<-paste(IODir,"/Th_", i, "_data/outputs/rst",
054 prevRstNum, ".csv", sep = "")
055 PrevKeepGoingRsti<-paste("PrevKeepGoingRst", i, sep = "")
056 assign(PrevKeepGoingRsti, read.csv(R5OutFilePaths[kCount], header=TRUE))
057 }
058 thNum<-length(keepGoingTrip)
059
060 #these two loop checks to see if there are any cols or rows that have "NA" as members
061 naCols<- array(0, length(keepGoingTrip))
062 naRows<- array(0, length(keepGoingTrip))
063
064 for (k in 1:length(keepGoingTrip)) {
065 PrevKeepGoingRsti<-paste("PrevKeepGoingRst", keepGoingTrip[k], sep = "")
066 for (i in 1:dim(get(PrevKeepGoingRsti))[2]) {
067 if (is.na(get(PrevKeepGoingRsti)[1,i])==TRUE) {
068 naCols[k]<-naCols[k]+1
069 }
070 }
071 for (i in 4:dim(get(PrevKeepGoingRsti))[1]) {
072 if(get(PrevKeepGoingRsti)[i,1]==(" ")) {
073 naRows[k]<-naRows[k]+1

Page: 276

074 }
075 }
076 }
077 #making syntax more readable
078 dim1<-array(0, length(keepGoingTrip))
079 dim2<-array(0, length(keepGoingTrip))
080
081 for (i in 1:length(keepGoingTrip)) {
082 PrevKeepGoingRsti<-paste("TripOutRawData", keepGoingTrip[i], sep = "")
083 assign(PrevKeepGoingRsti, read.csv(R5OutFilePaths[i], header=TRUE))
084 dim1[i]<-dim(get(PrevKeepGoingRsti))[1]-naRows[i]
085 dim2[i]<-dim(get(PrevKeepGoingRsti))[2]-naCols[i]
086 }
087
088 for (i in 1:length(keepGoingTrip)) { #define the array
089 PrevKGDatai<-paste("PrevKGData", keepGoingTrip[i], sep = "")
090 assign(PrevKGDatai, array(0,c((dim1[i]-3), dim2[i]),
091 dimnames=dimnames(get(PrevKeepGoingRsti)[4:dim1[i], 1:dim2[i]])))
092 }
093
094 #redefining cols as numeric instead of characters
095 for (j in 1:length(keepGoingTrip)) {
096 PrevKGDatai<-paste("PrevKGData", keepGoingTrip[j], sep = "")
097 PrevKeepGoingRsti<-paste("PrevKeepGoingRst", keepGoingTrip[j], sep = "")
098 assign(PrevKGDatai, (get(PrevKeepGoingRsti)[4:(dim1[j]),1:dim2[j]]))
099 }
100 }
101 #-----------
102 #now loading the tripped runs:
103 R5OutFilePaths<-array(0,length(EndByTrip))
104 #assigning file paths
105 #reading data
106 #plopping it into a 3D matrix
107
108 #need this!
109 kCount=0
110 for (i in EndByTrip) {
111 kCount=kCount+1

Page: 277

112 R5OutFilePaths[kCount]<-paste(IODir,"/Th_", i, "_data/outputs/rst", rstNum, ".csv", sep = "")
113 TripOutRawDatai<-paste("TripOutRawData", i, sep = "")
114 assign(TripOutRawDatai, read.csv(R5OutFilePaths[kCount], header=TRUE))
115 }
116 thNum<-length(EndByTrip)
117
118 #these two loop checks to see if there are any cols or rows that have "NA" as members
119 naCols<- array(0, length(EndByTrip))
120 naRows<- array(0, length(EndByTrip))
121 for (k in 1:length(EndByTrip)) {
122 TripOutRawDatai<-paste("TripOutRawData", EndByTrip[k], sep = "")
123 for (i in 1:dim(get(TripOutRawDatai))[2]) {
124 if (is.na(get(TripOutRawDatai)[1,i])==TRUE) {
125 naCols[k]<-naCols[k]+1
126 }
127 }
128 for (i in 4:dim(get(TripOutRawDatai))[1]) {
129 if(get(TripOutRawDatai)[i,1]==(" ")) {
130 naRows[k]<-naRows[k]+1
131 }
132 }
133 }
134
135 #making syntax more readable
136 dim1<-array(0, length(EndByTrip))
137 dim2<-array(0, length(EndByTrip))
138
139 for (i in 1:length(EndByTrip)) {
140 TripOutRawDatai<-paste("TripOutRawData", EndByTrip[i], sep = "")
141 assign(TripOutRawDatai, read.csv(R5OutFilePaths[i], header=TRUE))
142 dim1[i]<-dim(get(TripOutRawDatai))[1]-naRows[i]
143 dim2[i]<-dim(get(TripOutRawDatai))[2]-naCols[i]
144 }
145
146 for (i in 1:length(EndByTrip)) { #define the array
147 TripDatai<-paste("TripData", EndByTrip[i], sep = "")
148 assign(TripDatai, array(0,c((dim1[i]-3), dim2[i]),
149 dimnames=dimnames(get(TripOutRawDatai)[4:dim1[i], 1:dim2[i]])))

Page: 278

150 }
151
152 #redefining cols as numeric instead of characters
153 for (j in 1:length(EndByTrip)) {
154 TripDatai<-paste("TripData", EndByTrip[j], sep = "")
155 TripOutRawDatai<-paste("TripOutRawData", EndByTrip[j], sep = "")
156 assign(TripDatai, (get(TripOutRawDatai)[4:(dim1[j]),1:dim2[j]]))
157 }
158
159 threshNumsRawData<- read.csv(seedFilePath, header=FALSE, strip.white=TRUE)
160
161 stateVarCodes2=stateVarCodes #strange artifact from R5! Have to remove second to last zero
162 for (i in 1:length(stateVarCodes)) {
163 stateVarCodes2= paste(substring(stateVarCodes,1,7), substring(stateVarCodes,9,9), sep= " ")
164 }
165
166 #save this
167 count=0
168 for (j in 1:length(stateVarTripNames)) {
169 for (i in 1:dim2[1]) { #dim2 should all be the same
170 if ((as.character(threshNumsRawData[1,i]) == stateVarTripNames[j]) &&
171 ((as.character(threshNumsRawData[2,i]) == stateVarCodes[j]) ||
172 (as.character(threshNumsRawData[2,i]) == stateVarCodes2[j]))) {
173 count=count+1
174 if (count==1) {
175 threshNums=i
176 } else {
177 threshNums=c(threshNums, i)
178 }
179 }
180 }
181 }
182
183 TripDatai<-paste("TripData", (EndByTrip[1]), sep = "")
184 colnames(thresholds)<-colnames(get(TripDatai)[,threshNums[1:length(threshNums)]])
185
186 trippedVar<-array(0, length(EndByTrip))
187 trippedThresh<-array(0, length(EndByTrip))

Page: 279

188 for (k in 1:length(EndByTrip)) { #scenario number
189 TripDatai<-paste("TripData", EndByTrip[k], sep = "")
190 for (j in 1:length(threshNums)) { #state variables of interest
191 for (i in 1:dim(get(TripDatai))[1]) { #row number
192 if(equivalence[j]=="lt") {
193 if (as.numeric(as.matrix(get(TripDatai)[i,threshNums[j]]))<=(thresholds[2,j])) {
194 trippedVar[k]=threshNums[j]
195 trippedThresh[k]=j
196 }
197 } else if (equivalence[j]=="gt") {
198 if (as.numeric(as.matrix(get(TripDatai)[i,threshNums[j]]))>(thresholds[1,j])) {
199 }
200 if (as.numeric(as.matrix(get(TripDatai)[i,threshNums[j]]))>=(thresholds[2,j])) {
201 trippedVar[k]=threshNums[j]
202 trippedThresh[k]=j
203 }
204 }
205 }
206 }
207 }
208
209 #plotting
210 pdf(paste(IODir, "/alerts", rstNum, ".pdf", sep=""),onefile=TRUE)
211 par(xpd=F)
212 #---
213 for (k in 1:length(EndByTrip)) { #scenario number
214 TripDatai<-paste("TripData", EndByTrip[k], sep = "")
215 PrevKGDatai<-paste("PrevKGData", EndByTrip[k], sep = "")
216 if (EndByTrip[k] %in% keepGoingTrip) {
217 #plotting for keepgoing tripped data
218 plot(x=as.numeric(as.matrix(get(PrevKGDatai)[,1])),
219 y=as.numeric(as.matrix(get(PrevKGDatai)[,trippedVar[k]])), type="l",
220 xlim=c(min(as.numeric(as.matrix(get(PrevKGDatai)[,1]))),
221 max(as.numeric((as.matrix(get(TripDatai)[,1]))))*1.3),
222 ylim=c(min(min(as.numeric(as.matrix(get(PrevKGDatai)[,trippedVar[k]]))),
223 min(as.numeric(as.matrix(get(TripDatai)[,trippedVar[k]])))),
224 1.1*max(max(as.numeric(as.matrix(get(PrevKGDatai)[,trippedVar[k]]))),
225 max(as.numeric(as.matrix(get(TripDatai)[,trippedVar[k]]))))),

Page: 280

226 xlab="Time (s)", ylab=colnames(get(TripDatai))[trippedVar[k]],
227 main=paste(colnames(get(TripDatai))[trippedVar[k]],
228 "trip; Scen #", EndByTrip[k],
229 "\n Probability = ", cutSetProbs[ThTransientTranslator[(EndByTrip[k]+1)]+1]), col=3)
230 abline(v=max(as.numeric(as.matrix(get(PrevKGDatai)[,1]))), lty=2)
231 text(max(as.numeric(as.matrix(get(PrevKGDatai)[,1]))),
232 min(as.numeric(as.matrix(get(PrevKGDatai)[,trippedVar[k]]))),
233 labels="previous restart <=", pos=2)
234 text(max(as.numeric(as.matrix(get(PrevKGDatai)[,1]))),
235 min(as.numeric(as.matrix(get(PrevKGDatai)[,trippedVar[k]]))),
236 labels="=> current cycle", pos=4)
237 } else {
238 plot(x=SeedData[,1], y=SeedData[,trippedVar[k]], type="l",
239 xlim=c(mean(SeedData[,1]), max(as.numeric((as.matrix(get(TripDatai)[,1]))))*1.3),
240 ylim=c(min(min(SeedData[,trippedVar[k]]),
241 min(as.numeric(as.matrix(get(TripDatai)[,trippedVar[k]])))),
242 1.1*max(max(SeedData[,trippedVar[k]]),
243 max(as.numeric(as.matrix(get(TripDatai)[,trippedVar[k]]))))),
244 xlab="Time (s)", ylab=colnames(get(TripDatai))[trippedVar[k]],
245 main=paste(colnames(get(TripDatai))[trippedVar[k]], "trip; Scen #", EndByTrip[k],
246 "\n Probability = ", cutSetProbs[ThTransientTranslator[(EndByTrip[k]+1)]+1]), col=3)
247 abline(v=max(SeedData[,1]), lty=2)
248 text(max(SeedData[,1]), min(SeedData[,trippedVar[k]]), labels="seed<=", pos=2)
249 text(max(SeedData[,1]), min(SeedData[,trippedVar[k]]), labels="=>transient", pos=4)
250 }
251 lines(x=as.numeric(as.matrix(get(TripDatai)[,1])),
252 y=as.numeric(as.matrix(get(TripDatai)[,trippedVar[k]])), col=3)
253 abline(h=thresholds[1,colnames(get(TripDatai))[trippedVar[k]]], col=7, lty=2)
254 abline(h=thresholds[2,colnames(get(TripDatai))[trippedVar[k]]], col=2, lty=2)
255 text(max(as.numeric((as.matrix(get(TripDatai)[,1]))))*1.3,
256 (thresholds[1,colnames(get(TripDatai))[trippedVar[k]]]), labels="Warning", pos=2)
257 text(max(as.numeric((as.matrix(get(TripDatai)[,1]))))*1.3,
258 (thresholds[2,colnames(get(TripDatai))[trippedVar[k]]]),
259 labels="Alert", pos=2)
260 }
261 dev.off()
262
263 #section for communicating which thresholds were exceeded

Page: 281

264 for (k in 1:length(EndByTrip)) { #scenario number
265 TripDatai<-paste("TripData", EndByTrip[k], sep = "")
266 #probably also add in state variable codes
267 fileConn<-file(paste(IODir,"/tripRst", rstNum, "_Sc", EndByTrip[k], ".txt", sep = ""))
268 if ((equivalence[trippedThresh[k]])=="lt") {
269 writeLines(paste("Sensor",stateVarTripNames[trippedThresh[k]],
270 stateVarCodes[trippedThresh[k]],
271 "fell bleow the", thresholds[2,colnames(get(TripDatai))[trippedVar[k]]],
272 "red threshold", sep=" ") , fileConn)
273 } else {
274 writeLines(paste("Sensor",stateVarTripNames[trippedThresh[k]],
275 stateVarCodes[trippedThresh[k]],
276 "exceeded the", thresholds[2,colnames(get(TripDatai))[trippedVar[k]]],
277 "red threshold", sep=" ") , fileConn)
278 }
279 close(fileConn)
280 }
281 save.image("R_data/RAPSspace.RData")

Page: 282

A.10. Cluster.h Source Code

01 //Cluster.h
02 //Created by Diego Mandelli
03 //Modified by Kevin Makinson
04
05 #include <vector>
06 using namespace std;
07 #ifndef CLUSTER_H
08 #define CLUSTER_H
09
10 class cluster{
11 private:
12 int dimensionality;
13 int cardinality;
14 double *centroid;
15 vector <int> datapointsID;
16 public:
17 cluster() {
18 centroid = NULL;
19 }
20 cluster(const cluster &in);
21 cluster(int dimensions, double center[], int pointID);
22 ~cluster() {
23 if (!centroid) delete [] centroid;
24 }
25 int getDimensionality ();
26 int getCardinality ();
27 // void setNew (int dimensions, double center[], int pointID);
28 void addPoint (double NewCentroid[], int pointID, int dimensions, int clustCount);
29 double* getCentroid ();
30 };
31
32 cluster::cluster(const cluster &in) : datapointsID(in.datapointsID) {
33 dimensionality = in.dimensionality;
34 centroid = new double[dimensionality];
35 for (int i=0; i<dimensionality; i++)

Page: 283

36 centroid[i] = in.centroid[i];
37 }
38
39 cluster::cluster(int dimensions, double center[], int pointID) {
40 // this method add a new cluster
41 dimensionality = dimensions;
42 cardinality = 1;
43 centroid = new double[dimensionality];
44 for (int i=0; i<dimensions; i++)
45 centroid[i] = center[i];
46 datapointsID.push_back(pointID);
47 }
48
49 void cluster::addPoint (double NewCentroid[], int pointID, int dimensions, int clustCount) {
50 //cout << "Point added!" << endl;
51 // this method add a new point to an existing cluster and update the cluster center
52 cardinality=clustCount-1;
53 for (int i=0; i<dimensions; i++) {
54 centroid[i] = (centroid[i]*cardinality+NewCentroid[i])/(cardinality+1);
55 }
56 //dimensionality does not change;
57 cardinality++;
58 //PointID is the scenario number that gets removed and combined with another cluster
59 datapointsID.push_back(pointID);
60
62 }
63 double* cluster::getCentroid() {
64 return centroid;
65 }
66
67 int cluster::getCardinality () {
68 return cardinality;
69 }
70
71 int cluster::getDimensionality () {
72 return dimensionality;
73 }
74 #endif

Page: 284

Page: 285

A.11. MeanShift.h Source Code

001 // MeanShift.h
002 // Originally Created on: Aug 9, 2010
003 // Original Author: Diego Mandelli
004 // Modified on: 7/24/12
005 // Modified Author: Kevin Makinson
006 #ifndef MeanShift_h
007 #define MeanShift_h
008 #include <fstream>
009 #include "cluster.h"
010 #include <math.h>
011 #include <vector>
012 #include <stdlib.h>
013 #include <cmath>
014 #include <sstream>
015 #include <iomanip>
016 #include <sstream>
017 //using namespace std;
018
019 //Functions
020 void MeanShiftOperator(double *NewPosition, double *point, double **data,
021 double h, int card, int dim);
022 double LpNorm(double p, double x[], int NDim);
023 int FindClosestCentroid (vector<cluster> clusterSet, double NewCentroid[],
024 int p, int dim, double h);
025
026 vector <vector <int> > MeanShift (int Windex, double BW, string OutDir,
027 vector <int> IncludeTh, vector <int> translator){
028
029 stringstream sstm;
030 string PCfile;
031 sstm << "PC" << Windex << ".csv"; //adding index to the string
032 PCfile = sstm.str();
033 sstm.str("");
034
035 //ifstream fin("data.csv");

Page: 286

036 ifstream fin((OutDir + "/" + PCfile).c_str());
037 //vector <int> record2;
038 vector <vector <double> > dataVec; //added KM 7/18/12 for determining the size of the data
039 vector <vector <int> > clustMembers; //added KM 7/23 for storing the cluster membership.
040 int index=0; //added KM for clusterMembers, rename later. 7/23
041 double number; //this is for single entries in the data to be pushed onto data vector
042 //inputting data into a vector
043 while (fin) {
044 string s;
045 if (!getline(fin, s))
046 break;
047 istringstream ss(s);
048 vector <double> record;
049 while (ss) {
050 string s;
051 if (!getline(ss, s, ','))
052 break;
053 istringstream(s) >> number;
054 record.push_back(number);
055 }
056 dataVec.push_back(record);
057 }
058 if (!fin.eof()) {
059 cerr << "Cannot open PCA file!\n";
060 }
061
062
063 // Variable definitions
064 int cardinality = dataVec.size(); // Number of scenarios
065 int dimensionality = dataVec[0].size(); // Number of dimensions for each scenario
066
067 // Access data and store it in a 2D array //
068 double **data = new double*[cardinality];
069 double **centroid = new double*[cardinality];
070 double *pointIn = new double[dimensionality];
071 //double BW = 20; //
072 int p=2;
073 for(int j = 0; j < cardinality; j++) {

Page: 287

074 data[j] = new double[dimensionality];
075 centroid[j] = new double[dimensionality];
076 }
077
078 for(int i = 0; i < cardinality; i++) { //reveresed card and dim KM 7.18
079 for(int j = 0; j < dimensionality; j++) {
080 data[i][j]=dataVec[i][j];
081 }
082 }
083
084 // End data input session
085 // Perform clustering //
086 // Initialize the set of clusters (ClusterSet.size() gives size of vector)
087 vector<cluster> ClusterSet;
088 //#pragma omp parallel for //disabling parallel processing for the time being.
089 for(int i = 0; i < cardinality; i++) { //Perform MSM for each data point
090 // perform MeanShift for point i and get the centroid for each point
091 MeanShiftOperator(centroid[i], data[i], data, BW, cardinality, dimensionality);
092 }
093 for(int i = 0; i < cardinality; i++) { //Perform MSM for each data point
094 if(IncludeTh[translator[i]]==1) { //if it is not flagged as "keep going"
095 //update cluster centroid
096 int check = FindClosestCentroid (ClusterSet, centroid[i], p, dimensionality, BW);
097 if(check==-1) {
098 vector <int> record2; //gotta clear record2 each time!
099 record2.push_back(translator[i]);
100 clustMembers.push_back(record2);
101 index++; //this is the cluster number KM 7/23
102 cluster temp(dimensionality, centroid[i], i);
103 ClusterSet.push_back(temp);
104 }
105 else {
106 clustMembers[check].push_back(translator[i]);
107 ClusterSet[check].addPoint(centroid[i], i,
108 dimensionality, clustMembers[check].size());
109 }
110 }
111 }

Page: 288

112 // End clustering //
113
114 //output cluster centers and membership
115 string clustCentFile;
116 sstm << "clustCenters" << Windex << ".csv"; //adding index to the string
117 clustCentFile = sstm.str();
118 sstm.str("");
119 ofstream fout((OutDir + "/" + clustCentFile).c_str());
120 for (unsigned int j=0; j<ClusterSet.size(); j++) {
121 for (int i=0; i<dimensionality; i++) {
122 fout << ClusterSet[j].getCentroid()[i] << ",";
123 }
124 fout << endl;
125 }
126
127 string clustMembFile;
128 sstm << "clustMemb" << Windex << ".csv"; //adding index to the string
129 clustMembFile = sstm.str();
130 sstm.str("");
131 ofstream f2out((OutDir + "/" + clustMembFile).c_str());
132 //cluster membership
133 for (unsigned int j=0; j<clustMembers.size(); j++) {
134 for (unsigned int i=0; i<clustMembers[j].size(); i++) {
135 f2out << clustMembers[j][i] << ",";
136 }
137 f2out << endl;
138 }
139
140 //deleting the memory created at run-time
141 for(int j = 0; j < cardinality; j++) {
142 delete [] data[j];
143 delete [] centroid[j];
144 }
145 delete [] data;
146 delete [] centroid;
147 delete [] pointIn;
148
149 return clustMembers;

Page: 289

150 }
151
152
153 void MeanShiftOperator(double *NewPosition, double *point, double **data, double h,
154 int card, int dim){
155 double p=2; // Norm type
156 double epsilon = h*0.01; // Convergence parameter
157 double den=0;
158 double modX=0;
159 double m_x=0; // initialize m_x: new position - old position
160 double *OldPosition; //changing to dynamic array KM 7/18/12
161 OldPosition = new (nothrow) double[dim];
162 for (int i=0; i<dim; i++) {
163 OldPosition[i]=point[i]; //point is the data
164 }
165
166 //double diff[dim];
167 double *diff; //changing to dynamic array KM 7/18/12
168 diff = new (nothrow) double[dim];
169 for (int j=0; j<dim; ++j)
170 NewPosition[j] = 0.0; //zeros new position
171 do {
172
173 for (int i=0; i<card; i++) { // find all the point in the sphere with radius=bandwith/2
174 double *pointIn=data[i];
175 for (int j=0; j<dim; j++){
176 diff[j] = OldPosition[j]-pointIn[j];
177 }
178 modX = LpNorm(p,diff,dim);
179 if (modX < h/2) {
180 for (int j=0; j<dim; j++) {
181 NewPosition[j] += pointIn[j] *exp(-(modX*modX)/(h*h));
182 }
183 den = den + exp(-(modX*modX)/(h*h));
184 }
185 }
186 for (int j=0; j<dim; j++)
187 diff[j]=OldPosition[j]-point[j];

Page: 290

188 m_x = LpNorm(p,diff,dim);
189 for (int j=0; j<dim; j++) { // changed <= to just <
190 NewPosition[j] /= den; //YES this is where this is supposed to be
191 OldPosition[j] = (NewPosition[j]);
192 }
193 } while (m_x > epsilon);
194
195 delete[] OldPosition; //added these guys KM 7/18/12
196 delete[] diff;
197 }
198
199 double LpNorm(double p, double x[], int NDim) { //changed this KM
200 // Determine the p-norm of an NDim-dimensional vector x
201 double norm=0;
202 double temp=0;
203 if (p==0) { // L infinite
204 for (int i=0; i<NDim; i++) {
205 temp = abs(x[i]);
206 if (temp>norm)
207 norm=temp;
208 }
209 }
210 else { // Lp
211 for (int i=0; i<NDim; i++) {
212 norm += pow(abs(x[i]),p);
213 }
214 norm = (pow(norm,1/p));
215 }
216 return (norm);
217 }
218
219 int FindClosestCentroid (vector<cluster> clusterSet, double NewCentroid[],
220 int p, int dim, double h) {
221 // Find the closest centroid to NewCentroid and return the position of that point
222 int answer = -1;
223 double modX;
224 //double distanceFromMinimum = 999;
225 double distanceFromMinimum = (h/3); //modified by KM

Page: 291

226 double *diff;
227 diff= new (nothrow) double[dim];
228 for (unsigned int i=0; i<clusterSet.size(); i++) {
229 for (int j=0; j<dim; j++) {
230 diff[j] = NewCentroid[j]-clusterSet.at(i).getCentroid()[j];
231 }
232 modX = LpNorm(p,diff,dim);
233 if (modX<distanceFromMinimum) {
234 distanceFromMinimum = modX;
235 answer = i;
236 }
237 }
238
239 delete[] diff;
240 return (answer);
241 }
242 #endif

Page: 292

A.12. RAPSS-STA Example Input File

* =================================
* RAPSS-STA input file
* Written by Kevin Makinson
* Oregon State University
* ==================================
* R5 Parameters
* ==================================
* input file
101 Stepup.i
* output file
102 Stepup.p
* water file
103 tpfh2onew
* Restart file parameters
* End Time (seconds)
104 100
* Minimum Time Step
105 1E-7
* Max Time Step
106 0.1
* Control Mode
107 3
* Minor Edit
108 100
* Major Edit
109 100
* Restart Frequency
110 100
* ====================================
* R, PCA and MSA parameters
* ====================================
* PCA Threshold
201 0.95
* BandWidth for MSA
202 4
* Path for R library files to be downloaded into
203 /nfs/stak/students/m/makinske/lib
* Website for downloading R files
204 http://cran.r-project.org
* ====================================
* RAPS Parameters
* ====================================
* Path to RELAP5 executable is stored
301 /usr/local/neapps/relap5-3d/r3d2412ie/relap

Page: 293

* 1 or 0 (true or false) for output cluster csv and pdf files
302 1
* Directory where the R5 input and water files are stored (IDir)
303 /nfs/chadwick/u1/makinske/R5run
*requested number of threads
304 24
*timestep advancements for "keep going" restart files
305 1000
*timestep advancements from first "seed" run
306 1000
*FTAdir, directory where fta_input_file and run.sh are stored
307 /nfs/stak/students/m/makinske/cpp/FTA
*FTA folder/file nanme, name of model without any file type appended
308 maslwr
*Number of cutsets to grab from OpenFTA.
309 10
*State variables for thresholds (arbitrarily set for now for the MASLWR deck)
310 httemp p p
*R5 model state variable codes
311 133000101 100010000 500010000
*Raise flag if less than (lt) or greater than (gt) given threshold
312 gt lt gt
*Yellow trip for "keep going"
313 650 3.5E+6 1.0E+7
*Red trip, to stop run
314 1000 3E+6 9.0E+7
*FTA parameters - cut set order, unit time, terms, number of monte carlo simulations
315 10 1 10 10000
*Real time simulator data file name
316 IAEASP3.txt

Page: 294

B. Appendix B: RAPPS-STA Source Code Explanation

The C++ structure contains one .cpp file, RAPSmain.cpp, as well as five header files,

CycleR5.h, BloodAndGuts.h, cluster.h, MeanShift.h, and OrganizeR5Output.h. Cycle R5

contains the primary loop, which controls the cycling of the program. RAPSmain.cpp

calls CycleR5, as well as reads the RAPSS-STA input file. Cluster.h and MeanShift.h are

used to call the mean shift algorithm, originally written by Diego Mandelli (2011), but

modified and updated to serve RAPSS. OrganizeR5Output.h contains the structure for

reading R5 output files and extracting the pertinent information. Finally,

BloodAndGuts.h contains a plethora of miscellaneous functions called by the program at

various times. Although they are included with many compilers, it is also worth noting

that the libraries: omp.h, sstream, stdlib.h, vector.h, string, iostream, fstream, stdio.h,

iomanip, time.h, math.h, cmath, and sstream are required as well.

There are three, prewritten R files that are called by the structure at various points in

the program, PCA.R, display.r, and unMSAPCA.R. PCA.r reads the output from

OrganizeR5Output, in the form of a .csv file, runs principal component analysis, and

outputs the data in a form that can be easily read by MeanShift.h. UnMSAPCA.r

retrieves the information generated by the mean shift algorithm, reorganizes it, performs

reverse principal component analysis, and outputs the new clustered data in the same

units as the original. Display.r plots the seed data, followed by any scenario that tripped

due to a “red” threshold being exceeded (see Section 7), with the accompanying red and

yellow thresholds on the plot. These take the form of a PDF, and are generated any time

a red threshold is exceeded.

Page: 295

In addition, two other R files are written and called by the C++ structure as the

program runs. These are initPCA.r, and updateRwindex.r. InitPCA.r is called only once

and initializes R by downloading necessary libraries and passing necessary information

from the RAPSS-STA input file. UpdateRwindex.r is called after every cycle. This

updates information necessary for data processing from the last cycle.

B.1. RAPSmain.cpp Source Code Explanation

RAPSmain.cpp (see Appendix A.1) is the file that “runs” RAPSS-STA. Lines

015-052 are variable definitions which have been extracted to the top level in order to

allow the user to edit these variables via the RAPSS-STA input file (see Section 5.1.1).

The main() function of RAPSmain.cpp begins with local variable definitions (lines 055-

062). After a call to change the font to green to differentiate it from the standard UNIX

terminal (line 062), there is some user interface, asking the user if he or she would like to

begin the program. If the user selects “yes,” the user is then asked to type the name of

the RAPSS input file. Once the input file is read, appropriate directories are created if

they do not already exist, and appropriate variables are defined as instructed by the input

file. These variables are then are passed onto a single function, CycleR5(). The real

meat of the program resides in CycleR5(), which is defined in CycleR5.h (see Appendix

A.2), one level below RAPSmain.cpp.

 The function, RAPSinputFile(), that reads the input file is defined in

RAPSmain.cpp (lines 125-403). LoadFile() (defined in Appendix B.3) is used to read the

input file and load it onto a vector, named inputVec[]. The function, RAPSinputFile(),

iterates through each line number of the input file. First, it checks for the comment

character, “*”; if the first character of the line does not contain the comment character,

Page: 296

then it will read the first three characters of the line. This is where the card numbers are

expected. Each card number has one or more RAPSS variables associated with it,

assigned through a large switch-statement. Since the vector contains only strings,

numeric variables are coerced into their given data-type through the use of the

istringstream() operator. If the input file contains cards that are not assigned to variables,

or if there are errors in the input, an error message is returned for each card incorrectly

entered, and the cards that do not contain errors are assigned appropriately.

B.2. CycleR5.h Source Code Explanation

CycleR5.h (see Appendix A.2) is the first level below RAPSmain.cpp and

consists of a single function, CycleR5(). Lines 027-080 contain local variable

definitions. A large while-statement is the primary control mechanism for RAPSS-STA.

The loop continues while the string variable, answer, is either “y,” “yes,” “Y,” or “Yes.”

Answer begins as yes, and is updated by the user at line 178, or 185 with each loop.

When the user changes answer to “n,” “no,” “N,” or “No,” it will break from the while-

loop, which pops from CycleR5.h to RAPSmain.cpp, outputting, “Thank you for running

RAPSS-STA,” and terminating the program.

The first set of tasks (lines 110-124) assigns names to the R5 restart output files,

input files, the previous output file, and the name of the raw data output .csv files (to be

used in OrganizeR5Output.h, see Appendices A.4 and B.4). These strings are appended

with the variable Windex, or while-index, which counts the number of times the while-

loop is executed. This corresponds to how many restart runs RELAP5 will run.

EndByVec[] (line 309) is a vector that contains a zero, one, or two for each

transient corresponding to a termination by: end of time step card, trip, or steady state,

Page: 297

respectively, as described in the R5EndBy() bullet in Appendix B.3. EndByVec[] is

simply a storage device for R5EndBy(). In a similar way to EndByVec[], RstNbr[] (line

311) is simply a storage device for FindRstNbr(), described in Appendix B.3. The first

time through the while-loop, zero is pushed onto RstNbr[] (line 128), but every other

time, the restart number from the previous run is pushed onto RstNbr[], just as the code

for transient termination type is pushed onto EndByVec[].

When the Windex is one, or the first iteration through CycleR5(), several tasks

are performed. After some user interface, initR() is called (lines 160-161), which simply

writes an initialization R file (initPCA.r) to be used with the appropriate libraries and

variables (see Section 5.3). After it calls initPCA.r, the function WriteInitShFile() (see

Section 5.3) is called, which creates a simple UNIX shell script that changes to the

appropriate directory, calls RELAP5 with the passed information and returns the full file

path of the shell script. After the script is read by the system, OrganizeR5Output() is

called (line 172) to extract the data from the R5 output (see Appendices A.4 and B.4).

When the Windex is not one, (i.e., on the second or greater times through the

while loop), it enters into the parallel portion of the code (line 241). If the requested

number of threads (requestTh), specified in the RAPSS-STA input file, is greater than the

maximum allowable by the system, an appropriate error message is displayed and the

number of threads is set to the maximum (lines 217-225). If the number of requested

threads is not greater than the maximum, but greater than one, OpenMP is set to use the

specified number of threads. If both of the aforementioned arguments are not true (i.e., if

the number of requested threads is either less than one, or not a numeric value), OpenMP

is set to only use two threads (lines 230-235). Running RAPSS-STA using only one

Page: 298

thread will cause the program to be unstable, and is not allowed. After initializing

OpenMP using #pragma omp parallel, the integer, th_id, is stored as the identification

number of the thread (line 244). This is important to differentiate scenarios by the thread

number they were run on.

If Windex is two, or the second time through the while-statement, but the first

time in the parallel portion, it will make a new data storage directory for each thread

(lines 250-253). These take the form of Th_(th_id)_data. Inside the directory, there are

two more directories created, “inputs” and “outputs,” which store the restart input files

and R5 output, as well as the organized R5 output in the .csv file format. It then calls

RstIptGen() (see Appendix B.3), which writes a restart file for R5 with the appropriate

conditions (lines 258-263, 267-273, and 275-281). WriteRstShFile() (lines 283-285) (see

Appendix B.3), writes a shell script that runs R5 using the appropriate directory

information for the active thread.

If Windex is not two or one, (i.e., on the third or greater times through the while

loop), it skips creating the folders, and simply calls RstIptGen() (line 275), which writes a

new restart file, running a combination of transients and non-transients with perturbed

initial conditions.

Lines 305-340 display to the user, and store in the system how the R5 run ended

on each simulation. This is passed to the 2D vector, EndBySumVec[][] (line 314), which

stores the output from EndBySummary() (see Appendix B.3), and is used to output to the

user how many threads ended by the end of allotted time, trip, steady state, or errors.

When prevKeepGoing[] is true for a given thread that has completed its time history,

EndBySumVec[1][] is set to false for that thread. Lines 392-404 take out scenarios that

Page: 299

are tripped and flagged for keepGoing from clustering contention. This is because to

correctly cluster scenarios, they need to be over the same time-space. Scenarios that

terminated by trip predict less time than scenarios that ended by their allotted time.

Similarly, scenarios that continue going for the next cycle exist in a larger time-space

than the normal scenarios.

The vectors keepGoing[] and prevKeepGoing[] (lines 342-391) are used to tell

RAPSS-STA whether to terminate a run at the end of the time history, or explore further

in time. This is achieved by checking if certain “yellow” thresholds are exceeded. These

yellow thresholds are values of state variables that aren’t immediately of concern, but

might be in the future. Scenarios that are flagged to keep going will continue where the

previous run left off and explore further in time rather than starting from the current time

(lines 267-274). These vectors have nthread (the number of threads used) elements, and

contain zeros or ones corresponding to keepGoing[th_id] being true or false. The vector

prevKeepGoing[] is simply the values of keepGoing[] from the previous cycle.

Finally, the information from the newly completed R5 cycle is passed into R by

calling updateRwindex. PCA.R (see Section 2.5.1) is called at line 446. This reads the

.csv file from each thread, organizes it for PCA, performs PCA, and prepares it for the

mean shift algorithm (see Section 2.5). It then calls MeanShift() (line 448) from

MeanShift.h (see Appendix B.11), which outputs the cluster centers as a .csv file.

unMSAPCA.R (see Appendix B.7) is called to reorganize the data a final time, and

outputs a .csv file for each cluster, as well as a single multi-paged .pdf file plotting the

cluster centers for all state variables from scenarios that did not end by trip. For those that

Page: 300

did end by trip, only the tripped state variable is plotted with accompanying thresholds

and probability information.

 The tripped data are plotted through display.r (line 426). The runs that completed

their time histories are clustered using PCA and MSA and the clustered data are

reorganized and plotted using unMSAPCA.r (line 450). Then, to reset for the next cycle,

prevKeepGoing[] is set to keepGoing[], and keepGoing[] is cleared. The function,

htmlDisplayWriter(), is called at line 452 to generate the user interface.

B.3. BloodAndGuts.h Source Code Explanation

As suggested by the title of this header file, this file contains the “blood and guts”

of RAPSS-STA (See Appendix A.3). It is basically a collection of various functions to

be used in other parts of the program. This file can be considered the third layer below

RAPSmain.cpp. The functions contained in BloodAndGuts.h will be briefly explained in

this section.

• SearchVec() (lines 0019-0037) is one of the most heavily used functions in

RAPSS. It expects a vector of strings (the R5 output), labeled text[], and a string

key. It searches through a data file, and returns a vector of the integer line

numbers where the key is located. An example of its use is to locate the key “1

time ” to determine the location of the state variable time series data.

• LoadFile() (lines 0039-0057) expects a string of the input file path to load. This

function takes a file and loads it into a vector, which can be easily manipulated in

C++. It returns the vector, text[], which is a vector of strings. Each index of the

vector is a string corresponding to the line number of the input file.

Page: 301

• FindRstNbr() (lines 0061-0081) expects a string of the input file path to search for

a restart number in the R5 output. This function calls LoadFile(), then passes the

vector obtained by LoadFile() as well as the key, “0---Restart no,” in this case, to

SearchVec() to obtain a vector of strings. It then searches the line that starts with

key and grabs the number immediately after the key, and stops when it reaches a

“w” character. This is because in the R5 output file, after the word “written”

always follows the restart number. It returns the double, RstNbr, which

corresponds to the last restart number in the R5 output file. This is potentially

used to begin a new restart file where the last run left off.

• R5EndBy() (lines 0085-0104) searches the R5 output file for one of three phrases,

“0Transient terminated by end of time step cards,” “0Transient terminated by

trip,” or “0Transient has reached steady state,” and returns a 1, 2, or 3,

respectively. It also has the capability of returning zero if it does not find one of

the three phrases.

• EndBySummary() (lines 0109-0147) is a function that returns a two-dimensional

vector and expects a one-dimensional vector of the termination type in the format

of R5EndBy(), as well as the number of threads currently in use. To construct the

2-D vector for return, four temporary vectors (temp0-3) are created and the thread

number that corresponds to the termination type is pushed onto the temporary

vector. These vectors are then pushed onto the 2D vector, which is returned by

the function. The first index of the return value, EndBySumVec corresponds to

how the transient on the given thread was terminated, 0: errors, 1: time step, 2:

trip, and 3: steady state. The second index corresponds to the thread number. The

Page: 302

value associated with the two given indices can be either a zero or one, to signify

whether a scenario terminated by a certain way on a certain thread. For example

if EndBySumVec[1][8] was equal to one, it would mean that thread 8 ended by

the end of time step cards. If EndBySumVec[1][8] was equal to zero, it would

mean that thread 8 ended by something other than the end of the time step cards.

• R5SciConv() (lines 0151-0159) is a very simple function which converts

scientific notation from how C++ outputs it (i.e., 1.0e+3 = 1000) to how RELAP5

processes scientific notation (i.e., 1.0+3 = 1000).

• WriteInitShFile() (lines 0161-0169) writes a UNIX shell script to change to the

appropriate directory and perform the initial RELAP5 run using the designated

input, output, restart, and water files. It returns a string of the full file path to the

newly written script.

• WriteRstShfile() (0171-0186) writes a UNIX shell script to change to the

appropriate directory, and perform the restart RELAP5 run using the designated

directory of restart, input, output, restart, and water files. It returns a string of the

full file path to the shell script.

• initR() (lines 0188-0260) writes the initialization file for R. This first clears the R

memory to avoid any overflow from the last experiment, and makes a new

directory, if it doesn’t already exist in a location designated by the user, libloc

(library location), from card 203 of the RAPSS-STA input file (see Section 5.1.1).

It then stores variables and installs the necessary packages for processing in R.

This usually takes a few seconds if they are not already installed, as it has to

download these from the internet, which is why it is only performed once, instead

Page: 303

of with each restart. It also passes the red and yellow threshold information, state

variable trip names, equivalence and state variable codes from the RAPSS-STA

input cards (lines 310-314) (see Section 5.1.1).

• UpdateRwindex() (lines 0263-0337) is a function that communicates to R the

changes in rstNum and thNum, the number of threads being run. It also passes the

threads that ended by timestep (EndBySumVec[1][]) as well as those that ended

by trip (EndBySumVec[2][]). In addition, the threads that were designated as

“keep going,” and the probabilities from LiteFTA are also passed for the display

mechanism. ThTransientTranslator is also passed. This is a vector that converts

from the way C++ interprets less than nthread values, to the way R interprets

them. For example if there are 8 total threads and threads 1, 3, and 6 were not

included in data processing, C++ would see this as including threads (0, 2, 4, 5,

7), whereas R would see 5 threads and number them (1, 2, 3, 4, 5). So any

attempt to display to the user which threads are contained in which cluster (see

Section 5.1.1), would not yield acceptable results. The ThTransientTranslator[]

addresses this issue.

• ChangeFont() (lines 0339-0346) writes a short shell script to change the font color

of the text, using standard UNIX color codes. This is used to enhance the clarity

of the program and differentiate RELAP output from RAPSS output. It returns

the location of the shell script.

• RestetFont() (lines 0348-0355) is similar the ChangeFont(), except it changes the

font back to its original color.

Page: 304

• NameDir() (lines 0358-0364) is a small function that simply returns a string of

Th_(th_id)_data where th_id is the thread identification number from OpenMP.

This is used for creating new directory locations.

• TrimSpace() (lines 0368-0381) expects a string with white space either at the

beginning, end, or both of the input string, and trims them to return the string

without the whitespace.

• getCutSetData() (lines 0384-0463) returns a 2D vector of strings and expects a

.prp file name as well as the number of cutsets to grab. To grab the cutsets, the

function first looks for information from the same cutset on the next line, and

enters into one of two different procedures depending on the results of that logic,

called multLine. If multiLine is false, it will read in each cutset word, separated

by a space and pass them, stored as the string “word,” to a vector named

eventVec[], which represents a single cutset. Word is cleared after each pass to

eventVec[]. Once it sees two spaces in a row, it clears eventVec[] proceeds to the

next cutset. For multiline cutsets, a new Boolean variable, lastLineInSet is

introduced. This is set to true if the next line from the cutset contains information

from the next set rather than the set it is currently loading. It tells the function to

keep going to the next line to grab more cutset information, or stop, pass the

information, and begin loading a new cutset. At the end of the while loop, the

character index, i, is set to 6. This corresponds to the character number where

each cutset begins in the file. The probability vector, prob[], is also grabbed

during this process but in a much simpler manner. Since the probability is always

Page: 305

contained between characters 39 and 52, it simply passes this value from the first

line of the cutset onto the prob[] vector.

• getMCdata() (lines 0466-0548) returns a 2D vector of strings and expects a .mrp

file name as well as the number of cutsets to grab. It functions in a very similar

manner to getCutSetData().

• doFTA() (lines 0550-0576) expects a vector of doubles: FTApars (FTA

parameters), the LiteFTA file name, and the directory where the FTA files exist.

These are specified by the user in card 315. This function writes the LiteFTA

input file (fta_input_file), which simply tells LiteFTA where to look for the .fta

file as well as which parameters to use while generating the .prp and .mrp file. It

also generates a new shell script named runFTA.sh which changes to the

appropriate directory and executes run.sh, which is the shell script that actually

runs LiteFTA. It finishes by making them executable using the UNIX command

“chmod +x”, and running the scripts.

• ftaFileFixer() (lines 0578-0598) is a simple function that expects a file name of an

OpenFTA file fault tree to be run in LiteFTA. LiteFTA expects the data in a

certain format, and ftaFileFixer() puts it in that format.

• loadSystemData() (lines 0600-0618) uses LoadFile to load a .csv file and returns a

vector of strings, commonly called sysData[][].

• qualConverter() (lines 620-658) take the value of LDP301 in the MASLWR

output data, and determines what the value of qual will be at the next restart.

Qual is basically an indication of if there is water at that location or not. A value

of 1.0 indicates water, a value of 7.0E-3 indicates not water.

Page: 306

• Linterpolate() (lines 660-664) performs a linear interpolation of the input

variables.

• realTimeSimulator() (lines 0666-0680) simply loads whatever timestep has been

written to realTimeData.txt.

• RstIptGen() (lines 0682-2071) See section B.3.1.

• htmlDisplayWriter() (lines 2074-2345) is the function that creates the html

display. Lines 2088-2104 count how many times the red and yellow trips have

happened in the scenarios to use in creating the red and yellow boxes in the

display (see Section 7). Lines 2106-2125 name and create the files to be used,

DISPLAY#.html, green#.html, unstable#.html, and misc#.html. Where the #

symbol is used to represent the cycle number. DISPLAY#.html is created in

lines 2147-2240. Green#html is the file that shows all scenarios that did not trip,

in other words, any R5 run that ended by the end of the time step cards, and is

written on lines 2242-2273. Misc#.html is written on lines 2275-2311 and

contains the cluster information about the scenarios. Unsable#.html is written on

lines 2313-2344 and contains the scenarios that ended by the R5 model becoming

unstable, and a description of what that particular scenario was attempting to

model.

B.3.1 RstIptGen()

RstIptGen() (lines 0682-2071) is the largest function in BloodAndGuts.h (and in

RAPSS-STA). It writes the restart files for each thread. Local variable definitions are

contained in lines 0691-0708. Lines 0710-0766 search the MASLWR data for the

variables of interest and coerce them (from strings to doubles) onto local variables.

Page: 307

These state variables are perturbed in lines 0770-0787 and 0802-0804 across random

numbers between 0.95 and 1.05 by multiplying by U. U begins as a uniform distribution,

from 0 to 1. This is achieved by dividing a given random number by the maximum

allowable random number set by the system (library dependent, but guaranteed to be at

least 32767). This produces a uniform distribution between 0 and 1. That number is then

divided by 10 and added to 0.90, producing a uniform distribution between 0.95 and 1.05.

The value of U is reset using a combination of system time and arbitrary multipliers to

insure a wide variety of random numbers.

 The temperatures are converted from Fahrenheit to Kelvin (lines 790-799) and

redundant thermocouple measurements are averaged (line 0800).

To begin to write the restart file, there are first the obligatory data, author, and

description comment card (lines 0813-0816). Then, it writes the 100 card (problem type),

103 card (restart number) which uses the restart data (containing geometry information)

from the previous run, and the 203 (time) card.

Next, RstIptGen() sets the termination trips (i.e., the “red” trips). RELAP 5 has a

rather strange way of prototyping trips. First, the trips themselves need to be stated. For

example, the line:

501 p 100010000 lt null 0 6.00+06 l

states that trip number 501 is set to true when the pressure in component 100010000 is

less than 6x106. The user specifies how many of these he or she needs in the input file.

The 600 card is the RELAP5 “terminate transient by trip” card. However, there can only

be one trip entered on the 600 card. For simulations with more than one end-by trip

desired, cards 601-699 are used to combine the logic from cards 501-599. However,

Page: 308

cards 601-699 can only tolerate two entries, therefore multiple cards are necessary to add

up the desired amount of trips. For example, if there are trips for both pressure and

temperature, cards might look like:

501 p 100010000 lt null 0 6.00+06 l

502 httemp 501000101 gt null 0 1.10+03 l

601 501 or 502 l -1.0

603 601

Or, if there are three (or an odd number of) outputs, one of the 501-599 cards is

repeated by RAPSS-STA on the last 601-699 card (602 in the lines below):

501 p 100010000 lt null 0 6.00+06 l

502 httemp 501000101 gt null 0 1.10+03

503 velgj 209000000 lt null 0 2.00+00 l

601 501 or 502 l -1.0

602 503 or 503 l -1.0

603 601 or 602 l -1.0

600 603

This is achieved through a rather non-intuitive bit of logic. First RAPSS-STA

simply lists the trips and increments (using the index, i) the 500 card for each trip. Next,

the 601-699 cards collect up the 501-599s. The index, index60 is used to increment the

601-699 cards. The index, index, is used in the 601-699 cards to refer to the 501-599

cards. Index, starts at zero and is multiplied by two and either has a one or two added to

it. This is because there are two entries per 601-699 card and the 501-599 cards start at

zero. For example, the first time through the loop, index is 0, so the 601 card is:

Page: 309

500+(index*2)+1, and 500+(index*2)+2, in other words, 501 and 502. This goes on until

index is equal to the number of state variable trips divided by two (because there are two

501-599 trips listed for each 601-699 card). If the number of trips is odd, the same logic

is used, except on the last time through, the 501-599 cards it references are identical.

This redundancy was added to significantly simplify the logic, while still maintaining

functionality.

If the number of trips is one, then simply the 501 card is called in the 600 card. If

the size is not two, or one (greater than two) a final bit of logic is invoked. It turns out

that for seven or more trips, the way the 601-699 cards collect the 500 cards,

(index*2)+1, starts to depart from the desired result. For iterations greater than 7, the

card numbers become off by one, increasing again by one for every four cycles. The

integer adder was created to handle this problem, it increments every fourth cycle past 7

by checking when the modulus of the index by four is equal to three, in other words,

when the next index is divisible by four.

The next section of RstIptGen() (lines 0877-1561) is used to define the start

conditions of a given R5 run based on measurements from the MASLWR facility. To do

this, any component where a value is set needs the entire card reproduced in the restart

file. To accomplish this, large sections of the R5 input was regenerated with new values

in certain places. Each time a state variable is set to a value from the MASLWR facility,

it was marked with a comment card beginning with the word “TOMNOTE:”

The next section of RstIptGen() (lines 1564-2071) is used to simulate transient

conditions. If the thread id is greater than or equal to the number of threads divided by

two (the second half of the threads), then a transient condition is simulated. Otherwise,

Page: 310

normal operating conditions are simulated with perturbed initial conditions. The vector,

transient[], is passed from CycleR5(), and contains cut sets from the fault tree that

produces a core-damage transient with the highest probability. The first section (lines

1564-1675), pushes transient codes onto the vector, Vbreak[]. The transient codes

correspond to the next section, which contains the appropriate R5 output to simulate a

given transient. For example, if one of the entries in transient[] is RPV_F, the code 7520,

is passed to Vbreak[], which corresponds to case 7520 (line 1793), and simulates the a

reactor pressure vessel leak (through the use of the “breaker valve” on the cold leg). For

transients with multiple occurrence paths, a random occurrence path is chosen. For

example, if FLOW_B (line 1610) was read from transient[], then one of four codes for

“breaker valves” would be passed to Vbreak.

The logic for the code number of the breaker valves is fairly straight forward.

The code number corresponds to the component number of the breaker valve that

simulates the given transient followed by a zero for fully engaged valve, or a one for

partially engaged valve.

B.4. OrganizeR5Output.h Source Code Explanation

OrganizeR5Output.h (see Appendix A.4) was written to search a RELAP5 output

for state variable time series information and write it to a .csv file. The function,

OrganizeR5Output() was written to expect two strings: the file path for the R5 output,

and the path for the writing of the organized .csv file. The first loop in

OrganizeR5Output() (lines 039-081) grabs string fragments, starting with “1 time .”

The two spaces after “time” differentiate it from the possible instances of this in the input

file (which is always displayed at the beginning of the R5 output file). The string

Page: 311

fragments are grabbed thirteen characters at a time (the thirteen characters is simply a

result of the inherent organizational structure in the R5 output), and after trimming the

extra white space at beginning and the end of the string fragments, pushes them onto a

new 2D vector of strings, named data1[][]. The function knows when to stop recording

time series data and move to the next section when it reaches either “RELAP5/3.3g” or

“steady state” in the R5 output. It is necessary for the loop read the last line to tell the

program that the previous line was the last one with data, but avoid writing the new line,

because it does not contain any data. Line 079 accomplishes this by popping back

(deleting) the final entry into the data1[][] vector (data1.pop_back()) whenever it reaches

the end of a set or section. The function knows when it has reached the end of the final

section by looking for the key words “Final time=” or “---Restart Su.”

Unfortunately, at this point, data1[][] still contains labels, units, time variables for

every set. This results in every 50 time steps, new state variables (including all the

corresponding labels and units) are displayed for the same 50 time steps until all state

variables are output. This is complete chaos from a data analysis perspective because it

does not follow a consistent time series, and repeated display of labels and units nullify

any attempt to, say, take the average of a column. The time variable also appears

multiple times corresponding to how many total sets appear in the R5 output.

The next three loops solve these problems. The first (lines 085-089) pushes the

line number of the start of each set from data1[][] (not the R5 output, as SearchVec()

would) onto a new vector, named data1Sections[]. Next (lines 092-106), the SearchVec()

of “1 time ” for the R5 output file is used to discover how many sets of state variables

per section exist. This is determined by the loop which assigns a single integer value to

Page: 312

the variable “SetsPerSection.” The loop works by comparing the first element from the

time series in one set from data1[][] with the first time series element in the next set. If

the time series element is the same, it’s still in the same section. If the time is different, it

is a new section.

Now that the above information is known, it’s possible to begin organizing the

data. The second to last major loop (lines 122-144) cycles from zero to the number of

sections in data1[][] (data1Sections.size()). An if-else statement was added to account

the varying number of state variable groupings (SetsPerSection) depending on the user

input. The integer, HeaderLength, is initialized to zero at the beginning of the code.

HeaderLength determines whether the labels and units in the R5 output are included in

the organized output. Labels and units are necessary only for the first section. The first

statement (line 125) waits until k, the index of the number of sections, reaches the value

of SetsPerSection, indicating the first full section has been read and organized. After

that, labels and units are redundant, so HeaderLength is set and left at four in order to

start four lines (the length of the labels and units in an R5 output) later than it did in the

first section.

If the index (k) of the loop’s modulus (remainder) of SetsPerSection is zero,

jIndex and jMult are set to 0; StatMult is also incremented; otherwise, jIndex is set to

unity, and jMult is set to the modulus of k and the sets per section (lines 125-133). These

values are used in the nested two upcoming loops.

This next bit of logic is some of the more complex built for the current version of

RAPSS-STA; for this reason, they will be explained step by step. First, the integer,

SectionStart, is found by subtracting the integer, FormatSectionLength, from the

Page: 313

HeaderLength (line 135). FormatSectionLength is simply the difference in line numbers

between the first two sections (data1Sections[1]-data1Sections[0], line 115). StartMult is

incremented only when the modulus of k by the SetsPerSection is zero. In other words,

StartMult increments every time a new section starts. SectionStart, then is the length of a

set, multiplied by how many sections have been completed. This is used to control where

the length-variable of FormatData[][] starts.

The integer, FormatDataWidth, is set to the width of the section (line 136). For

example, if there are 18 state variables, with ten variables per section, FormatDataWidth

would be ten the first time through the loop, and eight the second time.

The next nested for-loop (lines 137-144) controls the indexing of i and j, the

length and width variables, respectively, of data1[i][j]. The index, i, runs from the

beginning of the set at k in data1[][], and grabs the units for the first section, but skips

them for all other sections, by the addition of HeaderLength. The index, i, basically runs

from the beginning of a set to the end of a set (data1Sections[k+1]). The width index, j, is

cycled by starting from either 0, the first word, corresponding to the time series variable,

or 1, corresponding to the first variable besides the time series variable (controlled by

jIndex). This way, FormatData[][] removes the multiple time series variable problem

described above. The index, j, runs until the end of the width of a given set.

The next if-statement (line 139) designates the end of all sections. The statement

basically says, if the index, i, (the length index) reaches the size of the length of

data1Sections[], break from the loop.

Now we’re finally ready for the most important statement of the whole function,

the organization of the data (line 140). The goal is to take data1[][], which is separated

Page: 314

by sets of state variables, 10 across, and 50 in length, and move them to the appropriate

spot in the new format vector, FormatData[][], corresponding to all state variable labels

and units displayed as the first row, and the state variable time series values occupying

the remaining rows. The indices, i and j, are simply used for data1[i][j], which limits the

index manipulation only to the FormatData[][] vector. The length index for

FormatData[][] begins at SectionStart (length of the set, multiplied by how many sections

have been completed), and is added to i (the line number of data1[][]) subtracted by the

line number from the beginning of the set (data1Sections[k]). This makes sure the state

variables from new sections are added to the bottom of the desired state variable

columns.

The length index, j, for FormatData[][] is equally as non-intuitive. It begins with

jIndex (one or zero depending on whether it’s the first time though the loop or not, to

grab the time variable the first time, but not more than once). The multiplier, jMult,

multiplies the width of the current section from data1[][]. jMult is the modulus of k and

the sets per section. This tells FormatData[][] how many sets of columns (state

variables) to skip when recording data. This removes the requirement of only ten state

variables per set. The rows now appear as a more logical structure, with the time variable

first, followed by however many state variables are output by R5.

The final loop (line 147-155) simply outputs the formatted data into a .csv file

given by the second parameter OrganizeR5Output() expects.

B.5. initPCA.r Source Code Explanation

This script is generated by the C++ structure to pass important variables to the R

world. This is meant to initialize R and prepare it for principal component analysis. This

Page: 315

script is only ran once, at the beginning of RAPSS-STA. Threshold (line 11) is the

variance threshold for PCA to cut off when performing dimensionality reduction

Thresholds (lines 15-17) is the array that holds the “red” and “yellow” thresholds defined

in stateVarTripNames (line 18) and equivalence (line 19). StateVarCodes is an array that

simply holds the component numbers from R5 for each of the state variables listed in

stateVarTripNames. Equivalence is an array holds either “gt” for greater than, or “lt” for

less than. This is used later to test whether the values in stateVarTripNames are above or

below the values listed in thresholds.

B.6. PCA.r Source Code Explanation

The script, PCA.r (Appendix A.6), does quite a bit more than simply perform

PCA. First, it reads the .csv output file generated by OrganizeR5Output() for each

thread, and stores it in a 3-dimensional array (time steps x state variables x thread)

(lines 022-036). Included in these arrays are small amounts of null data, generated by

unused memory allocation during OrganizeR5Output(). The null data are identified and

deleted (lines 039-050), as well as any state variable with a standard deviation below a

given threshold across each scenario to avoid interference with further analysis (lines

073-089). Next, because the data was read as a combination of characters and numeric

values, R assumed each value is a type of character value. They were redefined, and read

into a new array, TrimData, using the R function: as.numeric() (lines 059-065). Time and

the state variable units were also trimmed at this point and stored for use later. It was

discovered much later that read.csv has a parameter that can be modified to act the same

as the as.numeric() function.

Page: 316

The first and last data points for each state variable are ignored due to the peculiar

feature of RELAP5 outputting constant values for all but the first and last data points

when a state variable is allegedly constant over a given time series. The state variable

would be flagged for deletion if it were constant for all except for the first and last values.

If any state variables were flagged for deletion in one scenario, but not another, the

variables were not trimmed (lines 113-120).

The next step is to normalize the data to set it up for PCA. To accomplish this,

the state variables’ means were subtracted and the quantity was divided by the standard

deviation to obtain new state variable columns with a mean of zero and standard

deviation of one (lines 134-139).

After the data was normalized, it had to be arranged in such a way to obtain a

single eigenvector matrix (the rotations), as opposed to an eigenvector matrix for each

thread. The goal of performing PCA was to reduce the number of state variables for input

to the mean shift algorithm. To do this, the first time steps of each scenario were grouped

together, followed by the second time steps and so on (see Section 6.2). The result was

for a single state variable, 24 measurements (assuming 24 threads) of each time step. The

new matrix was named TwoDnormalized (lines 145-153) in PCA.r, and has dimensions

(number of threads*time steps x state variables).

Lines 155-288 are related to the Automated Linear Approximation Interval

Sequencer (ALIAS) and are described in section B.6.1.

The array, EigenMatrix, represents entire set of eigenvectors (line 294). The

array, RowFeatureVec (295), represents only the eigenvectors that correspond to the

eigenvalues that add up to the user defined variance threshold. The array,

Page: 317

RowFeatVecInv (line 296), is the inverse of RowFeatureVec, to be used later. The array,

FinalComps (line 297), is composed of the components themselves, to be used with the

mean shift algorithm.

Instead of organizing the data by state variable, and incorporating the scenarios

into the state variables, the data must be organized by scenario, and the principal

components (formally state variables) are grouped similar to Equation 5.1. This matrix is

labeled MeanShiftReady and is written to a .csv file as “PC,” followed by the restart

number that it is analyzing from RAPSS-STA (lines 315-322), to be read in the mean

shift algorithm.

B.6.1 The Automated Linear Approximation Interval Sequencer (ALAIS)

The Automated Linear Approximation Interval Sequencer (ALAIS) begins at line

155 of PCA.r. The logic makes the most sense, however, by starting at line 189, which

splits the total time interval in half and finds the covariance matrices of these two

sections. Lines 192-194 checks to see if the norm of the difference in covariance matrices

divided by the change in time is below a certain threshold, as described in Equation (6.8).

When it’s not below the threshold, the intervals must be split further. Whichever

interval’s covariance norm is the greatest determines which interval gets split. At this

point, a Boolean flag, int1Direction, is activated (line 193), which tells the rest of the

statement which direction it’s headed. True indicates marching towards the beginning,

false, indicates marching towards the end. We will discuss the case when int1Direction is

true first.

To avoid an infinite number of interval tests, after the initial direction is

determined, and the norm of the difference in covariance matrices is not below the set

Page: 318

threshold, it must continue splitting up the interval closest to the beginning until the

threshold is reached (lines 238-244). Once the norm of the difference in covariance

matrices is below the set threshold, and the first interval starts at 1 (meaning it is at the

beginning), the Boolean flag, forward, is set to true (line 201). The location of the split

between the first and second intervals is then stored for later use in intervalArray. The

first interval is then set to the second interval, and the second interval is made to extend

all the way to the end (lines 254-260). If these intervals do not pass the test, the second

interval would be cut in half (line 250), and the test performed again. Once it is

determined that the interval is small enough, it will store the data in intervalArray, set the

first interval equal to the second, and extend the second interval all the way to the end

(lines 254-260 again). If it does not pass the test is will continue splitting intervals using

the aforementioned procedure. If it does pass the test, it will break from the loop, and

add in the ending data point for use later.

For the first case when deciding which direction to initially head, if the second

interval’s covariance norm is greater, int1Direction is set to false, and very similar logic

is executed by first marching toward the end, then once the end is found and the

difference in covariance matrices is below the threshold, it would set the “second”

interval equal to the “first,” and the “first” equal to the beginning. ALIAS would then

march towards the beginning in a very similar manner to how it marched toward the end,

described in the above paragraph.

Unfortunately, decreasing the size of the interval doesn’t always decrease the

norm of the difference in covariance matrices. It could be, in rare cases, that the state

variables are actually less correlated along a smaller time interval than they are over a

Page: 319

larger time interval. In this case, when the intervals decrease to a size of two and still

don’t pass the norm of the covariance matrices test, ALIAS will activate a Boolean flag,

moveOn, record the interval that did not pass the test in the array, badInterval, and move

on as if it did pass the test. This usually happens at the very beginning of the data, when

possibly the initial conditions of RELAP5 do not match the steady state conditions a short

time after the system has had a chance to respond to the initial conditions.

B.7. unMSAPCA.r Source Code Explanation

The first step of unMSAPCA.r is to load the data in the form of a single matrix

(cluster size x (time steps*principal components) in size). Lines 014-023 convert it into

the same form as the feature vector, RowFeatureVec, from PCA.r (see section B.6)

((cluster size*time steps) x principal components). After that, the inverse of the

feature vector matrix, RowFeatVecInv (lines 027-034) is used to transform from principal

components to state variables for each linear approximation interval obtained in the

ALIAS algorithm (see section B.6.1) into physically meaningful data.

At this point, we have a single 2D matrix of the form: ((scenario clusters*time

steps) x state variables). Lines 036-042 convert the data into a 3D matrix of the form

(time steps x state variables x scenario clusters). The data are then unnormalized by

adding in the mean and multiplying by the standard deviation (lines 044-052). Time and

units are added back in lines 055-059. Finally, when the Boolean data output variable is

set to true, the data, FinalData is output, in the form of one .csv file for each cluster (lines

071-079), and one, multi-paged .pdf of the normalized cluster centers (lines 083-101).

Page: 320

B.8. UpdateRwindex.r Source Code Explanation

This is a script that is run with every cycle of RAPSS-STA. It updates the cycle

number, rstNum (line 02), and which scenarios ended by end of time step, IncludeTh (line

04), ended by trip, EndByTrip (line 05), and which scenarios were started in previous

cycles, prevKeepGoing (line 06). It also updates the probabilities of transients occurring

from the fault tree, cutSetProbs (line 07). It also passes a variable,

ThTransientTranslator (line 12), which tells R which transient was run on which thread.

B.9. Display.r Source Code Explanation

The purpose of this script is to display the “alerts.pdf” plots. After loading the

seed file (for restart runs that ended by trip) and searching for NA data (lines 012-027), it

redefines the data as numeric instead of characters (lines 037-039). It was later

discovered that read.csv has a parameter that does this for the user, but it was never

implemented. Lines 042-100 load the previous restart in the same manner as above for

the threads that are marked as keepGoing. Lines 101-158 load each of the scenarios that

end by trips in the same manner as before. Lines 161-165 create another array,

stateVarCodes2, which contain the state variable codes from R5 with the second to last

zero removed. This is to account for a strange artifact in the R5 output that occasionally

removes the second to last zero in the minor edit variable outputs. Lines 168-181 count

how many thresholds to look for. Lines 183-207 determine which thresholds the

scenarios tripped. Plotting occurs in lines 213-261. Inside the plotting structure, lines

216-230 plot the output if it has been flagged as keepGoing. This plots the last cycle’s

data along with the current cycle’s data. If the scenario was not flagged as keepGoing, it

is plotted in lines 238-250. This plots the seed data, followed by current cycle’s data.

Page: 321

Lines 251-260 plot and label the threshold lines. Finally, lines 263-280 create a simple

.txt file for communicating back to the C++ structure which variables ended by trip in a

way that the user can understand. This is eventually read, and spit out in the html

interface.

B.10. Cluster.h Source Code Explanation

This file was unchanged from the original source code. See Mandelli (2011) for

details.

B.11. MeanShift.h Source Code Explanation

Rather than spend time “reinventing the wheel”, RAPSS uses a version of the

mean shift algorithm written in C++ mostly by Mandelli (2011), however, the code was

adapted in several places to account for errors and to serve RAPSS.

• Firstly, the file itself was changed from .cpp file to a .h file for integration into

RAPSS.

• The data input section (lines 029-060) was added to push the data into a vector

(DataVec[][]) to dynamically determine the size (DataVec.size()) of the input data

at run time, instead of the user manually typing the dimensions of the data.

• The loop in lines 78-82 seemed to confuse cardinality with dimensionality; those

were switched in the RAPSS version.

• Utilization of parallel computing through OpenMP was disabled (line 088) for

this version of RAPSS.

Page: 322

• A 2D vector, clustMembers (loaded in line 100), was added to keep track of the

cluster membership. This vector was also passed as the return value of the

function, MeanShift().

• The outputs (lines 115-125), output a.csv file clustCenters_restart#.csv, and

clustMemb_restart#.csv, where _restart# is the restart iteration of RAPSS when

MeanShift() is called.

• The new memory created at run time was deleted at the end of MeanShift() (lines

141-147).

• In the MeanShiftOperator() function, OldPosition[dim] and diff[dim] were

changed to dynamic arrays because dim (dimensionality) was now determined at

run time (lines 160, 167), and deleted later to avoid dangling memory (lines 195-

196).

• The loop at line 186 was changed from j<=dim to j<dim to avoid accessing null

memory.

• The statement: NewPosition[j] /= den (line 190) was moved into the appropriate

loop. Otherwise it would clear den (denominator) each time through the while

statement, which caused den to only account for cluster sizes of two members or

less. On a personal note, this error was by far the hardest to identify.

• In FindClosestCentroid(), distanceFromMinimum was changed from 999 to h/3,

where h is the bandwidth (line 225).

B.12. RAPSS-STA Input File Explanation

This file has three sections, RELAP5 parameters, PCA and MSA parameters, and

RAPSS parameters. Lines that begin with the comment character “*” are not read. Lines

Page: 323

that begin with a three-digit number are followed by information the user wishes to pass

to RAPSS-STA. Cards 104, 105, 106, 107, 108, 109, and 110 must be identical to the

time card in the RELAP5 seed input.

RELAP5 Parameters:

• Card 101: R5 initial input file. This is the file that contains all necessary

geometry and heat structure information referred to as the “seed.” It will be run

before any other transients are simulated. While its purpose is to achieve steady

state, this file is usually run in “transient” mode. Steady state mode reduces the

specific heats of all metallic components in order to make the system respond

quicker to thermal changes. This is not desired in RAPSS. For more information,

see the RELAP5 manual, Section 2.2.3.2, Volume V.

• Card 102: R5 initial output file. This is simply the name passed for the output file

from the seed calculation.

• Card 103: Water file. This is the water data file used by R5. The file must reside

in the same directory as the R5 seed input file.

• Card 104: End time. This is the end time of the R5 seed run in seconds. Note:

this value must be the same as designated in the R5 seed input file. It will

eventually be added to in the restart runs.

• Card 105: Minimum time step. A parameter passed to the R5 restart runs,

suggested value: 1E-7. It is only used in rare circumstances.

• Card 106: Maximum time step. This is also known as the “preferred” time step.

This, in combination with end time, reliably controls the speed of the R5 restart

calculations. For greater speed, and lower resolution, choose a larger time step;

Page: 324

for slower speeds and higher resolution, choose a smaller time step. This value

cannot be below the minimum time step, specified on card 105.

• Card 107: Control mode. A parameter passed to the R5 restart runs, suggested

value: 3. This value is only modified in rare circumstances, which are beyond the

scope of this dissertation. For more information see the RELAP5 Manual

Appendix A.

• Card 108: Minor edit. The minor edit frequency (in seconds) for the R5 restart

runs.

• Card 109: Major edit. The major edit frequency (in seconds) for the R5 restart

runs.

• Card 110: Restart frequency. The frequency (in seconds) for restart data files to

be written.

PCA and MSA Parameters:

• Card 201: PCA threshold. This variable is used in principal component analysis

(see Sections 2.5 and 6.4). This is a number, less than 1, which represents the

amount of desired variance captured by PCA. Suggested value: greater than 0.9.

• Card 202: MSA bandwidth. This is the bandwidth used in the mean shift

algorithm (see Sections 2.5 and 6.6). It controls the cluster size, and membership.

Smaller bandwidths yield more clusters with fewer members. Larger bandwidths

yield fewer clusters with more members per cluster.

• Card 203: R library file path. This is the file path to the desired location for

storing R libraries. If the location does not already exist, it will be created. The

path should start, but not end with a forward-slash (“/”).

Page: 325

• Card 204: R website. This is the website RAPSS will access to download R

libraries. Suggested address: http://cran.r-project.org.

RAPSS Parameters:

• Card 301: Path to RELAP5 executable file directory. The path should start, but

not end with a forward-slash (“/”). For example:

/nfs/chadwick/a1/neapps/rhel5/RELAP5_MOD3.3/Executables/linuxifc/relap5.x

• Card 302: Cluster information output. This is a binary/Boolean value, (0 for

false, 1 for true), indicating whether the user desires clustering information plots

and .csv files.

• Card 303: Input directory. This is the directory where the initial R5 seed file is

stored, as well as the R5 water file. A directory within this will be created for the

RAPSS data.

• Card 304: Number of threads. Desired number of threads to run RAPSS with. If

the number is greater than the maximum number of threads on the cluster, RAPSS

will use the maximum number. If the user enters “max,” then the maximum

number of threads will be used.

• Card 305: Restart time increase for “keep going” scenarios. This is the desired

amount of time, in seconds, to be increased if any scenarios are flagged to “keep

going.”

• Card 306: Restart time increase from the end of the initial seed file.

• Card 307: Fault tree directory. This is the directory where the fault tree.fta and

.ped files are kept. Path should start, but not end with a forward-slash, e.g.,

/nfs/stak/students/m/makinske/cpp/FTA/cookTree

http://cran.r-project.org/

Page: 326

• Card 308: FTA file name. This is the name of the .fta and .ped files. These files

should be named the same. The name is the entry for card 308 without any file

type appended, for example “Cook” would be entered if the fault tree file was

named Cook.fta.

• Card 309: Number of cutsets to process from LiteFTA.

• Card 310: Minor edit state variables used for determining yellow and red

thresholds. These should be entered with a space between them, for example: p

httemp velgj.

• Card 311: R5 model state variable codes. These are the variable codes used in R5

to differentiate pressure in one component from pressure in another. These

correspond to the order in card 310 and should also be entered sequentially,

separated by a space, for example 100010000 501000101 209000000.

• Card 312: Equivalence. For the state variables specified in cards 310-311. This

card is used to answer the question, “Should RAPSS raise flags when the values

are greater than (gt) or less than (lt) the value given in card 313?” Each entry

should be separated by a space. For example, lt gt lt.

• Card 313: Yellow trip. These are the values that RAPSS looks for in the state

variables (minor edit requests) with the equivalence given in card 312 to signal

that a scenario should keep running for another cycle. In other words, these

thresholds represent something that looks like it might be interesting in the future,

but hasn’t gotten there yet. Each entry should be in the same order as in cards

310-312 and separated by a space. For example, 7E+6 800 2.8

Page: 327

• Card 314 Red trip. These are the values that RAPSS looks for in the state

variables (minor edit requests) with the equivalence given in card 312 to signal

that a scenario should be terminated and information displayed to the user. Each

entry should be in the same order as in cards 310-313 and separated by a space.

For example 6E+6 1100 2.0.

• Card 315 LiteFTA parameters. These are the parameters associated with

LiteFTA. They are cut set order, unit time (for Monte Carlo calculations), chosen

terms, and number of Monte Carlo simulations. Each entry should be entered in

the order described above and be separated by a space. For example: 10 1 10

10000.

• Card 316 Real time simulator data file name. This is the large data file expected

in the format from the previous MASLWR experiments. RAPSS-STA reads this

file and outputs the data incrementally in real time, simulating the data output if

the MASLWR facility was running

Page: 328

C. Appendix C: RAPPS-EOC Source Code

Appendix C contains the source code for RAPSS-EOC. Readers are encouraged

to read Appendix D, which explains in detail the processes at work in RAPSS-EOC.

Pmain.cpp contains the operational structure at work in RAPSS-EOC. CyclePlume.h is

the main control structure of RAPSS-EOC and controls the cycling of the plume program

and data analysis. FunctionsEOC.h is a collection of functions used in RAPSS-EOC,

similar to BloodAndGuts.h (Appendix A.3). GridOrganizer.r takes the concentration

grids from each scenario and groups them for mean shift analysis. PlumeDisplay.r

contains the scripts that plot the plume. InitR.r is a short script that initializes the global

parameters used in R. UpdateRwindex.r updates the cycle numbers among a few other

parameters with every cycle of RAPSS-EOC. Finally, a sample RAPSS-EOC input file

is provided in Appendix C.9.

Page: 329

C.1. Pmain.cpp Source Code

001 //1/8/13
002 //Written by Kevin Makinson
003 //Oregon State University
004 //This is the main control structue for RAPSS-EOC
005
006 #include "functionsEOC.h"
007 #include "plumeProgram.h"
008 #include "cyclePlume.h"
009 #include "MeanShift.h"
010 #include "cluster.h"
011
012 void RAPSSinputFile(string RAPSSinput); //function that reads input file, defined below
013 double Q;
014 double hE;
015 double z;
016 int gridResolution;
017 int maxY;
018 int dt;
019 int runAheadTime;
020 int requestTh;
021 int BW;
022 int plumeStartTime;
023 int simulationStartTime;
024 int realTimeSpeedUp;
025 string AMPMplumeStartTime;
026 string AMPMsimulationStartTime;
027 string answer, RAPSSinput, inDir, outDir, Rrepos, libloc, windDataFile, windObsDataFile;
028 vector<size_t> positions;
029 size_t pos;
030
031 int main() {
032
033 system(ChangeFont(2));
034 cout << "Welcome to RAPSS-EOC" << endl << "Written by Kevin Makinson"
035 << endl << "Last compiled on " << __DATE__ << " at " << __TIME__

Page: 330

036 << endl << "Begin run? (y/n)" << endl;
037 cin >> answer;
038
039 if ((answer == "n") || (answer == "N") || (answer == "no") || (answer=="No")) {
040 cout << "Thank you for running RAPSS" << endl;
041 system(ResetFont());
042 return 0;
043 }
044 while ((answer != "n") && (answer != "y") && (answer != "Y") && (answer != "N") &&
045 (answer != "yes") && (answer != "no") && (answer != "Yes") && (answer != "No")) {
046 cout << "You did not enter a \"y\" or an \"n\"!" << endl;
047 cout << "Begin run? (y/n)" << endl;
048 cin >> answer;
049 }
050
051 cout << "Please type the name of RAPSS-EOC input file (e.g., input.rapss): ";
052 cin >> RAPSSinput;
053 cout << endl;
054
055 ifstream fin((RAPSSinput).c_str());
056 cout << "Reading: " << (RAPSSinput).c_str() << endl;
057 while (!fin) { //added the break statement
058 cout << "File does not exist!" << endl
059 << "Please carefully type the name of RAPSS-EOC input file, or type \"exit\": ";
060 cin >> RAPSSinput;
061 cout << endl;
062 ifstream fin(RAPSSinput.c_str());
063 if (RAPSSinput=="exit") {
064 cout << "Thank you for running RAPSS-EOC" << endl;
065 system(ResetFont());
066 fin.close();
067 remove("ChangeFont.sh");
068 remove("ResetFont.sh");
069 return 0;
070 }
071 else if (fin.good()) {break;} //added because the "while" statement doesn't work
072 }
073 fin.close();

Page: 331

074
075 RAPSSinputFile(RAPSSinput.c_str()); //reads input file
076 cout << "Plume has been active since: "<< plumeStartTime << " " << AMPMplumeStartTime
077 << endl;
078 cout << "Time is now: " << simulationStartTime << " " << AMPMsimulationStartTime << endl;
079 //converts to 24 scale.
080 if ((AMPMsimulationStartTime=="PM") && (simulationStartTime!=12)) {
081 simulationStartTime+=12;
082 }
083 if ((AMPMplumeStartTime=="PM") && (plumeStartTime!=12)) {
084 plumeStartTime+=12;
085 }
086
087 outDir = (inDir + "/RAPSS_data"); //Assigning Output Directory inside the input directory
088 system(("rm -rf " + outDir).c_str()); //this removes it if it already exists (to overwrite)
089 string CreateDataDir= ("mkdir -p " + outDir);
090 system(CreateDataDir.c_str()); //creates a directory for data output
091
092 //Here's what "runs" the program
093 cyclePlumeProgram(Q, hE, z, maxY, gridResolution, runAheadTime, plumeStartTime,
094 simulationStartTime, dt, realTimeSpeedUp, requestTh, BW, inDir, outDir,
095 windDataFile, windObsDataFile, Rrepos, libloc);
096
097 cout << "Thank you for running RAPSS-EOC" << endl;
098 system(ResetFont());
099 remove("ChangeFont.sh");
100 remove("ResetFont.sh");
101 return 0;
102
103 }
104
105 //function for reading input file
106 void RAPSSinputFile(string RAPSSinput) {
107 //variables for this program
108 int cardNo;
109 vector <string> inputVec;
110 inputVec = LoadFile(RAPSSinput);
111 for (unsigned int i=0; i<(inputVec.size()); i++) {

Page: 332

112 if (inputVec[i][0] != '*') {
113 istringstream(string(inputVec[i].begin(), inputVec[i].begin()+3)) >> cardNo;
114 switch (cardNo) {
115 case 101: //R5 Parameters: Cards 100-199
116 istringstream(string((inputVec[i].begin()+4), inputVec[i].end())) >> BW;
117 break;
118 case 102:
119 libloc= string((inputVec[i].begin()+4), inputVec[i].end());
120 break;
121 case 103:
122 Rrepos= string((inputVec[i].begin()+4), inputVec[i].end());
123 break;
124 case 201:
125 istringstream(string((inputVec[i].begin()+4), inputVec[i].end()))
126 >> requestTh;
127 break;
128 case 202:
129 inDir= string((inputVec[i].begin()+4), inputVec[i].end());
130 break;
131 case 203:
132 istringstream(string((inputVec[i].begin()+4), inputVec[i].end()))
133 >> realTimeSpeedUp;
134 break;
135 case 301:
136 istringstream(string((inputVec[i].begin()+4), inputVec[i].end()))
137 >> gridResolution;
138 break;
139 case 302:
140 istringstream(string((inputVec[i].begin()+4), inputVec[i].end()))
141 >> maxY;
142 break;
143 case 303:
144 istringstream(string((inputVec[i].begin()+4), inputVec[i].end()))
145 >> hE;
146 break;
147 case 304:
148 istringstream(string((inputVec[i].begin()+4), inputVec[i].end()))
149 >> z;

Page: 333

150 break;
151 case 305:
152 istringstream(string((inputVec[i].begin()+4), inputVec[i].end()))
153 >> Q;
154 break;
155 case 306:
156 istringstream(string((inputVec[i].begin()+4), inputVec[i].end()))
157 >> dt;
158 break;
159 case 307:
160 istringstream(string((inputVec[i].begin()+4), inputVec[i].end()))
161 >> runAheadTime;
162 break;
163 case 308:
164 positions.clear();
165 positions.push_back(0);
166 pos = string((inputVec[i].begin()+4), inputVec[i].end()).find(" ", 0);
167 if (pos==string::npos) {
168 istringstream(string((inputVec[i].begin()+4), inputVec[i].end()))
169 >> plumeStartTime;
170 } else {
171 while(pos !=string::npos) {
172 positions.push_back(pos);
173 pos = string((inputVec[i].begin()+4),
174 inputVec[i].end()).find(" ", pos+1);
175 }
176 for (int j=0; j<positions.size(); j++) {
177 if (j==0) {
178 istringstream(string((inputVec[i].begin()+4+positions[j]),
179 (inputVec[i].begin()+4+positions[j+1]))) >> plumeStartTime;
180 } else if (j==(positions.size()-1)) {
181 AMPMplumeStartTime=(string((inputVec[i].begin()+5+positions[j]),
182 (inputVec[i].end())));
183 }
184 }
185 }
186 break;
187 case 309:

Page: 334

188 positions.clear();
189 positions.push_back(0);
190 pos = string((inputVec[i].begin()+4), inputVec[i].end()).find(" ", 0);
191 if (pos==string::npos) {
192 istringstream(string((inputVec[i].begin()+4), inputVec[i].end()))
193 >> simulationStartTime;
194 } else {
195 while(pos !=string::npos) {
196 positions.push_back(pos);
197 pos = string((inputVec[i].begin()+4),
198 inputVec[i].end()).find(" ", pos+1);
199 }
200 for (int j=0; j<positions.size(); j++) {
201 if (j==0) {
202 istringstream(string((inputVec[i].begin()+4+positions[j]),
203 (inputVec[i].begin()+4+positions[j+1])))
204 >> simulationStartTime;
205 } else if (j==(positions.size()-1)) {
206 AMPMsimulationStartTime=(string((inputVec[i].begin()+5+positions[j]),
207 (inputVec[i].end())));
208 }
209 }
210 }
211 break;
212 case 310:
213 windDataFile = string((inputVec[i].begin()+4), inputVec[i].end());
214 break;
215 case 311:
216 windObsDataFile = string((inputVec[i].begin()+4), inputVec[i].end());
217 break;
218 default:
219 cout << "Card not read:" << endl;
220 cout << string(inputVec[i].begin(), inputVec[i].begin()+3) << endl;
221 }
222
223 }
224 }
225 }

Page: 335

C.2. CyclePlume.h Source Code

001 //Created by Kevin Makinson
002 //1/25/13
003 //This is a header file to go with Pmain.cpp for RAPSS-EOC
004 //This is the main control structure
005
006 #ifndef cyclePlume_h
007 #define cyclePlume_h
008 #include <omp.h>
009 #include "MeanShift.h"
010
011 void cyclePlumeProgram(double Q, double hE, double z, int maxY, int gridResolution,
012 int runAheadTime, int plumeStartTime, int simulationStartTime, int dt, int realTimeSpeedUp,
013 int requestTh, int BW, string inDir, string outDir, string windDataFile,
014 string windObsDataFile, string Rrepos, string libloc) {
015
016 //these are defined locally.
017 stringstream sstm;
018 double theta, windSpeedAvg, windSpeed;
019 double t1, t2;
020 int stabClass;
021 int windDir;
022 string answer="y";
023 string MkThDirPath;
024 string currentStateOut;
025 string conditions;
026 string prevCurrentState;
027 int k=1;
028 int Windex=0;
029 int numOfCycles=0;
030 int cycleCounter=1;
031 int realTime=0;
032 int oldRealTime;
033 int th_id, nthreads; //thread identifier & # of threads
034 bool firstRead=true;
035 vector <string> ThDir; //name of thread directory

Page: 336

036 vector <vector <string > > sysData;
037 vector <vector <string > > realTimeData;
038 vector <string> transientExplanation;
039 vector < vector <double> > grid;
040 vector < vector <double> > gridTemp;
041 vector <vector <int> > flagVec;
042 vector < vector <double> > log10grid;
043 vector <vector <int> > clustMembers;
044 transientExplanation.resize(requestTh, "");
045 flagVec.resize(3, vector <int> (requestTh, 0));
046 stabClass=1; //keeping stab class the same for now
047
048 sysData=loadWindObsData((inDir + "/" + windObsDataFile).c_str());
049
050 while ((answer == "y") || (answer == "yes") || (answer == "Y") || (answer == "Yes")) {
051 Windex++;
052
053 if (Windex==2) { //copying files over
054 sstm << "cp " << inDir << "/Alert.gif " << outDir << endl; //alerts
055 system(sstm.str().c_str());
056 sstm.str("");
057 sstm << "cp " << inDir << "/tswtabs.css " << outDir << endl; //buttons
058 system(sstm.str().c_str());
059 sstm.str("");
060 }
061
062 if (numOfCycles<=cycleCounter) { //only go into this loop when you're out of cycles
063 if (Windex==1) {
064 cout << "Begin run? (y/n)" << endl;
065 cin >> answer;
066 initR(Rrepos, libloc, outDir, requestTh, Windex, runAheadTime,
067 gridResolution, maxY, Q);
068 system("R CMD BATCH R_data/initR.r R_data/initR.Rout");
069 t1=omp_get_wtime(); //starts timer
070 } else {
071 cout << "Next run index is " << Windex << ". Continue run? (y/n)" << endl;
072 cin >> answer;
073 }

Page: 337

074 //if the program doesn't recognize the response, tell the use to enter a y or n
075 while ((answer != "n") && (answer != "y") && (answer != "Y") && (answer != "N")
076 && (answer != "yes") && (answer != "no") && (answer != "Yes")
077 && (answer != "No")) {
078 cout << "You did not enter a \"y\" or an \"n\"!" << endl;
079 cout << "Next run index is " << Windex << " Continue run? (y/n)" << endl;
080 cin >> answer;
081 }
082 if ((answer == "n") || (answer == "no") || (answer == "N") || (answer == "No")) {
083 break;
084 }
085 cout << "How many cycles would you like to run? Type 0 to exit. " << endl;
086 cin >> numOfCycles;
087 while (cin.fail()) {
088 cin.clear(); //repairing buffer
089 cin.ignore(10000,'\n'); //clearing buffer
090 cout << "Please carefully the number of cycles. Type 0 to exit." << endl;
091 cin >> numOfCycles;
092 }
093
094 if (numOfCycles<1) {break;}
095 system("read -p \"Press the [Enter] key to continue...\"");
096 cycleCounter=0;
097
098 }
099 cycleCounter++;
100
101 //real time simulator reproduces data until given timestep
102 t2=omp_get_wtime(); //grabs time
103 //realTime = int(t2-t1);
104 oldRealTime=realTime;
105 realTime = int((t2-t1)*realTimeSpeedUp/3600);
106
107 cout << "---------------Cycle " << cycleCounter << "---------------" << endl;
108 cout << "Time sampled: " << (realTime+simulationStartTime) << ":00" << endl;
109 realTimeData=realTimeSimulator(sysData, plumeStartTime,
110 (realTime+simulationStartTime),outDir);
111

Page: 338

112 updateRwindex(Windex, (realTime+simulationStartTime)); //updating info in R
113 system("R CMD BATCH R_data/updateRwindex.r R_data/updateRwindex.Rout");
114
115 //determining average wind speed for a given direction
116 if (Windex==1) { //if first time through, go through next loop normally
117 k=0;
118 firstRead=true;
119 oldRealTime=realTime-1; //just make it different than real time for the first time
120 } else { //if already been through, load the grid, and then procede
121 k=1+oldRealTime+(simulationStartTime-plumeStartTime);
122 sstm << outDir << "/currentState" << Windex-1 << ".csv";//adding index to the string
123 prevCurrentState = sstm.str();
124 sstm.str("");
125 grid=loadGridData(prevCurrentState); //loaded unlogged grid data
126 }
127 while ((k<(realTimeData.size()-1)) && (realTime-oldRealTime!=0)) {
128 k++;
129 istringstream(string(realTimeData[k][3])) >> windDir;
130 istringstream(string(realTimeData[k][2])) >> windSpeedAvg;
131 theta=(windDir+90)*(pi/180); //changes from North=0 to North=pi/2
132 if (firstRead==true) {
133 cout << "Creating estimate of current state..." << endl;
134 system(ChangeFont(4));
135 cout << "Simulating: " << 1 << " hour(s) with a wind coming from the"
136 << radianDirTranslator(theta) << " with a speed of " << windSpeedAvg
137 << " m/s" << endl;
138 grid=PlumeProgram(Q, windSpeedAvg, hE, theta, z, stabClass, maxY,
139 gridResolution, 1, dt); //runs the plume program
140 log10grid.resize(grid.size(), vector<double> (grid[0].size(), 0));
141 system(ChangeFont(2));
142 firstRead=false;
143 } else {
144 cout << "Creating estimate of current state for the next wind direction..."
145 << endl;
146 system(ChangeFont(4));
147 //load currentState(Windex-1).csv and put it into grid
148 //if time is different than when the last cycle past
149 //simulate the number of time steps of the difference.

Page: 339

150 cout << "Simulating: " << 1 << " hour(s) with a wind coming from the "
151 << radianDirTranslator(theta) << " with a speed of " << windSpeedAvg
152 << " m/s" << endl;
153
154 gridTemp=PlumeProgram(Q, windSpeedAvg, hE, theta, z, stabClass, maxY,
155 gridResolution, 1, dt); //runs the plume program
156 system(ChangeFont(2));
157 for (int j=0; j<grid.size(); j++) {
158 for (int i=0; i<grid[0].size(); i++) {
159 grid[j][i]+=gridTemp[j][i];
160 log10grid[j][i]=log10(grid[j][i]);
161 }
162 }
163 }
164 }
165 sstm << outDir << "/currentState" << Windex << ".csv"; //adding index to the string
166 currentStateOut = sstm.str();
167 sstm.str("");
168 printGrid(log10grid, currentStateOut);
169
170 //prepping for parallel section:
171 if (requestTh>omp_get_max_threads()) {
172 requestTh=omp_get_max_threads();
173 omp_set_num_threads(requestTh);
174 cerr << "Number of threads requested greater than maximum allowable by the system."
175 << endl
176 << "Setting number of threads to " << omp_get_max_threads() << endl;
177 system("read -p \"Press the [Enter] key to continue...\"");
178 }
179 else if (requestTh>1) {
180 omp_set_dynamic(0); // turn off dynamic teams
181 omp_set_num_threads(requestTh);
182 }
183 else {
184 cerr << "Invalid thread number request. Setting number of threads to 2." << endl;
185 omp_set_num_threads(2);
186 system("read -p \"Press the [Enter] key to continue...\"");
187 }

Page: 340

188
189 sstm << "conditions" << Windex << ".txt";
190 conditions = sstm.str();
191 sstm.str("");
192 //------
193 //parallel section:
194 cout <<"Spawning threads..." << endl;
195 system(ChangeFont(4));
196 #pragma omp parallel shared(nthreads, flagVec, transientExplanation)
197 {
198 vector < vector <double> > log10gridPrediction;
199 vector < vector <double> > gridPrediction;
200
201 double thetaVary, windSpeedVary;
202 int th_id;
203 th_id = omp_get_thread_num();
204 #pragma omp single
205 {
206 nthreads = omp_get_num_threads();
207 }
208 if (Windex==1) {
209 #pragma omp critical //restricts the execution of the associated statement
210 {
211 //ThDir.push_back(NameDir(th_id));
212 MkThDirPath = ("mkdir " + outDir + "/" + NameDir(th_id)); //making directories
213 system(MkThDirPath.c_str());
214 }
215 #pragma omp barrier
216 }
217
218 //truely parallel portion.
219
220 thetaVary=sampleWind(inDir + "/" + windDataFile, th_id)[0]; //windrose data
221 windSpeedVary=sampleWind(inDir + "/" + windDataFile, th_id)[1];
222 ofstream fout((outDir + "/" + NameDir(th_id)+ "/" + conditions).c_str());
223 fout << "WindSpeed: " << windSpeedVary << endl;
224 fout << "Theta (radians): " << thetaVary << endl;
225 fout.close();

Page: 341

226 #pragma omp barrier //needed?
227 gridPrediction=PlumeProgram(Q, windSpeedVary, hE, thetaVary, z, stabClass, maxY,
228 gridResolution, runAheadTime, dt); //runs the plume program
229 cout << "Simulating: " << runAheadTime << " hour(s) with a wind coming from the "
230 << radianDirTranslator(thetaVary) << " with a speed of " << windSpeedVary
231 << " m/s" << endl;
232 sstm << "Simulating: " << runAheadTime << " hour(s) with a wind coming from the "
233 << radianDirTranslator(thetaVary) << " with a speed of " << windSpeedVary
234 << " m/s" << endl;
235 transientExplanation[th_id] = sstm.str();
236 sstm.str("");
237 #pragma omp barrier //needed?
238 log10gridPrediction.resize(grid.size(), vector<double> (grid[0].size(), 0));
239 for (int j=0; j<grid.size(); j++) {
240 for (int i=0; i<grid[0].size(); i++) {
241 gridPrediction[j][i]+=grid[j][i];
242 log10gridPrediction[j][i]=log10(gridPrediction[j][i]);
243 }
244 }
245 #pragma omp barrier //needed?
246 if (log10gridPrediction[25][100]>15) {
247 flagVec[2][th_id]=1; //red trip
248 } else if (log10gridPrediction[25][100]>5) {
249 flagVec[1][th_id]=1; //yellow trip
250 } else {
251 flagVec[0][th_id]=1; //green
252 }
253 printGrid(log10gridPrediction, (outDir + "/" + NameDir(th_id) +"/futureState.csv"));
254 #pragma omp barrier //needed?
255 } // end of parallel portion
256
257 system(ChangeFont(2));
258 cout << "Plume program run on " << nthreads << " threads" << endl;
259 cout << "Organizing Grid... " << endl;
260 system("R CMD BATCH gridOrganizer.R R_data/gridOrganizer.Rout");
261 cout << "MeanShift analysis... " << endl;
262 clustMembers=MeanShift(Windex, BW, outDir, nthreads);
263 cout << "Outputting display..." << endl;

Page: 342

264 system("R CMD BATCH plumeDisplay.R R_data/plumeDisplay.Rout");
265
266 htmlDisplayWriter(outDir, inDir, Windex, flagVec, clustMembers, transientExplanation);
267
268 cout << "Cycle complete!" << endl;
269 } // end of (y/n) while loop
270 } //end of function
271 #endif

Page: 343

C.3. FunctionsEOC.h Souce Code

001 //Created by Kevin Makinson
002 //1/23/13
003 //This is a header file to go with Pmain.cpp for RAPSS-EOC
004 //This contains the majority of the functions used
005
006 #ifndef functionsEOC_h
007 #define functionsEOC_h
008 #include <iostream>
009 #include <cmath>
010 #include <fstream>
011 #include <vector>
012 #include <string>
013 #include <sstream> //for appending strings
014 #include <stdlib.h> //for system calls in UNIX
015 #include <time.h>
016 using namespace std;
017
018 //listing of the fuctions
019 vector<string> LoadFile(string FullFilePath);
020 vector <vector <string > > loadSystemData(string sysDataFileName);
021 vector <vector <double > > loadGridData(string sysDataFileName);
022 vector <vector <string > > realTimeSimulator(vector<vector<string > > sysData, int timestep,
023 string OutDir);
024 double windDirTranslator(string windDir);
025 double sigYFinder(int stabClass, double hE, double x);
026 double sigZFinder(int stabClass, double hE, double x);
027 const char *ChangeFont(int ColorCode);
028 const char *ResetFont();
029 string NameDir(int th_id);
030 void printGrid(vector < vector <double> > grid, string outputFileName);
031 vector<int> SearchVec(vector<string> &text, string key);
032 vector <vector<string> > loadWindData (string windDataFile);
033 double windRoseNumTranslator(int windRoseNum);
034 double *sampleWind(string windDataFile, int th_id);
035 vector <vector<string> > loadWindObsData (string windDataFile);

Page: 344

036 void updateRwindex(int Windex, int time);
037 int scenClustTranslator(int scenNum, vector<vector<int> > clustMembers);
038 bool firstClustMember(int scenNum, vector<vector<int> > clustMembers);
039 string radianDirTranslator(double radians);
040 double const pi=3.14159;
041
042 vector<string> LoadFile(string FullFilePath) {
043 string line;
044 ifstream fin(FullFilePath.c_str());
045 vector<string> text;
046 while (getline(fin, line)) {
047 text.push_back(line);
048 }
049 fin.close();
050 return text;
051 }
052
053 vector <vector <string > > loadSystemData(string sysDataFileName) {
054 string word;
055 vector <string> row;
056 vector <vector <string > > sysData;
057 vector<string> text;
058 text=LoadFile(sysDataFileName);
059 for (int j=0; j<text.size(); j++) {
060 for (int i=0; i<text[j].size(); i++) {
061 word+=text[j][i];
062 if (text[j][i]== (',')) {
063 row.push_back(word.substr(0, word.size()-1));
064 word.clear();
065 } else if (i==(text[j].size()-1)) {
066 row.push_back(word.substr(0, word.size())); //last word doesn't have a comma
067 word.clear();
068 }
069 }
070 sysData.push_back(row);
071 row.clear();
072 }
073 return sysData;

Page: 345

074 }
075
076 vector <vector <double > > loadGridData(string sysDataFileName) {
077 string word;
078 vector <double> row;
079 vector <vector <double > > sysData;
080 vector<string> text;
081 double number;
082 text=LoadFile(sysDataFileName);
083 for (int j=0; j<text.size(); j++) {
084 for (int i=0; i<text[j].size(); i++) {
085 word+=text[j][i];
086 if (text[j][i]== (',')) {
087 istringstream(word) >> number;
088 number=pow(10, number); //unlogging it
089 row.push_back(number);
090 word.clear();
091 } else if (i==(text[j].size()-1)) {
092 istringstream(word) >> number;
093 number=pow(10, number);
094 row.push_back(number);
095 word.clear();
096 }
097 }
098 sysData.push_back(row);
099 row.clear();
100 }
101 return sysData;
102 }
103
104 vector <vector <string > > realTimeSimulator(vector<vector<string > > sysData,
105 int startTimeStep, int timestep, string outDir) {
106 vector <vector <string > > realTimeData;
107 ofstream fout ((outDir + "/realTimeData.csv").c_str());
108 fout << "Time,AM/PM,Windspeed (m/s),Direction" << endl;
109
110 for (int j=(startTimeStep-1); j<timestep; j++) {
111 for (int i=0; i<sysData[j].size(); i++) {

Page: 346

112 if (i==sysData[j].size()-1) {
113 fout << sysData[j][i];
114 } else {
115 fout << sysData[j][i] << ",";
116 }
117 }
118 fout << endl;
119 }
120 fout.close();
121 //done writing
122 //now reading the file just written
123 realTimeData=loadSystemData((outDir + "/realTimeData.csv").c_str());
124 return realTimeData;
125 }
126
127 //this expects wind "coming from" a direction, not "headed"
128 double windDirTranslator(string windDir) {
129 double theta;
130 if(windDir=="W") {
131 theta=0;
132 } else if (windDir=="WNW") {
133 theta=(pi/8)*1;
134 } else if (windDir=="NW") {
135 theta=(pi/8)*2;
136 } else if (windDir=="NNW") {
137 theta=(pi/8)*3;
138 } else if (windDir=="N") {
139 theta=(pi/8)*4;
140 } else if (windDir=="NNE") {
141 theta=(pi/8)*5;
142 } else if (windDir=="NE") {
143 theta=(pi/8)*6;
144 } else if (windDir=="ENE") {
145 theta=(pi/8)*7;
146 } else if (windDir=="E") {
147 theta=(pi/8)*8;
148 } else if (windDir=="ESE") {
149 theta=(pi/8)*9;

Page: 347

150 } else if (windDir=="SE") {
151 theta=(pi/8)*10;
152 } else if (windDir=="SSE") {
153 theta=(pi/8)*11;
154 } else if (windDir=="S") {
155 theta=(pi/8)*12;
156 } else if (windDir=="SSW") {
157 theta=(pi/8)*13;
158 } else if (windDir=="SW") {
159 theta=(pi/8)*14;
160 } else if (windDir=="WSW") {
161 theta=(pi/8)*15;
162 }
163 return theta;
164 }
165
166 double sigYFinder(int stabClass, double hE, double x) {
167 double pY, qY, pZ, qZ, pX, qX, sigY, sigZ, sigX;
168 static double ret[3];
169 qX=qY=qZ=0.92;
170 switch (stabClass) {
171 case 1: //unstable
172 case 2:
173 pX=pY=0.14;
174 pZ=0.53;
175 break;
176 case 3: //stable
177 case 4:
178 pX=pY=0.06;
179 pZ=0.15;
180 break;
181 case 5: //stable
182 case 6:
183 pX=pY=0.02;
184 pZ=0.04;
185 break;
186 }
187 sigY=pY*pow(x,qY);

Page: 348

188 sigX=pX*pow(x,qX);
189 return sigY;
190 }
191
192 double sigZFinder(int stabClass, double hE, double x) {
193 double pY, qY, pZ, qZ, pX, qX, sigY, sigZ, sigX;
194 static double ret[3];
195 qX=qY=qZ=0.92;
196 switch (stabClass) {
197 case 1: //unstable
198 case 2:
199 pX=pY=0.14;
200 pZ=0.53;
201 break;
202 case 3: //stable
203 case 4:
204 pX=pY=0.06;
205 pZ=0.15;
206 break;
207 case 5: //stable
208 case 6:
209 pX=pY=0.02;
210 pZ=0.04;
211 break;
212 }
213 return sigZ;
214 }
215
216 const char *ChangeFont(int ColorCode) {
217 string FullFilePath = "ChangeFont.sh";
218 ofstream fout (FullFilePath.c_str());
219 fout << "tput setf " << ColorCode << endl << "tput bold" << endl << "exit 0";
220 string chmod = ("chmod +x " + FullFilePath);
221 system(chmod.c_str()); //creating executable
222 fout.close();
223 return(FullFilePath.c_str());
224 }
225

Page: 349

226 const char *ResetFont() {
227 string FullFilePath = "ResetFont.sh";
228 ofstream fout (FullFilePath.c_str());
229 fout << "tput sgr0" << endl << "exit 0" << endl;
230 string chmod = ("chmod +x " + FullFilePath);
231 system(chmod.c_str()); //creating executable
232 fout.close();
233 return(FullFilePath.c_str());
234 }
235
236 //makes a directory based on the thread ID, and returns a string of directory name
237 string NameDir(int th_id) {
238 stringstream sstm;
239 sstm << "Th_" << th_id << "_data";
240 string ThDir = sstm.str();
241 sstm.str("");
242 return (ThDir);
243 }
244
245 void printGrid(vector < vector <double> > grid, string outputFileName) {
246 ofstream fout(outputFileName.c_str());
247 int gridSize2=grid.size();
248 for (int j=0; j<(gridSize2); j++) {
249 for (int i=0; i<(gridSize2); i+=1) {
250 if (i==((gridSize2)-1)) {
251 fout << grid[j][i] << endl;
252 } else {
253 fout << grid[j][i] << " , ";
254 }
255 }
256 }
257 fout.close();
258 }
259
260 void initR(string Rrepos, string libloc, string OutDir, int thNum, int Windex, int runAheadTime,
261 int gridResolution, int maxY, double Q) {
262 string MkLibDir = ("mkdir -p " + libloc);
263 string MkRdataDir = ("mkdir -p R_data"); //added 8/13/12

Page: 350

264 string RinpPath= ("R_data/initR.r");
265 system(MkLibDir.c_str());
266 system(MkRdataDir.c_str());
267 ofstream fout (RinpPath.c_str());
268 ifstream fin((libloc+ "/abind").c_str());
269 //comments section of input file
270 fout << "#!/usr/bin/Rscript" << endl;
271 fout << "#" << string(3, ' ') << __DATE__ << endl;
272 fout << "#" << string(3, ' ') << "Written by Kevin Makinson" << endl;
273 fout << "#" << string(3, ' ')
274 <<"This file loads the libraries and initial parameters in R"<<endl;
275 fout << "#\n#\n#" << string(70, '-') << endl; //end comments
276 fout << "rm(list=ls())" << endl << endl;
277 fout << "Rrepos<-\"" << Rrepos << "\"" << endl << "libloc<-\"" << libloc << "\"" << endl;
278 fout << "IODir<-\"" << OutDir <<"\"" << endl << "libloc<-\"" << libloc <<"\"" << endl;
279 fout << "thNum<- " << thNum << endl;
280 fout << "rstNum<-" << Windex << endl;
281 fout << "runAheadTime<- " << runAheadTime << endl;
282 fout << "gridResolution<- " << gridResolution << endl;
283 fout << "maxY<- " << maxY << endl;
284 fout << "releaseAmt<- " << Q << endl;
285 if(!fin.good()) { //don't install if already installed
286 fout << "install.packages(\"abind\", repos=Rrepos, lib=libloc)" << endl;
287 fin.close();
288 }
289
290 fout << "save.image(\"R_data/RAPSspace.RData\")" << endl;
291 fin.close();
292 fout.close();
293 }
294
295 //this updates R with each cycle
296 void updateRwindex(int Windex, int time) {
297 //int counter=0;
298 string file= ("R_data/updateRwindex.r");
299 ofstream fout (file.c_str());
300 fout << "load(\"R_data/RAPSspace.RData\")" << endl;
301 fout << "rstNum<-" << Windex << endl;

Page: 351

302 fout << "currentTime<-" << time << endl;
303 fout << "save.image(\"R_data/RAPSspace.RData\")" << endl;
304 fout.close();
305 }
306
307 //this one needs ot be included.
308 //Serch function returns a vector with the line numbers of where the key is
309 vector<int> SearchVec(vector<string> &text, string key) {
310 //returns a vector of the line numbers of the search term.
311 vector<int> LineNums;
312 size_t found;
313 bool FoundOne = false;
314 int size = text.size();
315 for (int i=0; i<size; i++) {
316 found=text[i].find(key);
317 if (found!=string::npos) {
318 LineNums.push_back(i);
319 FoundOne = true;
320 }
321 else if (FoundOne == false && i==(size-1)) {
322 //Since there is no line "0" this will signify an error
323 LineNums.push_back(0);
324 }
325 }
326 return LineNums;
327 }
328
329 //Trims white space around words
330 string TrimSpace(string MyString) {
331 string whitespaces (" \t\f\v\n\r");
332 size_t endpos = MyString.find_last_not_of(whitespaces);
333 size_t startpos = MyString.find_first_not_of(whitespaces);
334 if(string::npos != endpos)
335 MyString = MyString.substr(0, endpos+1);
336 else
337 MyString.clear(); // if string is all whitespace
338
339 if(string::npos != startpos)

Page: 352

340 MyString = MyString.substr(startpos);
341 else
342 MyString.clear(); // if string is all whitespace
343 return MyString;
344 }
345
346
347
348 vector <vector<string> > loadWindData (string windDataFile) {
349 vector<string> text;
350 text=LoadFile(windDataFile.c_str());
351 vector <string> row;
352 vector <vector <string > > windData;
353 //int count=0;
354 string word;
355 int startLine, endLine;
356
357 if (SearchVec(text, "Range").back()==0) {
358 cerr << "No valid wind data. Please see http://www.raws.dri.edu/index.html for data"
359 << endl;
360 } else {
361 startLine=SearchVec(text, "Range").back();
362 endLine=SearchVec(text, "Calm").back();
363 word.clear();
364 for (int j=startLine; j<endLine; j++) { //line nums
365 for (int i=0; i<text[j].length(); i++) { //character nums
366 word += text[j][i];
367 if ((text[j][i] == ' ') || (i==(text[j].length()-1))) {
368 if ((word!=" ") && (word!=" ") && (word!=" ") && (word!=" ")
369 && (word!=" ")) {
370 word=TrimSpace(word);
371 row.push_back(word);
372 word.clear();
373 }
374 }
375
376 }
377 windData.push_back(row);

Page: 353

378 row.clear();
379 }
380 }
381 return windData;
382 }
383
384 //this changes it from how the windrose does it (N is 0)
385 //To how the rest of the program does it (E is 0)
386 double windRoseNumTranslator(int windRoseNum) {
387 double theta;
388 double pi=3.14159;
389
390 switch(windRoseNum) {
391 case 0: // N
392 theta=(pi/8)*4;
393 break;
394 case 1: // NNE
395 theta=(pi/8)*5;
396 break;
397 case 2: // NE
398 theta=(pi/8)*6;
399 break;
400 case 3: // ENE
401 theta=(pi/8)*7;
402 break;
403 case 4: // E
404 theta=(pi/8)*8;
405 break;
406 case 5: // SE
407 theta=(pi/8)*9;
408 break;
409 case 6: // SSE
410 theta=(pi/8)*10;
411 break;
412 case 7: // SSE
413 theta=(pi/8)*11;
414 break;
415 case 8: // S

Page: 354

416 theta=(pi/8)*12;
417 break;
418 case 9: // SSW
419 theta=(pi/8)*13;
420 break;
421 case 10: // SW
422 theta=(pi/8)*14;
423 break;
424 case 11: // WSW
425 theta=(pi/8)*15;
426 break;
427 case 12: // W
428 theta=(pi/8)*16;
429 break;
430 case 13: // WNW
431 theta=(pi/8)*1;
432 break;
433 case 14: // NW
434 theta=(pi/8)*2;
435 break;
436 case 15: // NNW
437 theta=(pi/8)*3;
438 break;
439 }
440
441 return theta;
442 }
443
444 double *sampleWind(string windDataFile, int th_id) {
445 static double ret[2];
446 int bins;
447 int directions;
448 int currentDirection;
449 double windDirMaxProb=0;
450 double windSpeed, temp1, temp2;
451 vector <vector <string > > windData;
452 windData=loadWindData(windDataFile);
453 bins=(windData.size()-4);

Page: 355

454 directions=(windData[1].size()-1);
455 vector< vector<double> > windSpeedProb;
456 vector<double> windDirProb (directions, 0);
457 vector<double> CDFwindDir (directions, 0);
458 vector< vector<double> > CDFwindSpeedProb;
459 windSpeedProb.resize(bins, vector<double> (directions, 0));
460 CDFwindSpeedProb.resize(bins, vector<double> (directions, 0));
461 double U1, U2;
462 srand(time(NULL)*932174973*th_id+1);
463 U1=((double)(rand())/((double)RAND_MAX));
464 srand(time(NULL)*534041066*th_id+1); //multiplied by OSU student ID
465 U2=((double)(rand())/((double)RAND_MAX));
466
467 for (int i=1; i<=directions; i++) { //start at 1 instead of 0 bc of "Total(%)" is the 0 word
468 istringstream(string(windData[bins+3][i].begin(), windData[bins+3][i].end()))
469 >> windDirProb[i-1];
470 windDirMaxProb+=windDirProb[i-1];
471 }
472 for (int i=0; i<directions; i++) {
473 for (int j=0; j<bins; j++) {
474 istringstream(string(windData[j+3][i+3].begin(), windData[j+3][i+3].end()))
475 >> windSpeedProb[j][i];
476 if (windDirProb[i]!=0) { //to avoid dividing by zero
477 windSpeedProb[j][i] = (windSpeedProb[j][i] / windDirProb[i]);
478 }
479 if(j==0) {
480 CDFwindSpeedProb[j][i] = windSpeedProb[j][i];
481 } else {
482 if (CDFwindSpeedProb[j-1][i] + windSpeedProb[j][i]>1) {
483 CDFwindSpeedProb[j][i]=1; //to correct for rounding errors
484 } else {
485 CDFwindSpeedProb[j][i] = CDFwindSpeedProb[j-1][i] + windSpeedProb[j][i];
486 }
487 }
488 }
489 }
490 //creating a CDF for windDirection
491 for (int i=0; i<directions; i++) {

Page: 356

492 windDirProb[i] = (windDirProb[i]/windDirMaxProb);
493 if(i==0) {
494 CDFwindDir[i] = windDirProb[i];
495 } else {
496 if ((CDFwindDir[i] + windDirProb[i])>1) {
497 CDFwindDir[i]=1; //to correct for rounding errors
498 } else {
499 CDFwindDir[i] = CDFwindDir[i-1] + windDirProb[i];
500 }
501 }
502 if ((U2<=CDFwindDir[i]) && (U2>(CDFwindDir[i]-windDirProb[i]))) {
503 currentDirection=i;
504 }
505 }
506
507 for (int j=0; j<bins; j++) {
508 if ((U1<=CDFwindSpeedProb[j][currentDirection]) &&
509 (U1>(CDFwindSpeedProb[j][currentDirection]-windSpeedProb[j][currentDirection]))) {
510 istringstream(string(windData[j+3][0].begin(), windData[j+3][0].end())) >> temp1;
511 istringstream(string(windData[j+3][2].begin(), windData[j+3][2].end())) >> temp2;
512 windSpeed=(temp1+temp2)/2;
513 }
514 }
515 ret[0]=windRoseNumTranslator(currentDirection); //theta
516 ret[1]=windSpeed;
517 return ret;
518 }
519
520 vector <vector<string> > loadWindObsData (string windDataFile) {
521 int startLine, endLine;
522 vector<string> text;
523 text=LoadFile(windDataFile);
524 vector <string> row;
525 vector <vector <string > > windObsData;
526 vector <vector <string > > windObsDataOutput;
527 string word;
528
529 if (SearchVec(text, "Hour").back()==0) {

Page: 357

530 cerr << "No valid wind observation data.";
531 cerr << "Please see http://www.raws.dri.edu/index.html" << endl;
532 } else {
533 startLine=SearchVec(text, "Hour").back();
534 endLine=SearchVec(text, "DAILY STATISTICS").back();
535 word.clear();
536 for (int j=startLine; j<endLine; j++) { //line nums
537 for (int i=0; i<text[j].length(); i++) { //character nums
538 word += text[j][i];
539 if ((text[j][i] == ' ') || (i==(text[j].length()-1))) {
540 if ((word!=" \t") && (word!=" \t\t") && (word!=" \t\t\t")
541 && (word!=" \t\t\t\t") && (word!=" \t\t\t\t\t")
542 && (word!="\t") && (word!="\t\t") && (word!="\t\t\t")) {
543 word=TrimSpace(word);
544 row.push_back(word);
545 word.clear();
546 }
547 }
548
549 }
550 windObsData.push_back(row);
551 row.clear();
552 }
553 }
554
555 //Outputting only wind direction, speed, and time
556 row.clear();
557 for (int j=4; j<windObsData.size(); j++) { //line nums
558 for (int i=0; i<5; i++) { //col nums
559 if (i!=2) {
560 row.push_back(windObsData[j][i]);
561 }
562 }
563 windObsDataOutput.push_back(row);
564 row.clear();
565 }
566
567 return windObsDataOutput;

Page: 358

568 }
569
570 int scenClustTranslator(int scenNum, vector<vector<int> > clustMembers) {
571 int clustNum;
572 for (int j=0; j<clustMembers.size(); j++) {
573 for (int k=0; k<clustMembers[j].size(); k++) {
574 if (clustMembers[j][k]==scenNum) {
575 clustNum=j;
576 }
577 }
578 }
579 return (clustNum+1);
580 }
581 //returns true only if the scenario is the first member of a cluster
582 bool firstClustMember(int scenNum, vector<vector<int> > clustMembers) {
583 bool first=false;
584 for (int j=0; j<clustMembers.size(); j++) {
585 if (clustMembers[j][0]==scenNum) {
586 first=true;
587 }
588 }
589 return first;
590 }
591
592 string radianDirTranslator(double radians) {
593 string windDir;
594
595 if ((radians > (pi/16)*15) && (radians<=(pi/16)*17)) {
596 windDir="W"; //pi
597 } else if (((radians>(pi/16)*17) && (radians<=(pi/16)*19)) ||
598 ((radians>(pi/16)*17+2*pi) && (radians<=(pi/16)*19+2*pi))) {
599 windDir="WSW";
600 } else if (((radians>(pi/16)*19) && (radians<=(pi/16)*21)) ||
601 ((radians>(pi/16)*19+2*pi) && (radians<=(pi/16)*21+2*pi))) {
602 windDir="SW";
603 } else if (((radians>(pi/16)*21) && (radians<=(pi/16)*23)) ||
604 ((radians>(pi/16)*21+2*pi) && (radians<=(pi/16)*23+2*pi))) {
605 windDir="SSW";

Page: 359

606 } else if (((radians>(pi/16)*23) && (radians<=(pi/16)*25)) ||
607 ((radians>(pi/16)*23+2*pi) && (radians<=(pi/16)*25+2*pi))) {
608 windDir="S";
609 } else if (((radians>(pi/16)*25) && (radians<=(pi/16)*27)) ||
610 ((radians>(pi/16)*25+2*pi) && (radians<=(pi/16)*27+2*pi))) {
611 windDir="SSE";
612 } else if (((radians>(pi/16)*27) && (radians<=(pi/16)*29)) ||
613 ((radians>(pi/16)*27+2*pi) && (radians<=(pi/16)*29+2*pi))) {
614 windDir="SE";
615 } else if (((radians>(pi/16)*29) && (radians<=(pi/16)*31)) ||
616 ((radians>(pi/16)*29+2*pi) && (radians<=(pi/16)*31+2*pi))) {
617 windDir="ESE";
618 } else if (((radians>(pi/16)*31) && (radians<=(pi/16)*33)) ||
619 ((radians>(pi/16)*31+2*pi) && (radians<=(pi/16)*33+2*pi))) {
620 windDir="E";
621 } else if (((radians>(pi/16)*1) && (radians<=(pi/16)*3)) ||
622 ((radians>(pi/16)*1+2*pi) && (radians<=(pi/16)*3+2*pi))) {
623 windDir="ENE";
624 } else if (((radians>(pi/16)*3) && (radians<=(pi/16)*5)) ||
625 ((radians>(pi/16)*3+2*pi) && (radians<=(pi/16)*5+2*pi))) {
626 windDir="NE";
627 } else if (((radians>(pi/16)*5) && (radians<=(pi/16)*7)) ||
628 ((radians>(pi/16)*5+2*pi) && (radians<=(pi/16)*7+2*pi))) {
629 windDir="NNE";
630 } else if (((radians>(pi/16)*7) && (radians<=(pi/16)*9)) ||
631 ((radians>(pi/16)*7+2*pi) && (radians<=(pi/16)*9+2*pi))) {
632 windDir="N";
633 } else if (((radians>(pi/16)*9) && (radians<=(pi/16)*11)) ||
634 ((radians>(pi/16)*9+2*pi) && (radians<=(pi/16)*11+2*pi))) {
635 windDir="NNW";
636 } else if (((radians>(pi/16)*11) && (radians<=(pi/16)*13)) ||
637 ((radians>(pi/16)*11+2*pi) && (radians<=(pi/16)*13+2*pi))) {
638 windDir="NW";
639 } else if (((radians>(pi/16)*13) && (radians<=(pi/16)*15)) ||
640 ((radians>(pi/16)*13+2*pi) && (radians<=(pi/16)*15+2*pi))) {
641 windDir="WNW";
642 }
643 return windDir;

Page: 360

644 }
645
646 void htmlDisplayWriter(string OutDir, string InDir, double RstNum,
647 vector <vector <int> > flagVec, vector<vector<int> > clustMembers,
648 vector<string> transientExplanation) {
649 string displayOutFilePath;
650 string displayOutFile;
651 string greenOutFile;
652 string greenOutFilePath;
653 string unstableOutFile;
654 string unstableOutFilePath;
655 string miscOutFile;
656 string miscOutFilePath;
657 int redTableCols=0;
658 int yellowTableCols=0;
659
660 for (int i=0; i<flagVec[2].size(); i++) {
661 if (flagVec[2][i]==1) {
662 redTableCols++;
663 }
664 }
665 if (redTableCols==0) {
666 redTableCols=1;
667 }
668
669 for (int i=0; i<flagVec[1].size(); i++) {
670 if (flagVec[1][i]==1) { //double check!
671 yellowTableCols++;
672 }
673 }
674 if (yellowTableCols==0) {
675 yellowTableCols=1;
676 }
677
678 stringstream sstm;
679 sstm << "DISPLAY" << RstNum << ".html"; //adding index to the string
680 displayOutFile = sstm.str();
681 sstm.str("");

Page: 361

682 displayOutFilePath = (OutDir + "/" + displayOutFile);
683
684 sstm << "green" << RstNum << ".html"; //adding index to the string
685 greenOutFile = sstm.str();
686 sstm.str("");
687 greenOutFilePath = (OutDir + "/" + greenOutFile);
688
689 sstm << "unstable" << RstNum << ".html"; //adding index to the string
690 unstableOutFile = sstm.str();
691 sstm.str("");
692 unstableOutFilePath = (OutDir + "/" + unstableOutFile);
693
694 sstm << "misc" << RstNum << ".html"; //adding index to the string
695 miscOutFile = sstm.str();
696 sstm.str("");
697 miscOutFilePath = (OutDir + "/" + miscOutFile);
698
699
700 bool output=false;
701 ofstream fout(displayOutFilePath.c_str());
702 fout << "<!--Display Engine For RAPSS-EOC - Written by Kevin Makinson-->" << endl;
703 fout << "<html><head>" << endl;
704 fout << "<meta content=\"text/html; charset=ISO-8859-1\"";
705 fout << "http-equiv=\"content-type\"><title>RAPSS-EOC Display</title>" << endl;
706 fout << "<link rel=\"stylesheet\" type=\"text/css\" href=\"tswtabs.css\">" << endl;
707 fout << "</head>" << endl;
708 fout << "<body>" << endl;
709 fout << "RAPSS-EOC Output Restart " << RstNum
710 << "
" << endl;
711 fout << "
" << endl;
712 fout << "City X in danger<p>
"
713 << endl;
714 fout << "<table style=\"border-color: rgb(255, 0, 0); text-align: left; width: "
715 << 500*redTableCols <<"px;\" border=\"10\" cellpadding=\"2\" cellspacing=\"2\">"<< endl;
716 fout << "<tbody>"<< endl;
717 fout << "<tr>"<< endl;
718 for (unsigned int i=0; i<flagVec[2].size(); i++) {
719 if ((flagVec[2][i]==1) && (firstClustMember(i, clustMembers))) {

Page: 362

720 //red threshold logic
721 //scenario i has red threshold reached
722 output=true;
723 fout << "<td>" << endl;
724 fout << "<ul style=\"color: red;\">" << endl;
725 fout << "
";
726 fout << "<ul style=\"color: red;\">" << endl;
727 fout << "<a href=\"plumeRst" << RstNum <<"Cl"
728 << scenClustTranslator(i, clustMembers) << ".pdf\">Cluster "
729 << scenClustTranslator(i, clustMembers) << " Plots" << endl;
730 fout << "<ul style=\"color: red;\">" << endl;
731 fout << "" << transientExplanation[i] << " " << endl;
732 fout << "" << endl;
733 fout << "" << endl;
734 fout << "</td>" << endl;
735 } else if (i==(flagVec[2].size()-1) && (output==false)) {
736 fout << "<td>" << endl;
737 fout << " No red trips " << endl;
738 fout << "</td>" << endl;
739 fout << "</u1>" << endl;
740 }
741 }
742 fout << "</td>" << endl;
743 fout << "</tr>" << endl;
744 fout << "</tbody>" << endl;
745 fout << "</table>" << endl;
746 fout << "<p>" << endl;
747 output=false;
748
749
750 fout << "City X Possibly in Danger";
751 fout << "<p>
" << endl;
752 //change this one to be similar to the one above
753 fout << "<table style=\"border-color: rgb(255, 180, 0); text-align: left; width: "
754 << 500*yellowTableCols <<"px;\" border=\"10\" cellpadding=\"2\" cellspacing=\"2\">"
755 << endl;
756 fout << "<tbody>" << endl;
757 fout << "<tr>" << endl;

Page: 363

758 for (unsigned int i=0; i<flagVec[1].size(); i++) {
759 if ((flagVec[1][i]==1) && (firstClustMember(i, clustMembers))) {
760 //red threshold logic
761 output=true;
762 fout << "<td>" << endl;
763 fout << "<ul style=\"color: rgb(255, 180, 0);\">" << endl;
764 fout << "<a href=\"plumeRst" << RstNum <<"Cl"
765 << scenClustTranslator(i, clustMembers) << ".pdf\">Cluster "
766 << scenClustTranslator(i, clustMembers) << " Plots" << endl;
767 fout << "<ul style=\"color: rgb(255, 180, 0);\">" << endl;
768 fout << "" << transientExplanation[i] << " " << endl;
769 fout << "" << endl;
770 fout << "" << endl;
771 fout << "</td>" << endl;
772 } else if (i==(flagVec[1].size()-1) && (output==false)) {
773 fout << "<td>" << endl;
774 fout << " No yellow thresholds exceeded " << endl;
775 fout << "</td>" << endl;
776 fout << "</u1>" << endl;
777 }
778 }
779 fout << "</td>" << endl;
780 fout << "</tr>" << endl;
781 fout << "</tbody>" << endl;
782 fout << "</table>" << endl;
783 fout << "<p>" << endl;
784 output=false;
785
786 fout << "<p>
" << endl;
787 fout << "
<div id=\"tswcsstabs\">" << endl;
788 fout << "" << endl;
789 fout << "<a href=\"green" << RstNum
790 << ".html\">No Thresholds Tripped" << endl;
791 fout << "<a href=\"unstable" << RstNum
792 << ".html\">Model Became Unstable" << endl;
793 fout << "<a href=\"misc"
794 << RstNum<< ".html\">Miscellaneous Information" << endl;
795 fout << "" << endl;

Page: 364

796 fout << "</div>" << endl;
797 fout << "</body></html>" << endl;
798 fout.close();
799 fout.clear();
800 //this ends the main page.
801
802 fout.open(greenOutFilePath.c_str());
803 fout << "<!--Display Engine For RAPSS-EOC - Written by Kevin Makinson-->" << endl;
804 fout << "<html><head>" << endl;
805 fout << "<meta content=\"text/html; charset=ISO-8859-1\" http-equiv=\"content-type\">";
806 fout << "<title>RAPSS-EOC No Thresholds</title>" << endl;
807 fout << "</head>" << endl;
808 fout << "<body>" << endl;
809 fout << "RAPSS-EOC Output Restart " << RstNum
810 << "
" << endl;
811 fout << "
" << endl;
812 fout << "";
813 fout << "City Not In Danger
" << endl;
814 fout << "<ul style=\"color: rgb(0, 153, 0);\">" << endl;
815 for (unsigned int i=0; i<flagVec[0].size(); i++) {
816 if ((flagVec[0][i]==1) && (firstClustMember(i, clustMembers))) {
817 output=true;
818 fout << "<td>" << endl;
819 fout << "<ul style=\"color: green;\">" << endl;
820 fout << "<a href=\"plumeRst" << RstNum <<"Cl"
821 << scenClustTranslator(i, clustMembers) << ".pdf\">Cluster "
822 << scenClustTranslator(i, clustMembers) << " Plots" << endl;
823 fout << "" << endl;
824 fout << "" << transientExplanation[i] << " " << endl;
825 fout << "" << endl;
826 fout << "" << endl;
827 fout << "</td>" << endl;
828 } else if (i==(flagVec[2].size()-1) && (output==false)) {
829 fout << "<td>" << endl;
830 fout << " Everything's in danger! Run away! " << endl;
831 fout << "</td>" << endl;
832 fout << "</u1>" << endl;
833 }

Page: 365

834 }
835 fout << "</td>" << endl;
836 fout << "</tr>" << endl;
837 fout << "</tbody>" << endl;
838 fout << "</table>" << endl;
839 fout << "<p>" << endl;
840 output=false;
841 fout.close();
842 fout.clear();
843
844 fout.open(miscOutFilePath.c_str());
845 fout << "<html><head>" << endl;
846 fout << "<meta content=\"text/html; charset=ISO-8859-1\" http-equiv=\"content-type\">";
847 fout << "<title>RAPSS-EOC Cluster Information</title>" << endl;
848 fout << "</head>" << endl;
849 fout << "<body>" << endl;
850 fout << "RAPSS-EOC Output Restart " << RstNum << "
"
851 << endl;
852 fout << "
" << endl;
853 fout << "";
854 fout << "Cluster Information
"
855 << endl;
856 fout << "" << endl;
857 for (unsigned int j=0; j<clustMembers.size(); j++) { //j is cluster number
858 fout << "" << endl;
859 fout << "Cluster " << j+1 << " Plot Members" << endl;
860 fout << "" << endl;
861 for (unsigned int i=0; i<clustMembers[j].size(); i++) { //i is scenario number
862 //fout << "" << endl;
863 fout << "Scenario " << clustMembers[j][i] << "" << endl;
864 }
865 fout << "" << endl;
866 fout << "" << endl;
867 }
868 fout << "</body></html>" << endl;
869 fout.clear();
870 fout.close();
871

Page: 366

872 fout.open(unstableOutFilePath.c_str());
873 fout << "<!--Display Engine For RAPSS-EOC - Written by Kevin Makinson-->" << endl;
874 fout << "<html><head>" << endl;
875 fout << "<meta content=\"text/html; charset=ISO-8859-1\" http-equiv=\"content-type\">";
876 fout << "<title>RAPSS-EOC Unstable Scenarios</title>" << endl;
877 fout << "</head>" << endl;
878 fout << "<body>" << endl;
879 fout << "RAPSS-EOC Output Restart " << RstNum
880 << "
" << endl;
881 fout << "<p>";
882 fout << "Model Became Unstable
" << endl;
883 fout << " No model instabilities on this cycle " << endl;
884 fout << "</body></html>" << endl;
885 fout.close();
886 fout.clear();
887 }
888 #endif

Page: 367

C.4. PlumeProgram.h Source Code

01 //Written by Kevin Makinson
02 //1/24/13
03 //This simulates a integrated puff model
04
05 #ifndef plumeProgram_h
06 #define plumeProgram_h
07 #include <fstream>
08 #include <math.h>
09
10 vector < vector <double> > PlumeProgram(double Q, double u, double hE, double theta, double z,
11 int stabClass, int maxY, int gridResolution, int timeInterval, int dt) {
12 timeInterval=timeInterval*3600; //converts hours to seconds
13 //Q is release activity
14 //sigY, sigZ, sigX are std dev of lateral, vertical, and horizontal diffusion
15 double sigY, sigZ, sigX, Xconc;
16 double x, y, Xrot, Yrot;
17 theta=(theta+pi); //changes to where wind is going (plume equation)
18 //this converts it from how wind directions are normally expressed, to how the
19 //plume program expects it.
20 vector <double> row;
21 vector < vector <double> > grid;
22 int maxSquares;
23 maxSquares=(maxY/gridResolution);
24
25 for (int t=1; t<=(timeInterval/dt); t++) {
26 for (int j=(maxSquares*-1); j<maxSquares; j+=1) {
27 y=(j*gridResolution);
28 for (int i=(maxSquares*-1); i<maxSquares; i+=1) {
29 x=(i*gridResolution);
30 //mapping x and y to rotated axes
31 Xrot=x*cos(theta)-y*sin(theta);
32 Yrot=x*sin(theta)+y*cos(theta);
33 if (Xrot<=0) { //Stuff behind the plume, just put in 0.0001
34 Xconc=(0.0001);
35 } else {

Page: 368

36 sigY=sigX=sigYFinder(stabClass, hE, Xrot);
37 sigZ=sigZFinder(stabClass, hE, Xrot); //not needed for ground level
38 //for cartesian coordinates (puff)
39 Xconc= (dt*(Q/(pow(2*pi, 1.5)*sigY*sigZ*sigX)) *
40 exp(-0.5*pow((Xrot-u*t*dt)/sigX, 2)) *
41 (exp(-0.5*(pow(z-hE,2)/(pow(sigZ,2)))) +
42 exp(-0.5*(pow(z+hE,2)/(pow(sigZ,2))))) *
43 exp(-0.5*pow(Yrot/sigY,2)));
44 if (Xconc<(0.001)) {
45 Xconc=(0.0001);
46 }
47 }
48 if (t==1) {
49 if (i==(maxSquares-1)) {
50 row.push_back(Xconc);
51 grid.push_back(row);
52 row.clear();
53 } else {
54 row.push_back(Xconc);
55 }
56 } else {
57 grid[j+maxSquares][i+maxSquares]+=Xconc;
58 }
59 }
60 }
61 }
62 return grid;
63 }
64 #endif

Page: 369

C.5. GridOrganizer.R Source Code

01 #!/usr/bin/Rscript
02 # 1/31/13
03 # Written by Kevin Makinson
04 # Oregon State university
05 #
06 # This code takes the grid structure from RAPSS-EOC and
07 # turns it into something MSA can use.
08 # ---------------------------------#
09 load("R_data/RAPSspace.RData")
10 library(abind, lib.loc=libloc)
11 EOCOutFilePaths<-array(0,thNum)
12 #assigning file paths
13 #reading data
14 #plopping it into a 3D matrix
15 #need this!
16 kCount=0
17 for (i in 0:(thNum-1)) {
18 kCount=kCount+1
19 EOCOutFilePaths[kCount]<-paste(IODir,"/Th_", i, "_data/futureState.csv", sep = "")
20 EOCOutRawData<- read.csv(EOCOutFilePaths[kCount], header=FALSE) #change from 1
21 if(kCount==1) {
22 EOCOutRawDataC<-EOCOutRawData
23 } else if ((dim(EOCOutRawDataC)[1])==(dim(EOCOutRawData)[1])) {
24 EOCOutRawDataC<-abind(EOCOutRawDataC, EOCOutRawData, along=3)
25 } else if ((dim(EOCOutRawDataC)[1]) > (dim(EOCOutRawData)[1])) {
26 EOCOutRawDataC<-abind(EOCOutRawDataC[1:(dim(EOCOutRawData)[1]),,], EOCOutRawData, along=3)
27 } else {
28 EOCOutRawDataC<-abind(EOCOutRawDataC, EOCOutRawData[1:(dim(EOCOutRawDataC)[1]),], along=3)
29 }
30 }
31
32 MeanShiftReady<-array(0, c(thNum, dim(EOCOutRawDataC)[1]*dim(EOCOutRawDataC)[2]))
33
34 #complicated part goes here.
35 for (j in 1:thNum) {

Page: 370

36 for (i in 1:(dim(EOCOutRawDataC)[1])) {
37 MeanShiftReady[j,((dim(EOCOutRawDataC)[1]*(i-1))+1):(dim(EOCOutRawDataC)[1]*i)]<-
38 (EOCOutRawDataC[i,,j])
39 }
40 }
41
42 write.table(MeanShiftReady, file=(paste(IODir, "/meanShiftReady", rstNum, ".csv", sep="")),
43 row.names = FALSE, col.names=FALSE, sep=",")
44
45 save.image("R_data/RAPSspace.RData")

Page: 371

C.6. PlumeDisplay.R Source Code

001 #!/usr/bin/Rscript
002 # --------
003 # Written by Kevin Makinson
004 # 1/23/13
005 # This is designed for RAPSS-EOC to produce the approperiate plots
006 # --------
007
008 load("R_data/RAPSspace.RData")
009 library(abind, lib.loc=libloc)
010 maxSquares<-maxY/gridResolution
011 x<- -maxSquares:(maxSquares-1)
012 y<- -maxSquares:(maxSquares-1)
013 outer.radius = maxSquares
014 breaks = seq(-2, log10(releaseAmt), by = 2)
015 contour<-F #this should come from the user
016 #--------
017
018 clustCenter<-read.csv(paste(IODir, "/clustCenters", rstNum, ".csv", sep=""), header=FALSE)
019 if (dim(clustCenter)[2]<2) {
020 unMSA<-array(0, c(dim(EOCOutRawDataC)[1], dim(EOCOutRawDataC)[2]))
021 } else {
022 unMSA<-array(0, c(dim(EOCOutRawDataC)[1], dim(EOCOutRawDataC)[2], dim(clustCenter)[2]))
023 }
024
025 for (j in 1:dim(clustCenter)[2]) {
026 for (i in 1:(dim(EOCOutRawDataC)[1])) {
027 if (dim(clustCenter)[2]<2) {
028 unMSA[i,]<-as.matrix(clustCenter[((dim(EOCOutRawDataC)[1]
029 *(i-1))+1):(dim(EOCOutRawDataC)[1]*i),1])
030 } else {
031 unMSA[i,,j]<-as.matrix(clustCenter[((dim(EOCOutRawDataC)[1]
032 *(i-1))+1):(dim(EOCOutRawDataC)[1]*i),j])
033 }
034 }
035 }

Page: 372

036
037 #current state
038 z<-(read.csv(paste(IODir, "/currentState", rstNum, ".csv", sep=""), header=FALSE))
039
040 for (j in (1:dim(clustCenter)[2])) {
041 if (dim(clustCenter)[2]<2) {
042 z<-abind(z, (unMSA[,]), along=3)
043 } else {
044 z<-abind(z, (unMSA[,,j]), along=3)
045 }
046 }
047
048 #this loop fixes a problem much later involving the inverting of the y variables.
049 ztemp<-array(0, c(dim(z)[1], dim(z)[2], dim(z)[3]))
050 for (j in 1:dim(z)[3]) {
051 for (i in 1:dim(z)[2]) {
052 ztemp[i,,j]<-z[(dim(z)[2]-i+1),,j]
053 }
054 }
055 z<-ztemp
056
057 #define a color pallette,
058 rgb.palette<-colorRampPalette(c("gray25","red", "yellow", "green", "gray85", "white"),
059 space="rgb")
060 col <- rev(rgb.palette(length(breaks) - 1))
061
062 nlevels = length(breaks)-1
063 contours = TRUE
064 legend = TRUE
065 axes = TRUE
066 circle.rads = pretty(c(0,outer.radius))
067
068 #gererating plot
069 for (k in 2:dim(z)[3]) {
070 pdf(paste(IODir, "/plumeRst", rstNum, "Cl", k-1, ".pdf", sep=""),onefile=TRUE)
071 par(mai = c(1,1.5,1.5,1.6))
072 for (j in 1:2) {
073 if (j==2) {

Page: 373

074 j<-k
075 }
076 if (j==1) {
077 image(x = (min(x):max(x)), y = (min(y):max(y)), t(as.matrix(z[,,j])), useRaster = TRUE,
078 asp = 1, axes = FALSE, xlab = "", ylab = "", col = col, breaks = breaks,
079 main=paste("Current Plume \nat: ", currentTime, ":00", sep=""))
080 points(x=0, y=75, pch=19, cex=4)
081 text(x=4, y=75, labels="City X", pos=4)
082 } else {
083 image(x = (min(x):max(x)), y = (min(y):max(y)), t(as.matrix(z[,,j])), useRaster = TRUE,
084 asp = 1, axes = FALSE, xlab = "", ylab = "", col = col, breaks = breaks,
085 main=paste("Cluster ", j-1, "\n Run-Ahead ", runAheadTime, " hr from: ",
086 currentTime, ":00", sep=""))
087 points(x=0, y=75, pch=19, cex=4)
088 text(x=4, y=75, labels="City X", pos=4)
089 }
090 # adding contour Lines if user wishes
091 if (contour==T) {
092 CL <- contourLines(x = (min(x):max(x)), y = (min(y):max(y)),
093 t(as.matrix(z)), levels = breaks)
094 A <- lapply(CL, function(xy){
095 lines(xyx, xyy, col = gray(.2), lwd = .5)
096 })
097 }
098
099 #---------
100 RMat <- function(radians){
101 matrix(c(cos(radians), sin(radians), -sin(radians), cos(radians)), ncol = 2)
102 }
103
104 circle <- function(x, y, rad = 1, nvert = 500){
105 rads <- seq(0,2*pi,length.out = nvert)
106 xcoords <- cos(rads) * rad + x
107 ycoords <- sin(rads) * rad + y
108 cbind(xcoords, ycoords)
109 }
110
111 # draw circles

Page: 374

112 if (missing(circle.rads)){
113 circle.rads <- pretty(c(0,outer.radius))
114 }
115
116 for (i in circle.rads){
117 lines(circle(0, 0, i), col = "#66666650")
118 }
119
120 axis.rads <- c(0, (pi/8), 2*(pi/8), 3*(pi/8), 4*(pi/8), 5*(pi/8), 6*(pi/8), 7*(pi/8))
121 r.labs <- c("E", "ENE", "NE", "NNE", "N", "NNW", "NW", "WNW")
122 l.labs <- c("W", "WSW", "SW", "SSW", "S", "SSE", "SE", "ESE")
123
124 for (i in 1:length(axis.rads)){
125 endpoints <- zapsmall(c(RMat(axis.rads[i]) %*% matrix(c(1, 0, -1, 0)
126 * outer.radius,ncol = 2)))
127 segments(endpoints[1], endpoints[2], endpoints[3], endpoints[4], col = "#66666650")
128 endpoints <- c(RMat(axis.rads[i]) %*% matrix(c(1.1, 0, -1.1, 0) * outer.radius, ncol = 2))
129 text(endpoints[1], endpoints[2], r.labs[i], xpd = TRUE)
130 text(endpoints[3], endpoints[4], l.labs[i], xpd = TRUE)
131 }
132
133 axis(2, pos = -1.24*outer.radius, at = sort(union(circle.rads,-circle.rads)), labels = NA)
134 text(-1.25*outer.radius, sort(union(circle.rads, -circle.rads)),
135 gridResolution*sort(union(circle.rads, -circle.rads)), xpd = TRUE, pos = 2)
136
137 #label on the Y-axis
138 text(x=-1.25*outer.radius, y=-1.25*outer.radius, xpd = TRUE, labels="Distance (m)")
139 ylevs <- seq(-outer.radius, outer.radius, length = nlevels + 1)
140 rect(1.2 * outer.radius, ylevs[1:(length(ylevs) - 1)], 1.3 *
141 outer.radius, ylevs[2:length(ylevs)], col = col, border = NA, xpd = TRUE)
142 #y direction
143 rect(1.2 * outer.radius, min(ylevs), 1.3 * outer.radius, max(ylevs),
144 border = "#66666650", xpd = TRUE)
145 #color scale:
146 text(1.3 * outer.radius, ylevs,labels=paste("10^", round(breaks, 1)), pos = 4, xpd = TRUE)
147 text(x= (1.3*outer.radius), y=-1.25*(outer.radius),labels="Concentration (Bq/m^2)",
148 xpd = TRUE)
149 }

Page: 375

150 dev.off()
151 }
152 #---------
153 save.image("R_data/RAPSspace.RData")

Page: 376

C.7. initR.r Source Code

01 #!/usr/bin/Rscript
02 # Mar 7 2013
03 # Written by Kevin Makinson
04 # This file loads the libraries and initial parameters in R
05 #
06 #--
07 rm(list=ls())
08 Rrepos<-"http://cran.r-project.org"
09 libloc<-"/nfs/stak/students/m/makinske/lib"
10 IODir<-"/nfs/stak/students/m/makinske/RAPSS-EOC/RAPSS_data"
11 libloc<-"/nfs/stak/students/m/makinske/lib"
12 thNum<- 8
13 rstNum<-1
14 runAheadTime<- 3
15 gridResolution<- 100
16 maxY<- 10000
17 releaseAmt<- 1e+30
18 save.image("R_data/RAPSspace.RData")

Page: 377

C.8. updateRwindex.R Source Code

01 load("R_data/RAPSspace.RData")
02 rstNum<-1
03 currentTime<-5
04 save.image("R_data/RAPSspace.RData")

Page: 378

C.9. Sample RAPSS-EOC Input File

* =================================
* RAPSS-EOC input file
* Written by Kevin Makinson
* Oregon State University
* ==================================
* Data analysis parameters
* ==================================
* BandWidth for MSA (BW)
101 1
* Path for R library files to be downloaded into (libloc)
102 /nfs/stak/students/m/makinske/lib
* Website for downloading R files (Rrepos)
103 http://cran.r-project.org
* ====================================
* RAPSS parameters
* ====================================
* requested number of threads (requestTh)
201 8
* Working for storing files (inDir)
202 /nfs/stak/students/m/makinske/RAPSS-EOC
* Real time speed up multiplier
203 480
* ====================================
* Plume Program Parameters
* ====================================
* Grid Resolution (gridResolution)
301 100
* Max Y value (grid distance in x and y direction) (maxY)
302 10000
* Stack Height (hE) (meters)
303 20
* Height above ground (z)
304 0
* Release rate (Q) (Bq/s)
305 1e30
* dt (in seconds) (adjust if running into memory issues for long times)
306 60
* timestep advancements for looking ahead (runAheadTime) (hr)
307 3
* What time of day did the plume start? (plumeStartTime) (e.g., 1 AM) (note: not 1:00
AM)
308 3 AM
* What time of day did the simulation start? (simulationStartTime) (e.g., 1 AM) (note:
not 1:00 AM)

Page: 379

309 5 AM
* Name of wind observation data file from http://www.raws.dri.edu/index.html
310 JuniperDunesWind.txt
* Name of windrose data file from: http://www.raws.dri.edu/index.html
311 JuniperDunesWindObs.txt
*end of file

Page: 380

D. Appendix D: RAPPS-EOC Source Code Explanation

Some sections are very similar to RAPSS-STA. The following explanations

primarily pertain to the differences between RAPSS-STA and RAPSS-EOC. Please see

Appendix B for explanations of functions used in both RAPSS-EOC and RAPSS-STA.

D.1. Pmain.cpp Source Code Explanation

Pmain.cpp (see Appendix C.1) is the file that “runs” RAPSS-EOC. Lines 12-29

are variable definitions which have been extracted to the top level in order to allow the

user to edit these variables via the RAPSS-EOC input file. Line 075 reads the input file

defined in RAPSSinputFile() (lines 106-225). Lines 080-085 change 12-hour time to 24-

hour time. Finally, lines 93-95 call cyclePlumeProgram(), the function that cycles

RAPSS-EOC.

D.2. CyclePlume.h Code Explanation

CyclePlume.h (see Appendix C.2) contains one function definition,

cyclePlumeProgram(), which acts as the primary control mechanism for RAPSS-EOC.

This file can be considered the second layer below Pmain.cpp. After the local variable

definition section (lines 16-46), the user in entered into a while-loop that exists for the

rest of the function. This depends on the string variable, answer, being “yes,” or “no,”

signifying if the user wishes to perform more cycles in the while-loop. Lines 052-060

copy Alert.gif and tswtabs.css into the same directory that the display will eventually

live. Alert.gif is the animated flashing “ALERT” picture in the display. Tswtabs.css is

the script for the buttons at the bottom of the display (see Section 9.4). Lines 062-073

ask the user if he or she wishes to run the program, and changes answer accordingly. The

user is then asked how many cycles he or she wishes to run (lines 085-092). This causes

Page: 381

RAPSS-EOC to cycle in the while loop for a user defined number of cycles until asking if

he or she wishes to continue. Real time data are sampled at line 109.

If it is not the first cycle, RAPSS-EOC loads the data from the previous cycle

(lines 120-126). Lines 127-164 create an estimate of the current state by simulating one

hour blocks of time with the wind speed and direction loaded from the real time data.

These state estimates are log-scaled and output to the file, currentStateOut, which is the

current state, plus restart number, then .csv (e.g., currentState2.csv). The parallel section

of RAPSS-EOC lives in lines 170-255. After setting the number of threads to the user

defined value, requestTh, (lines 171-191), the truly parallel section begins as line 196.

Shared memory are nthreads, the number of threads; flagVec, the array that signals if the

city is in danger or not; and transientExplanation, which is a vector of explanations about

where the wind is coming from and at what speed. Lines 209-216 create directories one

thread at a time (omp critical structure) for the thread data. Lines 220 and 221 sample

wind speed and direction from the windrose data file. Lines 227-234 run the plume

program on each thread, and communicate what each thread is doing to

transientExplanation. The data are log scaled and added to the estimate of the current

state (Lines 238-244). Lines 245-254 load flagVec, with the information described

above. Lines 258-264 run the grid organizer script, perform mean shift analysis, and

generate the plots. Finally, line 266 calls htmlDisplayWriter() to create the display for

the recently completed cycle.

D.3. FunctionsEOC.h Code Explanation

As suggested by the title of this header file, this file contains the majority of the

functions used in RAPSS-EOC (see Appendix C.3). This file can be considered the

Page: 382

third layer below Pmain.cpp. The functions in FunctionsEOC.h will be briefly explained

in this section. Many of the functions in this section are taken verbatim from

BloodAndGuts.h from RAPSS-STA. Only the functions that are different will be

described in this section. Lines 018-040 list the functions that will be defined in later line

numbers.

• LoadGridData() (lines 076-102) returns a 2D vector of doubles that corresponds

to the grid of concentrations that will be eventually passed to R for display.

loadGridData() expects a file name of a csv file of log-scaled concentration data.

It then raises each concentration to the power of 10 (antilog), to allow for easier

addition of concentrations later.

• realTimeSimulator() (lines104-125) outputs to csv file as well as returns a vector

of strings. This is meant to read wind history data and output it in real time to

simulate not having acess to all of the wind history data at once.

• windDirTranslator() (lines 128-164) translates from the 16 normal directions on a

compass, (e.g., N, NNE, NE, etc…) to polar coordinates. West is given a value of

zero radians, WNW of π/8, and so on around the unit circle. This outputs a

double corresponding to the value of the direction in radians.

• sigYFinder() (lines 166-190) determines the value of σy using the methodology

described in Section 2.6.3. It is determined by the stability class, effective stack

height and the position downwind of interest.

• sigZFinder() (lines 192-214) determines the value of σz based on the methodology

described in Section 2.6.3. It is determined by the stability class, effective stack

height and the position downwind of interest. It is worth noting that for most

Page: 383

experiments, z was set to zero (ground level concentration), so this function was

rarely used.

• PrintGrid() (lines 245-258) writes to a .csv file, outputFileName the 2D vector of

concentrations, grid, given in the input.

• initR() (lines 260-288) initializes R. This makes directories for the R files, and

writes initR.r. See Appendix D.7 for further details.

• updateRwindex() (lines 296-305) updates pertinent information in R. This writes

updateRwindex.R. See Appendix D.8 for further details.

• loadWindData() (lines 348-382) loads wind rose data from the RAWS weather

data archive. The user downloads a wind history file from

http://www.raws.dri.edu/index.html for data, and passes the name of the file to

loadWindData(). The function reads it (lines 361-380), and returns a vector of

strings that corresponds to the wind rose data for that the desired timeframe.

• windRoseNumTranslator() (lines 386-442) translates from the standard way

directions are expressed in a compass setting, into a mathematical form. This

expects integer that corresponds to a given wind direction (e.g., 0 is N, 1 is NNE,

2 is NE, etc…), and returns the value of that direction in radians, expressed as

West is given a value of zero radians, WNW of π/8, and so on around the unit

circle.

• *sampleWind() (lines 444-519) is one of the more complex functions, so it will be

described in sections. Lines 445-465 are simply local variable definitions. U1 and

U2 are random numbers, created at run time, that correspond to a uniform

distribution between zero and one. Lines 467-471 load the probabilities that wind

Page: 384

is blowing in each direction. Lines 472-489 load the probabilities that the wind is

blowing a certain speed given the direction. A normalized cumulative distribution

function (CDF) is then created (490-505) across these wind speeds and directions.

Lines 507-514 then use random numbers created at the beginning, U1 and U2, to

sample wind speed and direction from the CDF. This function returns a dynamic

array with the members being direction and speed, respectfully.

• loadWindObsData() (lines 520-568) is a function that expects a wind rose data

file downloaded from http://www.raws.dri.edu/index.html. This function reads

the file and returns a vector of strings that are correspond to wind direction, speed,

and time.

• scenClustTranslator() (lines 570-580) returns the cluster number that a scenario

belongs to. This expects the scenario number and the clusterMembers array. It

searches through the array until it finds the scenario number and returns which

cluster it belongs to.

• firstClustMemeber() (lines 582-590) is a Boolean function that only returns true if

the scenario is the first member of a cluster. This is important in the html display

engine, and is used to avoid duplicate displays of the same cluster.

• radianDirTranslator() (lines 592-644) translates from the direction expressed in

radians to the direction expressed in normal compass directions. It has been

written for directions in radians from zero to 4π, to compensate for the

translations involved in the plume program.

• htmlDisplayWriter() (lines 646-887) is the function that creates the html display.

Lines 660-676 count how many times the red and yellow trips have happened in

http://www.raws.dri.edu/index.html

Page: 385

the scenarios to use in creating the red and yellow boxes in the display (see

Section 9.4). Lines 678-697 name and create the files to be used,

DISPLAY#.html, green#.html, unstable#.html, and misc#.html. Where the #

symbol is used to represent the cycle number. DISPLAY#.html is created in

lines 700-800. Green#html is the file that shows all clusters that did not trip, in

other words, any cluster where the city is safe from the plume, written on lines

802-842. Misc#.html is written on lines 844-870 and contains the cluster

information about the scenarios. Unsable#.html is mostly an artifact from the

html interface with RAPSS-STA. Current it is set to always output “No model

instabilities.”

D.4. PlumeProgram.h Code Explanation

This header file acts as the simulation software for RAPSS-EOC. The function

PlumeProgram() returns a 2D vector of doubles, which corresponds to the grid of

concentrations. Lines 12-23 are local variable definitions. Lines 25-61 compose of the

structure for determining the concentration for a given space in the grid. Lines 31 and 32

rotate the X and Y axis along the direction of the wind, according to Equation (2.14).

Lines 39-43 determine the concentration using Equation (2.5) for a given square of the

grid. If the loop calculates the concentration in an area that is not in the path of the

plume, it is assigned a concentration of 0.0001, instead of 0.0 (line 34). This makes it

possible to log scale the whole grid without returning undefined numbers. If the

concentration is below 0.001, it is assigned a concentration of 0.0001. This assures that

areas with “low” concentrations don’t appear lower than areas with zero concentration.

Page: 386

D.5. GridOrganizer.r Code Explanation

This script organizes the grid data similar to Table 9.2. Lines 19 and 20 read the

concentration grids in the form of .csv files. Lines 17-30 actually do the organizing. The

organized data are put into an array, MeanShiftReady (line 31), which is output as

meanShiftReady#.csv (lines 42-43), where the # symbol corresponds to the cycle number.

D.6. PlumeDisplay.r Code Explanation

This script displays a color coded concentration grid with an overlaid compass

and a dot for the city of interest. Lines 018-023 read the prediction data clusters and lines

025-035 reorganize it into normal grid coordinates. The current state is read at line 38,

and the prediction clusters are added to the 3D array in lines 040-046. Lines 049-055

address an issue with the indexing between C++ and R. In short, due to the method of

indexing the values read by R, the grid appears reflected across the Y-axis without the

routine executed in lines 049-055. The color pallet for concentrations is defined in lines

057-060. The loop in lines 069-151 generates plots in the form of two-page PDFs, where

the first page contains a recreation of the current plume, and the second is the prediction

from one of the clusters of the future plume. Lines 076-079 plot the color-coded

concentrations. Lines 091-097 add contour lines. This has been disabled because for the

plume data it often appears “messy” looking. Lines 100-135 overlay the unit circle with

the standard 16 directions. Lines 133-144 display scale and labels on the y-axis. Finally,

the color scale is created in lines 146-147.

D.7. initR.r Code Explanation

This simple script is executed only once at the beginning of the cycle. It loads

pertinent information that does not change with each cycle into the R environment.

Page: 387

runAheadTime (line 14) is the number of hours ahead for the plume program to predict.

GridResolution (line 15) is the size of the squares of the grid, in meters. MaxY (line 16)

is the size in meters, of the grid in one direction. ReleaseAmt (line 17) is the quantity of

radioactive material, in Becquerels, released from the facility.

D.8. updateRwindex.R Code Explanation

In RAPSS-EOC updateRwindex does not pass very much information. It simply

updates the cycle number (line 02), and the current time (line 03).

D.9. Sample RAPSS-EOC Input File Explanation

The input file has three sections, data analysis parameters, RAPSS parameters,

and plume program parameters.

Data Analysis Parameters:

• Card 101: MSA bandwidth. This is the bandwidth used in the mean shift

algorithm (see Sections 2.5 and 6.6). It controls the cluster size, and membership.

Smaller bandwidths yield more clusters with fewer members. Larger bandwidths

yield fewer clusters with more members per cluster.

• Card 102: R library file path. This is the file path to the desired location for

storing R libraries. If the location does not already exist, it will be created. The

path should start, but not end with a forward-slash (“/”).

• Card 103: R website. This is the website RAPSS will access to download R

libraries. Suggested address: http://cran.r-project.org.

RAPSS Parameters:

http://cran.r-project.org/

Page: 388

• Card 201 is the requested number of threads. If this number is below two, two

threads will be used. If this number is greater than the maximum threads on the

computer, the maximum threads will be used instead.

• Card 202 directory for storing files (inDir). This is the directory that will

eventually contain the RAPSS-EOC data.

• Card 203 real time speed up multiplier. This number determines how much faster

than real time the weather history data are read. A value of one will correspond to

true real time. For interesting results a value of around 480 is suggested.

Plume Program Parameters

• Card 301 is the grid resolution. It is the size of the squares, in meters, of the

squares of the concentration grid.

• Card 302 is the max Y-value. It is the size in meters, of the grid in one direction.

• Card 303 is the effective stack height, in meters.

• Card 304 is the height above ground that the plume concentrations are displayed

for the generation of the grid. For demonstration purposes, this is set to zero.

• Card 305 is the release rate in Becquerels per second.

• Card 306 is the dt in seconds, used for the plume program. Increase this value to

increase the speed of the program. Decrease the value for greater resolution.

• Card 307 is the amount of time to predict ahead from the current time, in hours.

• Card 308 is the time of day the plume starts. This expects a format similar to 3

AM, i.e., one number followed by an AM or PM.

Page: 389

• Card 309 is the time of day that the simulation begins at. This expects a format

similar to 3 AM, i.e., one number followed by an AM or PM.

• Card 310 is the name of the wind observation data file from

http://www.raws.dri.edu/index.html

• Card 311 is the name of the wind rose data file from:

http://www.raws.dri.edu/index.html195

http://www.raws.dri.edu/index.html
http://www.raws.dri.edu/index.html

	1 Introduction
	1.1 RAPSS-STA
	1.1.1 RAPSS-STA Simulation Timeline

	1.2 RAPSS-EOC
	1.2.1 RAPSS-EOC Simulation Timeline

	1.3 Programming Languages

	2 Literature Review
	2.1 History of Formal Safety Assessment in Commercial Nuclear Power
	2.1.1 WASH-1400 and Event/Fault Trees
	2.1.2 Post WASH-1400
	2.1.3 NUREG-1150 and Accident Progression Event Trees
	2.1.4 Post NUREG-1150

	2.2 Probabilistic Risk Assessment (PRA)
	2.2.1 PRA Levels 1, 2, and 3
	2.2.2 SAPHIRE
	2.2.3 OpenFTA and LiteFTA

	2.3 Severe Accident/Thermal Hydraulic Codes:
	2.3.1 MELCOR/MACCS2
	2.3.2 RELAP/SCDAP
	2.3.3 TRAC
	2.3.4 TRACE
	2.3.5 CATHARE
	2.3.6 Assessment of Existing Codes for RAPSS application

	2.4 Dynamic Probabilistic Risk Assessment (DPRA)
	2.4.1 DYnamic Logical Analytical Methodology (DYLAM)
	2.4.2 Accident Dynamic Simulation (ADS)
	2.4.3 Monte Carlo Dynamic Event Tree (MCDET)
	2.4.4 Analysis of Dynamic Accident Progression Trees (ADAPT)

	2.5 Data Management
	2.5.1 Principal Component Analysis (PCA)
	2.5.2 Linear Approximation Intervals
	2.5.3 The Mean Shift Algorithm

	2.6 Atmospheric Transport Modeling
	2.6.1 Gaussian Puff/Plume Modeling
	2.6.2 Extensions of the Gaussian Plume/Puff Models
	2.6.3 Pasquill Stability Classes
	2.6.4 RASCAL
	2.6.5 GENII

	2.7 Risk Informed Safety Margin Characterization (RISMC)
	2.7.1 The Determinator

	2.8 Numerical Weather Prediction (NWP)
	2.8.1 Ensemble Forecasting
	2.8.2 Data Assimilation
	2.8.3 Bayesian Networks
	2.8.4 Kalman filters

	2.9 Parallel Computing
	2.9.1 Parallelism Vocabulary
	2.9.2 Task Division
	2.9.3 Application Programming Interfaces (APIs)
	2.9.4 Open Multi-Processing (OpenMP)
	2.9.5 Message Passing Interface (MPI)

	2.10 R
	2.10.1 Parallel Computing in R

	2.11 Decision Making
	2.11.1 Decision Making in Nuclear Power Plants

	2.12 Risk and Perception of Risk
	2.12.1 Probability Aided Decision Making
	2.12.2 Optimizing the Presentation of Uncertainty for Decision Makers

	3 RAPSS Philosophy
	3.1 Preliminary research
	3.2 Implementation Path and Challenges

	4 RAPSS-STA Facility Models
	4.1 The Cook Model
	4.1.1 The Cook Plant Fault Tree

	4.2 The MASLWR Facility
	4.2.1 The MASLWR Real Time Simulator
	4.2.2 The MASLWR RELAP5 Model
	4.2.3 The MASLWR Model Fault Tree

	5 RAPSS-STA Structure
	5.1 RAPSmain.cpp
	5.1.1 RAPSS Input file

	5.2 CycleR5.h
	5.3 BloodAndGuts.h
	5.4 OrganizeR5Output.h

	6 Data Processing
	6.1 Output from a single RAPSS-STA cycle
	6.2 Organizational structure of PCA and MSA
	6.3 PCA and MCA Sample “Toy” Problem
	6.4 Organizing, linear approximation intervals, and PCA in R
	6.4.1 Determining Linear Approximation Intervals

	6.5 Principal Component Analysis (PCA)
	6.6 The Mean Shift Algorithm in C++
	6.7 unMSAPCA.R

	7 RAPSS-STA User Interface and Display
	8 RAPSS-STA Results
	8.1 The MASLWR Standard Problem 3 Experiment
	8.2 Comparing SP-3 Experiment and the R5 Model
	8.3 Simulating SP-3 Experiment Operator Actions
	8.4 RAPSS-STA and the SP-3 Experiment
	8.5 Results Summary

	9 RAPSS-EOC
	9.1 RAPSS-EOC Structure
	9.2 The Plume Program
	9.2.1 Estimating the Current State of the System
	9.2.2 Predicting the Future State of the System

	9.3 Data Processing
	9.4 The RAPSS-EOC User Interface and Display

	10 Discussion and Conclusion
	10.1 Limitations
	10.2 Future Work
	10.2.1 Future Work RAPSS-STA
	10.2.2 Future Work RAPSS-EOC
	10.2.3 Generalizing RAPSS

	A. Appendix A: RAPSS-STA Source Code
	A.1. RAPSmain.cpp Source Code
	A.2. CycleR5.h Source Code
	A.3. BloodAndGuts.h Source Code
	A.4. OrganizeR5Output.h Source Code
	A.5. initPCA.r Source Code
	A.6. PCA.r Source Code:
	A.7. unMSAPCA.r Source Code:
	A.8. UpdateRwindex.r Source Code:
	A.9. Display.r Source Code:
	A.10. Cluster.h Source Code
	A.11. MeanShift.h Source Code
	A.12. RAPSS-STA Example Input File

	B. Appendix B: RAPPS-STA Source Code Explanation
	B.1. RAPSmain.cpp Source Code Explanation
	B.2. CycleR5.h Source Code Explanation
	B.3. BloodAndGuts.h Source Code Explanation
	B.3.1 RstIptGen()

	B.4. OrganizeR5Output.h Source Code Explanation
	B.5. initPCA.r Source Code Explanation
	B.6. PCA.r Source Code Explanation
	B.6.1 The Automated Linear Approximation Interval Sequencer (ALAIS)

	B.7. unMSAPCA.r Source Code Explanation
	B.8. UpdateRwindex.r Source Code Explanation
	B.9. Display.r Source Code Explanation
	B.10. Cluster.h Source Code Explanation
	B.11. MeanShift.h Source Code Explanation
	B.12. RAPSS-STA Input File Explanation

	C. Appendix C: RAPPS-EOC Source Code
	C.1. Pmain.cpp Source Code
	C.2. CyclePlume.h Source Code
	C.3. FunctionsEOC.h Souce Code
	C.4. PlumeProgram.h Source Code
	C.5. GridOrganizer.R Source Code
	C.6. PlumeDisplay.R Source Code
	C.7. initR.r Source Code
	C.8. updateRwindex.R Source Code
	C.9. Sample RAPSS-EOC Input File

	D. Appendix D: RAPPS-EOC Source Code Explanation
	D.1. Pmain.cpp Source Code Explanation
	D.2. CyclePlume.h Code Explanation
	D.3. FunctionsEOC.h Code Explanation
	D.4. PlumeProgram.h Code Explanation
	D.5. GridOrganizer.r Code Explanation
	D.6. PlumeDisplay.r Code Explanation
	D.7. initR.r Code Explanation
	D.8. updateRwindex.R Code Explanation
	D.9. Sample RAPSS-EOC Input File Explanation

