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A CONTROLLER FOR INTERNET PROTOCOL ROUTING

OF AX.25 PACKETS

CHAPTER 1

INTRODUCTION.

In the last two decades the use and development of computer

networks has increased dramatically. Local Area Networks (LAN's) are

now well known in many educational institutions, and research

institutes as well as commercial enterprises. They serve a wide variety

of applications. They range from simple message exchange to more

extensive distributed computing applications. A less known area of use

of computer networks is what is called Amateur Packet Radio. This is

a form of computer networking practiced by many Radio Amateurs, or

hams, around the world. Instead of expensive professional high speed

equipment and Internet networks, they use relatively low speed
modems and radio transmitters to establish the network.

In any network the use of efficient communications protocols is

extremely important to ensure high utilization of the network capacity.

An analysis of the underlying physical system is needed. Quite often,

the protocols turn out to be efficient only when designed with
considerable attention for the characteristics of such networks.

One of the oldest long haul networks, the ARPANET, was built by

the Defense Advanced Research Project Agency (DARPA) in the late

1960s [Com88]. It has jointly participated with the National Science

Foundation (NSF) to form what is commonly known as the Internet.

The Internet consists of many smaller subnetworks tied together by



2

long haul networks provided by NSF and DARPA. The set of protocols

used on this network is known as the TCP/IP suite [Tan88]. These

protocols have been specifically designed to handle problems arising

when trying to deal with efficiency and other issues in networks.

Amateur Packet Radio uses a protocol known as NET/ROM to

establish the transporting connection between two end users on

separate LAN's. The protocol was first developed when there was a

very limited user base. In recent years the very rapid expansion of the

number of users has severely limited the capabilities of the network.

This work proposes the use of the aforementioned TCP/IP suite

of protocols to establish networking in the Amateur Radio community.

TCP/IP is more structured toward use over wide area packet-radio

networks and has better performance than the present protocols. It

not only is more robust in performance but also allows for a wider and

easier use of the network facilities. A new hardware platform is
proposed and developed to facilitate the user's switch to the new

protocols.

This thesis is organized in 6 chapters. Chapter 2 gives an
introduction to computer networking and the ISO-OSI model. The

present state of Amateur Packet Radio Networking is also discussed.

Chapter 3 discusses related previous work. It concludes with a
statement of the research problem and the motivation for solving this

problem. The hardware design issues and hardware platform are

shown in Chapter 4. Details of the implementation are discussed in

Chapter 5. Some performance analysis and test results are given in

Chapter 6. Possible future improvements and enhancements are also

given here.
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CHAPTER 2

COMPUTER NETWORKS.

2.1 An Introduction to the ISO-OSI Model.

The International Standards Organization (ISO), as a first step

toward international standardization of various communication

protocols used in computer networks, proposed the Open Systems

Interconnection Reference Model (OSI). The standard deals with

systems that are open for communication with other systems [Tan88].

The model consists of several layers of abstraction to be used in the

design of communication protocols. Among others, the following

guidelines were used to create the different layers. Layers should

perform well-defined functions and should be chosen such as to

minimize the flow of information across layer-boundaries.

A short explanation of the seven layers proposed by the model is

given below. (see also Figure 1)

1. PHYSICAL LAYER: This is the layer concerned with the transmission

and reception of raw bits over a communication channel [Tan88]. All

issues addressed pertain to the physical properties of the channel,

such as voltage and current levels of signals, modulation and
demodulation techniques, connections to the circuit, connectors etc.

This layer has no knowledge of the information handled or the
protocols used by higher layers.

2. DATALINK LAYER: The services provided by the physical layer are

used by this layer to handle data in the form of a frame. A frame is a

series of bytes coming from the physical layer and going to the
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network layer, or vice versa. Since the physical layer does not
distinguish between bits, frame distinction is handled by this layer.

This can be in the form of start and end of frame sequences and

checksums (or cyclic redundancy checks) to ensure correctness of the

information in the frame. Some flow control is also done. This layer

deals only with direct communications (e.g. point-to-point links.)

3. NETWORK LAYER: This layer is concerned with the workings of the

subnet. Routing of packets from source to destination as well as

congestion control for the subnetwork is done in this layer. Arriving

frames handed over from the datalink layer will be routed and
retransmitted if destined for other hosts. Available services may

include change of datalink layer protocols from one subnet to another,

fragmentation and reassembling of packets when dealing with subnets

with differing maximum frame sizes, or packet routing decisions based

upon internal routing tables and information obtained from other

systems through the use of routing information protocols. The

network layer, in contrast to the datalink layer, allows for

communications between hosts with no direct link between them.

4. TRANSPORT LAYER: This layer is a true host-to-host layer.

Communication is between two distinct processes. It provides an error

free stream of data that ensures that all data arrives at the opposite

end in the same order as transmitted. Message streams are either

delivered without errors or the transport layer will report to the

message source that the message cannot be delivered. End-to-end data

flow control is also performed. This layer may have the ability to
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multiplex several low rate sessions with the same destination into one

session at the network layer. This reduces the number of sessions on

the subnet and the protocol overhead [Ber87].

The physical, datalink, network, and the transport layer are illustrated

in Figure 2.

5. SESSION LAYER: This layer permits different processes to

negotiate, establish and end an error-free communication session.

Logistics such as access rights, token management and process
synchronization are handled by this layer.

6. PRESENTATION LAYER: Unlike the lower layers, this layer is

interested in the syntax and semantics of the information transmitted

[Tan88]. Data encoding, conversion between host formats, display

manipulation for interactive jobs and data compression are some of the

services provided.

7. APPLICATION LAYER: This layer is often programmed by end-users.

Applications are often written to make the network transparent to the

end user. Such application programs contain components to deal with

the numerous types of terminals used by end-users, to handle file

transfers etc.

When layers pass information packets to lower layers for
processing, a control segment is appended. It is most often placed at

the start of the frame and is called a header. The header allows the
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receiving end to derive the needed information about the frame. Upon

reception of a packet, and before passing it to a higher layer, each

layer detaches its header from the frame for processing. The basic

format of a network packet is shown in Figure 3.

2.2 The Physical Layer in Amateur Packet Radio.

The physical and datalink layers in a large number of computer

networks consist of either Ethernet' or token ring technology. These

are well known. Less well known are the standards used in Amateur

Packet Radio. These will be discussed briefly.

Currently Amateur Packet Radio uses a few de-facto standards in

the physical layer. All these standards are half-duplex, ranging from

300 Bd Bell 103 to 1200 Bd Bell 202 modem technology. Standards

for faster modems in ranges from 9600 Bd to a scarce 56 kBd or above

are being developed.

Physical layer technology is yet another multidimensional part of

computer networks. The main area of this work is in the datalink and

network layer. Therefor this aspect is not discussed any further.

2.3 The Data link Layer in Amateur Packet Radio.

AX.25, or Amateur X.25, is the datalink layer protocol used in

Amateur Packet Radio. It is a modified version of the commercial X.25

level 2 standard [Fox84]. X.25 was written by the International

Telegraph and Telephone Consultative Committee (CCITT). In AX.25

the source and destination addresses have been extended to 7 bytes to

1 Ethernet is a registered trademark of Xerox Corporation.
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Figure 4. An example AX.25 datalink layer frame format.
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allow a six character callsign and one character secondary
identification. Some modifications concerning host-to-host
connections have also been made. AX.25 provides for both connection

oriented streams and a connectionless or datagram service. It uses a 7

frame sliding window protocol. A sample packet format is shown in

Figure 4. A formal definition of AX.25 can be found in [Fox84].

2.4 An Introduction to LANs.

Local Area Networks, or LANs, consist of several machines

interconnected in a local fashion. Most often the connection is
through the use of coax cable or twisted pair wires. These machines

can establish direct communication with each other, without
intervention of another system. This often occurs at very high speed

(in the order of 10 Mb/sec). LANs are interconnected through

gateways. Gateways have a link to another LAN or to a WAN, a Wide

Area Network. WANs often span several tens or hundreds of miles

using lower speed leased lines or microwave links.

2.5 An Introduction to Amateur Packet Radio Networks.

Present packet radio networks are made up of both LAN
channels and WAN channels. The LAN channel is an established

frequency (or channel) that the local ham community uses to establish

communication inside the local user area. In order for communication

to occur between two station in the same area, they have to agree on a

channel. When the channel is not temporarily occupied by a packet

from another user, one station will transmit a 'connect request' to the

other. If received without errors, the other station will acknowledge
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the request. It waits until no signal (or carrier) is heard on the
channel. Next it transmits its reply, the connect acknowledge.
Anytime a reply to a packet is not received in a timely fashion, a retry

of the packet is sent. Following this setup phase, data can flow from

either station to the other, using the same 'listen and talk' strategy.

This scheme allows multiple stations access to one channel. It is

called Carrier Sense Multiple Access, or CSMA. Many problems arise

with the CSMA channel access method. However, this is the present

de-facto standard. Many have proposed different access methods but

no method has been implemented as a standard at present.

The WAN channel is better known as the 'Backbone' channel. It

is a doorstep to the rest of the world: it serves as a transporting
channel to establish network communications with LAN user channels

in areas outside direct reach of the local user. On the Backbone

channel the same CSMA channel access method is used.

The system combining LAN and Backbone channel access

consists of two (sometimes more) small controller systems with

modems and transmitters. Both systems have a radio interface
controlling the transmitter, and a serial interface connected to the

other unit(s). The controller most often used is commercially available.

The controller is marketed for use by the packet radio user
community. The controllers were developed to interface between a

user terminal and the transmitter, thus providing AX.25 Amateur

Packet Radio capabilities. The user software can be replaced by new

networking software. This makes the controller capable of networking.

This setup of two or more units linked via a serial line is
commonly known as a node. Each channel in a node is commonly
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referred to as a port. Nodes are often located at high sites like hilltops

to take advantage of the improved radio channel capabilities. It allows

the Backbone port to communicate directly with other nodes long

distances away. In general, there are no users directly accessing this

Backbone channel.

Nodes can be instructed by LAN users to establish

communication to a distant node via the Backbone. When this has

succeeded a connection to a local user on the remote LAN can be

requested. The flow of data is as follows and can be seen in Figure 5.

1 Data flows from the originating user over the LAN

channel to the LAN port of the local node.

2 The LAN port of the node sends the data to the Backbone

port over a serial line.

3 The data gets transmitted over the Backbone channel to

the remote Backbone node.

4 This data possibly gets retransmitted by multiple

Backbone nodes to reach the remote node.

5 The distant Backbone port sends the data over a serial

line to its LAN port.

6 Finally the remote LAN port transmits the data over its

LAN channel to the remote user.

Data flows from the remote user to the local user using all the same

nodes and ports in reverse order.
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Figure 5. A common configuration of Packet Radio Networks.
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A typical present system (in Western Oregon) allows for semi-

usable LAN to LAN connections using five to six Backbone nodes to

reach destinations up to about 125 miles away (this is with the 1200

Bd technology.) The range is limited by bad radio links which
frequently drop packets. The low data rate in use creates very low

throughput, which is often unacceptable to end-users.

2.6 Routing in the OSI Model.

When two subnetworks with different datalink layer protocols

but identical network layer protocols are interconnected, a gateway is

needed. Gateways have datalink layer translation facilities in addition

to network level routing facilities. When implementing a gateway to

interconnect subnetworks with identical network layers, only the

three lower layers of the OSI model need to be dealt with. Everything

from transport layer on up is strictly on a host-to-host basis. The

gateway only has to know how to correctly communicate using the

datalink layer protocol on both subnets, and how to route network

layer packets correctly between the two subnets. Data link protocols

could be as different as Ethernet (10 Megabit/sec) on one subnet and

current AX.25 implementations (1200 bit/sec) on another.

2.7 Link Layer Address Resolution.

The preceding discussion raises the following issue. It is

assumed that hosts on the same physical network can directly

communicate at the datalink layer only if they know each other's

physical network address [Com88]. How then does a host (or gateway)

relate a network level address to a datalink layer address ? An address
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resolving mechanism that allows for the determination of the datalink

address of the next gateway or host to be sent a network packet will

need to be derived. This dilemma is commonly known as the Address

Resolution Problem.

There are several ways of solving this problem. One solution is

implementing a direct relationship between network and datalink

layer addresses. Use of Address Resolution Caches that save
encountered network/datalink address pairs is another well-known

solution. Dynamic binding is a solution that allows a host or gateway to

request the datalink address of the target network address on the
local subnet. The response from some host with this knowledge (very

often the target system) is awaited before handling the network frame.

The most often implemented solution is a combination of the

caching scheme and the dynamic binding scheme. It is known as the

Address Resolution Protocol (ARP) [RFC826]. It is designed to work

with a multitude of physical networks and datalink protocols, ranging

from fast Ethernets to slow Packet Radio Networks.

When a gateway receives a frame it looks up the route. If it
determines that this destination is on the local physical network, it

checks the ARP cache for the datalink (or physical) address of the

destination. If it is found, the frame is send immediately. If there is no

entry for this destination, an ARP request packet is broadcast on the

local network. This packet requests the physical address for the

wanted destination address. If some system on the local network

knows the answer, it will reply to the gateway. Most often this reply

comes from the destination system itself. Following this, the gateway
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knows the physical address for the destination. The information is

stored in the ARP cache and the frame is transmitted.

This same scheme can also be used between two users. A user

wants to communicate with another user. The user knows that the

other is on the local network. It also knows the network address, but

not the physical address of the other user. It can broadcast an ARP

request packet to find out the information. The destined user will

respond and then communication can start.

The steps in the address translation problem are as follows (See

also Figure 6.) The content of the routing table and the ARP cache of

the gateway are given in Figure 6.

1 Gateway GO gets a frame for network address Ni. It checks the

routing table and determines that this is a user on the local

network.

2 Gateway GO will then try to find a mapping from network address

N1 to the physical address Ux . It checks the Address Resolution

Cache. If an entry (N1,U1) is found for the network address N1,

the target physical address U 1 is used to send the frame.

3 If no entry is found for N1, the gateway broadcasts on the local

network requesting the datalink address for Ni. It sends an ARP

request broadcast packet.

4 All hosts on the subnet will receive and examine the ARP request

packet.
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Gateway GO

Routing table:
[ (N1, local)

(N6, local)
(default, network)]

ARP cache
before ARP
broadcast:
[ (N2,U2),

(N4,U5) ]

1- the route is found.
It is local.

User U1

2- There is no (N1,U1) pair in ARP cache.

3- GO broadcasts (N1,?)
ARP request.

(N1,U1)

6- GO stores data
in cache.
ARP Cache
now contains:
[ (N1,U1),

(N2,U2),
(N5,U5) ]

4- User U1
receives the
ARP request

5- User U1 decides
to answer. Sends
ARP Reply to GO

Figure 6. An example of the Address Resolution Protocol.
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5 User U 1 recognizes that the requested network address Ni is its

own. It sends gateway GO a reply with its network and datalink

address (ie. U1,H1). U1 sends this to gateway GO in the form of an

ARP reply packet.

6 Gateway GO stores the data in its ARP cache. It transmits the

awaiting frame. Gateway GO now knows the datalink address U 1

for the network address Ni.

2.8 An Overview of the NET/ROM Protocol.

The NET/ROM protocol adds two distinct layers on top of the

AX.25 datalink layer. The network layer is represented by what is

called NET/ROM Level 3. This part of the protocol does indeed handle

the routing issues. It imbeds the source and destination node callsigns

in its header. It presents a datagram or connectionless service to the

transport layer. The latter is known as NET/ROM Level 4. It provides a

transparent stream, capable of sending data, to the end user. Both

layers were designed in the early eighties with the small size of then

existing packet radio networks in mind. This resulted in short-
comings in the protocol that will be pointed out later.

2.9 An Overview of the TCP/IP Protocol Suite.

The TCP/IP protocol suite was developed in the mid seventies.

The protocols were devised for use in WANs in which hosts were

connected to (sub)networks with varying characteristics, and the

(sub)networks were interconnected by gateways [Lef89]. This suite is

used extensively in commercial and research networks such as the

Internet. These protocols do not strictly adhere to the boundaries of
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the OSI model. The Internet Protocol (IP) provides most of the
network services. It handles the routing of packets. IP provides an

unique Internet address on a per host basis (32 bits wide). This
address is used in routing issues when packets arrive at the network

layer. If IP cannot correctly handle a frame, a mechanism is provided

that informs the packet's originator of this. These exceptions are

handled by the Internet Control Message Protocol (ICMP). Serial Line

IP (SLIP) provides a way to send IP datagrams between two hosts

connected via a serial line. However, IP does not provide a reliable

stream as the OSI standard requires.

The transport layer is predominantly represented by the
Transmission Control Protocol (TCP). TCP provides reliable streams,

as well as the regular services of the layer. TCP uses so-called port-

numbers (16 bits wide), which allow remote processes to
communicate when the destination host (network address) and port

(transport address) are known. Various network services like mail and

file transfers take advantage of well-known port numbers to provide

services to end-users. End-users are free to use TCP ports to their

own liking.

A formal definition of IP, SLIP, 1CMP and TCP can be found in

[RFC791], [RFC1055], ERFC7921, and [RFC793]. More descriptive work

is found in [Com88].
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CHAPTER 3

MOTIVATION AND PREVIOUS CONTRIBUTIONS.

3.1 The Motivation.

Since the advent of Packet Radio to the spectrum of Amateur

Radio activities in the late seventies, it has gained tremendous
popularity. Growth has been astronomical over the past decade.

Connectivity has gone from just local activity to widespread use

spanning states and countries. Mailbox systems, or Bulletin Boards,

allow sending of personal electronic mail as well as bulletins via store

and forward techniques. Networking and store and forward techniques

have tied together users across North America and most other
continents.

It is expected that in the decade ahead, the use of packet radio

as a means to communicate will increase dramatically. This will result

in hams trying to communicate further and faster then before. In

order for the network to facilitate such increases in volume of data, it

has been argued for some time that the current transport service in

widespread use (the NET/ROM protocol) is not suitable for this
demanding job.

Several groups in different parts of the world, but mainly in the

US, have experimented with different protocols. Some networks other

than the NET/ROM networks have been established. One of the fore-

runners in these experiments is Amateur Radio Networking based on

the TCP/IP suite of protocols. This set is in widespread use in the

'professional' networking community. Using these protocols in the

amateur environment promises to provide better service in the future.
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It also gives immediate compatibility with existing high speed
computer networks at campuses and businesses around the US and

the world.

3.2 Contributions of Others.

There currently are quite a few systems running Amateur
TCP/IP, ranging from IBM PC's2 and Macintosh's3 to UNIX`} based

systems. Several Bulletin Board systems allow for TCP/IP based

communications. Some single card computer boards are becoming

available offering a wide range of functionality based on TCP/IP. Most

of these are derived from or based on work done by Phil R. Karn,

KA9Q.

In the mid eighties Karn started to develop TCP/IP software for

use with Amateur Radio. It is now commonly known as the KA9Q

Internet Protocol Package, or NET.EXE (after the program's name

under the MS-DOS5 operating system) [Kar91]. In its original form this

software runs on IBM PC's and compatibles. It provides a complete

implementation of most of the protocols in the TCP/IP suite. It is

especially aimed at, but not solely used by, the ham community. The

source code for this work is freely available for noncommercial use.

This has stimulated many additions and ports to other platforms by

others. My experiences in the past two years with Karn's work, and

2 IBM PC is
Machines Cor
3 Macintosh
4 UNIX is a
5 MS-DOS is

a registered trademark of International Business
poration.
is registered trademark of Apple Computers, Inc.
registered trademark of AT&T Bell Laboratories.
a registered trademark of Microsoft Corporation.
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with other means of networking on the Oregon State campus, have

triggered my interests in Amateur Radio TCP/IP.

3.3 The NET/ROM Network Layer versus IP.

A comparison of the features and capabilities of the NET/ROM

protocol versus the TCP/IP protocols shows that indeed the latter is

more suited to serve large networks. NET/ROM Level 3, the network

layer in NET/ROM, is very simple. The protocol header only contains

information about the source and destination nodes. Added is a packet

Time-To-Live (TTL) counter. This ensures that a packet will not

indefinitely flow through the network. At the originating node the TTL

counter is set to an initial value. Each node handling the packet

decrements the TTL value. When it reaches zero the frame is simply

thrown away.

NET/ROM routing is done based on adjacencies. Every node has

a list of neighbor nodes and possible destinations. A neighbor node is a

node that can be directly delivered to. Each destination has a nearest

neighbor node combined with it. This is the neighbor that a packet for

that destination will get transmitted to. It is the next adjacent hop in

the network. This routing information is stored in a routing table. The

table gets updated every half hour in a default configuration via a

broadcasting mechanism. When a destination is unknown, the frame is

simply discarded.

The Internet Protocol header has the source and destination

address and TTL counter. However, more fields are added to provide

extended capabilities. IP routing is more powerful and flexible. IP,

contrary to NET/ROM Level 3, is an Internetwork Layer. Its messages
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can be routed through multiple logically and physically dissimilar

networks [Fra89].

IP routing is flexible. IP addresses are assigned in groups or

subnets. This allows a gateway to know if a destination is on the local

network by simply looking at the network address. If the destination

network address is in the same group as the gateway, it is a
destination on the local network. This means that there is no need for

a specific route to each destination on the local network. IP routing

also has the ability to use gateway routes and default routes. This

means that destinations in certain subnets, or groups of destinations,

and unknown destinations will be sent via those routes.

An integral part of IP is the Internet Control Message Protocol

(ICMP). ICMP sends back messages to a source address when
problems occur in trying to deliver datagrams. ICMP messages are

sent in several situations. For example, one is sent when a datagram

cannot reach its destination. Network overloading can result in an

ICMP message being sent to a source trying to use that network. A

gateway can redirect a host to send traffic over a shorter route by

sending the host an ICMP message [RFC792].

IP also allows the source to force a desired route upon the
network. This is known an source routing. Further provisions have

been taken to allow the source to choose the type of service it expects

from the network. This service can range from normal to service

aimed at low delay or high reliability. When high speed networks will

be used for digital voice and real time data transport these services

become important.
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Lastly, but very important, IP, unlike the NET/ROM network

layer, has a protocol identifier. This identifies the transport protocol

in use. NET/ROM does not have this. Carrying anything other than

NET/ROM transport frames over a NET/ROM network layer becomes

very tedious.

3.4 The NET/ROM Transport Layer versus TCP.

NET/ROM Layer 4, the NET/ROM transport layer, is basically a

sequenced packet protocol. It delivers packets in sequence. It does

not combine multiple packets into one to increase efficiency. It uses

transport circuits to enable multiple sessions between two nodes.

However, there is not an easy way for the end-user to establish
multiple connections to a distant node. The layer does not react to

network load, although it does allow for a choke condition to be sent

when the host is impaired due to certain conditions like memory

shortages.

It is important to note that the NET/ROM transport layer does

not have a data error detection scheme. The NET/ROM network layer

does not provide this either. The transport layer has to completely

rely on the underlying Packet Radio Network to pass data reliably. It

expects the AX.25 datalink layer protocol to do error detection and

correction. However, the datalink layer only provides error detection

and correction between two directly connected systems. In processing

packets at nodes, many processing and random errors can occur. End-

to-end NET/ROM transport connections often involve a multitude of

nodes. Thus a large number of independent datalink connections are
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involved. Thus, there are also a large number of sources of uncorrected

errors. There is no end-to-end error detection scheme at all.

The Transmission Control Protocol was designed to be used in

unreliable WANs. It delivers an unsegmented stream of data in which

each byte can be identified by a sequence number. It can handle

varying sizes of data in packets. This allows for better efficiency.

Provisions to allow urgent situations to be handled are implemented.

In the late eighties congestion avoidance and control techniques

Pac881 were added. The technique optimizes the round trip timing

and uses dynamic window sizes. This deals with end-to-end flow

control problems.

TCP allows the end-users to have multiple connections

to the same remote system. It uses the previously mentioned ports for

this. This allows more time consuming sessions such as mail and file

transfers to go on in parallel with interactive keyboard to keyboard

communications.

It should be noted that both IP and TCP headers have
checksums. IP has a header-only checksum. TCP has a checksum for

both the header and the data in the packet. This provides improved

reliability through end-to-end error detection.

3.5 Drawbacks.

With all the added capability, the TCP/IP protocols have
drawbacks as well. The most often heard argument is that the protocol

overhead, the data needed to be send with each packet to control the

link, has increased. The maximum size of the data portion of an AX.25

packet is 256 bytes. On current slow Packet Radio Networks packets
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are often not larger then one hundred bytes. NET/ROM connections

need fifteen bytes for the network layer and a minimum of five bytes

for the transport layer. For a packet size of one hundred bytes, the

NET/ROM protocol thus requires only twenty percent of the data.

Contrary to this, the IP layer has a minimum header size of

twenty bytes. TCP minimally adds another twenty bytes. TCP/IP thus

requires forty percent of a one hundred byte packet. All this results in

less useful data being sent per packet while using TCP/IP. Work is

being done to compress the TCP header to around three bytes, thus

decreasing the overhead the protocol requires. With higher data rates

the packet length will increase, and the protocol overhead will
decrease. The above discussion should easily make clear that these

limitations are only minor, while major improvements are obtained in

other areas.

3.6 The Objective.

The goal of this work is to provide the local ham community

with an inexpensive and easy means of experimenting with this 'new'

networking technology. This means that some of the current set of

NET/ROM protocol based network nodes must be replaced with

TCP/IP based network systems. The existing solutions all require a

considerable amount of financial expense, in the range of $500-$1000.

These newer solutions are often based on elaborate processors like the

Motorola 68000 series or the Intel 8086 series. Most newer methods

provide more than IP based routing for AX.25. Most of these
enhancements are not needed at the introductory stage. Sometimes

the complexity that comes with the multitude of options can scare



27

users away. It is proposed to create a simple solution an order of
magnitude less expensive than previous solutions.

As an initial and often introductory step with a low financial

threshold, the proposed solution has a certain charm. It allows for an

easy switch to TCP/IP based nodes. The end-user (the ham at home)

still needs a computer to run the host software. Since most hams

involved in packet radio already posses one and since the host
software is freely available, this poses no problem. Once acceptance of

the new protocols has been accomplished and enthusiasm has grown,

upgrading to more capable systems will proceed more easily.

It is useful to be able to exploit the presence of the local
Ethernets or other professional TCP/IP based networks. By doing so

some aspects of a big, globe spanning network can be demonstrated.

This could accentuate to the ham community the possibilities laying

ahead for Amateur Packet Radio. Thus a solution is proposed that will

accommodate both a stand alone TCP/IP based node system, as well as

a simple but effective interface to professional networks.

The proposed system will have the following characteristics:

1) A system will be designed to provide a simple implementation of IP

routing of AX.25 packets.

2) the system has a radio port as well as a serial port. The radio port

will provide the AX.25 capabilities. The serial port will use SLIP to

send packets to a connected unit.

3) the system interfaces to the existing base of transmitters in the

same way as do the current NET/ROM based nodes. This allows for a

simple replacement of the current node system.
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4) the software will be written in the 'C' programming language. This

will allow the code to be easily portable to other hardware platforms.

5) the total cost will be less then one hundred dollars. Regularly
available parts will be used. This makes it possible for Ham operators

to replicate the design.

Use of the SLIP protocol on the serial port is useful. It is a good

way to send frames from one controller to another. It also provides a

simple way to interface with commercial networks. Most modern Unix

systems and others provide built in support for the use of the SLIP

protocol. Thus no modifications to the operating system of the Unix

machine are needed. It suffices to simply attach a controller system to

a serial port on such a machine. Then the machine and the controller

both have to be configured correctly. This then will allow users to

access and exchange data with the Unix machine via the radio

interface and vice versa. When the Unix host is connected to a
network and has setup proper routing, targets on other networks

might be reached as well.
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CHAPTER 4

HARDWARE DESIGN DETAILS.

4.1 The Controller.

Several alternatives were examined. With the eye on simple and

affordable hardware, the choice was a derivative of the industry

standard Intel 8051 micro-controller. The 83C152 Universal
Communications Controller (or C152) is an 8-bit microcontroller

based on the 80051BH architecture. Among other features, it is
enhanced with a high speed multi-protocol serial communication

interface. Two channels for Direct Memory Access (DMA) transfers are

added [Int89]. Standard features are a serial port, an internal scratch

pad memory for quick parameter access and a separate external data

memory and program memory address space of 64 kilo bytes each.

This made the 83C152 an attractive choice.

Very little external hardware was needed. An external driver for

the RS-232 signals on the serial port was required. The
communication controller needed a radio modem discussed later.

These were the major peripherals needed. This resulted in a very

compact system. A block diagram of the controller and the peripherals

is shown in Figure 7.

4.2 The Radio Modem.

In data exchange, the modem is part of the physical layer of the

OSI model. As such it is considered to be outside the scope of this

work. Therefor a commonly used existing modem design was used in

the design. The Texas Instruments TCM 3105 provides the current
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1200 Bd half duplex standard. It provides for simplicity and
compatibility with others experimenting in the area.

The interface between controller and modem is identical to that

of other existing (higher speed) packet radio modems. Change of

modems requires no software change at all. The current hardware

base will allow speeds up to 9600 Baud. This is considered the next

step after 1200 Baud. All this requires is simply attaching a different

modem design (and radio).

4.3 The Global Serial Channel.

The Universal Communication Controller of the C152 is known

as the Global Serial Channel, or GSC. It provides most of the standard

features used in HDLC or derived protocols (like AX.25). It does error

checking on frames and provides the bit-stuffing scheme used.

Automatic 1 or 2 byte address checking can be used. This allowed for a

partial callsign check in hardware. Thus a large number of packets

that are not addressed to the system would never get handed off to the

controlling software. Doing so released the software from processing

large numbers of frames that need be discarded anyway.

4.4 The DMA Channels.

The 2 DMA channels available can be programmed to service the

GSC. This allowed for fast transport of data to and from memory. This

took over much of the work normally done by the controller in

software. Thus the controller could spend more time handling frames

in the queues instead of servicing the radio channel.
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4.5 The Local Serial Channel.

The RS-232 serial line was provided by the Local Serial Channel,

or ISC. The LSC is a full duplex asynchronous serial transmitter and

receiver. It is register mapped in the cpu internal memory space. As

such it is very easy and fast to use. The ISC could be serviced by DMA

channels as well. Encapsulation issues in the SLIP protocol, see

[RFC10551, limited the servicing of the ISC to software however.

4.6 Additional Hardware.

Very little additional hardware was required. External code

memory and external data storage memory was added. These need a

few simple logic elements. Four Light Emitting Diodes, or L.e.d's, were

used to indicate the status of the transmit and receive functions on

both ports.

Schematics of the resulting hardware can be found in the

Appendix. The wire wrapped prototype board has a six by four and a

half inch footprint. A picture of the prototype board is shown in Figure

8.
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CHAPTER 5

SOFTWARE DESIGN DETAILS.

5.1 Performance Requirements in Gateways.

Gateways are expected to accept and forward traffic from one

network to another without slowing down the operation of either

network [Tan88]. High volumes of traffic on both links could cause a

heavy workload for the cpu. For maximum efficiency, the software

must be carefully organized. The choice of operating system for the

gateway software was very critical.

The tasks performed in a simple gateway are all event driven.

This means that unless something external happens the system is

simply idling. The arrival of a character on an interface triggers the

system to react and store it in a buffer. Once a complete frame has

been received, action will be taken.

5.2 Design Considerations.

On one hand, all action could be interrupt driven. With this

approach, each received frame would be processed to completion in

the interrupt service routine. This is very fast, but has several
drawbacks. It could lead to received characters being dropped on

other interfaces. This is due to the possible uninterruptable state of

the presently serviced frame. Also it results in poorly structured

software.

On the other extreme, all the tasks in the gateway could be

implemented in different processes. Each process has its own address

space and can communicate with other processes via so-called signals.
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Signals can be sent to inform other processes of things such as frame-

arrival, timer time-outs etc. Frames can be passed on to other
processes as needed. Sophisticated operating systems can use time

slices designating the maximum time a process is allow to run. This

can be combined with a scheduling algorithm that decides what

process gets to run next. The operating system needs to keep track of

process states, stacks, signals and more. Implementing this requires a

lot of overhead and complexity.

5.3 The Operating System.

Both operating system solutions mentioned had features that

made them unattractive or impossible to implement on the C152. The

interrupt driven version was hard to implement due to a lack of

enough interrupt priority levels in the controller. This meant that the

running interrupt would become virtually un-interruptable. When this

happens it becomes hard to guarantee processor time to other
interrupt driven processes. Other processes contending for the
processor might be transmit and receive interrupts on other
interfaces as well as clock-tick interrupts. This could cause errors

such as loss of received characters, with obvious impact.

A full blown operating system as described in the second
suggestion was impossible to implement. This would need a separate

stack for each process, something not provided by the 83C152. The

overhead needed to implement this in software would be a very hard

performance penalty.

Instead, a mixture of the two was chosen. A simple 'round robin'

design was implemented. The functionality of the gateway was split up
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in two logical parts. The first part is the low level processing of
frames. This concernes the interrupt handling of receive and transmit

frames. These service routines run independently from the main

program (in the background of the controller.) There are four
different functions to be serviced: transmit / receive on the serial

interface and transmit / receive on the GSC interface. Each function

has a queue of awaiting packets. When a complete frame has been

received it is deposited on its corresponding input queue. The two

output queues are periodically checked for content. If a queue is not

empty a transmission is initiated.

The second part was the high level frame processing. This was

the actual gateway software that makes the routing decisions. This part

can also easily be divided up into functional blocks according to the

protocol layers used. Each module looks at a particular input queue. If

the queue is not empty, a frame is taken off and processed to
completion. This can result in the frame being sent out on an
interface. When an error occurs an error message might be sent back

to the originator of the frame. All modules get to process frames in a

round robin fashion. A graphical explanation of the operating system

can be found in Figure 9.

Protocol processing consist of three modules: the AX.25 receive

module, the SLIP receive module and the ARP check module. All

modules check queues and act if frames are found. The IP routing,

ARP resolve, and AX.25 and SLIP transmit modules get activated in the

process of handling these frames. These modules and the memory

management strategies used are all described in the next sections.

(The interaction of the different modules is shown in Figure 11.)



REC.

I MIN

SLIP

MODULE

SLIP
QUEUES y

TRANS.

III1 1111111111

RS 232
INTERRUPT
DRIVER

SOFTWARE

I I1I I I
REC.

I
TRANS.

.

RADIO MODEM
INTERRUPT

DRIVER
SOFTWARE

Figure 9. Software layers in the operating system.

37



38

5.4 Memory Management.

Memory management strategies for network protocol operating

systems tend to be quite different from those of other operating

systems. Input buffers with data often are handed off to several

different modules for processing. Protocol modules strip their headers

off the frame and send the data part on to higher level modules.

Higher layers in turn can prepare data for transmission. They can put

their headers in front of the frame. Copying a buffer containing a frame

each time it is handed off is very expensive. Processing time is costly

and memory gets filled with multiple copies of the same information.

Received frames often vary drastically in size. Interactive

terminal sessions might only send a few bytes at a time. File transfers

however could send several thousands of bytes per frame. Thus if

buffers are allocated according to the maximum size frame possible,

lots of space will be wasted when a short frame is received. Often the

maximum size of a received frame cannot be predicted. Some

alternative scheme of handling buffers needs to be used.

One approach to the buffer size problem is to use a pool of small

identical size buffers. These buffers can be linked together to form one

large buffer. Using fixed size buffers still presents the problem of

wasted space. Short frames much smaller than the buffer size waste

buffer space. Another approach is to use variable size buffers. The

advantage here is better memory utilization, at the price of far more

complex buffer management [Tan88]. Figure 10 illustrates the use of

both identical size buffers and variable size buffers to form a frame.
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The BSD Unix operating system introduced so-called mbufs, or

memory buffers. They are small fixed size buffers as described above.

The problem of passing frames was gracefully solved. When a module

needs to pass a frame (ie. a series of mbufs) to another module, no

physical copy is made. Instead a pointer to the frame is handed over

and a reference count for the buffers is increased. When a module is

done processing a frame the reference count to the buffers is
decreased. When the reference count reaches zero the buffers can be

freed and used again later. Offset and length variables are introduced

in each mbuf. This allows for efficient trimming of data at the start or

end of the mbuf. In deletion of data at the start of the mbuf, the offset

is incremented and the length is decremented. In deletion at the end,

the length is simply decremented. When space is available in an mbuf,

data can be added at either end. These features particularly help in

implementing communication protocols efficiently. [Lef89]

The buffer management scheme chosen was a direct copy of the

mbuf strategy. A fixed buffer size of 256 bytes was used aligned at the

start of memory pages. This facilitated the use of some features of the

83C152 architecture regarding the addressing of external data
memory. Instead of using the regular data pointer provided, the faster

page-mechanism was used (see [Int89] for more details.) Most buffer

management routines were written in machine code for better
performance.

5.5 The AX.25 and SLIP Receive Modules.

The AX.25 receive module takes a packet from the AX.25 receive

queue. The complete destination call is checked since there might be
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multiple stations active on the radio channel. If addressed to this

system, the AX.25 datalink layer control headers is examined. If an IP

network layer frame has been encapsulated, it extracts it and sends it

to the IP processing module. If an ARP type packet is received, this is

handed off to the ARP resolver module. Presently any other type of

datalink layer frame is discarded.

The SLIP receive module takes frames from the serial line

receive queue. SLIP is a point to point service and has no datalink

layer. It simply passes received frames on to the IP routing module.

5.6 The IP Routing Module.

The IP module processes the protocol header of a frame. It

checks for validity of the header checksum. If any errors are found

during processing, the frame is discarded. Then the header
destination is checked. If the frame is not destined for this system, a

route will be looked up.

It was decided to implement static routing. This means that all

routes had to be known at system configuration time. There were

drawbacks to this approach. Network changes that cause routing

changes would not be responded to automatically. In that case, new

routes would have to be programmed into the system. The advantage

was the ease of implementing static routes. IP allows the notion of

subnet routing. This allows a group of destination addresses to be

represented by one route entry in the routing table. This type route

could be used for the users on the subnet reached via the radio
channel. Thus no entry for each individual user was needed. Routing

over radio frequencies, with their special characteristics, is very
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challenging. There still is development under way on routing protocols

aimed specifically at Amateur Packet Radio. These arguments made

static routing an acceptable choice.

The frame to be transmitted will be fragmented into smaller

parts if the Maximum Transmission Unit (MTU) of the appropriate

interface is smaller then the frame size. During this the IP protocol

header is reconstructed. Then the fragments are handed off to the

SLIP or AX.25 transmit modules.

A gateway need not implement host protocols (ie. transport layer

and above.) At present the only higher level protocol implemented is

the ICMP Echo reply service (see [RFC792],[RFC1009].) Other frame

types destined for the gateway will cause an ICMP error message to be

sent back to the source. No reassembling of fragmented frames was

implemented. This was not in accordance with [RFC1060], the

guideline to implementing a gateway. It did however simplify the

problem significantly. For the purpose of this system not reassembling

fragmented frames had little effect on functionality. It simply meant

that ICMP Echo request frames had to make it to the system without

being fragmented on their way. When no special options are used (as

in most cases) an ICMP Echo request frame is 28 bytes long (plus

possible data to be echoed back). These frames will not get
fragmented by gateways.

The IP module has very little knowledge of the frames' path to it.

It only knows what interface the frame originated on. This was used to

prevent routing loops on the SLIP interface. If a frame came in on the

SLIP interface the routing decision could be made to send it out on

the same interface. It was then likely the frame would keep bouncing
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back and forth due to bad routing. Therefore frames with this property

were discarded.

5.7 The SUP Transmit Module.

The SLIP transmit module is not concerned about link layer

addresses. It simply puts the IP frame on the SLIP transmit queue.

5.8 The AX.25 Transmit Module.

The AX.25 transmit module handles frames handed down from

the IP network layer. It has to send the IP frame to the proper
destination. A translation from IP address to datalink layer address (or

callsign) has to be done. This is done by the previously described ARP

protocol.

First the in-memory ARP cache is checked for existence of the

IP destination address. If there is a hit (ie. the entry is there) the

found callsign is used. A proper AX.25 packet is formatted. This is

queued on the AX.25 transit queue.

If the cache check produces a miss (ie. no entry found) dynamic

ARP-ing is engaged. An ARP broadcast is sent out requesting the

datalink call for the IP address in question. The frame is queued at the

tail of the ARP wait-queue. The IP header information, a relative

timeout value and number of tries is added to the queued information.

Processing will now be followed-up by the ARP check and ARP resolve

modules. The module then returns as if transmission succeeded.
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5.9 Timing.

There was a need for a relative time value. Gateway requirements

[RFC1009] prescribe a timer resolution in milliseconds from midnight.

Another short cut was taken here. A global system time value was

implemented. With a tick each fifty milliseconds and a sixteen bit time

value, almost an hour was needed for time to overrun and duplicate.

This was considered long enough not to worry about duplicate time

values. Packets queued up waiting for responses would not be around

nearly this long.

Each time the timer ticks, the two transmit queues are checked

in turn. If interrupt driven transmission is in progress, nothing is

undertaken. If there is no activity, the queue is examined. If a queue

contains frames ready for transmission, transmission of the next frame

will be started. Interrupt service routines take care of the
transmission of the complete frame once transmission is started.

5.10 The ARP Resolve Module.

When an ARP frame has been received the ARP resolve module is

called from the AX.25 receive module. There are two reasons why this

can happen. First is when a ARP request packet from some other

system is received. If this is the case, the ARP request information is

checked. The requested destination IP address might be one the

system is using. If so, an ARP reply packet is formed. This reply packet

contains the information about our IP address and our requested

datalink address, ie. the callsign. This packet is sent to the requesting

host by adding it to the AX.25 transmit queue.
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A second type ARP packet received can be an ARP reply from

some other system. This means that some information about
translation from IP address to AX.25 address is available. The
information about the destination IP address and AX.25 callsign is

extracted from the packet. This pair is added to the ARP translation

cache. If the cache is full, the oldest entry is overwritten.

Next the ARP wait-queue is checked. There could be frames

waiting for this IP to AX.25 translation. These frames are dequeued

and handed off to the AX.25 transmit module. Since the ARP cache has

now just been filled with the needed address translation, the frame

will immediately get sent as an AX.25 packet.

5.11 The ARP Check Module.

The ARP check module checks the ARP wait-queue. This

contains all frames waiting for a translation of IP network address to

AX.25 link address. Entries that have expired timeout values get

processed. Since the entries are in sorted order, not all entries have

to be checked. When the first entry with valid timeout value is found

processing can stop.

An expired entry results in two possible actions. If the retry

value is still positive, a new ARP broadcast will be sent. Again the IP to

AX.25 address translation for the target IP address is requested. The

timeout value is reset and the retry value decremented by one.

If the retry value is zero there has not been a timely reply to the

broadcast requests for address translation. This means that the IP

frame can not be sent using this gateway. Therefore an error message

has to be sent back to the originator of this frame. The address of the
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originator is obtained from the queued IP header. An ICMP Destination

Unreachable Message is sent. The queued frame is discarded.

5.12 Configuring the System.

The system has quite a few parameters. The most important

parameters are mentioned here. At present all are set at compile time.

This makes all parameters completely static. They are located in un-

changeable permanent memory. They include the AX.25 callsign of the

gateway. The IP address of both the radio port and the serial port are

stored here. A list of local AX.25 callsigns and their IP addresses can

be preloaded. These entries will permanently be in the Address

Resolution Cache. This allows the address translation of active stations

to be permanently known by the gateway.

The stored routes are important. They are also statically stored.

They need to be known beforehand. Routing table entries consist of

pairs of IP addresses and interface numbers. Routes have a network

mask. The network mask is the previously discussed group
identification or subnetwork id. Possibly the address of the next

gateway is associated with a route. Since routing entries are static at

present, the routing table has to be filled with caution. Improper

entries will cause lots of problems. They might result in users not

being able to use the gateway to connect to remote networks. They

could cause packets unnecessarily to be re-transmitted several times

by a set of gateways. This is a routing loop and should be avoided.

End-users will have to designate the gateway in their system

setup. They need to have knowledge of both the AX.25 callsign and IP

address of the gateway. They will have to send all packets that can not

be delivered on the local network to the gateway for routing.
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When all this has been properly configured, communication

based on Internet Routing of AX.25 packet is possible.
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CHAPTER 6

SUMMARY AND CONCLUSION.

6.1 Results.

A microcontroller system was designed and constructed. Using

commonly available parts, a compact system was designed that is

compatible with currently used Ham Radio equipment. The system is

easily reproducable by other interested Hams

Software was written to implement the Internet Protocol based

routing of AX.25 packets. Most of the software was written in the 'C'

programming language. This provides for good portability to other

hardware platforms. Where performance was critical, the software was

written in the controller's assembly language. The Franklin C51 DOS

based cross-compiler package was used.

The software implementation of the proposed system had a

compact code size of thirty kilobytes. One kilobyte of external data

memory was used for variable storage. Sixty-three kilobytes were

usable for frame buffering.

The system was tested in several situations. A test was run using

a 1200 Bd radio modem and transmitter connected to the radio port.

The SLIP port of the system, running at 19.2 kBd, was connected to a

PC running KA9Q's NET.EXE, also providing SLIP. The radio

communicated with a transmitter on another port of the PC. The

AX.25 radio modem on this port was a 'Pocket Packet'. The unit is

commercially available from Heathkit, U.S.A. Inc. This setup in effect

created a routing loop over the radio channel.
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The system behaved well. However, the nature of well-behaving

communication protocols is such that they do not try to force network

throughput. Well-designed communication protocols will not overload

a network. On the contrary, when they notice an congestion situation

(for example, due to missed acknowledges) they slow down their rate

of packets to be transmitted. When it comes to dealing with
overloading, the Transmission Control / Internet Protocols are
especially well-behaved. They will not overload a network. Thus in

order to evaluate the performance of the system under load a simple

mathematical analysis was needed.

A good measure of performance in communication protocols is

the throughput under load. A simple analysis, using a worst case

approach for average size packets, is performed. The results are

shown in Table 1.

packet time

packets/
second

1200 Bd
radio port 950 ms 1

9600 Bd
radio port 110 ms 9

19200 Bd
serial port 52 ms 19

processing 14 ms 70

Table 1. Packet throughput rates.
(for 100 byte packets)
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Frame processing latency times could be calculated from the

source code. The time it takes for a frame to be dequeued from the

SLIP receive queue to enqueuing on the AX.25 transmit queue is

calculated. This particular processing was chosen because it is the

most elaborate. Processing time is around fourteen milliseconds.

The calculated time assumed that the ARP resolver found the

datalink address needed in the cache. If this was not the case the

latency time increased drastically. Then the frame had to wait for the

ARP request to be answered. At present speeds, this could be in the

order of five to ten seconds. Latency time also depends on the IP

options used.

Next, input rates on the two interfaces were calculated. The

calculations assumed a packet length of 100 bytes. The serial interface

has a maximum speed of 19200 Bd. Each byte has ten bits (eight data

bits, and a start bit and stop bit). Thus a packet takes fifty two
milliseconds to arrive.

The radio interface has a speed of either 1200 Bd or 9600 Bd.

Apart from the time to transfer the data, there is a key-up delay time.

This is the time between start of transmission and start of actual data.

This delay is needed to facilitate slow receivers and modems. At 1200

Bd the key-up delay is around 350 milliseconds while at 9600 Bd it is

around thirty milliseconds. These times were approximations since

there are a lot of possible configurations. The total time it takes to

transfer a 100 byte packet is shown in Table 6.1.

The controller can process a maximum of 70 packets per

second. Worst case load will be a continuous stream of input packets

on both interfaces. This situation should not occur, since this
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represents one way data flow with no acknowledgements. This will

result in the reception of 19 packets on the SLIP port, and 9 on the

9600 Bd radio port. A total of 28 packets per second. The controller

can handle this load.

At present market prices, the hardware cost for the controller is

around seventy five dollars. This does not include a printed circuit

board. It does include the 1200 Bd modem chip. If operation at higher

baud rates up to 9600 Bd is needed, a separate modem is required.

6.2 Future improvements.

Possible future improvements could include dynamic routing.

Dynamic routing would allow the routing tables in the system to

dynamically change as the network changes. When new gateways are

established the current system needs to be re-programmed to reflect

the new status of the network. A simple implementation of the
Internet Routing Information Protocol would enhance functionality. A

more radio specific routing protocol such as RSPF, the Radio Shortest

Path First routing protocol, would also be useful when the network

size expands.

A more complete implementation of the Internet Protocol might

be attempted. Improvements can be made in the IP option processing,

such as source routing and route recording. Also system timing can be

improved to allow for a better IP time stamp option implementation.

Remote parameter access will provide a mechanism to change

the system parameters without having to re-program it. It will allow

for remote changing of the route table entries, ARP translation entries,

IP addresses of the system and more. When the network
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characteristics change, changing system parameters to reflect this will

be more easy.

An implementation of PPP, the recently developed Point to Point

Protocol, could also be useful. This would allow the serial port to be

used for more than just SLIP. It would facilitate multiple protocols,

such as IP and AX.25 , running together over the serial link.

6.3 Conclusions.

Presented here is a controller for Internet Protocol Routing of

AX.25 packets. The proposed solution here is simple and effective.

Some limitations are the static routing, and a limited implementation

of the options provided by the Internet Protocol. Remote

configurability of system parameters would be helpful.

Advantages of the controller are multiple. It provides IP based

networking instead of NET/ROM based networking. The design is

simple and has a low cost. The system is easy to reproduce and is

simple to interface to existing radio's. It allows the ham-community to

build a Packet Radio Network based on TCP/IP. When there is access

to a 'professional' network, the controller will allow for an easy

interface between the professional network and the Packet Radio

Network. It allows hams to experiment with for them new technology.
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