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RANGE OF MOTION OF BEETLE BODY AS A FUNCTION OF

LEG PARAMETERS

1. INTRODUCTION

1.1. Why study beetle's body range of motion with

different link parameters?

In recent years walking machines have been the

subject of considerable study because, in complicated

environments, walking machines, or legged vehicles, have

advantages over tracked or wheeled vehicles.

Approximately 50% of land surface of earth is not

accessible to conventional tracked or wheeled vehicles

(Song and Waldron 1989). Walking machines can travel

over irregular terrains, across areas of soft soil, on

steep inclines or in open-work structures. They can do

this while using less fuel and causing less environmental

damage than tracked or wheeled vehicles (Song and Waldron

1989). Moreover, the legs of walking machines can be

used as secondary arms for either digging or gripping

(Todd 1985).

The body range of motion is the set of all possible

positions and orientations of the beetle body with feet

in fixed positions. This set constitutes the reachable

workspace of the body of with that set of fixed foot
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positions. This information is valuable for analyzing

walking of beetles and for design of walking machines.

For the current study, body range of motion is defined as

the ranges of motion of body mass center.

In this study, the underlying research question is

the issue of what effects is served by changes to the leg

parameters of the darkling beetle. Some specific leg

parameters are selected for changing. Body ranges of

motion are searched based on these changes. From these

body's ranges, we can understand which limitations or

changes are appropriate for effective design and

manufacture of walking machine.

1.2. Modeling of the darkling beetle

In recent years, walking machines have been designed

for proof-of-concept of control and navigation system

while travelling on obstacle-free surfaces which are

nearly horizontal and smooth in nature (Baek 1990).

Walking machines currently in use do not perform well in

complex environments since their leg mechanisms and

controls have not been designed to accommodate difficult

terrains. Thus, the ability of animals which can travel

over varying and difficult terrain has been a source of

inspiration for research into walking machine design.

Among animal life, arthropods and vertebrates are
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the only candidates for biological research in legged

locomotion (Pedley 1977, Gewecke and Wendler 1985) for

reason of their multi-segmented articulated legs.

Arthropods have evolved to deal with a wide variety of

terrain (i.e., spatially complex environment) over a

period of 600 million years (Fichter et al. 1987).

Vertebrates have sophisticated nervous systems and

internal skeletons. Arthropods, including lobsters,

spiders, crabs and insects, possess simple nervous

systems and external skeletons. Simple nervous systems

imply relatively simple control systems which may be

simulated in walking machines. External skeletons make

it easy to identify joints axes of legs and observe their

motions. So, the arthropods is a better selection for a

model of walking machine.

If an animal's locomotion is confined to walking or

running on the ground, it will be able to provide a good

model of walking machine. The darkling beetle, Eleodes

obscura sulcipennis, has been chosen since it neither

flies nor jumps and is easily available. Darkling

beetles are common in arid regions of the western USA.

In addition, the darkling beetles is easily handled for

reason of its relatively large size about 30 mm, from

head to tail, and durable body.
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1.3. Subjects discussed in this thesis

Chapter 2, defines coordinate systems for the body

and legs of the darkling beetle using the D-H (Denavit-

Hartenberg) model (Denavit and Hartenberg, 1955).

Chapter 3 presents the derivation of kinematic

equations for legs and the solution of these equations.

The quartic equation resulting from this solution is

solved in chapter 4 using Bairstow's method. Finally,

all inverse kinematic solutions are obtained for each leg

and use to determine acceptable points within the range

of motion.

For tracing the boundary of the body range of

motion, an algorithm developed by Mason (1956), Cordray

(1957) and Mason (1957) is presented in chapter 5. This

chapter discusses the search method for closed loop

contours, the set of initial conditions for starting

boundary searching and giving examples of "sub-space" and

"split-workspace" (Foo 1991). It also explains the

computer programs developed for use in this study.

Chapter 6 discusses how to find foot positions of

six legs for best body ranges of motion. At the

beginning of this chapter link parameters changes are

discussed.

Discussions of foot and body ranges of motion with

changed link parameters and feet fixed on the ground are
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presented in chapter 7. The effects of roll, pitch, yaw

and numerical method are considered in the end of this

chapter.
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2. DEFINITION OF COORDINATE SYSTEMS FOR THE BEETLE

Setting coordinate systems for darkling beetle is

the first and most important step, otherwise the

kinematic equations for beetle's legs can not be written.

There are five segments, coxa, trochanter, femur, tibia

and tarsus, in each leg of the darkling beetle, as shown

in Fig. 2.1. The first four are connected by revolute

joints and a ball-and-socket joint is used to join tibia

and tarsus together. Since all subsegments of tarsus

touch ground during walking and tarsus is not related to

the leg movement of beetle, this segment has been

eliminated from consideration of leg composition. The

trochanter is assumed fused to femur because its motion

relative to the femur is small. So, for the purpose of

this study, the coxa-trochanter joint is included in

coxa-femur joint. Based upon these assumptions, the leg

is joined by three revolute joints which can be modeled

as a RRR manipulator.

For determining measurement of link parameters of

beetle, a measuring coordinate system (Mx, My, mz) is

defined. The origin of this coordinate system is located

at the midpoint of the line segment connecting ventral

articulations of middle legs (Figs. 2.1 and 2.2). The

axis mx lies along this line segment, positive toward

beetle's right side. The axis My intersects the line



troctianter tibia

7

Fig. 2.1. Ventral view of a darkling beetle showing
segment names, body and measuring coordinate
systems and joint axes of left middle leg
(Baek 1990).
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Fig. 2.2. Perspective view of a darkling beetle showing
joint axes of left hind leg, measuring and
body coordinate systems (Baek 1990).
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connecting ventral articulations of rear legs, positive

toward head. The axis mz forms a right-handed coordinate

system (Fig. 2.2). Fig. 2.1 also shows the leg numbering

system. According to the beetle's external skeletons and

the shape of body, including legs, two assumptions are

used to simplify this kinematic study.

1) The body is rigid,

2) The body has mirror symmetry about the my-mz plane.

The first is justified because the beetle has an

external skeleton; structurally this is a shell making it

very rigid for its weight. The second assumption is

14 z

tibia-tarsus
joint

Fig. 2.3. Coordinate systems of leg of beetle in D-H
notation (Baek 1990).
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certainly an approximation but one which is generally

made about these animals and accurate as an average over

many individuals.

Fig 2.3 shows body coordinate system (Bx, By, Bz),

coordinate systems for simplifying model (frames "0" and

"c") and coordinate system for leg segments. Axes of the

body coordinate system (Bx, By, Bz) are parallel to the

measuring coordinate system (Mx, My, mz) respectively and

the origin of body coordinate system is placed at body's

center of mass. The coordinate system "0" (x0, y0, z0) is

used between body-coxa coordinate system and measuring

coordinate system to apply Denavit-Hartenberg notation

(D-H notation). The frame "c" (°x, Cy, °z) is placed

between the frames "0" and "1" to simplify derivation of

inverse kinematic equations. The kinematic parameters

for all legs were measured on dead beetles using the

procedures described in Fichter et al (1988). The

kinematic parameters for six legs are listed from tables

2.1 to 2.6.
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Table 2.1. Kinematic parameters for right front leg

Segment
Link
length
(mm)

Link
twist
(deg)

Link
offset
(mm)

Range of joint
angle
(deg)

Body 3.38 -141.0 -1.32 101.7 to 101.7

Coxa 0.24 -100.4 -2.81 4.2 to 114.2

Femur 3.02 27.9 16.24 -89.8 to 20.2

Tibia 6.93 0.0 -13.19 -110.4 to 29.6

Table 2.2. Kinematic parameters for right middle leg

Segment
Link
length
(mm)

Link
twist
(deg)

Link
offset
(mm)

Range of joint
angle
(deg)

Body 0.21 -147.6 -2.27 81.5 to 81.5

Coxa 1.34 100.7 -3.47 46.8 to 161.8

Femur 4.58 -11.3 37.35 -24.8 to 85.2

Tibia 7.48 0.0 -35.29 -26.6 to 113.4

Table 2.3. Kinematic parameters for right hind leg

Segment
Link
length
(mm)

Link
twist
(deg)

Link
offset
(mm)

Range of joint
angle
(deg)

Body 1.98 136.4 -3.24 -120.7 to -120.7

Coxa 0.94 98.6 -5.57 -108.2 to -43.2

Femur 11.28 -12.6 4.93 -110.5 to 24.5

Tibia 10.35 0.0 -1.34 26.2 to 166.2
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Table 2.4. Kinematic parameters for left front leg

Segment
Link
length
(mm)

Link
twist
(deg)

Link
offset
(mm)

Range of joint
angle
(deg)

Body 3.38 141.0 -1.32 78.3 to 78.3

Coxa 0.24 100.4 -2.81 -114.2 to -4.2

Femur 3.02 -27.9 16.24 -20.2 to 89.8

Tibia 6.93 0.0 -13.19 -29.6 to 110.4

Table 2.5. Kinematic parameters for left middle leg

Segment
Link
length
(mm)

Link
twist
(deg)

Link
offset
(mm)

Range of joint
angle
(deg)

Body 0.21 147.6 -2.27 98.5 to 98.5

Coxa 1.34 -100.7 -3.47 -161.8 to -46.8

Femur 4.58 11.3 37.35 -85.2 to 24.8

Tibia 7.48 0.0 -35.29 -113.4 to 26.6

Table 2. . Kinematic parameters for left hind leg

Segment
Link
length
(mm)

Link
twist
(deg)

Link
offset
(mm)

Range of joint
angle
(deg)

Body 1.98 -136.4 -3.24 -59.3 to -59.3

Coxa 0.94 -98.6 -5.57 43.2 to 108.2

Femur 11.28 12.6 4.93 -24.5 to 110.5

Tibia 10.35 0.0 -1.34 -166.2 to -26.2
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3. DERIVATION AND SOLUTION OF KINEMATIC EQUATION

Kinematic equations are used to compute position of

the end-effector relative to the base of the manipulator

as a function of the joint variables (Craig 1986). In

this thesis the inverse kinematic equations are used to

calculate joint variables from the position of the end-

effector. Because all six legs of beetle are RRR

manipulator, only one set of inverse kinematic equations

is needed. The link parameters of each leg are

substituted into the inverse kinematic equations to solve

for joint variables. Therefore, for a given body

position and a known set of foot positions, all joint

variables can be solved for. If all joint variables are

within their ranges then this body position can be said

to be within the body's range motion for the known set of

foot position.

The global coordinate system (Gx, Gy, Gz) can be put

at any point and positive Gz axis is opposite gravity

force direction. Relationship between body and global

coordinate systems can be shown by a homogeneous

transformation matrix. The transformation from global to

body coordinate system can be

GTB=Trans(x13, yB, z8) Rot (Gy, 02) Rot(Gx, 00 Rot(Gz, 03)

where 01, 02 and 03 are orientation angles of the body

about Gx, Gy and Gz axes and these three angles are



14

conventionally called pitch, roll and yaw respectively.

Let MdB be the position vector of center-of-mass of

body with respect to measuring coordinate system. So,

mdi= d, Mn, + dy mny + d, Mn, where mn's are the unit

vectors of the measuring coordinate system and d, is zero

(because of beetle's body symmetry). Then, the

transformation matrix from body to measuring coordinate

system is

1 0 0 dz

0 1 0 dr
mTB =

0 0 1 dz

0 0 0 1

where

d, = 0

The general formula of the homogeneous transformation

matrix for each link using the D-H parameters (Craig

1986) is

'No

=

COi

SeiCai_i

SOiSai_i

-S8;

COiScci

0

Cai_i Cai_idi

0 0 0 1
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where

i= 0, 1, 2, 3

C0= cos Oi

SOi= sin O

Ca; cos ai

Sai= sin al

ai= the distance from zi to zi+1 measured along

ai= the angle between zi and zi4.1 measured about xi.

di= the distance from xw to xi measured along

Oi= the angle between xi4 and xi measured about

If i-1 is -1, it means frame "-1" is equivalent to the

measuring coordinate system "M". From Fig. 2.3, 00 is a

constant value. Hence, 01, 02 and 03 are the only unknown

variables.

Coordinate of the central point of the tibia-tarsus

joint can be formed by two paths. One is to define

from the global coordinate system. The other is

expressed in the left hand side of the following

equation.

GTB sTimt mT
°T1

2rp Gp
0 1 -L2 -1-3 4 4

°P4

(3.1)

Equation (3.1) can be simplified by separating the

variable 01 from constant values, a0, a0 and d1, in the

matrix °T1 and introducing frame "c" between frames "0"

and "1" (Fig. 2.3). So, a new definition equation will

be given as °T1 = 171 where

171 = Rot(z1, 00



and

°Tc = Rot(x, ce0 Trans(x, a0 Trans(z, dl)

Therefore,

cTl 'T2 2T3 3P4 = T4

16

(3.2)

and

T4 = CT° °T-11 MTB BTG GP4 (3.3)

These equations are the kinematic equations of one

leg. The right-hand side of equation (3.3) and the left-

hand side of equation (3.2) are known. Thus, all knowns

are substituted into equations (3.2) and (3.3). After

expanding and calculating, equation (3.2) becomes to

three nonlinear scalar equations (equations 3.4 to 3.6)

with three unknown variables, 01, 02 and 03 (Baek 1990)

and cP4CP4Xf Tay, T40 is obtained from equation (3.3),

too.

Tax = E1 COI + E2 S 01 (3.4)

T4y = -E2 COI + El SO, (3.5)

and

R1 == Q11 s6/3 +Q12 CO3

where

El =Z (CO2 CO3 SO2 S03 Ca2) 3P4x .".0 02 SO3 SO2 CO3

Cat) 3P4), S 02 Sat 3P4z + CO2 a2 +502 Sa2 d3 + ai

E2 (SO2 CO3 Cal - CO2 SO3 Cal Ca2 + SO3 Sal Sa2)

31)4x + (SO2 503 Cal - CO2 CO3 Cal Ca2 + CO3 Sal

Sa2) 3P4), + (CO2 Cal Sa2 + Sal Ca2) 3P4, + (-SO2

Cal a2 + CO2 Cal Sa2 d3 + Sal d2)

(3.6)



R1 = cPaz (-CO2 Sal Sa2 + Cal Ca2) 31)4z (SO2 Sa

- CO2 Sal Sa2 d3 + Cal Ca2 d3 +Cal d2)

Qll = CO2 Sal

Qu = SO2 Sal

Ca2 3P4, + Cal Sa2 3Pax SO2 Sal 3P4),

3134x + CO2 Sal Ca2 3P4y + Cal Sa2 3P4),

17

Equations (3.4) and (3.5) are a circle and equation (3.6)

is a quartic curve independent of 01 (Baek 1990). These

three equations are all squared individually and then all

three squared equations are summed together to form a new

equation. After simplifying this new equation, equation

(3.7) is gotten.

R2 = Qn S °3 + Q22 C83

where

R2 = c1"4X2
cp4y2 cp4z2 3p4x2 3p4y2 3p4z2

alt - a22 d22 - d32 - rpt A A + A d3 4_v 2 .

S 02 Sa2 al d3 + d3 31)4z + Ca2 d2 3P4z + a1 SO2 Sa2

3P4z)

Q21 = 2 (Sa2 d2 3134, al SO2 Ca2 P3 a2 3P4y CO2

Q22 =

al 3P4y)

2 (a2 3P4x + CO2 a1 3134x d2 Sa2 3P4y S 02 Ca2

(3.7)

al 3R4y)

From equations (3.6) and (3.7), SO3 and c03 can be solved.

Therefore,

SO3 = n, / A (3.8)

c03 = n2 / A (3.9)

where

A = Qu Q22 Q12 Q21
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DI = Q22 R1 - Q12 R2

n2 = QU R2 Q21 R1

Since cos20 + sin20 = 1, the above equations can be

eliminated 03 and simplified as a new equation which only

is a function of 02.

Therefore,

02 = n12 ,22

where

O =HI CO2 + H2 S 02 + H3

= 502 + 1, ce2 + 13

n2 = Jl se2 + J2 C 02 + J3

and

H1 = 2 (Sal Ca2 a2 + a1 Cal Sa2)

H2 = -2 Sal Sa2 d2 (31)42 3P4y2)

H3 = 2 (al Sal Ca2 + Ca, Sa2 a2)

II = G9 D6 - G7 D4 - G4 D8 - G5 D9

12 = G4 D7 + G6 D9 + G8 D6 - G7 D5

13 = G5 D8 + G9 D4 + G4 D9 - G7 D6

ji = G1 D8 + G2 D9 G7 D2 - G9 D3

J2 = G7 DI G8 D3 G1 D7 - G3 D9

= G9 D2 - G2 D8

and in addition,

DI = Sal Ca2 P3 4x

D2 = Sal 3P4y

D3 = Cal Sa2 P
3 4x

D4 = Sal Ca2 P3-4x

+ G7 D3 GI D9

(3P4.2 + 3P4y2)

(31)4x2 + 3P4y2)

(3.10)
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D5 = Sal Ca2 3P43,

D6 = Cal Sat 3 P4y

D7 = (d3 + 3P4,) Sal

Ds = a2 Sal

Sa2

D9 = eP4z Cal d2 Cal Cat d3

GI = 2 (Sa2 d2 P3- ax az 3P4y)

G2 = 2 al Caz 3P4x

G3 = 2 al 3P4y

G4 = 2 (a2 3P4x + d2 Sae 3P4y )

G5 = 2 Ca2 al 3P4y

G6 = 2 al 3pu

Cal Ca2 3P4z

cp4x2 + cp4y2
+ cp4x2 3p4x2 3p4y2 3p4x2

ale - a22 - d22 - d32 2 fr., A A + A.r., % ....s.4.2 d2 d3 . +d3 3P4z

Ca2 d2 3134z)

G$ = 2 al a2

G9 = 2 (Sa2 al d3 + al Sa2 31)4z)

Rearrange the equation (3.10) with respect to 82 and
simplify, results in:
K1S022

where

+ K2CO22 + K3CO2S 02 + K4S 02+ K5C 02 + K6 = 0 (3.11)

K1 = 112 + J12 H22

K2 = 122 + J22 H12

K3 = 2 (Ii 12 + JJ-1 2 H1 H2)

K4 = 2 (II 13 + Ji J3 .. H2 H3)

K5 = 2 (12 13 + J2 J3 - H1 H3)

132 + J32 H32
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Since sin202 + cos% = 1, sin02 can be eliminated from

equation (3.11) giving:

K7 X4 + K8 X3 4- K9 X2 + K10 X + Kll = ° (3.12)

where

K7 = (K2 - K1) 2 + K32

K8 = 2 [K5 (K2 - K1) + K3 K4]

K9 = K52 + K42 - K32 + 2 (K2 - KO (K1 + KO

K10 = 2 [K5 (K1 + K6) - K3 K4]

Kn = (Ki + KO2 - K42

and

X = cos°2

Equation (3.12), a quartic equation, can be solved by

Bairstow method, a numerical method, used to calculate

roots of polynomial equations. This method is given

detailed consideration in chapter 4.

Equation (3.12) may have 4, 2 or no real roots; if

there are no real roots the body position is outside the

range of motion.

From equation (3.11),

cos202((1-k2)-(k5cos02+K6+KI)
sin 02 =

K3COS02+1<4

Real roots are substituted into above equation to

calculate values of sin 02. The sin 02 can be solved
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from sin% = 1 - cos202, too. Since sin 02 is equal to

(1-cos202)1/2 or -(1-cos202)1/2 , the right solution does not

obviously be confirmed from these two. Thus, this

formula does not use in here. So 02 will be obtained by

02 = Atan2 (sin 02, cos 612) and 03 can be calculated from

equations (3.8) and (3.9). In equations (3.4) and (3.5),

El and E2 can be calculated and finally 01 can be

determined.

Several sets of 01, 02 and 03 are found from above

procedures for each of the six legs. If any of these

sets satisfy the criteria:

and

( 03) nth,

< e, < ( 00.
< 02 < (02)..

< 033 ( 03)

then the body position is within its range of motion.
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4. NUMERICAL METHOD FOR SOLUTION OF QUARTIC EQUATION

4.1. Introduction

Either algebraic or numerical methods can be used to

solve real-coefficient quartic equations. However, the

numerical methods are much simpler and much less

convoluted than the algebraic method; thus a numerical

method is used. From many available numerical methods

for solving polynomial equations, the Bairstow method was

chosen for this study. The method seeks quadratic

factors of a polynomial equation with real coefficients.

The advantage of this method is that both imaginary and

real roots can be easily found by solving the quadratic

factors (Press, W.H., Flannery, B.P., Teukolsky, S.A. and

Vetterling, W.T. 1989, Haberman 1966).

4.2. The Bairstow method

The Bairstow method divides the polynomial to be

solved by a quadratic polynomial with real coefficients.

Let

f (x) =a0xn+alxn-1+ +an_ix+ay, (4.1)

be a polynomial equation with real coefficients of degree

n which will be divided by x2+px+q where p and q are real

numbers.



f (x) = (x2 +px +q) (boxn-2+bixn-3+ +bn_2) +Rx+S

Expanding above equation f (x) becomes

f (x) =boxn+ (bi+pbo) xn-1+ (b2+pb1 +qb0) xn-2+

(R+pb,_2+qb,_3)x+qb,_2+S

+
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(4.2)

where R and S are the functions of p and q. If x2+px+q

is a factor of f(x), both R and S must be zero.

Therefore,

R(p,q)=0

S(p,q)=0 (4.3)

Let po and q0 be assumed as approximate values of p and q.

So,

P=Po+AP

q=q0+Aq

and

R (po+Ap , go-big) =0

S (poi-zip , cio+Aq) =0 (4.4)

The corrections, Op and Aq, are calculated and added to

previously assumed coefficients po and qo to get a new

pair of p and q for using in the next iteration. When Op

and Aq approach zero, the procedure converges to the

required values of p and q. Thus the original polynomial

is replaced by a quadratic and a new polynomial with

degree two less than the original. Fig. 4.1 illustrates

the flow chart for Bairstow method.
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Read

coefficients of

equation

i
Set

Initial values: p..0, q...0 and
tolerance-0.00001

.14
Calculate

coefficients for Taylor's series of equation and

approximated equation

Solve
Ap and Aq

V
Yes

Find
two roots

Reduce
two degrees from equation

Save
coefficients of equation of (n-2) degree

No
Iv
Fnd

other root(s)

End

Change
initial values of p and q

Fig. 4.1. Flow chart for the Bairstow method.
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4.3. Derivation of two corrections: Op and Aq

Equations (4.4) can be expanded in Taylor series as

follows:

AR(po+Ap,q0+Aq)=R(Poiclo)+AP-%aR +Laq--
aR

+P oq

S (po +4 , qo +AM =S (Poi go) +Lip
75
a s

+60q
as

7Ei
+

=0

=0

If Ap and Aq are small, the above both equations can be

approximated by

R (Po, q0) A-Ap,
aR aR+Aq =0
dP 7Ei

aS aS
S (po,q0) +Ap

dp
, 4-Aq,

dq
=0

(4.5)

(4.6)

To solve equations (4.5) and (4.6), coefficients of

equation (4.1) and equation (4.2) are compared. The

relationships are:

bo = ao

b1 = al - pbo

b2 = a2 - pb1 - qbo



26

R = bn4 = an_.1 Pbn_2 qbn-3

S = bn + pb,4 = - qb_2

In general,

b4 = 13_2 = 0

bk = ak - pbk4 - qbk_2

where

k=0,1,2,3,4, , n-1

Using these relationships partial derivatives, aR/ap,

aR/aq, aS/ap and aS/aq, are calculated and denoted by C's

(Herriot 1963):

abk=_,

ab,=_,
Tcy `-1-2

(4.7)

where

Ck = bk Pck4 - qCk_2 (k=0,1,2,3, ,n)

C4 = = 0

The k used in equations (4.7) is replaced by n-1 to

obtain first two equations in equations (4.8) and is

replaced by n to obtain others in equations (4.8).



aR.
-n 2

aR. abn_,.,4 Er

as= abn=
DT 75 11-1

as. abn._
-3,7/ -ar4
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(4.8)

To solve for Op and Aq, equations (4.8) are substituted

into simultaneous equations which are formed by equations

(4.5) and (4.6). First, equation (4.5) is multiplied by

p and subtracted from equation (4.6) to form a new

equation. Since the R and S are known in equations (4.5)

and (4.6), only the partial derivatives terms in this new

equation and equation (4.5) are substituted by the known

equations (4.8). After rearrangement, the corrections,

Ap and Aq, can be solved by

+ =

(C4 - b.1)Ap + C-241q = b,

Thus,
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D
=

D.

where

D.,

D
and Aq =

D
4

D = Cn-2Cn-2 C,..3 ( Cn_1 bn_i )

D1 = lon_IC,2 - bC,..3

D2 = bnCa_2 bn_i ( Cn_1 10,4)
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5. ALGORITHM FOR FINDING BOUNDARY OF BODY RANGE

5.1. Introduction

Body range of motion (workspace) with fixed foot

positions is constituted of all positions of center of

mass for which there are solutions for inverse kinematic

equations for all legs. The boundary of this workspace

is to be found. But there is no functional description

of the boundary; only the ability to determine if a point

is inside or outside. The first step will be to consider

only the curves of intersection of the boundary with a

set of equally spaced planes parallel to the global x-y

plane.

To locate the boundary curves in these planes, an

algorithm which was developed by Mason (1956), Cordray

(1957) and Mason (1957) is used in this study. Fichter

(1986) used this method before to obtain range of motion

for a Stewart Platform. The algorithm of Mason and

Cordray was developed to get contour maps in a 2-D plane

which provided pictorial information about the

orientation and spacing of atoms and molecules in a

crystal. In this algorithm, the 2-D plane is divided by

horizontal and vertical lines with the same intervals.

The searching algorithm then finds meshpoints which lie

approximately on the contour boundary.



30

5.2. Searching method for finding contour

The algorithm proceeds as follows. If one side of a

unit square crosses the boundary, two points on this side

will be on opposite sides of the boundary and will be

numbered 1 and 4. The point 1 is assumed as within the

boundary and the point 4 is assumed as outside the

boundary. The other two corners of the unit square are

numbered 2 and 3 (Fig. 5.1). From Fig. 5.1, the contour

can enter the unit square from one of four directions:

right, left, top and bottom.

If contour enters from either top or bottom, the x

coordinates of points 1 and 2 are equal as are x

coordinates of points 3 and 4 and y coordinates of points

2 and 3 are decreased or increased one unit distance from

points 1 and 4. If contour enters from either left or

Fig. 5.1. Possibilities of contour entries and numbers
for four corners of square grid.
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right, then the y coordinates of points 1 and 2 are equal

as are those of points 3 and 4 and x coordinates are

increased or decreased one unit distance from points 1

and 4. Because the grid is a square unit distances in x

and y directions will be the same. But how can the

entering directions be known? The coordinates of points

1 (within the boundary) and 4 (outside the boundary) can

tell this.

1) y coordinates of points 1 and 4 are same:

i) If x coordinate of point 1 is greater than point

4, then the contour enters from top of square.

ii) If x coordinate of point 1 is less than point 4,

then the contour enters from bottom of square.

2) x coordinates of points 1 and 4 are same:

i) If y coordinate of point 1 is greater than point

4 then the contour enters from left of square.

ii) If y coordinate of point 1 is less than point 4

then the contour enters from right of square.

From above rules, the following equations can be

applied to determine coordinates of points 2 and 3.

1) If 171 = y4 and xl > x4,

then x2 = xl, x3 = x4. Y2 = Y1 akCI Y3 = Y4

2) If yl = y4 and xi < x4,

then x2 = xl, x3 = Y2 = Y1 + Ad. Y3 = Y4

3) If xi = x4 and yl > y4,

-Ad

+ Ad

then Y2 = Yi, Y3 = Y4, x2 = x1 + Od, x3 = x4 + Ad
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4) If x1 = x4 and y1 < Y4,

then y2 = Y1 Y3 = Y4 x2 = x1 - Ad, X3 = X4 - Ad

where xi and yi are the coordinates of point i

i = 1, 2, 3, 4

Ad = the length of one side of square grid

To eliminate some unwanted points during

calculation, a variable, S, is used. S can be either 1

or -1 depending on where the contour leaves the previous

square. S is 1 if the contour left the previous square

through side 3-4. S is -1 if the contour left the

previous square through side 1-2. S remains unchanged if

the contour left the previous square through side 2-3.

After determining the value of S, either point 2 or 3

will be selected to compute based on the value of S.

When the needed point (point 2 or 3) is determined, one

side (side 1-2 or 3-4) of unit grid is checked whether

the boundary crosses. If the boundary crosses either

side, new S and points 1 and 4 can be decided for next

iteration and boundary point is found by interpolating

between points 1 and 4. Above procedures can eliminate

one meshpoint's calculation. If boundary does not cross

above selected sides, the other unselected point will be

computed to determine which side is crossed by boundary.

Thus, new S and points 1 and 4 can be decided and

boundary point is found after these procedures. These

procedures will be repeated until the initial point
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(introduced in next section) is found again. A flow

chart of this method is shown in Fig. 5.2.

5.3. Initial conditions for searching method

To start boundary search, an initial point must be

determined. The centroid of the six foot positions in x-

y plane is located. The boundary of range of motion

intersects a line which passed through this centroid and

is parallel to the y-axis. Therefore, the initial search

for boundary is begun from the centroid of positions

along this line to the minimum and maximum y-coordinate

values. Since the length of beetle body, from head to

tail, is about 30 mm the minimum y is centroid of foot

positions minus 30 and the maximum y is centroid of foot

positions plus 30. The first direction of initial search

is from the centroid to the maximum y-coordinate. When a

boundary point is detected, the contour is traced and

points 1 and 4 of this first grid are kept to examine

whether the search procedure is finished or not. After

completion of the search, the direction is changed toward

to minimum y-coordinate discarding the area of previous

contour to find whether another contour exists.

A flag variable is used while determining whether or

not the boundary crosses the line through the centroid.

If the starting point is within the boundary, the flag is
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Fig. 5.2. Flow chart for Mason and Cordray algorithm.
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1; otherwise, the flag is -1. When the flag changes from

1 to -1 or -1 to 1, the boundary has been crossed.

Then,the search procedure is run until returning to

points 1 and 4 of the first grid.

5.4. Computer program for searching range of motion

To search ranges of motion, a computer program was

written in the C language. In this program, inputs and

outputs are stored in files. The input files include leg

parameters of the darkling beetle and foot positions, and

the output files consist of the x-, y- and z-coordinates

of the boundary points. The program also provides a

graphic function which can display four views of the

range of motion: front, top, side and axonometric

projection views. The axonometric view can be rotated

about y and z axes by user input of rotation angles.

The program has four principal subroutines which can

be used independently. The Bairstow method for solving

quartic equations was written first. The subroutine is

limited to calculating the roots of quartic equations.

To determine the joint angles (01, 02, 03) for a

certain body point within boundary or not, the kinematic

equations derived in chapter 3 were used to develop the

second subroutine which also uses the first subroutine

for solving quartic equations. The link parameters and
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foot position files are the inputs for this program. The

joint angles (01, 02, 03) are found for six legs after

calculating the inverse kinematic equations and these are

compared with the ranges of each respective leg's joint

angles to determine whether or not this certain point

satisfied the beetle's limitations.

The third subroutine finds boundary points. In this

subroutine, size of grid and number of iterations applied

to interpolate the boundary points affect the accuracy of

the results. A small number of iterations speeds

computation but gives less accurate. A large size of

grid can save time in running the program but can not

give accurate curves especially for sharp corners (Fig.

Gird size - 0.5 x 0.5 mm2 Grid size - 0.2 x 0.2 mm2

Fig. 5.3. Two different grid sizes for same contour.
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5.3). For this study, the grid size 0.2 x 0.2 mm2 is

selected. During search procedure, each point is checked

by solving for joint angles for each leg. If body range

is to be determined, each point must be checked for

inverse kinematic solutions of all six legs. If foot

range is to be determined, only one leg's inverse

kinematic solution is checked for each point. When a

boundary point is found, its x-, y- and z-coordinates are

saved in a data file.

The final subroutine is a graphic presentation of

the contour on screen in top, front, side and axonometric

views. It reads data from output file of search

subroutine and shows all four views or only one.

5.5. Examples of special contours

Two kinds of special contours, split-workspace (Fig.

5.4) and sub-space (Fig. 5.5), (Foo, 1991) are considered

in this study. As noted in the previous section, the

search is begun from the centroid of six foot positions

along the line passing through it. After one contour is

found, the rest of this line is checked to determine if

another boundary exists. If another contour is found

split-workspace exists.

Within a contour of range of motion, a space which

the beetle can not reach is called sub-space (Fig. 5.5).
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Fig. 5.4. An example of split-workspace.

Fig. 5.5. An example of sub-space.
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When a contour is presented, the whole area of this

contour has to be examined again to determine whether or

not a sub-space exists.
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6. PARAMETER SELECTION AND BODY RANGE OF MOTION ANALYSIS

6.1. Selections of changes in leg segment parameters

The boundary for the body range of motion is a

continuous surface but much of this boundary is of little

interest since we are only concerned with walking. Only

three horizontal plane sections of the boundary are

determined. The heights of these curves have been

selected to include the most likely walking height

(Baek,1990).

Tables 2.1 to 2.6 show that coxa length for all legs

is small (less than 1.35 mm) and absolute value of coxa

twist is near 100 degrees (within 1.4 degrees). From the

point of view of design and manufacturing of walking

machines, one wonders why these lengths are not zero and

angles not 90 degrees. Therefore, one set of simulations

was done changing all coxa lengths, first to zero and

then to twice their original lengths. Another set of

simulations was done changing all coxa twists, first to

90 degrees and then to original angles increased by 10

degrees.

Finally, effects of changes in directions of body-

coxa joint axes were examined. A set of simulations was

done leaving the z-component of the body-coxa joint axis

unit vector the same but changing the other components



41

(changing azimuth). First the y-component was made zero

(direction 1) (i.e., direction set 1 in Fig. 6.1). This

results in rotating the body-coxa axis of each leg about

a line parallel to the body z-axis. Then the body-coxa

axis of each leg was rotated by the same angle but in the

opposite direction (direction 2).

A set of simulations was also done changing the z-

component of the body-coxa joint axis unit vector

(changing elevation) but leaving the other components

unchanged. First the body-coxa axis for each leg was

made parallel to the body z-axis (direction 5) (i.e.

direction set 5 in Fig. 6.2); this results in rotating

By

2

Body-coxa axis 0 : original direction

1 : direction set 1
PBX 2 : direction set 2

Fig. 6.1. Relationship among directions of body-coxa joint
axes for sets 1,2 and original.
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Body-coxa axis
0 : original direction

3 : direction set 3

4 : direction set 4
xy-plane 5 : direction set 5
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Fig. 6.2. Relationship among directions of body-coxa joint
axes for sets 3, 4, 5 and original.

the body-coxa axis of each leg about a line parallel to

the body xy-plane. Next each body-coxa axis was rotated

in the same direction but through half the original angle

(direction 4). Last, each body-coxa axis was rotated in

the opposite direction through half the original angle

(direction 3).

The beetle normally stands with its center-of-mass

10 mm above the ground and with the body xy-plane

parallel to the ground. The effects of changes in the

height have been evaluated by determining motion with

center-of-mass at 8, 10 and 12 mm above the ground. The

body ranges of motion are all determined with six feet

fixed on the ground. Foot positions are determined by
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finding center of foot range of motion for each height of

center-of-mass.

6.2. Determination of foot positions for finding body

range of motion with changed leg segment parameters

The body range of motion is found with six feet

fixed on the ground. Foo (1991) showed that maximum body

range of motion is with each foot at the center of the

foot range of motion. Thus, center of foot range of

motion used as foot position.

The computer program was prepared to determine body

range of motion but it assumes a fixed body orientation

and it can be constrained by any number of legs. Thus,

foot range of motion can be determined by constraining

body with only one leg. Foot range of motion determined

in this way must be rotated and translated to the correct

position for each foot. The following figures (Figs. 6.3

to 6.5) show foot ranges of motion for only right front,

left middle and right hind legs; the others are

symmetrical about the y-axis (By). Histograms of stride

length for each leg were plotted from foot ranges of

motion.

The stride length histogram is drawn by calculating

stride length at 1 mm interval along the x-axis from the

foot range of motion (Figs. 6.3 to 6.5). From the three
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Diagram of stride length
for right front leg at Bz =
8 mm
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Diagram of stride length
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Fig. 6.3. Foot ranges and stride length diagrams for
original leg parameters at Bz = 8 mm. Dotted
lines present procedure for determining foot
positions.
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Fig. 6.5. Foot ranges and stride length diagrams for
original leg parameters at Bz = 12 mm. Dotted
lines present procedure for determining foot
positions.
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figures, the diagrams of stride length for right front

leg have a almost flat top. In Figs. 6.4 and 6.5, the

stride length diagrams for left middle legs are

discontinuous because the stride length is not calculated

if the line along which stride length is measured in

these cuts the foot range of motion more than twice.

Best foot positions (i.e., the center of foot range

of motion) can be found from foot ranges of motion and

stride length diagrams. First, a point's slope at 45

degrees can be found from the stride length diagram of

every leg and the x- and y-coordinates of this point can

be measured. A line, from edge to edge, can be plotted

horizontally based on the y-coordinate of above point in

each stride length diagram and a middle point of this

segment can be measured. Then a vertical line can be

plotted on respective foot range of motion according to

the x-coordinate of this middle point. Along this

vertical line, a middle point can be determined between

two edges of respective foot range. This middle point is

the foot position of each leg. This procedure is shown

by dotted lines in Figs. 6.3 to 6.5 for different sets of

foot positions. From the above procedure, foot positions

of right front, left middle and right hind legs can be

determined. The other foot positions of three legs can

be found based on the leg's symmetry about By axis. All

sets of foot positions used in this study are listed in
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appendix from tables A.1 to A.10 and only foot positions

of right side legs are listed.
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7. DISCUSSION

7.1. Effects of changing leg segment parameters on body

and foot ranges of motion

In this chapter, body and foot ranges of motion are

discussed with roll, pitch and yaw all equal to zero.

Ranges are separated into four groups: coxa length, coxa

twist, direction sets 1 and 2 and direction sets 3, 4 and

5 which are also compared with the comparable original

parameter set for 8 , 10 and 12 mm heights. The square

dots represent foot positions in the figures of body

ranges; foot ranges show only right front, left middle

and right hind legs. Figs. 7.1 and 7.2 show the real

scales used for each of the component grid panels in

Figs. 7.3 to 7.10. In both Figs. 7.1 and 7.2, the x and

y axes are, respectively, the x-axis (Bx) and y-axis (By)

of the body coordinate system.

Figs. 7.3 to 7.6 present the body ranges of motion.

Based on these figures the following observations are

made.

1) The centroid of foot positions is always within 0.6

mm of the origin.

2) When coxa length is twice original length (2a1) range

is largest of the group in Fig 7.3. Body ranges with al

= 0 and doubling al are wider at height 8.
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Fig. 7.1. Scale used in each body range of motion.
The square blocks present the foot positions
used in each case. "*" indicates centroid of
foot positions.
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Fig. 7.2. Scale used in each foot range of motion.
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Fig. 7.3. Body ranges of motion for coxa lengths 0, al

and 2a1 at BZ = 8, 10 and 12 mm.
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Fig. 7.5. Body ranges for changing body-coxa axis azimuth.
Direction set 1 has zero y-component.
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3) When coxa twist (a0 is 90° the ranges of motion are

wider and shorter. If al is 110°, the ranges are

narrower and are shifted backward relative to the front

feet.

4) Direction set 1 (Fig. 7.5) ranges are wider but

shorter than original. Direction set 2 is longer (except

BZ = 12 mm) and is shifted backward. These effects are

similar to those of changing of coxa twist.

5) In Fig. 7.6, direction set 3 shows only case where

feet are inside body range of motion. For direction set

5 feet are so far out to the side (Fig. 7.10) that body

range of motion is very restricted.

Foot ranges of motion for each of these variations

are shown in Figs. 7.7 to 7.10.

1) The front leg's foot range is not noticeably

influenced changes in coxa length (Fig. 7.7).

2) If coxa length is zero, then ranges for middle and

hind legs are shifted toward center and area is

decreased. On the other hand, if coxa length is double,

then these effects are reversed.

3) In Fig. 7.8, all three foot ranges of motion shift

closer to center for 90° coxa twist and farther from

center for 110° twist.

4) As azimuths of body-coxa joint axes rotated from

direction set 1 (parallel to body zx-plane) through the

original azimuth to direction set 2 the extent of foot
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ranges in x direction decreases and extent in y direction

increases.

5) As elevations of body-coxa joint axes rotated from

direction set 5 (parallel to body xy-plane), 4 through

the original direction to direction set 3 the foot ranges

are closer to body y-axis and the extent of foot ranges

in x and y directions increase.

7.2. Effects of changing leg segment parameters on pitch,

roll and yaw ranges

For all body ranges of motion, until now, pitch,

roll and yaw have all been equal to zero. Since pitch,

roll and yaw do influence body range of motion their

effect is consider here. However a full evaluation of

their influence is not attempted but only coxa length

zero is compared with original parameters as shown in

tables 7.1 to 7.6. Both foot positions and body are

symmetrical about the By axis; therefore, the results are

symmetrical about By-axis and only left side data is

shown in the tables. Each cell of these tables contains

degrees range of roll, pitch or yaw located at top of

cell and middle of range located at bottom.

From these tables, it is clear that there are

substantial differences in orientation capability with

change of coxa length. Therefore orientation capability
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should be examined for other parameter changes.



Table 7.1. Degrees range and middle of range of pitch, rotation about x- axis, for
original data.

By
Bz = 8 mm Bz = 10 mm Bz = 12 mm

--- --- 27 1

12 -41.5 -17.5 ---

10 --- 48 56 61 62 71 44 68
-48 -38 -34.5 -37 -38.5 -36 -30

8 4 44 50 59 55 73 79 71 81
-38 -36 -28 -22.5 -36.5 -35.5 -32.5 -33.5 -29.5

6 9 36 43 54 49 67 79 70 83
-27.5 -29 -20.5 -14 -29.5 -27.5 -22.5 -28 -24.5

4 5 32 41 54 43 62 76 65 81
-24.5 -24 -15.5 -8 -23.5 -21 -15 -21.5 -17.5

2 3 30 41 57 40 62 78 54 79
-22.5 -21 -11.5 -2.5 -19 -16 -9 -18 -9.5

0 32 46 64 37 65 82 4 43 65
-20 -9 1 -13.5 -11.5 -4 -10 -13.5 -6.5

-2 28 55 78 35 61 84 4 35 51
-15 -7.5 4 -8.5 -3.5 3 -4 -8.5 -4.5

-4 25 59 77 33 53 64 28 40
-9.5 -2.5 0.5 -2.5 3.5 4 -4 -2

-6 --- 35 53 24 39 47 20 29
--- -2.5 0.5 2 5.5 5.5 -1 0.5

-8 --- 21 18 31 12 19
--- --- --- -4.5 --- 2 4.5 1 1.5

-10 --- --- --- --- --- --- 1 0
--- --- --- --- --- --- -4.5 --- --- -4

ax -6 -4 -2 0 -4 -2 0 -4 -2 0



Table 7.2. Degrees range and middle of range of pitch, rotation about x-axis, for
coxa length = 0.

By az = 8 mm pz = 10 mm az . 12 mm

12 ---

---
---
...

---
___

---
___

---
...

---
...

0

-13

....

...
---

...
- --

10 --- 0 54 64 0 69 77 58 70
--- -26 -40 -34 -20 -39.5 -40.5 --- -33 -34

8 4 45 50 59 56 74 81 35 70 82
-38 -36.5 -29 -23.5 -36 -35 -32.5 -45.5 -32 -28

6 9 37 44 55 50 70 82 34 69 84
-27.5 -29.5 -21 -15.5 -29 -27 -22 -36 -26.5 -22

4 5 33 41 55 45 67 80 33 69 84
-24.5 -24.5 -15.5 -8.5 -22.5 -20.5 -14 -28.5 -20.5 -16

2 2 32 43 59 42 66 83 31 64 83
-22 -21 -11.5 -3.5 -17 -15 -7.5 -21.5 -13 -8.5

0 --- 33 48 67 40 62 85 30 54 70
--- -18.5 -9 0.5 -12 -7 -0.5 -15 -9 -5

-2 --- 29 58 80 35 58 75 26 43 56
--- -13.5 -8 4 -4.5 2 5.5 -10 -5.5 -3

-4 --- 23 52 68 32 47 57 21 33 44
--- -6.5 2 4 3 6.5 6.5 -4.5 -2.5 -1

-6 --- --- 25 44 16 32 41 14 24 33
--- --- -0.5 3 3 7 7.5 -1 0 0.5

-8 --- --- 9 --- 11 25 --- 9 20
--- -5.5 --- 2.5 5.5 --- -1.5 0

ex -6 -4 -2 0 -4 -2 0 -4 -2 0



Table 7.3. Degrees range and middle of range of roll, rotation about y-axis, for
original data.

By
az = 8 mm az = 10 mm az = 12 mm

10 -- -- -- -- -- -- -- -- -- -- 2
-- .... -- -- -- -- -- .... -- -- -- -5

8 8 26 -- 0 14 30 -- -- 6 14 16
-11 0 -- -- 14 -6 0 -- -12 -6 0

20 35 38 11 27 37 40 -- 2 11 18 20
6 -- -32 -15.5 0 -- -27.5 -20.5 -11.5 0 -- -19 -13.5 7 0

4 5 25 41 48 18 33 43 48 -- 5 13 19 20
-41.5 -25.5 -13.5 0 -- -26 -18.5 -10.5 0 -20.5 -14.5 -7.5 0

2 10 25 41 54 8 24 37 48 52 -- 8 15 20 22
-35 -20.5 -8.5 0 -29 -25 -17.5 -9 0 -21 -14.5 -8 0

0 13 27 42 52 12 29 42 53 58 -- 10 18 23 24
-31.5 -17.5 -6 0 -28 -23.5 -17 -8.5 0 -21 -15 -7.5 0

-2 17 30 45 52 -- 31 45 56 62 1 14 24 29 30
-29.5 -16 -4.5 0 -22.5 -15.5 -8 0 -24.5 -20 -14 -7.5 0

-4 35 49 58 __ 33 48 56 60 -- 17 26 33 36
-15.5 -4.5 0 -20.5 -14 -8 0 -- -18.5 -14 -7.5 0

-6 -- 58 68 -- 45 53 56 -- 12 24 31 32
-6 0 -- -15.5 -8.5 0 -- -18 -15 -8.5 0

-8 -- -- 36 -- -- 44 46 -- -- 4 23 24
-- 0 -- -9 0 -- -8 -8.5 0

ax -6 -4 -2 0 -8 -6 -4 -2 0 -8 -6 -4 -2 0



Table 7.4. Degrees range and middle of range of roll, rotation about y-axis, for
coxa length a = 0.

BY az = 8 mm az = 10 mm az = 12 mm

10 -- -- -- -- -- -- -- -- 8
-- -- -- -- -- -- -- -- -- 0

8 -- 8 24 -- 7 20 32 -- -- 18 22
-- -13 0 -- -14.5 -6 0 -- -- -5 0

6 18 33 38 14 29 41 42 -- 16 24 26
-- -32 -15.5 0 -26 -19.5 -11.5 0 -- -11 -6 0

4 7 32 44 48 21 35 45 50 9 19 25 28
-41.5 -29 -14 0 -- -24.5 -17.5 -9.5 0 -17.5 -12.5 -6.5 0

2 17 34 48 56 10 27 39 50 54 12 22 27 30
-37.5 -24 -12 0 -28 -23.5 -16.5 -8 0 -18 -13 -6.5 0

0 23 36 51 62 12 31 44 54 60 16 25 31 32
-34.5 -21 -9.5 0 -26 -22.5 -16 -8 0 -18 -12.5 -6.5 0

-2 26 42 55 66 -- 34 48 58 62 19 30 36 38
-32 -20 -8.5 0 -21 -15 -8 0 -16.5 -12 -6 0

-4 50 63 72 35 48 58 60 19 31 39 42
-21 -9.5 0 -- -19.5 -15 -9 0 -15.5 -11.5 -6.5 0

-6 67 74 44 52 54 26 37 38
-9.5 0 -- -- -16 -9 0 -- -12 -7.5 0

-8 41 42 29 32
-- -- -- -9.5 0 -- -7.5 0

BX -6 -4 -2 0 -8 -6 -4 -2 0 -6 -4 -2 0



Table 7.5. Degrees range and middle of range of yaw, rotation about z-axis, for
original data.

By BZ = 8 mm BZ = 10 MM BZ = 12 mm

10 --- --- --- --- --- --- --- --- 6___ ___ ___ ___ ___ ___ ___ ___ 0

8 --- 6 6 8 10 10 --- 12 12
--- 5 0 9 5 0 - -- 5 0

6 10 12 12 15 17 18 --- 20 20
11 6 0 10.5 5.5 0 --- 6 0

4 15 18 18 16 24 24 --- 16 28
12.5 6 0 9 6 0 --- 1 0

2 20 24 26 13 31 32 --- 17 38
14 7 0 5.5 6.5 0 --- -2.5 0

0 17 32 34 16 40 42 --- 23 48
10.5 8 0 5 7 0 --- -4.5 0

-2 14 35 42 18 39 54 7 32 46
8 5.5 0 2 1.5 0 -6.5 -6 0

-4 10 35 48 20 41 50 17 36 38
3 0.5 0 -2 -3.5 0 -9.5 -9 0

-6 --- 31 38 20 35 38 15 28 28
--- -4.5 0 -5 -5.5 0 -10.5 -8 0

-8 --- --- 10 0 22 28 4 18 20
___ ___ 0 -7 -3 0 -7 -7 0

Bx -4 -2 0 -4 -2 0 -4 -2 0



Table 7.6. Degrees range and middle of range of yaw, rotation about z-axis, for coxa
length al = 0.

BY BZ = 8 mm BZ = 10 MM BZ = 12 mm

10
___

- --
___

- --
___

- --
___

- --
___

- --
___

- --
___

- --
___

8

0

8 --- 5 6 20 12 12 --- 15 16
--- 4.5 0 10 5 0 --- 5.5 0

6 10 11 12 17 19 20 --- 22 24
11 5.5 0 11.5 5.5 0 --- 6 0

4 15 18 18 18 27 28 --- 31 32
12.5 6 0 9 6.5 0 --- 6.5 0

2 21 24 26 14 36 38 --- 31 44
13.5 7 0 5 7 0 --- 2.5 0

0 17 32 34 18 42 48 8 35 56
10.5 8 0 4 5 0 -4 -1.5 0

-2 15 35 44 20 43 60 18 44 58
7.5 5.5 0 0 -0.5 0 -5 -5 0

-4 8 36 48 24 42 48 25 45 46
1 0 0 -5 -5 0 -8.5 -8.5 0

-6 --- 27 36 15 30 38 14 32 36
--- -5.5 0 -3.5 -3 0 -6 -6 0

-8 --- --- --- 14 22 --- 16 24
___ ___ ___ ___ -1 0 --- -2 0

Bx -2 0 -4 -2 0 -4 -2 0
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7.3. Effects of use of the numerical method

In this study, the Bairstow method, a numerical

method, has been used to solve the quartic equations.

The solutions obtained from the use of the Bairstow

method are sufficiently close to real values. However,

this method led to some inaccurate results. For example,

the body range of motion in Fig. 7.11 has two flaws at

the top of range where, from geometric reasoning, the

range should be a smooth curve. After changing the

constraint value used in the Bairstow method, the result

was somewhat improved, but concave points remained at the

same positions. During the process of solving with

varying pitch, roll and yaw, a set of foot positions was

used as a test of the computer program . After comparing

the results of this test to those obtained by Foo (1991),

there was a one degree of difference in some values. The

Bairstow method worked reasonably well for all cases

except these two.
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Fig. 7.11. An example of effect of Bairstow method. The
black blocks present six foot positions. Two
concave points are occurred around at (±2,9).
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8.CONCLUSION

This study examined the effects on body range of

motion of changed leg parameters. Results were obtained

by comparing body ranges of motion for changed parameter

sets with that of original parameter set. Foot ranges of

motion were also examined to gain a better understanding

of the effects of parameter changes.

Some conclusions are obvious when parameters were

changed. Results of changing coxa twists and changing

azimuth of body coxa axes are similar. Foot positions of

direction set 3 are within body ranges of motion because

foot ranges are much closer to By axis. Another

important observation is the nearness of centroid of foot

positions and origin of Bx-By plane. Further studies are

needed to fully investigate these phenomena.

In this study, leg parameters were changed for all

six legs in each case. However, the study can be

extended to observe effects of changing parameters for a

pair of legs, with the other two pairs unchanged. For

example, the front leg's foot ranges are not obviously

influenced by changes in coxa length. Then, effects on

body ranges of motion may be studied for changing coxa

twists of front legs and changing coxa length of other

legs.

Current study of body ranges of motion involves
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symmetrical foot positions and does not consider pitch,

roll and yaw. Future study considering pitch, roll and

yaw and non-symmetrical foot positions can provide more

information in design of walking machine.

Finally, this study of ranges of motion focuses on

positioning problems of kinematics only. Statics of

standing beetles also needs study.
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Table A.1. Foot positions: original data.

B z right front right middle right hind

x y x y x y

8 7.0 10.0 10.0 1.0 8.0 -10.0

10 5.0 8.0 8.0 2.0 8.0 -10.0

12 3.0 7.0 6.0 3.0 7.0 -9.0

Table A.2. Foot positions: coxa lengths al = 0.

B
z right front right middle right hind

x y x y x y

8 7.0 10.0 9.0 2.0 8.0 -10.0

10 5.0 8.0 7.0 3.0 8.0 -9.0

12 4.0 7.0 6.0 3.0 7.0 -8.0

Table A.3. Foot positions: coxa lengths al = al x 2.

Bz right front right middle right hind

x y x y x y

8 7.0 9.5 10.3 0.3 9.5 -10.8

10 5.5 8.5 9.0 1.0 9.0 -10.0

12 3.8 6.5 8.3 2.8 8.0 -9.3

Table A.4. Foot positions: coxa twists a1 = 90°.

B
z right front right middle right hind

x y x y x y

8 7.0 10.0 10.0 1.0 10.0 -10.0

10 5.0 9.0 9.0 2.0 9.0 -10.0

12 4.0 8.0 7.0 2.0 8.0 -9.0
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Table A.5. Foot positions: coxa twists al = 110°.

B z right front right middle right hind

x y x y x y

8 7.3 8.8 9.5 1.0 8.5 -9.8

10 4.5 6.5 8.3 2.5 7.3 -9.0

12 4.5 6.5 7.5 2.8 8.0 -8.3

Table A.6. Foot positions: direction set 1.

BZ right front right middle right hind

x y x y x y

8 7.5 9.5 9.5 0.8 10.5 -10.3

10 6.0 9.3 8.8 1.8 9.0 -10.0

12 4.0 6.5 7.5 2.8 7.3 -9.5

Table A.7. Foot positions: direction set 2.

B
z right front right middle right hind

x y x y x y

8 6.8 9.3 9.3 1.3 9.8 -8.8

10 4.5 7.5 8.0 2.0 9.3 -7.8

12 4.3 6.5 6.8 2.5 9.8 -6.5

Table A.8. Foot positions: direction set 3.

B
z right front right middle right hind

x y x y x y

8 - - -- ---- ---- ---- ---- - - --

10 3.0 8.8 7.5 1.0 5.0 -9.8

12 2.0 6.5 6.0 2.8 3.0 -9.3
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Table A.9. Foot positions: direction set 4.

B z right front right middle right hind

x y x y x y

8 8.0 9.5 10.3 1.8 11.5 -9.5

10 6.8 7.0 9.3 2.3 10.8 -9.0

12 ---- ---- ---- ---- ---- ----

Table A.10. Foot positions: direction set 5.

Bz right front right middle right hind

x y x y x y

8 9.3 7.3 10.8 2.0 12.8 -9.3

10 8.0 6.5 10.5 2.8 13.0 -8.5

12 ---- ---- ---- ---- ----


