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CHAPTER 1

ANALYSIS OF INTERACTING DISCONTINUITIES IN MICROSTRIPS BY
MODE MATCHING TECHNIQUE

INTRODUCTION

Many modern high frequency integrated circuits, in the microwave and millimeter-
wave frequency range, are hybrid or monolithic integrated circuits based on planar
transmission line techniques. The transmission line used in most of these circuits is
the microstrip line or asymmetrical stripline. A microstrip line consists of a dielectric

substrate material of height /4 and relative dielectric constant e, having a metallic

strip of width w and metallization thickness  forming the wave guiding structure. The

planar, distributed and passive components used in these microwave integrated
circuits consist of planar transmission lines and microstrip discontinuities. Advances
in microwave and millimeter-wave integrated circuits, particularly in the monolithic
form, have increased the necessity of accurate computer-aided design (CAD). Unlike
hybrid microwave integrated circuits at low frequencies, it is extremely difficult to
adjust the characteristics of monolithic circuits once they are fabricated. Therefore
an accurate CAD program is essential for design of these circuits. It is therefore an
essential task to accurately model the frequency-dependent transmission properties
of these subcomponents(discontinuities), if accurate CAD techniques for the analysis
and synthesis of microwave integrated circuits are to be established. The microstrip
line and its frequency-dependent properties in the meantime can be described by

simple empirical formulas that accurately model the results of efficient numerical
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methods for the calculation of the phase velocities and the characteristic impedances

of the fundamental and the higher-order modes [1,2]. For the analysis of the

microstrip discontinuities, such as bends, steps and junctions, three types of basic

models have been reported.

1.

Equivalent circuits consisting of lumped elements (capacitances, inductances
and resistances) are used to describe the discontinuities and are calculated
using quasi-static or stationary methods. The advantage of this method is that
it leads to simple formulas describing the equivalent circuit elements, but the
disadvantage being that these formulas have only a restricted validity range
(frequency, substrate materials, line widths) for their application.

The wave properties of the electromagnetic fields on the microstrip structures
are taken into account to describe more accurately the frequency-dependent
properties of the discontinuities. A first approximate way in which this can be
done is to apply a waveguide model of the microstrip line for modelling the
electromagnetic fields near microstrip discontinuities. This method is a
compromise between the requirement for more accurate and more broadband
models for microstrip discontinuities and the requirement for the small
numerical effort so that the models can be used directly in the desktop
computer programs.

Constructing complete electromagnetic field solution for associated boundary

value problem, an exact analysis of discontinuities can be conducted.
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The objective of this report is to formulate a computer aided design procedure for
characterizing a class of asymmetric microstrip discontinuities by using the equivalent
waveguiding model. As is well known, the microstrip line is an open waveguide
structure, and the associated electromagnetic fields are unbounded. A metallic
shielding or a metallic cover plate of infinite dimensions above the line is used to
define well-determined boundary conditions for the field to analyse it numerically.
Because of the inhomogeneous dielectric field region (substrate material/air space)
the electromagnetic fields on the microstrip line are represented by hybrid modes;
that is, the electric field strength and magnetic field strength always have three field
components. These hybrid modes can be classified as EH or HE modes. The field
distributions of the electric and magnetic field strengths of the fundamental EH
mode (quasi-TEM mode) on a covered microstrip line has been computed by

Ermert[3] on the basis of rigorous field analysis.

Due to the hybrid field nature of the microstrip line, the parameters describing wave
propagation, even in the case of the fundamental mode, are frequency dependent.
Several approaches have been published to describe these line parameters by static
methods [4,5], by models of a different kind to simulate the frequency dependence
of the parameters, or by rigorous numerical field analysis methods. A rigorous
solution using numerical field analysis always requires a relatively high degree of
numerical efforts. As a result the analysis of microstrip discontinuities using these

numerical solutions of the electromagnetic fields always leads to long computation
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times and normally cannot be used for direct application in computer-aided circuit
design techniques. A rigorous solution can help facilitate the development of simple

approximate formulas or models for the discontinuities.

Wheeler [4,5] proposed a waveguide model for the microstrip line to fulfill the

requirements that

1. The waveguide model must describe the electromagnetic fields and the
characteristic line parameters (characteristic impedance and phase velocity)
of the fundamental quasi-TEM mode on the microstrip line with high
accuracy over the frequency range at least up to the cutoff frequency of the
first higher-order mode.

2. The cut-off frequencies and the electromagnetic fields of the higher-order
modes must be modelled so that the application of these higher-order modes
to the analysis of the microstrip discontinuities leads to acceptable accuracy.

3. The model must be simple enough so that well-known numerical methods for
analyzing ideal waveguide discontinuities that include the energy stored near
the discontinuities can be used, thereby taking into account the frequency-
dependent transmission properties of these structures.

Figure 1 shows how Wheeler[4,5] analyzed the microstrip line. A conformal mapping

technique can be used to transform the electric field in a cross section of the

microstrip line into the field of an ideal parallel-plate waveguide as shown in figure

1, assuming that the fundamental EH mode on the microstrip line is a quasi-TEM

mode (which is correct at least at low frequencies). The conformal mapping
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techniques give essential relations in simple forms in terms of "slide rule" functions.
This ideal waveguide has no stray fields as it is closed by magnetic side walls and has
electric walls on its top and bottom. Height # of the waveguide is assumed to be
identical to height of the substrate material. Width wof this waveguide can be
found from conformal mapping technique and is given in the publications of Wheeler
for static case. The conformal mapping technique is intended to serve a variety of
purposes, as follows[4]:

1) To enable the reliable computation of this case, in terms of "slide rule"

functions, close enough for the most exacting requirements of
mathematical scrutiny.

2) To yield simple approximate formulas for practical computations to
"slide rule" accuracy, and for showing clearly the principal effects of the
variables.

3) To present a method of simple approximation in conformal mapping,

applicable to various configurations of wide strip conductors, and
susceptible of determination within close limits of error. The method
is a departure from the straightforward exact procedure.
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Figure 1 The microstrip line (a) and its waveguide model (¢), which has been
developed using a conformal mapping technique. Figure (b) shows in
principle how the dielectric-air interface is transformed by conformal
mapping technique.
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If the microstrip line is transformed into the waveguide model, the waveguide is only
partly filled by dielectric material of relative dielectric constant €, and an air-
dielectric interface is formed. To simplify the waveguide model, it is filled with a
homogeneous dielectric medium instead of the inhomogeneous medium so that the
phase velocity of the fundamental wave in the final waveguide model is identical to

the phase velocity of the fundamental wave on the microstrip line.

At low frequencies the longitudinal components of the electromagnetic fields of the
microstrip line are small and the field is nearly a TEM mode and the conformal
mapping technique can be applied. Thus the waveguide model describes correctly the

transmission properties of the fundamental quasi-TEM mode for very low

frequencies. The effective dielectric constant € ; and the effective width Wecan be

calculated using Wheeler’s formulas:

€,-1) [In(n/4)?+1-€e 1ln(ne/2) (w/2h+0.94)]

(
€ = (€ + )2 (1)
£ 2/e,e, (wn/2h+In[2ne(w/2h+0.94)])
Wors= (W/h+(2/m) In[2ne((w/2h) +0.92)]) h (2)

The phase velocity v, of the fundamental quasi-TEM mode and its characteristic
impedance for low frequencies can be calculated as the parameters of the

fundamental mode of the waveguide model using (1) and (2).

(3)

and



o h

€
0 €orrWerr

Zy= (4)

where €, is the velocity of light. The parameters calculated in this way are in

agreement with the normal definitions for the microstrip line.

The phase velocity and the characteristic impedance of the fundamental mode (and
all the higher-order modes) are frequency dependent due to the hybrid nature of the
microstrip fields which leads to dispersive behavior of the line parameters. This
means that with increasing frequency the electromagnetic field is more and more
concentrated under the strip of the microstripline until at very high frequencies the
stray field in the air region vanishes and the field is only in the dielectric substrate
material. As a result, the effective dielectric constant e, converges into the relative

dielectric constant €, and the effective width we into the line width w for increasing

frequencies. As a consequence of this physical phenomenon, the phase velocity and
therefore the effective dielectric constant become frequency-dependent. At very low
frequencies the fundamental mode on the microstrip line is a quasi-TEM mode with
electromagnetic fields in the air and in the dielectric substrate material. With
increasing frequency, the influence of the air-dielectric interface changes the field of
the fundamental mode into an EH mode with six field components until very high
frequencies, where the field is concentrated in the dielectric material and the field

distribution now is nearly a TEM mode again.
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The effective dielectric constant and its frequency dependence are a measure of the
dispersion of the phase velocity of the waves on the microstrip lines. As explained
above, the effective dielectric constant of the waveguide model has been chosen in
such a way that the phase velocity of a wave on the line is identical with that of the
waves on the original microstrip line. This means that the effective dielectric constant
of the original microstrip line and its waveguide model must be identical, and
therefore at higher frequencies the effective dielectric constant of the waveguide
model must be replaced by the frequency-dependent effective dielectric constant as
described above. If the waveguide model is to simulate the wave transmission on the
microstrip line correctly, it must also be made sure that the characteristic
impedances of the two structures are identical. The characteristic impedance of the
waveguide model corresponds to the impedance of the ideal parallel plate structure

with electric and magnetic walls and is given by

Ho h

Z,(f) = <
0 €qfr Wers (£)

(5)

Thus the effective line width we can be written as,

wope(£)=,| B0 h (6)
\J € [Cors(E) Z, (£)

and if the effective dielectric constant and the characteristic impedance are replaced

by the equivalent frequency-dependent values, a frequency-dependent effective line
width we(f) is derived that, if applied to the waveguide model, makes sure that the

characteristic impedance of the microstrip line is also modeled correctly at each



9

frequency. The waveguide model can be used to model the transmission properties
of the fundamental mode on the microstrip accurately with the defined properties,

if the design formulas used for Zo(f) and e (f) are accurate enough.

The solution for the electromagnetic fields of the waveguide model can be found in
the same way as for metallic waveguides. The boundary conditions on the electric

walls and the magnetic walls are

Exn, =0, Hxn,=0 (7)
where n; and n, are unit surface vectors on the electric walls and on the magnetic
walls, respectively. The field solutions are of TEM, TE(H), and TM(E) modes; their

electromagnetic fields can be described by forward and backward traveling waves. In

the case of a forward traveling wave, the fields are given by

E,=Ag, (x,y)e¥? (8a)

—_ A - vz

Ho=="l[u,xg (x,y)] e (8b)
ZF
A o -Yz

Ez=7vc-gt(x,y) e™Y (8¢)
A TR -Yz

H,= Ve lu,xg, (x,y)1e™ (8d)
YZp

where index ¢ describes transverse field components, A4 is field amplitude coefficient,
Z; characteristic field impedance, y propagation constant, g, transverse vectorial

structure function, and u, unit vector in z direction. The structure functions are
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orthogonal to each other, and in addition they will be orthonormalized:

ngtV.gtHdA= Syy (9)

where 8=1, for v=p; 8=0 for v=u

The integrals have to be evaluated over the cross section of the waveguide model.
The totality of the eigen solutions and their structure functions form a complete

system. An arbitrary, piecewise continuous, and transversal vector field A: can be

described by an infinite sum of the structure functions:

b

A= X0 Adn with a, = [[Aigda  (10)

This means that the conditions for applying the method of orthogonal series
expansions are fulfilled for the waveguide model and its fields.

The forward traveling electromagnetic modes of the waveguide model can be
described by an electric potential @, and a magnetic potential ¥, where the indices
m and n describe the field dependencies in the x and y coordinate directions,

respectively:

— ) o _yf _ o0 o _gE
Et = z Z Aﬂi{ne sz(uzxvtwm) + E 0 Anfne Yngvtd)mn (11a)

m=0 n=0 n=1

e = A Y
=Y iy n=o—Z'Fe (—Vtwm)+2m=02n=1 ?;-e (u,xV,,,) (11b)
mn mn
E, =Y~ anl——e A, (11¢)

Yon
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o e Am
H,=Y" " e T (<A ) (11d)
Y mnZmn
with
n
Yon = Ymn = ®pp + B \J ( r:,mt )2+ (—J—;E)2 - W2€,€ 1M, (12a)
erf
JYm Jop
ZE = -—_—'&m zE = P (12b)
WEGE€rr Y on
and the potential functions
VE 1
¢, = ’"h cos (= x) sin(—’%y) (12¢)
Werr J(Imt)2+ (nn)z eff
Werr
_ 1
¥, = ——x for m=n-=0 (124d)
Werr
VH
= ’"h 1 sin (X x)cos (2y)  otherwise
Werr (M y2 , (O o Wers h
Werr h

The Neumann coefficients V*» and V" of the TM(E) modes and the TE(H) modes

are given by:

vf,i =2 for m=0, n#0
vE =4 for m#0, n#0 (13a)

vl= 2 for m#0, n=0
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vl -2 for m#0, n#0 (13b)
The two different solutions in (12d) for the TEM (m=0, n=0) and TE modes can
be written in one equation if for m-0 and n=0, value of V" is chosen equal to 1. An

equivalent description of the backward traveling waves can also be given.

For most microstrip lines used in MIC’s and MMIC’s, the height h of the substrate
material is small so that the electromagnetic fields of the waveguide model have no
dependency on the y coordinate. Discontinuities with a change of the substrate height
will not be considered here. All structures that will be analyzed are fed only with a
quasi-TEM mode. As has been shown by Kompa[7], the TEM mode in discontinuity
structures that are independent of the y coordinate couple only to higher-order
modes that have a field distribution similar to that of the TEM mode in the coupling
area. In particular, no coupling occurs between the TM(E) modes and the TEM
mode and between the TE,,,(H,,,) modes which have y dependent electromagnetic
fields (n#0). Under these conditions only electromagnetic fields that are independent
of the y coordinate can exist on the microstrip line, and as a consequence only modes
of the waveguide model that are also independent of the y coordinate must be
considered when modelling the microstrip discontinuities. Therefore all TM(E)
modes and all TE,,,(H,,,) modes with n=0 are no longer considered in the following

calculations.

If in addition the field amplitudes A"w and A" are replaced by wave amplitudes a,,

and b, of forward and backward traveling waves, the electromagnetic fields are
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described by
B =Y JZa (2,7 + be ™) (WxV, ) (14a)
H o=-Y" [T.(a,e" - be™)V,y,, (14b)
e o Y, -Y,Z +y_ Z
H, = - Z . Q (a,e ™™ + be") A Y, (14¢)
m

Using the potential function ¥, as defined in (12d), the field components finally can

be written as: E, =0 (15a)
E, =0 (15¢)
H
- - ad “YmZ _ +YmZ m
H, = E o V¥ (a,e b,e ) — cos ( effx) (15d)
Hy =0 (15e)
- 7 “YnZ +YpZ vtIr’; mrT . mn
H = .1 2 (a,e "™ + b,e"'") sin( X) (15€)
=l Y Werel2 Werr Werr
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CHAPTER 2

ASYMMETRIC SINGLE IMPEDANCE STEP

The microstrip discontinuities can be analyzed by using the waveguide model of the
microstrip line along with some known mathematical methods of analyzing waveguide
discontinuities or by the methods that have been developed by Kuhn [8], Wolff [7]
and his research group. Five analysis methods have been derived [6]. In each
method the microstrip discontinuity structure is divided into subregions, and in each
subregion the electromagnetic fields are defined using complete series or integral
expansions that fulfill the boundary conditions on the electric and magnetic walls. At
the common interfaces between the subregions the boundary conditions are fulfilled
in an integral sense, thereby defining the coupling of the field modes in the different
regions. The scattering parameters of the microstrip structure can be computed if, in
addition, the structure under consideration is excited only by the fundamental TEM
mode. Kompa[6] suggested a method which has been used to solve the problem of
finding the scattering parameters of a microstrip impedance step. For the analysis,
microstrip impedance step is first replaced by an equivalent step of a waveguide
model structure, and then the mode matching technique (as suggested by Kompa[6])
at the common interface is applied, using the complete series. Using this method, the
results are numerical models for microstrip discontinuities that are of medium
numerical expense and of good accuracy and can be used in computer-aided circuit

analysis even with a desktop computer.
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(a) The asymmetrical microstrip impedance step; (b) The equivalent

waveguide model structure.

Figure 2

Figure 2 shows the original microstrip structure and the equivalent waveguide model

impedance step which is divided into two field regions A and B. The widths a and

b are the frequency dependent effective widths of the waveguide model, and the

model is filled with a material described by the frequency dependent effective

dielectric constant as discussed in the previous section. If the reference plane (RP’)
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of the original microstrip impedance step is at z’=0 (Figure 2a), this reference

plane, because of the stray fields at the open ends of the structure is shifted to the

position RP at z=0 or z’=1, figure 2b in the waveguide model. To get the correct

phase information for the microstrip impedance step, this reference plane

displacement must be calculated back into the original position (z’=0) after the

analysis with the waveguide model. Two additional reference planes RP, and RPy
are defined left and right from the step reference plane RP in the waveguide model
structure. It is required that higher-order modes that are excited at RP be decreased
to zero at RP, and RPy so that a scattering matrix of the fundamental mode can be
defined without Aproblems at these planes. The distances 1, and 1 of these reference
planes from the plane RP are assumed to be zero in the final calculations. Under
these assumptions the electromagnetic fields in region A and B are described by
complete, infinite sums (discrete spectra) of eigen functions of forward and backward
traveling waves [compare equations(11)-(13)].

Region A:
Ef(z) = Yo Ua(2) (TxV,4) (16a)

H}(z) = Y0 I2(z) (-V,¥h) (16b)
with

RA . o An
JY2UR (z)=ae P o pReit™z  (16¢)

rnA A
JZA 12 (z) =afe ™" - pe’P®  (164)
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Region B:
Considering the coordinate transformation from region A to region B, the following

equations are valid for the electromagnetic fields:
EX(z) = Y0 UZ(z2) (TxV.40) (17a)

HE(Z) = Y0 I2(2) (-V.¥D) (17b)
with

nB :nB
JYZUS(z) =ale?® + pPe P (17¢)

Y- B
VZE IE (z)=afe’®” - bPeP*  (174)

For the potential functions of region A, eqns.(11)-(13) with w,,=a and n=0 and

considering the changed coordinate system are applicable:

Y= 1 (x+2) for m=0
/ah 2
Ya=, _a% (%)sin(%x + —‘23-) for m#0 (18a)

For region B, because of the coordinate transformation from region A to region B

(ecentricity ¢), the equations are;

) for p=0
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Yi=a| == (=) sin[£E (x + 2)] for p#0 (18b)
ol

withb /2= b/2-e. a,* b, and a,’, b, are the normalized field (wave) amplitudes
of the forward and backward traveling waves in the region A and region B,
respectively. In the boundary between region A and region B the electromagnetic
fields must fulfill the boundary conditions;

HP=0in A;-A,; H*=H? in A;; E*=E’ inA, (19)

where A, is the common boundary of the two waveguides and Ag-A, is the magnetic
wall that close the broad waveguide at the discontinuity. Because Az-A, is a
magnetic wall, the tangential magnetic field component must vanish in it. The
boundary conditions given in eqn(19) can be fulfilled only if the transverse magnetic
field of region A is developed into the eigenfunctions of the region B. With this
technique the amplitude coefficients I, in eqn(17b) can be chosen so that the
magnetic field component H,” vanishes on Ay-A, and additionally H.* is equal to H.®
in A,. Conversely, the electric field component need not fulfill any special boundary
condition in Ag-A,, so the electric field components in the common boundary area

A, can be developed into the eigenfunctions of region A.

The amplitude coefficients U and I can be calculated using eqn(10) and the
orthogonality relationship (eqn(9)). If eqns(17) are multiplied by (grad, U,) and

integrated over the area Ay, the result is

18 = fAJHf-th:f; da (20)
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Analogously, after multiplication of eqns(16) with (u, x grad,U,,) and integration over
A,, it follows that

Up = LJE?-(’u‘sztw;) da (21)

If the boundary conditions are introduced into eqn(20) and (21), the remaining

amplitude coefficients can be calculated:

12 = fA HAV y2 da (22)

A

U = fAJEf-(FZthwﬁ) da (23)

The discontinuity problem of an asymmetrical microstrip impedance step is thus
reduced to the solution of a multiple infinite system of coupled linear equations for
the amplitudes of the electric and magnetic field strengths. The coefficients of the
equation system are integrals over the product of the eigenfunctions of different field
regions. Their evaluation gives information on the coupling between different modes
in the waveguide model. In the case that the microstrip line and therefore the

waveguide model are excited by a TEM mode (or an H,,, mode), the result is

Us = Y o UsKop Ip = -y InKu (24)
:,l_é = |22 br by i (Bma
Koo=y| % Kop=0 Kop=\| 75 5 €08 (-5 =) sin( > B’ (25)
and
___2 pn/b _1\mgin( PN atb* . (PR [ a-b*
K, = (m/a)z[( 1)"sin( > ( 7 1) + sin{ > 5 1))
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for (26a)

vls
*
ol

(26b)

ol

-2 cos [ ® (m b m_
K. = Bcos[—z-(m bp)] for 3

Introducing the wave amplitudes as given in eqn(16¢) and (17c¢) into eqn(24), the

equation system can be written as

\/——aM+bM E \/— [ap+b] (27a)
JYE (af HESS SN »lan—bnl (27 b)

with m,M,p,P=0,1,2,..... If this equation system is rearranged so that the amplitudes
b," and b,® of the reflected waves are connected to the amplitudes a,* and a,” of the

incident waves of the regions A and B, respectively, the connecting matrix is the

scattering matrix:

b S Su™ o See™ S || at
b, Si™ Syt . S S, || a
------- . (28)

For the numerical computation of the scattering matrix, eqns(27) are used. the

amplitude coefficients a,", a,” of all incident waves in regions A and B are assumed
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to be zero with the exception of the amplitude ag' (i= A or B) of one exciting (index
E) mode in region A or B, respectively. Using eqn(27), the amplitudes b,* and b,°
of the waves can be calculated. If, in addition, it is assumed that a;' = 1, the
amplitudes b," and b,” are equal to the elements of the scattering matrix connecting

the b amplitudes with the a amplitudes as shown in eqn(28).

Results and Discussion :

Figure 3 to 5 show the typical values of the scattering parameters for microstrip step
discontinuities. The assumed substrate material is RT/Duroid with the dielectric
constant of €, = 2.32 and a height of h = 1.57 mm. In figure 3 the reflection
coefficients |S,,| of single microstrip impedance steps from a 50Q line to lines of
lower characteristic impedances are shown. At very low frequencies the reflection
coefficients can be directly calculated from the characteristic impedances: r = (Z,-
Z,)/(Z,+Z,). With increasing frequency the reflection coefficient increases until at
cutoff frequency of the first higher order mode it becomes unity. The cutoff
frequencies of the lines with large line width w (i.e. the lines with low characteristic
impedances) are the lowest, and as a consequence the frequency dependence of the
reflection coefficients of these lines is high. In figure 4, the adjoint transmission
coefficients |S, | of the impedance steps are shown. At the cutoff frequencies the
transmission coefficients are zero in agreement with the results shown in figure 3. In
the case of impedance steps with one line impedance equal to 50Q and other line

impedance higher than 50Q, the frequency dependence of the scattering parameters
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|Si;] and |S,,;] is very small. Over a large frequency range the absolute values of the
scattering parameters are well described by the low frequency values, which again are
determined by the characteristic impedances. The results for the symmetric junction
has been compared with the results shown by Wolff [15] and found to be in good

agreement which validates the algorithm.

Figure 5 shows the convergence of the results as a function of "number of modes".
It can be seen that considering 8 or 10 modes is enough to get the results within
acceptable accuracy. More the number of modes considered, more is the time taken
by the computer to simulate the program. Thus, considering 8 modes is a good trade-
off between accuracy and time, though, here, in all the results shown, 10 modes have
been considered. Number of modes can be made proportional to the width of the

lines resulting in faster convergence [16].

Figure 5(a) shows the dependence of d1 (the offset between the two lines) on the
scattering parameters as a function of frequency. As the value of d1 increases, i.e. the
offset between the two lines increases with respect to the z-axis, the scattering
parameters becomes more and more frequency dependent. This property can be used

effectively to make the junction more broad band, i.e., less frequency sensitive.
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CHAPTER 3

INTERACTING ASYMMETRIC DOUBLE STEP

Now let us consider the case of an interacting asymmetric double step discontinuity.
The asymmetric double step can be divided into three field regions, as shown in
figure 6. In the figure, a and b are the frequency dependent effective widths of the
two microstrip lines, and the equivalent regions of the waveguide structure are filled
with a material of relative dielectric constant e.q; (i=1,2) respectively. In region III
an equivalent dielectric constant, as defined in references[8,9] for a microstrip disk
capacitor, is introduced, taking into account the electric stray fields only at those

sides of the region where no microstrip line is connected.

d2

| gmal

Figure 6: (a) The interacting asymmetric microstrip double step;
(b) The choice of subregions for superimposing the fields.
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The boundary conditions for the electromagnetic field of region III are given by:

ELY = EL,, for z=-g d, < x < a+d, (29a)
Hiza = Hbn for z=-g d, < x < a+d, (29b)
HET =0 for z=-g 0O<xs<d, and a+d,<xsc (29¢)
ELY = B, for z=0 d, < x < b+d, (30a)
Hlia = H&, for z=0 d, < x < b+d, (30b)
HE =0 for z=0 0sxs<d, and b+d,sx<c (30c)

Considering the position of the two waveguides with respect to the coordinate system

introduced in figure 6, the transversal field components of the field regions I and II

can be described by:

I_ = T I_-7Bx(z+g) I_7BL(z+g) | Vg km
E, = EK:O VZk (age “F +bge’tx ) ECOS(T (x-d;)) (31a)

- —3iBL( s 310, v

HI- - - vI (afe IPxtzo _ IeIPrlza) _a_;;cos(_% (x-d,)) (31b)
- sl _aplI AY

E;I: E . /ZH{I (aH{Ieja‘" Z+b,,{Ie IBm z) F}ﬂ)_cos(gﬂg (x—dz)) (31c

. .aIT _3gIT, Vo
HII- - /Y;I (a[fle]am *_pHe 3B 2y E_cos(ﬁgt_ (x-d,)) (31d)
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Ey7= Y {2k citPcos ( ﬁﬁ”z)«l cos(——c—x) (32a)

HITTa. 5 W cHTagin (BLHz) ‘ K os (_CX) (32b)

IIIb III ITTb IIT Vi mm
Cn — COS (— 32
zj_ cos (Bn z+g))«l =h s ( cX) (32¢)
HIP= b)) " v oHsin (B (z+g) )«| E cos (—C-x) (32d)

The phase constant B' is the phase constant of region I ( or B" for region II )
calculated with the equivalent dielectric constant of region III instead of e of
region L.

Kuhn’s method [8] is of great advantage in the sense that the magnetic fields of the
region I and II can be matched to the magnetic field of region III separately because
the structures that are superimposed (figure 6b) at each reference plane have only
one open boundary. The remaining reference planes of the substructures are closed
by magnetic walls so that the magnetic field strengths vanish here. The relationships
between the fields of region I and III* and that of II and III° have to be determined
by a normal mode-matching process. At the I and III* interface this leads to:

W™ cisin(BiTe) = Yo ¥i (af - by K"F 0 (33a)

N=0

where

fe LK i Nno
) ca f__fCOS( o X)cos(—=(x-d)))dxdy  (33b)

and is known as coupling integral.
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Similarly, at the interface of region II and III, the result is:

. IT ITIb - IIT oo IT IT IT .M
Y cifPsin (BLtig) = oV Ye (ap’ - bpl) Ky (34a)

where

;= i«' Yz M P
K = % b LZJCOS( Cx)cos( A (x-d,) ) dxdy (34b)

Now the magnetic fields of the subregions are matched. If now the total
electromagnetic field is calculated, the field solutions (32), taking into account
equations (33) and (34) and the electric field strengths of waveguides I and II and
the total electric field in the connecting field region Il are additionally matched at
the reference planes. So the boundary conditions at the boundary between region I

and III that must be fulfilled by the fields is

IIIa

I IIIb
Etanlz=_g = Eian lz=—g + Efon (35)

z=-g
Similarly, applying the boundary condition at the boundary between regions II and

III gives

I _ . IIIa ITIb
Etanlz-0 = Efan ’z:o + Etan lz-0 (36)

Using equations 31-34 and doing some mathematics (see Appendix *A’), we finally

get;
(ay + by) = Y [ (as - bp)a7"Y + (a3’ - bi") BYM] (37)
(av’ + by') = 30 1 (as - b)) BIY + (ap" - bp)ag ™ (38)
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where

ZIII
aft = -5¥ ¥ Kk ki *cot (B g) (39)

X=0 (——-—PZI; 72

IIT P,K.-N, K
PN e Zy K"Ky
B;"" = -3)

k=0 \/Z_NZ sin(Bx’g)

(i=lor2andi’=1fori=2 & i’=2 for i=1)

(40)

Results and Discussion :

Figure 7-9 show the frequency dependent transmission characteristics of typical
double step discontinuities computed by the mode-matching technique as explained
above. In this case the input and output lines are both 50Q (i.e. width w = 0.0045m,
€,=2.32 and height of the substrate h=1.57mm for figure 7 and w=73.1le-6m,
h=100e-6m and e,=13 for figures 8-9) but middle line has an impedance varying
from 50Q to lower values. At 50Q, as is expected, reflection coefficient is zero, but
as the impedance of middle line increases, the reflection coefficient becomes more
and more frequency sensitive. It can be seen from figure 7 that for c¢=5a and 6a
plots there are two frequencies when the reflection coefficient becomes unity. This
result is because at lower frequency the first higher order mode gets excited and then
at second peak the next higher order mode gets excited. Figure 8 shows the similar
results for the microstrip line with GaAs as substrate (w=73.1e-06m, h = 1e-04m, and

e,=13.0). From figure 9 we see that if the input, output and middle lines are aligned
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at lower end (i.e. d, and d, are zero) then scattering parameters (reflection as well
as transmission coefficients) are not very dependent on frequency and higher order

modes do not get excited until very high frequency.

Figure 10 shows the effect of a double step when the input middle and output lines
are of different characteristic impedances. Here, the input line has been kept at an
impedance of 50Q, while the middle line has width equal to three times that of the
input line. The output line width is varied from one third the width of the input line
to twice its value. It can be seen that at higher characteristic impedances of the
output lin€ (Wouqpu < Winpu), the reflection coefficient |S;;| (and thus the transmission
coefficient |S,,|) of this double step is more frequency dependent. As the impedance
of the output line is decreased, |S,,| becomes more and more frequency insensitive
until the characteristic impedance of this output line becomes equal to that of the
middle line, where it behaves exactly like the single step (see figure 11 for the plot
of b=2a) (as expected). As the impedance of output line is increased further, the
scattering parameter |S;,| behaves sinusoidally at frequencies below that of the
excitation of the first higher order mode. At higher frequencies, it is very sensitive
to frequency. Figure 12-13 shows the behavior of the scattering parameter when the
substrate is GaAs instead of RT/Duroid. When d, and d, are kept equal to zero, we
see that (figure 12) the scattering parameters remains insensitive to frequency as was
discussed above. Figure 13 is similar to figure 10 except that the parameters changes

due to changes in €, to make the input line as 50Q.
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Figure 14(and 15) show dependence of d1 (d2) on scattering parameters as a
function of frequency. When d1=d2=0, difference in width of middle line, with input
and output lines having same characteristic impedance, makes system more frequency
sensitive. When the input line (output line) goes off the axis of output line (input
line), it can be seen that higher order modes get excited which takes |S;;| to unity
at a particular frequency depending on the impedance of the input (output) and
middle line (keeping output line impedance equal to the input line impedance). As
one goes on increasing d1 (d2) the frequency of the excitation of the first higher
order mode keeps on decreasing. This shift in frequency of the excitation of the first
higher order mode becomes much more significant if we take the case of a microstrip
line with GaAs as a substrate rather than RT/Duroid (figure 16). Figure 17 also
shows some very interesting results. Here the dependence of the length of the
middle line on the scattering parameter is shown as a function of frequency. It can
be seen that as the length of the middle step is increased, |S;,| becomes more and
more frequency sensitive. The most interesting feature to note here is the frequency
of excitation of the first higher order mode. It can be seen that the frequency of
excitation of the first higher order mode is independent of the length of the middle
line, but other higher order modes’ excitation frequency depends on the middle line’s
length. Moreover, it can be seen that this cut-off frequency is the same as the cut-off
frequency of the single step keeping all other parameters same (figure 3: plot for
b=3a). These results can effectively be used in designing filters of different types and

for a desired frequency range, e.g. band pass, band reject, high pass, low pass.
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CHAPTER 4
INTERACTING ASYMMETRIC DOUBLE STEP WITH MULTIPLE

OUTPUT LINES

In the previous chapter interacting asymmetric double step discontinuities with single
output line were discussed. In the present chapter, the effect of this type of
discontinuity in the presence of more than one output line is studied. The objective
is to investigate the application of such structures as useful multiport circuits such as
power dividers and combiners. Again the asymmetric double step can be divided into
(n+2) regions, where n is the number of output lines (see figure 18). In figure 18, a
is the frequency dependent effective width of the input line, where as b,, b,,..,.b, are
the frequency dependent effective width of the output lines. The boundary conditions

for the electromagnetic field of region III are given by :

Efan = Eran  for z=-g d, s x < a+d, (41a)
Hi = Hh, for z=-g d, < x < a+d, (41b)
HSI =0 for z=-g Os<xs<d, and a+d,<x<c (41c)
ENY = B for z=0 d,(1) < x < b,+d, (1) (42a)

Htan = Hian for z=0 d,(1) < x < bj+d, (1) (42b)
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Hin =0 for =z=0 0<x<d, (1) and b;+d,(1) <x<c (42¢)
EFI - ELr for z=0 d,(n) < x < b,+d,(n) (43a)
HI = HL: for z=0 d,(n) < x < b+d,(n) (43b)

HIT =0 for z=0 0<xs<d,,, and b+d,(n)sxsc (43¢c)

where subscript I, IT and III stands for the input, output and middle lines, d;, d,(1),...,
d,(n) are the offset of the input and output lines from the z-axis. Considering the
position of the waveguides with respect to the coordinate system introduced in figure

18, the transversal field components of the field regions I and II can be described by

a

L] TS TN L, v
EyI: E ’Zé (a}{e IBxlz+g) +b§eJBK(Z 9')) __]1_;_ cos (._]fal (X_dl) ) (44a)
K=0

= -jpL(z+ j z+ v
Hi= =Y JYi (age P=9 -pielPxzr9)), a—;‘lcos(k—a1t (x-d,)) (44Db)
K=0

Lo s o _apTi1 v
E).,II1= E [Z”.)f.h (aH{I1eJBm Z+bn-fIle JBn Z)N bf.f;l COS( I.Zn ()(-'Ci2 (l) ) ) (44C
m=0 1 1

II4

) - I oI o v
ijlz E /YH{I (amIlerm z—b,,fIle IBa 2y m_ cos ( mmn (x-d,(1))) (44
m=0 1

\ b.h b
b . II,,Z ) IInz v
Eyunz ng /—anrn (alfng3Pn 2, pTing 36 )\ bl;] cos ( ’l’;" (x-d,(n))) (44e

IIn L IIn IIn .o IIn IIn o II, v
e ng [V (affeiPa " p g 3P z)V 2 cos ( ’Z" (x-d,(n))) (44f

n n
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IIIa III IIIa III Vg K
cos Z)A| — cos (—x (45a
E (Bx )«‘ =h ( = ) )
-Em III IIIa_ . III v K
H)}IIIa= jK=0 CK aSln(ﬁK Z) _C'% CcOS (—CX) (45.b)

IIIb1 E 71T IIIb1 os (BI (z+g) ) ’_EHCOS(%X) (45¢)

IIIb1 111 IIIb1 : III mn

Z sin(B; (z+g))«‘ - cos(—c—x) (45d)
IIIb III IIIb IIT Vo mm

E cos (Bp (z+g))«‘—ch cos (= —x) (45e)
IIIb III IIIbn . IIr

E sin (B (z+g))«‘ — cos(Tx) (451)

where a,' and b,’ are the amplitudes of the incident and reflected waves respectively
in the region I (for i=I) and II (for i=II), B,’ is the phase constant for mode k in the
region i and is calculated with the equivalent dielectric constant of region III
instead of e, of region I or II. v, is the Neumann coefficient whose value is chosen
equal to 1 for k=0 and 2 for k#0. C,"" is the wave amplitude of the field solutions

in region IIL

The magnetic fields of the region I and II can be matched to the magnetic field of

region III separately because the structures that are superimposed (figure 18(b)) at



47
each reference plane have only one open boundary. The remaining reference planes
of the substructures are closed by magnetic walls so that the magnetic field strengths
vanish here. This was first suggested by Kuhn [9] in 1973. Applying Kuhn’s method

here leads finally to the following equations:

oo n
(ay + by) = Y [ (af - bHAPY + ¥ (ap™ - bp ™ BE'M (46a)
P=0 m=1

I

oh (ap™ - bp™mal™  (aeb)

(ag’™ + by

NIE

I P,N
- bP)Bl,m +
P=Q m

I
M
0
Oy

H
uy

oo n
II, II, . 11, 11y ,
(ay "+ by™ =Y [ (a7 - bA)Ba + (ap™™ - by ™ ALM  (460¢)
P=0 m=1
where
o ZIII
APY = -5y kK] *cot (BFTg) (47)
k=0 \JzZyZp
‘ © ZIII KP,KKN,K
By = -7y X X 2. (48)

& [zTyT sin(Big)

© IITr P,K N,K
BEN _ , Zg Ky mKiy
2,m ~ _JE

S \[zizl™ sin(Bx9)

(49)

N ViVu Km Nn
KNK 2 S X U AR (x--
1 «' Z[Lcos( Xx) cos ( (x--d,)) dxdy (50a)
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o _ 1| VaVe M Pr
Kim = 5\ !;[cos( = X)cos (= (x-d,(m)) dxdy  (50D)

Results and Discussion :

This final equations system defined above for the calculation of the scattering
parameters is an infinite linear set of equations and which has previously been solved
numerically using only a finite number of series elements. The influence of the
truncation on the calculated scattering parameters have been proved to gain an
insight into the convergence behavior of the method as shown in figure 19. In this
case, the ratio of the considered modes in different field regions has been kept equal
to unity while the number of modes considered is varied. It can be seen that
considering 8 or 10 modes is enough to get the results within acceptable accuracy.
The larger the the number of modes considered, the more is time taken by the
computer to simulate the results. Considering 8-10 modes is a good trade-off between
accuracy and time, although here, as in all the other results shown, 10 modes have

been considered.

Figure 20 shows the reflected power from port 1 (S;;) and transmitted powers in port
2 (Sx) and in port 3 (S;,) as well as the transmitted power from port 3 to port 2 (S,)

as a function of frequency for a 3db power divider. The dimensions of this microstrip
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line power divider are taken such that input and output ports are the lines of
characteristic impedance Z =50 ohms (in this case width of the input and output lines
are 73.1e-6 meters, height of the GaAs substrate as 1e-4 meters). It can be seen that
the reflected power is less than 10% in the frequency range of 7-5SGHz. Also, S,; is
nearly zero for the entire frequency range. Some power is dissipated by the

evanescent modes which are excited around 30GHz.

Figure 21 shows the effect of the width and length of the patch on the bandwidth of
the divider. Here, again, the structure is a 3db power divider with input and output
lines having characteristic impedances of 50 ohms ( the width of the line=73.1e-6
meters; the height of the substrate = 1e-4 meters; e,=13.0 for GaAs). It can be seen
that the effect of reducing the width of the patch, while keeping the length of the
patch constant, is to increase the bandwidth of the power divider (figure 21(b), plots
for the value of "g=1.5a"). Moreover, the length of the patch also plays an important

role in defining the bandwidth.

Figure 22 ((a) for reflected power and (b) for transmitted power) shows the effect
of the input line impedance on the performance of the divider when output line have
characteristic impedance equal to S0ohms. It can be seen that as the characteristic
impedance of the input line increases (i.e. the width of the input line decreases) the
divider becomes more and more broadband with less reflected power at the input

port. Figure 23 (again (a) for reflected power and (b) for transmitted power) shows
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the effect of the position of the input line (in this case the characteristic impedance
of the input line has been kept at 50ohms). The bandwidth of the structure is
maximum when the input line is in the center, which finally leads to a 3db power

divider.

Finally, figure 24 shows the performance of a power divider with the input line
(port(1)) and the output lines (ports (2) and (3)) having characteristic impedances
equal to 50 ohms. The divider is a 3db rectangular patch microstrip line structure
with width of the patch (c) equal to three times the width of the input line and length
of the patch (g) being 2.1 times the width of the input line. The divider has a
bandwidth of more than 1 octave at the center frequency of 19GHz. (11.5GHz to
27GHz) with less than 10% reflected power in the frequency range of 12GHz till
16GHz and even less than 5% of the reflected power in the frequency range of

16GHz till 27GHz.
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a=73.1e-6m, b1=b2=a; c=g=3a; Er=13.0;
h=1e-4m; d1=(c-a)/2; d2=c-b1-b2
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Figure 20 ISijI2 as a function of frequency for a nominal 3db power divider.
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a=73.1e-6; b2=b1=a; d1=(c-a)/2; Er=13.0
d2=(c-2a)

Reflected Power (|S11 Il)

Figure 21a
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IS,,/* as a function of frequency for a 3db rectangular patch power
divider with width and length of the patch as variables.
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a=73.1e-6; b2=b1=a; d1=(c-a)/2; Er=13.0
d2=(c-2a)
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b2=bl=a; c=3a; g=a; d1=(c-a)/%
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a=73.1e-6; bl =b2=a; c=3a; g=a; d2=a;
Er=13.0; d1 is variable
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CONCLUSION

In this thesis, a numerical technique has been described to model microstrip
discontinuities of various kinds. The method is based on a magnetic wall waveguide
model that is assumed to be valid for describing the electromagnetic fields in the
microstrip line and in the vicinity of microstrip line discontinuities. The mode
matching method is used to describe the discontinuities after applying the waveguide
model. The mode matching method is a general tool for the numerical computation
of the electromagnetic field problems. It is a rigorous full-wave analysis suitable for
the treatment of two or three dimensional field problems, including both scattering
and eigen value problems. The straightforward formulation of this method makes it
a very commonly used method among the personal computer users. However,
compared to those methods that are problem oriented and optimized, the efficiency
of this method is not very high. A characteristic advantage of the mode-matching
technique is that it gives a better physical understanding of the effect of a junction
or discontinuity in a guided wave structure. The disadvantage of this method being
that it is limited to junctions whose discontinuity region belongs to a seperable
coordinate system as compared to discretization methods, such as finite element and
finite difference methods, which can be applied to junctions of arbitrary shapes.
When combined with the generalized scattering matrix method, they together become
a powerful tool for analyzing many practical composite waveguide structures. The

generalized scattering method is useful for the analysis of complicated junction that
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can be decomposed to several simpler junctions and also characterizing cascaded
junctions that are in close proximity in terms of electrical length. The method is
mathematically exact provided that all the matrices of infinite order are available.
The results obtained using this technique are numerical models for microstripline
discontinuities that are of medium numerical expense and of good accuracy and can

be used in computer-aided circuit analysis even with a desktop computer.

The above explained technique is very useful in MICs and MMICs where (1) the
problem of efficient matching of two microstrip lines with different characteristic
impedances is to be tackled resulting in less reflection over a frequency band of
interest; (2) the design of a filter for desired frequency band; (3) design of a power
divider/combiner with desired bandwidth. The technique presented is compatible
with the design of multiports with more than two outputs for applications as power
combiners/dividers. In addition to experimental realization of the three ports
discussed in this thesis, future work in this area should include computer-aided design

of these multiports.
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APPENDIX A’

Putting equations 31-32 in 35 (pages 27-28) we finally get

C ] 0 b
z (af+bd) =Y \[ZFT cFTcos (BFg) KIE Y \[7ET Iy

vk _ 1 | VeVy Kn Nno,

Ko o= h\’ -2 fz_gfcos( Cx)cos( 2 (x-d,) ) dxdy

K:"Mz 1 VuVy f fCOS(—X)COS(——(X d))dXdy
J ca Jz--g

Therefore
Van (ag+by) =Yo7 28T o cos (BT ) K" Y T \[ZaT GETEK Y (1)
Zlgr ( b}gr) EM . 111 C,beCOS (Bflng) W IIaK;V,K (2)
Now from equation(33)&(34) we get
III KN,K
cette = ) —— (a N-bN) _ (3)
Z N Sln BIII
oo ZJII IT IT KZP,M
Gt = -3y | 22 (aff-bf ) —— (4)
EP—O ZgI Sln BIII

Therefore, equation(35) above becomes;



IITr III I Kf'K IIr KN X
\/Z(aN+bN KOVZK [_ ZP ( p bp)a—(—BTII——]COS(BK g)
- [z Zy't af-bIT) KM M (5)
- - _— ‘ 5
Euo Ep- P sin(ﬁf,ﬂg)
Similarly, equation(36) can be written as;
\/_ ZI.(III Kf’,K
Zit (agt+bg) =Y "z -5 —— (ap-bp) —————1K,""
ZK—O P=0 Z}.)l' Sln BIII
[ ITT Zi'' 1 1r K II1
MO Zy (- ]E _bp )T(BIII—]COS(BM g)KN (6)
These equations(38) can be written as (after some mathematics);
(ay + by) = 3" [ (ap - bp)A7"" + (a5’ - bi") B)'™) (7)
(ay’ + by') = 30 [ (ap - bp)BY"Y + (ap” - bi")ag"™"] (8)
where
ZIII
. o K
AP = —jEK=0 — K"k ot (B g) (9)
VZiZs
. ZITT K?,KK{W,K
BfY = -3 £ e (10)

oz =in (b0

(i=lor2andi’=1fori=2 & i’=2 for i=1)
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APPENDIX 'B’

Equations 44-45 (page 46-47) can be written as :

I_ - T I_-jBrlz+g) 4. I, BE(z+g) l
Ey = Exzo Zx (age % +byge " ) Y COS(—(X—d)) (1a)

H;(T= _ ;=0 (aI -iBr(z+g) bkrejﬂf((mg)) l ah COS(—(X—d)) (1b)

00 1 -3 IIlZ v
E;h: Em=0 /ZmIIl (aanleJB,,, z+bane IBa )\ EEECOS(% (x-d,)) (1c)

a1 s U’xz \V)
. /thlﬁ (a”:'[Ilerm z—bnflle IBn )\ I;) COS( mm (X"dz)) (1d)

- _anIIn v
P . 2% (4l I, 3Ba" "2, pling 82"z bl.;z cos(%ﬂ— (x~d,(n))) (1e)
n n

Z i / I, JBm z_meIne-me" ) ;”}’] cos(% (x-d,(n))) (1£)

n n

III IIT I
= Y W2k CitPcos (BEiz 4’ —X cos (—cx) (2a)
H;II& - K— ,YkZ'II CkzIIaSln(BIII ’ cos (—?X) (2b)

- \Y
E;Ilb1= III CIIIb1COS ( III (z+g) ) x| —2 cos (ﬂx) (2¢)
m=0 ch C
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IIIb. . o IIIb

Hy = 3y Yal Cp s n(ﬁ,{,“(z+g) )«’ E—cos(—?x) (2d)
IITb, o TIr IIIb, IIr e mn

Ey "= ) moVZm Cn Tcos(Py T (z+g) )«l —=f cos (= %) (2e)
IITb, _ e I11 IIIb, . IIT

He' "= 3y \Yal Cn' "sin(B; (z+g)),| - cos(——c—x) (2f)

Now applying the normal mode-matching technique as was suggested by Kuhn’s [8],

at the interface of I and III*, equations can be written as:

III ITIIa
Cx

7 sin(Brlg) = - oV Yw (ay - by) KK (3a)

where

_ VV N1t _
= —4, £ fz gfcos(_—x)cos(_a_(x 1)) dxdy (3b)

and is known as coupling integral.

Similarly, at the interface of region II and III, the result is:

IIIb, - 17 11, I,

Iy Y Cur 'sin(Puz’g) = P1=0 Yplbl (@p; - bp ) sz,ll'm (4a)
TIT IIIb II1 o Ipy , _ T, Ip,

Fy Yita n(Biun'g) =Y Yen " (ap - by KPRMe (4b)

where
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A’ :; fzofcos( COS(-—%-}(X—dZ(m)))dxdy (4¢)

Now the magnetic fields of the subregions are matched. If the total electromagnetic
field is calculated, the field solutions (1-2), taking into account equations (3) and (4)
and the electric field strengths of waveguides I and II and the total electric field in
the connecting field region III are additionally matched at the reference planes. So
the boundary conditions at the boundary between region I and III that must be

fulfilled by the fields is

IIal IIIb,

b,
+ Eian an |

Eanlgeeg = E¢ Foevnn ¥ Bean gy (5)

[z=-g
Similarly, applying the boundary condition between regions II and III gives

IIIa IIIby n
Ekan z=0 tan |z=q t Ekan lz=0 ASERICICIEI + Ekan |z=0 (6)

Using equations 1-4 and doing some mathematics, we get;

T I I IIT IIIa III N, K L 11T IIIb, N, M1
2y (ay+by) =E V2 cos (Bx +EM1=O VZiui G K]

III ~1IIb, M2 oo I71 ~1IIIb,

VZ G K L + \/Z G g, 7
M2=0 M2 LMz 1 Mn=0 Mn CMn 1 (7)

1Iby IIb, Hb TIT IIIb, III N, M1 III IIIa
VZy (ay “+by Ml o VZui G~ cos(Pii g) K31 E K

IiT IIIbz IIT N, M2 = Ti1 ~IIIb, Irr

+ E VZuz~ Cuz Mz 9) Kz st Z Zya” Cun 'COS (Byz" 9) K
M2=0 Mn=0

(8)
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IIb, IIb IIb, 11T ~I1TIb III N, M1 .I'II ITIa N, K
Zy " lay “+by )= VZm Cu1 'cos(PByi"9) K1 +E Cx UKy
M1=0

= IIIb IIIb,
+ Y JZuz Gz Cos(Bi') K+ L.+ Z : VZia! Cin "cOS (Big'q) Ki**
MZ=0

..(9)
Now from equation(3)&(4) we get

o IIT K]I-V,K
IIIa . I I
Cx = -] (aN—bN) (9)
5N sin (i
' . o ZIII b, b, KP,I"!
a2 2 (ap *-by )————2';11 (10)
B0N z, sin(By

where i stands for the i output line.

Therefore, equation 7-9, above, becomes;

[ ( TIT zdt K’ IIr
ZN (aN+bN ZK [ —Zlg—_— (ap_bp) W] COS(pK g)
Fﬁ Zg't Ir K M
+ Zi -7 = (a;"-bp") ——=——1K" (5)
M=0 Z sin(pg)

Similarly, equation(36) can be written as;

III P, K

o e Z K.
Ve e vbe) =3 Wz =93 — (arbp) —v‘] K"
» sin

[ZIIT Z™ oo KM ITIy N, M
MO ZM [ ]E ( ap "bp )—Tg)]COS(B (6)

sin (
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APPENDIX C

This program had been written by Sunil Kapoor on 02/04/92 as a part
of his MSEE thesis at Oregon State University, Corvallis.

This program calculates the Scattering parameters of the Interacting
assymetric double step microstrip discontinuities.

‘N’ in the PARAMETER statement (Nn in the ’AINV’ subroutine)
represents the dimension for the number of modes to be considered.

PARAMETER (N=50,M=N*2)
COMMON/CONST/PI,AMUO,EPSO,EPSEFF(6),OMEGA,WEFF(6),NUM
COMMON/DIM/ A,B,C,D,D1,D2,H,ER,G,tt

COMMON/FUNC/ FUNK(2,N,N),beta(N,3)

COMPLEX AFUN,BFUN,CFUN,DFUN,S(M,1),BETA(N,3),Z,X1(M,M),
X2(M,1),FUN1,X1INV(M,M),betag,S11,512,521,S22

integer iqn

OPEN (UNIT=11,NAME ="output")

A is the width of input line

B is the width of output line

C is the width of middle line

D1 is the distance from bottom of C till A starts
D2 is the distance from bottom of C till B starts
G is the length of middle line

H is the height of the substrate

NUM is the no. of modes to be considered

write(*,*)’Write the values of width of the input line (meters)’

read (*,*) a

write(*,*)Write the value of width of the output line in terms of the’
write(*,*)’input line (b/a)’

read(*,*) br

write(*,*)’Write the value of width of the middle line in terms of the’
write(*,*)’input line (c/a)

read(*,*) cr

write(*,*) Write the value of length of the middle line in terms of the’
write(*,*)input line (g/a)’

read(*,*) gr

write(*,*) Write the value of the offset of the input line from the’
write(*,*ybottom of the middle line, in terms of a (d1/a)

read(*,*) dir
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write(*,*)'Write the value of the offset of the output line from the’
write(*,*)’bottom of the middle line, in terms of a (d2/a)’
read(*,*) d2r

write(*,*) Write the value of the Dielectric Constant Erof substrate’
read (*,*) er

write(*,*)’Write the value of height of the substrate’

read (*,*) h

write(*,*)’write the freq in GHz ; min, max, inc’
read(*,*)fmin,fmax,fincr

write(*,*)'write the no. of modes to be considered’

read(*,*)num

b=a*br
c=a*cr
dl=a*dlr
d2=a*d2r
g=a*gr

write(11,*)’a,b,c’,a,b,¢
write(11,*)’d1,d2,g’,d1,d2,g
write(11,*)er,h’er,h

write(11,*)’num’,;num
WRITE(11,*)’'freq,S11MAG,S21MAG,sum’

TT=.0

PI=3.14159265358979
AMUO=1.26E-6
EPS0=8.854185E-12
h=h*1000.0

FREQ=fMIN

OMEGA =2.0*PI*FREQ*1.0e9

Following DO LOOP calculates the equivalent widths of the strips
using waveguide model (subroutine EPSL)

DO 5 IREG=1,3

IF(IREG.EQ.1) W=A

IF(IREG.EQ.2) W=B

IF(IREG.EQ.3) W=C

w=w*1000.0

CALL EPSIL(FREQ,W,EEFFF,WEFFF,XIFFF)
EPSEFF(IREG)=EEFFF
WEFF(IREG)=WEFFF/1000.0

continue
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dc=abs(c-weff(3))/2
da=abs(a-weff(1))/2
db=abs(b-weff(2))/2
weff(4)=d1+dc-da
weff(5) =d2+dc-db
weff(6)=g

if (d1.eq.0.) weff(4)=0.
if (d2.eq.0.) weff(5)=0.
h=h/1000.0

‘funka’ is function A’ resulting after using Mode-matching technique

do 9 ksa=0,num-1
do 8is=12

do 7 msa=0,num-1
call funka(is,msa,ksa)
continue

call beeta(ksa,is)
continue

call beeta(ksa,3)
continue

DO 20 KKS=1NUM
KS=KKS-1

DO 10 MMS=1NUM
MS=MMS-1

X1 is the matrix which is associated with reflection coefficients

X1(KKS,MMS)=CFUN(1,MS,KS)

X1(NUM +KKS,MMS) = BFUN(1,MS,KS)
X1(KKS,NUM + MMS) = BFUN(2,MS KS)
X1(NUM + KKS,NUM + MMS) = CFUN(2,MS,KS)
CONTINUE

X2 is the matrix which is associated with incident coefficients

X2(KKS,1)=X1(KKS,1)

if (kks.eq.1) x2(kks,1)=x2(kks,1)-cmplx(2.0,0.0)
X2(NUM+KKS,1)=X1(NUM+KKS,1)
CONTINUE

NUM?2 defines the dimension of X1 matrix
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NUM2=NUM*2

Calculating the inverse of matrix X1 and storing as X1INV
CALL AINV(X1,NUM2,X1INV)

Calculating the product of matrices X1INV and X2 and storing as S
CALL PRODUCT(X1INV,X2 NUM2,S)

S11=5(1,1)

S$21=S(NUM+1,1)

S11IMAG=CABS(S11)

S21MAG =CABS(S21)

sum=sllmag**2.0 + s21mag**2.0
WRITE(11,199)freq,S11MAG,S21MAG,sum
format(1x,f6.3,5x,e15.7,5x,e15.7,5x,e 15.7)
WRITE(*,*)freq,S11MAG,S21MAG,sum

FREQ=FREQ + fincr

if(freq.le.fmax) go to 3

if(ign.eq.1) go to 300

CONTINUE

continue

STOP

END

SUBROUTINE BEETA(NM,IREG)

PARAMETER (N=50,M=N*2)
COMMON/CONST/PI,AMUO,EPS0,EPSEFF(6),OMEGA, WEFF(6),NUM
COMMON/FUNC/ FUNK(2,N,N),beta(N,3)

COMPLEX BETA(N,3)
AK0SQ=AMUO*EPSO*EPSEFF(IREG)*OMEGA*OMEGA
AK1SQ=(NM*PI/WEFF(IREG))**2.0

IF(AK0SQ.GE.AK1SQ)

BETA(nm + 1,ireg) = cmplx(SQRT(AK0SQ-AK 1SQ),0.)
IF(AKOSQ.LT.AK1SQ) BETA(nm + L,ireg) = cmplx(0,SQRT(AK1SQ-AK0SQ))
END

SUBROUTINE FUNKA(ISUB,MSA,KCA)
PARAMETER (N =50,M =N*2)
COMMON/CONST/PLAMUO,EPS0,EPSEFF(6),OMEGA, WEFF(6),NUM
COMMON/FUNC/ FUNK(2,N,N),beta(N,3)

AB is the width of the line of region ISUB
D is the distance from z-axis till the ISUB region’s line starts
C is the width of the middle region (i.e.3rd)

nu=1
if(msa.ne.0.or.kca.ne.0) nu=2
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if(msa.ne.0.AND .kca.ne.0) nu=4
AB=WEFF(ISUB)

D=WEFF(ISUB+3)

C=WEFF(3)

X1=SQRT(NU/(AB*C))

X2=PI*KCA/C

X3=PI*MSA/AB

if (msa.eq.0 .and. kca.eq.0) go to 10

go to 20

funk(isub,1,1) =x1*ab

go to 50

if (x2.eq.x3) go to 30

go to 40

funk(isub,msa + 1,kca+ 1) =x1*cos(x2*d)*ab/2.0
go to 50

funk(isub,msa + 1,kca+ 1) =x1*x2*sin(x2*d)/(x3**2 - x2**2)
return

end

FUNCTION CFUN(ISUB,MS,KS)

PARAMETER (N=50,M=N*2)

COMMON/CONST/PI,AMUO,EPSO,EPSEFF(6),OMEGA,WEFF(6) NUM

COMMON/FUNC/ FUNK(2,N,N),beta(N,3)

COMPLEX AFUN,BFUN,CFUN,BETA(N,3),FUN1,BETAG

AFUN=CMPLX(0.,0.)

DO 10 KC=0,NUM-1

BETAG =BETA(KC+ 1,3)*cmplx(WEFF(6),0.)

FUN1=cmplx(FUNK(ISUB,MS + 1,KC+1)*FUNK(ISUB,KS + 1,KC+1),0.)

FUN1=FUN1*CSQRT(BETA(MS+ LISUB)*BETA(KS + 1,ISUB))/
BETA(KC+1,3)

FUN1=FUN1*CCOS(BETAG)/CSIN(BETAG)

AFUN=AFUN+FUNI1

CONTINUE

AFUN=CMPLX(0.,-1.)*AFUN

cfun=afun

if(ms.eq.ks) cfun=cfun+cmplx(1.0,0.0)

RETURN

END

FUNCTION BFUN(ISUB,MS,KS)
PARAMETER (N=50,M =N*2)
COMMON/CONST/PLAMUO,EPS0,EPSEFF(6),OMEGA, WEFF(6),NUM
COMMON/FUNC/ FUNK(2,N,N),beta(N,3)
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COMPLEX BFUN,BETA(N,3),FUN1,BETAG

IF(ISUB.EQ.1) ISUBN =2

IF(ISUB.EQ.2) ISUBN=1

BFUN =CMPLX(0.,0.)

DO 10 KC=0,NUM-1

BETAG =BETA(KC+ 1,3)*cmplx(WEFF(6),0.)

FUN1 =cmplx(FUNK(ISUB,MS + 1,KC + 1)*FUNK(ISUBN,KS + 1,KC+ 1),0.)

FUN1=FUN1*CSQRT(BETA(MS + 1,ISUB)*BETA(KS + 1,ISUBN))/
BETA(KC +1,3)

FUN1=FUN1/CSIN(BETAG)

BFUN=BFUN+FUNI

CONTINUE

BFUN =CMPLX(0.,-1.)*BFUN

END

SUBROUTINE PRODUCT(X,Y,Nn,Z)
PARAMETER(N =50,M =N*2)
COMPLEX X(M,M),Y(M,1),Z(M,1)
DO 10 I=1,Nn

Z(1,1)= CMPLX(0.,0.)

DO 10 J=1,Nn
Z(I,1)=Z(1,1)+(X(LJ)*Y({J,1))
CONTINUE

RETURN

END

SUBROUTINE AINV(X,N,TM)
PARAMETER(Nn=50,MAXN =2*Nn,MAX2N =2*MAXN)
COMPLEX X(MAXN,MAXN),T(MAXN,MAX2N),S,R, TM(MAXN,MAXN)

SUBROUTINE TO INVERT A MATRIX
USES THE GAUSS-JORDAN METHOD

ISGN=1

DO 11I=1,N
DO1J=1N
T,J)=X(J)
CONTINUE

R =CMPLX(0.0,0.0)
S=CMPLX(1.0,0.0)
JI=N+1

J2=N+N

DO 2I1=1N

DO 2J=J1,]2

2 T(LJ)=R
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DO 31I=1N
J=I+N
3T(J)=S
C READY TO START PIVOTAL CONDENSATION ON ROW K
DO 11 K=1,N
KP=K+1
IF(K.EQ.N)GO TO 6
C FIND LARGEST ELEMENT IN COLUMN K
L=K
V=CABS(T(K,K))
A=REAL(V)
DO 4 I=KP,N
V=CABS(T(L,K))
B=REAL(V)
IF(B.LE.A)GO TO 4
L=I
A=B
4 CONTINUE
IF(L.EQ.K)GO TO 6
C INTERCHANGE ROWS L. AND K
ISGN =-ISGN
DO 5 J=KJ2
R=T(K,J)
T(K,J)=T(L,J)
5T(LJ)=R
C DIVIDE ROW K BY THE DIAGONAL
6 R=T(KK)
TST=1.E-30
IF(CABS(R).GE. TST) GO TO 60
WRITE(LU,61)
61 FORMAT(1XMATRIX APPEARS SINGULAR - FOUND A ZERO
PIVOT)
DO 50 I=0,N-1
DO 50 J=0,N-1
T(1,J)=CMPLX(0.,0.)
50 CONTINUE
RETURN
60 CONTINUE
R=S/R
DO 7 J=KP,J2
7 T(KJ)=T(K,JJ)*R
C ELIMINATE ELEMENTS IN COLUMN ABOVE K
IF(K.EQ.1) GO TO 9
KM=K-1
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DO 8 I=1, KM
R =T(LK)
DO 8 J=KP,J2
8 T(LJ)=T1J)-R*T(K,J)
C ELIMINATE ELEMENTS IN COLUMN BELOW K
9 IF(K.EQ.N) GO TO 12
DO 10 I=KP,N
R =T(LK)
DO 10 J=KP,J2
10 TLY)=T(1,J)-R*T(K,J)
11 CONTINUE
C INVERSE IS COMPLETE
12 CONTINUE
DO 14 I=1,N
14 S=S*T(LI)
IF(ISGN.LT.0)S=-S
DO 13 I=1,N
DO 13 J=1,N
K=J+N
T(,J)=T{,K)
13 CONTINUE
do 99i=1n
do99j=1,n
tm(i,j) = (i)
99 continue
RETURN
END

subroutine EPSL(FREQ,W,EEFFF,WEFFF,XIFFF)
COMMON/CONST/PL,AMUO,EPSO,EPSEFF(6),OMEGA,WEFF(6),NUM
COMMON/DIM/ A,B,C,D,D1,D2,H,ER,G,tt

dimension p(40),r(50),eps(2),csl(2)
EEFF0=EPS0
EPSR =ER

up = w/h

th = tt/h

f9 = freq/1.0e09

F=F9*H

if(th.1t.0.0000001e0) th = .0000001e0

do 100 icount = 1,2

eps(1) = 1.00001

eps(2) = epsr

e = eps(icount)

call single(up,th,e,u)
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P(1) = 1.e0+ALOG((U**4+(U/52.e0)**2)/(U**4 +.432¢0))/49.€0
P(1) = P(1)+ ALOG(1.0+(U/18.1€0)**3)/18.7¢0
P(2) = .564e0 * ((E-.9¢0)/(E+3.€0))**.053¢0
E1l (E+1.0)/2.e0+(E-1.e0)*(1.e0+ 10.0/U)**(-P(1)*P(2))/2.€0
P(3) = .27488e0+(.6315¢0+.525¢0/(1.e0+.0157e0*F)**20)*U
P(3) = P(3)-.065683¢0*EXP(-8.7513e0*U)
= .33622e0*(1.e0-EXP(-.03442¢0*E))
P(5) = .0363e0*EXP(-4.6e0*U)*(1.e0-EXP(-(F/38.7¢0)**4.97¢0))
P(6) = 1.e0+2.751e0*(1.e0-EXP(-(E/15.916€0)**8))
P(3)*P(4)*((.1844e0+P(5)*P(6))*F)**1.5763¢0
E-(E-E1)/(1.e0+ Q1)
call single(up,th,e,u)
Z0 = 376.77¢0
RO = 6.e0+(2.e0*3.14159¢0-6.€0)*EXP(-(30.666e0/U)**.7528¢0)
Z1 = 70/2.e0/3.14159¢0/SQRT(E1)* ALOG(RO/U + SQRT(1.0+ (2./U)**2))
R(1) = .03891e0*E**1.4e0
IF (R(1).le.20.e0) goto 10
R(1) = 20.e0
10 R(2) =.267e0*U**7
IF (R(2).le.20.€0) goto 20
R(2) = 20.e0
20 R(3) = 4.766€0*EXP(-3.228¢0*U**.641e0)
R(4) =.016e0+ (.0514e0*E)**4.524¢0
R(5) = (F/28.843)**12
R(6) = 22.2e0*U**1.92¢0
IF (R(6).le.20.e0) goto 30
R(6) = 20.e0
30 R(7) = 1.206€0-.3144e0*EXP(-R(1))*(1.0-EXP(-R(2)))
R(8) = 1.+1.275*(1.-EXP(-.004625*R(3)*E**1.674e0*
* (F/18.365)**2.745))
R(9) = 5.086*R(4)*R(5)/(.386*R(4))*EXP(-R(6))/
* (1.+1.12992*R(5))
R(9) = R(9)*(E-1.)**6/(1.+10.*(E-1.)**6)
R(10) = .00044*E**2.136+.0184
R(11) = (F/19.47)**6/(1.+9.619999-2*(F/19.47)**6)
R(12) = 1./(1.+.00245*U**2)
R(13) = .9408*E2**R(8)-.9603
R(14) = (.9408-R(9))*E1**R(8)-.9603
R(15) = .707*R(10)*(F/12.3)**1.097 '
R(16) = 1.0 + .05030*E**2*R(11)*(1.0-EXP(-(U/15.0)**6))
R(17) = R(7)*(1.0-1.12410*R(12)/R(16)*EXP(-.0260*
* F**1.156560-R(15)))
72 = 7Z1*(R(13)/R(14))**R(17)
csl(icount) = sqrt(el)/(3.e8*z1)

SfS
o
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100 continue
ell = csl(2)/csl(1)
z11 = sqrt(el1)/(3.e8*csl(2))
e22 = e2*%ell/el
222 = z2*z11/z1

eeff0 = ell
eefff = e22
zair = 376.73

weffQ0 = zair/z11*h/sqrt(e11)

wefff = zair/z22*h/sqrt(e22)
BB1=1.+UP**.371/(1.0+2.3580*EPSR)

PP4=1.0+.03770* ATAN((.0670*UP**1.4560)*(6.0-5.0* EXP(
* .0360*(1.0-EPSR))))

PP3=.52740* ATAN(.0840*UP**(1.94130/BB1))

PP3= 1.0+ PP3/(E22**.92360)
PP2=1.0-.2180*EXP(-7.50*UP)
PP1=.4349070*(UP**.85440+.2360)* (E22**.810+.260)/
* ((UP**.85440+.870)*(E22**.810-.1890))
XLEX=H*PP1*PP2*PP3/PP4

DWE =(WEFFF-UP*H)/2.0
XLFF=1.0-2.0*DWE*UP*H+DWE*DWE-2.0*XLEX*UP*H-XLEX**2)/
*  (WEFFF**2)

end

subroutine single(up,th,e,u)
parameter (pi = 3.14159265358)
dws = sqrt(6.517*up)
dws = th*(log(1.0+10.87313/(th*((exp(2.0*dws)+ 1.0)/
* (exp(2.0*dws)-1.0))**2)))/pi
dwr = .50*(1.0+2.0/(exp(sqrt(e-1.0)) + exp(-
* (sqrt(e-1.0)))))*dws
= dwr + up
end





