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Social media sources such as Twitter represent a massively distributed social sensor over diverse

topics ranging from social and political events to entertainment and sports news. However, due to

the overwhelming volume of content, it can be difficult to identify novel and significant content

within a broad topic in a timely fashion. To this end, this thesis proposes a scalable and practical

method to automatically construct social sensors for generic topics. The concept of using social

media as a sensor for detection of events and news has been proposed in the literature. However,

we argue that most of these works do not focus on targeted content detection or they use very

basic methods for collecting the topical data for further analysis. This demonstrates a gap in

the use of social media as a sensor for high-quality topical content detection that we aim to

address via machine learning. In this thesis, given minimal supervised training content from

a user, we learn to identify topical tweets from millions of features capturing content, user and

social interactions on Twitter. On a corpus of over 800 million English Tweets collected from the

Twitter streaming API during 2013 and 2014 and learning for 10 diverse topics, we empirically

show that our learned social sensor automatically generalizes to unseen future content with high

ranking and precision scores. Furthermore, we provide an extensive analysis of features and

feature types across different topics that reveals, for example, that (1) largely independent of

topic, simple terms are the most informative feature followed by location features and that (2)

the number of unique hashtags and tweets by a user correlates more with their informativeness

than their follower or friend count. In summary, this work provides a novel, effective, and
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Chapter 1: Introduction

1.1 Motivation

Social networks such as Twitter and Facebook have millions of users from diverse backgrounds,

who tweet and post about localized urban issues such as potholes, car accidents, traffic jams, and

public transport as well as family, education, health and sports events. They also tweet and post

about wider-ranging national and global issues such as natural disasters, epidemics, and politics.

Viewed as a whole, social media provides a rich perspective on humanity ranging from minor,

localized personal observations to topics of global concern.

The content of these posts could be of importance to government agencies such as U.S. FEMA

(Federal Emergency Management Agency) and the U.S. CDC (Centers for Disease Control and

Prevention) to prevent casualties in case of disasters. It could help news websites with important

content on sport events, celebrities, social issues, etc. It could be useful to political parties to

know the users ideas on certain issues. It could also be of great help to companies to know what

are the preferences of their users, what do customers complain about their product, etc. In order

to deal with global challenges, improve emergency management, and achieve a higher quality of

life, there is a need to capture and make use of this massive amount of information.

However, social media sites present a conundrum for users. On one hand these sources contain a

vast amount of novel and topical content that challenge traditional news media sources in terms

of their timeliness and diversity. Yet on the other hand they also contain a vast amount of spam

and otherwise low-value content for most users’ information needs where filtering out irrele-

vant content is extremely time-consuming. As an example, Twitter has 302 million active users

and they send 500 million tweets per day1. However, Twitter’s search does not facilitate tar-

geted information extraction covering individualized information needs. Currently, Twitter only

provides search through only Boolean retrieval with temporal ranking 2. This search method
1http://www.marketingprofs.com/chirp/2015/28385/how-the-world-uses-twitter-infographic
2https://blog.twitter.com/2011/the-engineering-behind-twitter-s-new-search-experience
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critically fails to capture the underlying query intent when non-exact matches or more informa-

tive historical content may be more useful to the user than the most recent, exact matches. The

lack of smart search methods represents a clear and present need for a more intelligent method

to search for relevant topical content from massive numbers of posts.

1.2 Social Media Sensors

This thesis explores the use of social media as a sensor. A Social Media sensor as defined in the

literature “collects, processes, and aggregates big streams of social media data and multimedia to

discover trends, events, influencers, and interesting media content”3. For example we could learn

a classifier to predict whether a tweet is related to Natural Disaster and thus building a ”social

sensor” for Natural Disaster. Existing literature on use of social media as a sensor covers:

• Designing/developing social media sensors for detection of a specific topic such as earth-

quake or flu [73, 19, 71]

• Designing/developing social media sensors for trending topic detection [66, 53, 61]

• Designing/developing social media sensors for sentiment detection [79, 9, 12, 10]

• Designing/developing social media sensors for preference detection and tweet recommen-

dations [43, 91, 15, 25]

• Designing/developing social media sensors for tracking general topics [47, 88, 49]

While all of these works try to take advantage of concept of social media sensors, majority of the

literature works are either too narrow and highly specific to a certain topic, focus only on ad-hoc

methods and not taking advantage of learning, not targeted on any topic, they use very basic

methods for collection of their data for further analysis, or like [47, 88, 49] cover part of the

overall framework that we propose and omit some potentially important issues such as ranking

and validation; we present a comprehensive literature review of social sensors and contrast this

with our proposed work in Chapter 2. Hence, the goal of this thesis is to provide users with a

novel method to build a more flexible search tool for Twitter. Our work combines, extends, and

provides a longitudinal study of learning general topical social sensors.
3http://www.socialsensor.eu
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1.3 Contributions

The contribution in this work falls into two main categories.

1. Supervised learning of topical social sensors

This contribution answers the following questions:

(a) How do we learn a method for extracting informative content on generic topics from

millions of features and small sets of examples while minimizing required user in-

put?

(b) Which classification method(s) would have higher precision and would generalize to

broader related content?

To this end, we provide a novel supervised method for learning high precision topical so-

cial sensors. On the corpus of over 800 million Tweets and covering 10 diverse topics

ranging from ”social issues” to ”celebrity deaths” to the ”Iran nuclear deal”, we empir-

ically show that two simple and efficiently trainable methods — logistic regression and

Naı̈ve Bayes — are capable of learning users information needs and generalize well to

unseen future topical content (including content with no hashtags) in terms of their mean

average precision (MAP) and Precision@n for a range of n.

2. Longitudinal study on the features and their attribution

This contribution uncovers insights from the dataset and answers the following questions:

(a) What are the best features for learning social sensors and do they differ by topic?

(b) For each feature type, do any attributes correlate with importance? For example,

are users with higher number of followers more important? What is the relationship

between number of tweets a hashtag has been used in and the importance of the

hashtag?

To this end, we deliver a longitudinal and comprehensive study on the features extracted

from Twitter and their attributes as they relate to retrieving relevant social content. Over-

all, feature analysis in this work shows that in general learning methods may be more

effective than manual engineering for building topical social sensors. We draw a number
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of important insights from our analysis, with two of the more surprising insights being the

following:

(a) Despite the fact that training labels were derived from hashtags, we found out that

terms and locations are among the most useful features.

(b) While one might hypothesize that users with higher follower and friends counts are

more informative, we found out that the number of unique hashtags and tweets by a

user correlates more with their informativeness than their follower or friend count.

In summary, this work fills a major gap in event detection and tracking from social media on

identifying emerging topics from long-running themes with minimal user supervision. Our re-

sults suggest that these sensors generalize well to unseen future topical content and provide a

novel paradigm for the extraction of high-precision content from social media.

1.4 Outline of Thesis

The thesis is organized as follows: In Chapter 2 the related work on using social media as a

sensor is reviewed. Chapter 3.2 describes the dataset used in this work. Chapter 3 gives a detailed

description of the proposed framework for learning supervised topical social media sensors and

the results. Chapter 4 provides the feature analysis on Twitter. In Chapter 5 we conclude by

highlighting the challenges and providing suggestions for future research in using social media

as a sensor for latent topic detection.
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Chapter 2: Literature Review

2.1 Introduction

Prior to this work, a vast amount of literature has examined the use of social media as a sensor

where the majority of this work can be organized along four major uses cases: event detection,

tracking broad topics, sentiment analysis, and preference learning. We cover each of these use

cases in detail in this section and identify shortcomings and critical gaps that prevent them from

learning topical social sensors as proposed in this thesis.

2.2 Events

One of the major use cases of social media sensors are detecting i.e. sensing events. A social

media event can be defined as an occurrence at a certain time interval and geographical region.

It can be planned or unexpected e.g, concert vs. death of a celebrity, man-made or natural e.g.,

parade vs. earthquake, local or global e.g., concert vs. World Peace Day. Events can further be

categorized based on their target users, including individuals, government agencies concerned

about natural disasters and health epidemics, marketing companies, and news websites.

Historically, event detection has been studied extensively in text mining, NLP, and IR to find

events from conventional media sources such as news streams [89]. With the growth of social

media sites such as Facebook, Twitter and other microblogs, social media sites have become

known as powerful communication tools for sharing and exchanging information about such

events. However, event detection on social media sites is more challenging due to features such

as unstructured and informal text, highly length restricted, and generated by novice reporters

compared to journalism-trained news editors.Nevertheless, it is important to investigate event

detection in social media because in comparison to traditional news blogs, social media has faster

response time to events and time is money (marketing), lives (disasters), or simply relevance

(new). To see how different use cases address the aforementioned technical difficulties, we
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focus on the three highly studied types of event detections:

• Trending Topic Detection

• Natural Disaster Detection

• Health Epidemic Detection

In the next section, we summarize the results of trending topic detection research.

2.2.1 Trending Topic Detection

Trends, i.e. emerging topics, are typically driven by emerging events, breaking news and general

topics such as death of celebrities, festivals, and sporting events that attract the attention of a

large fraction of Twitter users [53]. Real-time detection of events which are hypothesized to be

trendy is thus of high value for news reporters and analysts.

The following works on detecting trending topics use bursts as the indicator of events, where a

burst is defined as a sudden change in posting rates of some keywords, hashtags, etc. However,

they can be divided into multiple categories based on how they use bursts to extract the event.

Clustering-based Methods This category of works focus on the hypothesis that trends are top-

ical and topics are defined by collection of relevant content, hence trends can be detected by

clustering content.

• Threads of tweets Petrovic et al. [66] tried to detect novel events from streams of Twitter

posts by forming threads of similar tweets. The minimum similarity distance to an ex-

isting tweet represented the novelty score of the tweet. Further, similarity threshold for

assigning tweets to threads controlled size of threads. The fastest growing thread in each

time interval indicated the news of the event spreading and was outputted as a new event.

Ishikawa et al. [38], Becker et al. [8], Phuvipadawat and Murata [68], O’Connor et al. [61]

also tried to detect trending topics by clustering and computing similarity degree between

words and clusters. Becker et al. [8] additionally considered the classification of tweets as

referring to real-world events or not.

• Wavelet analysis Weng and Lee [85] applied wavelet analysis to individual words on the
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frequency based raw signals of words and identified events by grouping a set of words

with similar burst patterns.

Considering that this thesis focuses on generic and broad topic detection, the main issue with

clustering based methods is that they are unsupervised and we want to use supervised learning

of topical information detection for generic topics.

Burst-Detection Methods The second category of works focus on the hypothesis that topics

can be detected by focusing on temporal patterns of terms/keywords independent of contents of

documents.

Mathioudakis and Koudas [53] detected events by focusing on bursts of keywords whereas Cui

et al. [18] used different hashtag properties for this purpose. Zhao et al. [93] and Nichols et al.

[59] also tried to use bursts in keywords, but they monitored specific keywords related to sports

game in order to detect important NFL games or important moments within the game. Empha-

sizing location, Albakour et al. [2] and Sakaki et al. [72] detected events targeted on user’s query

using burst patterns. Albakour et al. employed contents of the tweets and volume of microblog-

ging activity for locating events in a local area and ranked tweets on the level of topical relevancy

to user query resulting in ranked list of local events. Sakaki et al. used classification approach

to detect driving events at a local area by using dependency of words to search query, context

(words before or after a search query), position of a search query in a tweet, time expression in

a tweet, and word features (all words in the tweet) as features.

Burst-detection methods focus on temporal patterns of specific sets of keywords and therefore

suffer from (1) not being targeted, (2) overlooking topical content that is not trendy i.e. topical

content that does not follow the same specific properties of terms such as bursts, and (3) lack of

learning methods makes it almost impossible to generalize to future unseen topical keywords.

Network Structure-based Methods The last category of works focus on the hypothesis that

trending topics can be detected by studying the network structure of users.

Budak et al. [13] incorporated network topology in order to find trending topics. They defined

trendiness of a topic based on two notions, either by the number of connected pairs of users

discussing it, or by scoring a topic based on the number of unrelated people interested in it.

The issue with network structure-based methods, similar to other methods for finding trending
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topics, is that they are also not targeted to a specific topic. Also, considering that our dataset

contains over 95 millions of users it would be almost impossible to access the social network

of all the users – especially since Twitter streaming API gives random access to only 1% of the

tweets.

2.2.2 Physical Event Detection

There are many types of physical events that are discussed in social media. This part focuses on

research on two important events of this type: natural disasters and health epidemics.

Natural Disaster Detection

In case of disasters, users will tweet about the disaster within seconds of its happening1. Using

this information, disasters can be detected almost in real time from social media and responded

to by government agencies such as U.S. FEMA (Federal Emergency Management Agency), local

first responders, news websites, and individuals. The goal of works targeting disastrous events

on Twitter can be divided into the two following categories:

• Predictive studies on disaster Focusing on hurricane Sandy, Kryvasheyeu et al. [44]

studied the network of users and focused on choosing the best groups of users in or-

der to achieve lead-times i.e. faster detection of disastrous event (following the concept

of ”friendship paradox”2 explained in more details in Appendix A). Our topical social

sensors represent a superset of user-based sensors discussed in this work since our work

includes user-based features when the predictor learns to use them. However, as shown

in our feature analysis in Chapter 4, user-based features are among the least informative

feature types for our topical social sensors suggesting that general social sensors benefit

from a wide variety of features well beyond those of author features alone.

Focusing on earthquake, Sakaki et al. [73] used SVM classifier for detecting earthquakes

and employed location estimation method such as Kalman Filtering for localizing it.

Sakaki et al. extracted statistical features e.g., the number and position of words in a tweet,

keyword features and word context features. While this work is of high value for detection
1http://mashable.com/2009/08/12/japan-earthquake/
2On average, most people have fewer friends than their friends have
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of earthquake events, it is very narrow and highly specific to detection of earthquake only

and thus the method of this work could not be adopted to unknown or general topics.

• Descriptive studies on disaster Related works discuss the behavior of Twitter users dur-

ing crisis [80, 17, 77] but do not address exploiting detection of crisis events. They inves-

tigated the use of social media during crisis in order to identify information propagation

properties, social behavior of users e.g. retweeting behavior, information contributing to

situational awareness, and active players in communicating information. However, this

behavioral information could be exploited in development of sensors.

Health Epidemic Detection Building a social sensor to detect health epidemic outbreaks is one

of the most important use cases of social media sensors. A disease outbreak can rapidly infect

great numbers of people and expand to broad areas involving several countries such as Ebola3.

It is very important to identify the infected sources as early as possible and control the spread of

epidemics by incubating infected individuals [22, 16]. Target users of this event detection include

government agencies such as the U.S. CDC (Centers for Disease Control and Prevention), news

websites, and individuals.

The purpose of these works was early detection of outbreaks using tweets. Researchers used

content-based method and/or structure-based methods outlined as follows:

• Content-based methods Culotta [19] and Aramaki et al. [4] both tried to identify influenza-

related tweets and find correlations of these tweets to CDC statistics. Both works extracted

bag-of-words as features. As for methodology, the former used single and multiple linear

regression showing that multiple linear regression works better, while the latter employed

SVM. Results showed high correlation of their estimation of influenza in early stages with

values from U.S. CDC and Japan’s Infection Disease Surveillance Center. While these

works provide important methodology for using social media to sense a topic that could

have been used for detection of general topics, they focus on a set of selected keywords/-

textual feature related to Flu as the features for their classifier. This makes their classifiers

highly specific to the sole topic of Flu detection.

• Structure-based method Garcı́a-Herranz et al. [27] use the friendship paradox concept

(described in section A.0.2.1) for early detection of contagious outbreaks. They provided
3http://www.cdc.gov/vhf/ebola/outbreaks/index.html
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a method for choosing sensor groups from friends of random sets of users to find more

central individuals in order to enforce early detection. They claim that this sensor group

represents more central individuals and individuals at the center of a network are likely

to receive a contagion sooner than randomly-chosen members of the population (because

central individuals are a smaller number of steps away from the average individual in the

network). As a result, Garcı́a-Herranz et al. [27] argued that this selection process of

sensor groups helps in early detection of outbreaks. While the methodology for choosing

sensors provided early detection of outbreaks in this case, it is a heuristic method and lacks

learning. In addition, our feature analysis in Chapter 4 shows that user-based features are

among the least informative features for general topical social sensors. This suggesting

that Garcı́a-Herranz et al. [27]’s method may not readily extend to learning high-fidelity

social sensors for general topics.

• Hybrid method Sadilek et al. [71] exploited both content of tweets and structural infor-

mation of users network. They employed a semi-supervised approach to learn a SVM

classifier using n-grams as features in order to detect ill individuals. Then, they estimated

physical interaction between healthy and sick people based on co-location and friendship.

This enabled them to study the effect of these two factors of social activity (co-location for

contact network and friendship for social ties) on public health. Using learning to detect ill

individuals from social media posts is very similar to the topic of this thesis, however [71]

does not extend this methodology to the detection topics from the perspective of general

topical content detection.

2.2.3 Summary

In this section, we presented existing works on the use of social media for sensing trending top-

ics and physical events. We argued that the main limitation to this important and very active

area of research is that (1) trending topic detection is intrinsically unsupervised and not intended

to detect targeted topics, and (2) while the Physical event detection methods have the potential

of providing high precision event detection, they are highly specific to the target event and do

not easily generalize to learn arbitrary event-based or topic-based social sensors as provided in

this work. In addition, the methods discussed for Physical Event Detection use very primitive



11

methods for curating their data. For example, Culotta [19] and Sakaki et al. [73] both use key-

words like ”flu”, ”quake”, ”earthquake”, and ”shake” to get their training and testing data. A

more robust and complete method for detection of topical content could help the performance

and accuracy of these methods as well. In contrast, the work in this thesis is based on supervised

learning of a specific topical social sensor derived from the topical set of hashtags provided by

the user.

2.3 Tracking General Topics

This section of existing works discusses use of social media sensors for detecting and tracking

general topics such as ”Baseball”, ”Fashion”, etc. There are three works fitting this category.

Here, we cover these three works by breaking down the general topic learning problem into its

components:

• Collection of labeled data: Lin et al. [47] collected seven days of unfiltered and unsam-

pled data from Twitter and labeled them based on one hashtag selected for each of the

selected 10 topic. Magdy and Elsayed [49] collected four days of data and labeled the

tweets based on a user-defined query for each of the three selected topics. Yang et al. [88]

took advantage of a multi-step process for collecting labeled data by streaming tweets

through a set of topic priors including obvious Twitter accounts of the topic, named enti-

ties, and URLs followed by applying co-training based data cleaning algorithm. We build

our work on Lin et al. [47]’s work, however we choose a set of hashtags for each topic

instead of a single hashtag to (1) cover as much topical content as possible, and (2) to

evaluate the generalization of our work on picking future unseen topical hashtags (and

thus future unseen topical content).

• Design of classifier: Lin et al. [47] leveraged language models (LM) to train models using

unigrams and bigrams while Magdy and Elsayed [49] extracted hashtags, unigrams, users

and mentions separately as features and applies SVM classifier for binary classification of

tweets. Different from the first two, Yang et al. [88] extract hashed unigram frequency and

hashed byte four-gram as features and defined the problem as topic modeling of tweets.

IN line with these works, we extract hashtags, mentions, unigrams, users as features. We

add locations as another feature which we show in Chapter 4 that is location is the second
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most important feature for detection of topical content.

• Training of classifier: Lin et al. [47] applied LMs by computing the probability of each

unigram/bigram based on its usage over a long period of time which is later smoothed

based on the recent usage provided by the wordcount within a specific history window.

Magdy and Elsayed [49]’s trained off-the-shelf Binary SVM classifer to detect topical

content from Twitter. Yang et al. [88] decided on the final topic of the tweet through

weighted majority voting of various predictors including (1) a web-page classifier that

classifies the tweet based on the embedded URL in the tweet, (2) a tweet classifier that

classifies the tweet based on it’s content. We apply supervised learning for our research as

well, however we provide a novel framework for learning in terms of splitting the data and

hashtags as topical proxies, that would ensure matching generalization to future unseen

content.

• Evaluation of results: Lin et al. [47] reported the results of their LMs for detection of

topical content by presenting precision-recall curve of each topic stating that unigram LMs

are much more effective than bigram LMs. Magdy and Elsayed [49] reported their results

in the form of mean precision and recall for each day and topic and [47]’s results show

that when considering two applied classifiers, multinomial logistic regression and one-vs-

all logistic regression, the latter works better. Unfortunately, none of them compared the

results to other works which makes it hard for us to discuss which one provided better

results. We, on the other hand, provide ranking in addition to correct prediction and thus

report average precision and precision@n (for a range of n) for each topic as well as mean

average precision over all topics. We remark that our train, validation, test framework

supports evaluation of the methodology for generalization to future unseen content (More

details are provided on Chapter 3).

While these works provide a good basis for this thesis, there are many fine-grain but important

differences between previous works and this thesis with the most important ones being:

• We analyzed long-term sensor performance on detecting topical content over two years of

Twitter data and across a variety of topics.

• We provide a novel and clear framework for splitting hashtags to train, validation and test

in a way ensuring generalization to future unseen content.
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• We present ranking in addition to correct classification while none of the other works

provide ranking.

• We deliver a comprehensive longitudinal study on features and their attributes over two

years of tweets that supports our insights for learning and relevance of features to topicality

while these works had little or none analysis over their features.

• We extract Location as one of the features which none of these works do and as we show

in our feature analysis in Chapter 4, Location is the second most important feature beating

even hashtags in terms of correlation with topicality.

2.4 Sentiments and Opinions

Sentiment and opinion mining from social media constitutes an important class of social sen-

sors with many important use cases such as marketing companies, government agencies, and

individuals are concerned with what users think about them/their products. Considering that the

literature on social sentiment and opinion mining can inform the general design of social sensors,

we cover related existing works on social sentiment and opinion mining in this section.

2.4.1 Types of Sentiment Analysis

Sentiment analysis, also known as opinion mining, is defined as analysis of text based on ex-

pressed sentiments by users. Before we proceed to discuss specific social sentiment sensor

methods, we first pause to discuss the diverse output space possible with sentiment-based social

sensors. Two major output spaces of sentiment analysis are the following:

Subjective vs. Objective sentiment At the top level of analysis, sentiment can be classified as

subjective or objective [48]. Subjective text indicates a writer’s opinion or emotional state with

respect to some topic e.g., ”it’s an excellent phone”, while objective text indicates a desirable or

undesirable condition e.g., ”it is broken”.

Simple vs. Complex sentiment Simple sentiment shows whether a text’s attitude is positive or

negative [48, 14]. Complex sentiment involves the sentimental reaction of the human to various
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words across different factors [86, 62, 78]., such as measuring the scale of positivity/negativity,

potency, oriented activity, receptivity, aggressiveness, novelty, and tension and will be discussed

in the applications of sentiment analysis.

Regardless of the features and sentiment type, sentiment analysis in social media has different

applications with different detection methodologies which are discussed in more detail in the

following sections.

2.4.2 Applications of Sentiment Analysis

With the various definitions of sentiment in hand from the previous section, we now seek to

use these in the application of social sentiment detection tools to a wide range of applications

including political, product market, stock market, and pharmacovigilance applications that we

discuss next.

Political Applications Here, we explore works on using social sensors for detecting, i.e. sensing,

people’s opinions on political issues or political parties. Social media has been extensively used

during political events. For example, analysts attribute Obama’s victory to the strength of his

social-networking strategy and use of social media such as mybarackobama.com, or MyBO [79]

which shows the extent and influence social media campaigns hold during political debates and

events. However, the question is can social media such as Twitter predict elections.

Researchers have studied social media in order to either investigate and evaluate the relationship

of online political sentiment to offline political landscape [79, 6, 60, 82] or to see if online polit-

ical sentiment can be predictive of actual election results [55, 9]. Methodologies used for these

purposes include using textual analysis software (LIWC [65]) [79], classification e.g., Naive

Bayes, SVM, Adaboost) [55, 82, 9, 6], or simple statistical methods such as computing senti-

ment score as the ratio of positive to negative word counts [60]. These methods are based on

different sets of features extracted from text such as lexicon-based features [6], the frequency of

keywords [79, 60], and with uni-grams being the most commonly used and successful feature

[55, 82, 9]. The main issue with these set of works is that they are narrow and very focused

on the specific political applications. Also, they use very primitive method for gathering their

data e.g., collecting data by searching Twitter using keywords e.g., politicians names. Hence,
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our methodology for high-precision topical content detection for generic topics could be quite

helpful for gathering most informative data for further analysis in this application.

Regarding the predictive power of Twitter, Bermingham and Smeaton [9], Mejova et al. [55]

extracted simple sentiment from social media and compared it to actual national polls results.

Bermingham and Smeaton [9] claim that social analytics using both volume-based measures and

sentiment analysis were predictive of public opinion during the Irish general election. On the

other hand, Mejova et al. [55] argue that online sentiment is not predictive of national poll re-

sults for US presidential candidates. Tumasjan et al. [79] went further and extracted complex

sentiment for 12 emotional dimensions for profiling political sentiment about parties in the par-

liament. They showed that the mere number of messages mentioning a party reflects the election

result. The analysis of tweets’ political sentiment showed close correspondence to the parties’

and politicians’ political ties claiming that the content of tweets reflect the offline political land-

scape. All of these methods mainly focus on keywords and apply ad-hoc methods for sentiment

detection which limits their future extension. Rather, the focus of learning topical social sensors

is to learn to predict for general topics in a way that generalizes beyond existing labeled topical

content to novel future topical content.

Product Market Applications Just as with political applications, social sensors have seen inten-

sive use in detecting opinions on different products. Everyday, social media users comment and

share their opinions about different products. Extracting useful information from these opinions

is helpful to marketing companies, news websites, and individuals.

Research in this application area targets different products, e.g., movies, laptops, cameras, books,

music [20, 64], trends of different brands in social media, and the relationship between the

company and customers [39, 28]. Current research takes advantage of off-the-shelf classifiers

e.g., SVM, Naive Bayes, Maximum Entropy, and Neural Networks in order to classify product

reviews into simple sentiment i.e. positive, negative, or neutral. Different features have been

extracted to this purpose. While all of these works share uni-grams as features, Pang et al.

[64] used POS-tags and position of words, Dave et al. [20] used other linguistic features e.g.,

negations and colocation, and Ghiassi et al. [28] extracted emoticons in addition to n-grams.

Moreover, in contrast to [64, 20] who extract simple sentiment, [39, 28] used graded sentiment

on a 1 to 5 scale to rank sentiment toward brands. They compared the classification results to

scalar rating per product provided in the websites such as Amazon, IMDB, etc. Results suggest
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that people do tweet about different brands and products and these works were able to extract

the sentiments about them with reasonable accuracies.

While these methods take advantage of supervised learning to detect sentiment for social media,

some of their feature selection such as POS-tags, colocations and their classifiers are very context

specific to the topic of product market and not generalizable to other topics.

Stock Market Applications Like political and product market applications, social sensors can

also be applied to predict stock market movements. The following works want to answer whether

Twitter can predict stock market.

Bollen et al. [12] took advantage of Google-Profile of Mood States (GPOMS) to extract 7 public

mood time series, in addition to simple positive/negative sentiment, to see if public mood is

predictive of future stock market values. A Granger causality analysis and a Self-Organizing

Fuzzy Neural Network trained on the basis of past DJIA4 values and public mood time series

were used to investigate the hypothesis that public mood states are predictive of changes in

stock market closing values. The econometric technique of Granger causality analysis is applied

to the daily time series produced by GPOMS vs. the DJIA. Granger causality analysis rests

on the assumption that if a variable X causes Y then changes in X will systematically occur

before changes in Y . Each public mood time series is then compared to DJIA time series to

observe the predictive power of the mood. Specifically, they claimed that the calmness of the

public (measured by GPOMS) was predictive of stock market values. Inline with this finding,

Zhang et al. [90] also showed that Twitter posts can be used to predict market indices. These

works present an interesting, complex view of sentiment, however no one has analyzed complex

sentiment features in topical social sensors and it remains an unexplored area of research.

Pharmacovigilance Applications Instead of using social sensor for monetary gain, they also

have the ability to proactively detect i.e. sense potential Adverse Drug Reactions (ADR) in a

population.

Researchers have investigated Twitter posts looking for potential signs of ADR [40, 63] and/or

to identify potential drug users [10]. Methodology used in these works is similar to product

market research and includes typical classification methods e.g., SVM and Maximum Entropy

[40, 10], and manually coded classification with concept extraction and lexicon matching [63] in
4A price-weighted average of 30 significant stocks traded on the New York Stock Exchange and the Nasdaq
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order to detect mentioned signs of ADR in posts. These methods are based on various features

extracted from posts such as semantic features generated by MetaMap5 concerning mention of

ADRs [63, 40, 10], presence and frequency of semantic types of disease or syndrome [40], and

textual features e.g., number of hashtags, reply-tags, urls, pronouns [40, 10]. Results suggest that

users mention adverse drug reactions and studying social media data can serve to complement

and/or supplement traditional time-consuming and costly surveillance methods [40].

Both works by Jiang and Zheng [40] and Bian et al. [10] provided important work for pharma-

covigilance application using supervised learning for detection of ADR. However their use of

semantic features from MetaMap, which is focused on medical keywords, makes the learning

focused on the specific application and not applicable to generic topics.

2.4.3 Summary

This section explored use of social media sensors for detecting sentiment. We presented the

existing works on four various applications: political, product market, stock market, and phar-

macovigilance applications. The majority of these works used supervised learning methods for

social sentiment detection, which is in line with our thesis’s focus on employing supervised

learning methods for learning general topical social sensors. We note that while some of the fea-

tures extracted were targeted on a specific application, such as features extracted from MetaMap,

other set of features such as analyzing complex sentiment features could provide a useful hypoth-

esis space of features for future research. Another set of works [63, 6] used ad-hoc methods such

as lexion-based approaches, which are too specific to the task of sentiment analysis. In the end,

it is important to note that typically there is a lot of labeled sentiment data e.g., online reviews,

whereas for generic topic sensors this is not the case. Furthermore sentiment is expected to be

more temporally stable whereas topical content e.g., natural disasters can change drastically over

time and the works discussed in this section did not consider these issues in great detail.
5A program mapping biomedical text to concepts in the largest thesaurus in the biomedical domain [5]



18

2.5 Preferences and Traits

Learning user preferences will help us to sense what do users want e.g., what do they prefer to

buy, what topics do they care about more. Social media provides sources of data for various

topics, e.g., people reveal their preferences online, which can be mined.

There are two types of preference learning problems on social media: personalized, and collab-

orative. The first is where there is only a single user and many items. Usually, researchers use

product description as features of the item in order to predict preferences and the predictions are

shown as ranking of items [31]. The second case is when there are multiple users and multiple

items. This scenario is often called collaborative filtering [37]. Learning the user’s preferences

can help in understanding what users prefer to buy, who they prefer to be the next president,

what pages would they like, what topics are the most interesting ones for them, and what are

their private traits. The most important target users of this procedure are marketing companies

and political parties.

2.5.1 Framework of Preference Prediction

Predicted preferences can be absolute or relative. Absolute preferences are further divided into

binary or numeric e.g. U1 rates X2 as 3 or Rating(U1, X2) = 3. Relative preferences show

ordering on a set of items e.g. X1 � X2 � X3.

Four different methodologies are commonly used for preference prediction:

• Content-based: methods based on features extracted from the content of posts by employ-

ing simple linear regression, classification, or data mining approaches

• Social-based methods: methods dependent on the links and interaction between users

(share, comment, tag, mention, like, retweet). These methods are based on homophily,

the theory that individuals with similar characteristics or interests are more likely to form

social ties [1]

• Collaborative Filtering: methods aiming to exploit information about preferences for items,

including matrix factorization and neighborhood models
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• Hybrid: any of the above methods using content and interaction information to extract

preferences by employing simple linear regression, classification, or data mining approaches

specific instances of these methods are outlined in next section.

2.5.2 Applications of Preference and Trait Prediction

This section provides various works on preference learning and trait prediction.

Traits and Personal Information Prediction Studies in this section provide predictions for

users’ personality traits, intelligence, gender, age, sexual orientation[43] or extract characteris-

tics of users. For example, they show that there is a correlation between popularity (measured by

following, followers, and listed counts on Twitter profile) and extroversion (measured by myPer-

sonality test6) shown with computation of Pearson’s correlation[69]. Methods used by [43] and

[69] are both interaction-based. Numeric variables such as age or intelligence were predicted

using a linear regression model, whereas dichotomous variables such as gender or sexual orien-

tation were predicted using logistic regression. Kosinski et al. [43] used Facebook likes as the

only feature, while Quercia et al. [69] used more extensive features including user’s profile in-

formation, number of followers, and number of followees. Understanding users traits will bring

insights on how to approach learning social sensors for various targets, and is a beginning step

toward achieving superior topical social media sensors.

Product Preference Prediction/ Product Recommendation Research on product preference

prediction targets different products such as electronics, movies, music, and foods. Researchers

provided various types of output including a ranked list of products [91, 92], numeric real-values

showing the preferences for each item [75], or binary values on whether the user would like an

item or not [74]. They used different methodologies such as simple popularity methods [91],

linear regression [91, 92, 74], simple classifiers (Naive Bayes, SVM, logistic regression) [91, 74],

or collaborative filtering methods based on matrix factorization [75]. Zhang and Pennacchiotti

[91, 92] use a set of features derived from the users social media account, e.g., Facebook page

likes and user demographics, Facebook n-grams from pages, and user’s purchase behaviors from

e-bay. Sedhain et al. [74] focuses on user interactions (type, modality, directionality) in addition
6http://www.mypersonality.org/wiki/
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to user likes on Facebook. The study of users preferences on products could help topical social

sensors by learning to return more personalized topical content for various users.

Political Preference Prediction Research on political preferences includes predicting political

orientation [29, 30], classifying stances on political debates concerning topics of health care,

gay rights, gun rights, ... [76, 81], or providing descriptive study on users’ influences on political

orientation of others [1] . Methodologies used are divided into collaborative filtering methods

and non-collaborative methods.

• Gottipati et al. [30] applies collaborative filtering based on probabilistic matrix factoriza-

tion.

• The non-collaborative works either use simple data mining and statistical approaches [29],

homophily measure between users and their followers/followees using similarity metrics

[1], or classification methods [76, 81]. To apply these methods, researchers extracted

features including sentiment features [76, 81], and structure-based features (network of

users on following each other) [29, 1].

Results suggested (with highest accuracy of 70%) that it is possible to detect the stance of users

toward political debates or parties. The descriptive study of [1] showed that in 73% of cases,

users and their followers shared similar political orientation. Knowing user’s political prefer-

ences could be useful in presenting users with more personalized search results on topics that

are related to politics such as, Social Issues, Human Caused Disasters, etc. Hence, we could

take advantage of the results from the classification of stances on political matters to build more

personalized topical social sensors in future work.

Re-Tweet Prediction Information diffuses in Twitter between users through retweets. Analyz-

ing retweet history reveals users personal preference for tweets. Therefore, predicting retweet

behavior of a tweet and studying characteristics of popular messages are important for under-

standing and predicting information diffusion in Twitter. To this end, various works have been

proposed. In the following, these works are categorized based on two different main goals:

1. Predict if a tweet will be retweeted in future and provide retweet count [15, 87, 67]:

All of these works use classification-based approaches using tweet-based and author-based

features. However, Can et al. [15] took advantage of visual cues from images linked in the

tweets, and Xu and Yang [87] employed social-based features in addition to tweet author-
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based features. Different from the other two works, Xu and Yang [87] performed the

analysis from the perspective of individual users. Petrovic et al. [67] worked on retweet

prediction of real-time tweeting with online learning algorithms and claimed that perfor-

mance is dominated by social features, but that tweet features add a substantial boost.

2. Rank tweets based on retweeting probability or category [34, 25]: Works in this

category focus on finding important tweets by analyzing propagation of tweets through

retweeting. Feng and Wang [25] used author-based and interaction-based features in ad-

dition to tweet-based features to build a graph in order to model retweet behavior. They

designed a model that learns latent biases for each node based on the underlying graph.

Their model is based on the notion that tweet history reveals user’s personal preference.

Hong et al. [34] formulated ranking tweets into a two-step classification problem by inves-

tigating features based on content, temporal information, users, and topological features

of user’s social graph. The first classifier predicts whether a tweet will be retweeted, while

the second classifier predicts volume range of future retweets for a new messge.

These studies showed that temporal features have a stronger effect on messages with low and

medium volume of retweets compared to highly popular messages, and user activity features can

further improve the performance marginally. Also, Hong et al. claimed that degree distribution

and retweet before contribute greatly to retweet behavior. Feng and Wang [25] mentioned that

importance of a tweet varies from user to user, and considering publisher’s authority and tweet’s

quality alone is not enough, personalization plays an important role in the retweet behavior.

Feature types used in the above methods are shown in more detail in table 2.1.

Despite the fact that all of these methods recommend tweets and take advantage of useful features

such as tweet-based features and social based features, they and recommendation methods in

general are focused on predicting tweets that correlate with the preferences of a specific user or

that are directly related to specific content. Rather the focus with learning topical social sensors

is to learn to predict for general topics (independent of a users profile) in a way that generalizes

beyond existing labeled topical content to novel future topical content.



22

Feature Type Detail Features

Tweet-based
TF-IDF, topics extracted from LDA, #urls, #hashtags, #users mentioned,
type (reply/retweet), #total words, has multimedia, has geography,
time-span since last rt, time-span since created, tweet length

Author-based
#followers, #friends, #tweets published before, #listed times,
#favorited times, age, avg #tweets per day, location, is verified

Social-based
Author relationship to user: is followed, is in list, #times retweeted,
is followee, #times mentioned

Interaction-based
tweet profiles similarity, recent tweet profiles similarity, reply count,
self-descriptions similarity, following lists similarity, retweet count,
has same location/timezone, mention count,

Visual cues color histograms
Topological Page-rank, degree distribution, local clustering coefficient, reciprocal links

Table 2.1: List of features used in retweet prediction

2.5.3 Summary

In this section we presented different methodologies and applications for preference detection

and re-tweet recommendation in social media. Social sensors for preference detection are im-

portant since they provide us with more features on users preferences that could later be helpful

for learning topical social sensors. These works raise a number of useful features such as user’s

traits, retweet probability of a tweet, social-based features that could be used in general social

sensors, what remains is conducting a comprehensive evaluation of these features in general

topic learning setting to see how well these features perform for detection of topical content.

2.6 Conclusion

Through review of the literature we showed that social media can be used as a sensor to detect

latent phenomena. Existing works in the literature successfully detected or predicted events,

sentiments, and preferences of users. The weaknesses of all the reviewed works could be sum-

marized in a few points:

• Existing literature on trending topic detection is intrinsically unsupervised and not in-

tended to detect targeted topics, which is in contrast to supervised learning of topical
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social sensors for generic topics.

• Existing literature on physical event detection has the potential of providing high precision

event detectors, however the existing literature is highly specific to the target event and

does not easily generalize to learn arbitrary event-based or topic based social sensors as

provided in this work.

• Existing literature on social sentiment and opinion mining discusses two sets of meth-

dologies: (1) ad-hoc lexicon-based methods which are not extendable to learning general

topical social sensors, and (2) using supervised classification methods with leveraging in-

teresting features such as complex sentiment of social media posts. These features could

be a useful to consider in learning topical social sensors, however evaluating the impor-

tance of the features for topicality remains as an open area for future research.

• Existing literature on preference learning could help social sensors in sensing what do

users like on various matters like products, politics, etc. This in turn could be useful

for learning topical social sensors to capture this information in providing better or more

personalized topical content for users.

• Existing literature on tracking general topics provided a good basis for this work, however

there are many fine-grained differences between our feature extraction and learning frame-

work to the mentioned works. Such as the way we split our hashtags and tweets to train,

validation and test sets to ensure generalization to future unseen content. We also provide

a comprehensive feature analysis showing what/why features are useful for topical content

detection while the literature has little to provide on this matter.

In the next chapter, we present our methodology for learning general topical social sensors.
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Chapter 3: Learning Topical Social Sensors

The main focus of this thesis is retrieving high-precision content on generic topics where small

amount of labeled data in form of hashtags is available from user. The question is how to learn

over the space of millions of features to predict topical content with high precision that matches

users information needs and will generalize to future unseen content. This chapter addresses

resolving these issues in learning general topical social media sensors.

3.1 Problem Setup

In this section, we reduce the problem of learning topical content from large space of features

and small set of examples provided by the user to the following setting that will match standard

supervised learning paradigm.

Here, the problem statement is that the user has an information need for high-precision topical

content from Twitter. The first step for the user is that he/she must provide labeled data to

represent this information need for use in a targeted supervised learning setting. We assume

that for each topic, the user will provide us with a set of hashtags. For example for the topic

of Natural Disaster, the user will give us {#earthquake,#flood,#prayforthephilippines, ...}. The

goal is, given this topic and related hashtags, return a ranked list of tweets to the user that are

highly relevant to the topic and match users information needs; meaning instead of returning

a set of tweets that only match ”disaster” or ”natural”, we realize the actual information need

behind the searched topic and present all tweets matching this need. To this end, we need a

methodology that learns from the set of hashtags provided by users on how to pick up sensors

(i.e., useful terms, mentions, hashtags, locations, and users) and weight them to ensure picking

new, unseen topical hashtags in future tweets. The following discussion intends to answer how

to develop such methodology.

Our objective in learning social sensors is to train an automatic system for ranking documents

by their topical relevance. Formally, given an arbitrary document d and a set of topic classes
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C = {c1, . . . , cK}, we wish to train a scoring function f:d→ R over a set of training documents

D = {d1, . . . , dN}. Considering M number of features extracted from dataset, each document

di ∈ D has a boolean feature vector (d1i , . . . , d
M
i ) ∈ {0, 1}M and boolean label dci ∈ {0, 1}

indicating whether the document di is topical (1) or not (0). We define the set of positively

occurring features for a document di as D+
i = {dji |d

j
i = 1}j=1...M and note that D+

i may

include features for the content of di (e.g., terms, hashtags) as well as its meta-data (e.g., author,

location).

There are two catches that make our training setting somewhat non-standard and which underlie

subtle but critical contributions in this work:

1. Manually labeling documents is time-consuming so we need a way to label a large number

of tweets with minimal user curation effort; We achieve this by using hashtags as topical

proxies.

2. We need to train our social sensor on known topical content, but tune it on novel topical

validation content that ensures the tuning achieves optimal generalization; We achieve

this by excising training content from our validation data so that our scoring function

hyperparameter tuning ensures generalization.

We next explain these key innovations in detail.

A critical bottleneck for learning targeted topical social sensors is to achieve sufficient super-

vised content labeling. With data requirements often in the thousands of labels to ensure effec-

tive learning and generalization over a large candidate feature space (as found in social media),

manual labeling is simply too time-consuming for many users and crowdsourced labels are both

costly and prone to misinterpretation of users’ information needs. Fortuitously, hashtags have

emerged in recent years as a pervasive topical proxy on social media sites — hashtags originated

on IRC chat, were adopted later (and perhaps most famously) on Twitter, and now appear on

other social media platforms such as Instagram, Tumblr, and Facebook. Hence as a simple en-

abling insight that serves as a catalyst for effective topical social sensor learning, for each topic

class c ∈ C, we leverage a (small) set of user-curated topical hashtags Hc to efficiently provide

a large number of supervised topic labels for social media content. Next we will provide the

formal procedure for labeling data with Hc and training.

With the data labeling bottleneck resolved, we proceed to train supervised classification and
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Figure 3.1: The method for temporally splitting hashtags and tweets to train, validation, and test
sets

ranking methods to learn topical content from a large feature space (e.g., for Twitter, this feature

space includes terms, hashtags, mentions, authors and their locations). The training process

includes the following two steps:

1. Temporally split train and validation usingHc: As usual for machine learning methods,

we divide our training data into train and validation sets — the latter for hyperparameter

tuning to control overfitting and ensure generalization to unseen data. As a critical insight

for topical generalization where we view identification of previously unseen hashtags as

a proxy for topical generalization, we do not simply split our data temporally into train

and test sets as usually done. Instead, we split Hc into two disjoint sets Hc
train and Hc

val

according to a time stamp tsplit and the first usage time stamp t∗h of hashtags h ∈ Hc. This

procedure is shown visually in Fig 3.1. Formally, we define the following:

Hc
train = {h|h ∈ Hc ∧ t∗h < tsplit},

Hc
val = {h|h ∈ Hc ∧ t∗h ≥ tsplit}.

Once we have split our hashtags into training and validation sets according to tsplit, we

next proceed to temporally split our training documents D into a training set Dc
train and a

validation set Dc
val for topic c based on the posting time stamp tdi of each document di as
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follows:

Dc
train = {di|di ∈ D ∧ tdi < tsplit},

Dc
val = {di|di ∈ D ∧ tdi ≥ tsplit}.

Then for each set of train and val tweets, we use the respective hashtag sets Hc
train and

Hc
val for labeling each dci ∈ Dc

train:

dci =

1 : ∃h∈Hc
train

h ∈ D+
i

0 : otherwise
.

and similarly for each dci ∈ Dc
val:

dci =

1 : ∃h∈Hc
val
h ∈ D+

i

0 : otherwise
.

The critical insight here is that we not only divide the train and validation temporally,

but we divide the hashtag labels temporally and label the validation data with an entirely

disjoint set of topical labels from the training data. The purpose behind this training and

validation data split and labeling is to ensure that learning hyperparameters are tuned so

as to prevent overfitting and maximize generalization to unseen topical content (i.e., new

hashtags).

2. Training and hyper-parameter tuning: OnceDc
train andDc

val have been constructed, we

proceed to train our scoring function f on Dc
train and select hyperparameters to optimize

Average Precision (AP) on Dc
val. Once the optimal f is found for Dval, we return it as our

final learned topical scoring function for topic t.

Having defined our topical social sensor learning paradigm, it now remains to empirically eval-

uate this methodology in a social media setting, which we describe next.
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3.2 Data Description

This section provides details of the Twitter testbed for topical social sensor learning that we

evaluate in this thesis. We crawl Twitter data using Twitter Streaming API for two 24 months

spanning 2013 and 2014. The total number of tweets collected is 829,026,458. In the context

of Twitter, we consider five feature types for each tweet. Each tweet has a From feature (i.e.,

the person who tweeted it), a possible Location (i.e., a string provided as meta-data), and a time

stamp when it was posted. A tweet can also contain one or more of the following:

• Hashtag: a topical keyword specified using the # sign.

• Mention: a Twitter username reference using the @ sign.

• Term: any non-hashtag and non-mention unigrams.

(a) Human Caused Disaster (b) Iran Deal (c) Soccer

(d) Health Epidemics (e) Social Issues (f) Space

Figure 3.2: Per capita tweet frequency across different international and U.S. locations. The
Middle East and Malaysia stand out for Human Caused Disaster (MH370 incident), Iran and
Europe for nuclear negotiations on “Iran deal”, soccer for some (English-speaking) countries
where it is popular. and on U.S. states, Colorado for health epidemics (both whooping cough
and pneumonic plague), Missouri stands out for social issues (#blacklivesmatter in St. Louis),
and Texas stands out for space due to NASA’s presence

We provide more detailed statistics about each feature in Table 3.1. For example, there are

over 11 million unique hashtags, the most frequent unique hashtag occurred in over 1.6 million
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tweets, a hashtag has been used on average by 10.08 unique users, and authors (From users) have

used a median value of 2 unique hashtags.

#Unique Features
From Hashtag Mention Location Term
95,547,198 11,183,410 411,341,569 58,601 20,234,728

Feature Usage in #Tweets
Feature Max Avg Median Max entity
From 10,196 8.67 2 running status

Hashtag 1,653,159 13.91 1 #retweet

Mention 6,291 1.26 1 null

Location 10,848,224 9,562.34 130 london

Term 241,896,559 492.37 1 rt

Feature Usage by #Users
Hashtag 592,363 10.08 1 #retweet

Mention 26,293 5.44 1 dimensionist

Location 739,120 641.5 2 london

Term 1,799,385 6,616.65 1 rt

Feature Using #Hashtags
From 18,167 2 0 daily astrodata

Table 3.1: Feature Statistics of our 829, 026, 458 tweet corpus.

Fig. 3.2 shows per capita tweet frequency across different international and U.S. locations for

different topics. While English speaking countries dominate English tweets, we see that the Mid-

dle East and Malaysia additionally stand out for the topic of Human Caused Disaster (MH370

incident), Iran and Europe for nuclear negotiations the “Iran deal”, and soccer for some (English-

speaking) countries where it is popular. For U.S. states, we see that Colorado stands out for

health epidemics (both whooping cough and pneumonic plague), Missouri stands out for social

issues (#blacklivesmatter in St. Louis), and Texas stands out for space due to NASA’s presence
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there.

With Twitter dataset explained, now we move to discussion of our proposed methodology for

learning to rank high-value topical content in Twitter.

3.3 Proposed Approach

With the formal definition of learning topical social sensors provided in Sec. 3.1 and the overview

of our data in Chapter. 4, we proceed to outline our experimental methodology on our Twitter

corpus.

3.3.1 Dataset preparation

We manually curated a broad thematic range of 10 topics shown in the top row of Table 3.2 by

annotating hashtag sets Ht for each topic t ∈ T . We used 4 independent annotators to query

the Twitter search API to identify candidate hashtags for each topic, requiring an inner-annotator

agreement of 3 annotators to permit a hashtag to be assigned to a topic set. Per topic, hashtags

were split into train and test sets according to their first usage time stamp roughly according to

a 3/5 to 2/5 proportion. The train set was further temporally subdivided into train and validation

hashtag sets according to a 5/6 to 1/6 proportion. We show a variety of statistics and five sample

hashtags per topic in Table 3.2. Here we can see that different topics had varying prevalence in

the data with Soccer being the most tweeted topic and IranDeal being the least tweeted according

to our curated hashtags.

3.3.2 Feature Extraction

As noted in Chapter. 4, positively occurring features D+
i in our di may include From, Mention,

Location, Term, and Hashtag features. Because we have a total of 538, 365, 507 unique features

in our Twitter corpus, it is critical to pare this down to a size amenable for efficient learning

and robust to overfitting. To this end, we thresholded all features according to the frequencies

listed in Table 3.3. The rationale in our thresholding was initially that all features should have
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Threshold #Unique Values
From 159 361,789

Hashtag 159 184,702

Mention 159 244,478

Location 50 57,767

Term 50 317,846

Features (CF) - 1,166,582

Table 3.3: Cutoff threshold and corresponding number of unique values of candidate features
CF for learning.

the same frequency cutoff in order to achieve roughly 1 million features. However, in initial

experimentation, we found that a high threshold pruned a large number of informative terms and

locations. To this end, we lowered the threshold for terms and locations noting that even at these

adjusted thresholds, we still have more authors than terms. We also removed common English

stopwords which further reduced the unique term count. Overall, we end up with 1, 166, 582

candidate features (CF) for learning social sensors.

3.3.3 Supervised Learning Algorithms

With our labeled training and validation datasets defined in Sec. 3.1 and our candidate feature

set CF defined previously, we proceed to apply different probabilistic classification and ranking

algorithms to generate a score function f for learning social sensors as defined in Sec. 3.1. In this

paper, we experiment with the following four state-of-the-art classification and ranking methods:

1. Logistic Regression using LibLinear [23]

2. Bernoulli Naı̈ve Bayes [54]

3. Rocchio [50]

(a centroid-based classifier)

4. RankSVM [45]

As outlined in Sec 3.1, tuning of hyperparameters on a validation dataset is critical. In our

experiments, we tune the following hyperparameters:
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• Logistic Regression: L2 regularization constant C is tuned for C ∈ {1E − 12, 1E −
11, ..., 1E + 11, 1E + 12}.

• Naı̈ve Bayes: Dirichlet prior α is tuned for α ∈ {1E−20, 1E−15, 1E−8, 1E−3, 1E−
1, 1}.

• All Classfiers: The number of top features M selected based on their Mutual Information

is tuned for M ∈ {1E2, 1E3, 1E4, 1E5, 1166582 (all features) }.

We remark that many algorithms such as Naive Bayes and Rocchio performed better with feature

selection and hence we used feature selection for all algorithms (where it is possible to select

all features). Hyperparameter tuning is done via exhaustive grid search and using the Average

Precision (AP) to select the best scoring function f on the validation data. Once found, f can be

applied to any tweet di to provide a score f(di) used to rank tweets in the test data.

3.4 Performance Analysis

We now proceed to evaluate the performance of each of the four aforementioned supervised

learning algorithms for the task of learning social sensors. We note that parts of the analysis was

conducted using Apache Spark on Amazon Web Services to handle the large amount of data. For

evaluation, two main tasks are considered. (1) The correct classification of each tweet (topical or

not), (2) Evaluation of the ranking of the returned tweets for each topic. Once a scoring function

is trained via each method, we use it to rank tweets and then compute the following ranking

metrics on the resulting ranked list:

• AP: Average precision over the ranked list; the mean over all topics provides mean AP

(MAP).

• P@k: Precision at k for k ∈ {10, 100, 1000}.

While P@10 may be a more standard retrieval metric for tasks such as ad-hoc web search, we

remark that the short length of tweets relative to web documents makes it more plausible to look

at a much larger number of tweets, hence the reason for also evaluating P@100 and P@1000.
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Table 3.4 evaluates these metrics for each topic. Logistic Regression is the best performing

method on average except for P@10. We conjecture the reason for this is that Naı̈ve Bayes tends

to select fewer features for training, which allows it to achieve higher precision over the top of

the ranked list but which causes it suffer slightly more lower down the list due to having fewer

features and lower recall. These results suggest that in general both Logistic Regression and

Naı̈ve Bayes make for effective topical social sensor learners with Naı̈ve Bayes being a good

choice in terms of its efficiency compared to it’s overall performance.

To provide more insight into the general performance of our learning topical social sensor frame-

work, we provide the top five tweets for each topic returned by Logistic Regression in Table 3.5

and Table 3.6. We’ve annotated all tweets in this table with the following symbols:

• X: the tweet was topical according to our curated test hashtag set.

• H: the tweet was determined to be topical through manual evaluation even though it did

not contain a hashtag in our curated hashtag set (this corresponds to a false negative due

to non-exhaustive labeling of the data).

• 7: the tweet was not topical.

In general, we remark that our learning social sensor based on logistic regression performs even

better than the quantitative results in Table 3.4 would indicate: many of the highly ranked tweets

are false negatives — they are actually relevant. Furthermore, we remark that even though we

use hashtags to label our training, validation, and testing data, our learning social sensor has

highly (and correctly) ranked topical tweets that do not contain hashtags indicating encouraging

generalization properties from a relatively small set of curated topical hashtags.

3.5 Discussions

In this chapter we presented the proposed framework and methodology for learning topical so-

cial sensors from Twitter. Here, we provided a supervised learning method which is novel in

structure and application evidenced by the following highlights: (1) the use of a set of hash-

tags as topical proxies to label millions of tweets with minimal user effort, (2) the novel way

of temporally splitting hashtags to use them for splitting and labelling train, validation, and test



35

datasets of tweets and later removing the tweets containing train hashtags from the evaluation

set, and (3) The largely impressive results across 10 diverse topics in terms of average precision

and precision@n.

In the next chapter, we provide a through analysis of our features explaining how features and

their attributes correlate with topicality in Twitter.
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Tennis

Xrt @espntennis: shock city. darcis drops rafa in straight sets. first time nadal loses in first rd of a. major...

X@ESPNTennis: Shock city. Darcis drops Rafa in straight sets. First time Nadal loses in first rd of a...

X@ESPNTennis: Djokovic ousts the last American man standing @Wimbledon, beating Reynolds 7-6...

XNadal’s a legend. After 3 years; Definitely He’s gonna be the best of all the time. Unbelievable perf...

X@calvy70 @ESPNTennis @Wimbledon I see, thanks for the info and enjoy #Wimbledon2014

Soccer

7rt @tomm dogg: #thingstodobeforeearthends spend all my money.

H@mancityonlineco nice performance

Hrt @indykaila: podolski: ”let’s see what happens in the winter. the fact is that i’m not happy with it, th...

Hrt @indykaila: wenger: ”i don’t believe match-fixing is a problem in england.” #afc

7@indykaila you never got back to me about tennis this week

HumanDisaster

Xrt @baselsyrian: there‘ve been peaceful people in #homs not terrorists! #assad,enemy of #humanity...

Xwhat a helpless father, he can do nothing under #assad’s siege!#speakup4syrianchildren http://t.co/vg...

Hexclusive: us formally requested #un investigation; russia pressured #assad to no avail;chain of evidence...

H#save aleppo from #assadwarcrimes#save aleppo from #civilians -targeted shelling of #assad regime...

Xrt @canine rights: why does the #un allow this to continue? rt@tintin1957 help raise awareness of the...

SocialIssues

Hthe us doesn’t actually borrow is the thing. i believe in a creationist theory of the us dollar @usanationdebt...

Hrt @2anow: according to @njsenatepres women’s rights do not include this poor nj mother’s right to defend...

Hrt @2anow: confiscation ? how many carry permits are in the senate and assembly? give us ours or turn ...

Hrt @2anow: vote with your wallet against #guncontrolforest city enterprises does not support the #2a http...

H@2anow @momsdemand @jstines3 they dont have a plan for that,which is why they should never be allow...

Epidemics

Xrt @who: fourteen of the susp. &amp; conf. ebola cases in #conakry, #guinea, are health care workers, of...

7@who who can afford also been cover in government health insurance [with universal health coverage]

X#ebolaoutbreak this health crisis..unparalleled in modern times, @who dir. aylward - requires $1 billion ...

7rt @medsin: @who are conducting a survey on the social determinants of health in medical teaching. fill...

7augmentation vertigineuse de 57,4% en 1 an des actes islamophobes en france, dit le collectif contre l’is...

Table 3.5: Top tweets for each topic from Logistic Regression method results, marked with 7as
irrelevant, Xas relevant and labeled as topical, and Has relevant but labeled as non-topical



38

Space

7rt @jaredleto: rt @30secondstomars: icymi: mars performing a cover of @rihanna’s #stay on australia’s @trip...

7voting mars @30secondstomars @jaredleto @shannonleto @tomofromearth xobest group http://t.co/dls...

7rt @jaredleto com: show everyone how much you are proud of @30secondstomars !#mtvhottest 30 seconds to..

7rt @30secondstomars: missed the big news? mars touring with @linkinpark + special guests @afi this sum...

7rt @30secondstomars: to the right,to the left,we will fightto the death.go #intothewildonvyrt with mars, starting...

IranDeal

Xrt @iran policy: @vidalquadras:@isjcommittee has investigated 10 major subjects of irans controversial #nuc...

Xrt @iran policy: @vidalquadras:@isjcommittee has investigated 10 major subjects of irans controversial #nuc...

7rt @negarmortazavi: thank you @hassanrouhani for retweeting. let’s hope for a day when no iranian fears retur...

7rt @iran policy: iran: details of savage attack on political prisoners in evin prison http://t.co/xdzuakqdiv #iran...

Xrt @iran policy: chairman ros-lehtinen speaking on us commitment 2 protect camp liberty residents. #iranhr...

CelebrityDeath

Hrt @sawubona chris: today is my birthday &amp; also the day my hero @nelsonmandela has died. lets never...

Hrt @nelsonmandela: death is something inevitable.when a man has done what he considers to be his duty to...

Hrt @nelsonmandela: la muerte es algo inevitable.cuando un hombre ha hecho lo que considera que es su...

7#jacques #kallis: a phenomenal cricketing giant of all time - #cricket #history #southafrica http://t.co/ms5p...

7@sudesh1304 south africa has the most beautiful babies....so diverse,so unique...so god!! lol #durban #southa...

NaturalDisaster

7us execution in #oklahoma : not cruel and unusual? maybe just barbaric, inhumane and reminiscent of the...

7#haiti #politics - the haiti-dominican crisis - i agree with how martelly is handling the situation: i totally... http...

Hrt @soilhaiti: a new reforestation effort in #haiti. local compost, anyone? http://t.co/xpad0rqbjk @richardbran...

7mes cousins jamais ns hantent les nuits de duvalier #haiti #duvalier

Xtony burgener of @swisssolidarity says you can’t compare the disaster response in #haiti with the response to...

LGBT

Hrt @jackmcoldcuts: @lunaticrex @fingersmalloy @toddkincannon @theanonliberal anthony kennedy just...

7@toddkincannon your personal account, your interest. separate from your business.

7why would you report someone as spam if he is not spam? @illygirlbrea @toddkincannon

7rt @t3h arch3r: @toddkincannon thanks for your tl having the female realbrother. between them is 600 lbs....

7@toddkincannon who us dick trickle.

Table 3.6: Top tweets for each topic from Logistic Regression method results, marked with 7as
irrelevant, Xas relevant and labeled as topical, and Has relevant but labeled as non-topical
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Chapter 4: Feature Analysis

In this chapter, we analyze the informativeness of our defined features in Chapter 4 and the effect

of their attributes on learning targeted topical social sensors. To this end, our goal in this section

is to answer the following questions:

1. What are the best features for learning social sensors and do they differ by topic?

2. For each feature type, do any attributes correlate with importance?

To answer these questions, we use Mutual Information (MI) [51] as our primary metric for fea-

ture evaluation. Mutual Information is defined as a general method for measuring the amount

of information one random variable contains about another random variable. Mutual Informa-

tion has been highly successful for feature selection , hence it serves as a measure of feature

utility for the topic classification task [32]. In order to calculate the amount of information

that each feature j ∈ {From,Hashtag,Mention,Term,Location} provides w.r.t. each topic label

t ∈ {NaturalDisaster, Epidemics, ...}, Mutual Information is formally defined as

I(j, t) =
∑

t∈{true,false}

∑
j∈{true,false}

p(j, t) log

(
p(j, t)

p(j)p(t)

)
,

where higher values for this metric indicate more informative features for the specified topic.

4.1 Feature Importance

In order to answer the first question regarding the best features for learning social sensors, we

provide the mean Mutual Information values for each feature across different topics in Fig. 4.1.

The last column in Fig. 4.1 shows the average of the mean Mutual Information for each feature

type. From analysis of Table 4.1, we can make a set of observations:

• The Term and Location features are the most informative features on average.
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Topics/Top10 NaturalDisaster Epidemics IranDeal SocialIssues LBGT
From earthquake wo changedecopine mazandara nsingerdebtpaid eph4 15
From earthalerts drdaveanddee hhadi119 debtadvisoruk mgdauber
From seelites joinmentornetwk 140iran debt protect stevendickinson
From globalfloodnews followebola setarehgan negativeequityf lileensvf1
From gcmcdrought localnursejobs akhgarshabaneh dolphin ls truckerbooman
Hashtag earthquake health iran ferguson tcot
Hashtag haiyan uniteblue irantalks mikebrown p2
Hashtag storm ebola rouhani ericgarner pjnet
Hashtag tornado healthcare iranian blacklivesmatter uniteblue
Hashtag prayforthephilippines depression no2rouhani fergusondecision teaparty
Location philippines usa tehran st.louis usa
Location ca ncusa u.s.a mo bordentown
Location india garlandtx nederland usa newjersey
Location newdelhi oh-sandiego iran dc sweethomealabama!
Location newzealand washington globalcitizen washington aurora
Mention oxfamgb foxtramedia 4freedominiran deray jjauthor
Mention weatherchannel obi obadike iran policy natedrug 2anow
Mention redcross who hassanrouhani antoniofrench govchristie
Mention twcbreaking obadike1 un bipartisanism a5h0ka
Mention abc7 c25kfree statedept theanonmessage barackobama
Term philippines health iran police obama
Term donate ebola regime protesters gun
Term typhoon acrx nuclear officer rights
Term affected medical iranian protest america
Term relief virus resistance cops gop

Topics/Top10 HumanDisaster CelebrityDeath Space Tennis Soccer
From ydumozyf nmandelaquotes daily astrodata tracktennisnews losangelessrh
From syriatweeten boiknox freesolarleads tennis result shoetale
From tintin1957 jacanews houston jobs i roger federer sport agent
From sirajsol ewnreporter star wars gifts tennislessonnow books you want
From rt3syria paulretweet lenautilus kamranisbest makeupbella
Hashtag syria rip science wimbledon lfc
Hashtag gaza riprobinwilliams starwars usopen worldcup
Hashtag isis ripcorymonteith houston tennis arsenal
Hashtag israel mandela sun nadal worldcup2014
Hashtag mh370 nelsonmandela sxsw wimbledon2014 halamadrid
Location malaysia southafrica germany london liverpool
Location palestine johannesburg roodepoort uk manchester
Location syria capetown houston india london
Location israel pretoria austin pakistan nigeria
Location london durban tx islamabad india
Mention ifalasteen nelsonmandela bizarro chile wimbledon lfc
Mention revolutionsyria realpaulwalker nasa usopen arsenal
Mention drbasselabuward robinwilliams j ksen andy murray realmadriden
Mention mogaza rememberrobin jaredleto serenawilliams ussoccer
Mention palestinianism tweetlikegiris 30secondstomars espntennis mcfc
Term israel robin cnblue murray madrid
Term gaza williams movistar tennis goal
Term israeli nelson enero federer cup
Term killed mandela imperdible djokovic manchester
Term children cory greet nadal match

Table 4.1: The top 5 features for each feature type and topic based on Mutual Information.
We note that the Terms appear to be the most generic and generalizable features, and the top
Locations are also highly relevant to most topics indicating the overall importance of these tweet
features for identifying topical tweets.
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Figure 4.1: Matrix of mean Mutual Information values for different feature types vs. topics. The
last column as average of mean values across all topics. All values should be multiplied by 1E+
10. We remark that the Term and Location features are the most informative features on average
and the Location feature provides the most information regarding the topics of HumanDisaster,
LBGT, and Soccer indicating that a lot of content in these topics is heavily localized)

• The Location feature provides the most information regarding the topics of HumanDisas-

ter, LBGT, and Soccer indicating that a lot of content in these topics is heavily localized.

• Looking at the overall average values, the order of informativeness of feature types appears

to be the following: Term, Location, Hashtag, Mention, From.

To further analyze the relationship between the informativeness of feature types and topics, we

refer to the box plots of Fig. 4.4. Here we see the quartiles and outliers of the distribution rather

than just the average of the MI values in order to ensure the mean MI values were not misleading

our interpretations. Overall, however, the story is the same: Term and Location features dominate
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in terms of Mutual Information followed by the other less informative features. Furthermore,

two observations are apparent: (1) Terms have more outliers indicating that the most useful

individual features may be terms, and (2) the topic has little impact on which feature is most

important indicating stability of feature type informativeness over topics.

As anecdotal evidence to inspect which features are most informative, we refer to Table 4.1,

which displays the top five feature instances for each feature type and topic. Among many re-

markable insights in this table, one thing we note are that the Terms appear to be the most generic

(and hence most generalizable) features, providing strong intuition as to why these features fig-

ure so prominently in terms of their informativeness. The top Locations are also highly relevant

to most topics indicating the overall importance of these tweet features for identifying topical

tweets.

4.2 Attribute Importance

In order to answer the second question on whether any attributes correlate with importance for

each feature, we provide two types of analysis. The first analysis shown in Fig. 4.3 analyzes the

distributions of Mutual Information values for features when binned by the magnitude of various

attributes of those features, outlined as follows:

• From vs.

– Favorite count: # of tweets user has favorited.

– Followers count: # of users who follow user.

– Friends count: # of users followed by user.

– Hashtag count: # of hashtags used by user.

– Tweet count: # of tweets from user.

• Hashtag vs.

– Tweet count: # of tweets using hashtag.

– User count: # of users using hashtag.
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(a) favoriteCount (b) followersCount

(c) friendsCount (d) hashtagCount

Figure 4.2: Density plots for the Mutual Information vs. frequency values of feature attributes.
Plots (a-d) respectively show attributes {favoriteCount, followerCount, friendCount, hashtag-
Count} for the From feature. We remark that an interesting bimodalilty is clear from these plots.
Our analysis showed that the the top mode feature occurs in at least one topical tweet whereas
the bottom mode occurs in no topical tweets.
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• Location vs. User count: # of users using location.

• Mention vs. Tweet count: # of tweets using mention.

• Term vs. Tweet count: # of tweets using term.

As we can see in the Violin plots of Fig. 4.3, the general pattern is that the greater the number of

tweets, users, or hashtag count a feature has, the more informative the feature is in general. This

pattern also exists to some extent on the attributes of the From feature, although the pattern is

less visible in general and not clear (or very weak) for the follower or friend count. In general,

the informativeness of a user appears to have little correlation with their follower or friend count.

Fig. 4.2 provides a further analysis by showing density plots of favorite count, follower count,

friends count, and hashtag count attributes of the From feature. Here we see an interesting

phenomenon that was not clear in the Violin plots: there is a very clear bimodality of the density.

On further investigation it turns out that the top mode feature occurs in at least one topical tweet

whereas the bottom mode occurs in no topical tweets. While the bottom mode features may serve

as good indicators of non-topicality, the top mode are inherently more indicative of topicality,

which justifies feature selection by mutual information.

4.3 Summary

In this chapter, we provided a comprehensive study on the features extracted from tweets and

their attributes to evaluate their correlation with topicality. We draw a number of important

insights from this analysis, the summary of them is as following:

• Computing average Mutual Information values for different feature types vs. topics shows

that independent of topic, Terms and Locations are the most important features. Anecdo-

tal examples for top 5 features of each topic also represent that Term features are the most

generic and hence the most generalizable features in general. Further, we note that Loca-

tion feature is more informative for a few topics compared to other ones which demon-

strates that lots of content in topics such as HumanDisaster, LBGT, and Soccer are local-

ized.

• Plotting the distribution of Mutual Information values for features vs. magnitude of their
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(a) favoriteCount (b) followerCount (c) friendsCount

(d) hashtagCount (e) tweetCount (f) tweetCount

(g) userCount (h) userCount (i) tweetCount

(j) tweetCount

Figure 4.3: Violin plots for the distribution of Mutual Information values of different features as
a function of their attributes. Plots (a-e) respectively show attributes {favoriteCount, follower-
Count, friendCount, hashtagCount, tweetCount} for From feature. We note that the the higher
the number of tweets and hashtags, the more important a From feature is, however, the informa-
tiveness of a user appears to have little correlation with their follower or friend count. Plots (f-j)
respectively show attributes tweetCount and userCount for Hashtag, userCount for Location fea-
ture, tweetCount for Mention and Term features. We remark that the general pattern for attributes
of the features is that the greater the number of tweets, users or hashtag counts a feature has, the
more informative it is.
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attributes shows that the greater the number of tweets, users, or hashtags counts of a fea-

ture, the more important the feature is. Interestingly enough, number of followers and

friends counts of a user does not demonstrate the same pattern and in general there is very

little or no correlation between these attributes and a user’s importance.

• Despite the fact that hashtags were used to label the data, interestingly it was one of the

less important feature types. This shows that the proposed method of labeling training data

does not create a bias to overfit to training hashtags and it is conjectured that this helps

explaining the excellent generalization to data labeled with unseen test hashtags.

In the next chapter, we present the conclusion of the thesis and future works.
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Figure 4.4: Box plots of Mutual Information values per feature type across topics. We remark
that Terms have more outliers indicating that the most useful individual features may be terms,
and the topic has little impact on which feature is most important indicating stability of feature
type informativeness over topics.
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Chapter 5: Conclusion

5.1 Summary of contributions

In this thesis, we aimed to address supervised learning of topical social media sensor with the

purpose of detecting and ranking topical content from Twitter for general topics. In chapter 2,

we discussed that the concept of social media as a sensor has been used in the literature and

introduces the use of social media as sensors for detecting news, events, opinions, etc. However,

our literature review presented a gap in these works showing how these methods fail either

by not being targeted to any specific topic, such as trending topic detection, being too narrow

and specific on a single topic, such as earthquake detection, or because of using very primitive

methods for collecting their data such as methods for sentiment detection. Further, we discussed

that this thesis builds on and extends a handful of works [47, 49, 88] that have been done on

learning topical social sensors.

In this thesis, we made the following contributions:

• In Chapter 3, we proposed a novel supervised learning method for training social sensors

on a dataset of 800 million tweets crawled from Twitter. The novelty of this method stems

from (1) the way we label large quantities of data using a small set of hashtags as topical

proxies for automatic data labeling, (2) the way we train our models where we temporally

split hashtags and tweets into train, validation, and test sets to cover two years of data,

and (3) the way we evaluate generalization of our methodology to future unseen topical

content by measuring average precision and precision@n only on tweets that omitt training

hashtags. We remark that two simple and efficiently trainable methods, logistic regression

and Naı̈ve Bayes, were capable of learning users information needs and generalize well to

unseen future topical content (including content with no hashtags) in terms of their mean

average precision (MAP) and Precision@n for a range of n.

• In Chapter 4, we provided a comprehensive study on the features and their attributes ex-

tracted from our Twitter dataset. The analysis involved two major parts: (1) Analysis of the
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correlation of each feature with topicality, (2) Analysis on whether different attributes of

each feature have correlations with topicality, for example whether having more followers

would make a person to be a more important feature.

Our results suggest that:

• Learned social sensors generalize well to unseen future topical content and provide a novel

paradigm for the extraction of high-value content from social media. We remark that out

of four different methods, Logistic Regression and Naı̈ve Bayes match users information

needs and generalize well to future content in terms of their mean average precision (MAP)

and Precision@n for a range of n. Furthermore, our results shows that we could learn

generalizable sensors beyond train hashtags and beyond hashtags in general.

• Extensive analysis of features and feature attributes across different topics has revealed

many useful insights among which the two important insights are:

1. Largely independent of topic, simple terms are the most informative feature followed

by location features.

2. Interestingly, the number of unique hashtags and tweets by a user correlates more

with their informativeness than their follower or friend count.

5.2 Future Work

This work uncovers some interesting areas for future work. In particular, future work should

focus on exploring the following enhanced topical social sensor learning tasks.

1. Beyond Boolean relevance:

This thesis used a Boolean relevance model. However in practice, topical relevance tends

to be more graded – by degree of relevance, importance, temporal novelty. This brings

out a need to figure out how to obtain graded relevance. Assuming lag-time of a topic is

the time between when it has been mentioned for the first time and when we detect and

return it, temporal novelty can be evaluated for hashtags as lag-time since first usage of the

hashtag. To this end, we need to leverage regression methods that are well matched to the
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data type (e.g., truncated, ordinal, etc.) as well as using ranking metrics for non-Boolean

relevance.

2. Learning Boolean queries:

The methodology explained in this thesis is based on the assumption that we have access

to a large dataset of tweets either through accessing Twitter’s firehose1, or like our case

by streaming a large dataset of tweets from Twitter. However, when we only have access

to Twitter’s search API, we need an approach that optimizes queries for Boolean retrieval

oriented APIs while maintaining high precision and recall. To the best of our knowledge,

no existing work has been applied to learning Boolean queries. Learning Boolean queries

is a challenging task since it does not support learning different weights for features and

not all features are equally important and thus weighting the features is critical in learning

topical social sensors. To this end, we need to explore methods with hypothesis spaces that

match Boolean queries better than log-linear classifiers, such as decision tree approaches.

Two possible directions for learning Boolean queries could be:

(a) Learn a single compact nested query: This approach would require us to learn one

single query that is comprised from OR of a set of AND clauses for each topic

that would query Twitter search API once for the topic. This could be achieved by

learning Decision Trees or Gradient Boosted Regression Trees [26].

(b) Merge the results of multiple queries: This approach will benefit from learning multi-

ple different queries for a specific topic followed by merging and ranking the results.

This approach could help in the sense that it will allow us to weight the results of

each query and therefore to partially approximate weighting in the weighted feature

learning methods such as logistic regression.

3. Learning for long-term stability:

Some sensors may display a sharp decay in performance over time because features were

very localized in time. For example, the feature location:philippines could be a good sen-

sor for detection of Natural Disasters right after a flood happened in Philippines, whereas

a feature like term:donate is a good generic sensor irrespective of what point in time it has
1https://dev.twitter.com/streaming/firehose
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been used. This brings us to the question of how to learn temporally stable features.To

this end, we need to formulate an evaluation metric to measure and rank features based

on their long-term stability. The evaluation metric should be able to consider power of

features for extraction of topical content in different time windows. We need to use this

evaluation metric as an objective for training more stable topical social sensors.

Altogether, we believe this and future work will pave the way for a new class of social sensors

that learn to identify broad themes of topical information with minimal user interaction and

enhance the overall social media user experience.
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[37] Eyke Hüllermeier, Johannes Fürnkranz, Weiwei Cheng, and Klaus Brinker. Label ranking
by learning pairwise preferences. Artif. Intell., 172(16-17):1897–1916, 2008.

[38] S. Ishikawa, Y. Arakawa, S. Tagashira, and A. Fukuda. Hot topic detection in local areas
using Twitter and wikipedia. In ARCS Workshops (ARCS), 2012, pages 1–5, Feb 2012.

[39] Bernard J. Jansen, Mimi Zhang, Kate Sobel, and Abdur Chowdury. Twitter power: Tweets
as electronic word of mouth. JASIST, 60(11):2169–2188, 2009.

[40] Keyuan Jiang and Yujing Zheng. Mining Twitter data for potential drug effects. In
Advanced Data Mining and Applications, 9th International Conference, ADMA 2013,
Hangzhou, China, December 14-16, 2013, Proceedings, Part I, pages 434–443, 2013.

[41] Jaap Kamps, Maarten Marx, Robert J Mokken, and Marten de Rijke. Words with attitude.
Citeseer, 2001.

[42] William O Kermack and Anderson G McKendrick. A contribution to the mathematical
theory of epidemics. In Proceedings of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences, volume 115, pages 700–721. The Royal Society, 1927.

[43] Michal Kosinski, David Stillwell, and Thore Graepel. Private traits and attributes are pre-
dictable from digital records of human behavior. Proceedings of the National Academy of
Sciences, 110(15):5802–5805, 2013.

[44] Yury Kryvasheyeu, Haohui Chen, Esteban Moro, Pascal Van Hentenryck, and Manuel
Cebrián. Performance of social network sensors during hurricane sandy. PLoS one,
abs/1402.2482, 2014.

[45] Ching-Pei Lee and Chih-Jen Lin. Large-scale linear RankSVM. Neural Computing, 26(4):
781–817, April 2014.

[46] Kristina Lerman, Rumi Ghosh, and Tawan Surachawala. Social contagion: An empir-
ical study of information spread on digg and Twitter follower graphs. arXiv preprint
arXiv:1202.3162, 2012.



56

[47] Jimmy Lin, Rion Snow, and William Morgan. Smoothing techniques for adaptive on-
line language models: topic tracking in tweet streams. In Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages 422–
429. ACM, 2011.

[48] Bing Liu. Opinion mining. In Encyclopedia of Database Systems, pages 1986–1990. 2009.

[49] Walid Magdy and Tamer Elsayed. Adaptive method for following dynamic topics on twit-
ter. In ICWSM, 2014.

[50] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to In-
formation Retrieval. Cambridge University Press, New York, NY, USA, 2008. ISBN
0521865719, 9780521865715.

[51] Christopher D Manning, Prabhakar Raghavan, Hinrich Schütze, et al. Introduction to in-
formation retrieval, volume 1. Cambridge university press Cambridge, 2008.

[52] James R Martin and Peter R White. The language of evaluation. Palgrave Macmillan,
2003.

[53] Michael Mathioudakis and Nick Koudas. Twittermonitor: trend detection over the Twitter
stream. In Proceedings of the ACM SIGMOD International Conference on Management of
Data, SIGMOD 2010, Indianapolis, Indiana, USA, pages 1155–1158, 2010.

[54] Andrew McCallum and Kamal Nigam. A comparison of event models for naive bayes text
classification. In In AAAI-98 Workshop On Learning For Text Categorization, pages 41–48.
AAAI Press, 1998.

[55] Yelena Mejova, Padmini Srinivasan, and Bob Boynton. GOP primary season on Twitter:
”popular” political sentiment in social media. In Sixth ACM International Conference on
Web Search and Data Mining, WSDM 2013, Rome, Italy, February 4-8, 2013, pages 517–
526, 2013.

[56] Yamir Moreno, Romualdo Pastor-Satorras, and Alessandro Vespignani. Epidemic out-
breaks in complex heterogeneous networks. The European Physical Journal B-Condensed
Matter and Complex Systems, 26(4):521–529, 2002.

[57] Tony Mullen and Nigel Collier. Sentiment analysis using support vector machines with
diverse information sources. In EMNLP, volume 4, pages 412–418, 2004.

[58] Mark E. J. Newman. Networks - an introduction (2010, oxford university press.). Artificial
Life, 18:241–242, 2012.

[59] Jeffrey Nichols, Jalal Mahmud, and Clemens Drews. Summarizing sporting events using



57

Twitter. In 17th International Conference on Intelligent User Interfaces, IUI ’12, Lisbon,
Portugal, February 14-17, 2012, pages 189–198, 2012.

[60] Brendan O’Connor, Ramnath Balasubramanyan, Bryan R. Routledge, and Noah A. Smith.
From tweets to polls: Linking text sentiment to public opinion time series. In Proceed-
ings of the Fourth International Conference on Weblogs and Social Media, ICWSM 2010,
Washington, DC, USA, May 23-26, 2010, 2010.

[61] Brendan O’Connor, Michel Krieger, and David Ahn. Tweetmotif: Exploratory search and
topic summarization for Twitter. In Proceedings of the Fourth International Conference on
Weblogs and Social Media, ICWSM 2010, Washington, DC, USA, May 23-26, 2010, 2010.

[62] Charles E Osgood. The nature and measurement of meaning. Psychological bulletin, 49
(3):197, 1952.

[63] Karen OConnor, Pranoti Pimpalkhute, Azadeh Nikfarjam, Rachel Ginn, Karen L Smith,
and Graciela Gonzalez. Pharmacovigilance on Twitter? mining tweets for adverse drug
reactions. In AMIA Annual Symposium Proceedings, volume 2014, page 924. American
Medical Informatics Association, 2014.

[64] Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs up? sentiment classification
using machine learning techniques. Proceedings of the ACL-02 conference on Empirical
methods in natural language processing-Volume 10, cs.CL/0205070, 2002.

[65] James W Pennebaker, Cindy K Chung, Molly Ireland, Amy Gonzales, and Roger J Booth.
The development and psychometric properties of liwc2007. austin, tx, liwc. net., 2007.

[66] Sasa Petrovic, Miles Osborne, and Victor Lavrenko. Streaming first story detection with
application to Twitter. In Human Language Technologies: Conference of the North Ameri-
can Chapter of the Association of Computational Linguistics, Proceedings, June 2-4, 2010,
Los Angeles, California, USA, pages 181–189, 2010.

[67] Sasa Petrovic, Miles Osborne, and Victor Lavrenko. Rt to win! predicting message propa-
gation in Twitter. In ICWSM, 2011.

[68] Swit Phuvipadawat and Tsuyoshi Murata. Breaking news detection and tracking in Twit-
ter. In Proceedings of the 2010 IEEE/WIC/ACM International Conference on Web Intelli-
gence and International Conference on Intelligent Agent Technology - Workshops, Toronto,
Canada, August 31 - September 3, 2010, pages 120–123, 2010.

[69] Daniele Quercia, Michal Kosinski, David Stillwell, and Jon Crowcroft. Our Twitter pro-
files, our selves: Predicting personality with Twitter. In PASSAT/SocialCom 2011, Pri-
vacy, Security, Risk and Trust (PASSAT), 2011 IEEE Third International Conference on



58

and 2011 IEEE Third International Conference on Social Computing (SocialCom), Boston,
MA, USA, pages 180–185, 2011.

[70] Matthew Richardson and Pedro Domingos. Mining knowledge-sharing sites for viral mar-
keting. In Proceedings of the eighth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 61–70. ACM, 2002.

[71] Adam Sadilek, Henry A. Kautz, and Vincent Silenzio. Modeling spread of disease from
social interactions. In Proceedings of the Sixth International Conference on Weblogs and
Social Media, Dublin, Ireland, June 4-7, 2012, 2012.

[72] T. Sakaki, Y. Matsuo, T. Yanagihara, N.P. Chandrasiri, and K. Nawa. Real-time event
extraction for driving information from social sensors. In Cyber Technology in Automation,
Control, and Intelligent Systems (CYBER), 2012 IEEE International Conference on, pages
221–226, May 2012. doi: 10.1109/CYBER.2012.6392557.

[73] T. Sakaki, M. Okazaki, and Y. Matsuo. Tweet analysis for real-time event detection and
earthquake reporting system development. Knowledge and Data Engineering, IEEE Trans-
actions on, 25(4):919–931, April 2013.

[74] Suvash Sedhain, Scott Sanner, Lexing Xie, Riley Kidd, Khoi-Nguyen Tran, and Peter
Christen. Social affinity filtering: recommendation through fine-grained analysis of user
interactions and activities. In Conference on Online Social Networks, COSN’13, Boston,
MA, USA, October 7-8, 2013, pages 51–62, 2013.

[75] Suvash Sedhain, Scott Sanner, Darius Braziunas, Lexing Xie, and Jordan Christensen. So-
cial collaborative filtering for cold-start recommendations. In Eighth ACM Conference on
Recommender Systems, RecSys ’14, Foster City, Silicon Valley, CA, USA - October 06 - 10,
2014, pages 345–348, 2014.

[76] Swapna Somasundaran and Janyce Wiebe. Recognizing stances in ideological on-line de-
bates. In Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches
to Analysis and Generation of Emotion in Text, pages 116–124. Association for Computa-
tional Linguistics, 2010.

[77] Kate Starbird and Leysia Palen. Pass it on?: Retweeting in mass emergency. International
Community on Information Systems for Crisis Response and Management, 2010.

[78] Yla R Tausczik and James W Pennebaker. The psychological meaning of words: Liwc and
computerized text analysis methods. Journal of language and social psychology, 29(1):
24–54, 2010.

[79] Andranik Tumasjan, Timm Oliver Sprenger, Philipp G. Sandner, and Isabell M. Welpe.



59

Predicting elections with Twitter: What 140 characters reveal about political sentiment. In
Proceedings of the Fourth International Conference on Weblogs and Social Media, ICWSM
2010, Washington, DC, USA, May 23-26, 2010, 2010.

[80] Sarah Vieweg, Amanda L. Hughes, Kate Starbird, and Leysia Palen. Microblogging during
two natural hazards events: what Twitter may contribute to situational awareness. In Pro-
ceedings of the 28th International Conference on Human Factors in Computing Systems,
CHI 2010, Atlanta, Georgia, USA, April 10-15, 2010, pages 1079–1088, 2010.

[81] Marilyn A. Walker, Pranav Anand, Rob Abbott, Jean E. Fox Tree, Craig H. Martell, and
Joseph King. That is your evidence?: Classifying stance in online political debate. Decision
Support Systems, 53(4):719–729, 2012.

[82] Hao Wang, Dogan Can, Abe Kazemzadeh, François Bar, and Shrikanth Narayanan. A
system for real-time Twitter sentiment analysis of 2012 us presidential election cycle. In
Proceedings of the ACL 2012 System Demonstrations, pages 115–120. Association for
Computational Linguistics, 2012.

[83] Xiao Fan Wang and Guanrong Chen. Complex networks: small-world, scale-free and
beyond. Circuits and Systems Magazine, IEEE, 3(1):6–20, 2003.

[84] Yang Wang, D. Chakrabarti, Chenxi Wang, and C. Faloutsos. Epidemic spreading in real
networks: an eigenvalue viewpoint. In Reliable Distributed Systems, 2003. Proceedings.
22nd International Symposium on, pages 25–34, 2003.

[85] Jianshu Weng and Bu-Sung Lee. Event detection in Twitter. In Proceedings of the Fifth
International Conference on Weblogs and Social Media, Barcelona, Catalonia, Spain, July
17-21, 2011, 2011.

[86] Casey Whitelaw, Navendu Garg, and Shlomo Argamon. Using appraisal groups for senti-
ment analysis. In Proceedings of the 2005 ACM CIKM International Conference on Infor-
mation and Knowledge Management, Bremen, Germany, October 31 - November 5, 2005,
pages 625–631, 2005.

[87] Zhiheng Xu and Qing Yang. Analyzing user retweet behavior on Twitter. In International
Conference on Advances in Social Networks Analysis and Mining, ASONAM 2012, Istan-
bul, Turkey, 26-29 August 2012, pages 46–50, 2012.

[88] Shuang-Hong Yang, Alek Kolcz, Andy Schlaikjer, and Pankaj Gupta. Large-scale high-
precision topic modeling on twitter. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 1907–1916. ACM, 2014.

[89] Yiming Yang, Thomas Pierce, and Jaime G. Carbonell. A study of retrospective and on-



60

line event detection. In SIGIR ’98: Proceedings of the 21st Annual International (ACM)
(SIGIR) Conference on Research and Development in Information Retrieval, August 24-28
1998, Melbourne, Australia, pages 28–36, 1998.

[90] Xue Zhang, Hauke Fuehres, and Peter A Gloor. Predicting stock market indicators through
Twitter. Procedia-Social and Behavioral Sciences, 26:55–62, 2011.

[91] Yongzheng Zhang and Marco Pennacchiotti. Predicting purchase behaviors from social
media. In 22nd International World Wide Web Conference, WWW ’13, Rio de Janeiro,
Brazil, May 13-17, 2013, pages 1521–1532, 2013.

[92] Yongzheng Zhang and Marco Pennacchiotti. Recommending branded products from social
media. In Seventh ACM Conference on Recommender Systems, RecSys ’13, Hong Kong,
China, October 12-16, 2013, pages 77–84, 2013.

[93] Siqi Zhao, Lin Zhong, Jehan Wickramasuriya, and Venu Vasudevan. Human as real-time
sensors of social and physical events: A case study of Twitter and sports games. Technical
Report TR0620-2011, Rice University and Motorola Mobility, abs/1106.4300, 2011.



61

APPENDICES



62

Appendix A: Supporting Theories

This chapter discusses a range of theories that support applications of using social media as a

sensor presented in the literature review on Chapter 2.

A.0.1 Sentiment Theories

Sentiment theories cover the characteristics of text, necessary for determining the attitude of the

author. Attitude can be based on (1) author’s judgment [86], (2) affective or emotional state [62],

or (3) the intended emotion the author wanted to convey [35]. (1) gets the emotion from author’s

point of view on a subject, (2) conveys the state of the author at the time of writing, and (3) is the

emotional effect that the author was trying to convey to the reader. Considering the example of

using humor in regards to product review e.g., ”It could not be any better, it broke in two days.”,

it becomes clear that research in sentiment analysis should investigate multiple dimensions.

Here, we provide an overview of complex and simple sentiment theory, appraisal theory, and

linguistic theories on how people write about their emotions. These theories empower sentiment

analysis tools to extract the emotions from text for various applications outlined in section 2.4.

A.0.1.1 Complex and Simple Sentiment

As was mentioned earlier, sentiment analysis can be simple and analyze polarity of text as being

positive or negative, or be complex and extract multi-dimensional sentiments.

There are a few different major theories of complex sentiment [14], outlined as follows:

Sentimental Reaction to Various Words Osgood [62], in a study of text polarity showed hu-

man’s sentimental reaction to various words across eight dimensions, for example, three dimen-

sions are the following:
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Dimensions Positive side Negative side
Evaluation nice, sweet, heavenly, good, mild, happy, fine, clean awful, sour, hellish, bad, harsh, sad, course, dirty
Potency big, powerful, deep, strong, high, long, full, many little, powerless, shallow, weak, low, short, empty, few
Activity fast, noisy, young, alive, known, burning, active, light slow, quiet, old, dead, unknown, freezing, inactive, dark

Table A.1: Positive and negative side of dimensions

• Evaluation (positive or negative )

• Potency (strong or weak)

• Activity (active or passive)

Each aspect is characterized by a variety of contrasts. Characterizations of the positive and

negative side of each dimension are shown in table A.1 [33]:

Appraisal Theory Appraisal theory is the psychological theory arguing that emotions come

from our subjective evaluation and interpretation (appraisals or estimates) of events. Each ap-

praisal expression has three main components: an attitude (which takes an evaluative stance

about an object), a target (the object of the stance), and a source (the person taking the stance)

which may be implied [86]. In general, appraisal theory is an analysis of how a writer values

people and things within the text that he/she produces [52]. It studies different types of eval-

uative language that can occur and represents three grammatical systems comprising appraisal

[11]:

• Attitude: tools that an author uses to directly express his approval or disapproval of some-

thing, further divided into:

– affect (internal emotional evaluation of things)

– judgment (evaluation of a person’s behavior within a social context)

– appreciation (aesthetic or functional evaluation of things)

• Engagement: resources which an author uses to position his statements relative to other

possible statements on the same subject such as claims, states, informs, etc.

• Graduation: resources which an author uses to convey the strength of that approval or

disapproval such as very, reasonably, ...
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Hence, this theory and Osgood [62]’s theory (with three dimensions of evaluation, potency, and

activity) are parallel to each other (attitude/evaluation, potency/graduation) on some aspect and

differ from each other on the other aspects (activity, engagement). These theories have been used

in different sentiment analysis works such as [57, 41] for classifying words.

Psycho-Linguistic Theories The third theory focuses more on the psychological aspect of lan-

guage and how people with different psychological backgrounds use words, also known as LIWC

dictionary [78]. It differs from the last two theories in the way that it is more general and fo-

cuses specifically on the usage of different types of words in different positions in the sentence

and how they relate to different emotional indicators. Tausczik and Pennebaker [78] provided

linguistic theories and psychological evidence behind them. They reviewed several text analysis

methods to support the hypothesis that people provide enough clues in their language to enable

us to detect their feeling and emotions. They argued that it is possible to relate daily word use

e.g., nouns, adjectives, verb tenses, etc. to a broad array of real-world behaviors and different

emotional indicators e.g., emotional state, social relationships, thinking style, etc. For example:

• positive political ads used more present and future tense verbs, or people used past tense

more frequently in discussing a disclosed event

• higher-status individuals have greater use of first-person plural and ask fewer questions

compared with lower-ranked ones

• deceptive statements use more negative emotions, more motion words (e.g., arrive, car,

go), fewer exclusion words, less first-person singular, higher total word count, and more

sense words

A.0.2 Social Network Theories

Every Social Media has an underlying social network structure. Studying the structure of this

network and the elements of information diffusion as underlying parts of many applications, is

important. This section is devoted to social network related theories that correlate with discussed

applications in the first part of the survey.
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A.0.2.1 Graph Structure

Social Networks are comprised from graphs with special properties owing to their sociological

origins. Different types of graph structures have been introduced through history. Here, we

provide studies on how social network graphs are generated, how information flows through

social networks, and how different users play structurally distinct roles. Moreover, we discuss

the importance of certain topological properties of networks, such as the concept of weak ties,

the number of social connections that an individual has in a given society, or the number of

communities that a society forms [21, 83]. We first provide some basic properties in networks

and then we discuss different graph generation models that provide generative models of social

network graph that reproduce these properties.

Basic Concepts

• Clustering coefficient Measures the probability that two randomly chosen friends of a

user are friends themselves.

• Strong and Weak ties Weak ties are links in the network that connect two users with no

common friend, thus bridging different tightly-knit communities. In contrast to this, links

between these tightly-knit communities represent strong ties. The importance of the weak

ties lies in the fact that it can represent the involving users with access to different parts of

network that otherwise would have been inaccessible. Figure A.1 shows this concept.

• Triadic Closure The property among three nodes C, D, and E, such that if a strong tie

exists between C −D and C − E, there is a weak or strong tie between D − E.

• Centrality Characterizes the importance of nodes (individuals) by measuring information

brokerage in social networks. The degree centrality (in undirected networks, individu-

als with higher connections have more risk of catching whatever is flowing through the

network such as information), closeness centrality (in undirected networks, measures the

total distance from all other individuals), betweenness centrality (in undirected networks,

a measure for quantifying the control of an individual on the communication between

other individuals in a social network), Katz centrality or PageRank(in directed networks,

a measure for estimating importance of an individual by counting the number and quality

of links to her/him). Some of these measures are shown in Figure A.1.
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Figure A.1: Different centrality criteria and Weak vs. Strong ties

Graph Generation Models Historically, four different graph models have been studied which

are discussed here. It is important to become familiar with these models in order to better un-

derstand the differences and the unique attributes that only Social Networks represent, such as

preferential attachment which refers to the observation that in growing networks (over time), the

probability that an edge is added to a node with d neighbors is proportional to d. However, what

are the proposed models and what salient properties of social networks do they represent?

1. Random graphs: graphs generated by starting with a disconnected set of nodes that are

then paired with a uniform probability

2. Watts and Strogatz graph: graphs with small-world properties1, including short average

path lengths and high clustering

3. Scale-free networks: graphs characterized by a highly heterogeneous degree distribution,

which follows a ”power-law” distribution

4. The Barabasi-Albert model: the first network with a power-law distribution which are

random scale-free networks generated using preferential attachment mechanism.

These graphs are represented as G = (V,E), with V showing the set of vertices e.g, people

1most nodes can be reached from every other node by a small number of steps
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and E corresponding to edges e.g., friendship relationship. A path consists of a set of edges

connecting two nodes together. There are three important concepts regarding reproduction of

complex social network structure:

1. Average path length: showing the average value of length of different paths that charac-

terizes a network’s compactness.

2. Degree distribution: the probability distribution of degrees over the network

3. Clustering coefficient (described above)

Random networks, also known as Erdos-Renyi networks, are an entirely random network based

on a probability p of connecting nodes. These networks have short path length and independent

edges. The concept of small-world networks was introduced by Watts-Strogatz in which most

nodes can be reached from every other in a small number of steps (following the six degrees

of separation theory). Social networks are not purely random graphs or Watts-Strogatz graphs

since they represent both preferential attachment and small world behavior.

Unlike the last two static structures, scale-free networks are dynamically formed by continuous

addition of new nodes to the network. The two main ingredients for self-organization of a net-

work in a scale-free structure are growth and preferential attachment. Growth is the concept

regarding the observation that most real-world networks describe open systems that grow by the

continuous addition of new nodes. These networks have smaller average path length compared to

random graphs and small-world networks [83]. Albert and Barabási [3] introduced an algorithm

for generating a scale-free network with power-law distribution and having two ingredients of

growth and preferential attachment.

Over the years, researchers have uncovered scale-free structures in some social networks such as

sexual relationships among people in Sweden2, network of people connected by email, network

of scientific papers connected by citations, ...

An important corollary of graph structures is discussed next.

Friendship Paradox

The concept of friendship paradox is derived from graph generation models and their properties.
2Albert-Laszlo Barabasi and Eric Bonabeau

http://www3.nd.edu/~networks/Publication%20Categories/01%20Review%20Articles/ScaleFree_Scientific%20Ameri%20288,%2060-69%20(2003).pdf
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Feld [24] introduced the concept of friendship paradox. Using general mathematical proper-

ties of social networks, he showed that on average most people have fewer friends than their

friends have and he called this the ”Friendship Paradox”. This phenomenon was explained as a

consequence of the general mathematical properties of social networks. Assuming the graph of

social network G = (V,E) with V showing the set of people and E corresponding to friendship

relationship, he modeled the average number of friends of a person in the social network as the

average of the number of friendship relationships (degree) of people in the graph. And the aver-

age number of friends that a typical friend of a person has, was modeled by choosing uniformly

at random an edge (a pair of friends) and an endpoint of that edge (one of the friends), followed

by calculating the degree of the selected endpoint again. By considering properties of variance

and mean of degrees (friendship relationships) and this modeling, Feld formally proved that, on

average, your friends have more friends than you do [24].

This implies that friends of a randomly selected person are likely to have higher than average

centrality which is an important concept in various applications such as in case of epidemics and

outbreak detection as discussed in 2.2.2.

A.0.2.2 Information Diffusion and Cascades

Social networks have emerged as a critical factor in information dissemination, search, mar-

keting, expertise and influence discovery. In this section, we provide studies on how social

network structures support the diffusion of information. It will be shown that the topology of

a network has great influence on the overall behavior of information cascades and pattern of

epidemic spreading. Information cascade occurs when a person observes the actions of others

and then decides to engage in the same act based on pay-off benefits of one strategy or the other.

Epidemic spreading though is when the process of contagion is complex and unobservable and

doesn’t involve decision making by users.

Epidemic spread In classic epidemiology individuals have an equal chance of contact i.e. homo-

geneous contact network. However, this was determined to be unrealistic. In response, Newman

[58] introduced an underlying contact networks model [58]; Contact networks represent indi-

viduals as a nodes and contacts as edges and the network can change based on the pathogen.

Probability of contagion and length of infection is controlled by the contact network structure.
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A node will become infected if and only if there is a path to the node from one of the initially

infected nodes [56]. Epidemic spread models have been used in social media for studying the

effects of information going viral, in different applications such as internet memes, news, etc.

The terminology for epidemiological models include the following variables:

• S: Susceptibles

• E: Exposed individuals in the latent period

• I: Infectives

• R: Recovered with immunity

• β: Contact rate

The three variables S(t), E(t), R(t), I(t) represent the number of individuals with the specified

state at the time t and β is a real valued variable showing the contact rate or the probability of

contagion after contact per unit of time.

Similar to this, social contagion phenomena refers to various processes that depend on the indi-

vidual propensity to adopt and diffuse knowledge, ideas, and information. In social contagion

we have similar concepts:

• S: an individual who has not learned new information

• I: the spreader of the information

• R: aware of information, but no longer spreading it

Famous epidemiological models include:

1. SI: Susceptible-Infected [58]

2. SIR: Susceptible-Infected-Removed [42]

3. SIS: Susceptible-Infected-Susceptible

4. SEIR: Susceptible-Exposed-Infected-Removed
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These models show potential stages individuals would go through and they model number of

individuals in each stage as random variables. In general, patterns of epidemic spread depend on

a disease’s contagiousness β.

Studying the dynamics of epidemics on graphs, suggested the existence of an epidemic thresh-

old above which epidemics spread to a significant fraction of the graph [84]. This is of high

importance in studying how news, video, and opinion become viral [46, 7].

Diffusion Models Building on epidemic models, researchers could define information diffusion

properties. Given a social network and estimates of reciprocal influence, viral marketing, also

known as the influence maximization problem, is defined to target the most influential users in

the network in order to activate a chain-reaction of influence and eventually influence largest

potential number of users in the network [70]. There are studies demonstrating how a model of

the diffusion of information can be used to study information cascades on social media such as

Twitter that are in response to an actual crisis event [17, 36].

Two basic classes of diffusion models exist: Linear Threshold Model and Independent Cascade

Model. These models represent a social network as a directed graph with a binary variable for in-

fection associated to each node (person). Each active node may trigger activation of neighboring

nodes.

1. Linear Threshold Model: each node has random threshold θv ∼ U
[
0, 1
]
, and is influ-

enced by each neighbor according to some weight. It becomes active if θv fraction of its

neighbors are active.

2. Independent Cascade Model: if a node becomes active, it has a single chance of activat-

ing each currently inactive neighbor for all time. The activation attempt succeeds with a

certain probability related to those two nodes.
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Appendix B: Notations

Meaning Notation
Topics C = {c1, . . . , cK}
Documents D = {d1, . . . , dN}
Set of hashtags of topic class c Hc

Set of train hashtags of topic c Hc
train

Set of validation hashtags of topic c Hc
val

Time of the first usage of hashtag h ∈ Hc t∗h

Posting time of tweet di tdi

Set of training tweets of topic c Dc
train

Set of validation tweets of topic c Dc
val

Positive occurring features for document di D+
i = {dji |d

j
i = 1}j=1...M

Boolean label for document di and topic c dci ∈ {0, 1}

Table B.1: Notations used and their meaning
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