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Analysis and Control of Power Systems Using Orthogonal Expansions 

Chapter 1 Introduction 

1.1 Applications of Orthogonal Expansions in System Science 

In recent years, considerable attention has been focused on the application of 

orthogonal expansions to system analysis, parameter identification, model reduction 

and control system design. Two sets of such functions namely the Walsh Function 

and Block Pulse functions, first received considerable attention in system science 

(Chen and Hsiao [1975 a]). The key point to the application was the derivation of the 

operational matrix of integration of the orthogonal functions which was used to 
convert linear differential equations to a set of algebraic equations which were solved 

using Kronecker products for unknown parameters. Subsequently , the Walsh 
Function method was applied to parameter identification of lumped systems (Rao and 

Sivakumar, [1975]), distributed systems ( Paraskevopoulos [1978], Sinha et al 
[1980]), bilinear systems (Chen and Shih [1978], Karanam et al [1978]) time delay 

syatems (Rao and Sivakumar [1979]) and multi input-multioutput systems 
(Paraskevopoulos [1978],Rao and Sivakumar [1981]. 

Shieh et al [1978] applied block pulse functions to the analysis of time varying 

and non-linear networks. Ganapathy & Ram Mohan Rao [1978], employed block 

pulse functions to find piecewise constant gains to linear time invariant systems. Zhu 

and Lu [1987] presented a method of heirarchial control for large scale time varying 

systems via block pulse transformation. Rao et al [1980] proposed the single term 

Walsh series approach. Palanisamy [1981] applied the single term Walsh series 
approach to the analysis and optimal control of linear systems, Palanisamy & V.R 

Arunachalam [1985] to the analysis of bilinear systems. Zhu and Lu [1988] proposed 

a heirarchical recursive algorithm for non-linear optimal control systems using the 

single term Walsh series approach with the improved new predication method of large 

scale system theory.Palanisamy & Balachandran [1987] presented amethod for the 

analysis of linear singular systems with the single term Walsh series approach. 
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Cameron et al [1980,83], Kouvaritakis and Cameron [1981] used Walsh functions for 

predicting the existence of limit cycles in nonlinear feedback systems. 

The use of orthogonal polynomials to represent a given function was well 
known in engineering mathematics.Solutions of differential equations by orthogonal 

polynomial approximation have been extensively studied by Villadsen and Michelson 

[1978], Finlayson [1972]. Recently, orthogonal polynomials have been successfully 

applied to a host of problems in analysis, identification & control. 

Razzaghi & Arabshahi [1989] proposed a method for finding an approximate 

solution of linear time-varying systems and bilinear systems via Fourier series based 

on the utilization of the operational matrix of integration & the product operational 

matrix.Taylor series (Lee & Tsay [1987]) and Fouriers series (Paraskuopolous et al 

1985, Paraskuopolous 1987, Razzaghi & Razzaghi [1988]) had been applied earlier 

to analysis. Margallo & Bejarno [1989] used the method of harmonic balance with 

generalized Fourier series and Jacobian elliptic functions to find approximate 
solutions of non-linear differential equations (to second order). Ardekani & Keyhani 

[1989] presented a new algorithm for the identification of non-linear lumped time 

invariant SISO systems based on the differentiation properties of the exponential 

Fourier series. Hersh, M.A [1988] introduced an approach to the description of the 

time variation of the parameters of time varying systems based on periodic functions 

and outlined an adaptive identification and control algorithm valid for a large class of 

time-varying systems. 

Laguerre polynomial approximations (Wang et al [1984] , Hwang and Shih 
[1982,1983], Ranganathan et al [1984]) & Chebychev polynomial approximations 

(Liu and Shih [1983], Chou & Horng [1985 b,c] ) were successfully applied to system 

analysis and control system design. Legendre polynomial approximations (Wang & 

Chang [1982,1983] ,Chou & Horng [1985a], Shih & Kung [1985]) were also 
successfully applied to solving control system problems such as parameter 
identification,model reduction and control system design. Hwang & Guo [1984] 
applied the shifted Legendre Polynomials for transfer function matrix identification in 

MIMO systems.Horng & Chou [1987] applied the shifted Jacobi series to analysis and 

identification of nonlinear systems described by a Hammerstein model consisting of a 

single-valued nonlinearity followed by a linear plant. Chang & Yang [1986] and 
Chang et al [1986] proposed the so-called generalized orthogonal polynomials 
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(GOP's) approach. Wang, Chang, Yang [1987] applied the same to the analysis & 

parameter identification of a bilinear system and introduced a single form of the 

integration operational matrix of GOP's which represented all kinds of individual 

orthogonal polynomials and non-orthogonal taylor series, to simplify the 
computational algorithm.Tsu-Tsian Lee and Yih-Fong Chang [1987] applied the 
operational matrix of integration, together with the operational matrix of linear 

transformation of general orthogonal polynomials to analyse time varying delay 

systems. Hwang, Chen & Shih [1987] applied Hahn polynomials for the analysis and 

parameter estimation of linear discrete time single input/single output systems 
described by difference equations. Szczepaniak [1987] applied the orthogonal series 

technique for the approximate determination of sensitivity functions of linear dynamic 

systems. Lahouaoula [1987] used double general orthogonal polynomials for 
identifying the parameters of linear parabolic distributed systems. Ding & Frank 

[1989, 1991] presented criterias to test observability and controllability in terms of the 

coefficent matrix of the orthogonal expansions. Recently there has been a growing 
interest in H°° identification of systems [ He° (Re s >0 ) the Hardy space of 
bounded analytic functions in the right half plane] , one main reason being the 
fundamental role played by the 11°D norm in robust controller synthesis and the 

requirements this places on system identification. Maki la [1990] approximated stable 

systems by Laguerre filters. The classicalLaguerre series approximation of infinite 

dimensional systems has also been studied for the L2 norm, Glader et al [1991] for 
the L1 , H°° and Hankel norms. Related results have been given for 1-1°° approximation 

by Gu et al [1989] usiing Fourier series methods on the unit circle. Maki la [1991] 
studied H°° identification of stable continuous-time systems using generalized 
Laguerre series methods. Zervos & Dumont [1988] modelled a plant by an 
orthonormal Laguerre network put in state space form, proposed a simple predictive 
control law and designed an explicit deterministic adaptive controller. 

The application of discrete orthogonal functions such as the discrete Fourier 

transform, discrete Walsh transformation (Kak [1974],Chou and Horng [1986],Horng 

et al [1987], Lewis & Fountain [1991]),discrete Legendre (Horng and Ho [1986], 

Hwang & Shyu [1987]) discrete Laguerre (King and Paraskoupulos [1979], Hwang & 

Shih [1983], Marionne & Turchiano [1985],Horng & Ho [1985a]) and discrete 
Chebychev( Hwang & Shih [1984], Horng and Ho [1985b]) polynomials in system 

analysis, signal processing,model reduction, identification and optimal control have 

been discussed too. Horng & Chou [1988] developed a new and simple method for 
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designing a single loop PID controller using a computer oriented algebraic approach 

which is based on general discrete orthogonal polynomials eliminating in the process 

any trial & error procedures in determining the parameters of the PID 
controller.Hwang & Shyu [1988] applied a finite series [discrete Legendre] expansion 

method for the analysis and parameter identification of a discrete nonlinear system 

described by a Hammerstein model. 

Another concept was to use piecewise linear polynomial functions which have 

the advantages of piecewise orthogonal functions and classical orthogonal 
polynomials.Signficant advantages of using piecewise linear polynomial functions for 

solving problems of analysis and identification have been demonstrated by Lio & 

Chou [1987]. Liou & Chou [1987] applied the piecewise linear polynomial function 

approach to the minimum energy control of linear systems with time delay. 

Though Orthogonal functions have been applied extensively in System science 

little research has been done in applying them to power system analysis & no research 

in power system control. 

Deb & Datta [1987] introduced the concept of the Walsh Operational transfer 

function (WOTF) which was conceptually a new way of looking at Chen & Hsiao's 
[1975] operational matrix. The approach was applied to analyse a D.0 chopper 
circuit. Deb & Datta [1992] used the approach to analyze a continuously variable 

pulse width modulated system. Thyagarajan & Sankarnarayanan [1989] proposed a 

Walsh function approach for equivalencing the controllers in multi-machine power 

systems. The method proposed is based on the principle of obtaining the equivalent 

time constants from the unit step response of the individual blocks for constant time 

ranges & finally averaging them. Bhattacharya & Basu [1992] used the Walsh 
Transform for forecasting of monthly energy demand in large scale power systems 

using autoregressive model fitting. 

1.2 Overview 

Among these approaches to parameter identification the ones based on the 
shifted Legendre polynomials (Wang and Chang [1982]) have been shown to be more 

effective than the others since it merely requires arbitrary but active length of input­
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output data to identify the system and is immune from zero mean additive noise to 

some extent. In addition, the shifted Legendre functions could give a faster 
convergence rate for many general problems. However, the error of shifted 
Chebychev functions is distributed nearly uniformly in the time interval of 
interest.This characteristic of shifted Chebychev series is of importance in cases 
where it is desirable that the error involved in the approximation should not be 
concentrated only in certain portions of the time interval of interest but should be 
uniformly distributed over the interval. 

The common procedure in analysis, identification, model reduction and 
control, adopted by these orthogonal function / polynomial expansion methods are as 
follows: 

(a) Convert the differential equation to an integral equation through multiple

integration.

(b) Approximate the various variables involved in the integral equation by a
truncated orthogonal series.

(c) Replace the integral of the basis vector in the integral equation with the 

product of an operational matrix of integration and the basis vector. 
(d) Equate the coefficents of like basis functions to get a set of algebraic 

equations. 

(e) Solve the resultant algebraic equations to give unknown coefficent vectors of 

the system variables. The differential equation involved in the problem is 

reduced to a set of algebraic equations , the problem is thus greatly simplified. 

The main disadvantages of the above approaches (orthogonal functions and 

orthogonal polynomials) are : their applicability restrictions (their solutions are 
satisfactory for certain systems only) , their analyticity requirements for both the 
input and the output signals and their relative inflexibility for approximation 
purposes. The computational work is laborious owing to the algebraic equations with 

enlarged dimensions. Also the use of piecewise-continuous basis functions (Walsh 

Functions) leads to piecewise-constant gains.The inversion of large dimension 
matrices as a result of the Kronecker matrix product is required in some problems and 
much computer time is consumed by this matrix inversion. 
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Outline of the ThesiN 

Chapter 2 deals with the theory of orthogonality, orthogonalization and 
orthogonal systems. Common orthogonal expansions ranging from Haar functions to 

Chebychev polynomials are studied and comparisons made on their ability to 
represent time-varying functions (assumed measurable in L2 space). Chapter 3 
deals with the delineating properties of a versatile set of orthogonal expansions 
namely Walsh functions. Their delineating property is extended to nonlinear systems 

and then used for parameter identification of nonlinear systems. 

Chapter 4 deals with analysis of a perturbation model of a single machine 
infinite bus power system using orthogonal expansions. The classical Linear 
Quadratic Regulator ( LQR) problem is solved through the orthogonal function 
approach ( This deals with transformation into the Orthogonal domain and consequent 

simplification of the problem using the elegant properties of orthogonal expansions ). 

The application of Walsh functions to the control problem led to piecewise constamnt 

optimal feedback gains. 

Chapter 5 deals with the application of orthogonal functions for the design of 

compensators / controllers capable of achieving prespecified dynamic responses for 

the closed loop system. A PID controller is designed for series capacitor control of a 

SMIB system. The method has not been fully developed. Further research could yield 

an advanced outlook to this application. 
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Chapter 2 Orthogonal Expansions 

2.1 Orthogonality 

The notion of orthogonality may be introduced by means of the Stieltjes -

Lebesgue integral. Let 1.1.(x) be a positive bounded monotone increasing function in 

the interval of orthogonality [a,b] whose derivative il'(x) vanishes at most in a set 

of measure zero ( in the sense of Lebesgue). The (real) function f(x) is called L. 
integrable, if it isµ measurable and morover the condition 

b 

f I f(x) I d g(x) < (2.1) 
a 

is fulfilled. 

If 11(x) is absolutely continuous and let p(x) = p!(x) , then for any Lit 

integrable function f(x) the relation 

J f(x) 41.(x) ) = J f(x). p(x) dx (2.2) 
a a 

is valid i.e f(x) is an Lpoo integrable function and p(x) is called a weight 

function. If in particular p(x) = 1 then f(x) is said to be L - integrable. A function 
f(x) is called L2p or L2pw integrable, if it is 14, or Lpoo integrable, 

respectively and if furthermore 

f2(x) dµ(x) < 00 or f f2(x). p(x) dx < 00 (2.3) 
a a 

holds respectively. If p(x) = 1 the function f(x) is called 1,2 integrable. 
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A finite system { ipn (x) } of 1,2A integrable functions is said to be 
orthogonal with respect to the distribution dii(x) or simply orthogonal if 

b 

j (pm (x).(pn (x) dµ(x) = 0 (m # n) (2.4) 
a 

holds and none of the functions 9n(x) vanishes almost everywhere. The system 

{ Pn (x) } is called orthonormal if besides the condition of orthogonality the 
conditions 

b 

f 'en (x) dµ(x) = 1 ( n = 0, 1...) (2.5)i 

are also fulfilled. 

A system of functions { fn(x) } is called linearly independent in [a,b], if the 

validity of a relation of the form 

n 

X ak fk(x) = 0 (2.6) 
1c=3 

for .t almost every x E [a,b] necessarily implies 

ao = al = a2 . = an 

Every orthogonal system { IN (x) } is linearly independent. If we multiply , by 
q(x) , both sides of the equation 

n

1 ak 9k(x) = 0 (2.7) 
k=3 

(valid 11 almost everywhere) and integrate the interval of orthogonality, we obtain on 

account of the orthogonality 

b 

ak i 92k (x) dµ(x) = 0 ....(2.8) 
a 
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and consequently ak = 0 for any k. 

Any series E cn (pr,(x) constructed with the functions of an orthogonal 

system and an arbitrary set of real numbers Co , Cl , is called an orthogonal 

series. However, if the coefficents cn are, according to Fourier's manner, 
representable in the form 

b 

Cn b 
1 

. i f(x) (pi, (x) dp.(x) (2.9) 
a 

j(P2n (x) (11.(x ) 
a 

then / cn cin (x) is the orthogonal expansion of the function f(x) expressed as 

f(x) 1,9n (x) (2.10) 

The difference between orthogonal expansions & orthogonal series is 
essential. For instance, the partial sums 

CO 

snoo . Lek% (x) (2.11) 

of the expansion ( 2.10) above are distinguished among the partial sums of any 
arbitrary orthogonal series constructed with the functions of { (pk (x) ) by the 
following minimum property. 

Let f(x) denote an L2p, integrable function and { (pn (x) ) an arbitrary 

orthonormal system. Among all the expansions of the form 

n 

Sn(X) = 1 ak (Pk (x) (2.12) 
130 
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the integral 

b 

I ( Sn) = .1 [ f(x) Sn(X) ]2 44x) (2.13) 
a 

attains for Sn(x) = sn (x) the least value. 

For with regard to the orthonormality we obtain 

b 

I ( Sn ) = Jg(x) dit(x) - 2. Lak ck + kit ak2 
a

b

= f f2(x) dµ(x) + kto(ak - ck)2 - kit ck2 ) ..(2.14) 
a 

The expression on the R.H.S is minimal if and only if, its middle term vanishes i.e 

ak = ck , k =0 , 1 what is equivalent to 

Sn(x) = sii (x) (2.15) 

Completeness of an orthogonal system : 

A system of functions { g(x) } from 1,2u, is called complete (in L2µ) if 
there is only one function f L211 for which the values of the scalar products 

b 

( f, g) = i f(x) g(x) dµ(x) (2.16) 
a 

n 
are given numbers satisfying Lcn2 < 
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A simple characterization of the necessary and sufficient condition for the 
completeness of an orthonormal system is that 

b 

f f2(x) dµ(x) = Cn2 (2.17) 
a 

where co , ci are the expansion coefficients of the function f(x), 
should be valid for all f e 1,g2 

Investigation of the convergence behaviour of orthogonal series by methods 
belonging to the general theory of series 

The concern here is to determine the convergence features of a general 
orthogonal series 

Cn .(1)n(X) (2.18)n) 

from the properties of the coefficents co , ci It is seen however that the 
values of the functions cpn(x) can be chosen arbitrarily in a set of t measure zero N 
without disturbing the orthonormality of the system { 9n(x) } while 2.18 can also 

be rendered divergent also in N, putting, for instance, (Pn(X) = cm, for every 
x E N and every n = 0,1 ... . 

It can be seen at once that the condition I cn I < 00 implies the 

absolute convergence of 2.18 almost everywhere since by Schwarz's inequality 
(see appendix) we have 

I cn.9(x) (111(x) 5 )111(t) -1.1(a). ): cn 1 .1.9n(x)d1(x)
nz-zu a ndJ a 

= igb) . I cn I < CO 

(2.19) 
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0.5 1 0.5 
Block pulse (16) Shifted Legendre (16) 

0.5 1 0.5 
Shifted Iacobi(0.5.0.25) Shftd. Chebyshev(lst kind) 

Fig 2.1 Some Orthogonal Approximations of an Arbitrary Signal 
f(t) = 0.5 + 2. sin(2xt).exp(-3t) 

http:Iacobi(0.5.0.25


13 

& thus the absolute convergence everywhere of the orthogonal series 2.18 results 

immmediately from B.Levi'theorem. (See Appendix A). 

On the otherhand the requirement 

co 

< co .. .. (2.20)
n; c n2 

is indispensable for the purpose of obtaining convergence tests for general orthogonal 

series, because if it were not fulfilled the series ( 2.18 ) would diverge almost 
everywhere in the special case 9n(x) = rn(x) i.e in the case of the Rademacher 

functions. Thus the useful convergence tests lie somewhere between the conditions 

I c2n < co and 1 I cn I < 00 . The condition 1 c2n < .0 does not at all secure the 

convergence almost everywhere of every orthogonal series. It is sufficient merely for 

the convergence of special series like Rademacher & Haar series. 

2.2 Orthogonal Systems 

2.2.1 llaar's orthogonal system: 

This consists of step functions, defined in the interval of orthogonality [0,1] 

as 

1 xe [0,1) 

xo (0)( x ) = 1 xo (1)(x) = 0 x =2. ....(2.21) 

-1 xe [0,2) 

These are the first two Haar functions; the other functions are defined by putting for 

every natural m ( 1) and 1 5 k 5 2m 
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4L 

2. 

- 2­

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Fig 2.2 First Eight Haar Functions 



15

k--1 

k-1 2 
NiF" XE ( , 2m ) 

k­1
2 k

Xm (k)(x) xe(y,--n, -fF) (2.22) 

n-1 n ,
0 ICE 2m ' 2m 

with n k 

1 S n 5 2m 

At the points of discontinuity let xm00 (x) be equal to the arithematic mean 

of the values taken by 2600 (x) in the two adjacent intervals. At the points 0 and 1 let 
1 1

Xn(k) (x) takes the same value as in the interval ( 0, 2nT-+T) and ( 1- 1) 

respectively. As is easily seen the totality of Haar's functions is an orthonormal 
system. The functions xn(E) (x) are normed and orthogonal too. Clearly 20k) (x), ( 

k=0,1,...) is orthogonal to all others. If in?. 1, iSi,jS 2m for i # j already the 
product xm(0 (x) . xn,6) (x) itself vanishes, while for n > m the interval, wherein 
Xn(0 (x) does not vanish, is contained in an interval of constancy of x.0) (x) and 

therefore 

1 1 

05 xn(i)(x)xm(i)(x)dx = ±1,1Fnjxn(0(x)dx = 0 (2.23) 

Let f(x) be an L- integrable function in [0,1], it's expansion in the Haar 
functions 

c:' 2m 
f(x) CO X0 (X) Cm(k) Xm(k)(X) ....(2.24)

nWlk=1 

has the remarkable property of representing the function f(x) very well. The 
following are true. 



2.2.2 

16

If f(x) is L-integrable, then the Haar expansion of f(x) converges to f(x) almost 
everywhere. 

The Haar orthogonal system is complete for if every expansion coefficent of 

the function f(x) vanishes, then we have the partial sums S (x) = 0 (of f(x) formed 

by breaking off the Haar expansion of the function f(x) at some term); therefore it 
follows from ( 2.18) that f(x) = 0 almost everywhere.This result signifies even still 

more,since it asserts the completeness not merely in L2 but for all L integrable 
functions on the whole. 

Rademacher and Walsh Orthogonal Systems 

Rademacher's orthonormal system is the result of collecting the Haar functions 
xin(k)(x) with equal lower indices to a single function. The nth Rademacher function 

is defined by putting 

ro(x) = (x) 

r1(x) = (x) (2.25) 

1 2"
rn+1(x) . x,(k)(x) (n= 1, 2,...; 0<x<1) 

As is easily seen Rademacher's functions alternatively assume the values 1 
and -1. They may as well be defined by the relation 

rn(x) = sign ( sin ( 2" n x)) ....(2.26) 

where the symbol sign a means, as usual , 1 for a > 0 , -1 for a < 0 and 0 for a4) 
Rademacher's system is incomplete, since for every n 

rn(x) r1(x) r2(x) dx = 0 ....(2.27) 
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Therefore we cannot expect, even in the case of convergence, that the 
Rademacher expansion of a function should represent it. Thus the representation 

capacity of Rademacher's orthonormal system is "bad" but in spite of this the 
convergence circumstances of Rademacher series are "good" and rather interesting 

If 
00 

;)nC 2 

the Rademacher series 
00 

Cn rn(X) 
n=1 

converges almost everywhere. To prove this, we put 

COOn = ( k = 1 , 2" ) 

then we have 

00 2n 
ZZWO 2 = cn2 < 00 ....(2.28) 

and consequently it follows from the Riesz-Fisher theorem ( see appendix) that the 

series] 

00 2n 
enkxdko) ...(2.29) 

is the Haar expansion of a functionf e L2. This entails the convergence almost 

everywhere of this Haar expansion and therefore that of the Rademacher series 

00 °° 2n 
Cn rn(x) = Cnk Xn(c)(X ) ....(2.30)

n=1 n=0k=1 
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First eight Rademacher Functions 
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Fig 2.3 First Eight Walsh functions 
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Walsh orthogonal system: 

The property of Rademacher's system { rn(x) } of any two different finite 

products of its functions being orthogonal to each other 

j (rkt(x) rk2(x) rkn(x)) (rpi(x) rp2(x) rpn(x)) dx = 0 ....(2.31) 

for finite different sequences ( ki,....kn) and ( P1,....pm) gives rise to the 
construction of the Walsh orthogonal system considered by Walsh[1923] 

wdx) = 1 in [ 0, 1) 

if nz 1 and 2,4+ 2v2+2v3+ 2vP ( v 1 < v2 < v3 < vp ) 

is the dyadic representation of n, then 

wdx) = 414-1(x) 42+1(X) rvp+1(x) ....(2.32) 

Hence the Rademacher's system constitutes a part of Walsh's system 

W2dX) = rn +1(x) ....(2.33) 

The Walsh orthogonal system is complete in L2 

To prove this, let us suppose that f e L2 (or let f be at least L integrable) and 

1 

j f(x)wn(x)dx = 0 ( n4,1, ) ....(2.34) 

morover 
x 

F(x) = d f(t) dt (0 5x5.1 ) ....(2.35) 

It then follows that 
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f(x)wo(x)dx = f f(x) dx = F(1) - F(0) = 0 

and 

1f(x)wi(x)dx = f(x) r1(x)dx = F(1) - F(0) -[ F(1) - F(2) = 0 

Taking into consideration relations established above we have

1 3f(x)w2(x)dx = f(x) r2(x)dx = 2[ F(4) + Fq) = 0 

1 3f(x)w3(x)dx = f(x) r1(x) r2(x)dx = 2 [ Fc-1-) -Ft4)] = 0 

1 3
and consequently F(4) = Fe4-) = 0 

Continuing in this way, it is easily seen that at every dyadically rational point 

the relation 

FCIL = 0 (n=0,1 k=0, 1,....2") (2.36)2n 

holds. The function F(x) is, however, continuous and therefore f(x) = F'(x), this 

result implies that f(x) 4 too is true almost everywhere, in accordance with our 
statement. 

There is an interesting connection between the system of Haar and Walsh. 

Putting x0(0) (x) = wo(x) Xo(1) (x) = w1(x) 

1and then La) (x) = [ w2(x) + w3(x) ....(2.37) 

2C1(2) (x) = [ w2(x) w3(x) 
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we generally define Xn (c) (x) by induction. Let xn_1(k) (x) be represented in the 

form 

2" -1 

Xn-1(k) (x) = gn-l)kvwv(x) ( k=1,2 2" -1) (2.38) 
..1 211-1 

where a(n-')r, = ± 1.The matrix II a(n)k II is constructed as follows; we write 

IIeach row of the matrix a(n-l)k,, II twice below another ( forming thereby the left 

half of II a001, II and then we prolong every row by writing it once more, firstly with 

the same sign, secondly however with opposite sign ( forming thus the right 
half of 
II aOrOk II We then define xn(k) (x) as 

1 211 -1 

XiI(c) (x) r a(11)kvWv(X) ....(2.39)
2n v=2n 

The system { xr,00 (x) } is, apart from the dyadically rational points, identical with 

Haar's system. 

The convergence features of the expansions in Walsh's functions are by far not 

as favourable as in the case of Haar's functions.There are for instance, continuous 

functions whose Walsh expansion diverges at a point (as proved by Walsh(1923)) 

whereas this cannot happen in case of Haar expansions. 

2.23 Orthogonal Polynomials 

An orthogonal system can be obtained by orthogonalization of the linearly 
independent system { } of the powers of the variable x with integer exponents 
with respect to a distribution dg(x) in an interval [a,b]. We then have for 9n(x) a 
polynomial p(x) of degree exactly equal to n, whose sign can be determined in 

such a way that we choose the sign of the coefficent of the highest power of x ( the 
leading coefficent ) to be positive 
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(pn(x) = Irk pk(x) (2.40) 

Conversely, the polynomials pk(x) can also be represented as linear 

combinations of their polynomials 

(1)0(x) , 91(x) , 92(x) Tk(x) ....(2.41) 

It follows from this that for k < n the pk(x) are orthogonal to the 

polynomials 9k(x) . Thus multiplying both sides of the preceding equation by 

pr(x) where r < n and then integrating and using the orthogonality of 

Pr(x) and tpk(x) 

we find that 

ark. pkoopr(x)digx) = rr = (pn(x)pr(x)cligx) = 0 ...(2.42) 

for v = 0,1, ... n-1 . From this we infer that 

'no ='n1= =11n-1 = 0 i.e 9n(x) = rn pn(x) ....(2.43) 

and consequently 

b b 

1 = J 92n(x) dµ(x) ) = r2n p2n(x) = r 2n ....(2.44) 

We see that yn = ± 1 and since we have assumed the leading coefficents of 
both (pn(x) and pn(x) to be positive, it is necessary to take = 1 i.e 
9n(x) = pn(x) in accordance with the assertion. 

The following is also true and is stated without proof. 

1. The orthogonal system of polynomials { pn(x) } belonging to the distribution 

tip (x) is complete in 4.2 

2. Among all polynomials n (x) of degree not higher than n the integral 
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Fig 2.5a First Eight Shifted Jacobi (0.5, 0.25) Polynomials 

-1
-0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Fig 2.5b First Eight Laguerre Polynomials 



25 

b

[ f(x) it (x))2 clIgx) ....(2.45) 

attains its least value for it (x) = Sn(x) 
where Sn(x) is the nth partial sum of the expansion in the polynomials 

Pn(x) of f(x) where 
co 

f(x) - cn pn(x) ....(2.46) 

Orthogonal polynomials have the following basic properties 

1. Recurrence relation: 

"i +1(x) = (ai x + ) 9i(x) - ci (2.47) 

with To(x) = 1 , 91(x) = as x + b where ai bi & ci are the recurrence 
coefficents, whose values are specified by the particular classical orthogonal 
polynomials under consideration 

2. Differential recurrence relation 

9i(x) = Ai (1; i +1(x) + Bi (1141 i (x) i -1(x) (2.48) 

where Ai , Bi & Ci are the differential recurrence coefficents, whose values 
again are specified by the particular classical orthogonal polynomials under 
consideration, table 1. 

The orthogonal polynomials pi(x) with respect to the weight function 
w(x) over the interval a 5 x 5 b ( or a < z < b when a,b are infinite ) 
are defined to be of degree i in x and to satisfy the condition 

b 

w(x) ipi(x) q7:i(x) dx = ri (2.49)a 

and the recurrence relation ( 2.47 ). 

where is the Kronecker Delta given as 
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1 i=j 

0 i j 

Some intervals on which orthogonal polynomials are defined are not suitable 

for solving practical problems so that shift transformations are necessary. The general 

shifted orthogonal polynomials may be obtained by putting 

x = pt + q 

which transforms the domain [a,b] into the domain 

A (( )[ min ( a', b' ) , max( a', b') ] where D (a' - b') an" q a' - b') 

Thus the shifted general orthogonal polynomial becomes 

Vi-1-1(t) = ( * t + bi * ) cri_1(t) (2.50) 

where ai* = ai p bi+ q 

ci* = ci for i = 0, 1 .... 

*0(t) = 1 tri(t) = a *o t+ 

The new polynomials (p*i (t) with the above recurrence relation are orthogonal 

with respect to the weight function 

w*(t) = w (p t +q) 

over the interval [ min ( a', b') max( a', b') ] . For example again see figures 2.4 
to 2.6. 
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Operational matrix of integration: 

Common Orthogonal expansions have the following useful property 

of (x) dx = P . 9 (t) ....(2.51) 

where P is called the operational matrix of integration. The coefficents of the 
recurrence formulae of common orthogonal polynomials used in system science along 

with some of their useful properties and their operational matrices are as shown in 
appendix B. 

2.2.4 Comparative Study 

A noisy sample signal namely power variation during a perturbance in a single 
machine infinite bus system ( modelled by a 11 th order differential equation model ) 

with Gaussian noise superimposed is used for comparing the representation properties 

of some common orthogonal polynomials/ functions. 

The square error at each sampled point is plotted. Note the different scales on the Y-

axis. This gives an indication of the distribution of error and hence the effectiveness 

of the orthogonal approximation. Note the pronounced error at the initial and fmal 

points for each. The Walsh function represenation yields the least maximum error 
with the error well distributed over the whole normalised time interval among the 
orthogonal functions while the shifted Legendre polynomial representation yields the 

least error for the orthogonal polynomials. 

The error becomes less pronounced with increase in the number of functions used 
except in the case of the 3 polynomials which tend to become unstable in this 
particular analysis. 
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The mean square error for different number of orthogonal functions/ polynomials are 

as shown in the following table 
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Table 2.1 Mean Square Error for Different Number 

of Orthogonal Functions/Polynomials 

For Power measurements with Gaussian noise 

NOS WALSH HAAR BLOCKP LEGENDRE JACOBI CHEBYCHEV 

16 0.0004 0.0005 0.0014 0.1891 0.1907 0.1893 
32 0.0002 0.0003 0.0012 0.1897 0.1919 0.1996 
64 0.0001 0.0002 0.0010 0.3024 0.1950 0.2163 

For voltage measurements 

16 0.0000 0.0001 0.0028 0.3324 0.3371 0.3326 
32 0.0000 0.0002 0.0029 0.3344 0.3404 0.3528 
64 0.0000 0.0003 0.0029 0.6566 0.3455 0.4026 

For Rotor Angle measurements 

16 0.0001 0.0001 0.0017 0.2681 0.2713 0.2682 
32 0.0000 0.0001 0.0018 0.2693 0.2735 0.2886 
64 0.0000 0.0002 0.0019 0.4992 0.2775 0.3172 
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Chapter I Parameter Identification of Severely Nonlinear 
Systems Using Walsh Functions 

The first part shows some of the delineation properties of Walsh functions for some 

common nonlinearities. Most derivations can easily be derived using the useful 

properties of the walsh product matrices and are based on Taylor series expansions & 

the binomial theorem.

The second part uses the above delineated results for parameter identification of

severely non-linear systems.

Consider the following nonlinearities & their infinite series/binomial expansions. 

X3 x5sin (x) = x - + ­

x2 x4
cos (X) = 1 - + ­

X3 x5Sillh (X) = x + 3 + 3T + 

X2 x4cosh (x) = 1 + + 

x2 x3exp ( x) = 1 + x + + 

(x- 1 )2 (x-3! 1 )3In ( x) = (x-1) - + 

if Ix -l1 <1 

(x In (a) )2a = 1 + x In (a) + + 

if a > 0 
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xn =1+ n(x-1) + n(n-1) (x-1)2 
+

2! 
. X- n(+ n (n-1) .. ( n-r+1)- -r+

r! 

1) The above is valid for all x if n is a +ve integer 

2) Valid for I x -1I < 1 if n is -ye or a fraction. 

Let x (t) be a time varying function ( t E [0, 1) ) and let it's Walsh function 

approximation be given by 

x (t) = CT (I)(t) 

where OW is the Walsh function column vector containing the first m Walsh 

functions as it's entries and Cr is the Walsh coefficient vector with the coefficients 

found in the least square sense , Walsh [1923]. 

CO OT(t) C = Ac '(t) Karanam, Frick & Mohler 

[1978] 

Ac = [ C Aim C Alm C Aim C ... Am_im C] 

[Aim/2 Om/2 ] Aim/2
where Aim = & Ai.,..il2m = Om /2

onil2 Aim/2 [Aim/2 Om/2 

For m > 1 and i 7,s, 1, 2 (2 1) 
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and Aom/2 = I(m/2) For additional properties of Ai matrices refer to

Karanam et al [1978]

Proof:

We have for
x3 x5sin (x) = x - + ­

( CT.0( t) )3or sin( CT .110(t)) = [C".4(t) - + ..]. 

xc 2 
= CT. [ I - 1---1.- ]. (1)(t) 

= cT Ac -1.[ ?cc . k 3 k 5 
...].(I)(t)3! 5! 

= kT . sin( xe ) ow 

provided the inverse of X -1 exists and is unique. By construction the first row of 

Ac matrix is equal to CT from which we have 

kT = [100..O] = CT.A.c -1 

which is true for any m provided k -1 exists. It then follows that the Walsh function 

approximations for the above nonlinearities can be written in terms of the entries of 

CT as 

sin ( x(t)) = [ k T . sin ( X ) ] . b(t) 

cos (x(t)) = [ k T . cos( X ) ]. (No 



Table 3.1 Walsh coefficent vectors found by two methods 

Methodl: Walsh vector found in the least square senseMethod2: Walsh vector found from the series expansion

Parent Sinlx1t11 Coslx(t)1 Sinhlx(t)) Cosh(xlt) Exp(x(t)1Vector Mthdl Mthd2 Mthdl Mthd2 Mthdl Mthd2 Mthdl Mthd2 Mthdl Mthd2
0.7436 0.6005 0.6027 0.6610 0.6686 0.9158 0.9129 1.4336 1.4342 2.3494 2.34700.3847 0.2503 0.2524 -0.2726 -0.2652 0.5481 0.5453 0.3654 0.3662 0.9135 0.91150.0476 0.0072 0.0084 -0.0583 -0.0514 0.1011 0.0996 0.0880 0.0905 0.1891 0.19000.0762 0.0341 0.0352 -0.0679 -0.0611 0.1314 0.1299 0.0980 0.1006 0.2294 0.2305-0.0038 0.0072 0.0088 0.0014 0.0085 -0.0212 -0.0234 -0.0279 -0.0263 -0.0492 -0.0497-0.0048 0.0059 0.0075 0.0008 0.0078 -0.0219 -0.0240 -0.0272 -0.0254 -0.0491 -0.0494-0.1016 -0.0330 -0.0315 0.0949 0.1023 -0.1898 -0.1916 -0.1686 -0.1666 -0.3584 -0.3582-0.1588 -0.0863 -0.0848 0.1155 0.1227 -0.2510 -0.2527 -0.1901 -0.1880 -0.4411 -0.4407-0.0054 -0.0040 -0.0031 -0.0018 0.0051 -0.0067 -0.0077 -0.0091 -0.0060 -0.0158 -0.0137-0.0073 -0.0057 -0.0048 -0.0010 0.0058 -0.0088 -0.0097 -0.0099 -0.0068 -0.0187 -0.0164-0.0519 -0.0226 -0.0217 0.0419 0.0490 -0.0884 -0.0893 -0.0771 -0.0740 -0.1655 -0.1633-0.0805 -0.0491 -0.0482 0.0528 0.0597 -0.1193 -0.1201 -0.0886 -0.0854 -0.2079 -0.2054-0.0274 -0.0198 -0.0191 0.0143 0.0212 -0.0351 -0.0358 -0.0278 -0.0244 -0.0629 -0.0602-0.0419 -0.0329 -0.0322 0.0206 0.0274 -0.0511 -0.0518 -0.0345 -0.0310 -0.0856 -0.0828-0.0275 -0.0072 -0.0062 0.0229 0.0300 -0.0534 -0.0543 -0.0520 -0.0490 -0.1054 -0.1033-0.0420 -0.0209 -0.0200 0.0278 0.0348 -0.0688 -0.0697 -0.0571 -0.0540 -0.1260 -0.1237
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OS 
xu03+sin(2.pLc)'exp(-3t) sintx(t) & Walsh apprx 

0.5 0.5 
cos(x(t)) & Walsh appal sin10(0) & Walsh apprx 

0.5

cosh(x(0) & Walsh apprx exp(x(t)) & Walsh apprx 

03 
0.5 

lis(a(t)) & Walsh apprx 2"x(t) & Walsh apprx 

Fig 3.1 Walsh Approximation of Common Nonlinearities by the 
Method Outlined. 
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sinh ( x(t)) = [ k T. Binh ( Xc ) ]. 

cosh (x(t)) = [ k T . cosh ( Xc ) .cb(t) 

exp (x(t)) = [ k T exp ( Xc ) b(t) 

In ( x(t)) = [ k T ( I + Xc) ].0(0 

where D = CT - [1 0 0 ] 

ax(t) = [ k T exp ( Xc ) ]. 4(t) 

where E = ln (a) . C 

X(t)n = [ k T ( I + )n OW 

where D = CT - [ 1 0....0 

An arbitrary signal x (t) = 0.5 + 2 . sin ( 2. pi . t) . exp ( -3t)

was used for verifying the results for these common nonlinearities as shown in fig .

The results are convincing. Note : the same method can be extended to other

nonlinearities provided their series expansions exist.

Karanam et al [1978] have expressed some doubt about the possibility of expressing 

fractional nonlinearities in terms of the walsh expansion of the parent function x(t) 

since their lemmas 3.1 & 3.2 do not hold as correctly pointed out. However the 

binomial series expansion circumvents the problem though the parent function has to 

be normalised such that Ix(t) -1I < 1 for negative and fractional nonlinearities.This 

can be done by appropriate scaling since the Walsh transform preserves linearity. 

Parameter identification of severely nonlinear systems : 

Consider the following variable structure system ( Karanam et al [1978] ) with a 

sinusoidal modification. 
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y ' (t) = a y(t) + b y2(t) + c y(t) u2(t) + d sin (u(t))

with a=-1, b =0.5, c=0.3,d=1.5,

Let u(t) = exp( -0.5t) = ZT cb(t)

x(t) = ET OW

kT=[1 0 ....0]

and zero initial conditions. The output y(t) is generated using a 4 th order Runge 

Kutta method with the integration step h =1/256 

We then have the above eqn represented in terms of the Walsh expansions of its 

various terms as 

ET OW = a ET P b(t) + b ET "E P OW + c ET 42 P (1)(t) + 

+ d [ k T . sin ( X z ) ]. P OW 

or ET OW = [ a b c d] ET P cb(t) 

ET 4 P OW 

ET 42 P 40 

[ k T . sin ( 4 ) ]. P cb(t) 

Sampling b(t) at 4 different time instants , the parameters are uniquely determined. 

The number of Walsh functions used are varied too. 

Example 2 

Consider the following exponential AR model of Ozaki [1985] modelled without the 

noise ( e(t) ) 
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x(t) = ik { ai + bi . exp [ - x(t -1)2] } x(t-i) 
i=1 

Let ny =2 

and the parameters chosen in accordance with Ozaki's model 

al = 1.95 bi = - 0.96 

a2 = 0.23 b2 = - 0.24 

x(0) = x(-1) = 0 

x(t) = ET c1(t) 

Using the above outlined delineation method we have 

ET OW = al . ET 0(t -1) + bl . ( kT .exp ( ? )) XE 0(t -1) + a2 ET 01)(t-2) + 

+ b2 ([kT . exp ( Xc ) ) ?E 4(t -2) 

where kT =[1 0...0], CT = - ET 

or CT T2 OW = al ET T + bl. E kT . exp( ?c ) l 4 T c1(t) 

+ a2. ET OW + b2 . [ kT . exp( Xc ) ] T XE OW 

where 0(t +1) = T (I)(t) . T is the forward shift transformation matrix. 
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CT T2 = [ al bl a2 b2] CT T 

[ kT exp( Xc )] T 

E' 

[ kT . exp( A )4] 

The Least Square Estimate for the parameter vector is used for identification. For 

m=32 . The estimated parameters are as shown in the adjoining table.. 

Example 3 

Consider the system below with a fractional nonlinearity 

x(t) = a x(t) + n x(t) u(t) + b u(t) 

we have for 

a = - 1 x(0) = 0.2

b = 0.3 u(0) = 1.0

n = 0.5 u(t) = exp( -0.5t)

here I x(t) -11 < 1 for t e [0,1) 

Let x(t) = ET 40 
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and [ ir a + h ifT =r 

and [kT . (I+ 2t.,E )]T = s 

where kT =[1 0...0] , CT = ET - kT 

u(t) = ZT cb(t) 

then we have 

[ET - x(0) kT ] OW = a rT P 40(t) + n ET X.z 13 OW + b sT P OW 

ET b(t) = [a n b] rT P b(t) 

ET h P cb(t) 

sT P OW 

Sampling at 4 different time instants and using different number of Walsh functions 

the parameters are uniquely determined and are as shown for different number of 

functions used. 

Conclusion: 

The useful properties of the Walsh product matrices were used for finding the Walsh 

coefficents of nonlinear functions of the parent signal in terms of the Walsh 

expansion coefficents of the parent signal. Based on the findings parameter 

identification of systems with severe nonlinearities were performed with just the 

input and output Walsh function representations being used. The problem of 

fractional nonlinearities posed in Karanam et al[1978] was circumvented too. 
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Table 3.2 Parameter Estimates 

For example 1. 

a 

4 

8 

16 

-0.9543 
-0.9782 
-0.9911 

0.4798 
0.4912 
0.4909 

0.2896 
0.2945 
0.2956 

1.4923 
1.4977 
1.4979 

true 
values 

-1.0000 0.5000 0.3000 1.5000 

For Example 2 7n =32 

estimated 

true 
values 

ai 
1.9483 

1.9500 

a2 

0.2265 

0.2300 

bl 
-0.9498 

-0.9600 

b2 

-0.2367 

-0.2400 

For example 3: 

a 

4 

8 

16 

true 
values 

-0.9232 

-0.9456 

-0.9854 

-0.1000 

0.4777 

0.4856 

0.4967 

0.5000 

0.2879 

0.2954 

0.2971 

0.3000 
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Chapter 4 Analysis and Optimal Control of a Single 

Machine Infinite Bus Power System Using 

Orthogonal Expansions 

Linearized models have long been used for analysis and optimal control of 

power systems. Yu, Vongsurya & Wedman [1970] used a 8th order linearized model 

of a synchronous machine infinite bus system to derive an optimal control to improve 

the dynamic response of a power system. Davison E.J & Rau N.S [1971] developed a 

computational method for determining the optimal constant feedback gains between 

the manipulated inputs and the measurable outputs and applied it to a synchronous 

machine connected to an infinite bus. Iyer S.N & Cory B.J [1971] applied a second 

order optimising algorithm to a simple model of a turbo-alternator to determine the 

optimum control inputs under transient conditions. Moussa H.A.M & Yu Yao­
nan[1972] developed a techinique for determining the weighting matrix Q of an 
optimal linear regulator in conjunction with the dominant eigenvalue shift of the 

closed loop system and applied it to a typical power sytem. Yu Yao-Nan & Moussa 

H.A.M [1972] applied the above design techinique for the optimal stabilization of a 

multimachine system. Elangovan S & Kuppurajulu A [1972] proposed a suboptimal 

control policy using simplified models which reduced the number of states to be 

measured thus simplifying the control structure. Anderson et al [1977] presented a 

general method for the synthesis of linear, optimal, dynamic control system 
compensating networks (for excitation system designs) by parameter optimisation. 

Analysis using Walsh Functions 

A 4th order nonlinear model of a SMIB system with series capacitor 
compensation (Appendix B) is used to obtain a linearized model. 

X (t) = A. X(t) + B. U(t) (4.1) 

Y(t) = C . X(t) 
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where X(t) = [ AS(t) Aw(t) AEq(t) AEf(t)]T is the state vector 

and U(t) = AXc(t) is the series capacitor input perturbation. 

For the initial conditions in Appendix B, A , B and C are given as 

0 1 0 0 
-26.9746 -0.2418 -33.1372 0

A (4.2)= [ -0.0469 0 -0.2531 0.2 
0 0 0 -4 

B = [ 0 -177.249 -0.02671 0 ]T 

C = [ 0 1 0 0] 

Xo = [1.08313 0.0003 1.28367 1.5]T 

The rotor speed is chosen as the output. The linearized model is then analysed 

using Walsh functions (recursive analysis also included) and an optimal control 

generated based on the analysis by Chen & Hsiao [1975] for linear time invariant 

systems with quadratic performance criteria. The optimal control leads to piecewise 

constant gains. 

Let X(t) = C1 . 4) (t) (4.3) 

U (t) = Z. 4 (t) (4.4) 

where Cl is an x m matrix & Z, a 1 x m vector of Walsh coefficents 

t 
Since X (t) = j X(t) dt + Xo where X(0) = Xo we have 

X(t) = C1.P.41)(t) + [ Xo 0 0 .... 0].cb(t) (4.5) 

where P is the Walsh operational matrix of integration. 
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Substituting (4.3) & (4.2) in (4.1) we have 

C1. OW = A.[ C1.P + [Xo 0 0...0]].40(t) + B.Z.0:10(t) 

or C1 = A.C1.P + [A.Xo 0 0 .. 0] + BZ (4.6) 

Let [ AXo 0 0...0] + BZ = M (4.7) 

then C1 = A.C1.P + M (4.8) 

Using Kronecker products the solution of the above can be given as 

cl=[I - Af11-1 .m .... (4.9) 

where cl is an nm vector obtained by rearranging the columns of the n x m matrix 
C1 one next to the other & m is found in a similar manner from M. Chen & 
Hsiao[1975]. 

The rate variable is thus determined. The state variable vector is then found by 
substitution. 

X(t) = D. OW = [ Ci.P +[Xo 0 0..0]].4)(t) (4.10) 

Recursive analysis of the linearized system using Walsh functions 

Rao et al [1980] have presented a recursive method for extending computation 

beyond the limit of the initial normal interval in Walsh series analysis to any limit. 
The main advantage of this method is the avoidance of using operational matrices of 

prohibitively large size & the reduction of the computational efforts to a minimum 
while retaining accuracy. 

The method outlined in Chen & Hsiao[1975] , of reducing the computational 
effort (Recursive procedure (Appendix C) ) while constructing the Kronecker 
product and avoiding direct inversion of (mn x mn) matrices, is quite complex. In a 
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2k term approximation the Kronecker product reduction still involves at least k 
inversions of n x n matrices, 3k multiplications of n x n matrix with an n-vector. 

To increase the accuracy of the solution in the initial normal interval [0,1) 

itself & to compute the solution for large t beyond the normal interval while 
maintaining the same accuracy would require increasing m, the number of Walsh 

functions used & corresponding renormalization of the interval of interest. In this case 

the computational requirement becomes manifold. 

The method outlined by Rao et al [1980] leads to a qualitative solution. Let Y 

represent the n-vector of average values of the rate variable X in the interval 

( (i-1)/m, i/m), then we have 

Y = [Y1 Y2 Ym] = W Ci (4.11) 

where W is the m X m Walsh matrix, see phase I report 

At the end of the interval [0,1) i.e at t=1 the state is given by 

X(1) = i Yi + X(0) (4.12) 
1=1 

Rao et al[1980] 

Let R = BZ & 

M = [A Xo 0 0...0] + R = [ Mo M1 M2 M3 .... Mm-1 ] (4.13) 

The recursive formula connecting solutions in two contiguous unit intervals 

[ i-1, i ) & [ i , i+1) yields 

Mi =[ A X(i-1) 0 0 0] + R(i) (4.14) 

where . R(i) = B.Z(i) 

Let Q= [I-P'0A]-1 (4.15) 
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then c(1) = Q m 

X(i)= 
1 

MP) + X(i- 1) i=1, 2... 
i=1 

X(i) = X(t) I 

The superscript i indicates that the quantities belong to the ith unit interval.In 

the above method the term containing the Kronecker product Q is computed once 
1

only. In the case when the interval [0-hi) is stretched to unit length the above reduces 

to 

M(i) . - A )(i) R (i) + A X(j-l) (4.16) 

D(i) = V(i) P + X(j-1) 

X(i) = X(j-1) + M(i) i=1,2 

where R (i) = B U(i) 

A single term approximation continued over 2k suitably normalized 
contiguous intervals give the same results as an approximation that handles 2k Walsh 

components en-bloc over the whole interval at a time. 

Optimal control of the linearized model : 

For the system described by (3.1) let the quadratic performance index to be 
minimized be represented as 

tf 
J = 

1 
( X'.Q . X + u'R u ) dt (4.17) 

http:interval.In
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The optimal solution for the control is well known as 

U * = R -1BT p(t) 

where P(t) satisfies the following equation 

GC] BR-A-1B1] 

(4.18) 

(4.19) 

& the boundary conditions are specified as 

X(0) = Xo 

P(tf) = 0 

changing the independent variable by defining 

t=tf-t 

(4.20) 

then (4.19) becomes 

L 

r X(t) 
L P(r) 

(4.21) 

where M = rA 
LQ 

BR -1B11 
-A j (4.22) 

The transition matrix of the above is given as 

[ M1exp(-st) = VI (t) Vi2 
V21(t) V22(t) .1 

since P 41) =) the solution of (3.19) can be written as 

(4.23) 
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X(T) = V11(t) X (T4) 

PM = V12(c) . X(T4) 

From (3.24) we have 

X(T4) = Vii-1(t). X(T) 

Substituting (3.26) into (3.25) yields 

Pet) = V21(t) V11-1(t).X(T) 

Then the optimal control is reduced to 

U*(t) = 12-1B' V12(tf -t) V12-1(tf -t) X(tf - t) 

= -L (tf - t) X(tf -t) 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

where L (tf -t) is the optimal feedback gain matrix. 

Walsh series solution : 

Normalizing "C' = t / tf yields from (3.23) 

= - tf. M. 0 <=c'<1 ....(4.29) 

Let 
pc(e) 1 
L mp 

C . 4 0(V) ....(4.30) 

where C is an 2n X m matrix & OM an m-vector then we have 
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) ] r x= C . P . OM + L 
....(4.31)

L On 

rp(v(r41
Substituting (3.31) and (3.30) in (3.29) yields 

X(TI4)
C = -tf. M. ( C.P + 02n 021 (4.32) 

On 

Defining k as 

[-tf A 

-tfQX(V=0) ....(4.33) 
k 02n 

then (3.33) is simplified into 

C= [1 4-11.M 0 Pil -11 (4.34) 

Solving for C, the Walsh coefficent for X(V) & P(t') are determined. Substituting in 

(3.31) yields the Walsh coefficents of Xer, & P(T1). The optimal control is generated 

as 

U* (t') = R -1.131T 4:0(t) 

where P(t') = T 4 )(V) 
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Simulation Results : 

The results are as shown in the subsequent figures. The linearized system model is 
compared with the actual nonlinear model for small perturbations. The linearized 

system is then analysed using different number of Walsh functions using the 
Kronecker product based Walsh analysis outlined in Chen & Hsiao[1975]. The 
linearized system is analysed using the single term Walsh series approach outlined in 

Rao et al [1980] and compared with the 4 th order Runge Kutta method. Less number 

of integration steps are required using the Walsh function approach to yield the same 
accuracy as the R.K method. 

The optimal piece wise feedback gain for each state is then determined using the 
Walsh series approach outlined in Chen et al [1975]. The feedback gains for different 

number of subintervals are as shown. The weighting matrices for the cost functional 
are taken as Q = I & R=1. 
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Chapter 5. PID Controller Design for Series Capacitor 

Control Using Orthogonal Expansions 

PID controllers have been used extensively for power system control. 
Dhaliwal N.S & Wichert H.E [1978] investigated the effect of derivative gain and 

other governor parameters on the stability of single & multimachines. Hagihara et al 

[1979] investigated the effect of derivative gains and other governor parameters on 

the stability boundaries of a hydraulic turbine generating unit supplying an isolated 

load and provided some general guidelines for optimum adjustment of derivative 

gains. Malik 0.P et al [1983] studied the influence of digital PID voltage regulators 

on the transient performance of a synchronous machine. Wang & Lee[1991] used a 

linearized model for performing an eigenvalue analysis for different loading 
conditions & sensitivity analysis of controller parameters of a power system 
containing series-capacitor compensation & proposed a shunt reactor PID control 

scheme for effectively suppressing unstable torsional modes. 

Based on a particular controller / compensator configuration and a set of 
prespecified required dynamic responses for the controlled system a simple scheme is 

derived to identify the controller / compensator parameters based on orthogonal 
expansions of the input and output signals. 

For the initial conditions and parameters shown in Appendix A, the A & B matrices 

are shown again as 

0 1 0 0 
-26.9746-0.2418-33.13720

A -0.0469 0 - 0.25310.2 
0 0 0 -4 

B= [ 0 -177.249 -0.02671 0 ]T 

Xo=[1.08313 0.0003 1.28367 1.5]T 
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The eigenvalues of A are given as 

-0.1497 + j 5.1918 mode 1 

-0.1497 j 5.1918 mode 2 (5.1) 

-0.1955 mode 3 

-4.0000 mode 4 

Modes 1 & 2 are the mechanical modes of the system while modes 3 & 4 are 

the electrical modes.The damping provided by each mode is indicated by the damping 

coefficent for each case defined as 

s 
for a typical mode s + jw4 s2 +w2 

we then have 

4 1, 2 = - 0.029 

....(5.2) 
= -1.000X3,4 

Orthogonal\ expansion analysis of the transfer function : 

The corresponding transfer function relating the perturbed rotor speed output 
to the perturbed series capacitor input is given as 

_Lw(s.1_ -177.2490 s. ( s +0.2481 )T(s) ­
.6, Xc (s) ( s2 + 0.2994 s+ 26.9772) ( s + 0.1955) 

(5.3) 

The above can also be represented as 
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( s2 + 0.2499s + 26.9772 ). ( s + 0.1955 ). A w(s) = -177.2490 s ( s + 0.2481 ). A 

Xc(s) 

Transforming to the time domain & noting that the initial conditions for the 

linearized system are zero we have 

A w "' (t) + 0.4949. A w" (t) + 27.0357 . A w' (t) + 5.2740. A w (t) = -177.2490. 
A Xc" (t) - 5.2740. AXc' (t) 

(5.4) 

Integrating the above equation successively ( initial conditions zero ) yields 

t t t 
A w (t) + 0.4949.6 A w'(t) dt + 27.0357. j j A w(t) dt + 

t t t t t t 
5.2740. j j JA w(t) dt = -177.2490 j A Xc(t) dt - 5.2740 j j A Xc(t) dt 

(5.5) 

Let the orthogonal expansion approximation of A w(t) & A Xc(t) in the 
initial interval be given as 

A w (t) = C T 4 (t) 

(5.6) 

A Xc (t) = RT ci) (t) 

where C and R are the orthogonal coefficent vectors whose elements are determined 

according to Fourier 's manner in the form 

t
1 

Ci = t . cf p(t). Aw(t).cb(t).dt 

of oi2 (t) p(t) dt 

t 
Ri = t 

1 
. of p(t). AXc(t).4(t).dt (5.7) 

jcbi2 (t) p(t) dt 

http:Aw(t).cb(t).dt
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where p(t) is an appropriate weighting function & Ow(t) and A Xc(t) are assumed L2 

integrable functions approximated in the time interval t e [0 , tf ) 

Then, using the following operational property of some common orthogonal 

expansions 

tt t t 

pt(T) dt.dt...dt = P n. 
O ts 0 0 

n times 

where P is the corresponding operational matrix of integration. Eqn 5.5 can be 
expressed as 

CT.[I+0.4949.P+27.0347.P2+5.274.P3].(1)(t) = [-177.2490.RTP-5.274.RT.P2] 

or CT. K = M so that CT = M. K-1 (5.8) 

where K = [ I + 0.4949. P + 27.0347. P2 + 5.2740 P3 ] 

M = [ -177.2490. RT P - 5.2740. RT. P2 ] 

Given the input signal iXc(t) the coefficent vector R is found & substituted 
in the above eqn to get the output coefficent vector C. The output is then 
generated as 

CT 4 )(t) for t e [ 0 , tf ). The step response for the above is then compared with the 

exact solution as shown in fig 5.1 for different orthogonal expansions. The exact 

solution for the step input of amplitude A is found by inverse Laplace tranforming 
T(s) A 

S 

The exact solution is found to be 

Y(t) = A [ 0.3458595. ( 1- exp( - 0.1955.t) - 0.342639622 + 0.342639622 . exp ( ­
0.1497. t) .cos ( 5.1918.t ) 33.98218084. exp( - 0.1497.t) . sin( 5.1918.t) ] 

(5.9) 

http:177.2490.RTP-5.274.RT.P2
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HD Controller Design : 

Electromechanical damping can be provided by changing the parameters of 
the power system like series capacitor control, braking resistor control , shunt reactor 
control. 

A simple method is developed for designing a PID controller for improving the 

mechanical damping ( dynamic compensation ) of a SMIB system using orthogonal 
expansions. 

The common controller configuration is as shown in fig 5.2 in theGR(s) 
feedback loop is the reset block (wash out term) which removes the steady state 
offset error. 

The PID controller transfer function is given as 

KIGc (s) = KP + s + s KD (5.10) 

where the parameters KP , KI, KD are to be determined so that the resulting closed 

loop response of the complete system meets prespecified dynamic responses. 

Controller design: 

The dynamic characteristic of the above and most other compensators / 
controllers are fixed invariably on a trial and error basis using conventional control 

theory. The method outlined below removes this tedious yet important process of 
design. The compensator / controller parameters are chosen accurately to yield the 
required response characteristics. Compensator / controller parameters are identified 
by solving a set of linear equations resulting from the transformation of the transfer 
function model into the orthogonal domain. 
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The resulting closed loop system has to satisfy a set of given specifications 

such as bounds on the step responses, demands of a certain degree of non-interaction 

between different signals, operating point stability & for a given class of common 

inputs and external disturbances, asymptotic regulation ( in the mean for stochastic 
external signals) 

The process of design involves 

a) Creating a known perturbation at a summing point ( or a command input
perturbation)

b) Defining a required response characteristic ( based on the response of the 
uncompensated system ) 

c) Using the orthogonal expansion representation of the transfer function to find 

the unknown controller parameters which would give the desired response 
characteristic. 

d) Repeating the above process for different types of perturbations as desired. 

e) Given the possible range of controller parameters the choice of a suitable set 
depends on the specific task the controller has to achieve. 

Let Vr(t) be the reference input voltage which is varied as a function of time 
assumed so solely for the purpose of designing the dynamic characteristic of the 

closed loop system. The closed loop transfer function relating the input Vr(t) to the 
output, perturbed rotor speed, is given by 

sw(s) GT (s) . T(s) NUM (s) 
Vr(s) ( 1 + GT (s). GR (s) . GC(s) . T(s) ) DEN (s) 

(5.11) 
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where NUM (s) = -177.249 Ks ( Tw s3 + (1 + 0.2481.Tw)s2 + 0.2481s ) 

and DEN (s) = dl - KD. d2 - KP. d3 - KI. d4 

d1=(s2+0.2994s+26.9772)(s+0.1955)(1+sTs)(1+sTw) 

d2=(177.249 s3.(s+0.2481).Tw.Ks) 

d3=(177.249 s2.(s+0.2481).Tw.Ks) 

d4=(177.249 s.(s+0.2481).Tw.Ks) 

Transforming into the orthogonal domain we have 

K. D = G ....(5.12) 

where the parameter vector 

K = [ KD KP KI ] 

CT.[177.249.P-3 ( P -1+0.2481. I ).Tw.Ks
and D = C[177.249 P -2( P -1+0.24811 ).Tw.Ks]

CT[177.249 P -1( P 4+0.24811 ).Tw.Ks

G = (P -2+0.2994.P-1+26.9772. I ).( P 4+0.1955.! ).(I + P -1Ts)(I + P-1Tw) 
where I represents an identity matrix of dimension (m x m) 

The Least Square Estimate of the parameter vector K such that the cost function 

J = [ 'CD - G] . [KD - G]T ...(5.13) 

is minimized yields 

K = G. DT (D. DT) -1 

DT ( D. DT) -1 is the pseudoinverse of D which can be found by adjusting m, the 
number of Orthogonal functions/polynomials used. If the pseudoinverse cannot be 
determined then the controller configuration can be changed. The parameters of the 
HD controller for some desired dynamic performance can thus be found 

http:s.(s+0.2481).Tw.Ks
http:s2.(s+0.2481).Tw.Ks
http:s3.(s+0.2481).Tw.Ks
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Simulation Results : 

The step response of the system is used for designing the PM controller in the 

present case. The amplitude of the step input to the uncompensated system was A= ­

0.1. The exact output was generated using the inverse Laplace transform obtained 

time domain solution. This output was then used to specify a damped reference 
trajectory as shown in fig 5.3 . The reference trajectory was transformed into the 
orthogonal domain and the parameters of the PID controller identified by the scheme 

outlined above. For m=32 & employing different Orthogonal Expansions the 
following parameters for the PID controller configuration were obtained.The ones 

obtained by the shifted Legendre's series expansions are seen to be better than the 

shifted Chebyshev & Walsh orthogonal approximations. For a set of controller values 

the complete nonlinear model including the controller ( 6th order differential 
equation, see Appendix) is simulated for a single cycle fault. The faulted line was 
opened after 17msec , the fault cleared and the line reclosed after 250 msec. The 
uncontrolled and controlled rotor angle and speed responses along with the control 

input ( Xc ) are shown. 

PID Controller Parameters 

m=32 KD KP KI 

Walsh -0.0001 -0.0309 -1.5756 
Legendre (shifted) -0.0001 -0.0282 -1.2535 
Chebyshev (shifted) -0.0001 -0.0249 -1.3561 

Eigenvalues of the closed loop system for each set of parameter values 

Walsh Legendre (Shifted) Chebyshev (Shifted) 
-73.3618 + j45.6835 -68.0374 + j37.5955 -57.3863 + j54.3185 
-73.3618 j45.6835 -68.0374 - j37.5955 -57.3863 - j54.3185 
-0.2482 -0.2482 -0.2482 

-0.0008 -0.0010 -0.0009 

-3.2643 E06 -3.2115 E06 -33619 E06 



2.5 
Controlled Responses: Reference(--),WalsIte,LegendreKCItebyskev,2nd Kind( -) 

1.5 

0.5 

-0.5 

0.5 1 1.5 2 2.5 

Fig 5.3 Rotor Speed Deviation (Rads/sec) vs Time in Secs 
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Fig 5.4 Low Frequency Bode Plots for Uncompensated 
and Compensated Systems 
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The first two modes are the mechanical modes of the controlled system. 
Compared with the uncontrolled mechanical modes these are pushed well to the left 
of the eigenvalue plane with a corresponding damping coefficient of = -0.875 for 

the shifted Legendre series. The third mode is the electrical mode corresponding to 

the q-axis voltage of the generator and has a slightly increased damping 
coefficent 

= - 0.2482 The electrical mode corresponding to the exciter voltage Ef remains 

at -4 and is unaffected by the controller. The fourth and fifth modes shown above 
are the controller modes. 
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Chapter 6 Conclusion 

In this research work, an overview of the so called " orthogonal expansion' 

approach is provided. Common orthogonal expansion representations were compared 
and their usefulness made apparent. 

The classical optimal control problem was solved through the orthogonal 
expansion approach and applied to a perturbation model of a synchronous machine 
infinite bus system. Walsh functions, a convenient orthogonal series representation 

due to the binary values [1 or -1] each of the functions takes, were used for analysis 
and optimal control. The optimal control led to piecewise constant feedback gains. 

Common nonlinear operations on time varying functions were delineated in 

the Walsh orthogonal domain and this useful property was used for parameter 
identification.These delineating properties of Walsh functions could be an area of 
further research. Useful applications could result from such research for the analysis 
and control of nonlinear systems. 

A convenient method was developed for designing compensators/ controllers 

which would achieve prespecified closed loop dynamic responses using the 
orthogonal expansion approach and applied to the design of a PM series capacitor 
controller for a single machine infinite bus system. 

Orthogonal functions like Laguerre functions and Legendre functions have 

been used for adaptive control, Zervos and Dumont [1988], with preliminary success 

for deterministic systems. The authors use orthogonal ladder networks for devising 

deterministic controllers.These controllers, unlike regressive model based controllers 

do not depend on structured models. Regressive model (ARMA , BARMA or 
NARMA ) based controllers have distinct disadvantages since model uncertainities 

may lead to potential destabilization. Morover, significant transients are induced 
when the model order is changed. 

Inspite of some disadvantages like their analyticity requirements, matrix 

manipulation etc, orthogonal expansions continue to be used for a large number of 
applications. This is seen by the fact that more than 150 publications have been 
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presented since Chen and Hsiao [1975] first used Walsh functions for analysis and 

control. A variety of orthogonal functions ranging from Fourier series to piecewise 

linear polynomial functions have been used largely for parameter identification. A 

few publications have presented convenient methods for control synthesis and design 

but on the whole this area is still largely unresearched. Power system control as a 

subset of system science still has potential applications of orthogonal expansions in 

the area of identification and control but on the whole would depend on the 
developments which would take place in this area of system science in the future. 
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Appendix A: Miscellaneous Theorems 

13. Levi's Theorem: * 

If { fn (x) 1 is a monotone increasing sequence of 1..µ integrable functions 

and furthermore 
b 

5 [ fn(x) ] (111(x) 15 C ( n = 0, 1 .... ) I 

a 

then the limiting function f(x) = lim fn(x) is also LA integrable and the 
relation 

n )00 

b b 

lim 5 [ fn(x) dg(x) = 5 [ f(x) dI.L(x)
a a 

n-)00 

holds. If in particular µo(x) , gi(x) are LA integrable functions such that 

00 

I I Un(x) I digx) < 00 
riCI 

CO 

then the series 1 Un(x) is (absolutely) convergent almost everywhere 

Proof: The sequence { fn(x) fo(x) ) is monotone increasing, f(x) - fo(x) 

is its limiting function and fn(x) fo(x) z 0 

Furthermore, our assumptions imply that 

b b 

5 [ fn(x) fo(x)] dµ(x) 5 lim 5 [ fn(x) - fo(x)] dµ(x)
a a 

n-00 

* Reference : Alexits G, International Series of Monographs in Pure & Applied 
Mathematics ,vol 20,1961 
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b 

5 C + 51 fo(x) I dµ(x) 
a 

so that we have 

b b 
5 [ f(x) - fo(x)] dµ(x) 5 lim 5 [ fn(x) - fo(x)] dµ(x) 

a 

n Kg) 

where f(x) is the limiting function & L tt integrable (By Fatou's theorem) 

Futon's Theorem: 

Let { fn (x) } denote a sequence of positive L g integrable 
functions tending to the function f(x) , il almost everywhere. If a constant C exists 
such that 

b 

5 fn(X) dp(x) 5 C ( n=1 , 2, ) 
a 

then the limiting function f(x) is also L ti integrable and furthermore 

b

5 fn(x) digx) 5 C
a 

Schwarz's inequality, 

b b b 
5 I f(x) g(x) I dµ(x) S { 5 f2(x) dµ(x) 5 g2(x) dg(x) )1
a a a 

The set,of all ][..#2 integrable functions can be converted to a metric space 
.The distance between two points 

42 
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f E Lip , g e LA2 

is defined by 

b 
ii f - g II = { 5 [ f(x) - g(x)] 2 dp(x) }I 

a 

It satisfies the requirements, usually imposed on the idea of a metric: 

1° II f - g II = II g - f II ?. 0 

20 II f - g II = 0 

is equivalent to f(x) = g(x) 1.1. almost everywhere; 30 if g, h denote 
three points of Lg2 then 

II f - g II S II f - h II + II h - g II holds 

The properties 1° and 2° result immediately from the definition of distance 
while 3° is a consequence of Schwartz's inequality above. 

Riesz-Fisher theorem (stated without proof) 

Let { Ipn(x) } denote an arbitrary orthonormal system and { cn } a 

sequence of real numbers. A necessary and sufficient condition that { cn } be the 
sequence of the expansion coefficents of an Lp., integrable function f(x) is 

00 

1 cn2 
<n=0 

The partial sums Sn(x) of the expansion of f(x) then converge to f(x) in 

the sense of the Lp.2 metrics 
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Appendix B: Useful Pronerties of Some Orthogonal Expansions 

Shifted Legendre Lee L and Kung F.0 [1985] 

Lo (t) = 1 

2t
Ll (t) if - 1 

2n + 1 t
( - 1). Ln(t) ­

Ln+1 n +1 n +1 LI" (t) 

0 i j 

tfOrthogonality relation : f Li (t).Lj (t) dt = i = j2i + 1 

Orthogonal coefficent vector elements 

2i + 1 ti
Ci = f (t) (t) dt i =1,2 ... m-1 

Where f (t) is the L2 integrable function which is approximated in the interval 
[0 ,tf) 

Operational matrix of integration 

1 1
1 .. 0 0 0 

[ 0 0 0 0 
1 

2m+3 
0 0 0 . 2(2m-1) 0 

Shifted Chebyshev polynomials (2nd kind) Lee T.T and Tsay S.0 [1986] 
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Uo(t) = 1 

4tWO = 2 - if 

2tUi...i(t) = 2( 1 - if-) Ui(t) - U; -1(t) 

Weight function : w (t) = (tf. t - t2) 

tf 
Orthogonality relation : j W(0. Ui (t).Uj (t) dt = 0 i * j 

0:02/E i = j 

Orthogonal coefficent vector elements 

8 tf
C1 = f w(t). f(t).Ui (t). dt i = 0,12 ... m-1 

(tf)21( 6 

Operational matrix of integration : 

INN -1 
1.- 0 .. 0 0 0 

-2­

-1
0 T3- .. 0 0 0

if3 

P = tf . 
1 1 -1

0 0 02(m-1) 4(m-1) 4(m-1) 

0 0 ... 0 
1 

02m 4m 

Laguerre Polynomials Jha A.N, Zaman S , Ranganathan V [1986] 

Go (t) = 1 

G1 (t) = 1 - t 
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Gk (t) = ( k!)2. y 2-- to 
n=.0 (n!) (k-n)! 

Weight function : w (t) = exp(-t) 

tf 
Orthogonality relation : j w(t). Gi (t).Gi (t) dt = 0 i * j 

1 i= j 

Operational matrix of integration: 

1 -1 0 0 .. 0 0 
0 1 -1 0 .. 0 0 

0 0 0 0 .. 1 -1 
0 0 0 0 .. 0 1 

Walsh Functions Karanam V.R, Frick P.A, Mohler R.R [1978] 

PS 1q)
P(1) = 1 ; m = 2" n = 1, 2 ...P (m) Is r ei) 

Blockpulse Functions Jaw Y.G, Kung F.0 [1984] 

-1Bi (t) = 1 for 5 t < i-.T m 'T m 

0 otherwise 

Orthogonal coefficent vector elements : 

tf 
CI

. = ym 
ef f (t) Bi (t) dt 
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Operational matrix of integration: 

1 1 1 .. 1

[2
0 i

, 
li .. 1P= I m 0 0 .. 1-2­

0 0 .. .. 

Ilermite Polynomials Tsay Y.F, Lee T.T [1986] 

Ho(t) = 1 

H1(t) = 2t 

Hn+1(t) = 2t. Hn(t) - 2n. Hn_1(t) n = 1, 2 ... 

Orthogonality condition 

d 
exp ( 42 ) Hn(t)Hm(t)dt = 0 n * m 

4 (7t.2n. n!) n = m 

Orthogonal coefficent vector elements : 

d 
Cn = 1 exp ( 42 ) f(t) Hn(t)dt 

(n.20. n!) 0 

n = 0,1, ... 

Operational matrix of integration: 
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o -1- o o .. 0 

f
1

4
1

1 
00 0 ..

P = r f. [ 0 0 0 .. ?

2(m-1)
pm 0 0 0 .. 0 

where pm = (-1P1-( m - 1). ( m - 2). ( m-3) ...4 (P-1) if m is even 

pm = 0 if m is odd 

Pelayed Unit Step functions Hwang C. [1983] 

Ui (t) = 1 t z ih 
0 t < 0 

Operational matrix of integration: 

h1 h h .. h h 
h0 2 h .. h h

P = tf . 

h
0 0 0 0 0 2 

Fourier series Paraskevopoulos P.N, Spans P.D, Mouroutsos S.G [1985] 

Fi(t) = cos ( 't ) i = 0,1 , 2 .... 

Fi*(t) = sin (21/%7") i = 1,23 
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Operational matrix of integration: 

T 0 -T. Er' 
T T

0 0 rzi.)P = Fri(rxr)
T.Er ­ 0602x 2it 

where Er' =[ 1 1/2 1/3 1/4 .. 1/r ] 

1 0 0 .. 0 

0 11 0 .. 0 

loxr) . [ 0 0 1 .. 0and where m= 2r +1 

0 0 0 .. 1r 

Piecewise Linear polynomials Lee C.T, Chou Y.S [1987] 

mtNo (t) = 1 -T, Os t 5 T 

0 otherwise 

Ni (t) = (1 - i) + IT (i-1)T iT 

= (1+i) - mTt iT S t 5(i+1)T 

= 0 otherwise 
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for i = 1,2 .... n-2 and 

Nn -1(t) = (1-m) +11,1 (m-1)T 5 t T 

= 0 otherwise 

where m = n-1 

Operational matrix of integration: 

1 1 1 

P = T 0 I 2.. 1 
m 

10 0 0 .. I 

Taylor series Sparis P.D, Mouritsos S.G [1988] 

To (t) =1 

Ti (t) =( t - to) 

T2 (t) = 0402 

Tn(t) = (t-to)n 

Operational matrix of integration: 
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0 1 .. 0
0 o ..

0 
00 

P= [ 0 0 .. 1 0(r-2)
0 0 .. 

1

0 (r-1)
0 0 ­ 0 0 
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Appendix C 4th order Model of a Single Machine Infinite Bus 

System Power System. Machine Parameters and 
Complete Model of the Power System with the HD 
Controller 

Vs zit_ 

Infinite bus 

jxq (jig)

E

Eq jxd.id 

jx'd.id 

e'q jx'd.id 

vd 

Phasor diagram for 4th order 
model 

Fig C 1. Single Machine Infinite Bus System Model and Phasor diagram 
for 4th order model. 
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The configuration above of the power system is modelled by a 4th order differential 

equation as: 

8 = co 

cob D cob Vs Vs (Xd' -Xd)
COco = I'M sin ( 2 8 )]H H FIE Xia Eq sin( 8 ) + 2. X'a. 'CIE. 

Ef XdE. Eq (Xd-X'd) 
, + Vs.cos( 8 )Eq Tdo Tdo.X dz Tdo. X'cm 

VEf = Ef +Te Te 

5 - rotor angle corresponding to the infinite bus system 

co - deviation of rotor speed from synchronous speed cob 

H - Inertia of the generator 

D - equivalent damping factor 

Vs - Infinite bus voltage 

Eq - transient q- axis voltage 

Ef - transient excitation voltage 

V - excitation control signal 

Tdo - equivalent transient rotor time constant 

Te - equivalent time constant of the main excitation winding of the generator 

X'dz = X'd + X1= XVI + Xt + X1 

X'd - d-axis transient reactance 

Xt - transformer reactance 

X1 - transmission line reactance 

Xd1 = Xd + X1 

Xd - d-axis reactance 

For series capacitor control the modified equations for U = Xc become 
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S = co 

cob D cob Vs Eq . ,2, Vs (Xd' -Xd) .co = -}T.Pm - -fi co - H [ sin(S) + _u)sin (2 5)] 

Ef (Xd! -U) (Xd-X'd) 
Eq Tdo Tdo.(XidE-U)* E' + Tdo. (X'a-U) Vs.cos( 5 ) 

Ef VEf = - Te + Te 

The linearized equations or perturbation equations about the operating point given by 

( So , wo , Ego , Efo , Uo ) are given by 

X (t) = A . X(t) + B U (t)

Y(t) = C X(t)

1. 0 0 

al a2 0H 
where A = 1

a3 0 a4 

-10 0 0 ./. 

and B = [ 0 bl b2 o] C=[0 1 0 0] 

where 
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cob Vs .Ego Vs2.(X'd-Xd)al - [ cos( So) + cos(2.8o)] H (X 
,a Uo) (X'dE -Uo) (XcE-U0) 

a2 -cob Vs sin( 80 )
H ( X'dE -Uo) 

Vs (Xd-X'd) sin( So )
a3 - Tdo (X'dE -Uo) 

(Xdy - Uo)
a4= - Tdo (X'dE - Uo) 

cob Vs Eqo sin( So) Vs2(X'd-Xd)sin( 28o)
bl= - [ + +H (X'dE -Uo)2 2 (X'dE -U0)2 (Xz-U0) 

Vs (X'd-Xd) sin(25o)
+ 

2(rdE-Uo) (XdrUo)2 ' 

(Xd - X'd) Vs cos* )b2 - (XdI-XidI)* Eq2 + 
Tdo (X'dE - Uo) z Tdo (X'dE - Uo)2 

Complete 6 th order nonlinear model of the PID controlled system, 

The first four equations are the same as above. The other two equations are 
given by 

Vr usus = Ks .1-. 
.P_ 

Ks 'Ts Ts 

Auxiliary equation : U= Uo + us ; 

D 0) cob Vs Eq sin(8)p =(KP-D.1(D)[ o ffm 
­

H H ( X'dE - U) + 

http:cos(2.8o
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Vs (Xd' -Xd) sin (28), 
2(X'dy-U). (Xa-U) 

Vs.sin(8) (Xa -U). Eq (Xd - Xd') Vs.cos(5)
wb. KD 

E - U) x - u) (XdE-U) 

Vs.Eq.cos(8).o) Vs.Eq.sin(8 )
+ , .1 Ks.Vr - Ks. p - us( Xaz - U) U)2 

Vs2.(Xd' - Xd) cos(28).o)
(X'aE-U)(XjE -U)

Vs2 (Xd' Xd) sin(28)
U)( X'dy +Xa -2U) { KsVr - Ks p2. us )( X'a - U)2( Xdi ­

_P_+ KI. Tw 

Machine parameters and initial conditions 

wb=120.7t , X14.8 , Xd=1.5 , Xt4 , Xdd=1.07 ,

Xddsum =1.87 , Xdsum=2.3, Vs=1.0 , H=6.204

D=1.5 , Xc(0)=0.25 , V=1.5, Pm=0.7, tdo=5.0, te=0.25, delo=1.0831277 rad,
wo4.00030996 rads/sec, eqo =1.2837 , efo=1.5

Closed loop parameters 

Ts = 5.0E-07 sec, Ks = 50 , Tw = 2 sec. 

Xco=0.0; 

http:Xc(0)=0.25
http:Xdd=1.07
http:wb=120.7t
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Appendix D Kronecker Products & Recursive Method of 

Chen & Hsiao 119751 

Definition: Let A be a m x n matrix & B a k x 1 matrix , the Kronecker 

product of A, B is a (mk) x (111) matrix 

ailB a12B ainB 
A 0 B = [ .. .. .. .. .. 

a,113 am2B .. .. amn 

Properties: For appropriate dimensional matrices C & D and identity matrix I 

(1) A 8 B 0 B 0 A 

(2) A 8 1 o 1 0 A ( 1 is a scalar ) 

(3) (A+B)0C = AOC + BO C 

A 0 (B+C) = AOB + AO C 

(4) ( AB) 0 (CD) = ( A 0 C)(B 0 D) 

If C is amxn matrix, then 

( AB) 0 C = ( A 0 Im)(B 0 C) = ( A 0 In,)(B 0 C) 

(5) ( A 0 B)-1 = A-1 0 B-1 

If there exists i A matrices & j B matrices ; the Kronecker products of any 
combinations of A's & B's have the same dimension. Let I { Ai , Bi } denote the 

summation of all possible Kronecker product combination of i A's and j B's 
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For example 

/ { A2 } = A 0 A 

1 { AB} = AO B + BO A 

I{ AB2} = AGBOB + BOA0B+ BOBOA 

Eigenvalues of Kronecker Product 

(1) Suppose { rat ....rbn } are respective eigenvalues of n x n matrices A and B; 
then { rat .rbi , i, j = 1, ... , n } are the eigenvalues of A 0 B 

In effect there exists proper matrices P and Q such that 

A= P K( rat ).P-1 B= Q X ( rbj ).Q-1 

where X denotes a diagonal matrix with diagonal elements composed of the 
eigenvalues ri 

Now AO B = (PO Q)( X (rai)0 tt (rbi))(P-10 Q-1) 

= ( P 0 Q) ( X ( rairbj )) ( P 0 Q) -1 

(2) The eigenvalues of ( A 0 In) consist of n duplicate rai , i = 1, ... , n 

(3) The eigenvalues of E{ A In ) are { rai + rah, i, j = 1, ... , n } 

In fact 

I{AIn) = A 0In + In 0 A 

= P X ( rai ).P-1 0 In + In 0 P X (rah ).P-1 
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= P ( X ( rai , i, j = 1, ..,n )).13-1 + P (K ( raj , i, j = 1, ..,n )).P-1 

= P (K ( rai + raj, i, j = 1, ..,n )).P-1 

Recursive Algorithm for solving cl = f I- A aria m 

For m = 2a , a any positive integer we have 

Ga = I , Ra = A 
, Fa - . Ra

2a+1 2Aa+1 

Fa+1=0, Mi,a+1 = mi i = 0,1,2, ...,2a-1 -1 

Then RD & mfgal3 1.1 = a, a -1, ... , 1 , i = 0,1, ... 2P-1 -1 are 

calculated by the recursive formulas : 

Ga = I F+i 

RD = - 24-1 on-1 A 

Fp = FD +1 + 2-P-1 A. RD 

m1, i+213+1 = mi,p4.1 + 2-P-1 A. Girl m (i + 2P -1), 13+1 

The elements of cl are obtained as column vectors as 

A
clo = Go-1 mo,i Go = I--f -F1 

All the other vectors ci j = 0,1, ... (m-1) are found by substituting them with 

ci, i+2V1 = RD cii + Gp-1 m (i + 2D -1), 13+1 
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f3= 1, 2, ... , a i = 0,1, ... ( 20-1-1) 

In the algorithm matrices ( G, F, R) are n x n matrices and hence reduction of 
computing time mi & cii are the column vectors of the column vector m & cl 
respectively. 


