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VECTOR SUMS OF LINE SEGMENTS 

I. BASIC CONCEPTS 

In this section, we present the concepts basic to the under- 

standing of the problem with which this work is concerned. Through- 

out what follows, we will be dealing with n- dimensional Euclidean 

space, in which points can be considered as represented by ordered 

n- tuples of real numbers. These numbers are rectangular coordi- 

nates. Addition and multiplication by scalars (which we call scalar 

multiplication) are defined by the corresponding operations on coordi- 

nates. We will call the point, all of whose coordinates are zero, the 

origin. The usual Euclidean distance between two points will be em- 

ployed, as will certain other elementary geometric concepts, includ- 

ing that of orthogonal projection of geometric figures. A more 

thorough discussion of these and related concepts may be found in (3). 

The particular geometric figures with which we will deal are 

point sets of the following kind: 

Definition 1. A closed and bounded set of points K is called a 

convex body if, for every pair P, Q of points of K, the line seg- 

ment joining P and Q lies entirely in K. 

The operations of addition and scalar multiplication defined 

for points may be generalized to convex bodies as follows: 



Definition 2. If K1 and K2 are convex bodies, their vector sum, 

denoted by K1 + K2, is the set 

{P+Q,PE K1, QEK2} 

If a is a real number and K a convex body, the scalar product 

a and K, written aK, is the set 

{aP( PEK} 

The scalar product of a positive number a and a convex body - K 

may be interpreted as the magnification of K in the ratio a :1, 

the center of magnification being the origin. The symbol -K means 

( -1)K, which may be thought of as the reflection of K in the origin. 

Similarly, -aK means ( -a)K, and K1 - K2 is K1 + [( -1)K2] . 

It can easily be seen that the set of convex bodies is closed under 

addition and scalar multiplication, and that the set 

a1K1 + a2K2 + ..+amKm , 

which we will also write 

is the convex body 

a.K. , 
i i 

2 

of 

m 
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/ m 

a.P. I P.s K. for i= 1,2,.,m 
i= 1 .) 

The following provides us with a way of forming convex bodies 

from more general sets : 

Definition 3. If K is a bounded point set, then the set H(K), 

called the convex closure of K, is the convex body satisfying 

(i) KC H(K), and 

(ii) if X is any convex body for which 

K C X, then H(K) C X . 

That each bounded set has a unique convex closure is shown by 

Eggleston (3, p. 21 -22). 

Definition 4. A convex polytope is the convex closure of a finite col- 

lection of points. 

A. convex polytope is necessarily a convex body, and in two- dimen- 

sional space is called a convex polygon, and in three -dimensional 

space, a convex polyhedron. We use the term "polytope" as a 

dimensionally independent term. 

Minkowski (4, p. 182) has shown that sets of the form 

L L {l)(I 

1 



Ji 
i= 1 

4 

(1) 

where J1, J2, " , Jm are line segments, are convex polytopes. 

It is the object of this paper to characterize the class of convex 

polytopes which may be represented in the form (1). This problem 

is posed in a somewhat different setting by Blaschke (1, p. 154 -157) 

and by Bonnesen and Fenchel (2, p. 29). The solution obtained herein 

for polytopes involves the following concept: 

Definition 5. A convex body K is said to be centrally symmetric 

with respect to a point P 
0 

if, for every point P of K, 

2P0 - Pc K. K is said to be central if there is a point with respect 

to which K is centrally symmetric. 

m 
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II. SOLUTION OF THE PROBLEM IN TWO -DIMENSIONAL SPACE 

Theorem 1 is not a new result , but the proof given 

in this section serves to set the pattern for the proof of 

the corresponding result in three - dimensional space, given 

in the next section. 

Theorem 1. A convex polygon K is the sum of finitely many line 

segments if and only if K is central. 

Proof. To begin with, assume that K is the sum of the line seg- 

ments J1, J2, "' , Jm. Let the end points of Ji be denoted by 

M. and N., and let B. T (M. + N.) /2 and C. .= (M. - N.) /2. 1 1 1 1 1 1 1 

Then 

and 

where 

Ji _ {B 
i 
+aC 

i 
I-1 <a< 11 fori- 1,2,,m, - - 

K = B.+ a.C.)i-1< a.< 1 - i- 

= PO+, 

m 1=1 

If P is a point of K, say 

a.C.I -1 < a.< i i -- 1- 

P = P0 + t.C. , 

1=1 

m 

P = B. 
i=1 

m 

ï=1 

! \I 

\/ 



6 

where -1 <t. <1 for i = 1 2, - 1- then 

2P0 -P = P +) ( -t.)C. E K 
i 1 

i =1 

since -1 < -t. < 1 for i = 1, 2, . 
, m. It follows that K is cen- 

- 1- 
trally symmetric with respect to P0. 

On the other hand, if we assume that K is a central convex 

polygon, then it has an even number, say 2m(K), of edges. In 

case m(K) = 2, K is a parallelogram and it is easily verified that 

K is, except for a possible translation, the sum of two of its inter- 

secting edges. Now suppose we have proven the theorem for convex 

polygons for which m(K) < k, where k is an integer satisfying 

k > 2. Let K be a convex polygon such that m(K) = k + 1, and 

let L0 be one of its edges. Without loss of generality, we may 

assume that the center of symmetry of K coincides with the origin, 

and that L0 is parallel to the y -axis of a rectangular coordinate 

system. This follows from the observation that the possible trans- 

lation and rotation of K required to establish these conditions is a 

rigid motion of K, and has no effect on its shape. 

The orthogonal projection of K onto the x -axis is an interval 

symmetric about the origin, which we denote by [ -r, r] . Let L1 

be the edge of K parallel to L0 and denote the midpoints of L0 

and L1 by R 
0 

and R1, respectively. Now the line segment 

R0R1 passes through the origin and separates K into two halves, 

m 
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each of which is a reflection of the other in the origin. These will be 

called the upper and lower halves of K, named so that the positive 

y -axis intersects K in its upper half. Each of the lines x = a, 

for a E [ -r, r] , intersects K in a line segment having one end point 

in the lower half of K, at y = f(a) < 0 say, and the other end 

point in the upper half of K, at y = g(a) > O. Then K may be 

represented in terms of the functions f and g as follows: 

K = {(x,y)I-r <x <r, f(x) <y <g(x)}. 

The parallelogram H(L0 v L1) is contained in K, so 

g(x) > f(x) + µ, for all xE[ -r, r] , where µ is the length of 

L0. Define 

K I = { ( x , y ) 1 -r < x < r , f(x)+2 <y g(x)-} , 

and J = {(0, y) j - <Y. < 2 } 

J is a line segment, and 

K' +J = {(x, +y2)I -r <x <r, [f(x)+ 

= K. 

2 y1 +y2 <[g(x)- 2] + 2 } 

Geometrically, K' is the figure obtained from K by re- 

moving the parallelogram H(L0 v L1) and moving the two re- 

maining parts together. Thus K' is a central convex ploygon 

< 

. 

] - 2 



with 2k edges. But we have assumed for induction purposes that 

the theorem holds for K' since m(K') = k, 

8 

Therefore, K' is 

the sum of finitely many line segments, and so is K = K' + J. Since 

K is any convex polygon for which m(K) = k +1, we conclude by 

the principle of mathematical induction that the theorem holds for all 

convex polygons. 
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III. SOLUTION OF THE PROBLEM IN THREE- DIMENSIONAL SPACE 

For a convex polyhedron to be represented as a finite sum of 

line segments, the simple condition of centrality does not suffice in 

general. For example, the regular octahedron is a central convex 

polyhedron which cannot be so represented, as the following argument 

shows. Any sum of line segments having three pairwise distinct di- 

rections is a parallelopiped, which has eight vertices. Adding more 

line segments to this sum does not decrease the number of vertices of 

the resultant polytope. But the regular octahedron has only six ver- 

tices, so it is not the sum of a set of line segments having three or 

more distinct directions. On the other hand, a sum of line segments, 

where there are two or fewer distinct directions, is aplane figure. 

In no case, then, are we able to construct a regular octahedron by 

summing a finite number of line segments. The reason for this, as 

will be shown by Theorem 2, is that the triangular faces of the regu- 

lar octahedron are not central figures. 

The following definitions serve to formalize our notions of 

faces, edges, and vertices of polyhedra and polygons. 

Definition 6. If K is a convex polyhedron, if G is a p ane con- 

taining three non -collinear points of K, and if K lies 

on one side of G, then G , K is called a face of K. 

ntirely 
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Definition 7. If K is a convex polygon, if X is a line contain- 

ing two distinct points of K, and if K lies entirely on one side 

of X, then X n K is called an edge of K. 

That each face of a convex polyhedron is a convex polygon, 

and that each edge of a convex polygon is a line segment, is not dif- 

ficult to verify. 

Definition 8. If K is a convex polyhedron, if F is a face of 

K, and if L is an edge of F, then L is called an edge of K. 

Definition 9. If L and L' aretedges of a convex polyhedron (or 

polygon) K, and if L and L' intersect, then L r-N L' is a 

vertex of K. 

It follows from these definitions that, if K is a convex 

polyhedron or a convex polygon, the edges of K are line segments, 

and the vertices of K are points. Another fact we will employ is 

that, if K is a convex polygon and Z the set of vertices of K, 

then 

K=H(Z). 

This is shown by Eggleston (3, p. 29). 

With this preparation, we state our main result: 

Theorem 2. For a convex polyhedron K to be a sum of finitely 

many line segments, it is necessary and sufficient that all of the faces 

of K be central. 
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Proof. To demonstrate the necessity of the condition, suppose that 

K = Ji , 

i=1 

where, for i = 1, 2, , m, Ji is a line segment. Denote the end 

points of J. by M. and Ni, and let B. = (M. +N.) /2 and 

C = (M. - N.)/2. Then 
i 1 1 

Ji = {Bi+aGiI -1 < a < 1 } . 

Now let F be a face of K, and G the plane of F. F 

contains a point P of K, say 

P = 

i=1 

Bi +tiCi) , 

where -1 < t, < 1 for i = 1, 2, , m. Without loss of generality, - 1- 
we can suppose that the Ji are labelled so that, for some positive 

integer r < m, J1, J2, , Jr are parallel to G and Jr +1, 

Jr +2' , 
Jm are not. Then the set 

i 
G = 

i=1 

a.C.I all real a. 

is a plane parallel to G through the origin, whence 

m 

' 

i i 



Let 

m 

G=G'+P=, B.+ > t.C.+ 
1 1 x 

PO = 

Then, since F = G K, 

m 

t. +a.)C.I all real a. 
x x x 

B + ) t C . B. 
ï i 

i=r+1 

F = P + i , (t. +a. C. -1 < a. + t.< 1 
x x x x x- 

_ PO 

i=1 

ici I -1 < ßi < 1 . 

12 

Thus F is a finite sum of line segments and so, by Theorem 1, is 

a central polygon. 

We come now to the proof of the sufficiency of the facial 

centrality condition. That is, given that K is a convex polyhedron, 

all of whose faces are central, we are to show that K is a sum of 

finitely many line segments. 

Let m(K) be the number of edges of K having pairwise 

distinct directions. Thus we assume that there are exactly m(K) 

edges L1, L2, .. 
, Lm(K) of K such that, for i j, Li is 

not parallel to L., and if L is any edge of K, then L is 
3 

m r 

i=1 i=r+1 i=1 

rm 

m 

. 

i= 1 

^ 

+ 

i 

4 

LLLLLLi 

11 

1i=1 
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parallel to L. for some i = 1, 2, , m(K). In case m(K) _ 3, 

K is a parallelopiped, and it is easily shown that K is the sum of 

the three edges intersecting in some vertex of K. If we assume 

that, for some integer k > 3, the theorem holds for all convex 

polyhedra for which m(K) < k, then we have to prove that the 

theorem holds for convex polyhedra satisfying m(K) = k +l. When 

this has been shown, it will follow by induction that the theorem is 

true for all convex polyhedra. 

Let K be a convex polyhedron, all of whose faces are cen- 

tral, and for which m(K) = k +1. Let L 
0 

be an edge of 

Employing three -dimensional rectangular coordinates (x, y, z), 

we can assume, without loss of generality, that L0 is parallel to 

the z -axis. For each point set X let T(X) denote the orthogonal 

projection of X onto the xy- plane; for each line segment J, let 

6(J) be the length of J; for each point P, let F(P) be the 

line segment through P parallel to L0; and for each point P 

let W(P) = 6(K n F(P)). Finally, let 

K0 = T(K), and 

µ = 6(L0) . 

The proof of the induction step will consist of the following 

results: 

g: ,K, 
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(i) For every edge L of K parallel to L0, 

T(L) is a vertex, V, of K, and W(V)= µ. 

That is, all edges of K parallel to L0 

have the same length. 

(ii) The set E = {PI P c K0, W(P) > µ } is a 

convex body. Since EC K0, and since, 

by (i), E contains all the vertices of K0, 

it follows that E = K0, when W(P) > 

for all P e K0 . 

(iii) There is a convex polyhedron K' and a line 

segment J such that K = K' + J, K' 

has all its faces central, and m(K1) <k. 

By the induction hypothesis, the theorem 

holds for K' , whence K' is the sum 

of a finite number of line segments and so, 

therefore, is K. 

The demonstration of these results follow. 

(i) 
Let L be any edge of K parallel to L0. L is the 

intersection of two faces F and F' of K. Let G and G' 

be the planes of F and F' , respectively, and let X and X' 

be the lines T(G) and T(G'), respectively. Since K lies 

µ 

(iv) 
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entirely on one side of G, K0 
0 

lies entirely on one side of X. 

Furthermore, G contains at least three non -collinear points RI, 

R2, and R3 of K. Therefore, at least two of the lines I'(R1), 

r(R2), and r(R3) are distinct, and thus project onto K0 as two 

distinct points. But these latter points are in X n K 
0 

since R1, 

R2, and R3 are in G m K. Therefore, X n KO is an edge of 

K0. Similarly, X' n K0 is an edge of K0. Moreover, X and 

X' intersect at T(L), which is in K0. Therefore, for any edge 

L of K parallel to L0, T(L) is a vertex of K0. 

Now let V0 ^ T(L0). Then V0 is a vertex of K0. 

Starting at V0, label the remaining vertices of K0 V1, V2, V. 
We have W(VO) = 6(L0) = µ. Suppose we have shown that W(V.) =µ, 

for some non -negative integer j < r. We demonstrate next that 

W(V. +,1) = µ, and when this has been done, we will have shown by 

induction that W(V) = µ for all vertices V of K0. 

Let L be the edge of KO joining the vertices V. and 

Vj 
+1, and let P be any point of K r r(V. 

+1). By the induction 

assumption, K r(V.) is a line segment, J' say, parallel to 

LO with length µ . Let G be the plane containing J' and P, 

and let F = G n K. K lies entirely on one side of G since K0 

lies entirely on one side of the line T(G). Thus F is a face of 

K, and therefore a central convex polygon. Furthermore, T(F)=L, 

so F lies between the lines r(V.) and r(v. +1). Hence J' is 

, 
J 
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an edge of F, and P lies on the edge of F opposite J' , 

which we denote by J" . By the symmetry of F, 6(J ") = 6(J') = p.. 

But J" = K n F(V. +l) so W(V. +l) = µ, as was to be shown. 

(ii) 
Let E = {PI PEK0, W(P) > µ }, and let Z be 

the collection of vertices of K0 Z = {V.I j = 0, 1, , r } . We are 

to show that E is a convex body. Let Q and R be arbitrary 

points of E. Then Q and R are in K0. Denote by Ql and 

Q2 the end points of the line segment K , r(Q), and by R1 and 

R2 the end points of K r(R), labelled so that the line segment 

Q1R1 does not intersect Q2R2. Then Q1R1R2Q2 is a plane 

quadrilateral with two parallel edges Q1Q2 and R1R2. We note 

that 
6(Q1Q2) > µ and 6(R1R2) > µ (2) 

because Q and R are in E. 

Suppose P is a point on the line segment QR. We may 

represent P in the form 

P = tQ + (1 -t)R for some te [0, 1] . 

We define P1 = tQ1 + (1 -t)R1, and 

P2 = tQ2 +(1-t)R2. 

Then P1 e K and P2 K since K is convex, Furthermore, 

- 
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r(p) intersects the quadrilateral Q1R1R2Q2 in the line segment 

P1P2 parallel to Q1Q2 and R1R2. Thus 

W(P) > 6(P1P2) 

> min {6(Q1Q2), 6(R1R2) } 

> µ, 

by (2), so that PE E. But P was assumed to be an arbitrary 

point of QR, and Q and R were arbitrary points of E. 

Hence E is a convex body. We have shown that Z C E, so we 

deduce that H(Z) C E. But H(Z) = KO because a convex polygon 

is the convex closure of its vertices, and, from its definition, 

E C K0, whence E = K0. Therefore 

W(P) > µ for all P£ K0. 

Let C = (0, p, 1) and 

J = {aC <µ} 

As we did in Theorem 1, we represent K in terms of the lower 

and upper end points of the line segments K , r(P) for P e K0: 

(3) 

K = {P +aC I P e K0, f(P) < a <g(P)} . (4) 

. 
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For each P E K0, we see from (4) that 

g(P) - f(P) = 6(K rm F(P)) 

W(P) 

Now define 

> 

K' = K (Th (K- µC) , (5) 

where, as mentioned in section I, K - µC is K translated 

through -µC = (0, 0, -µ). Then 

and 

K - µC = {P+aCIPE K0, f(P)-µ <a<g(P)- µ}, 

K' = {P+aC I Pe K0, f(P) <a <g(P) - µ }. (6) 

Since the inequality f(P) < g(P) -µ holds for all Pc K0, we see 

that T(K') = K0. Hence, from (3) and (6), we get: 

K' +J = {P+aCIPeKO, f(P)<a<g(P)- µ} 

+ {ßCI 0 < ß < µ } 

= {P +aC I P e K0, f(P) <a <[g(P) - µ ] + µ } 

= K. 

The upper surface of K' (that is, the set of upper end points 

= 

µ 
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of the line segments K' (Th F(P) for Pc K0) is 

{P +[g(P)- J.] CIPc K0} 

{P +g(P)C(P e K0} -µC 

which is a translate of the upper surface of K. Thus, if F is a 

face of K' in its upper surface, it is a translate of a face of K, 

and it is therefore central. Similarly for faces of K' in its lower 

surface. In the case of faces F of K' parallel to L0, F +J 

is a face of K with L0 as an edge. Thus F +J is central, and 

by Theorem 1, F is central. Hence all of the faces of K' are 

central. 

We have left to show that m(K') <k. First observe that 

there are no edges of K' parallel to L0; for, if L were such 

an edge, then T(L) would be a vertex V of K0, by the argu- 

ment employed in (i) for K. Then 

ó(L) = S(K' (-\ F(V)) = [g(V) - µ ] -f(V) = 0 , 

since g(V) - f(V) = W(V) - µ. Moreover, if L is an edge of K', 

then L is an edge of some face F of K', and one of the follow- 

ing holds : 

case a : F is in the upper surface of K' 

case b : F is in the lower surface of K' 

case c : F is parallel to L0 . 

. 

. 
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In cases (a) and (b), F is a translate of a face of K, so 

that L is parallel to an edge of K. In case (c), L is parallel to 

an edge of F +J, which is a face of K. Hence in all three cases, 

L is parallel to an edge of K. But m(K') is, by its definition, 

the number of edges of K' with pairwise distinct directions, so 

m(K') < m(K) = k +l. We have also observed that K' has no edge 

parallel to the edge L0 of K We conclude that m(K') < m(K), 

or m(K' ) <k . 

This completes the induction step outlined previously in this 

section, and so completes the proof of the theorem. 

. 
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