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AN ADAPTIVE PITCH AXIS AUTOPILOT DESIGN FOR AN UNSTABLE

NONMININUM PHASE PITCH AXIS MODEL

CHAPTER 1

EVTRODUCTION

In classical control designs, the process models are assumed fixed

and thus the parameters of the controller are taken as constants.

However, variations in the process models occur frequently; hence the

applications of classical controllers are thus restricted. In adaptive

control the process model is identified on-line and the controller

parameters are automatically adjusted in response to the change of the

process model. As one of the important applications of adaptive control,

the adaptive autopilot has been intensively studied for more than a

decade. This chapter gives a brief description of the conventional pitch

axis autopilot designs and limitations, approaches in the adaptive

autopilot designs, the objective and outline of the thesis.

1.1 . 'Las : :o I .4 . 5) 11.1t:i : I I/ 1

A typical way of designing an aircraft autopilot is to design a

compensator for the aircraft based on a linearized aircraft model. The

linearized aircraft model is determined by linearizing the aircraft model

around an operating point under the assumption that the operating point
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of the flight is fixed. Techniques such as the Nyquist compensation

method and root-locus technique can be applied in the design of such a

compensator. For example, the root-locus technique is applied in the

autopilot designs in Blake lock [1965] and in Saugen [1987]. The autopilot

designs generally assumed that the parameters of the linearized aircraft

transfer function do not change with the variation of the speed, the

altitude, and the weight of the aircraft. In fact, the poles and zeros of the

aircraft transfer functions depend greatly on the speed and altitude of the

aircraft. In reality and especially for high performance aircraft, the

speed and altitude change frequently. So, the parameters of the aircraft

model change if the aircraft is not limited to a horizontal flight path with

a constant speed.

The transient response of an aircraft depends upon the parameters

of the compensated aircraft flight control system. Consequently one

solution to the varying parameter problem is to schedule the parameters

as a function of Mach number or dynamic pressure. This approach

requires extensive system analysis a priori to determine the autopilot

parameters for the various flight conditions. To perform this analysis the

aerodynamic data for the entire flight regime much be known accurately.

This information is usually obtained from wind tunnel tests of scale

models of the aircraft. After the aircraft is built, provision is made for

changing the autopilot gains in flight. This procedure is then followed by

extensive flight testing to determine the final optimum gain settings. The

analysis and design procedure is time consuming and expensive.

Furthermore, this approach lacks robustness in flight due to system

modeling errors.
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1.2 AmowimajnMaulinAdmidDmm

An adaptive control system is a special compensator which is

capable of tuning itself to optimal settings and is also capable of retuning

itself should the system dynamics subsequently change. So, an adaptive

controller can be applied to solve the parameter variation problem of the

aircraft system.

A typical adaptive autopilot is shown in Figure 1-1. It can be

regarded as being composed of an inner loop and an outer loop. The inner

loop is the basic control loop which consists of the controller and the

aircraft dynamics. The outer loop is composed of a parameter estimator

and an adaptive process algorithm. The parameter estimator estimates

the parameters of the aircraft system using the sampled data of the input

and output of the aircraft system. The adaptive process algorithm adjusts

the parameters of the controller in the inner loop to yield desired system

output.

The idea of the adaptive autopilot has been around for about two

decades. Many basic configurations for adaptive autopilots were

proposed in 1950s as introduced in Blake lock [1966]. However, early

attempts at adaptive autopilot design were largely unsuccessful because

the supporting theory was essentially nonexistent and there were also

difficulties in implementation since computer technology was still in its

infancy.
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During the 1960s there were major developments in system

identification and control theory. This led to an improved understanding

of the general problem of the adaptive autopilot and spurred renewed

interest in the topic. Different adaptive design methods are reported in

the special issue of the IEEE Transactions on Automatic Control (1977,

Vol. AC-22, No.5). The adaptive autopilot designs are mostly based on the

linearized aircraft model. Examples of simulations occur in the

literatures which show that the adaptive autopilot is effective in achieving

desired system performance. However, there are problems when the

aircraft dynamics has nonminimum phase* . Simulations for such

systems show that adaptive autopilots based on common adaptive

algorithms are unable to control the nonminimum phase system. See

John et al [1982].

1.3 Objective and Outline of the Thesis

An adaptive controller design procedure is applied to the aircraft

pitch axis model presented in Appendix I. The linearized model has

nonminimum phase as shown in Chapter 2. The adaptive pitch axis

autopilot design method used here employs a pole-placement algorithm

utilizing a parameter estimator based on a modified least square

identification algorithm. Further details on the design method are

presented in Chapter 4. The objective of the thesis is to test the

* A physical system has nonminimum phase if its Laplace transfer function has one
or more right-half plane zeros or poles. For a discrete-time Z-transfer function the
zeros or poles are outside the unit circle in the complex Z-domain.
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effectiveness of the adaptive controller in maintaining desired transient

response as well as maintaining tracking performance.

As a design approach, the adaptive autopilot is designed to be

activated after the aircraft has achieved level flight after taking off. The

adaptive controller then operates continuously for subsequent flight

maneuver. As shown in Chapter 2, the linearized pitch axis model of the

assumed aircraft is an unstable nonminimum phase system. So, prior to

the design of the adaptive autopilot, the system is stabilized for all level

flight conditions. Rate-feedback compensation is found to be effective in

stabilizing the unstable aircraft system for the desired flight envelope.

However, rate-feedback does not achieve desired system behavior for all

desired flight conditions. This is discussed in Chapter 3.

If a feedback system has a feedforward transfer function which has

nonminimum phase zeros, then the feedback system will also have

nonminimum phase zeros. Therefore, the nonminimum phase nature of

the linearized pitch axis aircraft system is carried over to the feedback

system. Furthermore, a nonminimum phase continuous system

generally produces a nonminimum phase discrete system (Clarke [1984]).

Clarke discusses how a long sample interval can sometimes be used to

avoid the nonminimum phase zero(s). However, the corresponding

control is extremely poor. Consequently, it is important that a digital

autopilot be designed using the nonminimum phase discrete system

model.
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Since the discrete pitch axis system model of the aircraft is a

nonminimum phase system, caution is required in the selection of an

adaptive algorithm. Early self-turning regulators and model reference

adaptive control (MRAC) algorithms involve pole-zero cancellations with

the result that the cancelled system zeros are factors of the closed-loop

characteristic equation (Clarke[1984]). A nonminimum phase system

has at least one nonminimum phase zero which can be "cancelled" by an

unstable pole. So, the adaptive algorithm based on a conventional self-

tuning regulator or a MRAC algorithm is not considered for the

nonminimum phase aircraft system. A pole-placement algorithm

proposed by Astrom & Wittenmark [1980][1984] is applied in this study. It

is shown in Astrom & Wittenmark that the algorithm is adequate for a

nonminimum phase discrete system and generally results in good

tracking. Modifications are also included to track the input with

minimum error. A modified least-square identification algorithm is used

in the design, rather than the ordinary least-square algorithm that is

used in Astrom & Wittenmark. This is discussed in Chapter 4.

Simulations of the designed adaptive autopilot are included which

show the transient response of the aircraft system and the effect of the

modified least-square algorithm on altitude tracking. The simulations

use the nonlinear aircraft model of Chapter 2. Details are discussed in

Chapter 5.
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CHAPTER 2

THE PITCH AXIS SYSTEM AND THE DESIRED BEHAVIOR

In this chapter, the aircraft model studied is introduced. The pitch

axis system transfer function is found through linearization. The desired

behavior of the system is discussed. Design goal are defined.

2.1 The.EitchbdautemAtheAmizaft*

The aircraft model used for the study is shown in Figure 2.1 (also

shown in Appendix I). The inertial reference axis system consists of a

fixed horizontal axis and a vertical axis. Pitch rotation is taken positive in

a counter-clockwise sense around the vehicle center of mass and is

referred to the horizontal plane.

The following assumptions are used. The aircraft has a gross

weight of 10,000 pounds, including the maximum weight of fuel. The

average fuel consumed is 50 pounds per hour. The aircraft has an

elevator for the purpose of pitch axis control. The actuator of the elevator

is assumed ideal, that is, elevator dynamics are neglectable. The distance

from the center of mass to the center of aerodynamic pressure, rcp, is 0.5

feet and the distance from the center of mass to elevator center of

aerodynamic pressure, re, is 20 feet. rcp and re are as indicated in

Figure 2.1. The thrust of the engine is assumed to be adjustable.



Altitude
(h)

in feet

9

De

Range (r) in feet

Figure 2.1 The Pitch Axis Aircraft Model.
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The aircraft is assumed to fly between 0.5 Mach to 0.8 Mach. The

maximum altitude of the aircraft is assumed to be 40,000 feet. The

aerodynamic coefficients within the flight envelope are constants as

shown in Table 2.1 (also in Appendix I).

Polar Moment of Inertia (J, in lbftsec2/rad) 6,000

Moment Coefficient ( crne,, 0 in deg./sec.) 1.544

Coefficient cia, a in degree 13.96

Coefficient c , p in degree 0.698

Coefficient cd. 10.00

Coefficient cap 0.500

Atmospheric Density at zero altitude (p2, in Slugs/Cu.ft) 0.00238

Exponential Atmosphere Factor (H, in ft) 30,000

Table 2.1 Aircraft Pitch Axis Data and Environmental Parameters.
(See Appendix I.)

2.1.1 The Pitch Axis System

The state variable model of the pitch axis system is given by

Equation (2-1), which is the same as Equation (A.1) in Appendix I. Note

that the system is non-linear.
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The state variable model of the pitch axis system is:

x'=

r'
r"
h'
h"
0'

0"_

X2

X3

X4

X5

X6

Lei X5i

where

X2

kr cc" (x5
V

4
). x5 + couix5

X4

krX5 + ca
V

(x5 g

X6

XNe.X6 Na (x5 =
V

)+ (2-1)

the state variable x =

X2

Xs

x4

X5

Xe

range
horizontal speed

altitude
vertical speed

pitch angle
pitch rate

r _

r'

h'
0

0'

the input to the system u = [ui] = [elevator angle] = [Ns

the output of the system q = [ =
altitude h

q2 pitch angle 0

V is the speed of the aircraft, i.e., V=Vi-7271-1112 + x4 , and

g is the acceleration due to gravity (g=32.2 ft/sec2
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The parameters co, ca, N., No, N9. & kr in Equation (2-1) are

defined in Appendix I:

ca=1 (0.5pV2)cla c --1 (0.5pV2)c
10

;P m

N = rc c ; N = r ca j p a j e

T 1 2 2 )ck =---(0.5pV )(c N =(0.5pVm m da up O' mu'

(--)
where, p is the atmospheric density (p = pz e H ) ;

re , rcr, are as shown Figure 2.1;

P. , H, Cla C1 Cda Cdri eine' and J are given in Table 2.1.

2.1.2 The Linearized Pitch Axis Model

Assuming a constant velocity horizontal flight operating point,

then xT = [ro V h0 0 00 0] with u0 = [130] and qT = [h0 00], where ro,

V, 110, 00, and [30 are constants which define the operating point.

Horizontal flight requires he,' and 00' to be zero. The following

assumptions are also made for the operating point:

(1) The thrust and the weight of the aircraft are constants.

(2) The aerodynamics coefficients ( as shown in Table 2.1)

are constants.
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(3) Dynamical motion around the operating point for

small angles does not change significantly the
magnitude of V. However, r' and h' will change

although r' is still assumed to be close to V.

The linearized state variable model, as shown in Equation (A.3) of

Appendix I is repeated in Equation (2-2):

-0 1 0 0 0 0 0
0 0 a2.3 au am 0 b2

0 0 0 1 0 0 0
Sx'=

0 0 a43 au a45 0
- Sx +

b4
Su (2-2)

0 0 0 0 0 1 0
0 0 ass a84 ass ass_

&I = [1 ii
x5

x=x0+Sx
where, and, the "a" and "b" parameters are

u = 130 + Su

given by Equation (A.5) in Appendix I

As discussed in Appendix I, if the aircraft is flying horizontally at

an altitude h0 with a constant velocity V, the operating point flight path

angle lo is zero and hence the operating point pitch angle 00 and angle of

attack a0 are equal (but not zero). The range r thus varies linearly with

time, i.e., r=Vt, since the horizontal velocity is V and the vertical velocity is

zero. Under the above condition, the values of 130, 00, Kr0, Tro can be

determined by solving the operating point equations along the horizontal
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flight path, as shown in Equation (A.3) in Appendix I. The corresponding

a and b parameters of the state space model, i.e. Equation (2-2), are thus

determined.

The values 00, 030, Kr0 & Tro at the operating point are found by

solving Equation (A.3) in Appendix I. 130 , Elo , Kro & TK, are functions of

the flight condition, i.e., h, V & m. Since the a and b parameters of

Equation (2-2) are functions of (30, 0, Kr0 & Tr3 , see Equation (A.5),

then the a and b parameters are functions of the flight condition (h,V,m).

2.1.3 The Transfer function of the System

The stability of the pitch axis system is determined by the pitch axis

characteristic equation which can be found from its transfer function

H(s)=8X3(s)/8u(s) . In Laplace transform form Equation (2-2) becomes:

s 8x, (s) = 8x2 (s);

s 8x2 (s) = 83(3 (s) a23 + Eix,, (s) a24 + 8x5 (s) a + Su(s) b2 ;

s ox2 (s) = ox,, (s);

s 8x4 (s) = ox3 (s) a43 + ox4 (s) a. + 8x6 (s) a46 + 8u(s) b4;

s 8x6 (s) = 8x6 (s);

s ox6 (s) = 8x3 (s) a. + 8x4 (s) a. + 8x5 (s) a. + 8x6 (s) a. + Su(s) b6;

(2-3)

It is usually a tedious task to solve Equation (2.3) for H(s). One

straight-forward way of solving Equation (2.3) for H(s) is using the signal

flow graph. The detailed procedure is referred to Appendix II.
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As shown in Appendix II, the transfer function of the pitch axis

system is:

H(s) = 6x 3(s)
8u(s)

b4s2 b.a.s+ abe - a.b.
_

s 4 (a. + awds3 + (a.a. - a. a43
)s2 +(a.a. + a.a aa.)s+ a.a a.a

The pitch axis characteristic equation is,

(2-4)

W(s) = s4 - (a. + a. )s3 + (a.a - a. a43
)s2 + (a.a. + a.a a.a.)s + a.a -: a.a.

The parameters of the transfer function H(s) as shown in Equation

(2-4), are functions of the "a" and "b" parameters, and, as discussed in

Section 2.1.2 of the Chapter 2, the "a" and "b" parameters are functions of

the flight condition (V,h,m). So, the parameters of the transfer function

H(s) vary with the speed(V), altitude (h), and mass (m). The stability and

transient response of the pitch axis systems thus vary from one flight

condition to another. Further details are discussed in Section 3.2.3 of

Chapter 3.

2.2 Thejlesimillehaywrsfiliaateni*

The autopilot is assumed to be activated when level flight has been

achieved after take-off. It then tracks the altitude command. The desired

flight altitude is the reference signal input to the computer which can
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vary with time. The desired closed-loop transfer function should not only

stabilize the system but also maintain the required transient response

within the desired flight envelope. The requirements for this study are, as

suggested by Professor Saugen,

for an altitude command change of 100 feet,

(1) The rise time is between 5-12 second;

(2) The overshoot must be limited to 5%;

(3) The maximum acceleration is less than 0.8g .

The adaptive autopilot is required to modify system parameters so that the
above requirements are met for any operating condition within the
aircraft's specified flight regime .
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CHAPTER 3

SYSTEM ANALYSIS AND COMPENSATION

As discussed in Chapter 1, selection of the adaptive control

algorithm depends greatly on the system nature. This chapter discusses

1. pitch axis stability and compensation, and

2. examination of the system nonminimum phase nature.

3.1 Eitchzwastabilityandrampensakon*

Pitch axis stability for the uncompensated system during level

flight can be determined from the root-locus plots of H(s) in Equation (2.4),

as shown in Figure 3.1(a) through (c). The root-loci are greatly affected by

the speed and the altitude variations which occur for the given flight

envelop. There is always a root locus in the right half s-plane indicating

that the system is unstable over the entire desired flight envelope. The design

approach for the adaptive pitch axis autopilot assumes the adaptive

autopilot is activated when the aircraft is in level flight. Since the

uncompensated pitch axis system during level flight is unstable, it is

appropriate to stabilize the aircraft using a compensator. A linear

feedback loop is designed to stabilize the aircraft system during level

flight within the entire desired flight envelope using methods present in

Blake lock [1965] and Saugen [1987].
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Figure 3.1(a) Root-Locus Altitude Variation for the Unstable Pitch
Axis System. V=0.5 Mach; h=100, 20000, 40000 feet;
W=10,000 Pound;
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Figure 3.1(b) Root-Locus Speed Variation for the Unstable Pitch
Axis System. V=0.5, 0.7, 0.8 Mach; h=40,000 feet;
W=10,000 Pound.
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, 1 , 1 , I

-1.00 -0.80 -0.60 -0.40 -0.20 -0.00 0.20 0.40 0.60 0.80

Figure 3.1(c) Root-Locus Weight Variation for the Unstable Pitch
Axis System. W=10000, 9500, 9000 Pound; V=0.5 Mach;

h=40,000 feet;
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To stabilize the system, a compensator must be designed such that

the right half s-plane root loci can be forced back to the left half s-plane. A

rate-feedback compensator is found to be effective in meeting this goal.

The rate-feedback compensator is discussed in the next section.

3.1.1 The Rate-Feedback Configuration

Figure 3.2 shows the system with rate-feedback as used by the

analog controller. The rate-feedback is assumed perfect in this study.

The system time response of the rate-feedback compensated system

depends on the loop-gains K and Kt . The root-locus technique is used to

determine the values for K and Kt which stabilize the pitch axis system for

all level flight conditions within the desired flight envelope. Although the

system is stable, desired behavior is not achieved for all flight conditions.

f*

Altitude
Command I

Shr(s)
1

1

Analog Controller

Elevator
Angle 1

813(s) 1

The Rate-feI edback compensator I

I
I

1

He (s).

1

1

I

..,

Altitude

Sh(s)

H
Figure 3.2 The Rate-feedback Pitch Axis System Forming the Analog

Controller.
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3.1.2 Determination of the Gains K and Kt

Figures 3.1 (a) and (b) show that the root-locus is closest to the real

axis for low speeds and high altitudes. The root loci move toward the real

axis as the dynamic pressure decreases. Root loci closer to the positive

real axis are more difficult to compensate, i.e., to attract to the left -half s-

plane. Hence, it is more difficult to stabilize the aircraft at low speeds

and high altitudes. Consequently the following is hypothesized: A

compensator designed to stabilize the pitch axis system for the lowest

speed and the highest altitude within a desired flight envelope is stable for

the entire flight envelope during level flight. This hypothesis is verified

in Section 3.1.3.

The lowest speed and the highest altitude of the desired flight

envelope is V=0.5 Mach and h=40,000 feet. Since the variation of the

weight of the aircraft does not affect the root-locus of the system

significantly, as shown in Figure 3.1(c), the weight corresponding to the

flight condition for the design of the compensator is thus taken as the

initial weight of the system, i.e., w=10,000 pounds. The transfer function

corresponding to V=0.5 Mach, h=40,000 feet & w=10,000 pounds is thus

used in the design of K and Kt. The operating point condition under the

flight condition is given by Equation (A.3) of Appendix I, that is:
00=7.39 degree; 00=3.70 degree; Tro (trust)=22,955 pound. The transfer

function at the operating point is:



23

( 2.197 s2 0.03165 s + 5.6743 )4000
H(s) =

8h(s)
(3-1)

813(s) s4 + 0.5951 s3 + 0.7175 s2 0.00462 s + 0.0006758

where ah is expressed in feet and sp is in degree.

The closed-loop transfer function of the compensated pitch axis

system, as shown in Figure 3.2 can be expressed as,

5h(s) K H(s)
tic (s) =

Shr(s)
=

1+K H(s) ( Kt s +1 )

where 5h and 5hr are expressed in feet;

Shr is the reference altitude command.

(3-2)

As shown in Equation (3-2), the poles of the rate-feedback
compensated system are the zeros of 1+K H(s) ( Kt s +1 ). The stability of

the rate feedback compensated system depends on the gains K and Kt of

the feedforward loop and the feedback loop, respectively.

Root-locus plots for 1+K H(s) ( Kt s + 1) are generated by first

assigning a constant value to Kt and then K is allowed to vary for K>0.

The root-locus plots for Kt =0.5, 0.7, and 1.2 are shown in Figure 3.3 (b)

with K varying from 0 to 0.3. The four loci are symmetrical with respect to

the horizontal axis. The open-loop poles of H(s) in Equation (3-1) are

p1,2=0.0036±j0.0305 and p3,4=-0.3011±j0.7939. Note that p1,2 are unstable

poles.

For Kt =0.5 or 0.7 Figure 3.3 (b) shows that the right half plane root

loci remains in the right-half s-plane, implying the rate-feedback
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compensated system is always unstable for Kt =0.5 or 0.7. For Kt .1.2, a

portion of the root-locus departing from p, and p2 is in the left half s-plane.

For this value of Kt , a gain K can be selected to stabilize the system,

where K1<K<K2 as indicated in Figure 3.3 (b). However Kt =1.2 might not

be a good choice since a very lightly damped system results for all values

of K between K1 and K2. If Kt is chosen such that K1 and K2 are very close,

the selections of K is very restricted and small errors in gain K lead to an

unstable system.

As shown in Figure 3.3 (c), the root loci starting at p3 and p4 for

Kt>Kaitical cross the imaginary axis and never return to the left half plane

for 0<K<0.05. Note, Kaitical is the value of Kt at which the root-loci starts to

cross the imaginary axis, as indicated in Figure 3.4. At the same time,

root loci departing from p, and p2 enter the left-half s-plane and never

return to the right-half plane. The root-loci always intercept the

imaginary axis at four points.

The root-locus plots of Figure 3.3 (b) and Figure 3.3 (c) show that the

range of K for stable operation depends on Kt . The relationship between

K and Kt for stable operation is shown in Figure 3.4. Mathematical

derivations and simulations of the relationship between K and Kt are as

shown in the following.

If the root-locus intercepts the imaginary axis at jo), then, s.ja) is

a root of 1+K H(s) ( Kt s + 1 ), i.e.,

1+ K H(s)-( Kt s + 1 ) =0.



Let,
go s2 +pis +go

H(s) -
s4 + doe + t22 + dis+ do

then,

-K - -1
H(je)) (Kt Jo) +1)

=

=

-1

(
-µ,w2 +RJ0)+110)

a
(Kt jco +1)

il - docosj- doe + t at + do

RL+ jIM
(go Alice g20)2 )2 + (goKtO) + g1(1) µ2K10)' )2

where,

23

(3-3)

RL . - ((0)4 - doe + d) (go -ttlIcco2 - use) + (to - doe) (g0K,0) + PP) 112K,(02/1 (3-4)

IM = [ ,83(03
µ1K10)2

p.2(02 (0)4 $2402 (goKtco + up) - g2Ktcos) I

= co [(-R2K1)o). + (pq +g2152Kt -1116,K, -p.263 + goKt)co4

+(10$3 + 1111511i1 + µ261 P'0152K t P'1152 P'2150Kt)W2

+ (g1150 + gottolit ttodiN

Since gain k is real, the imaginary part of (3-4) is thus zero, i.e.,

(3-5)

( µ21(1)w6 + 411 + 1121521(1 -1111531(1 -112153 +1101(t)0)4

+(gods + gidiKt + g261 - µ0$2K1 -µl$2 - g2.doK1)co2 +(go% + g0i50K1 -goi51) = 0

(3-6a)

So, K -
(µo -gilkt(02 -1120)2)2 +(110Kt0)+ PP) N1(10)2 )2

RL
(3-6b)
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Therefore, if Kt is known, the roots (o)) of Equation (3-6a) can be

determined and then gain K can be found from Equation (3-6b). Figure

3.3(b) shows that the root-loci starts to cross the imaginary axis when Kt is

around 1. The simulation of Kt varies from 0 to 10 is shown in Figure 3.4.

As shown in Figure 3.4, the range of K for stable operation is the

greatest when Kt is approximately 2. Any value of K and Kt within the

shaded area can be chosen to stabilize the system. It is not necessary to

choose Kt such that K has the largest range. However, choosing K for the

largest range of values of K for stable operation results in the most robust

system. So, K=0.015 and Kt =2 are chosen for the design.

For V=0.5 Mach, h=40,000 feet, m=10,000 pound, K=0.015, & Kt =2,

the rate-feedback compensated system transfer function in Equation (3-2)

becomes,

0.032999 s2 0.00047485 s + 0.08511H (s) =
c s4 + 0.58848 s3 + 0.73253 s2+0.16513 s + 0.085793 (3-10)

3.1.3 Verifications of the Rate-Feedback Compensated System

Figure 3.5 shows the stable region for the rate-feedback

compensated pitch axis system at level flight with K=0.015 and Kt=2. The
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stability region is plotted based on the information of the unstable zero(s)

of 1+K H(s) ( Kt s + 1) within the speed varying from 0.2 Mach to 0.85

Mach. The stable altitude corresponding to each speed increases from

zero feet until an unstable zero of 1+K H(s)( Kt s + 1) is detected.

As shown in Figure 3.5, the desired flight envelope is well covered

by the stability region. So, the pitch axis system at level flight is stabilized

by the rate-feedback compensator with K=0.015 and Kt =2.

The rate-feedback compensator is applied to stabilize the system

only, it does not guarantee the transient response of the system meets

specifications. In fact, the transient response of the rate-feedback pitch

axis system varies from one flight condition to another.

Figures 3.6 (a) through (d) show the transient responses and

vertical accelerations of the rate-feedback pitch axis system for some

particular level flight conditions. Figures 3.6 (a) & (b) show the transient

responses and vertical accelerations corresponding to the specified speeds

and an unchanging altitude while Figures 3.6 (c) & (d) show those of the

specified altitude and an unchanging speed. As shown in Figure 3.6(a) &

(b), the maximum percentage overshoot of V=0.5 Mach is greater than

that for V=0.8 Mach but the maximum vertical acceleration of V=0.5

Mach is less than that for V=0.8 Mach. Note that in Figure 3.6(a) the

maximum percentage overshoots are greater than 15% and in Figure 3.6

(b) the maximum vertical acceleration is about 28 feetJsec2 which is

greater than 0.8g. Furthermore, the percentage overshoot decreases as

the speed increases and the maximum vertical acceleration increases as
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0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

Speed (in Mach Numbers)

Figure 3.5 Rate-Feedback Pitch Axis System Stable Flight Envelope.
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Figure 3.6(a) Level Flight Rate-Feedback Pitch Axis System Step
Response. W=10,000 Pound; V=0.5, 0.7, 0.8 Mach;
h=40,000 feet.
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Figure 3.6(b) Vertical Acceleration to the 100 feet Command Change.
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the speed decreases . Similar variations in transient response are also

observed in Figure 3.6 (b). Note that Figures (a) through (d) are plotted

based on nonlinear simulations of the rate-feedback pitch axis system

shown in Figure 3.2. Details on the simulations are referred to Section 5.1.

3.2 Jmination of the System Nonminimum Phase Nature

The level flight pitch axis transfer function is, as shown in

Equation (2-4),

H(s) - b4s2 -13,as+ abe a.b.
s4 - (a. + a.)s3 + (a.a. - a. - a43)s2 + (a.a. + a.a - aoa.)s + a.a a.a .

The numerator polynomial of the transfer function is b4s2-a66-4s+a45b6-

a65b4. The zeros are thus the roots of N(s) = s2-a66s+(a45b6/b4-a65).

The parameters b4, b6, a45, and a65, as shown in Equation (A. 5), are

b4 = -DPM =
DP

CID

b6 -DPJ cm = ----DP
recm

a45 = T +DPM(ck, - cdc, - cd) = T
M

+---DP
M

(Cia Cda CO )m P

DPa65 = -DPJ rpck, = -- rcpcla

1 he

where, DP = 2 pV
2

with p = pz e H ;

P., H, Cda, Cale, and J are aerodynamic

coefficients given in Table 2.1.

T is the thrust of the aircraft, which is positive;

rcp=0.5 feet and re=20 feet as provided in Section 2.1.



So,
a45136 /134 -a85

[ T DP i
= + kck, c la Co)] (DP reepYEDPCgs ) ( DjPrq,c10,)m m J m

[ T DP i
= + kck, -camM m c

\ m )
- (-- reJ

( DP
rcpCia)

= - gr. + DP DP-req. -rccdp)]-(- 7 rcpcjoi)

c
DP

req.- q. -recdp -rcpc,c)

= - T [re+ -e-' 2-f (20x13.96-20x10-20x0.5-0.5x13.96)]J 2J

= - 2

J
[Tr' 2J

+ pV (62.22)] < 0
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The constant term of N(s), i.e., (a45b6/b4-a65), is negative implies that

the product of the roots of the N(s) is negative. Therefore, N(s) has a

positive root and a negative root. The level flight pitch axis system is thus

a nonminimum phase system for the entire flight envelope.

The rate-feedback pitch axis transfer function during level flight is,

as shown in Equation (3-2),

He(s) =
8h(s) K H(s)
81-4(s) 1+K H(s)-( S + 1)

Since the transfer function of the level flight pitch axis system, i.e., H(s),

always has a zero on the right half s-plane, the rate-feedback level flight

pitch axis system is also a nonminimum phase system for the entire

desired flight envelope.
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CHAPTER 4

ADAPTIVE CONTROL LOOP DESIGN

The pitch axis autopilot system configuration is shown in Figure

1.1. The system is composed of an inner loop and an outer loop. The inner

loop consists of the controller and the aircraft dynamics which

determines the transfer function of the closed-loop system. The design of

the inner loop is the controller design. The outer lobp consists of a

parameter estimator and adaptive process algorithm. The parameter

estimator estimates the parameters of the aircraft system using the

sampled data of the input and output of the aircraft system. The

parameters of the controller in the inner loop are adjusted every sample-

period using the results of the adaptive process algorithm.

4.1 Selection of the Adantive Control Algorithm

As discussed in Section 3.2 of Chapter 3, the pitch axis system of

the aircraft at level flight is a nonminimum phase system for the entire

flight envelope. As it is discussed in Clark [1984], the use of common

algorithms such as MRAC and early self-turning regulators can cause

instability of the closed-loop system.

Pole-placement algorithms are discussed in many papers, such as

Astrom & Wittenmark [1980] [1984] and Goodwin & Sin [1981] [1984].

Together with theoretical derivations, proofs and simulations, these
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papers show that the pole-placement algorithm can be used effectively for

adaptive control of deterministic time-invariant nonminimum phase

systems. The structures of the pole-placement algorithms in Astrom &

Wittenmark [1980] [1984] and Goodwin & Sin [1981] [1984] are actually the

same except that the error driven feedback controller is used in Goodwin

& Sin [1981][1984] while the general feedback controller is used in Astrom

& Wittenmark[1980][1984]. The convergence of the pole-placement

algorithm is proven in Goodwin & Sin [1981][1984]. The deterministic

servo design is seriously considered in Astrom & Wittenmark [1980][1984].

Since the requirement for the adaptive pitch axis autopilot is to maintain

the desired transient response of the aircraft system, the design

approach here is based on the pole-placement algorithm proposed in

Astrom & Wittenmark [1980]. Steady-state tracking error minimization

is also presented.

4.2 ..11 I i s s 1.1 I :I g i : 01 I II

4.2.1 The Plant z-transfor Model

The adaptive pitch axis autopilot is assumed to be implemented

digitally. The sampled data pitch axis system is modeled using a zero-

order-hold (ZOH) in the forward path of the system and sampling the

output.

ZOH

Input
)111111111mo Plant >,-2C

Output
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In general, the z-transfer function of a linear stationary dynamic

system can be expressed as,

B(z) Pi z' + 02 Z-2 13n-1 en-" + I3n Z-n=
A(z) 1 + al z-1 + a2 z2 +a....1 z-41-11 + as z'

The pitch axis system transfer function in Equation (2-4) is a 4th

order system. The order of the corresponding z-transfer function is thus

4. So, the degrees of polynomials A(z) and B(z) are less than or equal 4,

that is,

A(z) = 1+ etc z-' + 612 . z' + as 14 + dc, - z-4 :

B(z) = 01 z-' +02 z-2 +03 e +04 z'

where di , ei2, 6c3, 6c4, 111, 02, 03, fi, are the identified system parameters for

each sampling period** .

The discrete time sampled-data pitch axis model is:

y(t) + al y(t T)+6c2 y(t 2T)+6c3 y(t 3T)+ a, y(t 4T)

= 01 u(t T)+02 u(t 2T) + 03 u(t 3T)+ 04 u(t - 4T);

Hence,

A(z)y(z) = B(z)u(z)

where, y is the sampled-data output (altitude in feet);

u(t) is the calculated input signal the analog system (in feet);

T is the sampling time (in second);

t is the discrete time, i.e., t=kT, with k=1,2,3

**
11` is utilized here as a delay operator of k sampling periods.

(4-1)
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4.2.2 The Overall System

The adaptive controller utilizes the linear feedback regulator

shown in Figure 4.1.

Regulator

1

Plant

4.---->-
Y(z)

B(z)
T(z)

1

Yr( )

L._

G(z)
--I-41..

A(z)

F(z)

Figure 4.1 Linear Feedback Regulator Used by the Adaptive Controller.

T(z), F(z) and G(z) shown in Figure 4.1 are polynomials in the delay

operator z-1 . The orders of T(z), F(z) and G(z) used for the design are

given Section 4.3. Adaptive control is realized by adjusting the

parameters of T(z), F(z) and G(z) in response to changes in the plant.

The closed-loop transfer function of the system is then given by

T(z) B(z)Y(z) = Y (z)
A(z) G(z) + B(z) F(z) r

(4-2)



41

The closed loop eigenvalues, i.e. the roots of the closed loop

characteristic equation A(z)G(z)+B(z)F(z), can be "assigned" by proper

choice of G(z) and F(z) in response to changes in A(z) and B(z). Thus the

following equation must be solved,

A(z)G(z)+B(z)F(z). Am(z) (4-3)

where Am(z) is the desired closed-loop characteristic equation.

Thus G(z) and F(z) are continuously modified by the adaptive process

algorithm so that the closed loop eigenvalues are the same as the roots of

Am(z).

4.3 rank° IlerZarameterfgalculallaus

4.3.1 Determination of F(z) and G(z)

The desired closed-loop poles are the roots of Am(z) at the desired

locations, F(z) and G(z) must satisfy

A(z)G(z)+B(z)F(z) = Am(z) (44)

As discussed by Astrom & Wittenmark [1990], Equation (4-3) has

infinitely many solutions. For example, if Fo(z) and Go(z) are solutions,

then, the following are solutions:

G(z) = Go(z) +B(z)W(z)

F(z) = Fo(z) A(z)W(z)

where W(z) is an arbitrary scalar polynomial.

(4-5)
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As shown in Appendix III, F(z) and G(z) are determined

according to Theorem 5.3.1 of Goodwin & Sin [1984]. The procedure for

solving Equation (4-3) follows.

As discussed in Section 4.2.1, the maximum degree of A(z) and B(z)

is 4. According Theorem 5.3.1 of Goodwin & Sin [1984], the degrees for

F(z) and G(z) are taken as 3 to have unique solution. The polynomials

F(z) and G(z) can be expressed as,

1

F(z) = f0 + fl z-1 + f2 z-2 + f3 z's

G(z) = go +g, .z-i +g2 .z2 +g3.z' (4-6)

From Equation (4-3) it follow that the desired closed-loop characteristic

Equation is 7th order, i.e.,

Am(z)= a.' + ai z' + a; Z -2 + a; z-5 + a; z-4 +4 z-5 -I- de Z-6 -I- a., z' (4-7)

Equating coefficients of like power of z on both side of Equation

(4-3) gives:

1 0 0 0
«1 1 0 0
«2 al 1 o

a3 a2 di 1

a4 a3 a2 al
O a4 a3 a2

O o «4 «3

O 0 0 «4

O 0 0 0-
01 0 0 0

02 fil 0 0

133 132 0, 0

04 03 02 01

O 04 133 02

O 0 114 03

O 0 0 /34

go

g,
g2

g3

fo

fi

f2

-
ao
a,
(x2

.
a3

(4-8)



Then,

-go"
g1

g2

g3

fo

fi

f2

_f3

= [M]-1
ae

a.
as
ae

a7_

where,
1 0 0 0

al 1 0 0
d2 di 1 0
de d2 di 1

[M] =
a4 as a2 di
o 64 «3 ec2

0 o de de
0 0 0 14

O 0 0 0
13, 0 0 0

O 0
Ph 0

02 01

O 04 03 02

J34 03

O 134_

132 AI

03 02

04 03

O 0
O 0
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(4-9)

Adaptive control is achieved by continuously solving Equation

(4-9) using values of &1, «2, eg, «4, f3 02, Os, 0.4 determined by the

parameter estimator. The resulting values of go, g2, g2, g3, fo, fi, f2, f3, are

used by the controller. Note that in real-time programing which

calculation time cycle is seriously considered, go, g2, g2, g3, fo, ft, f2, f3 can

be expressed directly as functions of «,,, «,, de, (14, 0 02, 03, 114 and the as

values by solving Equation (4-8). This is to avoid matrix inversion of M in

Equation (4-9).
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4.3.2 Specification for Am(z)

The characteristic Equation Am(z) is a 7th order system. Hence it is

necessary to specify seven poles for Am(z). As discussed by Astrom &

Wittenmark [1984] and others, only dominant poles need be specified. It

must be recognized that by using the dominant pole approach, pole-zero

cancellation occurs in the z-transfer function for the forced solution. The

desired characteristic equation Am(z) is assumed to be second order, that

is,

Am(z) -1 2 e.- ( ) n T COSC 47---c2 z-1 + e- 2 Cron T z-2
(4-10)

* -2 ;con T All otherThus, ao = 1 , al = 2 e-CciinTCOSCOn Ari-2- , and a2 = e .

.a values are set to zero. This forces the transfer function Y(z)/Yr(z)

(Equation 4-2) to have 5 poles at z=0.

The characteristic equation Am(z) shown above corresponds to a

second order continuous time system with a damping ratio C and a

frequency co sampled with period T.

The damping ratio C and frequency con are determined from the

desired rise-time and the maximum over-shoot of the system. The

relationship are as shown below.



a. percentage overshoot to a step input is

100 ( 1
0.5

) 0 <C<0.4;

2
1

L6
0.4<C<0.8;C

0.8<C.

b. rise time (time from 10% to 90% of the final value) is

3C
wn

[ 1+C]. 0 <C<0.5.
con

0.5 < C < 0.9

45

(4-11)

(4-12)

To meet the desired step response requirements given in Section

2.2, the percentage overshoot and the rise time are taken as 5% and 10

second, respectively. The damping ratio C and frequency w are 0.72 and

0.216. Simulation of the corresponding second order continuous system

show that the percentage overshoot is 3.84 %, the rise time is 8.15

seconds.

For a sampling time of 0.25 seconds. The characteristic equation is

Am(z) = 1 - 1.9224 z-' + 0.92518 z-2.
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4.3.3 Determination of T(z)

T(z) is designed to minimize the steady-state error in the tracking

of the reference input signal (reference altitude). The z-transform of a

step input reference signal is

Yr (z) = C Z
Z 1

where, c is the step-input magnitude.

Applying the final value theorem, the steady state tracking error es8

is give by

e =
z 1 [

1
B(z) T(z) ]

Yr (z)
z--0 z Am (Z)

=
z 1 [ B(z) T(z) ] c z

z- z Ani(z) z 1

.(1 B(1)T(1)

A.(1)

For zero steady state input error,

T(1) =
.A

m
(1) = 1 2 e--wri T COS (On V 1 V + e-2 (°n T

B(1) i31 + 132 + 03 + 64

Hence, T(z) is selected as a constant given by Equation (4-14).

(4-13)

(4-14)
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4.4

TheThe inner loop design discussed in Section 4.2 is based on the

assumption that the system parameters are known and constants. The

pitch axis system parameters are identified on-line using the sampled

input and output of the system.

Express Equation (4-1), the equation of the sampled data system,

alternatively,

y(t) = 4(t)T -e(t); (4-15)

where,

y(t) is the sampled-data output (altitude in feet);

u(t) is the calculated input signal the analog system (in feet);

(1)(t)T = (y(t 1), y(t 2), y(t 3), y(t 4), u(t 1), u(t 2), u(t 3), u(t 4));

e(t)T =(-e(1,-a2.-a3,-«4,L52.03,114);

Note that 00 contains the sampled input and output data at the previous

sampling intervals and 6(t) is the identified system parameter vector at

discrete time t.

As discussed in Section 2.1.3, the parameters of the linearized

model are functions of the altitude, the speed and the weight of the

aircraft. Therefore, the parameters of the sample data model are time-

variant. Even during level flight, the parameters of the system are

changing due to fuel comsumptions.
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The identification of the time-varying parameters is accomplished

using the recursive least-squares (RLS) algorithm with exponential

discounting of old data. See Astrom [19831 and Astrom & Wittenmark

[19841 The RLS algorithm is shown in Equation (4-16) diagramed in

Figure 4.2.

{Sr(t) = $T (t-ne(t-lk
ot). y(t) ST(t);

K(t) = P(t 1)4(t -1)/[1+0t-1)TP(t-1)(1)(t 1)];
0(t) = 8(t 1) + K(t)e(t);

P(t) = [I K(t)$(t 1)T ]P(t 1) / X;

(4-16)

where, Sr(t) is the predicted output at discrete time t;

e(t) is the predicted error at discrete time t;

K(t) is the estimation control gain;

X. is the forgetting factor;

P(t) is the covariance matrix;

(t) is the system vector which contains previous input and

output data and 49(t) is the identified system parameters, as

expressed in Equation (4-2).

Note that the initial values for P(t) is taken as P(0)= d with d is a positive

real value and I is a diagonal matrix of the same size of P(t). 8(0) is taken

as the system parameters at the time the adaptive control loop is

activated. Details on the selection of d and 0(0) for the pitch axis autopilot

simulations are presented in Chapter V.
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As shown in Figure 4.2, the system vector 440 is first updated with

current input and output data. The estimated system output Sr(t). is

calculated based on the system parameters estimated during last

sampling period. The estimation error e(t), i.e., the difference between

current output y(t) and y(t), is then determined. The estimation control

gain K(t) is consequently calculated using the previous covariance matrix

P(t-1) and the system vector $(t 1). The system parameters in 8(t) are

thus updated. The covariance matrix P(t) is then calculated for the

calculations during next sampling period. Details on the RLS are

contained in Astrom [1983] and Astrom & Wittenmark [1984].

A weighting factor of less the unity ().<1) is usually chosen. When

A.<1, more recent data are weighted more than the old data. With A. much

less than one, rapid discounting of old data results, which causes

estimation uncertainty. If A. is taken to be very close to one, which

implies that old data is not discounted rapidly, it is difficult to keep track

of rapid parameter variations. The value of A. is related to how fast the

system parameters are varying. The variation of the parameters of the

aircraft is difficult to predict. So, the selection of A. for all conditions

within a given flight envelope is indeed difficult.

Another disadvantage of using RLS is that identification of a time-

varying system using a constant forgetting factor (A.<1) can generally

result in estimator "blowing up", as discussed by Astrom & Wittenmark

[1984] and Forescue et al [1981]. Since the recursive least-square

algorithm (RLS) usually converges very fast, that is, P(t) decreases
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quickly, P(t)$(t) in the RLS is thus approaching zero quickly. So, the

estimation control gain K(t) approaches zero and the estimator switches

off. Hence,

P(t) = [I-K(t)40-1n P(t-1Y =P(t-1)/X. (4-17)

Since <1, P(t) will become very large growing exponentially. The

regulator is now very sensitive to any disturbance or to numerical error.

A random input or set-point change will lead to a temporary unstable or

complete unstable system, see Forescue et al [1981].

Due to the above reasons, the common RLS is not used for the

design. Different identification algorithms has been introduced in

Goodwin & Sin [1984] to remedy the problem with the exponential growth

of P(t). In this thesis, the modified least-square algorithm proposed by

Fortescue et al [1981] is used for the identification of the aircraft pitch

axis system. As discussed in Fortescuse et al [1981], the modified least-

square algorithm has two advantages: (1) the forgetting factor A. is

calculated on-line such that the old data are discounted automatically; (2)

P(t) is roughly prevented from being too small. Simulations have shown

that the identification algorithm behaves well for time-varying chemical

process, see Fortescue et al [1981].

The modified least-square algorithm is as shown in Equation (4-18)

and diagramed in Figure 4.3. Note that Equation (4-18) is the same as

Equation (4-16) except that the forgetting factor (a.) varies with time in

Equation (4-18). Hence, the modified least-squares algorithm process

system information is the same way as that of the RLS except that the

forgetting factor A. is updated every sampling period prior to the
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calculation of the corvariance matrix P(t). The forgetting factor is

bounded by 'min to prevent 71, from being too small. The time varying

forgetting factor algorithm is framed with dash-lines in Figure 4.3.

9(t) = ,T (t - 1)(9R - 1);

e(t) = y(t) Sr(t);

K(t) = P(t 1)$(t 1)/ [1+ (1)(t 1)T P(t 1)4(t 1)];
0(t) = 0(t 1) + K(t)e(t);

X(t) =1 [1-4)(t 1)TK(t)le(t)/ lo;
A(t) 5 X,X.(t) = X;
P(t) = [I K(t)4(t 1)Tillt 1) / A(t);

where, A. (t) is the variable forgetting factor;

(4-18)

According to Fortescue et al [1981], the above algorithm is

developed from the RLS under the consideration of information content of

the estimator. For a near deterministic system the a posteriori error will

at each step tell something about the system estimation. A small error

implies that either the process has not been excited or there has been an

excitation with a near correct set of parameter values or that the

estimator is sensitive enough to significantly reduce the parameter error.

For all these cases, it is reasonable to choose a forgetting factor close to

unity to retain as much information as possible. On the other side, if the

error is larger, the estimator sensitivity should be increased by choosing

a lower forgetting factor. Based on these observations one can defined a

measure of the information content as the weighted sum of the squares of

the a posteriori errors. This can be expressed recursively as

= MOI(t 1)+11 4At lirK(t)1 e2 (t) (4-19)
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which is the result of a rather lengthy derivation by Albert and Sittler

[1966]. A strategy for choosing a forgetting factor may now be defined by

keeping the information content 1(t) such that

E(t) = E(t 1)

where 10 is the expected information content. In other words, the

amount of forgetting will at each step correspond to the amount of new

information in the latest measure, thereby ensuring that the estimation

is always based on the same amount information. Hence, from (4-19)

A.(t) = E(t)//(t 1) [1-4(t 1)T KM] e2(t)/E(t 1)

= 1 [1 41)(t 1)TK(t)] e(t)/X0 (4-20)

As discussed in Fortescue et al [1981], a smaller value of 10 will give a

large covariance matrix and a sensitive system; a larger value will give a

less sensitive estimator and slow adaptation. In this design, the value for

10 is determined from simulation studies.
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CHAPTER 5

SIMULATION RESULTS

The schematic diagram of the adaptive pitch axis autopilot system

is shown in Figure 5.1. It is basically the combination of the rate-feedback

aircraft pitch axis system and the adaptive control loop.

5.1 TheaSimlijalionfanfiguralaw*

Simulations are performed assuming the adaptive autopilot is

activated after the aircraft has achieved level flight. The simulation of the

system is a mixed system simulation which includes nonlinear

integration of the rate-feedback pitch axis aircraft system and digital

simulation of the adaptive control loop.

The Rung-Kutta-Mersion variable step size integration method is

applied in the simulation of the pitch axis system shown in Equation (2-1).

Since the adaptive autopilot turns on during level flight condition, the

initial values for the system vector [r, r', h, h', 9, 01]T shown in Equation

(2-1) are thus [0, Vo, h0, 0, 00, 0]?, where Vo, ho, and 00 are the speed, the

altitude and the pitch angle at level flight, respectively. The thrust is set

to that required for constant speed (Vo) level flight.
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In the identification of the system, the initial covariance matrix

P(t) is taken as P(0)=100, where I is a diagonal matrix of the same size

of P(t). The effect of P(0) is usually insignificant due to fast convergence of

the least square algorithm. The best initial estimation of the system

parameters is the level flight parameters. Thus, for the safety of the

aircraft, the initial value for the parameter vector 8(t) is 8(0)44, a2,
0,(4), 01), 020, 003, n 04p j where al°, ac2), a° a°a:, 010, 020, 003, .04p are the system

parameters corresponding to level flight.

5.2 TheSimulationlicaults

In the simulations, the aircraft using only the rate feedback

controller is assumed flying horizontally at 0.7 Mach and 100 feet before

the adaptive pitch axis autopilot is activated. The thrust at this flight

condition is set 7,780 pounds. The weight of the aircraft is assumed to be

10,000 pounds. The elevator angle and pitangles are 0.507° and 1.014°,

respectively. At this flight condition, the 100 feet step command response

of the rate-feedback pitch axis system is simulated as shown in Figures

5.2 (a) & (b). The maximum percentage overshoot, the rise time and the

maximum acceleration of the system are 0.41%, 1.75 seconds and 50.83

feet/sec2, respectively. The transient response of the system does not

meet the desired requirements given in Section 2.2.
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In the adaptive autopilot simulations, the reference altitude for

tracking consists of two 100 feet step input commands and a ramp

altitude command, as shown in Figure 5.3(a) & (b). The first command

starts when the autopilot is activated. The second step command starts

86.5 seconds after the first command. The ramp altitude command starts

at 174 seconds and goes up to 40,000 feet. The desired vertical speed for

the ramp command is 100 feet/second, which corresponds to a flight path

angle of about 7.35° degree. The first command is to test the system

response when the adaptive control loop is activated. The second and the

third commands test the system during adaptive autopilot operation. The

sampling time is 0.25 seconds and the scalar quantity 10=0.02 is used.

The dominant characteristic equation is Am(z) = 1- 1.9224 z-1 + 0.92518 z-2.

As discussed in Section 4.3.2, the selection of Am(z) corresponds to a

continuous second order system having the percentage overshoot of 3.84%

and the rise time of 8.15 seconds.

(1) Step Command Responses

Figures 5.4 (a) through (c) show the altitude response, the tracking

error and the vertical accelerations in adaptive tracking of the step

commands. For the first step command, the maximum percentage

overshoot is 4.21%, the rise time is 8.75 seconds, the maximum

acceleration is 5.47 feet / sec2. For the second step command, the

maximum percentage overshoot is 3.80 %, the rise time is 8.75 seconds,

and the maximum acceleration is 5.58 feet/sec2. Thus, the transient

response of the system satisfy the requirements. Note that the maximum

percentage overshoot and the rise time are very close to those of a second

order system having the dominant poles as specified for Am(z).
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Figure 5.4(c) shows that the steady-state error is very small in

tracking the horizontal flight altitude. For example, a 0.578% steady state

error is obtained 86.5 seconds after the first command and 0.668% steady

state error is obtained 120 seconds after the second command. Small level

flight tracking error are thus achieved by the choice of T(z) in Section

4.3.3.

The forgetting factor (X) in tracking the step commands is shown

in Figure 5.5. It is observed that X decreases to a lower value after the

altitude command changes. A. changes slightly and increases (towards

unity) during level flight. The variation of X is due to the fact that altitude

command change causes system parameter variations. When the system

parameters change, the error between the system output and its

estimation (based on previous system parameters), i.e., e(t)=y(t)-Sr(t) as

shown in Equation (4-17), becomes lager, Therefore, A. becomes smaller

(this can be expected from Equation (4-17)). A smaller A. implies more old

data is discount so that system parameter estimation can be updated.

During level flight, the speed and altitude changes are very small.

Furthermore, the weight loss (due to fuel consumption) is insignificant.

The system parameters sustain small variations during level flight. So,

a small drop in A. is observed after command changes. Note that A.

approaches unity during level flight.

(2) Ramp Command Responses

Figure 5.6 (a) through (c) show the altitude response, the tracking

error and the vertical acceleration for the ramp command.
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As shown in Figure 5.6 (a), the altitude response follows the

reference altitude command. Steady state tracking error is also observed

due to the nature of the dominant closed-loop characteristic equation

Am(z). The output of a time invariant stable second order linear system

with a ramp_type input results in constant steady error. It is observed in

Figure 5.6 (c) that the tracking error varies with time due to the adaptive

controller not being to able to maintain the desired transfer function

precisely during extreme altitude changes. Note that the system is the

time-variant nonlinear pitch axis model shown in Equation 2.1.

As shown in Figure 5.6(b), the maximum vertical acceleration is

less than 5.54 feet/sec2, which satisfies the design requirement given in

Section 2.2.

The forgetting factor X. for the ramp command tracking is shown

in Figure 5.7. The forgetting factor drops to a lower value at the beginning

of the command and then goes towards unity during tracking. However,

X, drops after tracking for a certain time. Note the during the same time

the tracking error between the actual flight altitude and the reference

altitude gets smaller, which implies that the climbing rate is changing.

The drop in A. keeps the tracking error from being too much different

from the previous ones. Note that steady state output error results when a

ramp signal is input to a second order system.
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(3) The Elevator Angle and the Pitch Angle

Figure 5.8 (a) shows the elevator angle variations for the entire

tracking while Figures 5.8 (b) gives a closer look to those corresponding to

the step command changes and when the forgetting factor drops

distinctly during the ramp command tracking. The elevator angle is

found to be limited between 0.02° to 0.98°. The pitch angle variation

during the tracking is shown Figure 5.9. The range for the pitch angle

variations is within 1.15° to 9.23°. Note that the small elevator angle

values satisfy the assumption of angles ( <15° ) in deriving the system

model in Appendix I.
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CHAPTER 6

CONCLUSIONS

This thesis presents an adaptive autopilot design procedure for the

aircraft pitch axis model in Appendix I. The design approach is based on

the assumption that the adaptive autopilot is activated after the aircraft

has achieved level flight. Chapter 3 shows that the level flight pitch axis

system is unstable and has nonminimum phase. The flight pitch axis

system is thus stabilized prior to the adaptive controller design using

rate-feedback.

The rate-feedback configuration is applied to stabilize the pitch axis

system within the desired flight envelope. The design method presented

in Chapter 3 is based on assumption that if the system at the flight

condition corresponding to the lowest dynamic pressure of the desired

flight envelope is stabilized, then it is stabilized for the entire desired

flight regime. Although the design criterion has been shown effective

only for a particular flight envelope, it can serve as a starting point for

different flight regimes. Note that the aerodynamic coefficients within

the desired flight regime are assumed constants.

The adaptive controller design uses a pole-placement algorithm.

The closed-loop system poles are placed to have the dominant poles

corresponding to the poles of a second order system. The transient

response of the system can then be determined approximately from the

corresponding second order system. Desired system responses can be

realized since the second order system characteristic polynomial, and
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thus the poles, can be determined if the desired percentage overshoot and

rise time are given. The discrete model for the pitch axis system is based

on that of the level flight pitch axis system which has four poles.

Simulation shows that the transient response is very close to that of the

second order system having the dominant poles as specified. Further

more, it is shown that the pole-placement algorithm can be applied to

control nonminimum phase systems.

The pitch axis system is a time-varying system. A modified least

square algorithm with a variable forgetting factor(A.) is used to estimate

the system parameters. Simulations in Chapter 5 show that the variable

forgetting factor (X) is very active in updating system parameters

whenever parameter variations occur. So, the modified least square

algorithm with a variable forgetting factor(A, ) is a proper choice in the

estimation of the time-varying pitch axis model.

Simulation results indicate that the adaptive pitch axis autopilot is

capable of tracking altitude commands after activation. Further work

could involve studying the tracking performance when a disturbance

occurs, minimizing the maximum elevator angle variation by selecting a

proper sampling rate and the initial values for the parameter vector e (t),

studying the effectiveness of the information content 10 and the

minimum forgetting factor A, of the modified least square algorithm to

the tracking performance.
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APPENDIX I

The Aircraft Pitch Axis Model

r = Range in Feet

Figure Ail The Pitch Axis Aircraft Model.

h = Altitude in Feet, r= Range in Feet
= Pitch Angle in Radians

7 = Flight Path Angle in Radians
a = Angle of Attack in Radians
fi = Elevator Deflection Angle in Radians
W = Weight in Pounds, T = Thrust in Pounds
J = Polar Moment of Inertia Around CM in Pond- Feet -Sec ox
V = Velocity in Feet Per Second
CM = Center of Mass
CP = Center of Aerodynamic Pressure-NO Elevator Deflection
r = Distance from cm to CP in Feet
CP
rE = Distance from cm to Elevator Center of Aerodynamic Pressure in Feet

p = Atmospheric Density = p exp(-h/H) in Slugs /Cubic Foot
where p and H are the Fero altitude density and exponential
atmosphiric factor, respectively.

= Aerodynamic Shape Area in Square Feet
= Aerodynamic Chord Length Factor in Feet
= Acceleration Due to Earth = 32.2 Feet Per Second
= Vehicle Mass = W/g in Slugs

= Lift Force Due to a = (0.5 p V2) A
= Drag Force Due to a = (0.5 p V2) A C
= Lift Force Due to # =

da
(0.5 p Nr ) A CIA

= Drag Force Due to fi = (0.5 p V4) A CZ
= Torque Around CM Due to 6' = (0.5 p Ac Cam, 6'

A
C

g

L
a
Da

a in Pounds
in Pounds

a in Pounds
in Pounds
in Pound-Feet
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MONECt1MOS:

-Vehicle dynamics can be adequately defined using a near earth inertial
reference frame.

-Jibe vehicle weight, thrust, lift and drag coefficients can all be assumed
constants for the purpose of designing a pitch axis autopilot

-The locations of the CP, CM, and the elevator center of pressure are fixed.
-The parameters A and c are taken as unity for simplicity.
- Pitch, flight path, angle of attack, and elevator deflection angles can be
assumed small ( < 15 degrees) so that the following approximations can be
made with small error ( < 3.5%):

cos 0 = 1, sin 0 =0, tan 0 = 0

Xquations of Motion:

T . (Itr - LE) (Dia + D,)

r" = cos 0 sin 0 ''' cos 0

T (La - (D
a t

+ D_)
h" = sin e + cos e

e " =- re, %rap. LtFE

where a = 0 - sin 1(h'/V)

Equations of Motion Assuming Small Angles:

T (La - 7.4.) (Da + DE)
r" =

(Da 4- DOT
h" = + e

e , T8'
Lar,,,,

.

where cr = 0 (h'/V)

sin 8 -g
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These equations can be put into the following form:

r" = Kr - Ca a - 5 0 e

h" =
Kr Cla a C0 g

0" = - N6,81 - Na a + No 0

where
T 1

- ---(0.5pV2) (Cda + Cam)
M M

1 1
C
a

=----(o.5pv2) Cia ; C =---(0.5pV2) C,

1
Ne, = ---(0.5pV2) NaCrie,; = r

CP
C ; N, r

E
Cp

Note that these parameters are functions of T, V, m, and h assuming the
aerodynamic coefficents are constants.

State Variable model,:

xT = ( r r' h h' 88'

x' =

] ; u = [ ] ; qT = ( h ) ; a = x5 -

x2

E - crt ( x5 -
v

) 5 ul x5

x :11

X4

Kr x5 + C (x5 -
V

) 7 5 111 -g

X6
X
4

-Ne,x6 - Na (x5 - ) + No ul
- V

q =( x3 x5]

x4

V

(A.1)
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operating Point Assumntions

The vehicle is flying horizontally at a constant velocity V at an altitude
h Thus the operating point flight path angle 1 is zero and hence the
operating point pitch angle 8 and angle of atta8k a are equal but not
zero. The range r is varying Zineaxlywith time, r= Vt since the
horizontal velocity is V and the vertical velocity is zero.
-The operating point elevator angle fio is that which is required to maintain
level flight.

-The vehicle thrust T and weight W are constants.
-The aerodynamic coefficients are constants.
-Dymmnical motion around the operating point for small angles is assumed not
to change the magnitude of V significantly. However, r' and h' will change
although r' is still assumed to be close to V.

Oneratina Point Conditions:

XD =

x' =

( vt,

ro'

0

0

0

0

0

V, h
o
, 0, e

o'
0 ; u

o
= ( po 3 ; qT=

V

Kr - Ce e
o
2
+ c

So e0

0

Kr 00 4- Ca e
o

- co fto

0

- N
a

8
o

+ N $o

( h 8 ]0 0

(A.2)

The three non - trivial equations above are solved for 00, fio, and the thrust T
with the following results:

Po Pz exPe-hcl")

r

o3
+ 80 -

(0.5p V2)
Cla I rE

-
rCP

r C._CP la
eo

rE Cis

Kro = (0.5p V2) Cie ( 1
CP

r
E

T= m Kro + (0.5p0V2) (Cda + Cdo)

(A.3)



Linearized State Variable Model Around the Operating Point:

Lx' =

0 1 0 0 0 0

0 0 a23 a24 a25 0

0 0 0 1 0 0

0 0 a
43 a44

a
45

0

0 0 0 0 0 1

0 0 a
63

a64 a
65

a
66

-

bx +

0

b
2

0

b
4

0

bq =[1 1 ] dx

where x = x
o

+ dx, u.= u
o
+ du

The a and b parameters are given by the following:

= p
z

exp(-ho/H); DPM = DP/m; DPJ = DP/J; DPMV = DPM/V; DPJV = DPJ/V

DPDH = -DP/H; DOOM = DPDH/m; DPDHJ = DPDH/J

b
6

du

81

(A.4)

b2 =

a23

a24

a25

a
43

DPM Cu 6 ; b4 = -DPM ; b6 = DPI rE Cu

WORM [ -(Cda + Cdo) + Cia(402 + Cipfiopo )

DPMV
la

e

DPM [ -2 Clot% + C1,0 ]

DP! 1M [ (Cur - Cda - Cam) Cleo

a44
-DPMV

45

63

4

Tym + DPM [ Cia -Cola - C

DPDHJ [ -rplaeo + rE 0o

DPJV rcp Cia

= -DPJ rcp Cie

= -DPJ Cne,

(A.5)
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APPENDIX II

Derivation of the Pitch Axis System Transfer Function

This appendix shows the details of obtaining Equation (2-4) from

Equation (2-3). The derivation uses the signal-flow graph of Equation

(2-3). Further information on signal-flow graph method is referred to

Kuo [19851

The procedure for obtain Equation (2-4) is:

1. draw the signal flow graph of Equation (2-3);

2. find the transfer function H(s) using the general gain formula,

M yout MkAki
AYin k=1

where, M=gain between the input and output nodes, i.e., H(s);

N=total number of forward paths;

Mk=gain of the kth forward path;

A =1 - Pmi + Pm2 Pm3 +

Pmr=gain product of the mth possible combination of

r nontouching loops.

Further details are referred to Kuo [1985].

The signal flow graph of Equation (2-3) is shown in Figure II.1.

There are two paths from the input node u(s) to the output node X3 (s). By

following the above procedure, Equation (2-3) is found as shown below.

1 a45 1 b6M A -
1 1 ;s s-an s sa66
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1 b4 a
M2 6'2 = 65 )

S S a 44 s(s-a66)

43 . 1 a45 1 a
A = 1+

1 a
66

a1 a49 85 a 1 a 45 a 64

S s-a66 s s- a. s(s-a66) s(s - a.) s s- a. s -au s s- a. s s- a.

So, the transfer function H(s) is,

8h(s) 8x (s) N
X

M
H(s) = = 3 = "A

81I(s) 8u(s) k=1 A

(
1 a 4.5 1 be ) + ( 1 b4 (1 a 65 ) )
s s- a. s s -a. s s -an s(s -a66)

49 a45 1 a
1+

1 a
66

1 a43 a65 a 1 a 45 a84 1 a 64

S s -a. s s -a. s(s -a66) s(s -a.) s s -a. s - a. s s -a. s s -a.

a0b6+b4(e-a66s-a66)
_

(s -a.)(s-a66)e+a.a.6-a.s(s -a.)-a40(s-a66)-a46a.s-aoae.

b4s2 -b4a66s+aob. -a.b4_
s4 -(an +a66)s3 +(a44a66 -a. -a43)s2 +(a.a. +a66a4, - a4.5a. )s +a.a46 - a.a46

(2-4)
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Figure AII.1 The Signal Flow Graph of Equation (2-3).
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APPENDIX III

Theorem 5.3.1 of Goodwin & Sin [1984]

This appendix gives the description of Theorem 5.3.1 of Goodwin &

Sin [1984].

Theorem 5.3.1: If A(q-1) and B(e) are relatively prime and

n=maximum degree(A(e), B(cii)), any arbitrary polynomial As(q-1) of

degree (2n-1) can be obtained as the sum A(e)L(q-1)+B(q-1)P(q-1)

=A*(q-1) for unique polynomials L(e) and P(e) of degree(n-1).

The above theorem implies: provide that A(q-1) and B(q-1) are

relatively prime and n=maximum degree(A(e), B(c0)), L(e) and P(e)

can be found by assuming that they have degrees of (n-1), i.e.,

L(cli) = 10 + 11 cf-' +12 -q'+ +1n_1 q -(n-1)

P(c1-1) = Po + P1 c1-1 + P2 c1-2+
en-1)

The procedure of solving the Duphantine Equation A(e)L(q-') +

B(q-1)P(q-1) =A*(q-1) would then be:

if,

A.(q-1). Am(e)A0(q-1) = ao +a: q i -1-ce2 q2+ -(2n-1)
-1- "ln-1 q
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equating coefficients on either side of the Duphantine Equation

a0 0 0 0 0
al a0 0 0 0

a1 0 0
. . . 0

f30

131

.

0 0 0

Po 0 0

PI 0

O 10

O 11

0
. . 0

- - - ao 130 In-1

Oan . . al n . . PI Po

I3n . P1

0 .

0 0
0008 in. n .1L- n-_

0 an 0
0 0 . 0
0 0 0 0
0 0 00an 0

Then,

10

11

1n-1

Po

131

Pn-l_

=

al

a2

a2n-2

a2n-1

ao
ai

a2

a'2n-2

a2n-1



ao 0
al ao

al

here, Me 7-
an

O an
0 0
0 0
0 0

0 0 0 [30 0 0
0 0 0 Pi Po 0

0 0 . pi .

0 .

W ao

al Pon .

0 On .

. . 0 0 .

0 . . 0 0 0
0 0 an 0 0 0

O 0
O 0
o o
. o
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Further details on the proof of the theorem is referred to Goodwin &

Sin [1984].


