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ADAPTIVE MODEL REFERENCE CONTROL OF HIGHLY MANEUVERABLE

HIGH PERFORMANCE AIRCRAFT 

1 INTRODUCTION 

This thesis describes the implementation of an adaptive controller for a high 

performance highly maneuverable aircraft. The objective is to design a controller that 

enables the aircraft to maneuver rapidly at and to high angles of attack. To accomplish 

this objective, an adaptive model reference controller is presented. The aircraft to be 

controlled is a modified F18 (modified to include thrust-vectoring). It has two controls 

-- thrust-vectoring and a stabilator, and it has two outputs for feedback -- angle of 

attack and pitch rate. The purpose of this thesis is to derive and analyze the controller, 

and to validate its performance. In so doing, several items are discussed. These 

include, the choice of the prediction model, the choice of the adaptation for the 

prediction model, the choice of the reference model, and the choice of the control 

calculation. 

Several important contributions are made by this thesis. First, a successful 

design of a linear adaptive controller is applied to a highly nonlinear system. It is 

demonstrated that the use of feedback in the reference model can account for control 

limitations. Second, an adaptive controller is developed to rapidly maneuver an aircraft 

to a high angle of attack. For this thesis the aircraft and the differential equations used 

to simulate the aircraft are used interchangeably (i.e. the simulated aircraft is assumed 

to be the physical aircraft). 

The presentation is organized in the following way. Chapter 2 gives a brief 

overview of adaptive control. Chapter 3 briefly describes the simulation of the aircraft. 

Chapter 4 describes the choice of the prediction model. Chapter 5 describes the 

adaption used to update the prediction model presented in chapter 4. Chapter 6 

describes the control calculation. The reference model is presented in chapter 7. 

Chapter 8 presents the performance of the complete controller, and chapter 9 concludes 

this thesis and presents ideas for continued research. 
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2 INTRODUCTION TO ADAPTIVE MODEL REFERENCE CONTROL 

The purpose of adaptive control is to provide a mechanism to account for 

changes in the system that is to be controlled. For the case at hand, the goal is to use 

concepts from linear theory to control an aircraft over a highly nonlinear flight regime. 

Historically, adaptive model reference control has been described in the continuous 

time domain. Only a discrete form is considered here. A more comprehensive 

overview is given in [1]-[3]; while a complete development of adaptive control is given 

in [4] and [5]. Some numerical aspects of implementing adaptive control are 

developed in [6]-[8]. Adaptive control for a small class of nonlinear and time-varying 

systems is investigated in [8]-[16]. 

The heuristic idea behind adaptive model reference control is relatively simple. 

An adaptive portion attempts to identify (in some respect) the system. A model system 

generates a desired reference trajectory. Then, a controller uses this information to 

calculate a command signal such that the output of the system follows the reference 

trajectory. A block diagram of the model reference adaptive controller presented in 

this thesis is displayed below. This is the first time, to my knowledge, that feedback 

has been used in the reference trajectory. The reasons for using feedback in the 

reference trajectory will be discussed in chapter 7. 

Command Reference

Reference Control OutputController SystemModel 

Adaptation 4­
Parameters 

Output 

FIGURE 1 Block Diagram of Adaptive Control
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Figure (1) for the particular problem presented in this thesis is explained below. 

The objective is have the output of the aircraft (system) follow the pilot's input 

(command). The pilot inputs a command to the reference model. The reference model 

examines the command and the aircraft position and then determines where the aircraft 

should move next (the reference trajectory). The controller examines the reference 

trajectory, the aircraft position and the aircraft model, and then determines the thrust-

vectoring and stabilator input (control) that the aircraft (system) needs. The adaptation 

examines the control and the output, and then develops or modifies a model to 

approximate the local behavior of the aircraft. 

Two important elements have to be developed for an effective adaptation 

routine. First, a class of prediction models needs to be selected. A prediction model 

represents the dynamics of the system, and it has parameters that are modified by an 

estimator. The estimator is the second part of the adaptation. It estimates the values 

of the parameters to improve the prediction model. 

The simplest prediction models to consider are models that are linear in 

parameters. Models that are linear in parameters can be represented by equation (1). 

The f s are functions of the input and output measurements from time (t-1) and before, 

and the a's are parameters. Y(t) is the predicted output of the system based on past 

measurements. 4(t) is the regressor vector, and 8 is the parameter vector to be 

estimated. 

y ( t) =Er, ( t) 

eT. [al a2 a3 . . . a] ( 1) 

4) ( t) r= [ fi f2 f3 . . . fn] 

This does not limit the model to be linear (with respect to the measurements) since 

elements of 4)(t) could be nonlinear functions of the measurements. However, only 

prediction models that are linear with respect to both the measurements and the 

parameters will be developed in this thesis. 
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The most common estimation algorithm for models that are linear in parameters 

is the recursive-least-squares algorithm. The idea is to chose 0 such that the squared 

difference between the prediction model and the actual system is minimized. The 

purpose of making the algorithm recursive is to allow for on-line identification of 

parameters. 

The reference model is an intermediate step that allows the system to follow 

the command signal while meeting a variety of design criteria (for instance: rise time, 

overshoot, settling time, etc.). The control is calculated such that the system follows 

the reference trajectory, and such that the control signal remains within its constraints. 

Each block of the adaptive controller is described in detail in the chapters that follow. 

Most of the discussion focuses on the adaptation. If the prediction model or the 

parameter estimation is inadequate, then the controller will be unable to generate a 

meaningful control signal. 
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3 AIRCRAFT SIMULATION 

3.1 AIRCRAFT DESCRIPTION 

The aircraft that was controlled in this report is a modified F18 (HARV). Only 

the longitudinal portion of the aircraft was simulated. Seven ordinary differential 

equations were used to model the aircraft and the actuator dynamics. These were 

derived from standard rigid-body, longitudinal aircraft equations of motion. The 

particular form used here was developed by Cho, [17]. These differential equations 

contain coefficients that were determined from wind tunnel tests and actual flight tests. 

Thus, the simulated model was fairly accurate when compared to the performance of 

the actual aircraft. 

All simulations were assumed to occur at a constant elevation of 15000 feet. 

The aircraft was controlled by feedback of the angle of attack and the pitch rate, and 

the controller manipulated the stabilator angle, and the thrust-vector angle (the angle 

of the thrust deflection from the body axis). The thrust magnitude command was set 

in an open loop fashion. Thus, the controller did not manipulate the thrust magnitude. 

The control, output, and parameter estimates were updated at a sampling rate of 20Hz. 

L, lift 

FIGURE 2 Longitudinal Airframe Geometry
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3.2 LONGITUDINAL AIRCRAFT MODEL 

Four states are used to represent the aircraft. They are angle of attack (a), 

pitch rate (q), pitch angle (0), and velocity (v). The angle of attack is the angle 

between the body axis and the velocity vector. The pitch angle is the angle between 

the body axis and the ground (ground is assumed perpendicular to gravity). The pitch 

rate is the rate at which the pitch changes, and the velocity is the speed of the aircraft 

with respect to the air. The differential equations for the aircraft are given below. 

kl.--et, )41_ _p_S Tsin(6-(g) gcos (0-a) (2)eg=a ii -Lo, 2mk...Lov 
mV V 

f7=-gsin (0-a) --P-fc v2+1-cos (8-a) (3)
2m 134, m

SC r,4=-2'- (cC +q C144, 12 Le 4m 'La ligii Do+Cr C ) 172+a111--P­2/
YY

_pss: icc, _Is. ,.., TSi12(13,U) gcos (0 -a ) (4)% 

11 +- 1. /04, 6mi 1 2 Lei 2m1"Le mV VQ i YY 

+Asc , 
12 cL, +cC +q12 CLa) Vq+ Ell! TCOS (6v) 132fe Tsin (by)A y 1 Ms ma ,­

"a yr YY 
I

YY-L 

e=q (5) 
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where 

all- 1 
(6)(1+92-EC

4m tai 

qiilzixesin (a ) -pcos (a) (7) 

qi2=p.sin (a) +pxecos (a) (8) 

(pie,p,e) is the position vector from the engine thrust to the center of mass.

In is the moment of inertia.

p is the air density.

g is the gravitational acceleration.

m is the mass.

S is the effective area.

c is a moment arm.

(a, V, 8h)

CLQ (a)

C Lar =f (a)
3 

Clio= f4 ( a , V, 8h) (9)

Cm=f5 (a)

C =f ( a )
6

CDO=f7 ( a , 8h)

The f's are found using an interpolation of flight test data. 
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3.3 ACTUATOR DYNAMICS 

The input dynamics are described by three states-- thrust magnitude (T), thrust 

vectoring angle (8,,), and stabilator angle (80. The stabilator and the thrust vectoring 

dynamics include a velocity limit of 40 degrees per second for the stabilator angle, and 

80 degrees per second for the thrust vectoring angle. The differential equations are 

stated below. 

Stabilator Angle Dynamics 

I 
40 (8haid-oh) <3 

30 (8h.d-8h) -4 s (8hcd-8h) 5 -4 (10)
bh 3 3

40 (6hc.r8h) >4 

The magnitude of the stabilator angle is limited according to 

24.5° s 8h 1 10.5° (11) 

Thrust Vectoring Dynamics 

80 (8 vciti-6,) < 3

-88= 30 (8v.d-8v) s (8 -8 ) sf--3 (12)3 . c,,,, v 3 

80 cay.1-60 >12 
-.3 

The magnitude of the thrust vectoring angle is limited according to 

20° s 8, s 20° (13) 
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Thrust Magnitude Dynamics 

/".:.- ( T- T) (14) 

The magnitude of thrust is limited according to 

0 s T s 18000 lbs (15) 

3.4 SIMULATION 

The equations were simulated using a fixed-step fourth order Runge Kutta 

method ([18]) with an integration time step of .01 second. A comparison was made 

between an integration time step of .01 and .001, and no noticeable difference was 

detected. Thus, numerical instabilities caused by the integration time step or the 

integration routines were not encountered in the results presented in the following 

chapters. The computer code was written in c. 
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4 PREDICTION MODEL 

4.1 CLASS OF MODELS 

Several different approaches exist to formulate a prediction model for a 

nonlinear system. The first method is to simply assume that the model can be 

adequately described by a linear time-varying system. A second method is to assume 

that the prediction model is a linear time-varying system with a time-varying offset. 

A third method is to assume a nonlinear form of the prediction model with constant 

or time-varying parameters. Each of these methods is described below. 

A linear time-varying system can be described by the equation below, 

A(z-1, t)y(t)=B(z-1, t) u(t) (16) 

where A and B are time varying polynomials of z'. U (t) is the input sequence. Y(t) 

is the output sequence, and z' is a backwards shift operator. A(z',t), without loss of 

generality, is assumed to be monic. Thus, A(z',t) could be described by 

A(z-1, t) =2. +al ( t) z-l+a2 ( t) z -2 +a3 ( t) z-3 . . . an ( t) z-n (17) 

This leads to a simple prediction model with the following form: 

Y(t)=4)(013(t) 

4)(t)T=[y(t-1),Y(t-2), ...,u(t-1),u(t-2), ...] (18) 

8 ( t)T=[---ai ( t), -a2( t), ...,k(t),b2(t),...] 

A linear time-varying system with a time varying offset can be described by the 

equation below. 

A(z-1, t)y(t)=B(z-1, t) u(t) +d(t) (19) 
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Several different predictor models exist for this type of model. The simplest 

approach is to include a one in the regressor. Thus, d(t) is calculated directly by the 

estimator. This prediction model is given in the equation below. 

y(t)=4(t)13(t) 
4)(t)T=Ey(t-1) ,y(t-2), ...,u(t-1),u(t-2), ...1] (20) 

13(t)T=[-al(t),-a2(t) .....131(t),b2(t),...d(t)] 

Another approach is to calculate the offset separately, and then use it in the 

prediction model. One such approach is described by Sripada et al. [7]. The idea is 

to calculate the offset of the elements of 4), and then, subtract off the offset. This 

prediction model is described by the equation below. 

yi(t)=4)(t)%(t)

.(t)T=Iyi(t-1),Yi(t-2), ...,u/(t-1),u/(t-2), .. ]

co r= [ -a1 ( t) , -a2 ( t) , . . . , b1 ( t) ,b2 ( t) , . . . l 

(21)Y/( t) =y( t) -.if( t) 

if ( 0=estimated average of y(t) 
ul(t)=u(t)-1.71(t) 

ri(t)=estimated average of u(t) 

Another prediction model can be formed by using differences of the input and 

of the output measurements, as opposed to the measurements themselves. This method 

was presented by Clarke et al. [19], and it eliminates the need to calculate the offset. 

The idea was generalized by Tuffs et al. [20]. At steady state, the elements of 4) tend 

towards zero, and no offset exists. The predictor model can be represented as follows: 
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Ay( t) =4) ( t) 71) ( t) 

4)(t)T=[Ay(t-1),Ay(t-2), ...,Au(t-1) ,Au(t-2) , ...) 
e ( t) 2.= [ -al ( t) , -ay ( t) f r A. ( t) , by ( t) , ] (22) 

A =1-z -1 

y( t) =Ay( t) +y( t-1) 

The fmal method for forming a prediction model is to use a nonlinear 

prediction model. The details of developing a nonlinear prediction model will not be 

discussed here, but several techniques for system identification of nonlinear systems 

can be found in the literature. Mohler et al. [17] developed a nonlinear prediction 

model for this modified F18, and a comparison with this prediction model will be 

presented. The nonlinear prediction model will be described in section 4.3. 

4.2 DATA DESCRIPTION 

As can be seen from chapter 3, there are two main sources of nonlinearities. 

The first source is from the aircraft model itself. The second source of nonlinearities 

arises from the constraints on the admissible control. These constraints include 

velocity limits and magnitude limits. For simplicity, the dynamics on the stabilator 

angle and the thrust vectoring angle are ignored initially (The aircraft is simulated 

without these dynamics). They are included for the fmal prediction model presented 

at the end of this chapter. 

Three sets of data were used to develop a prediction model. The first set 

included the aircraft and only the stabilator control. The thrust-vectoring angle was 

fixed at zero, and the stabilator angle was set to the command signal. This allowed 

a comparison to be made with the nonlinear prediction model that was presented in 

[17]. The second set of data added the thrust-vectoring control, but the control 

dynamics were still ignored. This displayed the effects of the nonlinearities of the 

aircraft on the prediction model without the control nonlinearities. The final data set 
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included all of the nonlinearities. This data set was used to test the fmal form of the 

predictor. 

Five states were used to simulate the aircraft for the first two data sets. They 

were angle of attack, pitch rate, pitch, velocity, and thrust magnitude. The stabilator 

angle and the thrust vectoring angle were set to the command signal. Thus, they were 

constant between each sampling instant, and the dynamics in the control were ignored. 

The control values were calculated using a preliminary form of the adaptive controller 

developed in this thesis. 

For the last two data sets the change in the control command was limited to 40 

degrees per second for the stabilator angle and 80 degrees per second for the thrust 

vectoring angle. This allowed the results to be compared more easily. A description 

of the data is given by the plots below. Only the angle of attack and the input signals 

are plotted. The other states are similar in character to the plots of the complete 

controller (see chapter 8). 



14 

80

60
Tau 

40

oa

20

oo 
5 10 15 20 25 30 35 40 45 50

time [s]

FIGURE 3 Angle of Attack for Data Set 1

20

4
Lmoweemvoy 

-30
0 5 10 15 20 25 30 4035 45

time [s]

FIGURE 4 Stabilator Command for Data Set 1



15 

80 

60

40

20

. .0
5 10 15 20 25 30 35 40 45 50

time [s]

FIGURE 5 Angle of Attack for Data Set 2

20

10

1 0 

4 -10 

-20

-30
0 5 10 15 20 25 30 35 40 45 50

time [s]

FIGURE 6 Stabilator Command for Data Set 2

20 'e

10

12 0 ,,..,..
'V 

-10

1
, I b I , . ,....-20

0 5 10 15 20 25 30 35 40 45 50

time [s]

FIGURE 7 Thrust Vectoring Command for Data Set 2



16 

80

60­

1:12"4 

40 = 

20­

, , , 1_ 
O' ' 1 

0 5 10 15 20 25 30 35 40 45 50 

time [s] 

FIGURE 8 Angle of Attack for Data Set 3 

20

10

0

4 -10 

-20 

-30 
0 5 10 15 20 25 30 35 40 45 50 

time [s] 

FIGURE 9 Stabilator Command for Data Set 3 

20 

10 

00 
a) 

0 

-10 

I.-20 1

0 10 20 30 40 50

time [s] 

FIGURE 10 Thrust Vectoring Command for Data Set 3 
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4.3 PREDICTION MODELS FOR DATA SET ONE 

All of the different methods described in section 4.1 will be compared on data 

set one. From this analysis, only the best predictors will be considered on data sets 

two and three. The recursive-least-squares estimator with a variable forgetting factor 

to maintain a constant information measure was used for all the comparison in this 

chapter. The recursive-least-squares algorithm is discussed in detail in chapter 5. 

The first predictor model corresponds to the predictor in equation (18). This 

is the simplest predictor, and it can be seen that it is also the least effective. The 

prediction model is described below. 

a(t)--4(01(t-1) 
(23)

cor=fa(t-1),q(t-1),es6(t-1)] 

The prediction error (the difference between the predicted output and the actual output) 

for this regressor is displayed in the figure below. 

0.6 1 1­

En 0.4
Iv

0.2 
u
.2
2. 0 

A l I__-0.2 
0 5 10 15 20 25 30 35 40 45 50 

time Es] 

FIGURE 11 Prediction Error for Equation ( 23 )

The next prediction model includes a one in the regressor. Thus, an attempt 

is made to estimate the offset directly. This leads to the following prediction model. 
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a(t)=4)(t)1(t-1) 
(24) 

0(e)T=Ea (t-1),q(t-1),8(t-1), 1] 

The prediction error improved only slightly with this addition. One explanation for 

this limited improvement is that the variations in the offset were too rapid. The 

prediction error for a one in the regressor is displayed below. 

0.6

0.4

0.2

0

-0.2 
0 5 10 15 20 25 30 35 40 45 

time Es) 

FIGURE 12 Prediction Error for Equation (24) 

The difference predictor model described by equation (22) eliminates the need 

to estimate the offset. The predictor model is given by the equation below. 

ea ( 0 =40( 0 78 ( t-3.) 
(25) 

4) ( t) r= (Au ( t-1) , Aq( t-1) , 8h ( t-1) ] 

The prediction error for this predictor model is given in figure (13). This predictor 

model offers a tremendous amount of improvement over the fast two predictor models. 

50 



19 

._ A _L 1-0.2 
0 5 10 15 20 25 30 35 40 45 

time [s] 

FIGURE 13 Prediction Error for Equation (25)

A fourth approach as described by equation (21), is to attempt to estimate the 

offset separately and then use this information in the prediction model. This leads to 

a prediction model of the following form: 

ei(t)4(t)213(t-3.) 

CO T=fai(t-1),e(t-1),6h(t-1)] 
(26)

cti(t)=a(t)-Tt(t) 
qi( t) =q(t) -71( t) 

The average values of q and a are estimated as suggest by Sripada et al. [7]. Thus, 

the averages of q and a are estimated as follows: 

it( t) =1 ( t)ii( t-1) + (1-A. ( t) ) a ( t-1) 

4( t) =la( OTT( t-1) + (1-Acr( t) ) q( t-1) (27) 

A. ( t) =la( t) = . 9 5 

The prediction error for the above predictor model is given in figure (14). It should 

be noted that the prediction error is better than the prediction error for a one in the 

regressor, but it is worse than the difference prediction error. This should come as no 

50 
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surprise since this method is really a combination of the two methods. To see this, let 

= At = 1. This leads to the following: 

i( t) =c1

4(t) =4( t-i) =c2

( t) =a (t) 
(28)

et) =q(t) -c2
a (t) =81a ( +82.7(t-1) +838h+c

c=ci-e1c1-02c2

This predictor model is a special case of the predictor model with a one in the 

regressor. Now, let Al = = 0. This leads to the following: 

Ft( t) =-a (t-1)

4( t) =-q( t-1)

ai( t) =a (t) -a (t-1) (29)

et) =4( t) --q( t-1)
a to -a (t-1) =e1 (a (t-i) -a (t-2) +62 (q(t-1) -q(t -2)) 4138, 

This predictor model is equivalent to the difference predictor model. 

0.15 

74 -0.05 

-0.1 
0 5 10 15 20 25 30 35 40 45 50 

time Es] 

FIGURE 14 Prediction Error for Equation (26)
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The following predictor model was developed by Mohler et al. [17]. This is 

the nonlinear predictor model, and it is included here for the sake of comparison. The 

predictor is given by the following equation. 

ii(t)4(t)713(t-1)

(30)0(t)r=k(t-1),a(t-1)2,a(t-1)3,q(t-1),q(t-1)a(t-1),
q(t-1)a(t-1)2,q(t-1)a(t-1)3,8h(t-1),
8h(t-1)a(t-1),8h(t-1)a(t-1)2,8h(t-1)a(t-1)3,1]

The prediction error for the nonlinear regressor is displayed in figure (15). As was 

stated in [21], the nonlinear predictor model out performed the predictor in equation 

(24); however, the difference predictor offers a significant improvement to both 

predictor models. 

0.1
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-0.30
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time (s]

FIGURE 15 Prediction Error for Equation (30)

One more regressor was considered. This predictor model is similar to the first 

predictor model except that the order has been increased. The predictor model is: 

a (0=4)(070(t-1) 
cor--Ea( t-1 ),q(t-1),a(t-2),q(t-2),6h(t-1)] 

(31) 

The prediction error is displayed below. 
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FIGURE 16 Prediction Error for Equation (31)

One possible explanation for this drastic improvement could be that the 

predictor model was accounting for the missing states in the predictor (i.e. the pitch, 

velocity, and thrust magnitude). However, when the above comparison was made 

using full state feedback in the predictor models, the corresponding graphs to figures 

(11) and (16) remained virtually unchanged. Thus, it appeared that a higher order 

linear model was able to identify some of the nonlinearities. What has actually 

happened, however, is that the higher order linear model has simply identified the 

offset in a similar fashion to the difference prediction model. This can be seen by 

examining the difference prediction model. 

eact)-4(t) ti(t-1) 
T=[Acc(t-1) ,Aq(t-1) ,8h(t-1)] (32)

8(t)=Aa(t)+a(t-1) 
ft co=cii-eo a ( t-1) -431a ( t-2) +82q( t-1) -I32q( t-2) +038h( t-1) 

Thus, the difference predictor is simply a special case of a higher order linear 

predictor. 

50 
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4.4 PREDICTION MODELS FOR DATA SET TWO 

In this section only the prediction models described in equations (25), (26), and 

(31) will be considered since they were the most promising. Thrust-vectoring will be 

added to each of the prediction models, and data set two will be used in the analysis. 

The addition of the thrust vectoring into the prediction models is a relatively 

simply matter. The prediction models that are to be compared are as follows. The 

first predictor model for data set two is the higher order linear model, and it is 

described by the following equation. 

a ( =0( (t-1) 
(33)

4)( t)T=kc ( ,q( t-1) ,a ( t-2) ,q( t-2) , 6h( t-1) 8,(t-1)] 

The difference prediction model for data set two is described by the following 

equation. 

A& (t)=4)(t)13(t-1.) 
(34)

4)( Or= [Aa ( t-3.) ,Aq(t-3.) ,8h(t-1.) ,8,(t-1)] 

The averaging predictor model for data set two is described by the following equation. 

a1( =4)( 70 (t-i) 
(35)

4)(t)T=Ecti(t-1),e(t-l),8h(t-1),8.(t-1)1 

As expected their relative performance remained the same. The prediction error is 

considerably smaller for data set two. This is a result of limiting the control command 

velocity to 40 degrees per second for the stabilator angle and to 80 degrees per second 

for the thrust vectoring command. This limitation was done by the controller, and the 

input dynamics were ignored. The prediction errors are displayed below. 
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FIGURE 19 Prediction Error for Equation (35)
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4.5 PREDICTION MODELS FOR DATA SET THREE 

In this section the complete dynamics of the aircraft are included in the input-

output data. One important characteristic of the data that needs to be pointed out is 

that the control command has been limited by the controller, and not just by the 

dynamics. This is important if the predictor is to be linear in parameters and 

measurements. 

To see the importance of this consider the following differential equation: 

-40 (u-x) < -4
3 

-430 (u-x) ( u-x) s 4 (36)
3 3 

40 (u-x)>-4
3 

With an initial condition of zero, equation (21) has a solution at time 1/20 given by 

u(1-exp(-1.5))

u_le,1_30/ 1 3u-411 -4-<lul< 1°
3 t1 k 2 120 LI 3 3 (37)

20 102 112 
3 

-2 us- 10 
3 

A prediction model that is linear in parameters and measurements for equation (36), 

with x(0) = 0, is given in equation (38). 

20) =cu where c is a constant (38) 
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The predictor model is exact when 

kill 8° - luisA (39)
3 3

The predictor model remains approximately valid (± 3%) when 

lalsao luk2 ( 40 ) 

The problem is that c is not a constant, but depends on u. A predictor that is linear 

in parameters and measurements can be used if the value of u is limited before it 

enters the differential equation. It is this limited control value that is sent to the 

predictor model. To clarify this, equation (37) is displayed in figure (20), and a plot 

of c versus u is displayed in figure (21). Figure (21) shows explicitly how the 

'constant' c depends on u. From the plots it can been seen that the prediction model 

is only linear in parameters and measurements if u is limited, and c is approximately 

constant if equation (40) is true. 

2
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FIGURE 20 Plot of Equation ( 37 )
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FIGURE 21 True Value of c for Equation (38)

Four predictor models are considered in this section. The first two correspond 

to the higher order linear predictor model, and they are given by equations (41) and 

(42). The only difference between them is that equation (42) has been increased in 

order by one. This is to account for the dynamics in the control signals. 

8(t)=4(07111(ti) 
(41)

4)(07=[ct(t-1),q(e-l),a(t-2),q(t-2),5h(t-1),8(t-1)] 

8(t)=4)(t)70(t-1) 
(42)(t)T=[a(t-1),q(t-1),a(t-2),47(t-2),a(t-3),g(t-3),8h(t-1),8v(t-1),8h(t-2)05,(t-2)] 

The other two predictor models correspond to the difference predictor, and they 

are given by the following two equations. 

A8(t)=4)(0113(t-1) 
(43)

4(t)T=[Aa(t-1),Aq(t-1),8h(t-1),8v(t-1)] 
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ea(t)-4(t)1(t-1) 
(44)

.(t)T=bia(t-1),Aq(t-1),Aatt -2),Acgt-2),8h(t 1),8,(t -1),8h(t 2),8,(t -2)] 
It can be seen from the plots of the prediction error that the additional terms 

helped to estimate the dynamics on the control signal. 
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4.6 PREDICTOR FOR THE CONTROLLER 

4.6.1 Overview of Control Calculation 

Up to this point the only thing that has been considered is to provide a 

reasonable predictor for the next output if the past output and control values are 

known. This is a great first step, but it presents a problem for the control calculation. 

Consider the following prediction model to be used by a one step ahead controller. 

50 
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& ( t+1) =cis ( t) +c2u( t) (45) 

Now, assume that we want a(t+1) = as, where a is some known value. Then 

u(t) can be calculated as follows: 

a` -c1a ( t)u( t) (46)
C2 

If the output and input are sampled at the same time, this creates a problem 

since u(t) is needed just prior to time t, but a(t) is not available until just after time 

t. Two solutions exist to overcome this problem. The first solution is to use an 

estimated value of a(t) to generate the control. Thus, the control calculation would be 

given by: 

ce-c1& ( t)u( t) (47)
C2 

The other solution is to modify the prediction model so that it does not include 

a(t). This would lead to the following prediction model. 

& (t +3.) =c1ft ( t) +c2u ( t) 

& ( t+1) =c12a ( t-1) +;u( t) +c1c2u( t-1) (48) 

a (t +1) =c3/.a (t -1) +cu ( t) +cu( t-1) 

4.6.2 Final Predictor 

The purpose of this section is to develop a predictor for the aircraft that 

accounts for the problem that is discussed in section 4.6.1. The first solution is not 

adequate, since it would require an explicit predictor for q to be developed. Thus, the 

second method will be explored experimentally on data set three. By following the 
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example above with the predictors in equations (42) and (44) the following predictor 

equations can be derived. (This assumes that an estimator for q(t-1) would be in the 

same form as the estimator for a(t-1). This was verified experimentally, but the results 

are not shown here.) 

e(t) =4(019(t-1) 
(49) 

4)(t)r=[a(t-2),ICt-2),a(t-3),q(t-3),a(t-4),g(t-4),
8h(t-1),a,(t-1),8h(t-2),8,(t-2),8h(t-3)05(t-3)]

es (t)4(t)11)(t-i) 
(50) 

4)( t) T= [Au (t-2) , Aq( t-2) ,Aa ( t-3) , Aq( t-3)
8h( t-1) ,6,(t-1) ,8h(t-2) ,6,(t-2),8h(t-3) ,8,( t -3 ) 

As can be seen from the following plots, the prediction error is not as good. 

This is because an estimate is implicitly being used for a(t-1) and q(t-1). The 

prediction error plots are displayed below. 

5 10 15 20 25 30 35 40 45 50

time [s]

FIGURE 26 Prediction Error for Equation (49)
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5 PARAMETER ESTIMATION 

5.1 OVERVIEW OF THE RECURSIVE LEAST SQUARES 

The recursive-least-squares (RLS) algorithm is the most common on-line 

parameter estimation algorithm in the literature today because it has several important 

properties. First, the RLS algorithm has a fast convergence rate (exponentially fast for 

a linear time-invariant system with proper excitation). Also, the stability of the RLS 

algorithm combined with direct and indirect adaptive control is well understood, and 

many proofs have been published in this area [4],[22] -4241 

The main disadvantage of the RLS is its inability to adequately track time-

varying systems. The norm of the covariance matrix for the RLS algorithm tends 

towards zero which causes the adaptation to turn off. This is undesirable in the case 

where the parameters are time-varying. Several modifications have been made to the 

RLS algorithm to correct this problem. The modifications include constant forgetting 

factors, variable forgetting factors, and covariance modifications. Another disadvantage 

with the RLS algorithm is that it has a tendency to place heavy weights on outlying 

data points (because of the quadratic cost function). Thus, many types of data filtering 

and data normalization have been proposed. Since this thesis is dealing with a purely 

deterministic system only the modifications relating to time-varying parameters will 

be discussed. 

5.2 DERIVATION WITH EXPONENTIAL DATA WEIGHTING 

A complete derivation of the RLS algorithm with exponential data weighting 

can be found in [4] and [25]. A brief derivation of the RLS algorithm is given below. 

The idea of the RLS algorithm with exponential data weighting is to minimize the cost 

function in equation (51) at each time step. The weighting is included so that the older 

data can be forgotten. 
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ilt=i -22- P (t, k) (y(k) -41)7 (k) 8] 2 (51) 

where 

p ( t,k) 4. (t) p (t-i,k) 1_1(.1t-i.

p (t, t) =1 (52)

ou(t)13.

Thus, at every step a new value is calculated for the parameters ,O, such that the cost 

function is minimized. 

Taking the derivative with respect to 0 gives: 

t =E (53)d-N P ( t, k) . (k) [y (k) -428) 

Setting the derivative to zero and solving for 0 yields: 

_1 

e(k+i)=[ift(t,k).(k)4)(k)7 Efi(t k).(k)Y(k) (54) 
km1 

Define 

R(t) a E13(t,k),(k)(1)(1c)T (55) 

F(t) i p (t,k)ck)y(k) (56)11 
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Then we have the following: 

=R(t) -1F(t) (57) 

R(t)=1,(oR(t-1)+4)(t).(or (58) 

F(t)--A(t)F(t-1)+4)(t)y(t). (59) 

8(o=e(t-1)+R(t)-14)(t) [y(t)4(t)7B(t-1)] (60) 

Now let 

P( t) =1? ( t) (61) 

This leads to the recursive-least-squares algorithm with a variable forgetting factor. 

P(t-1)+(t)K(t) 
1(0 +4)(t)T1)(t-1)4)(t) 

8(o=e(t--1)+K(t) [y(t)-$(t)b(t-1)] (62) 

t-1)P ( t) = t) 4 ( 
( t) 

If X(t) equals one, then the above algorithm represents the standard recursive-least­

squares algorithm. Because of applications to stochastic systems, the matrix P is 

commonly referred to as the covariance matrix. 

5.3 MODIFICATIONS FOR TIME-VARYING PARAMETERS 

One problem with the standard RLS (i.e. X(t) = 1) is that the norm of the 

covariance matrix tends towards zero. This causes the gain of the algorithm to move 

towards zero, which causes the adaptation to turn off. This is displayed graphically 

in figures (28) and (29). The standard RLS algorithm is applied to data set three using 
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the prediction model in equation (49). The trace of the covariance matrix serves as a 

measure for the matrix since it is a symmetric positive-definite matrix. A variety of 

modifications are proposed in the literature to keep the algorithm functional. The 

modifications are generally of two different types. The first idea is the inclusion of 

a forgetting factor. As explained above, this allows for past data to be forgotten. The 

second type of modifications that have been proposed is to manipulate the covariance 

matrix directly. An overview of a large variety of these modifications is presented by 

Shah and Cluett in [261 

The following two section will describe a variety of these methods and evaluate 

their performance with respect to the aircraft simulation presented in this thesis. For 

all of the comparisons, the prediction model in equation (49) is used. Data set three 

from chapter 4 is being used as the test data, and the covariance matrix is initialized 

to 100*I. The results of the previous chapter were developed by initializing the 

covariance matrix to 100000*I. This proved to be good for the prediction error, but 

when used in conjunction with a controller it was not as effective because of the 

variance of the parameters. 
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FIGURE 28 Prediction Error for the Standard RLS
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FIGURE 29 Covariance Trace for the Standard RLS

5.4 FORGETTING FACTOR 

5.4.1 Constant Forgetting Factor 

Several different choices exist for choosing A.,(t). The simplest is to set X,(t) 

equal to a constant. This causes the data to be forgotten at an exponential rate, and 

the time constant of the data weighting is 1/(1).) (e.g. if X, = .95, the time constant 

would be 20 data points). This method prevents the gain from converging to zero; 

however, the opposite extreme can occur. If the signal does not have enough 

excitation, the norm of the covariance matrix tends towards infinity. This is displayed 

in figures (30) and (31). A maximum value was placed on the trace of the covariance 

matrix (200 times the initial trace), and when the trace exceeded this value the 

covariance matrix was reset. 
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5.4.2 Constant Information 

Another method for selecting Vt) is to choose some type of information 

measure, and then keep the measure constant. Thus, if the information content of the 

signal is large the forgetting factor will be small, and the old data will be forgotten. 

If the information content is small, then the forgetting factor will move towards one, 

and the old data will not be forgotten. This allowed the RLS algorithm to track some 
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time-varying parameters. The problem of the covariance matrix growth, however, was 

not solved by this algorithm. 

This idea was first presented by Fortescue et al. [27], and slight modifications 

were made by Ydstie et al.[28],[29]. A similar idea was presented by Sanoff et al. 

[31]. The information measure that was proposed in [27] was the weighted sum of the 

errors. Recursively, the measure was written as: 

S(t) =A (t)S(t--1) + (1-4)(t)TK(t)] e2 (63) 

where 

e=y( t) -40( Ore ( t) (64) 

Setting S(t) = to say S resulted in the following selection of a variable forgetting 

factor: 

2 (65)
A ( t) = 1 1 -r- +(1-r- S) +4r11) 

where 

r=4)(t)TP(t-1)0(t) (66) 

The convergence of this algorithm for the time invariant case was derived by Cordero 

et al. [30]. One modification had to be made to the algorithm, however, for the 

convergence to be proved. The forgetting factor was set to one if the trace of the 

covariance exceeded a constant. The algorithm as originally stated did not limit the 

covariance matrix; however, it provided a great improvement over the constant 

forgetting factor. The results of this algorithm are displayed in figures (32)-(34). 
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5.4.3 Constant Trace 

Another method for selecting a variable forgetting factor was suggested by 

Sripada et al. [7]. This method selected a forgetting factor such that the trace of the 

covariance matrix remained constant. Taking the trace of both sides of the covariance 

matrix in equation (62), and setting the trace of P(t) equal to P(t-1) resulted in the 

following forgetting factor: 

1(0 =1-1(i+r4(1 +r)2_4 IP(t-1P(t-)4(t) (67) 
2 tr 1) 

where 

r=4(t)TP(t-1)+(t) (68) 

The results of this algorithm are presented in figures (35) and (36). 
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FIGURE 35 Prediction Error for Constant Trace
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5.5 COVARIANCE MODIFICATIONS 

5.5.1 Covariance Resetting 

The simplest way to modify the covariance matrix was to reset it periodically. 

This method was suggested and the convergence for the linear time-invariant case was 

shown by Goodwin and Teoh [9]. The proofs presented in [9] covered most of the 

covariance modifications presented here. The covariance matrix in equation (62) was 

replaced by the following: 

Let N be an integer. If t/N = integer 

P( t) =k/ 0 < kmin < k < lc,..< o ( 6 9 ) 

Otherwise 

P(t)=[I-K(t).(021 P(t-1) (70)1(0 

This algorithm proved to be extremely successful. The results are displayed in figures 

(37) and (38). 
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5.5.2 Constant Covariance 

Another method, proposed by Goodwin in [26], was to maintain a constant 

covariance trace by the addition of a properly scaled identity matrix. This leads to the 

following algorithm. 
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P(t-1)
Pi(t)t= [I-K(t).(t)21 (71)

1(t)

Let t = trace(P'(t)); let n = the dimension of $, and Co, C1 denote two positive 

constants such that C1 > Co. If T > Co 

C
P(t)=P1(t)+ 

T I (72) 

If .t SC0 

Cn Chp( =...._p/( 4. A w (73)

The algorithm ensures a constant trace of C1, and the following bounds are placed on 

the eigenvalues of P(t). 

Cl -Co A[p(t)] (74)
n

The results of this algorithm are presented below. 
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5.5.3 Covariance Regularization 

Another method to modify the covariance was proposed by Ortega et al. [23], 

and convergence and robustness properties were also proved for the linear time-

invariant case. It called for the following modification. Let Co, C1 denote two strictly 

positive constants such that C1 > Co. Then replace the covariance matrix in equation 

(62) by the following: 

P( t-1)( t) = [ t) ( t) (75)( t) 

co
P ( t) JP' , ( t) +Co/ (76) 

1 

This modification maintains the following bound on the eigenvalues of the covariance 

matrix. 

co s [p( t) ] s Cl (77) 

Its performance was reasonable, but the best results were obtained by combining the 

matrix regularization with the constant covariance. This resulted in the following 

algorithm. 

Let ti = trace(P'(t)); let n = the dimension of 4), Co, C1 denote two positive constants 

such that C1 > Co, and 0 < C2 < 1. If ti > Co 

q-cirP(t) = C2P'(t) (78)n 

IftC0 
Co CiCo (79) 
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0.1 

One way to interpret this algorithm is that it is a combination of the constant variance 

and the covariance resetting. Figure (40) displays the performance of the algorithm. 
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FIGURE 40 Prediction Error for Regularized RLS

It was this modified RLS algorithm that was used for the final controller. The 

values of the constants were co = 600, c1 = 1200 and c1 = .98. 

50 
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6 CONTROL CALCULATION 

The controller was designed to satisfy several goals. First and most 

importantly, the control values were calculated such that the angle of attack of the 

aircraft followed the reference model. The control values were also calculated such 

that the thrust vectoring would return to zero if it was not needed, and a certain 

amount of smoothness was desired for the control signals. To be more explicit, the 

following cost function was minimized at each step. 

J = 224.,[are,f(t+1) (t+1)]2+412[6h.,( -6h.( t-1) )2 
(80)

+113 [8d( 6v.d(t-1) 2+41 [6 vriud( ] 2 

Let the prediction model in equation (49) be described by, 

(t+1) = boahc.d ( t) +bi8 vcad(t) ( Ora ( t-3.) 

f(t)T = [a (t-1) ,q(t-1) ,a (t-2) ,q(t-2) ,a(t-3) ,g(t-3)
(81) 

8hc.d(ti) ,8v.d(t-1) ,8h.d(t-2),6vcgd(t-2)1 

Taking the derivative of I with respect to the control gives, 

dJ 
= AS [ar.f( t+i) a ( t+i) )4+12 [13h.1( ah.(ti)]do 

dJ (82) 
= Al [aref ( t+1) --tt ( t+1) b1+13[8,,,.d( t) -8 v.d( t-1)as

14,4 [8 voud( t)

Setting the derivative to zero and solving for the control gives, 

rh d(oHlibg+12 iboil+128h a(t-i) 
v (t) Aibobi +13414 11b1ri+138v (t-1) 

(83) 
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where 

q=aref(t+1) -F(t)e(t-1) (84) 

To include the velocity and magnitude limits in the control calculation, two extra 

conditions were added. The fast condition requires that 8,d(t) be recalculated if 

8h mat) has reached the magnitude limit. The second condition requires that 8, d(t) 

be recalculated if oh cmd(t) is a value requiring 80 degrees per second for the stabilator. 

8.4(t) is recalculated as follows: 

8,..d(t)- ri -boa ha., ( t) 
(85)

131 

After the control values have been calculated, they are limited by 40 degrees per 

second for Sh.d(t) and by 80 degrees per second for 8, cd(t). The magnitude limits 

described in chapter 3 are also accounted for. 
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7 REFERENCE MODEL 

The reference model is a critical part of the algorithm. For model reference 

adaptive control, a command signal is feed though a model system, and then the actual 

system is made to track the output of the model system. In general, the model 

reference signal is a feed forward signal, and it has no feedback from the aircraft. This 

proved to be ineffective for the aircraft when the velocity limits on the command 

signals were implemented. For the case when the controller dynamics (with velocity 

limits) were included in the simulations, I was unable to find an adequate feedforward 

reference model that resulted in a stable response. An example of the problem is 

developed below. 

To simplify the example, the thrust vectoring was set to zero, and the stabilator 

dynamics were ignored. A comparison was made between the response of the aircraft 

with and without velocity limits on the stabilator angle. The velocity limits were 

imposed by the controller (i.e. the command signal was limited). Thus, the parameter 

estimation was identifying the same system for both cases, and the input dynamics 

were ignored. The simulation was for eight seconds. The reference trajectory for the 

first 3 seconds was generated using the method described later (equation (87) with X 

= 0.96). It was included to damp out the disturbances that arose from the initial 

parameter mismatch. The reference trajectory from 3 to 8 seconds is described below, 

and it is a feed forward trajectory. 

35t<5)
aref ( t) ..-- 5° ( 86 )

5 .1° 5t 
The results are displayed in figures (41) and (42). The dashed line represents the 

system with the velocity constraints on the stabilator command angle. With velocity 

constraints on the command signal, the response was unstable. Since the output of the 

system follows the reference trajectory, no feedback should be needed. When the 

control is limited, however, it is no longer possible for the system to exactly follow 
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the reference trajectory. Thus, feedback is included to improve the reference model 

and the overall performance. 
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FIGURE 41 Angle of Attack for a Feedforward Reference

To 

4 
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time [s]

FIGURE 42 Stabilator Angle for a Feedforward Reference

The new method proposed in this paper uses feedback from the aircraft to 

improve the reference trajectory. To my knowledge, this method has not been reported 

in the literature. The class of models for the reference trajectory that were investigated 

are simply filters that use the past values of the angle of attack as the states. Thus, the 

reference model has no internal states of its own. A simple first order filter can be 

formed as follows: 
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aref( t) =la (t-1) +(1-1) (caw 0 < A < 1 (87) 

If the system being controlled was a deterministic linear time-invariant system with 

unlimited control, the two approaches would be identical because the output of the 

system at (t-1) would be equal to the reference trajectory at time (t -1). Thus the 

reference model would not need any feedback from the system. 

With a first order model reference, excellent performance was achieved when 

the input dynamics and velocity constraints were ignored (see data set in chapter 4). 

For the complete system, a second order filter was found to be sufficient to provide 

excellent performance. A general second order filter is described in equation (88). 

af(t) = (11+12) a ( t-1) (1112)a ( t-1) (88)+ (1 +1112-11-12) a and ( t) 

The results for this reference trajectory when used on the complete system are 

displayed in chapter 8. 
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8 COMPLETE RESPONSE 

Each piece of the final controller will be restated below for clarity. The 

predictor model described in equation (49) was used. The difference predictor model 

in equation (50) generated similar results. One major problem with the difference 

predictor is that the variance of the noise on the measurements is doubled. This 

problem was not encountered in this thesis since no noise was considered. The 

predictor model is restated below. 

d(t+1) = bo(t--1)8h.d(t) +/Di (t-1) dv.d(t) +f(t)213(t-1)

(t)r =[a(t-1),q(t-1),a(t-2),q(t-2),a(t-3),q(t-3),
8h.i(t-1),1/41(t-1),6h.d(t-2),8,..d(t-2).1 (89) 

ect-ip. =Lboct-1) bi(t-1) 13.(t-1)7] 

4)( t) T = [8h.d( t) 8,...d( t) f(t)T] 

The adaptation was performed using the modified RLS described in section 

5.5.3 with co = 600, c1 = 1200, and c2 = 0.98. This gives the following algorithm: 

P (t -1) 4) ( t)K( t) 
1 44) ( t) TP ( t -1) th ( t) 

(90)co =e( t-3.) +K(t) [y(t)-41(t)Tect-in

Pi(t)=[I-K(t),(t)nP(t-1)

Let 't = trace(P'(t)), if t > Co 

P( t) =c,2p/( c3.-C2T (91)
n

If 't 5. Co 
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cf, , c, -a,p(1-) ....p,ft)+ 4. 40 I (92)i" T 1 n 

A projection was used in conjunction with the RLS algorithm to bound 130 and b1 away 

from zero. Thus, the following conditions were imposed: 

bo s -0.0002 b1 1 0.0002 

The above values were chosen by observing the parameter variations for several 

different flight paths. All of the parameter variations for maneuver one are plotted in 

the appendix. The prediction error for maneuver one is also plotted in the appendix. 

The control was calculated to minimize the cost function in equation (80) with 

XI = 100, X2 = 0.001, X3 = 0.001, and A.4 = 0.001. This lead to the following control 

calculation: 

bob,. Friboti+A28,2.,(t-,), (94)
ova.d,0 bob, ,ibf+,3+,, Aibiii.,36,..,(,-1 )rh.,(0,.{Alb,...A.2 

where 

11=aref4( t)711( t -1) (95) 

If the stabilator command exceeded a velocity of 80 degrees per second (twice its 

velocity limit) or its magnitude constraint, then the stabilator command was limited by 

40 degrees per second or its magnitude constraint, and the thrust vectoring angle was 

recalculated such that the predicted output would match the reference trajectory. This 

is similar to the daisy chaining idea that was described in [32]. 8, d(t) was 
recalculated as follows: 
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-bobhaed ( t)by(t) (96)
bl

The limited thrust vectoring and the stabilator commands were the control signals for 

the aircraft. Also, to prevent the parameters for the thrust-vectoring from drifting, the 

following condition was imposed. 

If 18mal < 1° , then 8,,o.d--=,0 (97) 

A second order reference trajectory (as described in chapter 7) was used. The 

parameters of the reference trajectory were not fixed but varied according to the gain 

schedule listed in the table below. The second order reference trajectory is given in 

equation (98). 

arer(t)=ci(e)a ( t-1) +c2 (e) a ( t-2) (e) -c2(e) )aand( t) 
(98)

e=laerad(t-1) -a ( t-1) 

ci(e) c2(e) ci(e) c2(e)

05e<1 1.7600 -0.7743 65e<8 1.8073 -0.8221

15e<2 1.7215 -0.7517 85e<10 1.8241 -0.8365

25e<3 1.7563 -0.7796 105e<15 1.8407 -0.8509

35e<4 1.7734 -0.7937 155e<25 1.8572 -0.8655

45e<6 1.7904 -0.8079 255e 1.8736 -0.8801

FIGURE 43 Table of Constants for the Equation (98) 

The values were chosen such that all but the first filter correspond to a constant 

percent overshoot with different rise times. The first filter simply put two discrete 

poles on the real axis, one at .87 and one at .89. This is by no means an optimal gain 
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schedule, and undoubtedly it can be improve. It did, however, prove to be highly 

successful for a wide range of maneuvers. 

Several different simulations were used to evaluate the model performance. 

Two that are representative of the results are described below. The first maneuver 

corresponds to the maneuver presented by Ostroff in [33]. The angle of attack is 

changed from 5 degrees, to 60 degrees, to 35 degrees, and back to 5 degrees in 8 

second intervals. The estimated parameters for this maneuver are displayed in the 

appendix. The second maneuver holds the angle of attack at 60 degrees for an 

extended period of time. 

The character of the response for maneuver one is similar to the response 

reported by Ostroff in [33]. The adaptive controller, however, provided a slightly 

faster response. The angle of attack reached 55 degrees in 2.0 seconds. While, the 

variable gain approach in [33] reached 55 degrees in just under 3.5 seconds. The time-

optimal control (with a limitation of 40 degrees per second on the thrust vectoring) 

reached 55 degrees in about 1.8 seconds [34]. The nonlinear adaptive controller 

reported in [35] failed when the full dynamics of the aircraft were considered. For 

maneuver two, the adaptive controller held the angle of attack at 60 degrees. The 

aircraft reached a 'steady state' position; however, the climb angle was negative (i.e. 

the aircraft was diving). One important characteristic about the adaptive control in this 

thesis was that the thrust-vectoring returned to zero when it was not needed. This 

prevented the thrust-vectoring vanes from constantly being exposed to the high 

temperature exhaust plume. The plots for maneuver one are displayed in figures (44)­

(51), and the plots for maneuver two are displayed in figures (52)-(59). 
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9 CONCLUSION AND CONTINUED RESEARCH 

For the flight path conditions that were examined, the linear adaptive control 

performed extremely well, and close to the limits of the system (i.e. the time-optimal 

control [34]). Several important ideas were covered--the need to use a difference of 

the measurements (either implicitly or explicitly) in the prediction model, the need to 

modify the RLS algorithm for time-varying parameters, and the need to include 

feedback in the reference model to account for control limitations. A true test of the 

adaptive control would be to operate it in conjunction with the lateral portion of the 

aircraft (as Ostroff did for the variable gain controller in [33]). This would require the 

lateral portion of the aircraft to be modelled and controlled. 

For this particular controller several things still need to be investigated--the 

effects of noise in the measurements, and the sensitivity of the performance with 

respect to the model and the flight path (i.e. robustness). Several ideas could be 

incorporated into the controller presented here to see if the performance is improved. 

A more advanced reference model could be developed- -maybe even an adaptive 

reference model. Nonlinear terms could be added to the regressor, making the 

prediction model nonlinear with respect to the measurements, and the effects of an 

extended or variable horizon cost function for calculating the control could be 

investigated. 
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APPENDIX 

This appendix displays the estimated parameter variations and the prediction 

error for maneuver one of chapter 8. The prediction error is displayed in figure (60), 

and the parameter variations are displayed in figures (61) - (64). For the parameter 

variations the prediction model is described in the following form: 

a(t)-4(t)711(t-1) 
4)(t)7=[a(t-2),a(t-3),a(t-4),q(t-2),q(t-3),q(t-4), (99)

8hiad(t-1),45h.d(t-2),8h (t-3), 

Thus, Al, O. and 03 correspond to the angle of attack. 04, 05, and 06 correspond to the 

pitch rate. 07, 0$, and 09 correspond to the stabilator command, and Ow, All, and e12 

correspond to the thrust-vectoring angle. 
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FIGURE 60 Prediction Error for Maneuver One
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