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CHAPTER 1

ANALYSIS OF INTERACTING DISCONTINUITIES IN MICROSTRIPS BY
MODE MATCHING TECHNIQUE

INTRODUCTION

Many modern high frequency integrated circuits, in the microwave and millimeter-

wave frequency range, are hybrid or monolithic integrated circuits based on planar

transmission line techniques. The transmission line used in most of these circuits is

the microstrip line or asymmetrical stripline. A microstrip line consists of a dielectric

substrate material of height h and relative dielectric constant er having a metallic

strip of width w and metallization thickness t forming the wave guiding structure. The

planar, distributed and passive components used in these microwave integrated

circuits consist of planar transmission lines and microstrip discontinuities. Advances

in microwave and millimeter-wave integrated circuits, particularly in the monolithic

form, have increased the necessity of accurate computer-aided design (CAD). Unlike

hybrid microwave integrated circuits at low frequencies, it is extremely difficult to

adjust the characteristics of monolithic circuits once they are fabricated. Therefore

an accurate CAD program is essential for design of these circuits. It is therefore an

essential task to accurately model the frequency-dependent transmission properties

of these subcomponents(discontinuities), if accurate CAD techniques for the analysis

and synthesis of microwave integrated circuits are to be established. The microstrip

line and its frequency-dependent properties in the meantime can be described by

simple empirical formulas that accurately model the results of efficient numerical



2

methods for the calculation of the phase velocities and the characteristic impedances

of the fundamental and the higher-order modes [1,2]. For the analysis of the

microstrip discontinuities, such as bends, steps and junctions, three types of basic

models have been reported.

1. Equivalent circuits consisting of lumped elements (capacitances, inductances

and resistances) are used to describe the discontinuities and are calculated

using quasi-static or stationary methods. The advantage of this method is that

it leads to simple formulas describing the equivalent circuit elements, but the

disadvantage being that these formulas have only a restricted validity range

(frequency, substrate materials, line widths) for their application.

2. The wave properties of the electromagnetic fields on the microstrip structures

are taken into account to describe more accurately the frequency-dependent

properties of the discontinuities. A first approximate way in which this can be

done is to apply a waveguide model of the microstrip line for modelling the

electromagnetic fields near microstrip discontinuities. This method is a

compromise between the requirement for more accurate and more broadband

models for microstrip discontinuities and the requirement for the small

numerical effort so that the models can be used directly in the desktop

computer programs.

3. Constructing complete electromagnetic field solution for associated boundary

value problem, an exact analysis of discontinuities can be conducted.
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The objective of this report is to formulate a computer aided design procedure for

characterizing a class of asymmetric microstrip discontinuities by using the equivalent

waveguiding model. As is well known, the microstrip line is an open waveguide

structure, and the associated electromagnetic fields are unbounded. A metallic

shielding or a metallic cover plate of infinite dimensions above the line is used to

define well-determined boundary conditions for the field to analyse it numerically.

Because of the inhomogeneous dielectric field region (substrate material/air space)

the electromagnetic fields on the microstrip line are represented by hybrid modes;

that is, the electric field strength and magnetic field strength always have three field

components. These hybrid modes can be classified as EH or HE modes. The field

distributions of the electric and magnetic field strengths of the fundamental EH

mode (quasi-TEM mode) on a covered microstrip line has been computed by

Ermert[3] on the basis of rigorous field analysis.

Due to the hybrid field nature of the microstrip line, the parameters describing wave

propagation, even in the case of the fundamental mode, are frequency dependent.

Several approaches have been published to describe these line parameters by static

methods [4,5], by models of a different kind to simulate the frequency dependence

of the parameters, or by rigorous numerical field analysis methods. A rigorous

solution using numerical field analysis always requires a relatively high degree of

numerical efforts. As a result the analysis of microstrip discontinuities using these

numerical solutions of the electromagnetic fields always leads to long computation
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times and normally cannot be used for direct application in computer-aided circuit

design techniques. A rigorous solution can help facilitate the development of simple

approximate formulas or models for the discontinuities.

Wheeler [4,5] proposed a waveguide model for the microstrip line to fulfill the

requirements that

1. The waveguide model must describe the electromagnetic fields and the

characteristic line parameters (characteristic impedance and phase velocity)

of the fundamental quasi- 1 EM mode on the microstrip line with high

accuracy over the frequency range at least up to the cutoff frequency of the

first higher-order mode.

2. The cut-off frequencies and the electromagnetic fields of the higher-order

modes must be modelled so that the application of these higher-order modes

to the analysis of the microstrip discontinuities leads to acceptable accuracy.

3. The model must be simple enough so that well-known numerical methods for

analyzing ideal waveguide discontinuities that include the energy stored near

the discontinuities can be used, thereby taking into account the frequency-

dependent transmission properties of these structures.

Figure 1 shows how Wheeler[4,5] analyzed the microstrip line. A conformal mapping

technique can be used to transform the electric field in a cross section of the

microstrip line into the field of an ideal parallel-plate waveguide as shown in figure

1, assuming that the fundamental EH mode on the microstrip line is a quasi-TEM

mode (which is correct at least at low frequencies). The conformal mapping
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techniques give essential relations in simple forms in terms of "slide rule" functions.

This ideal waveguide has no stray fields as it is closed by magnetic side walls and has

electric walls on its top and bottom. Height h of the waveguide is assumed to be

identical to height of the substrate material. Width weff of this waveguide can be

found from conformal mapping technique and is given in the publications of Wheeler

for static case. The conformal mapping technique is intended to serve a variety of

purposes, as follows[4]:

1) To enable the reliable computation of this case, in terms of "slide rule"
functions, close enough for the most exacting requirements of
mathematical scrutiny.

2) To yield simple approximate formulas for practical computations to
"slide rule" accuracy, and for showing clearly the principal effects of the
variables.

3) To present a method of simple approximation in conformal mapping,
applicable to various configurations of wide strip conductors, and
susceptible of determination within close limits of error. The method
is a departure from the straightforward exact procedure.

Figure 1

magnetic wall

1.41. W eff 1111.1

(c)

(b)

h

The microstrip line (a) and its waveguide model (c), which has been
developed using a conformal mapping technique. Figure (b) shows in
principle how the dielectric-air interface is transformed by conformal
mapping technique.
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If the microstrip line is transformed into the waveguide model, the waveguide is only

partly filled by dielectric material of relative dielectric constant e and an air-

dielectric interface is formed. To simplify the waveguide model, it is filled with a

homogeneous dielectric medium instead of the inhomogeneous medium so that the

phase velocity of the fundamental wave in the final waveguide model is identical to

the phase velocity of the fundamental wave on the microstrip line.

At low frequencies the longitudinal components of the electromagnetic fields of the

microstrip line are small and the field is nearly a TEM mode and the conformal

mapping technique can be applied. Thus the waveguide model describes correctly the

transmission properties of the fundamental quasi-TEM mode for very low

frequencies. The effective dielectric constant ee and the effective width Wei'can be

calculated using Wheeler's formulas:

e eff= (\/...7-+
(Er -1) [1n(n/4)2+1-erin(7te/2) (w/2h+0 .94) ]

)2 (1)
2Ker (wn/2h+ln[2ne(w/2h+0 .94) ] )

Weff= (w /h+ (2/n) ln[21te( (w/2h) +0.92) ] )h (2)

The phase velocity vph of the fundamental quasi-TEM mode and its characteristic

impedance for low frequencies can be calculated as the parameters of the

fundamental mode of the waveguide model using (1) and (2).

Vph

and

co

e eff
( 3 )
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where co is the velocity of light. The parameters calculated in this way are in

agreement with the normal definitions for the microstrip line.

The phase velocity and the characteristic impedance of the fundamental mode (and

all the higher-order modes) are frequency dependent due to the hybrid nature of the

microstrip fields which leads to dispersive behavior of the line parameters. This

means that with increasing frequency the electromagnetic field is more and more

concentrated under the strip of the microstripline until at very high frequencies the

stray field in the air region vanishes and the field is only in the dielectric substrate

material. As a result, the effective dielectric constant eeff converges into the relative

dielectric constant er and the effective width wet, into the line width w for increasing

frequencies. As a consequence of this physical phenomenon, the phase velocity and

therefore the effective dielectric constant become frequency-dependent. At very low

frequencies the fundamental mode on the microstrip line is a quasi-TEM mode with

electromagnetic fields in the air and in the dielectric substrate material. With

increasing frequency, the influence of the air-dielectric interface changes the field of

the fundamental mode into an EH mode with six field components until very high

frequencies, where the field is concentrated in the dielectric material and the field

distribution now is nearly a TEM mode again.
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The effective dielectric constant and its frequency dependence are a measure of the

dispersion of the phase velocity of the waves on the microstrip lines. As explained

above, the effective dielectric constant of the waveguide model has been chosen in

such a way that the phase velocity of a wave on the line is identical with that of the

waves on the original microstrip line. This means that the effective dielectric constant

of the original microstrip line and its waveguide model must be identical, and

therefore at higher frequencies the effective dielectric constant of the waveguide

model must be replaced by the frequency-dependent effective dielectric constant as

described above. If the waveguide model is to simulate the wave transmission on the

microstrip line correctly, it must also be made sure that the characteristic

impedances of the two structures are identical. The characteristic impedance of the

waveguide model corresponds to the impedance of the ideal parallel plate structure

with electric and magnetic walls and is given by

Zo(f)=\111° h
( 5 )

eo Veeff ( f ) weft. ( f)

Thus the effective line width war can be written as,

( f) \11-1 0 h
weft (f) =

eo Veeff(f) Zo(f)
(6)

and if the effective dielectric constant and the characteristic impedance are replaced

by the equivalent frequency-dependent values, a frequency-dependent effective line

width w(f) is derived that, if applied to the waveguide model, makes sure that the

characteristic impedance of the microstrip line is also modeled correctly at each
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frequency. The waveguide model can be used to model the transmission properties

of the fundamental mode on the microstrip accurately with the defined properties,

if the design formulas used for Zo(f) and eeff(f) are accurate enough.

The solution for the electromagnetic fields of the waveguide model can be found in

the same way as for metallic waveguides. The boundary conditions on the electric

walls and the magnetic walls are

ExH1 =0, HX112=0 (7 )

where n, and n2 are unit surface vectors on the electric walls and on the magnetic

walls, respectively. The field solutions are of TEM, TE(H), and TM(E) modes; their

electromagnetic fields can be described by forward and backward traveling waves. In

the case of a forward traveling wave, the fields are given by

Et=Agt (x, y) e-Yz (8a)

Ht= 4z--1-- [uzxg-,(x, y)] e-Yz4

Ez=
A
V Cgt (x, Y) e-Yz
Y

Hz- ---21Vc[uzxgt (x,y) ] e-Yz
yZF

(8b)

(8c)

(8d)

where index t describes transverse field components, A is field amplitude coefficient,

ZF characteristic field impedance, y propagation constant, g, transverse vectorial

structure function, and u, unit vector in z direction. The structure functions are
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ff,gt-v.gt,dA= 8vp. ( 9 )
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where 8=1, for v=p; 8=0 for v=11

The integrals have to be evaluated over the cross section of the waveguide model.

The totality of the eigen solutions and their structure functions form a complete

system. An arbitrary, piecewise continuous, and transversal vector field A, can be

described by an infinite sum of the structure functions:

At = Avgtv with Av = fpit.gL,dA (10)

This means that the conditions for applying the method of orthogonal series

expansions are fulfilled for the waveguide model and its fields.

The forward traveling electromagnetic modes of the waveguide model can be

described by an electric potential Omn and a magnetic potential 'limn where the indices

m and n describe the field dependencies in the x and y coordinate directions,

respectively:

%Ve vvaa H ymnz oo -yAmne (UzxV mn) + Ame V ttpmn (11a)Et =
m=0 1--/n=0 =0 n=1

H AE
_1,11 _yrEnnzHt=E-

m=0 z_,,,=0 e ( Em=0 z,n=1 (uzxVy tii)) (11b)
zmn ZE

VN00

Ez Lim =o Len =1

An _ Efit]
Ymn A tcf

Y inn

(11c)



A H

N'- N.,. .ramn e_11.z
Hz ian=0 z....n=0 yil zH

mn

with

ymnE mnH p

E
n3 I ra_

f-ueOeeff

and the potential functions

4). =
,1

E
v ni

ran 2 nit ) 2 (02e0cefftio
Weff h

zllmn
J6µ0

ymnH

(lid)

(12b)

(12a)

1 MIL nnx) sin ( nn y)cos ( (12c)
Weffh weff hNI( MIT 2 ( INC ) 2

Weff h

11

*mil
1 x for m = n = 0 (12d)

Werth

H
V m 1 sin( 11171 x) cos (nom y ) otherwise

Wef f h'I Wef fh ran 2 + ( nit ) 2
Weff h

The Neumann coefficients VEm and VHm of the TM(E) modes and the TE(H) modes

are given by:

v,E 2 for m=0, nto

Vm
E = 4 for mo°, nt0

V m
H = 2 for 1220, n=0

(13a)
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NI m
H = 4 for m00, n*0 (13b)

The two different solutions in (12d) for the TEM (m= 0, n=0) and TE modes can

be written in one equation if for m-0 and n =0, value of vHm is chosen equal to 1. An

equivalent description of the backward traveling waves can also be given.

For most microstrip lines used in MIC's and MMIC's, the height h of the substrate

material is small so that the electromagnetic fields of the waveguide model have no

dependency on the y coordinate. Discontinuities with a change of the substrate height

will not be considered here. All structures that will be analyzed are fed only with a

quasi-TEM mode. As has been shown by Kompa[7], the TEM mode in discontinuity

structures that are independent of the y coordinate couple only to higher-order

modes that have a field distribution similar to that of the TEM mode in the coupling

area. In particular, no coupling occurs between the TM(E) modes and the TEM

mode and between the TEmn(Hmn) modes which have y dependent electromagnetic

fields (n*0). Under these conditions only electromagnetic fields that are independent

of the y coordinate can exist on the microstrip line, and as a consequence only modes

of the waveguide model that are also independent of the y coordinate must be

considered when modelling the microstrip discontinuities. Therefore all TM(E)

modes and all TEmn(Hmn) modes with n*0 are no longer considered in the following

calculations.

If in addition the field amplitudes AH. and AE. are replaced by wave amplitudes am

and bm of forward and backward traveling waves, the electromagnetic fields are



0-4 a1

Kx =

damIn" 101
Hz

13

11. 1_ xletc
51.

Weff off
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CHAPTER 2

ASYMMETRIC SINGLE IMPEDANCE STEP

The microstrip discontinuities can be analyzed by using the waveguide model of the

microstrip line along with some known mathematical methods of analyzing waveguide

discontinuities or by the methods that have been developed by Kuhn [8], Wolff [7]

and his research group. Five analysis methods have been derived [6]. In each

method the microstrip discontinuity structure is divided into subregions, and in each

subregion the electromagnetic fields are defined using complete series or integral

expansions that fulfill the boundary conditions on the electric and magnetic walls. At

the common interfaces between the subregions the boundary conditions are fulfilled

in an integral sense, thereby defining the coupling of the field modes in the different

regions. The scattering parameters of the microstrip structure can be computed if, in

addition, the structure under consideration is excited only by the fundamental IBM

mode. Kompa[6] suggested a method which has been used to solve the problem of

finding the scattering parameters of a microstrip impedance step. For the analysis,

microstrip impedance step is first replaced by an equivalent step of a waveguide

model structure, and then the mode matching technique (as suggested by Kompa[6])

at the common interface is applied, using the complete series. Using this method, the

results are numerical models for microstrip discontinuities that are of medium

numerical expense and of good accuracy and can be used in computer-aided circuit

analysis even with a desktop computer.
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Figure 2 (a) The asymmetrical microstrip impedance step; (b) The equivalent
waveguide model structure.

Figure 2 shows the original microstrip structure and the equivalent waveguide model

impedance step which is divided into two field regions A and B. The widths a and

b are the frequency dependent effective widths of the waveguide model, and the

model is filled with a material described by the frequency dependent effective

dielectric constant as discussed in the previous section. If the reference plane (RP')
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of the original microstrip impedance step is at z' = 0 (Figure 2a), this reference

plane, because of the stray fields at the open ends of the structure is shifted to the

position RP at z = 0 or z' =1, figure 2b in the waveguide model. To get the correct

phase information for the microstrip impedance step, this reference plane

displacement must be calculated back into the original position (z' = 0) after the

analysis with the waveguide model. Two additional reference planes RPA and RPB

are defined left and right from the step reference plane RP in the waveguide model

structure. It is required that higher-order modes that are excited at RP be decreased

to zero at RPA and RPB so that a scattering matrix of the fundamental mode can be

defined without problems at these planes. The distances I, and 18 of these reference

planes from the plane RP are assumed to be zero in the final calculations. Under

these assumptions the electromagnetic fields in region A and B are described by

complete, infinite sums (discrete spectra) of eigen functions of forward and backward

traveling waves [compare equations(11)-(13)].

Region A:

with

Et (z) = E: UmA (z) (t-TzxVt4JA,,) (16a)

Ht ( z) = E-il.,_ 1mA (z) ( -V tem) (16b)

VT, Un,A ( z) =a,,,Ae-ilz + bAejeinz (16c)

(16d)\I-Z: In, (z) =a,Ae--1131z bil,Aejenz
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Region B:

Considering the coordinate transformation from region A to region B, the following

equations are valid for the electromagnetic fields:

with

(z) = rp_o Up (z) (iTzxV pB) (17a)

HB (z) =
P-

rp (z) (-voilB) (17b)

YpUp(z) = ape-14 Z + e-i5:z (17 c)

Zplp(z) =a11,36,113,5 b;e-ii4z (17d)

For the potential functions of region A, eqns.(11)-(13) with weff= a and n=0 and

considering the changed coordinate system are applicable:

*Am_ a
lah 2

for m=0

gym=
\I

ah
2

a
1 7- X + 2) for moo (18a)ran

For region B, because of the coordinate transformation from region A to region B

(ecentricity e), the equations are;

for p=0



Ilip..1
pit

[ b b*
2

) ] for p*0 (18b)

18

with b /2= b/2 - e. a,A, b,A and apB, bp' are the normalized field (wave) amplitudes

of the forward and backward traveling waves in the region A and region B,

respectively. In the boundary between region A and region B the electromagnetic

fields must fulfill the boundary conditions;

HXB = 0 in AB AA; HxA = HXB in AA; EyA = EyB in AA (19)

where AA is the common boundary of the two waveguides and AB -AA is the magnetic

wall that close the broad waveguide at the discontinuity. Because AB -AA is a

magnetic wall, the tangential magnetic field component must vanish in it. The

boundary conditions given in eqn(19) can be fulfilled only if the transverse magnetic

field of region A is developed into the eigenfunctions of the region B. With this

technique the amplitude coefficients 1,1,B in eqn(17b) can be chosen so that the

magnetic field component HXB vanishes on AB -AA and additionally HA is equal to HXB

in AA. Conversely, the electric field component need not fulfill any special boundary

condition in AB -AA, so the electric field components in the common boundary area

AA can be developed into the eigenfunctions of region A.

The amplitude coefficients U and I can be calculated using eqn(10) and the

orthogonality relationship (eqn(9)). If eqns(17) are multiplied by (grad, U,n) and

integrated over the area AB, the result is

(20)
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Analogously, after multiplication of eqns(16) with (u, x gradtUm) and integration over

AA, it follows that

UM = fAfE:* (lIzXVt114) dA (21)

If the boundary conditions are introduced into eqn(20) and (21), the remaining

amplitude coefficients can be calculated:

-21 = f fleVor; dA
JAA

UM f rEf-(5;xvtiv,,f) (IA
Ji4B,

(22)

(23)

The discontinuity problem of an asymmetrical microstrip impedance step is thus

reduced to the solution of a multiple infinite system of coupled linear equations for

the amplitudes of the electric and magnetic field strengths. The coefficients of the

equation system are integrals over the product of the eigenfunctions of different field

regions. Their evaluation gives information on the coupling between different modes

in the waveguide model. In the case that the microstrip line and therefore the

waveguide model are excited by a TEM mode (or an Hmo mode), the result is

a
K00 =

and

UM = E- Kmp
=0

IpB imAKinp (24)

8 b* pit a
b

, (25)Kop=0 b .

ab 2 b 2

-- 2 p7 / b [ (-1)insin( Pn a+b* )
pn a-b* )]
2 b2 bKmp

lab (mic/a)2



m pfor --
a b

TC b
b

*Kmp b= NIa cos [ (m- p) ] for m= 2a b

(26 a)

(26b)
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Introducing the wave amplitudes as given in eqn(16c) and (17c) into eqn(24), the

equation system can be written as

..VzinA ail bmA IlzpB apB bp13
]

ii Y: ( a 1- Ai) =-E:=0 57T: Kinp[a,,A-b,A]

(27 a)

(27b)

with m,M,p,P = 0,1,2, If this equation system is rearranged so that the amplitudes

1),,A and bp' of the reflected waves are connected to the amplitudes amA and apB of the

incident waves of the regions A and B, respectively, the connecting matrix is the

scattering matrix:

NA
b1A

boB

b1B

SOO AA S01 AA

S10AA S1 IAA

Q BA s BA
"00 01

" BA BA
10

S AB S00
AB

01SABlOAB S1 1 -

BB s BB
"NO 01 ...

BB c BB
'-'10

aoA

a 1
A

a0B

Ba,

(28)

For the numerical computation of the scattering matrix, eqns(27) are used. the

amplitude coefficients an,A, apB of all incident waves in regions A and B are assumed
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to be zero with the exception of the amplitude 4' (i = A or B) of one exciting (index

E) mode in region A or B, respectively. Using eqn(27), the amplitudes b,' and bpi'

of the waves can be calculated. If, in addition, it is assumed that aE' = 1, the

amplitudes b,A and bpB are equal to the elements of the scattering matrix connecting

the b amplitudes with the a amplitudes as shown in eqn(28).

Results and Discussion :

Figure 3 to 5 show the typical values of the scattering parameters for microstrip step

discontinuities. The assumed substrate material is RT/Duroid with the dielectric

constant of er = 2.32 and a height of h = 1.57 mm. In figure 3 the reflection

coefficients I S I of single microstrip impedance steps from a 500 line to lines of

lower characteristic impedances are shown. At very low frequencies the reflection

coefficients can be directly calculated from the characteristic impedances: r = (Z2-

Z1)/(Z2+ Z1). With increasing frequency the reflection coefficient increases until at

cutoff frequency of the first higher order mode it becomes unity. The cutoff

frequencies of the lines with large line width w (i.e. the lines with low characteristic

impedances) are the lowest, and as a consequence the frequency dependence of the

reflection coefficients of these lines is high. In figure 4, the adjoint transmission

coefficients I S21 I of the impedance steps are shown. At the cutoff frequencies the

transmission coefficients are zero in agreement with the results shown in figure 3. In

the case of impedance steps with one line impedance equal to 500 and other line

impedance higher than 500, the frequency dependence of the scattering parameters
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1S111 and 1S211 is very small. Over a large frequency range the absolute values of the

scattering parameters are well described by the low frequency values, which again are

determined by the characteristic impedances. The results for the symmetric junction

has been compared with the results shown by Wolff [15] and found to be in good

agreement which validates the algorithm.

Figure 5 shows the convergence of the results as a function of "number of modes".

It can be seen that considering 8 or 10 modes is enough to get the results within

acceptable accuracy. More the number of modes considered, more is the time taken

by the computer to simulate the program. Thus, considering 8 modes is a good trade-

off between accuracy and time, though, here, in all the results shown, 10 modes have

been considered. Number of modes can be made proportional to the width of the

lines resulting in faster convergence [16].

Figure 5(a) shows the dependence of dl (the offset between the two lines) on the

scattering parameters as a function of frequency. As the value of dl increases, i.e. the

offset between the two lines increases with respect to the z-axis, the scattering

parameters becomes more and more frequency dependent. This property can be used

effectively to make the junction more broad band, i.e., less frequency sensitive.
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CHAPTER 3

INTERACTING ASYMMETRIC DOUBLE STEP

Now let us consider the case of an interacting asymmetric double step discontinuity.

The asymmetric double step can be divided into three field regions, as shown in

figure 6. In the figure, a and b are the frequency dependent effective widths of the

two microstrip lines, and the equivalent regions of the waveguide structure are filled

with a material of relative dielectric constant eeffi (i = 1,2) respectively. In region III

an equivalent dielectric constant, as defined in references[8,9] for a microstrip disk

capacitor, is introduced, taking into account the electric stray fields only at those

sides of the region where no microstrip line is connected.

a

dl

14 g

d2

b

III III
II

Figure 6: (a) The interacting asymmetric microstrip double step;
(b) The choice of subregions for superimposing the fields.
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The boundary conditions for the electromagnetic field of region III are given by:

Etan = Et-rar, for z=-g d1 s x s a+di

H = Htan for z=-g d1 s x s a+di

(29a)

(29b)

Hjair,1" = 0 for z=-g Osxsdi and a+disxsc (29c)

E jaIni = E jaIn for z=0 d2 s x s b+d2

Htan = H jaIn for z=0 d2 s x s b+d2

Hjairf = 0

(30a)

(30b)

for z=0 Osxsd2 and b+d2sxsc (30c)

Considering the position of the two waveguides with respect to the coordinate system

introduced in figure 6, the transversal field components of the field regions I and II

can be described by:

Ei= uK 0 rzi (4e-JoKi(z+g) (z+g) ) ah_Lcv cos ( (x-d1) )
=

(31a)

ri7T-H,f=
K=0 L K

jI3;(Z+g) v K
) cos ( (x-d1)) (31b)v a

Lim =o
ZmI (areigrz+bmiie-ipfiz) bhm cos (__rmt (x-d2)) (31c:

Hir= E:=0 ITT/ (areil3Liz-b0IIe 137.2
vm cos ( 17- (x-d2)) (31d)



EIIIa III I Kit \zic k-vo 11K- z.) k
K=0 ch

IIIa vtv. ,1 v.= ,-,IIIa V K \
K 1/4-K S -L11 K z,Hx = 3

K. 0 Ch

VN00 17/ ( ( z + g) ) cV hill cos (EY
IIIb

Lin= V m

IIIb ot III _TI.Tb n ZIT IC/7CHx = 3L.0 Cm sin (pm (z+g)
vm cos ( x)ch
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(32a)

(32b)

( 32 c)

(32d)

The phase constant 131 is the phase constant of region I ( or (311 for region II )

calculated with the equivalent dielectric constant of region III instead of eeff of

region I.

Kuhn's method [8] is of great advantage in the sense that the magnetic fields of the

region I and II can be matched to the magnetic field of region III separately because

the structures that are superimposed (figure 6b) at each reference plane have only

one open boundary. The remaining reference planes of the substructures are closed

by magnetic walls so that the magnetic field strengths vanish here. The relationships

between the fields of region I and Ina and that of II and III' have to be determined

by a normal mode-matching process. At the I and Ina interface this leads to:

where

J /YKII CK-Ma V"k

N

I bI) K (33a)Ld= o V N `aN

1 NlvKvN r
(KC NTCK1N, K

= cos ( X) cos ( (X- di) dxdy (33b)h ca .1z=-J a

and is known as coupling integral.



Similarly, at the interface of region II and III, the result is:

where

,ymIII cmIIIb in mm-g) vyp n- ( pn- bp z) K2P ,M
P= 0

(34a)

M \lvmvp
K2P' = 7C

h cb ofcos (Ai cosCOS ( b (x-d2) ) cbccly (34b)
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Now the magnetic fields of the subregions are matched. If now the total

electromagnetic field is calculated, the field solutions (32), taking into account

equations (33) and (34) and the electric field strengths of waveguides I and II and

the total electric field in the connecting field region III are additionally matched at

the reference planes. So the boundary conditions at the boundary between region I

and III that must be fulfilled by the fields is

Etan
a

I z = -g Etan I z= -g ."'tan I z = -g ( 35 )

Similarly, applying the boundary condition at the boundary between regions II and

III gives

y,II yIIIa
-''tan I z.0 = 1-'tan z,- 0 + .'-'tan I z=o ( 36 )

Using equations 31-34 and doing some mathematics (see Appendix 'A'), we finally

get;

P= 0

(a; bp) N /apI bp/) 32P, NI

aiirr bNII)
./P

bpi-) BiP,N , P+ (ap bp I) A2
,

=0

(37)

( 3 8 )



where

III

Ai NP
Z-

=
K=0

A KiP'KK-f'Kcot (RK 19)

BP'N K=0 sin
ZKII KP'ICKNIK

(i= 1 or 2 and i' =1 for i = 2 & i' =2 for i= 1)

Results and Discussion :

(39)

(40)
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Figure 7-9 show the frequency dependent transmission characteristics of typical

double step discontinuities computed by the mode-matching technique as explained

above. In this case the input and output lines are both 500 (i.e. width w = 0.0045m,

er= 2.32 and height of the substrate h = 1.57mm for figure 7 and w = 73.1e-6m,

h= 100e-6m and er= 13 for figures 8-9) but middle line has an impedance varying

from 500 to lower values. At 500, as is expected, reflection coefficient is zero, but

as the impedance of middle line increases, the reflection coefficient becomes more

and more frequency sensitive. It can be seen from figure 7 that for c =5a and 6a

plots there are two frequencies when the reflection coefficient becomes unity. This

result is because at lower frequency the first higher order mode gets excited and then

at second peak the next higher order mode gets excited. Figure 8 shows the similar

results for the microstrip line with GaAs as substrate (w =73.1e-06m, h= le-04m, and

er = 13.0). From figure 9 we see that if the input, output and middle lines are aligned



31

at lower end (i.e. d1 and d2 are zero) then scattering parameters (reflection as well

as transmission coefficients) are not very dependent on frequency and higher order

modes do not get excited until very high frequency.

Figure 10 shows the effect of a double step when the input middle and output lines

are of different characteristic impedances. Here, the input line has been kept at an

impedance of 500, while the middle line has width equal to three times that of the

input line. The output line width is varied from one third the width of the input line

to twice its value. It can be seen that at higher characteristic impedances of the

output line (Woutput < Wmput), the reflection coefficient 1S111 (and thus the transmission

coefficient 1S21 1) of this double step is more frequency dependent. As the impedance

of the output line is decreased, 1S111 becomes more and more frequency insensitive

until the characteristic impedance of this output line becomes equal to that of the

middle line, where it behaves exactly like the single step (see figure 11 for the plot

of b = 2a) (as expected). As the impedance of output line is increased further, the

scattering parameter IS1 behaves sinusoidally at frequencies below that of the

excitation of the first higher order mode. At higher frequencies, it is very sensitive

to frequency. Figure 12-13 shows the behavior of the scattering parameter when the

substrate is GaAs instead of RT/Duroid. When d1 and d2 are kept equal to zero, we

see that (figure 12) the scattering parameters remains insensitive to frequency as was

discussed above. Figure 13 is similar to figure 10 except that the parameters changes

due to changes in e, to make the input line as 500.



32

Figure 14(and 15) show dependence of dl (d2) on scattering parameters as a

function of frequency. When dl = d2 = 0, difference in width of middle line, with input

and output lines having same characteristic impedance, makes system more frequency

sensitive. When the input line (output line) goes off the axis of output line (input

line), it can be seen that higher order modes get excited which takes IS111 to unity

at a particular frequency depending on the impedance of the input (output) and

middle line (keeping output line impedance equal to the input line impedance). As

one goes on increasing dl (d2) the frequency of the excitation of the first higher

order mode keeps on decreasing. This shift in frequency of the excitation of the first

higher order mode becomes much more significant if we take the case of a microstrip

line with GaAs as a substrate rather than RT/Duroid (figure 16). Figure 17 also

shows some very interesting results. Here the dependence of the length of the

middle line on the scattering parameter is shown as a function of frequency. It can

be seen that as the length of the middle step is increased, 1S111 becomes more and

more frequency sensitive. The most interesting feature to note here is the frequency

of excitation of the first higher order mode. It can be seen that the frequency of

excitation of the first higher order mode is independent of the length of the middle

line, but other higher order modes' excitation frequency depends on the middle line's

length. Moreover, it can be seen that this cut-off frequency is the same as the cut-off

frequency of the single step keeping all other parameters same (figure 3: plot for

b = 3a). These results can effectively be used in designing filters of different types and

for a desired frequency range, e.g. band pass, band reject, high pass, low pass.
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CHAPTER 4

INTERACTING ASYMMETRIC DOUBLE STEP WITH MULTIPLE

OUTPUT LINES

In the previous chapter interacting asymmetric double step discontinuities with single

output line were discussed. In the present chapter, the effect of this type of

discontinuity in the presence of more than one output line is studied. The objective

is to investigate the application of such structures as useful multiport circuits such as

power dividers and combiners. Again the asymmetric double step can be divided into

(n +2) regions, where n is the number of output lines (see figure 18). In figure 18, a

is the frequency dependent effective width of the input line, where as b b2,..,bn are

the frequency dependent effective width of the output lines. The boundary conditions

for the electromagnetic field of region III are given by :

Etiaini = Etiar, for z=-g d1 s x s a+di ( 41 a )

Ht-rair; = HtIar, for z=-g d1 s x s a +d1 (41b)

kraIrf = 0 for z=-g Osxsdi and a+disxsc ( 41 c )

E ja- r, f = E tan for z=0 d2(1) s x s b1 +d2(1) (42a)

=
Ht.rarn, for z=0 d2(1) s x s b1 i-d2(1) (42b)



jaini = 0 for z=0 0sxsd2(1) and b1 +d2(1) sxsc (42c)

Et-ra-rif = Etiainn for z=0 d2 (n) s x s bl +d2 (n)

LTI
t an
II

= Iltan for z=0 d2 (n) s x s b+d2 (n)

III
Htan = °

(43a)

(43b)

for z=0 0sxsdn+1 and b+d2(n) sxsc (43c)
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where subscript I, II and III stands for the input, output and middle lines, d1, d2(1),...,

d2(n) are the offset of the input and output lines from the z-axis. Considering the

position of the waveguides with respect to the coordinate system introduced in figure

18, the transversal field components of the field regions I and II can be described by

CO

E1-1" I -.113;(z+g) I jf3-(z+g) VKv ZK (aKe +bKe ) cos ( a (x-d1)) (44a)
K=0

00_E -jOrc(z+g) -b;e-IP4(z+g))
v
K cos ( krc (x-d1)) (44b)ah aK

.-s ir .13"1-zEy 1= vzin I (a, le) +bm
m=0

e )
vm (Jo (x -d (1))) (44ccos

2bih ,.

EX r1= (a.II1e; orn-riz_bnirri

m=0 b
IMIv

in COS ( (X- d2 (1) )) (44ih ,

Tin= x--N Izmil,
(am

in
e jp /n,

+bm
in e -ip"n2

) ;m cos ( 111 (x- d(n))) (44e2

m=0 nh bn

/in ii _Ern jomlinz -iPmilnz
= Ym (am e -brinee )

m=0 nh
nrgcos (
b (x- d2(n))) (44f



,..
IIIa III IIIa IIIEy = E V ZK CK COS (13K Z) cos ( I---.7t X)

K=0 ch c

00

V
cos (Ilia IIIa lc=

JYx ch
CK sin

K=0

(45a)

( 4 5b)
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mi
Cm cos rr(z+g)

r, III )Cm sinkpm y

Cm
IIIbncos (pm///(z+g))

I IIbn
Cin sin ( 11, (z+g)

)

in cos ( 11-712 ( 4 5c)

(45d)

(45e)

(45f)

E /11-y = ZM
m=0

OD

c)ch

V 1717 11 IIIH, = 2s vYm
m=0

00

c 0,Dch

)

vm
cos (EIIIbn=

m=0

00

X)ch

V in cos (
11-1-bn= j Ym

m=0
nnt x)eh

where ak' and bk' are the amplitudes of the incident and reflected waves respectively

in the region I (for i = I) and II (for i =II), 13k' is the phase constant for mode k in the

region i and is calculated with the equivalent dielectric constant of region III

instead of ear of region I or II. vk is the Neumann coefficient whose value is chosen

equal to 1 for k = 0 and 2 for k*O. Ck" is the wave amplitude of the field solutions

in region III.

The magnetic fields of the region I and II can be matched to the magnetic field of

region III separately because the structures that are superimposed (figure 18(b)) at
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each reference plane have only one open boundary. The remaining reference planes

of the substructures are closed by magnetic walls so that the magnetic field strengths

vanish here. This was first suggested by Kuhn [9] in 1973. Applying Kuhn's method

here leads finally to the following equations:

P
(aNr bilr) = E [ cap Dp)Ai

,N
+ 2 (aP bP

IIm
) B2,m] (46a)

P=0 m=1

n r -U Nm ) A2 ,P(aN + bN ) = E [ (a; b;) i+ Ecap bp ] (46b)
P=0 m=1

n
( aN bN ) [ (4-

-U
, %

P ) D1
P

, m
N

+ cap bp-rm) A2N] (46c)

where

P=0 m=1

7111
AP ,N = jE 4-qC Kr, Kcot KIIIg)

K=0 \11 Zi Z

III P K N K
GI(

,
K2

BnmN =
I sin KIII

K= 0 11 7 I linZ

DP, N
1-J2 , m =

co zKIII

jE
K=0

\II IZm
ZN Z p

P, K N, K
K2 inK1

sin KIIIg)

( 4 7 )

( 4 8 )

( 49 )

1 KV ,K1(
h ca

-14' cos ( igt x) cos ( ) cbcd_y (50a)
z=-g
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P,M 1 \I V MV P fK PICPOS ( ME X) COS ( (x-d2 On) ) ) dxdy (sob)
2'm h cb c

z=0

Results and Discussion :

This final equations system defined above for the calculation of the scattering

parameters is an infinite linear set of equations and which has previously been solved

numerically using only a finite number of series elements. The influence of the

truncation on the calculated scattering parameters have been proved to gain an

insight into the convergence behavior of the method as shown in figure 19. In this

case, the ratio of the considered modes in different field regions has been kept equal

to unity while the number of modes considered is varied. It can be seen that

considering 8 or 10 modes is enough to get the results within acceptable accuracy.

The larger the the number of modes considered, the more is time taken by the

computer to simulate the results. Considering 8-10 modes is a good trade-off between

accuracy and time, although here, as in all the other results shown, 10 modes have

been considered.

Figure 20 shows the reflected power from port 1 (S11) and transmitted powers in port

2 (S21) and in port 3 (S31) as well as the transmitted power from port 3 to port 2 (S23)

as a function of frequency for a 3db power divider. The dimensions of this microstrip
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line power divider are taken such that input and output ports are the lines of

characteristic impedance Z = 50 ohms (in this case width of the input and output lines

are 73.1e-6 meters, height of the GaAs substrate as le-4 meters). It can be seen that

the reflected power is less than 10% in the frequency range of 7-55GHz. Also, S23 is

nearly zero for the entire frequency range. Some power is dissipated by the

evanescent modes which are excited around 30GHz.

Figure 21 shows the effect of the width and length of the patch on the bandwidth of

the divider. Here, again, the structure is a 3db power divider with input and output

lines having characteristic impedances of 50 ohms ( the width of the line = 73.1e-6

meters; the height of the substrate = le-4 meters; er = 13.0 for GaAs). It can be seen

that the effect of reducing the width of the patch, while keeping the length of the

patch constant, is to increase the bandwidth of the power divider (figure 21(b), plots

for the value of "g = 1.5a"). Moreover, the length of the patch also plays an important

role in defining the bandwidth.

Figure 22 ((a) for reflected power and (b) for transmitted power) shows the effect

of the input line impedance on the performance of the divider when output line have

characteristic impedance equal to 50ohms. It can be seen that as the characteristic

impedance of the input line increases (i.e. the width of the input line decreases) the

divider becomes more and more broadband with less reflected power at the input

port. Figure 23 (again (a) for reflected power and (b) for transmitted power) shows
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the effect of the position of the input line (in this case the characteristic impedance

of the input line has been kept at 50ohms). The bandwidth of the structure is

maximum when the input line is in the center, which finally leads to a 3db power

divider.

Finally, figure 24 shows the performance of a power divider with the input line

(port(1)) and the output lines (ports (2) and (3)) having characteristic impedances

equal to 50 ohms. The divider is a 3db rectangular patch microstrip line structure

with width of the patch (c) equal to three times the width of the input line and length

of the patch (g) being 2.1 times the width of the input line. The divider has a

bandwidth of more than 1 octave at the center frequency of 19GHz. (11.5GHz to

27GHz) with less than 10% reflected power in the frequency range of 12GHz till

16GHz and even less than 5% of the reflected power in the frequency range of

16GHz till 27GHz.
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CONCLUSION

In this thesis, a numerical technique has been described to model microstrip

discontinuities of various kinds. The method is based on a magnetic wall waveguide

model that is assumed to be valid for describing the electromagnetic fields in the

microstrip line and in the vicinity of microstrip line discontinuities. The mode

matching method is used to describe the discontinuities after applying the waveguide

model. The mode matching method is a general tool for the numerical computation

of the electromagnetic field problems. It is a rigorous full-wave analysis suitable for

the treatment of two or three dimensional field problems, including both scattering

and eigen value problems. The straightforward formulation of this method makes it

a very commonly used method among the personal computer users. However,

compared to those methods that are problem oriented and optimized, the efficiency

of this method is not very high. A characteristic advantage of the mode-matching

technique is that it gives a better physical understanding of the effect of a junction

or discontinuity in a guided wave structure. The disadvantage of this method being

that it is limited to junctions whose discontinuity region belongs to a seperable

coordinate system as compared to discretization methods, such as finite element and

finite difference methods, which can be applied to junctions of arbitrary shapes.

When combined with the generalized scattering matrix method, they together become

a powerful tool for analyzing many practical composite waveguide structures. The

generalized scattering method is useful for the analysis of complicated junction that
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can be decomposed to several simpler junctions and also characterizing cascaded

junctions that are in close proximity in terms of electrical length. The method is

mathematically exact provided that all the matrices of infinite order are available.

The results obtained using this technique are numerical models for microstripline

discontinuities that are of medium numerical expense and of good accuracy and can

be used in computer-aided circuit analysis even with a desktop computer.

The above explained technique is very useful in MICs and MMICs where (1) the

problem of efficient matching of two microstrip lines with different characteristic

impedances is to be tackled resulting in less reflection over a frequency band of

interest; (2) the design of a filter for desired frequency band; (3) design of a power

divider/combiner with desired bandwidth. The technique presented is compatible

with the design of multiports with more than two outputs for applications as power

combiners/dividers. In addition to experimental realization of the three ports

discussed in this thesis, future work in this area should include computer-aided design

of these multiports.
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APPENDIX 'A'

Putting equations 31-32 in 35 (pages 27-28) we finally get

aNI+bNI) Vv. cKIIIa KIIIg) K3N,K +Ve. I/ 7 M. ,-,IIIbK4N,MZN
LIM-0 "

where

1 \I V KV NK3N, K = COS ( -Krt X) COS ( Mc (x-di)) cbcd_yca L. gf a

KN' M =
V MV N gf cos ( X) CO S (

a
- ( x- d ) ) dxdyK4

ca

Therefore

v zNi (air+bN.z-) =vv cKIIIaCOS KIII K +Vv.. ,7 ,-,IIIbK1N, M
L- K= 0 V LIM= 0 V L'M L-1/I

V4/ k //I zmIII
CM COS rim= m+,. ,vz K

1
4-11C-0 K LI( "2

Now from equation(33)&(34) we get

IIa
zKIII KN, K

1
= N 0 7 /

ina/ ps/NkN-AdNi
.4,/v S in (131-K -rig)

IIIb
CmCM

Voo
--iLdp=o

/././
L'M ( ap bp )IZ

Therefore, equation(35) above becomes;

K2lt2

S in (13m g)
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( 3 )

(4)



ZN (a,f+b,f) =E:.0 I- jr;
ZIII

-0 z;
Kf'I(at-b;) J cos (3rig) KhK

sin (311g)

.mr.r r r-. ar.r_ KI'm
+N"`"

Y m -3 ZsP.0 I I (n ( 5)
Zp sin p g)

Similarly, equation(36) can be written as;

P,KZK K1 KrzFr (aNI bNII) jzirn. ( apI -bpi) -E2ir1(= 0 V P = 0 Zp IIISin ( PK g)

ZII

L.,,..0\1 ZII (akr-b,i1) K2 ,M

I cos mIIg) M

sin (p"mIIg)

These equations(38) can be written as (after some mathematics);
aNI V00 (a; bpI) , N (a;I b;I) B.2p,N]

aN11- b;I) Vc.P (ap b;) BiP,N a;I bpII) A2P,Ni
=0

where

ZIII
N

K P,K N,K IIIAr'= jr* Ki cot
K=0

N jr*
K=0

zKIII P,K N,K

2:1 i sin 1;IIg)
ZN Zp

(i =1 or 2 and i' =1 for i =2 & i'=2 for i =1)

( 9 )

(10)

(6)
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APPENDIX 'B'

Equations 44-45 (page 46-47) can be written as :

E-r=
0 K K

(a-re-ig(z+o+bieigiz+g))
ah a
vK cos (kit (x-d1)) (la)

-E-FT Ac( z+g) jlqz+g) V Kv y (aKe -bKe (
) cos (kn (x-d1)) (1b)K=0 an a

vzmil-, (amiiiejp,L'iz+binirie -jpmr-r1z)4-ri= cos (11--n (x-d2 ) ) )b h

r,H = Lim. 0
JYIZi (amiriejp-rin-riz e_ipmhriz) vm

c o s )) (id)

(arnll-neip:Ir'z+bmiine_ip,ilnz) /MTE"n= E n
v

in cos ( (x -d2 (n))) (1e)M= 0 bnh

(ami-i-neirn'nz_bm.rine --jp,f,'nz)
vm cos ( (x-d2 (n))) (1f)bnh

= La K K
zIII ciliaCOS (1 \I V K KtK Z) cos (X)K=0 V

HXIIa- cllas. n(0111 K cos k K7tV x)1 z
K=0 K ch

Erribl zrri Crribi omm ) cos ( MIL
Y m=0 Y in ch

(2a)

(2b)

(2c)



69

/MCLI/bi ( )

C.
cos (--x)H = J Lan0 m

C12
(2d)

E IIIbn
C

M=0
\W' Cm IIbn

COS (r3m (z+g) )
v
m cos ( x)ch (2e)

g) ) v cos (Inn x) (2f)fix = 2_,,0 m ch

Now applying the normal mode-matching technique as was suggested by Kuhn's [8],

at the interface of I and III', equations can be written as:

where

yiFfil- cfras
p g) = E

N=0 rYiT (a;
bN.r) KICK (3a)

K1' K 1 \I V KV N
fz -gf

cos ( K7c X) COS ( -MT (x- di) ) dxdy (3b)ca = a

and is known as coupling integral.

Similarly, at the interface of region II and III, the result is:

YiZ
III III

CMI Sin Pm/ g) =
P1=0

jiZZZ

where

IIIbn III
Cmn s in , g) =

pn= 0

\I IIv b3.) v.P1, Ml
-L P1 ( a P1 -LJP n .2,1

IIb IIbn
YPn (aPn b Pn

Pn;Mn
K2 ,n

(4a)

(4b)
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Pm 1

z=0h ch\
I VMV PTCfcos ( - X) cos ( (x-d2 (m))) dxdy (4c)

Now the magnetic fields of the subregions are matched. If the total electromagnetic

field is calculated, the field solutions (1-2), taking into account equations (3) and (4)

and the electric field strengths of waveguides I and II and the total electric field in

the connecting field region III are additionally matched at the reference planes. So

the boundary conditions at the boundary between region I and III that must be

fulfilled by the fields is

Etan I z=-9
/

Etan
IIIb

4711-blz=-gtan iz.-g Etan (5)

Similarly, applying the boundary condition between regions II and III gives
,// mai b,
.c,taniz.0 -c'tan lz.0 iltan lz=0

IIIbni
Etan Iz=0

Using equations 1-4 and doing some mathematics, we get;

( 6 )

(aNI cirEracos K +Vv., I JIM]. K1N, M1
.1M1=0 V L'Ml L-M1LAIK= 0 V

Mn17.m ./zL7c.,114:11)2IINM2
Zmn CmnLIM2=0 mn=0

7..IIb, 7 III ,7 III K/ flaN
+bN

1 '/
III

4.-mi COS 1./ g) ,62N, 1 +E
K =O

,_,K 1M1=0 K=0

CO /// /// r..N, M2E ,..,m2 COS m2 y 2

M2=0

rm
Mn=0

sIIII IIIbn N, h.Z Cfrin COS (Bm2 g)
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Now from equation(3)&(4) we get

a. III N, KIIIa K1
K =

,7

iE (aNI _bir)

N=0 ZN Sin DKIIg) (9)
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--(9)

I zmIII IIIb, Ib, K2P'f
CM = -iE (ap -bp ) (10)lib,

P=0 Z Sin

where i stands for the ith output line.

Therefore, equation 7-9, above, becomes;

zir_rr
Kf.IC K

ZN (ap-bp) ] COSK=0 P. 0 Icirg)zp sin

III KPM= - I <=+E. vz. [ // (a;/-b;I) (5)
zp sin (ommg)

Similarly, equation(36) can be written as;

,7 KP, K
L.1K Kgrr (aN_r_i_bNr)

La' K=0 Z; sin (13K g)

I m Zm+E. vzm /,zp sin pm///g) ] cos ( wig) e,m ( 6 )
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APPENDIX C

c This program had been written by Sunil Kapoor on 02/04/92 as a part
c of his MSEE thesis at Oregon State University, Corvallis.

c This program calculates the Scattering parameters of the Interacting
c assymetric double step microstrip discontinuities.

c 'N' in the PARAMETER statement (Nn in the 'AINV' subroutine)
c represents the dimension for the number of modes to be considered.

PARAMETER (N =50,M =N*2)
COMMON/CONST/ PI,AMUO,EPSO,EPSEFF(6),OMEGA,WEFF(6),NUM
COMMON/DIM/ A,B,C,D,D1,D2,H,ER,G,tt
COMMON/FUNC/ FUNK(2,N,N),beta(N,3)
COMPLEX AFUN,BFUN,CFUN,DFUN,S(M,1),BETA(N,3),Z,X1(M,M),

1 X2(M,1),FUN1,X1INV(M,M),betag,S11,S12,S21,S22
integer iqn
OPEN (UNIT = 11,NAME ="output")

c A is the width of input line
c B is the width of output line
c C is the width of middle line
c D1 is the distance from bottom of C till A starts
c D2 is the distance from bottom of C till B starts
C G is the length of middle line
c H is the height of the substrate
c NUM is the no. of modes to be considered

write(*,*)'Write the
read (*,*) a
write(*,*)'Write the
write(*,*)'input line
read(*,*) br
write(*,*)'Write the
write(*,*)'input line
read(*,*) cr
write(*,*)'Write the
write(*,*)'input line
read(*,*) gr
write(*,*)'Write the
write(*,*)'bottom of
read(*,*) d1r

values of width of the input line (meters)'

value of width of the output line in terms of the'
(b /a)'

value of width of the middle line in terms of the'
(c /a)'

value of length of the middle line in terms of the'
(g /a)'

value of the offset of the input line from the'
the middle line, in terms of a (dl/a)'



73

write(*,*)'Write the value of the offset of the output line from the'
write( *, *)'bottom of the middle line, in terms of a (d2 /a)'
read(*,*) d2r
write(*,*)'Write the value of the Dielectric Constant Erof substrate'
read (*,*) er
write(*,*)'Write the value of height of the substrate'
read (*,*) h
write( *, *)'write the freq in GHz ; min, max, inc'
read(*,*)fmin,fmax,fincr
write(*,*)'write the no. of modes to be considered'
read(*,*)num

b=a*br
c=a*cr
dl=a*dlr
d2 = a* d2r
g = a*gr

write(11,*)'a,b,c',a,b,c
write(11,*)'d1,d2,g',d1,d2,g
write(11,*)'er,h',er,h
write(11,*)'num',num
WRITE(11,*)'freq,S11MAG,S21MAG,sum'

TT = .0
PI = 3.14159265358979
AMU0=1.26E-6
EPS0=8.854185E-12
h=h*1000.0

2 FREQ=fMIN
3 OMEGA=2.0*PI*FREQ*1.0e9

c Following DO LOOP calculates the equivalent widths of the strips
c using waveguide model (subroutine EPSL)

DO 5 IREG=1,3
IF(IREG.EQ.1) W=A
IF(IREG.EQ.2) W=B
IF(IREG.EQ.3) W=C
w = w*1000.0
CALL EPSL(FREQ,W,EEFFF,WEFFF,XIFFF)
EPSEFF(IREG) = EEFFF
WEFF(IREG) = WEFFF /1000.0

5 continue
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dc = abs(c-weff(3))/2
da=abs(a-weff(1))/2
db = abs(b- weff(2)) /2
weff(4)=d1+dc-da
weff(5)=d2+dc-db
weff(6) =g
if (dl.eq.0.) weff(4)=0.
if (d2.eq.0.) weff(5) = 0.
h =h/1000.0

c 'funka' is function 'A' resulting after using Mode-matching technique

do 9 ksa=0,num-1
do 8 is =1,2
do 7 msa=0,num-1
call funka(is,msa,ksa)

7 continue
call beeta(ksa,is)

8 continue
call beeta(ksa,3)

9 continue

DO 20 KKS=1,NUM
KS=KKS-1
DO 10 MMS=1,NUM
MS = MMS -1

c
c X1 is the matrix which is associated with reflection coefficients
c

X1(KKS,MMS) = CFUN(1,MS,KS)
X1(NUM + KKS,MMS) = BFUN(1,MS,KS)
X1(KKS,NUM + MMS) = BFUN(2,MS,KS)
X1(NUM + KKS,NUM + MMS) = CFUN(2,MS,KS)

10 CONTINUE
c
c X2 is the matrix which is associated with incident coefficients
c

X2(KKS, 1) = X1(KKS,1)
if (kks.eq.1) x2(kks, 1) = x2(kks,1)-cmplx(2.0,0.0)
X2(NUM+KKS,1)=X1(NUM+KKS,1)

20 CONTINUE
c
c NUM2 defines the dimension of X1 matrix
c
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NUM2 =NUM *2
C Calculating the inverse of matrix X1 and storing as X1INV

CALL AINV(X1,NUM2,X1INV)
C Calculating the product of matrices X1INV and X2 and storing as S

CALL PRODUCT(X1INV,X2,NUM2,S)
S11=S(1,1)
S21=S(NUM+ 1,1)
S11MAG = CABS(S11)
S21MAG = CABS(S21)
sum= sllmag * *2.0 + s2lmag * *2.0
WRITE(11,199)freq,S11MAG,S21MAG,sum

199 format( lx,f6.3,5x,e15.7,5x,e15.7,5x,e15.7)
WRITE(*,*)freq,S11MAG,S21MAG,sum
FREQ = FREQ + fincr
if(freq.le.fmax) go to 3
if(iqn.eq.1) go to 300

200 CONTINUE
300 continue

STOP
END

SUBROUTINE BEETA(NM,IREG)
PARAMETER (N = 50,M = N *2)
COMMON/CONST/ PI,AMUO,EPSO,EPSEFF(6),OMEGA,WEFF(6),NUM
COMMON/FUNC/ FUNK(2,N,N),beta(N,3)
COMPLEX BETA(N,3)
AKOSQ=AMUO*EPSO*EPSEFF(IREG)*OMEGA*OMEGA
AK1SQ=(NM*PI/WEFF(IREG))**2.0
IF(AKOSQ.GE.AK1SQ)
BETA(nm+1,ireg)=cmplx(SQRT(AKOSQ-AK1SQ),0.)
IF(AKOSQ.LT.AK1SQ) BETA(nm+ 1,ireg) = cmplx(0.,SQRT(AK1SQ-AKOSQ))
END

SUBROUTINE FUNKA(ISUB,MSA,KCA)
PARAMETER (N = 50,M = N *2)
COMMON/CONST/PLAMUO,EPSO,EPSEFF(6),OMEGA,WEFF(6),NUM
COMMON/FUNC/ FUNK(2,N,N),beta(N,3)

c
c AB is the width of the line of region ISUB
c D is the distance from z-axis till the ISUB region's line starts
c C is the width of the middle region (i.e.3rd)
c

nu =1
if(msa.ne.0.or.kca.ne.0) nu=2
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if(msa.ne.O.AND.kca.ne.0) nu =4
AB = WEFF(ISUB)
D=WEFF(ISUB+3)
C = WEFF(3)
X1=SQRT(NU/(AB*C))
X2 = PI *KCA /C
X3 =PI*MSA/AB
if (msa.eq.0 .and. kca.eq.0) go to 10
go to 20

10 funk(isub,1,1)=x1*ab
go to 50

20 if (x2.eq.x3) go to 30
go to 40

30 funk(isub,msa+ 1,kca+ 1) = xl *cos(x2 *d) *ab /2.0
go to 50

40 funk(isub,msa + 1,kca + 1) =xl*x2*sin(x2*d)/(x3* *2 - x2* *2)
50 return

end

FUNCTION CFUN(ISUB,MS,KS)
PARAMETER (N = 50,M = N *2)
COMMON/CONST/ PI,AMUO,EPSO,EPSEFF(6),OMEGA,WEFF(6),NUM
COMMON/FUNC/ FUNK(2,N,N),beta(N,3)
COMPLEX AFUN,BFUN,CFUN,BETA(N,3),FUN1,BETAG
AFUN = CMPLX(0.,0.)
DO 10 KC=0,NUM-1
BETAG=BETA(KC+1,3)*cmplx(WEFF(6),0.)
FUN1=cmplx(FUNK(ISUB,MS+1,KC+1)*FUNK(ISUB,KS+1,KC+1),0.)
FUN1=FUN1*CSORT(BETA(MS+1,ISUB)*BETA(KS+1,ISUB))/

1 BETA(KC+ 1,3)
FUN1=FUN1*CCOS(BETAG)/CSIN(BETAG)
AFUN=AFUN+FUN1

10 CONTINUE
AFUN = CMPLX(0.,-1.)*AFUN
cfun=afun
if(ms.eq.ks) cfun=cfun+ cmplx(1.0,0.0)
RETURN
END

FUNCTION BFUN(ISUB,MS,KS)
PARAMETER (N =50,M =N*2)
COMMON/CONST/ PLAMUO,EPSO,EPSEFF(6),OMEGA,WEFF(6),NUM
COMMON/FUNC/ FUNK(2,N,N),beta(N,3)
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COMPLEX BFUN,BETA(N,3),FUN1,BETAG
IF(ISUB.EQ.1) ISUBN = 2
IF(ISUB.EQ.2) ISUBN =1
BFUN = CMPLX(0.,0.)
DO 10 KC=0,NUM-1
BETAG=BETA(KC+1,3)*cmplx(WEFF(6),0.)
FUN1=cmplx(FUNK(ISUB,MS+1,KC+1)*FUNK(ISUBN,KS+1,KC+ 1),0.)
FUN1=FUN1*CSORT(BETA(MS+1,ISUB)*BETA(KS+1,ISUBN))/

1 BETA(KC+ 1,3)
FUN1=FUN1/CSIN(BETAG)
BFUN=BFUN+FUN1

10 CONTINUE
BFUN=CMPLX(0.,-1.)*BFUN
END

SUBROUTINE PRODUCT(X,Y,Nn,Z)
PARAMETER(N = 50,M =N*2)
COMPLEX X(M,M),Y(M,1),Z(M,1)
DO 10 I=1,Nn
Z(I,1) = CMPLX(0.,0.)
DO 10 J = 1,Nn
Z(I,1)=Z(I,1)+(X(I,J)*Y(J,1))

10 CONTINUE
RETURN
END

SUBROUTINE AINV(X,N,TM)
PARAMETER(Nn=50,MAXN=2*Nn,MAX2N=2*MAXN)
COMPLEX X(MAXN,MAXN),T(MAXN,MAX2N),S,R,TM(MAXN,MAXN)

C SUBROUTINE TO INVERT A MATRIX
C USES THE GAUSS-JORDAN METHOD

ISGN =1
DO 1 I= 1,N
DO 1 J = 1,N
T(I,J) = X(I,J)

1 CONTINUE
R = CMPLX(0.0,0.0)
S = CMPLX(1.0,0.0)
J1=N+1
J2 =N+ N
DO 2 I =1,N
DO 2 J=J1,J2

2 T(I,J)=R
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DO 3 I=1,N
J=I+N

3 T(I,J) = S
C READY TO START PIVOTAL CONDENSATION ON ROW K

DO 11 K=1,N
KP=K+1
IF(K.EQ.N)GO TO 6

C FIND LARGEST ELEMENT IN COLUMN K
L=K
V = CABS(T(K,K))
A=REAL(V)
DO 4 I =KP,N
V = CABS(T(I,K))
B=REAL(V)
IF(B.LE.A)GO TO 4
L=I
A=B

4 CONTINUE
IF(L.EQ.K)GO TO 6

C INTERCHANGE ROWS L AND K
ISGN = -ISGN
DO 5 J =K,J2
R = T(K,J)
T(K,J)=T(L,J)

5 T(L,J)=R
C DIVIDE ROW K BY THE DIAGONAL

6 R=T(K,K)
TST=1.E-30
IF(CABS(R).GE.TST) GO TO 60
WRI'l'E(LU,61)

61 FORMAT(1X,'MATRIX APPEARS SINGULAR - FOUND A ZERO
PIVOT)

DO 50 I =0,N-1
DO 50 J =0,N-1
T(I,J) = CMPLX(0.,0.)

50 CONTINUE
RETURN

60 CONTINUE
R=S/R
DO 7 J=KP,J2

7 T(K,J)=T(K,J)*R
C ELIMINATE ELEMENTS IN COLUMN ABOVE K

IF(K.EQ.1)GO TO 9
KM=K-1
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DO 8 I=1,KM
R=T(I,K)
DO 8 J=KP,J2

8 T(I,J)=T(I,J)-R*T(K,J)
C ELIMINATE ELEMENTS IN COLUMN BELOW K

9 IF(K.EQ.N) GO TO 12
DO 10 I=KP,N
R = T(I,K)
DO 10 J=KP,J2

10 T(I,J)=T(I,J)-R*T(K,J)
11 CONTINUE

C INVERSE IS COMPLETE
12 CONTINUE

DO 14 I = 1,N
14 S=S*T(I,I)

IF(ISGN.LT.0)S = -S
DO 13 I= 1,N
DO 13 J =1,N
K=J+N
T(I,J) = T(I,K)

13 CONTINUE
do 99 i =1,n
do 99 j = 1,n
tm(i,j)=t(i,j)

99 continue
RETURN
END

subroutine EPSL(FREQ,W,EEFFF,WEFFF,XIFFF)
COMMON/CONST/PI,AMUO,EPSO,EPSEFF(6),OMEGA,VVEFF(6),NUM
COMMON/DIM/ A,B,C,D,D1,D2,H,ER,G,tt

dimension p(40),r(50),eps(2),cs1(2)
EEFFO=EPSO
EPSR = ER

up = w/h
th = tt/h
f9 = freq/ 1.0e09
F=F9*H
if(thlt.0.0000001e0) th = .0000001e0
do 100 icount = 1,2
eps(1) = 1.00001
eps(2) = epsr
e = eps(icount)
call single(up,th,e,u)
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P(1) = 1.e0+ALOG((U**4+(U/52.e0)**2)/(U**4+.432e0))/49.e0
P(1) = P(1) + ALOG(1.e0 + (U/18.1e0)**3)/18.7e0
P(2) = .564e0 * ((E-.9e0)/(E+3.e0))**.053e0
El = (E+1.e0)/2.e0+(E-Le0)*(1.e0+10.e0/U)**(-P(1)*P(2))/2.e0
P(3) = .27488e0+(.6315e0+.525e0/(1.e0+.0157e0*F)**20)*U
P(3) = P(3)-.065683e0*EXP(-8.7513e0*U)
P(4) = .33622e0*(1.e0-EXP(-.03442e0*E))
P(5) = .0363e0*EXP(-4.6e0*U)*(1.e0-EXP(-(F/38.7e0)**4.97e0))
P(6) = 1.e0 + 2.75 le0*(1.e0-EXP(-(E/15.916e0)* *8))
Q1 = P(3)*P(4)*((.1844e0+P(5)*P(6))*F)**1.5763e0
E2 = E-(E-E1)/(1.e0+ Q1)
call single(up,th,e,u)
ZO = 376.77e0
RO = 6.e0+(2.e0*3.14159e0-6.e0)*EXP(-(30.666e0/U)**.7528e0)
Z1 = Z0/2.e0/3.14159e0/SQRT(E1)*ALOG(RO/U+SQRT(1.e0+(2./U)**2))
R(1) = .03891e0*E**1.4e0
IF (R(1).1e.20.e0) goto 10
R(1) = 20.e0

10 R(2) =.267e0*U**7
IF (R(2).1e.20.e0) goto 20
R(2) = 20.e0

20 R(3) = 4.766e0*EXP(-3.228e0*U".641e0)
R(4) =.016e0+(.0514e0*E)**4.524e0
R(5) = (F/28.843)**12
R(6) = 22.2e0*U**1.92e0
IF (R(6).1e.20.e0) goto 30
R(6) = 20.e0

30 R(7) = 1.206e0-.3144e0*EXP(-R(1))*(1.e0-EXP(- R(2)))
R(8) = 1.+1.275*(1.-EXP(-.004625*R(3)*E**1.674e0*

* (F/18.365)**2.745))
R(9) = 5.086*R(4)*R(5)/(.386*R(4))*EXP(-R(6))/

(1.+1.12992*R(5))
R(9) = R(9)*(E-1.)**61(1.+ 10.*(E-1.)**6)
R(10) = .00044*E**2.136+.0184
R(11) = (F/19.47)**6/(1. + 9.619999-2*(F/19.47)* *6)
R(12) = 1./(1.+.00245*U**2)
R(13) = .9408*E2**R(8)-.9603
R(14) = (.9408-R(9))*E1**R(8)-.9603
R(15) = .707*R(10)*(F/12.3)**1.097
R(16) = 1.0 + .05030*E**2*R(11)*(1.0-EXP(-(U/15.0)**6))
R(17) = R(7)*(1.0-1.12410*R(12)/R(16)*EXP(-.0260*

F**1.156560-R(15)))
Z2 = Z1*(R(13)/R(14))**R(17)
csl(icount) = sqrt(e1)/(3.e8*z1)
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100 continue
ell = cs1(2)/cs1(1)
zl 1 = sqrt(e11)/(3.e8*cs1(2))
e22 = e2*ell/el
z22 = z2 *zll /zl
eeff0 = ell
eefff = e22
zair = 376.73
weft.° = zair /zil *h /sqrt(ell)
wefff = zair/z22*h/sqrt(e22)
BB1=1.+UP**.371/(1.0+2.3580*EPSR)
PP4 =1.0+ .03770*ATAN((.0670*UP**1.4560)*(6.0-5.0*EXP(

* .0360*(1.0-EPSR))))
PP3=.52740*ATAN(.0840*UP**(1.94130/BB1))
PP3 =1.0+ PP3/(E22**.92360)
PP2=1.0-.2180*EXP(-7.50*UP)
PP1=.4349070*(UP**.85440+ .2360)*(E22**.810+ .260)/

* ((UP**.85440+.870)*(E22**.810-.1890))
XLEX = H *PP1 *PP2 *PP3 /PP4
DWE=(WEFFF-UP*H)/2.0
XLFF=1.0-(2.0*DWE*UP*H+DWE*DWE-2.0*XLEX*UP*H-XLEX**2)/

* (WEFFF**2)
end

subroutine single(up,th,e,u)
parameter (pi = 3.14159265358)
dws = sqrt(6.517*up)
dws = th*(log(1.0+ 10.87313/(th*((exp(2.0*dws)+ 1.0)/

* (exp(2.0*dws)-1.0))**2)))/pi
dwr = .50* (1.0+ 2.0 /(exp(sqrt(e -1.0)) + exp(-

* (sqrt(e-1.0)))))*dws
u = dwr + up
end




