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The objective of many steady-state simulations is to

study the behavior of a nonterminating system with a peak load

of infinite duration. Due to the complexity of the system, the

initial conditions of the system are often atypical that often

requires the simulators to start the system with the empty and

idle conditions. Consequently, deletion of some initial

observations is required to reduce the initialization bias

induced by atypical initial conditions.

This paper studies the application of Schriber's

truncation rule to the complex queueing systems (specifically,

the two-machine and three-machine tandem queueing system) and

the effects of parameter selection (i.e. parameters batch size

and time between observations) on performance measures. Based

on the previous studies of Schriber's rule on the one-machine

system, parameters batch count and tolerance are held

constant.



Mean-squared error and half length are used as measures

of accuracy and interval precision in comparing the results.

The results of both systems show that time between

observations and batch size are significant parameters, and

the recommendations for the two-machine system can be

generalized for the three-machine system. Increasing the

number of machines in the system from two to three requires a

careful reduction in the value of time between observations.

Besides, multiple replications should be used to minimize the

extreme results in determining the steady-state mean number of

entities and the truncation point.
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STEADY-STATE ANALYSIS IN SIMULATION : AN APPLICATION OF
SCHRIBER'S TRUNCATION RULE TO COMPLEX QUEUEING SYSTEMS

CHAPTER 1. INTRODUCTION

1.1 Transient Versus Steady State Simulation

The two basic types of simulations with regard to

analysis of the output data are transient (or terminating)

simulation and steady state (or nonterminating) simulation. A

transient simulation has a specified interval of simulated

time [0, TE] in which the desired measures of system

performance are observed. It means that the simulation begins

at time 0 under certain initial condition(s) and ends when a

specified event (or set of events) E occurs at time TE. In

this type of simulation, event (or set of events) E is defined

by the nature of the simulated problem. It should be pointed

out that the initial condition(s) and event (set of events) E

must be well specified before the simulation begins.

On the other hand, a steady state simulation runs

continuously as the length of simulation time goes to infinity

(that is, for a long period of time). Since there is no

natural event E defined by the nature of the problem to

terminate the simulation, the simulator must decide when to

stop the simulation - that is, after some number of

observations have been collected and/or after length of time

TE has passed. Again, the initial condition(s) and event (set

of events) E must be specified before the simulation begins.

Usually, a steady state simulation is used to study how
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the system will respond to a peak load of infinite duration.

Thus, selecting the simulation type depends on what the

simulator wants to learn about the system; see Law [1983].

1.2 Stochastic Nature of Simulation Analysis

Generally, there are three basic requirements that have

to be satisfied in applying statistical inference methods or

classical statistics to analyze the output data :

a. Observations are independent.

b. Observations are sampled from identical distribution.

c. Observations are drawn from a normal population.

However, the output data of the simulation experiment do not

satisfy these requirements as explained below.

1.2.1 No independency.

In simulation, the output data from a discrete time

stochastic process can be defined as the waiting time of the

id' customer or as the number of customers in a system that are

sampled at equidistant time interval. Since the output data

can be recorded over period of time, the data can be

represented by the time series {X1, X2, In this study,

Xi is the number of entities in the system observed at the

time.

The nature of time series data is such that the value of

Xi may influence the value of its successor Xi+1. This means

that the time series data are autocorrelated or {X1, X2, ...,
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X.1 are dependent. The sample mean

ng(n) = E Xi
n

remains an unbiased estimator for population mean px; however,

because of autocorrelation, the sample variance

a2
(n) g(n) ) 2 (1.2)

becomes a biased estimator for population variance a2.

The correlation between any two observations at lag-i

(that is, i observations apart) is given by pi and since the

output data of most queueing simulations are usually

positively correlated (p, > 0, i = 1, 2, ..., n-1), the sample

variance of the data s200 underestimates the population

variance a2 (see Banks and Carson [1984]), or :

E [s2(n)] < a2 (1.3)

1.2.2 No stationarity.

The output data {X1, X2, Xfi} are recorded from a

covariance stationary process only if the sample mean 2(m

and variance 52(s) of the random variables (r.v.'s) Xi are

stationary over time and the covariance between Xj and Xi+i (or

Cov [Xj, XJ,J) depends only on the separation i (i observations

apart) and not on the actual time values of j and j+i.

However, the simulation output data are never strictly

covariance stationary in practice because these data are

usually sampled from two periods or phases, warm-up period and
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steady-state period. In more familiar terms, warm-up period is

also known as transient period where no stationarity occurs.

On the other hand, stationarity will occur when the system is

already in the steady-state period and, then, the output data

becomes time-independent.

The absence of stationarity implies that 47) and s200

are not constant over time but always vary over time. Thus,

the output data sampled from the warm-up period are also said

to be time-dependent and the estimates may be biased and,

hence, unreliable.

As mentioned earlier, the initial condition(s) must be

well specified before the simulation begins. Wilson and

Pritsker [1978b] found that the selection of initial

condition(s) is more effective and has a greater influence on

the accuracy of the performance measures than any other

factor. The steady-state mode (or values close to steady-state

mode) is found to be the best initial condition as it

minimizes the warm-up period and prevents the discarding of

too many observations. Since often little information or

knowledge about the behavior of the system is known, the

empty, idle condition is usually selected as the initial

condition even though this selection can cause the output data

sampled from the transient period to be significantly biased.

Schruben [1982] recommends that the output data be

grouped into small adjacent batches (that is, five

observations per batch) and that the sequence of batch means
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be compared in detecting the initialization bias. Because of

this initialization bias, it is also recommended that the

output data sampled from the transient period be discarded and

that the sample mean be estimated based on the output data

sampled from the steady-state period. Furthermore, Schruben

(1983) suggests that the duration run or the number of

observations per replication be increased if the output data

still shows the initialization bias.

1.2.3 No normality.

The normality requirement can be relaxed by using the

well known approach, the Central Limit Theorem. Therefore, it

is important to know how to collect observations of

independent and identically distributed (i.i.d) r.v.'s having

population mean g, before applying the classical statistic

methods.

1.3 Truncation in Steady-state Simulation

In order to determine the truncation point, Wilson and

Pritsker (1978a) identified three common approaches : time

series analysis techniques (by Fishman), queueing theory

models (by Blomqvist, Cheng, Law, and Madansky), and heuristic

rules (by Conway, Fishman, Gordon, and Schriber). Even though

the results of time series analysis and queueing theory models

are rigorous and precise, these two approaches have rather

limited applicability because of the number of analytical
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parameters that have to be estimated or calculated before the

simulation begins. As the system becomes more complex, the

analytical parameters as well as the complexity of

computations increase. In the worst case, these approaches may

no longer fully describe the system. Also, to use these

approaches, the practitioners are required to have a good

background in time series analysis techniques or queueing

theory models.

Heuristic rules are by far the more commonly used

procedure for truncation. Their application is relatively

simpler; hence greater acceptance by simulation practitioners.

However, application of heuristic rules is still not straight

forward. Usually the heuristic rules are ambiguously defined

and require that certain statistical parameters be estimated

or selected by the simulator before they can be applied. Thus,

the application of the rules still depends on the judgement of

the simulator or the analyst. In this study, only heuristic

rules will be evaluated.

Gafarian et al [1978) evaluated the first comprehensive

analysis of simulation startup policies used to identify the

minimum truncation point such that the variation between the

sample mean )7:0,,) and population mean g, is within the

preassigned tolerance or controllable limit E. It means that

a simulator must know the conditions of the simulated model at

the time the data are collected - either from periods of

transient or steady state - so that excessive truncation or
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lack of data can be avoided.

To compare the performance of the heuristic truncation

rules, Gafarian et al [1978] developed a set of criteria

consisting of accuracy, precision, generality, cost, and

simplicity. In their research, they did not examine the full

effects of random variation of truncation point on the sample

mean X(,,,d) as an estimator of population mean px. Besides,

the results show that the best policy for estimating µx may

not necessarily also be the best policy for estimating the

minimum truncation point.

It has been suggested in many heuristic rules to delete

the data collected from the transient period and to calculate

the sample mean based on the data collected from the steady-

state period; see Schruben [1982, 1983]. The sample mean is

now known as the truncated sample mean. This truncated sample

mean

1
Xind ETc(n,d)

i=d+1
(1.4)

where :

n = number of observations

d = number of data to be deleted

was used by Fishman [1972] in anlyzing the effects of initial

conditions on a first-order autoregressive process (a special

case of time series analysis techniques).

Fishman reported that deleting the first d observations

reduces the bias and increases the variances because of the
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loss of data or information in a fixed sample size simulation.

However, deleting more observations - that is, increasing the

truncation point - increases the mean-squared error of the

sample mean according to the following equation :

MSE (Rth,d)) = Var [3- C d) ] (E [Tqn, 11x) 2 (1.5)

Fishman concluded that deletion of some observations is

not always desirable since it worsens the variance. Thus, the

bias reduction must be carefully weighed against the increased

variance. This result was also supported by Turnquist and

Sussman [1977].

As mentioned earlier, the selection of initial

condition(s) has a greater influence on the accuracy of the

measures of performance than any other factor, including the

choice of truncation method. However, since the empty, idle

condition is usually selected as the initial condition, Kelton

and Law [1984] reported that replication of some independent

runs and deletion of some initial observations is still an

effective and efficient method of dealing with initialization

bias.

To perform the heuristic truncation rules, the simulator

must also know how to collect the output data which are

autocorrelated. Methods used to collect the data and heuristic

truncation rule applied in this study are explained below.
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1.4 Output Data Collection

Besides minimizing the initialization bias, the analyst

must consider how to minimize the autocorrelation effect found

in the output data {X1, X2, ..., Xn} . Two general approaches

that have been used in heuristic truncation rules to construct

the unbiased estimator for population mean A, and variance a2

are fixed sample size approach and sequential approach.

In fixed sample size approach, one simulation run or

several independent runs of an arbitrary fixed length or fixed

number of observations are performed to construct the point

estimate and a confidence interval (c.i.). However, in

sequential approach the length of a single simulation run is

sequentially increased until an acceptable c.i. can be

constructed; as such, this method depends only on the

availability of data. This study uses the fixed sample size

approach.

In literature, six procedures using fixed sample size

approach have been reported. These are : replication, batch

means, spectrum analysis, autoregressive, regenerative, and

standardized time series. From simulations of several queueing

and inventory systems using coverage and half length as

criteria for comparison, Law [1977] found that batch means

method is superior to replication method although neither

method worked well if the total sample size N is too small.

Later in further research, Law [1983] found very little use of

the methods of batch means, autoregressive, spectrum analysis,
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standardized time series, and regeneration cycles. The only

method ever used because of its simplicity and familiarity is

the replication method since it does not require the

simulators or analysts to have a good statistical background;

(see also Law and Kelton [1979, 1984]). Because of their

applicability, only the methods of replication and batch means

are discussed in sections 1.4.1 and 1.4.2, respectively.

1.4.1 Replication method.

- R independent simulation runs are performed with

different random numbers for each run.

- In each run, n fixed observations will be recorded and

the first d observations will be discarded due to the

significant bias that occurs in the transient period.

- The truncated sample mean from a particular jth run

2Yi (12,d) =
1 E xi; for j = 1, 2, ..., R (1.6)n-d i=d+1

n

is calculated based on the truncated (n - d) observations

(Fishman [1972]). This truncated sample mean is

considered as a single observation. The grand mean 2(m

is then calculated as

1
X(R) R E Xi(n,d)

j=1
(1.7)

as an estimator of gx.

- Advantage : Kelton and Law [1984] concluded that

replication method can be a viable method of analysis in
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steady state simulation because this method is very

simple compared to other methods and n single

observations are truly i.i.d unbiased observations.

- Disadvantage : Boundary effects due to autocorrelation

still exist. Wasting data (or excessive truncation) due

to some biased observations collected near the start of

simulation run (i.e. transient period) cannot be avoided.

Besides, each run starts with the same initial conditions

that do not represent the steady-state behavior of the

system being modeled.

1.4.2 Batch means method.

- One long simulation run is performed and the length of

run is m fixed observations.

- The simulation period is divided into n batches and each

batch mean

m-(j-1)b

bTc.J( ) = - .T.L E x, , 1 j n (1.8)
i) i=m-jb+1

represents a single observation with a batch size of b.

If the batch size b (b = m/n) is large enough, the batch

means are approximately normal and uncorrelated.

- Advantage : One long run can dampen the initial effect of

transient state so that the grand mean of batch means

will be an unbiased estimator for gx.

- Disadvantage : The successive batch means may still

reflect the boundary effects due to autocorrelation; this
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may be more crucial than the replication method. It

implies that the batch means will not exactly be from a

covariance stationary process. Besides, it is difficult

to identify the batch size b large enough so that the

batch means follow an approximate normal distribution.

1.5 Truncation Rule

The heuristic truncation rule evaluated in this study is

the Schriber's truncation rule. Schriber's truncation rule was

chosen in this study because this rule is conceptually

appealing. It uses batch means method to detect the

initialization bias among the sequence of batch means and,

then, applies replication method to calculate the truncated

sample mean for each run. The advantages of using batch means

method are that large enough batch size b will ensure

practical independence of successive batch means and an

adequate truncation point. Furthermore, using replication

method will ensure that the truncated sample means from n runs

are i.i.d observations. Also, the rule has previously been

used in application to simple one-machine system (Baxter

[1990]).

Wilson [1977] reported that the performance of Schriber's

heuristic truncation rule was found to be consistent with

other frequently cited truncation rules developed by Gordon

and Fishman.
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1.5.1 Schriber's truncation rule.

Schriber [1974] suggests that the approach to steady

state operating conditions may be monitored by partitioning

the observed time series Uri : 1 s i sii into adjacent batches

of some fixed size b. Then the behavior of the batch means can

be used to determine whether the steady-state condition has

been achieved in the k most recent batch means, that is

U;(b) : 1 s j s . This means that time series data from the

k recent batches were already observed from the steady-state

period and autocorrelation no longer occurred.

It is important to note that the extreme value in the set

of batch means always occurs near the start of simulation run

because of the selection of atypical initial condition, for

example, empty and idle conditions. As simulation time

elapses, the batch means as well as the time series data

become relatively stable, i.e. convergence to steady-state

conditions.

Although Schriber [1974] used a detailed example to

illustrate this method, he actually selected a truncation

point by "inspection" rather than by applying a specific

algorithm to identify the appropriate truncation point. Wilson

[1977] used a formulation of Schriber's truncation rule and

specified the important parameters used in Schriber's rule.

These are : batch size b, batch count k, and tolerance e. Then

the truncation point, d, is set at time n if the k most recent

batch means all fall within the tolerance e of each other :
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max {1; (b) X1(b) : 1 s j, 1 s s e (1.9)

where :

Xj(b) : the batch mean of the j1 batch

XI (b) : the batch mean of the 11 batch

Since the batch means are always compared in k pairs of

batches of size b, the steady-state condition can only occur

after time n = k x b. It means that the minimum truncation

point is dui, = k x b and that it must be satisfied in each

simulation run. If at that time, the truncation rule is

satisfied then d = n. Otherwise, the oldest batch {X1, X2, ...,

Xb} is dropped and the batch mean for the next batch pc,"
X1 2,

Xn.1,1 is calculated. This procedure continues until the

comparison of the most recent batch means yields the above

condition.

It should be pointed out that the truncation point, d, is

sensitive to the selection of parameters b, k, and c. Thus, in

order to use relatively small batch sizes that prevent an

excessive truncation point but still ensure that no

autocorrelation occurs among batch means, a simpler but less

general approach to Schriber's rule was chosen. For a batch

count of two with a batch size of b observed when the M/M/1/15

queue is in steady-state condition, the difference of

(X1(b) -TC2(b)) has an expected value of 0 or

E fTcl. (b) X2 (b) = 0 (1.10)

and has approximately normal distribution. Then, the variance
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of the difference becomes

Var (b) X2 (b) = 2 [po(b) pi (b)]

where :

Mb) : autocovariance between two batch means separated
by i batches.

pi (b) = Coy [Xi (b) , (b) (1.12)

The difference should not exceed the condition specified below

or

(b) IC2 (b) s Z.12 . 2 [po (b) (b)]

ITC1(b) ;(b) I s e

After some experimentation, the evaluation of the above

condition yielded the tolerance e = 4.03 at an a of 25%.

Wilson and Pritsker's study [1978b) of Schriber's rule

considered a single selection of batch count of two, batch

size of five, and variable selection of truncation point with

c = 4.03. However, they did not examine the effect of the

length of equidistant time interval.

1.5.2 Application of Schriber's rule to a one-machine

system.

Baxter [1990) used a Weibull distribution for service

time and introduced a new parameter time scale T (average

number of arrivals between observations) along with parameters

b, k, and c to study the effects of parameter selection using
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Schriber's rule for one machine system (M/M/1/15). It should

be noted that T/X (where X is average arrivals per time unit)

represents time between observations (TBO), i.e. equidistant

time interval. Mean number of entities in the system and mean-

squared error (MSE) were selected as the performance measures.

Baxter's [1990] two-way ANOVA test results showed that

only parameters b, T, and interaction between the effect of b

and T were significant for the two dependent variables. The

results show that as the time scale T increases, the time

series data (number of entities in the system) become more

consistent, that is convergence to steady-state condition.

This research suggested to use T greater than 4.5 arrivals

between observations or to use time interval greater than one

time unit between observations.

Even though batch count k is not significant, it is

suggested to use batch count of two instead of three because

k = 2 is more sensitive, i.e., more rapidly detects when the

steady-state condition has occurred. Besides, excessive

truncation can be prevented.

Likewise, a batch size of five observations is more

sensitive to detect the gradual changes in the number of

entities in the system compared to a batch size of 10

observations.
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1.6 Research Objectives

The objectives of this paper are to study the application

of Schriber's truncation rule to more complex queueing models

as well as to study the effects of parameter selection -

parameters batch size (b) and time between observations (TBO)

- on system performance measures. Following Baxter's [1990]

results, the parameters batch count and tolerance will be held

constant in this study. More specifically, the system studied

in this research are the two-machine and three-machine tandem

queueing system.

1.7 Performance Measures

Performance measures must be specified in order to

describe the effects of parameter selection - batch size (b)

and time between observations (TBO). The performance measures

used in this study are :

- Mean number of entities in the system.

- Average MSE (MSE) .

- Number of initial observations with empty, idle system.

- Empirical truncation point distribution.

1.7.1 Mean number of entities in the system.

The random variable, observed time series data,

(Xi : 1 s i s represents the number of entities in the

system observed at the 1.1 time. Then, the truncated sample

mean from the jth run is given by



n

li (n, d) = E xi, for j = 1, 2, ..., R (1.15)nd
1

i=d+1
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where Xij is the number of entities in the system observed

at the ith time from the jth run.

Since each design level is run for R = 1000 runs, the grand

mean or the overall mean

RvX(R) (n, d)j=1
(1.16)

becomes an unbiased estimator of the theoretical steady-state

mean number of entities in the system, A,.

Furthermore, the estimated variance of the distribution

of the sample values Xj(n,d) 's is given by

R

S2(R) = X (3ci(n,d) (R)) 2R-1
=i

(1.17)

also known as the sample variance. The sample variance

represents the variability within the grand mean X(R) .

Besides, the standard deviation or standard error (s.e.) of

the distribution having X00 as the grand mean is

.52(
JO

(1.18)s.e.

The bias in the point estimator X(R) is given by

B =7C(R) (1.19)

which represents the deviation between the grand mean 200

and the population mean g,, In practice, it is desirable to

have B as small as possible so that the point estimator is

said to be unbiased.
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In order to assess how close X(R) is to g mean-squared

error (MSE) and half length (HL) will be used as measures of

accuracy and precision. MSE encompasses both the bias and

variance since MSE is the sum of the bias squared and

variance. Thus, for each design level the mean-squared error

becomes

or

MSE = B2 + B2 (R)

MSE = [X(R) 11x] 2 + S2 (R)

Since half length is used as a measure of confidence

interval precision, a smaller HL is desirable for each design

level. Performing R = 1000 runs for each design level allows

the use of the normal approximation Za as the substitute of ta.

Thus the half length for each design level is given by

HL = (Zai2) (s.e.) (1.22)

1.7.2 Average MSE, MSE .

It is often desired in simulation to estimate the

theoretical mean-squared error as the average of the mean-

squared errors calculated from run to run rather than as the

summation of the bias squared and variance of X(R) (equation

1.21) for each design level. Thus, the random variable of

interest from the jth run is

Y7 = 1 2
L"J (n, (1.23)



so that

E = E [ (1;(a,d) Vx) 2]

E = varrTlej(n,,) 1 + [Xicn,d) Px] 2

Var [Xj (n,d)]

20

(1.24)

is also known as the estimated variance of

the distribution of the sample values Vs recorded from the

jth run such that

1
Var 121107, dO = S2 (n, n_d_i .E (n, d) I 2

/=d+1

for j = 1, 2, ..., R (1.25)

while the bias in the theoretical sample mean from the jth run

is given by

or

3.7 = TC,i(z2,4 (1.26)

Thus, combining equations 1.24 and 1.25 will give

E [Yi] = S2i(n,d) [Tc_1(n,d) 11X] 2

=S2 +32

E[1,7] = hr5E2 for j = 1, 2, ..., R (1.27)

Let the new random variable

Yj = MSEi for j = 1, 2, ..., R (1.28)

so that the average mean-squared error is given by



or

MSE = 1

R

MST = 1

MSE.
j=1

E S2j (12,
:7=1

MSE = S2 + B2

It should be noted that

and

R
2s = E s2j(n,d)R =1

RB2 =. 1 E B2
_1=1

+ B2i)

(1.29)

(1.30)

(1.31)
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are the average variance and average squared bias,

respectively. Thus, the average mean-squared error ( MSE ) is

an unbiased estimator of the theoretical mean-squared error.

Besides, since the bias can be either positive or negative,

the bias must be squared, then, averaged. Schwarz inequality

(see Neuts [1973]) implies that

B2 S [T3] 2
(1.32)

1.7.3 Number of initial observations with empty, idle

system.

Number of initial observations is used to describe the

effects of changing the parameter, time between observations

(TBO), during the simulation run. The random variable of

interest is which represents number of occurances of the

empty, idle system during the jth simulation run. Thus, the

sample mean becomes



I T
-1-(10 j".7

j=1

for j = 1, 2, ..., R (1.33)
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as the direct estimator of the population mean number of

initial observations Ap

Furthermore, the estimated variance of the distribution

of sample values is given by

R

S2(R) = E [11 I(R) 2

j=1
(1.34)

The standard deviation or standard error of the distribution

having the sample mean Tuo is the same as in equation 1.18

mentioned earlier.

1.7.4 Truncation point distribution.

The empirical truncation point distribution is used for

comparison in this study in order to describe any significant

difference caused by parameter selection.

The random variable of interest is di which represents the

truncation point of the jth run and the sample mean of the

truncation point is given by

"
d

=1
(1.35)

as an estimator of the population mean truncation point gd.

The standard deviation (standard error) is given as in

equation 1.18.
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CHAPTER 2. APPLICATION TO A TWO-MACHINE SYSTEM

2.1 Analytical Model

The first queueing system evaluated is a two-machine

system consisting of two M/M/1/15 models placed in tandem -

also known as a system with two queues in tandem. The M/M/1/15

model is used in this study because it is the most commonly

used, cited model in many literature for a single-machine

system; see Gafarian et al [1978], Schruben [1982], Kelton and

Law [1983], Schruben, Singh, and Tierney [1983], and Baxter

[1990].

The arrival rate X of 4.5 arrivals per time unit to the

system (or 0.222 time units between arrivals) and service rate

A of five jobs per time unit (or 0.2 time units per job) for

each machine are used in these models with the finite queue

capacity of 15 per queue. Both the arrival and service rates

are distributed exponentially.

The utilizations of the first and the second machines are

pi = 0.9 and p2 = 0.877 , respectively, and the theoretical

steady-state mean number of entities in the system j is

10.2631. More details about analytical results are given in

Appendix I.

2.2 Computer Model

All the computer programming was done using SIMAN and

FORTRAN languages. The important subroutines that will be
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discussed below are subroutines ARIM1, M1TOM2, ENDOS, INCTIM,

PAIRCOM, TRUNC, and SCSTAT, respectively. The flowcharts for

the subroutines ARIM1, M1TOM2, and ENDOS are given in

Appendices II-A, II-B, and II-C, respectively.

2.2.1 Subroutine ARIM1 (arrive and start processing on

machine-1).

The functions of this subroutine are as follows :

- to schedule the next arrival according to the arrival

rate which is distributed exponentially.

- to process the current job and schedule its completion

time on machine-1 if this machine is idle. After

processing is completed, the current job will be sent to

machine-2.

- to make the job wait in the first queue if machine-1 is

busy and a space is available in that queue.

- to make the job leave the system without service if

machine-1 is busy and no space is available in the first

queue.

2.2.2 Subroutine M1TOM2 (start processing on machine-2).

The functions of this subroutine are as follows :

- to process the job sent from machine-1 and schedule its

completion time on machine-2 if machine-2 is idle. After

the process is completed, the job will be sent to leave

the system.
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- to make the job wait in the second queue if machine-2 is

busy and a space is available in that queue.

- to block machine-1 if machine-2 is still busy and no

space is available in the second queue. If the blockage

occurs, machine-1 will not process a new job while

machine-2 keeps processing the job in progress.

- to process the waiting job in the first queue (if any)

every time machine-1 is idle and, then, schedule its

completion time.

2.2.3 Subroutine ENDOS (leave the system).

The functions of this subroutine are as follows :

- to process the waiting job in the second queue (if any)

every time machine-2 is idle and, then, schedule its

completion time to leave the system.

- to unblock machine-1 whenever there is an available space

in the second queue by moving the blocking job from

machine-1 to that queue.

- to process the waiting job in the first queue (if any)

every time machine-1 is unblocked and idle. Then schedule

its completion time on machine-1 and send the job to

machine-2.

2.2.4 Subroutine INCTIM.

All 50 observations to record the number of entities in

the system are performed at time TBO, 2 TBO, ..., 50 TBO by
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this subroutine for each simulation run. The value of TBO will

be varied in this study.

2.2.5 Subroutine PAIRCOM (pairwise comparison).

PAIRCOM subroutine performs the following :

- The batch means for the first b observations {X1, X2, ...,

Xb} and the second b observations {Xb +l, Xb+2, ..., Xm} are

calculated.

- If the difference in these means is less than or equal to

the controllable limit e = 4.03 (o: = 0.25), it implies

that the steady-state condition has been achieved.

- Otherwise, the observations are still collected from the

transient period. Thus, the oldest batch {X1, X2, ...,Xb}

is dropped and the batch mean for the next new batch

0644, X2b +2, ...,Xml is calculated. Then, the comparison

between the latest two batch means is again performed.

- The comparison process stops as soon as the difference is

less than or equal to e = 4.03.

2.2.6 Subroutine TRUNC (determining the truncation point) .

As soon as the comparison process stops, subroutine TRUNC

will do the following :

- Determining the truncation point d that could be 2b, 3b,

..., or 50. If the truncation point is less than 50, the

(50 - d) observations collected after the truncation

point will be kept for further calculations. However, if
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the truncation point is 50, only the last b observations

will be kept.

- Calculating the single steady-state mean Tr and the

mean-squared error MSE for the remaining observations.

The mean and mean-squared error are stored in a file and

are considered a single observation of a particular run.

Notice that there are 1000 replications or runs for each

design level in this study.

2.2.7 Subroutine SCSTAT.

This subroutine calculates the overall steady-state mean,

bias, variance, mean-squared error, standard error, and half

length from all 1000 runs.

2.3 Experimental Design

Baxter [1990] in an earlier research studied the effects

of parameter selection using Schriber's rule for one-machine

system (M/14/1/15). The results show that the parameters, time

scale T and batch size b, are significant parameters that

affect the dependent variables (that is the steady-state mean

and mean-squared error), while the parameter batch count k is

not significant. Also, the interaction between parameters time

scale T and batch size b is significant.

For the one-machine system, Baxter suggests to use time

scale T greater than 4.5 arrivals per observation (that is,

one time unit between observations) in order to yield
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consistent results such that recording initialization bias

condition or empty system during observation can be minimized.

Besides, even though batch count k is not significant, it is

suggested to use k of two batches (instead of three batches)

because k of two batches is more sensitive to detect the

occurance of steady-state condition so that discarding of too

many initial observations can be avoided. For practicality,

batch size should be either five or 10 observations per batch;

see Schruben [1982] and Schruben, Singh, and Tierney [1983].

In this study, the observation time is controlled by time

between observations (TBO) instead of by time scale T (average

arrivals per observation). Notice that the TBO is a ratio

between time scale T and the arrival rate, X = 4.5 arrivals

per time unit.

The experimental design for a two-machine system is a 5

x 2 design; there are five levels for time between

observations and two levels for batch size b, Table 2.1.

Table 2.1 : Parameters and factor levels (5 x 2) for a two-
machine system's experimental design.

Parameters Factor levels

T : time scale [average 1.125; 2.25; 3.375;
arrivals / observations) 4.5; 5.625

TBO : time between 0.25; 0.5; 0.75; 1.0;
observations [time units] 1.25

b : batch size [number of
observations per batch]

5; 10

Based on Baxter's suggestions, the batch count, k, is
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held constant at two batches. For each design level, 1000

replications are run; this resulted in a total sample size of

10,000.

In order to minimize the variation in the simulation

results and to yield more consistent results, the

synchronization technique is applied to each design level.

This technique enables to use the same sequence of random

numbers and to let the corresponding replications start with

the same seed number selected automatically during simulation

run. Besides, to generate samples from the exponential

distribution, the inverse transfom method is used, see Kelton

and Law [1982]. Furthermore, different random number streams

are used for arrival times and service times for the two

machines, see Banks and Carsons [1984].

2.4 Results

Equations 1.16, 1.17, 1.18, 1.19, 1.21, and 1.22 are used

to calculate the grand mean, sample variance, standard error

(or standard deviation), bias, mean-squared error, and half

length, respectively. A summary of the overall steady-state

mean number of entities in the system, bias, variance, mean-

squared error, standard error, and half legth (with m = 10%)

for the 10 design levels is presented in Table 2.2.

The table shows that variance, mean-squared error, and

half length are minimized with the parameter set of TBO = 0.25

time units and a batch size of five. The bias, however, is
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minimized with the parameter set of TBO = 0.5 time units and

a batch size of five. It should be pointed out that since all

10 design levels are done with batch count of two, this means

that two-sequential batch means are being compared. The

following sections evaluate specific performance measures in

more details.

Table 2.2 : Overall steady-state results for a two-machine
system, with an a of 10%.

TBO, b Mean Bias Var. MSE s.e. HL

0.25, 5 7.546 -2.718 13.830 21.215 0.118 0.194

0.25,10 8.250 -2.013 21.052 25.106 0.145 0.239

0.5, 5 9.953 -0.311 26.212 26.308 0.162 0.266

0.5, 10 10.821 0.558 40.296 40.607 0.201 0.330

0.75, 5 11.655 1.392 35.145 37.084 0.186 0.308

0.75,10 12.435 2.172 50.131 54.848 0.224 0.368

1.0, 5 13.169 2.906 51.116 59.558 0.226 0.372

1.0, 10 14.286 4.023 73.204 89.386 0.271 0.445

1.25, 5 14.511 4.248 56.976 75.022 0.239 0.393

1.25,10 15.650 5.387 76.802 105.817 0.277 0.456

Note :
- X = 4.5 arrivals per time unit.
- TBO : time between observations [time units].
- There are 1000 replications used in each design
level to construct the single-point estimate, mean
number of entities in the system.

- Bias represents the deviation between the overall
mean and the theoretical steady-state number of
entities (A, = 10.2631), while variance represents
the variability within the overall mean. Finally,
MSE is the summation of squared bias and variance.
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2.4.1 Steady-state mean number of entities in the system.

Before the effects of parameter selection on the steady-

state mean can be studied, the two-way ANOVA test on mean as

the dependent variable is performed to test the significance

of the main factors and factor interaction. The ANOVA results

(Table 2.3) show that the main effects for the two parameters

TBO and batch size are significant, while the interaction

between these parameters is not significant.

Table 2.3 : ANOVA for a two-machine system with steady-state
mean as the dependent variable.

Dependent variable : Mean

Source DF Anova SS Mean
Square

F value Pr > F

TBO 4 63515.502 15878.876 357.02 0.0001

Batch 1 2122.881 2122.881 47.73 0.0001

TBO*Batch 4 77.787 19.447 0.44 0.7818

After performing ANOVA test, Duncan's Multiple Range Test

(DMRT) is performed to rank the design-level means

statistically. DMRT is performed by creating a new variable

COND (for "condition") that represents a combination of the

original independent variables, TBO and batch size. The

results of DMRT are as follows (Table 2.4) :

- As TBO increases for a fixed batch size, the mean number

of entities increases.

- As the batch size increases for a fixed TBO, the mean

number of entities increases.
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Table 2.4 : Ranked steady-state means by using DMRT with a =
10%.

Duncan
Grouping

Mean N COND

A 15.650 1000 1.25, 10

B 14.511 1000 1.25, 5

B 14.286 1000 1.0, 10

C 13.169 1000 1.0, 5

D 12.435 1000 0.75, 10

E 11.655 1000 0.75, 5

F 10.821 1000 0.5, 10

G 9.953 1000 0.5, 5

H 8.250 1000 0.25, 10

I 7.545 1000 0.25, 5

Means with the
different significantly.

same letter are not

- The means for parameter set of TBO = 1.25 with a batch

size of five and for parameter set of TBO = 1.0 with a

batch size of 10 are not significantly different, while

means for other parameter sets are significantly

different from each other.

2.4.2 Average mean-squared error ( MSE ).

For each design level, the average squared bias, average

variance, and average mean-squared error are calculated based

on each single value of squared bias, variance, mean-squared

error recorded from run to run using equations 1.31, 1.30, and

1.29, respectively. The single value of mean-squared error
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represents both bias and variance of a single mean number of

entities from a particular run. A summary of these average

values is presented in Table 2.5.

Table 2.5 : Average results for a two-machine system at an a
of 10%.

TBO Batch
size
b

Mean Bias2 Var MSE

0.25 5 7.5455 21.2014 11.8220 33.023

0.25 10 8.2497 25.0848 8.3495 33.434

0.5 5 10.8207 26.2825 20.8140 47.097

0.5 10 9.9526 40.5668 14.4893 55.056

0.75 5 12.4349 12.5640 23.4840 36.048

0.75 10 11.6554 51.7979 19.3657 71.164

1.0 5 14.2858 52.5070 34.9964 86.503

1.0 10 13.1686 73.3128 24.9181 97.231

1.25 5 15.6496 68.9652 39.2602 68.965

1.25 10 14.5112 93.7400 28.6432 93.740

The two-way ANOVA test and DMRT are performed on the

average mean-squared error ( MSE ) as the dependent variable

for 10 design levels of independent variables TBO and batch

size (Table 2.6). Table 2.6 shows that the main effects for

the two parameters TBO and batch size as well as their

interaction are significant. This means that it is not

possible to study the effects of TBO or batch size on the

average mean-squared error separately; the condition of both

parameters must be known simultaneously to study the

variations in MSE .
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Table 2.6 : ANOVA for a two-machine system with MSE as the
dependent variable.

Dependent variable : MSE

Source DF Anova SS Mean Square F
value

Pr > F

TBO 4 4567770.637 1141942.659 98.29 0.0001

Batch 1 623911.051 623911.051 53.70 0.0001

TBO*Batch 4 388826.850 97206.713 8.37 0.0001

The DMRT test at an m = 10% shows that (Table 2.7) :

- As the batch size increases for a fixed TBO, the average

squared bias and the average mean-squared error increase.

However, the average variance decreases.

Table 2.7 : Ranked MSE 's by using DMRT with a = 10%.

Duncan
Grouping

N CONDMSE

A 97.231 1000 1.0, 10

B A 93.740 1000 1.25, 10

B 86.503 1000 1.0, 5

C 71.164 1000 0.75, 10

C 68.965 1000 1.25, 5

D 55.056 1000 0.5, 10

D 47.097 1000 0.5, 5

E 36.048 1000 0.75, 5

E 33.434 1000 0.25, 10

E 33.023 1000 0.25, 5

same
different.

letter are notMSE 's with the
significantly

- As the TBO increases for a fixed batch size, the average
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squared bias, average variance, and average mean-squared

error increase. Notice that Table 2.7 does not show the

variability of the average mean-squared errors for a

batch size of 10 and there is no significant difference

in average mean-squared errors for TBO = 1.0 and TBO =

1.25 time units. However, the variability of the average

mean-squared errors is found for a batch size of five

such that there are significant differences in the

average mean-squared errors for TBO = 0.25 and TBO = 0.5

time units as well as in the average mean-squared errors

for TBO = 0.5 and TBO = 0.75 time units but no

significant difference in the average mean-squared errors

for TBO = 0.25 and TBO = 0.75 time units. In addition,

the average mean-squared error for TBO = 1.0 is

significantly higher than that of for TBO = 1.25 time

units.

- The average mean-squared error is minimized with the

parameter set of TBO = 0.25 time units and a batch size

of either five or 10, because no significant difference

is found in these values.

It is important to understand the cause of the variability of

the average mean-squared errors for all design levels before

making any conclusion about the effect of parameter selections

on the average mean-squared error. This is discussed in detail

in section 2.5.2.
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2.4.3 Initial observations of empty, idle system.

In this study, 50 observations are recorded in each

replication for each design level, the first observation being

performed at simulation time 0.0 with the empty system as the

initial condition. Then, the number of initial observations

(that is, the occurance of the empty, idle system) is recorded

for each replication. For illustration, Figures 2.1 and 2.2

show the first twenty observations taken from the first

replication for different values of TBO. Figure 2.1 shows that

there are at least 8, 1, and 1, observations of an empty, idle

system corresponding to TBO values of 0.25, 0.5, and 0.75.

16

14

12

10

8

6

4

2

O
1 2 3 4 5 6 7 8 9 1 0 1 1 12 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0

Observation number

EMI TB0=0 .2 5 IMS2 TB0=0 .5 ISSM TB0=0 .7 5

Figure 2.1 : Number of entities in the system for a two-
machine system, {TBO = 0.25; 0.5; 0.75}.
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Figure 2.2 : Number of entities in the system for a two-
machine system, {TBO = 1.0; 1.25}.

Similarly, there are two observations of an empty system for

TBO of 1.0 and one observation for TBO of 1.25, as shown in

Figure 2.2. Since the system started empty and idle, there is

at least one observation with system empty.

An empirical distribution of initial observations of an

empty, idle system is established by including all 1000

replications for a given TBO. A summary of the mean occurance

and standard deviation of initial observations (using

equations 1.33 and 1.18, respectively) as well as the maximum

occurance of initial observations from a particular replicate

is listed in Table 2.8.

For TBO of 0.25 time units, for example, the mean

occurance is 3.4470 and at most there are 16 initial

observations of empty, idle system recorded from a particular
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replication. Table 2.8 shows that the mean occurance and

standard deviation decrease as the TBO increases.

Table 2.8 : Empirical distributions of number of initial
observations of empty, idle system.

TBO Mean Std.
dev.

Max

0.25 3.4470 0.0815 16

0.5 2.5440 0.0544 12

0.75 2.1280 0.0421 9

1.0 1.9830 0.0387 8

1.25 1.8000 0.0324 6

The ANOVA results (Table 2.9) show that the main effect

of parameter time between observations (TBO) is significant,

while the main effect of parameter batch size and their

interaction are not significant.

Table 2.9 : ANOVA for a two-machine system with initial
observations of empty, idle system as the
dependent variable.

Dependent variable : Initial observations

Source DF Anova SS Mean
Square

F value Pr > F

TBO 4 3445.7944 861.4486 309.35 0.0001

Batch 1 0 0 0 1.0000

TBO*Batch 4 0 0 0 1.0000

The DMRT on mean occurance of initial observation shows

that empirical distribution means are significantly different

from each other for the different values of TBO used in the

study (Table 2.10).
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Table 2.10 : Ranked mean number of initial observations for a
two-machine system.

Duncan
Grouping

Mean N COND

A 3.4470 2000 0.25

B 2.5440 2000 0.5

C 2.1280 2000 0.75

D 1.9830 2000 1.0

E 1.8000 2000 1.25

Means with the
different significantly.

same letter are not

2.4.4 Empirical truncation point distribution.

For every design level, an empirical truncation point

distribution is established by including all independent

truncation points recorded from 1000 independent replications.

The frequency distributions of the truncation point for all

designs are given in Figures 2.3 and 2.4.
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Figure 2.3 : Frequency distribution of the truncation point
with b = 5.



40

700
600
500

g 400
co 300

11.

200
100

0

69.2

61.4

514 52.0
4 6

20 30 40
Truncation point

50

FI TBO =0.25, b=1 0 EES2 TB0=0-5, b= 1 0 EMI TB0=0.75, b=1 0
TBO= 1 .0. b= 1 0 OM TBO= 1 -25, b=1 0

Figure 2.4 : Frequency distribution of the truncation point
with b = 10.

A summary of the mean of truncation point ( a , using

equation 1.35), standard deviation (using equation 1.18), and

the mode is listed in Table 2.11.

Table 2.11 : Empirical truncation point distributions for a
two-machine system.

Design level
(TBO, b)

Mean Std.
dev. Mode

0.25, 5 10.98 0.0748 10

0.25, 10 24.21 0.2285 20

0.5, 5 12.05 0.1136 10

0.5, 10 26.18 0.2900 20

0.75, 5 12.945 0.1507 10

0.75, 10 28.13 0.3264 20

1.0, 5 13.865 0.1838 10

1.0, 10 28.60 0.3364 20

1.25, 5 14.3150 0.1999 10

1.25, 10 29.27 0.3419 20
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The frequency distributions and the table show that :

- The frequency of truncation point decreases as the

truncation point increases for any design level.

- For batch count k = 2, the minimum and mode of truncation

points for b = 5 and b = 10 are d = 10 and d = 20,

respectively. These minimum truncation points satisfy the

minimum requirement of d = k x b.

- As the TBO increases for a batch size of five, the

frequency of d = 10 decreases while the frequency for

other truncation points greater than d increases. This

condition also occurs for a batch size of 10 with d = 20.

- As the batch size increases for a given TBO, the minimum

and standard deviation of truncation points increase.

Also notice, as expected, the mean truncation point

increases.

- As the TBO increases for a given batch size, the mean and

standard deviation of truncation point increase.

The ANOVA results (Table 2.12) show that the main effect

of parameters time between observations and batch size as well

as their interaction are significant.

Finally, DMRT on the means of truncation point (Table

2.13) shows that there is no significant difference in means

for TBO = 1.0 and TBO = 0.75 time units with a batch size of

10 as well as in means for TBO = 1.0 and TBO = 1.25 time units

with a batch size of five, while there is significant

difference in means for other combinations of TBO's and batch
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Table 2.12 : ANOVA for a two-machine system with empirical
truncation point as the dependent variable.

Dependent variable : Truncation point

Source DF Anova SS Mean
Square

F value Pr > F

TBO 4 23146.835 5786.7087 98.44 0.0001

Batch 1 521789.52 521789.52 8876.04 0.0

TBO*Batch 4 12363.615 308.4038 5.25 0.0003

Table 2.13 : Ranked truncation point means for a two-machine
system with a = 10%.

Duncan
Grouping

Mean N COND

A 29.270 1000 1.25, 10

B 28.600 1000 1.0, 10

B 28.130 1000 0.75, 10

C 26.180 1000 0.5, 10

D 24.210 1000 0.25, 10

E 14.315 1000 1.25, 5

E 13.865 1000 1.0, 5

F 12.945 1000 0.75, 5

G 12.050 1000 0.5, 5

H 10.980 1000 0.25, 5

Means with the
different significantly.

same letter are not

2.5 Interpretation of Results

The effects of parameter selection on performance

measures - the steady-state mean, the average mean-squared
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error, the initial observations of empty, idle system, and the

empirical truncation point distribution - will be discussed in

this section.

2.5.1 Interpretation for the steady-state means.

The steady-state mean number of entities in the system

increases as the TBO increases because increasing the TBO will

significantly reduce the number of initial observations of an

empty, idle system (i.e. the zero-entity observations)

recorded from the steady-state period. Hence any single mean

calculated based on the observations having less zero-entity

observations will be greater than the single mean calculated

based on the observations having more zero-entity

observations.

Increasing the batch size will increase the truncation

point meaning more observations are discarded. This reduces

the number of observations recorded from the transient period

used in estimating the steady-state mean. From time series

analysis it is known that including more observations will

dampen or smooth the average value. Thus, increasing the

truncation point or discarding more observations will give a

higher average result than otherwise.

However, it is important to note that discarding more

observations by increasing the batch size is not always

desirable since the mean-squared error of overall mean

increases significantly. Smaller mean-squared error may be
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achieved by using small batch sizes.

2.5.2 Interpretation for the average mean-squared error.

The average mean-squared error increases as the

truncation point increases, that is, as more observations are

discarded. Even though some independent runs from any design

level show that the bias decreases and the variance increases

as the truncation point increases, the average bias and

average variance from 1000 replications show the contrary. The

only cause for this variability as well as the variability of

the average mean-squared error is the sequence of random

number selected (automatically) for each replication (see

Baxter [1990]). Although using multiple replications to

minimize the extreme results still shows the unexpected

results, it is recommended to still use the multiple

replications and to estimate the mean-squared error by adding

the bias and variance of the steady-state mean instead of by

averaging the mean-squared errors recorded from run to run for

each design level.

Baxter's results for a single-machine system using the

Schriber's rule support the results of this study.

Theoretically, these two results show that the average

variance increases as more observations are discarded for a

fixed sample size. The results of this study and Baxter's

study [1990] are contrary to Wilson's [1977, 1978a, and 1978b]

results for a one-machine system due to the experimental
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nature of this study as compared to the experimental nature

used by Wilson. A given fixed range of truncation points and

set of initial conditions were used in Wilson's study, while

in this study, the truncation points were determined

experimentally by applying Schriber's truncation rule.

2.5.3 Interpretation for the number of initial

observations.

As mentioned earlier, increasing TBO will significantly

reduce the number of initial observations. This is because for

a longer TBO there will be a greater chance of one of several

activities (such as arrival, waiting, in service, blocking,

and departure) occurring at the time the observations are

recorded. Since these initial observations could be recorded

from the transient and steady-state periods, decreasing the

number of initial observations by increasing the TBO would

also minimize the chance of recording the initial observations

(the zero-entity observations) during the steady state period.

The variance of the number of initial observations also

decreases for a larger TBO since the number of entities in the

system will become more stable as the simulation time elapses.

Therefore, it is recommended not to use a small TBO (such as

0.25 time units).
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2.5.4 Interpretation for the empirical truncation point

distributions.

The frequency distributions of the minimum truncation

points imply that for a small TBO with a batch size of five,

most of the truncation is done at d = 10; that is, discarding

the first 10 observations in order to estimate the steady-

state mean. Also, with small TBOs, it has been shown that

there is a significant number of initial observations of an

empty, idle system (Figure 2.1). The combined effect can be an

incorrect indication that the steady-state condition has been

achieved. Thus, increasing the TBO will not only reduce the

number of initial observations of empty, idle system and the

chance of including these zero-entity observations in

estimating the steady-state mean, but the premature truncation

process can also be avoided.

The minimum truncation points for both batch sizes

satisfy the minimum requirement of truncation point d = k x b,

where k is the batch count (k = 2 batches in this study). In

pairwise comparison the earliest truncation process can happen

at the 2b1 observation. As the batch size increases from five

to 10 observations per batch, the mean of truncation point

distribution increases since its minimum truncation point also

increases.
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2.6 Sensitivity Analysis of Results to Queue Size

In order to analyze the sensitivity of results to queue

size, a system which consists of two M/M/1/ 00 models - each

with infinite queue capacity - is selected.

Due to the infinite queue capacity, no customer will

block and balk from the system. As expected, the theoretical

steady-state mean number of entities in the system (g,) will

increase from 10.2631 to 18 entities. Besides, it is

reasonable to assume that longer time is required to reach the

steady-state conditions due to the increase in the number of

entities in the system.

The results with infinite queue capacity show similarity

to the two-machine system with finite queue capacity evaluated

earlier; increasing the TBO will reduce the number of initial

observations and discarding more observations by increasing

the batch size will improve the bias but will worsen the mean-

squared error.

However, with infinite queue size, a longer TBO should be

used because time to reach the steady-state conditions with

infinite queue size is longer than with finite queue size. It

is apparent that the values selected for parameters TBO and

batch size are a function of input/output rates, that is

system-dependent. Thus, for a two-machine system with infinite

queue size, it is suggested to use a TBO of five time units

with a batch size of five.
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2.7 Summary of Results

- Use multiple replications to minimize the extreme results

in determining the steady-state mean and the truncation

point distributions.

- Calculate the mean-squared error by adding the bias and

variance of overall steady-state mean instead of by

averaging the mean-squared errors recorded from 1000

runs.

- Use a batch size of five since discarding more

observations by increasing the batch size from five to 10

observations per batch will inevitably increase the mean-

squared error of overall steady-state mean.

- Use TBO greater than 0.25 time units because increasing

the TBO will reduce the number of initial observations so

that the chance of recording these observations to

estimate the steady-state mean can be minimized. With a

batch size of five, TBO = 0.5 time units, followed by TBO

= 0.75 time units, will minimize the mean-squared error

and, hence, the selection of a batch size of five with

TBO = 0.5 time units (or with TBO = 0.75 time units)

should be used for a two-machine system.

A summary of confidence intervals (c.i.) with different

cc's for the recommended design levels is presented in Table

2.14.
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Table 2.14 : Confidence Intervals with diferent a's for a two-
machine system, b = 5.

TBO Mean

C.I.

a = 0.01 a = 0.05 a = 0.1

.5 9.953 9.420;10.485 9.635;10.270 9.686;10.219

.75 11.655 11.039;12.272 11.288;12.023 11.347;11.964
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CHAPTER 3. APPLICATION TO A THREE-MACHINE SYSTEM

3.1 Analytical Model

The second queueing system evaluated in this study is a

system consisting of three M/M/1/15 models known as three-

machine system with three queues placed in tandem. The arrival

rate X and the service rate A for each machine are still the

same as used in the previous system, that is 4.5 arrivals per

time unit and five jobs per time unit, and are distributed

exponentially with a finite queue capacity of 15 per queue.

The utilizations of the first, second, and third machines are

pi = 0.9, p2 = 0.877, and p3 = 0.860, respectively. The

theoretical steady-state mean number of entities in the system

A, is 14.8333. See Appendix III for more details about these

analytical results.

3.2 Computer Model

The computer programming was accomplished by using SIMAN

and FORTRAN languages and the only new subroutine added to the

program developed for the two-machine case was subroutine

M2TOM3 though there were some changes in subroutines M1TOM2

and ENDOS. Other subroutines used in the previous program for

a two-machine system are also used in this program without

making any changes. The flowcharts for subroutines M2TOM3 and

ENDOS are given in Appendices IV-A and IV-B, respectively.
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3.2.1 Subroutine M1TOM2 (start processing on machine-2).

The functions of this subroutine are as follows :

- to process the job sent from machine-1 and schedule its

completion time on machine-2 if machine-2 is idle. After

the process is completed, the job is sent to machine-3.

In a two-machine system, the job is sent to leave the

system after being processed on machine-2.

- to make the job wait in the second queue if machine-2 is

busy and a space is available in that queue.

- to block machine-1 if machine-2 is busy and no space is

available in the second queue. If blockage occurs,

machine-1 will not process a new job while machine-2

keeps processing the current job.

- to process the waiting job in the first queue (if any)

every time machine-1 is idle and, then, schedule its

completion time.

3.2.2 Subroutine M2TOM3 (start processing on machine-3).

The functions of this subroutine are as follows :

- to process the job sent from machine-2 and schedule its

completion time on machine-3 if machine-3 is idle. After

the process is completed, the job is sent to leave the

system.

- to make the job wait in the third queue if machine-3 is

busy and a space is available in that queue.

- to block machine-2 if machine-3 is busy and no space is
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available in the third queue. If the blockage occurs,

machine-2 will not process a new job while machine-3

keeps processing the current job.

- to unblock machine-1 whenever the job is sent from

machine-2 to machine-3 so that there is an available

space in the second queue. Then, the blocking job is

moved from machine-1 to the second queue.

- to process the waiting job in the first queue (if any)

every time machine-1 is idle and, then, schedule its

completion time.

3.2.3 Subroutine ENDOS (leave the system).

The functions of this subroutine are as follows :

- to process the waiting job in the third queue (if any)

every time the job is sent to leave the system.

- to process the waiting job in the second queue (if any)

every time machine-2 is idle and, then, schedule its

completion time to leave machine-2.

- to unblock machine-2 whenever there is an available space

in the third queue by moving the blocking job from

machine-2 to that queue.

- to unblock machine-1 whenever there is an available space

in the second queue by moving the blocking job from

machine-1 to that queue.

- to process the waiting job in the first queue (if any)

every time machine-1 is unblocked and idle. Then schedule
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its completion on machine-1 and send it to machine-2.

3.3 Experimental Design

It is reasonable to assume that more machines in the

system, more time will be spent by a job in the system, so

that there will be a smaller chance that the system is empty

at the time the observations are performed. Hence, shorter

TBO's can be used in the three-machine system. The

experimental design for a three-machine system is a 3 x 2

design with three and two levels for parameters time between

observations and batch size, respectively, as shown in Table

3.1. Each design level is analyzed based on 1000 runs.

Table 3.1 : Parameters and factor levels (3 x 2) for a three-
machine system's experimental design.

Parameters Factor levels

T : time scale [average
arrivals / observations]

1.6875;
2.8125

2.25;

TBO : time between
observations [time units]

0.375; 0.5; 0.625

b : batch size [number of
observations per batch]

5; 10

3.4 Results

Again, equations 1.16, 1.17, 1.18, 1.19, and 1.21 are

used to calculate the grand mean, sample variance, standard

error (standard deviation), bias, and mean-squared error,

respectively.

A summary of the steady-state mean number of entities,
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bias, variance, mean-squared error, and standard error for a

three-machine system is presented in Table 3.2. The table

shows that the variance, mean-squared error, and standard

error are minimized with the parameter set of TBO = 0.375 time

units and a batch size of five. However, the bias is minimized

with the parameter set of TBO = 0.625 time units and a batch

size of five.

Table 3.2 : Overall steady-state results for a three-machine
system, with an a of 10%.

TBO, b Mean Bias Var. MSE s.e.

0.375, 5 12.4615 -2.3718 31.0541 36.6795 0.1762

0.375, 10 13.7861 -1.0472 49.3181 50.4146 0.2221

0.5, 5 14.0700 -0.7633 37.2119 37.7945 0.1929

0.5, 10 15.4563 0.6230 56.1407 56.5288 0.2369

0.625, 5 15.4544 0.6211 43.4883 43.8741 0.2085

0.625, 10 17.0085 2.1752 67.7359 72.4674 0.2603

Note :
- X = 4.5 arrivals per time unit.
- TBO : time between observations [time units].
- There are 1000 replications used in each design

level to construct the single-point estimate, mean
number of entities in the system.

- Bias represents the deviation between the overall
mean and the theoretical steady-state number of
entities (A, = 14.8333), while variance represents
the variability within the overall mean. Finally,
MSE is the summation of squared bias and variance.

3.4.1 Steady-state mean number of entities in the system.

The two-way ANOVA test and DMRT are then performed on the

steady-state mean number of entities and the results are
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presented in Tables 3.3 and 3.4.

Table 3.3 : ANOVA for a three-machine system with steady-state
mean as the dependent variable.

Dependent variable : Mean

Source DF Anova SS Mean
Square

F value Pr > F

TBO 2 9667.057 4833.529 101.78 0.0001

Batch 1 3031.815 3031.815 63.84 0.0001

TBO*Batch 2 14.101 7.051 0.15 0.8620

These tables show that :

- The main effects for the two parameters TBO and batch

size are significant, while the interaction between these

parameters is not significant.

Table 3.4 : Ranked steady-state means by using DMRT with a =
10%

Duncan
Grouping

Mean N COND

A 17.009 1000 0.625, 10

B 15.456 1000 0.5, 10

B 15.454 1000 0.625, 5

C 14.070 1000 0.5, 5

C 13.786 1000 0.375, 10

D 12.462 1000 0.375, 5

Means with the
different significantly.

same letter are not

- As the TBO increases from 0.375 to 0.625 time units for

a fixed batch size, the steady-state mean increases.

- As the batch size increases for a given TBO, the steady-
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state mean increases.

- There is no significant difference in means for parameter

set of TBO = 0.375 with b = 10 and parameter set of TBO

= 0.5 with b = 5 as well as in means for parameter set of

TBO = 0.5 with b = 10 and parameter set of TBO = 0.625

with b = 5. However, the means for other parameter sets

are significantly different from each other.

It is evident that these results are similar to the two-

machine system evaluated earlier; increasing the TBO will

reduce the number of initial observations (the zero-entity

observations) recorded from the steady-state period so that

the chances of a single mean with less zero-entity

observations will be greater than that of with more zero-

entity observations. Likewise, discarding more observations by

increasing the batch size improves the bias but worsens the

mean-squared error.

3.4.2 Average mean-squared error ( MSE ).

A summary of the average squared bias, average variance,

and average mean-squared error, which were estimated from run

to run using equations 1.31, 1.30, and 1.29, respectively, are

presented in the following Table 3.5. The two-way ANOVA test

and DMRT are then performed on the average mean-squared error

and the results are presented in the Tables 3.6 and 3.7.
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Table 3.5 : Average results for a three-machine system with a
= 10%.

TBO Batch
size
b

Mean Bias2 Var MSE

0.375 5 12.4615 34.8561 20.7139 w.5700

0.375 10 13.7861 58.6806 11.9980 70.6786

0.5 5 14.0700 49.6672 25.9181 75.5853

0.5 10 15.4563 78.0541 15.5474 93.6015

0.625 5 15.4544 68.3941 31.2852 99.6793

0.625 10 17.0085 103.1684 18.7178 121.8862

Table 3.6 : ANOVA for a three-machine system with MSE as the
dependent variable.

Dependent variable : MSE

Source DF Anova SS Mean Square F
value

Pr > F

TBO 2 2181633.299 1090816.649 70.86 0.0001

Batch 1 510268.716 510268.716 33.15 0.0001

TBO*Batch 2 12733.595 6366.797 0.41 0.6631

These results show that :

- The main effects for the two parameters TBO and batch

size are significant.

- As the batch size increases for a fixed TBO, the average

squared bias and the average mean-squared error increase

while the average variance decreases.

- As the TBO increases for a fixed batch size, the average

squared bias, average variance, and average mean-squared

error increase.
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Table 3.7 : Ranked MSE 's by usinci DMRT with a = 10%.

Duncan
Grouping

N CONDMSE

A 120.88
6

1000 0.625, 10

B 98.679 1000 0.625, 5

B 93.601 1000 0.5, 10

C 75.585 1000 0.5, 5

C 70.679 1000 0.375, 10

D 55.570_ 1000 0.375, 5

same
different.

letter are notMSE 's with the
significantly

- There is no significant difference in average mean-

squared errors for parameter set of TBO = 0.375 with b =

10 and parameter set of TBO = 0.5 with b = 5 as well as

in average mean-squared errors for parameter set of TBO

= 0.5 with b = 10 and parameter set of TBO = 0.625 with

b = 5.

- The average mean-squared error is minimized with the

parameter set of TBO = 0.375 time units with a batch size

of five.

These results are similar to the results of a two-machine

system, where the average variance decreases and the average

squared bias increases as the truncation point increases.

Since theoretically the average squared bias decreases and the

average variance increases as more observations are discarded

for a fixed sample size, it is recommended not to use the

average mean-squared error (equation 1.29) but to use the
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overall mean-squared error (equation 1.21 as the summation of

the bias and variance of the overall steady-state mean) to

estimate the mean-squared error.

3.4.3 Initial observations of empty, idle system.

Figure 3.1 shows the first twenty observations taken from

the first replication for three different values of TBO. From

these observations there are at least 7, 1, and 1 observations

of an empty, idle system for TBO = 0.375, 0.5, and 0.625 time

units, respectively.

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0
Observation number

Figure 3.1 : Number of entities in the system for a three-
machine system, {TBO = 0.375; 0.5; 0.625 }.

A summary of the mean occurance (equation 1.33), standard

deviation (equation 1.18), and the maximum occurance of the

initial observations of an empty, idle system of all design

levels is presented in Table 3.8.
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Table 3.8 : Empirical distributions of number of initial-
observations of empty, idle system.

TBO Mean Std. dev. Max.

0.375 1.703 0.0333 7

0.5 1.396 0.0238 6

0.625 1.375 0.0210 5

The ANOVA results (Table 3.9) indicate that only main

effect of parameter time between observations (TBO) is

significant on the dependent variable - initial observations

of empty, idle system - while the main effect of parameter

batch size and their interaction are not significant.

Table 3.9 : ANOVA for a three-machine system with initial
observations of empty, idle system as the
dependent variable.

Dependent variable : Initial observations

Source DF Anova SS Mean Square F
value

Pr > F

TBO 2 134.8493333 67.4246667 95.75 0.0001

Batch 1 0 0 0 1.0000

TBO*Batch 2 0 0 0 1.0000

Furthermore, the results from DMRT on mean occurance of

initial observations are given in Table 3.10. The results show

that the empirical distributions means with TBO = 0.5 and TBO

= 0.625 time units are not significantly different;

additionally, increasing TBO will decrease the mean occurance

and standard deviation of initial observations.
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Table 3.10 : Ranked mean number of initial observations for a
three-machine system.

Duncan
Grouping

Mean N COND

A 1.703 2000 0.375

B 1.396 2000 0.5

B 1.375 2000 0.625

Means with the
different significantly.

same letter are not

These results are similar to the two-machine system.

Since the chance of recording the initial observations from

the steady-state period is minimized for a longer TBO, it is

recommended to use TBO = 0.375 or TBO = 0.5 time units.

3.4.4 Empirical truncation point distribution.

The summary of the mean truncation point (equation 1.35)

standard deviation (equation 1.18), and the mode is shown in

Table 3.11.

Table 3.11 : Empirical truncation point distributions for a
three-machine system.

Design level
(TBO, b)

Mean Std.
dev. Mode

0.375, 5 12.7300 0.1308 10

0.375, 10 28.9200 0.3123 20

0.5, 5 13.3550 0.1401 10

0.5, 10 29.3200 0.3250 20

0.625, 5 14.1800 0.1625 10

0.625, 10 31.0900 0.3365 20
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The frequency distributions of the truncation points for

all designs are depicted in Figures 3.2 and 3.3.
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The ANOVA results (Table 3.12) indicate that the main

effects of parameters time between observations (TBO) and

batch size (b) are significant on the dependent variable,

empirical truncation point.

Table 3.12 : ANOVA for a three-machine system with empirical
truncation point as the dependent variable.

Dependent variable : Truncation point

Source DF Anova SS Mean Square F
value

Pr > F

TBO 2 3481.5083 1740.7542 27.52 0.0001

Batch 1 401229.0375 401229.0375 6342.6 0.0

TBO*Batch 2 243.6750 121.6750 1.93 0.1458

Performing DMRT on the means of the truncation point

proved that there is no significant difference in means for

TBO = 0.5 and TBO = 0.625 time units with a batch size of

five, while there is significant difference in means for other

design levels (Table 3.13).

Table 3.13 : Ranked truncation point means for a three-machine
system with a = 10%.

Duncan
Grouping

Mean N COND

A 31.090 1000 0.625, 10

B 29.320 1000 0.5, 10

B 28.920 1000 0.375, 10

C 14.180 1000 0.625, 5

D 13.355 1000 0.5, 5

E 12.730 1000 0.375, 5

Means with the
different significantly.

same letter are not
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Again, the effects of changing the TBO and batch size

independently on the truncation point distributions for a

three-machine system are similar to the two-machine system in

such a way that increasing the TBO will reduce the number of

initial observations and prevent the premature truncation

process (shown by the decrease in the frequency of the minimum

truncation points). In addition, discarding more observations

by increasing the batch size will increase the minimum

truncation point and, obviously, also the mean truncation

point.

It is evident that the general recommendations for a two-

machine system can also be used for a three-machine system

though specific parameter values may be different. For a

three-machine system, it is recommended to use TBO = 0.375

time units because with a batch size of five the mean-squared

error for TBO = 0.375 is less than that for TBO = 0.5 time

units. Increasing the number of machines in the system from

two to three machines requires a reduction in the value of

TBO; as more machines (processes) are required to finish a job

or an entity, more time is spent in the system and more jobs

will stay longer in the system. Thus through smaller TBO there

will be a smaller chance of recording the initial observations

of empty, idle system (the zero-entity observations).

A summary of the confidence intervals with different as

for the recommended design levels is presented in Table 3.14

below.
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Table 3.14 : Confidence Intervals with diferent a's for a
three-machine system, b = 5.

TBO Mean

C.I.

a = 0.01 a = 0.05 a = 0.10

.375 12.46 11.881;13.041 12.116;12.809 12.172;12.751

.5 13.79 13.055;14.517 13.351;14.221 13.421;14.151
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CHAPTER 4. CONCLUSIONS, IMPLICATIONS, AND FUTURE RESEARCH

4.1 Conclusions

In order to study the behavior of Schriber's truncation

rule used for a complex queueing system with machine in series

(or in tandem), two different models - a two-machine system

and a three-machine system - were selected in this study. The

arrival rate of 4.5 arrivals per time unit and service rate of

five jobs or entities per time unit were distributed

exponentially.

The point estimates or performance measures evaluated to

describe the effects of changing parameters time between

observations (TBO) and batch size (b) on the application of

Schriber's truncation rule are as follows :

- Mean number of entities in the system.

- Average mean-squared error, MSE .

- Number of initial observations with empty, idle system.

- Truncation point.

Although it has been stated in literature that the best

initial or startup condition is the steady-state mode or close

to steady-state mode, the empty, idle system was chosen in

this study because this condition is the most convenient and

more likely to be used in practice. Furthermore, deleting some

biased observations existed during the transient period is

found to be an effective, efficient technique for reducing the

effect of initialization bias induced by any artificial
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startup condition.

As mentioned earlier, the parameters varied were time

between observations (TBO) and batch size (b), while batch

count (k) and tolerance (6) were held constant. Because of one

of the Markovian property in queueing theory, time between

observations does not have an effect on the transient time.

However, time between observations in simulation studies has

an effect on reaching the steady-state conditions.

For a two-machine system, the ANOVA results indicate that

the main effects of parameters time between observations (TBO)

and batch size (b) are significant for the dependent variable

steady-state mean. The average mean-squared error and

empirical truncation point were affected by the paremeters

time between observations, batch size, and their interaction.

Besides, the number of initial observations with empty, idle

system was affected only by time between observations.

For a three-machine system, the ANOVA results show that

the steady-state mean, average mean-squared error, and

empirical truncation point were affected by both independent

parameters - time between observations and batch size, while

the number of initial observations with empty, idle system was

affected only by time between observations.

A bacth size of five is recommended to be used in

simulation studies for the system evaluated because increasing

the batch size from five to 10 will delete more observations

and will inevitably worsen the mean-squared error of the
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overall steady-state mean. Thus, it is apparent that using a

batch size of five will prevent an excessive truncation and

will detect the occurance of the steady-state operating

condition more rapidly.

The time between observations should be selected to be

short enough so that the chances of recording the initial

observation with empty, idle system indicating the extreme

initialization bias can be minimized resulting in more

consistent steady-state mean. For the two-machine system with

a batch size of five, TBO = 0.5 time units, followed by TBO =

0.75 time units, minimized the mean-squared error of the

overall steady-state mean. For the three-machine system, TBO

= 0.375 time units with a batch size of five did the same.

Figure 4.1 shows the suggested values of parameter TBO for

different number of machines placed in series in the system.

i

0.9

0.8

1
5 0.7

0.6

R
0.5

0.4

0.3
1 2

Number of mooting.'
3

Figure 4.1 : Suggested TBO for different
number of machines.
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It is evident that with more machines placed in series in

a system, a smaller TBO can be used. This is because more time

will be spent in the system to finish a job; consequently jobs

will stay longer in the system so that chances of recording

the initialization bias is minimized with smaller TBO.

Due to the randomness caused by the use of certain

sequences of random numbers, it is recommended to use multiple

replications to minimize the extreme results in determining

the overall steady-state mean, number of initial observations

with empty, idle system, and truncation point. It is apparent

that these measures have probability distributions associated

with them. Furthermore, because of this randomness, it is also

suggested not to estimate the mean-squared error by averaging

the mean-squared errors recorded from 1000 runs. The best way

to estimate the mean-squared error is by adding the squared-

bias and variance of the overall steady-state mean.

4.2 Implications

Identifying truncation point for steady-state results has

an important applications in system simulation, particularly

for complex, large-scale system with high degree of

variability. The results from this research (together with the

initials results from Baxter [1990]) can be extended to

complex systems that consist of stages in series. These are

not just manufacturing systems, but also include such

application areas as reliability studies of components in
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series. To iterate, the critical parameters in these systems

are the batch size and time between observations; the exact

values selected for these parameters are a function of

input/ouput rates, but the relationships established in this

study can be generalized to other situations.

4.3 Future Research

This research can be extended in a number of situations.

Two of these are :

- Evaluation of hybrid systems, where the system consists

of machines (stages) in series and in parallel.

- Comparing the performance of Schriber's rule with the

performance of some of the other rules reported in

literature (Gafarian et al [1978], Kelton and law [1984],

and Schruben [1982]).
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Appendix I : Theoretical Steady-State Mean Number of
Entities in the Two-Machine System.

In order to calculate theoretical steady-state mean

number of entities in the two-machine system (two machines in

series or in tandem), the average number of entities

calculated separately from each machine must be known first.

a. The first machine WW1/FIFO/15/ ).

- The traffic intensity or load factor of the first machine

with an arrival rate (X) of 4.5 arrivals per time unit

and a service rate (t) of five entities per time unit is

Pi = X/A = 0.9.

- The average number of entities in the ith machine (Li) is

given by [Winston, 1987]

pi [1 (c+1) pic + cpic+1]
(1 pic+1) (1 - pi)

where : c = 15, queue capacitiy of the first machine.

Thus, the average number of entities in the first machine

is

L1 0.9 [1 (15+1)0.91-5 + 15 x 0.915+1]
(1 0.915+1) (1 0.9)

L1 = 5.361 entities.

b. The second machine (M/M /1 /FIFO /15/ 00 ).

- The arrival rate of entities to the second machine

depends on the arrival rate and service rate as well as
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on the queue capacity of the first machine. Thus, the

effective rate of the second machine becomes

12 = 1 (1 P(15;1) )

where :

P(15;1) : probability that an entity will balk from
the first machine because no space is
available in the first queue.

= Pic x 1 P1

1 pic4-1

0.915 1 0.9

1 0.915+1

P(15;1) = 0.025.

Thus

12 =4.5(1 0.025)

12 = 4.386 arrivals per time unit.

- The traffic intensity of the second machine with a

service rate (g) of five entities per time unit is

p2 = 12/p, = 0.877.

The average number of entities in the second machine is

L2 0.877 [1 (15+1)0.87715 + 15 x 0.87715+1]
(1 0.87715+1) (1 0.877)

I* = 4.902 entities.

Therefore, the theoretical steady-state mean number of

entities in the the two-machine system is

Ax = L1 + L2

g, = 10.263 entities.
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Besides, the average traffic intensity of the system is

41 + 12p2

1 + 12
4.5 x0.9 +4.386x0.877

4.5 + 4.386

ii

-0- = 0.877.
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Appendix 1I-A : Subroutine AR1M1.
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Appendix II-B : Subroutine M1TOM2.
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Appendix II-C : Subroutine ENDOS.
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Appendix III : Theoretical Steady-State Mean Number of
Entities in the Three-Machine System.

In order to calculate the theoretical steady-state mean

number of entities in the three-machine system (three machines

in series or in tandem), the average number of entities

calculated separately from each machine must be known first.

The average number of entities of the first two machines are

already given in Appendix I, that is 5.361 and 4.902 entities.

The arrival rate of entities to the third machine also

depends on the effective arrival and service rate as well as

on the queue capacity of the second machine. Thus the

effective arrival rate of the third machine becomes

= ( 1 P(15;2) )

where :

P(15;2) probability that an entity will block the
second machine if no space is available
in the third queue.

P(15;2) = P2 X
F12'1

1 0:2/11)
P(15;2) = (12/n) c X

1 (X2/11) c+1

P(15;2) = 0 . 87713 X 1 0.877
1 0.87715+1

1 P2

P(15;2) = 0.0196.

Thus

= 4.386 (1 0.0196)
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= 4.300 arrivals per time unit.

The traffic intensity of the third machine with a service

rate (A) of five entities per time unit is

P3 = -13/1.L = 0.860.

and the average number of entities in the third machine is

(1 0.86015 +1) (1 - 0.860)
0.860[1 (15+1) 0.86015 + 15 x 0.86015+1]

L3 = 4.570 entities.

Therefore, the theoretical steady-state mean number of

entities in the the two-machine system is

A, = LI + + 1.13

A, = 14.833 entities.

Besides, the average traffic intensity of the system is

1131 + P 2 + 13133

A + 12 +13

4.5 x0.9 +4.386 x 0.877 + 4.3 x 0.86
4.5 + 4.386 +4.3

= 0.879.
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Appendix IV-A : Subroutine M2TOM3.
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Appendix IV-B : Subroutine ENDOS.
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Appendix V-A : Program for the two-machine system.

c*****************************************************************c
C M1M2.FOR : STEADY STATE STUDY WITH 2 MACHINES IN SERIES
C C
C Type of Events:
C 1. Start processing on Machine 1 : ARIM1 C
C 2. Finish on Mach-1, start processing on Mach-2 : M1TOM2 C
C 3. Complete all processes : ENDOS C
C C
C List of Variables :

C X(1) : status of Mach-1 -- 0 : idle
C 1 : busy
C X(2) : status of Mach-2 -- 0 : idle
C 1 : busy
C X(3) : blocking status of Mach-1 -- 0 : unblocked
C -- 1 : blocked
c*****************************************************************c

SUBROUTINE EVENT(JOB,N)
GO TO (1,2,3,4), N

1 CALL ARIM1(JOB)
RETURN

2 CALL M1TOM2(JOB)
RETURN

3 CALL ENDOS(JOB)
RETURN

4 CALL INCTIM(JOB)
RETURN
END

C
C

SUBROUTINE PRIME

COMMON/SIM/D(50),DL(50),S(50),SL(50),X(50),DTNOW,TNOW,TFIN,J,NRUN
COMMON/USER1/IOBS(300),I,IS,IBATCH,KBATCH,NUMSYS,SUMS(3),BMEAN(3),

lITRUNC,SCSUM,ZEROBS,SCMEAN,K,KREP,NOBS,IBLOK,IBALK,CAPQ2,
2RSUMVAR,RVAR,BIASQR,RMSE
CALL CREATE(JOB)
CALL SCHED(JOB,1,EX(1,5))
CALL CREATE(JOB)
CALL SCHED(JOB,4,0.0)

c**********************INITIALIzATIoN*****************************c
I=0
X(1)=0.0
X(2)=0.0
X(3)=0.0
NUMSYS=0
SCSUM=0.0
RSUMVAR=0.0
ZEROBS=0.0
IBALK=0
IBLOCK=0

C*** Batch size,i.e. number of observations per batch
IBATCH=C0(3)

C*** Batch count,i.e. number of batch means to be compared
KBATCH=C0(4)
K=0

C*** Number of replications required in simulation
KREP =CO(5)

C*** Number of observations per replications
NOBS =CO(7)

C*** Queue capacity for Machine 2



CAPQ2=C0(9)
C

DO 160 J=1,KBATCH
SUMS(J)=0.0

160 CONTINUE
RETURN
END

C
C
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SUBROUTINE ARIM1(NEWJOB)

COMMON/SIM/D(50),DL(50),S(50),SL(50),X(50),DTNOW,TNOW,TFIN,J,NRUN
COMMON/USER1/IOBS(300),I,IS,IBATCH,KBATCH,NUMSYS,SUMS(3),BMEAN(3),

lITRUNC,SCSUM,ZEROBS,SCMEAN,K,KREP,NOBS,IBLOK,IBALK,CAPQ2,
2RSUMVAR,RVAR,BIASQR,RMSE

C*** For every arrival, increase number in the system by 1
NUMSYS=NUMSYS+1

C*** Schedule the next arrival in the system
CALL SCHED(NEWJOB,1,EX(1,5))

C*** Process the current job
CALL CREATE(JOB)

C
C*** If Machine 1 blocked, check Queue status of Machine 1.
C

IF (X(3).EQ.1) THEN
GO TO 170

C
C*** Else, Machine 1 unblocked & idle, set Machine 1 busy.
C Schedule the completion time.
C

ELSE
IF (X(1).EQ.0) THEN
X(1)=1.0
CALL SCHED(JOB,2,EX(2,9))

C
C*** Else, Machine 1 unblocked & busy, check Queue status of
C Machine 1.
C

ELSE
GO TO 170

ENDIF
ENDIF
RETURN

C
C*** If Queue of Machine 1 is available, put the job in Queue.
C

170 IF (NQ(1).LT.15) THEN
CALL INSERT(JOB,1)

C
C*** Else, no available queue of Machine 1, job is balking.
C

C
C

ELSE
IBALK=IBALK+1
CALL DISPOS(JOB)

ENDIF
RETURN
END

SUBROUTINE M1TOM2(JOB)

COMMON/SIM/D(50),DL(50),S(50),SL(50),X(50),DTNOW,TNOW,TFIN,J,NRUN
COMMON/USER1/IOBS(300),I,IS,IBATCH,KBATCH,NUMSYS,SUMS(3),BMEAN(3),

lITRUNC,SCSUM,ZEROBS,SCMEAN,K,KREP,NOBS,IBLOK,IBALK,CAPQ2,
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2RSUMVAR,RVAR,BIASQR,RMSE
C
C*** If Machine 2 idle, process the job on Machine 2.
C Set Machine 2 busy & schedule the completion time.
C Check Queue status of Machine 1.
C

IF (X(2).EQ.0) THEN
X(2)=1.0
CALL SCHED(JOB,3,EX(8,3))
GO TO 180

C
C*** Else, Machine 2 busy & Queue of Machine 2 is available,
C put the job in Queue for Machine 2.
C Check Queue status of Machine 1.
C

ELSE
IF (NQ(2).LT.CAPQ2) THEN
CALL INSERT(JOB,2)
GO TO 180

C
C*** Else, Machine 2 busy & no available Queue of Machine 2,
C put the blocking job in Q-dummy.
C Set Machine 1 idle and blocked.
C

ELSE
CALL INSERT(JOB,3)
IBLOCK=IBLOCK+1
X(1)=0.0
X(3)=1.0

ENDIF
ENDIF
RETURN

C
C*** If still job in Queue for Machine 1, process the job
C and schedule the completion time.
C

180 IF (NQ(1).GT.0) THEN
JOB=LFR(1)
CALL REMOVE(JOB,1)
X(1)=1.0
CALL SCHED(JOB,2,EX(2,2))

C
C*** Else, no job in Queue for Machine 1, set Machine 1 idle.
C

C
C

ELSE
X(1)=0.0

ENDIF
RETURN
END

SUBROUTINE ENDOS(JOB)

COMMON/SIM/D(50),DL(50),S(50),SL(50),X(50),DTNOW,TNOW,TFIN,J,NRUN
COMMON/USER1/IOBS(300),I,IS,IBATCH,KBATCH,NUMSYS,SUMS(3),BMEAN(3),

1ITRUNC,SCSUM,ZEROBS,SCMEAN,K,KREP,NOBS,IBLOK,IBALK,CAPQ2,
2RSUMVAR,RVAR,BIASQR,RMSE

C
C*** For every completed job, decrease number in the system by 1.
C Dispose the processed job from the system.
C

NUMSYS=NUMSYS-1
CALL DISPOS(JOB)



C
C*** If still job in queue for Machine 2, process the job and
C schedule the completion time.
C

IF (NQ(2).GT.0) THEN
JOB=LFR(2)
CALL REMOVE(JOB,2)
X(2)=1.0
CALL SCHED(JOB,3,EX(8,3))

C
C*** Else, no job in queue for Machine 2, set Machine 2 idle.
C

ELSE
X(2)=0.0

ENDIF
C
C*** If Machine 1 blocked, transfer blocking job from dummy-queue
C to Queue of Machine 2. Set Machine 1 unblocked.
C

IF (X(3).EQ.1) THEN
JOB=LFR(3)
CALL REMOVE(JOB,3)
CALL INSERT(JOB,2)
X(3)=0.0

C
C*** Else, Machine 1 unblocked. No action taken (Machine 1 could
C be busy or idle)
C

ELSE
RETURN

ENDIF
C
C*** If still job in Queue for Machine 1, set Machine 1 busy
C Process the job and schedule the completion time.
C

IF (NQ(1).GT.0) THEN
JOB=LFR(1)
CALL REMOVE(JOB,1)
X(1)=1.0
CALL SCHED(JOB,2,EX(2,2))

C
C*** Else, no job in queue for Machine 1, set Machine 1 idle
C

ELSE
X(1)=0.0

ENDIF
RETURN
END

C
C
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SUBROUTINE INCTIM(JOB)

COMMON/SIM/D(50),DL(50),S(50),SL(50),X(50),DTNOW,TNOW,TFIN,J,NRUN
COMMON/USER1/IOBS(300),I,IS,IBATCH,KBATCH,NUMSYS,SUMS(3),BMEAN(3),

lITRUNC,SCSUM,ZEROBS,SCMEAN,K,KREP,NOBS,IBLOK,IBALK,CAPQ2,
2RSUMVAR,RVAR,BIASQR,RMSE

C*** I as counter for the ith job, maximum observation is NOBS
I=I+1

C*** Schedule the next observation according to TBO (Time Between
C*** Observation)

CALL SCHED(JOB,4,C0(6))
C*** Process the current job

CALL CREATE(JOB)
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C*** Observe number in the system until NOBS observations
IF (I.LE.NOBS) THEN
IOBS(I)=NUMSYS
IF (IOBS(I).EQ.0) THEN

C*** Count the frequency of zero observations
ZEROBS=ZEROBS+1

ENDIF
ENDIF
RETURN
END

C
C

SUBROUTINE WRAPUP
COMMON/SIM/D(50),DL(50),S(50),SL(50),X(50),DTNOW,TNOW,TFIN,J,NRUN
COMMON/USER1/IOBS(300),I,IS,IBATCH,KBATCH,NUMSYS,SUMS(3),BMEAN(3),

lITRUNC,SCSUM,ZEROBS,SCMEAN,K,KREP,NOBS,IBLOK,IBALK,CAPQ2,
2RSUMVAR,RVAR,BIASQR,RMSE

C CALL COUNT(1,1)
IS=1

C
C*** Check the batch count, if KBATCH = 2 .... pairwise comparisons ***C
C*** KBATCH > 2 multiple comparisons ***C

IF (KBATCH.EQ.2) THEN
C*** Perform the pairwise comparisons

CALL PAIRCOM
C*** Else, Perform the multiple comparisons

ELSE
CALL MULTCOM

ENDIF
RETURN
END

C
C

SUBROUTINE PAIRCOM
COMMON/SIM/D(50),DL(50),S(50),SL(50),X(50),DTNOW,TNOW,TFIN,J,NRUN
COMMON/USER1/IOBS(300),I,IS,IBATCH,KBATCH,NUMSYS,SUMS(3),BMEAN(3),
lITRUNC,SCSUM,ZEROBS,SCMEAN,K,KREP,NOBS,IBLOK,IBALK,CAPQ2,
2RSUMVAR,RVAR,BIASQR,RMSE

C*** Perform the pairwise comparisons
DO 20 J=1,KBATCH
DO 10 I=IS,J*IBATCH
SUMS(J)=IOBS(I)+SUMS(J)

10 CONTINUE
C*** Mean for each batch

BMEAN(J)=SUMS(J)/REAL(IBATCH)
IS=IS+IBATCH

20 CONTINUE
C*** Difference between those batch means
100 DIF=ABS(BMEAN(1)-BMEAN(2))

C*** Compare the difference and the epsilon value
IF (DIF.GT. 4.03) THEN

C
C*** The difference is greater than epsilon value, it is still in
C*** warm-up period and continue to make pairwise comparisons
C***

IF (IS.GE.NOBS) THEN
CALL TRUNC

ELSE
C***

BMEAN(1)=BMEAN(2)
SUMS(2)=0.0
DO 30 I=IS,IS+IBATCH-1
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SUMS(2)=IOBS(I)+SUMS(2)
30 CONTINUE

BMEAN(2)=SUMS(2)/REAL(IBATCH)
IS=IS+IBATCH
GO TO 100

C***
ENDIF

C***
ELSE

C*** The difference is less than epsilon value, it is already in
C*** steady state period

CALL TRUNC
ENDIF
RETURN
END

C
C

SUBROUTINE MULTCOM
COMMON/SIM/D(50),DL(50),S(50),SL(50),X(50),DTNOW,TNOW,TFIN,J,NRUN
COMMON/USER1/IOBS(300),I,IS,IBATCH,KBATCH,NUMSYS,SUMS(3),BMEAN(3),
1ITRUNC,SCSUM,ZEROBS,SCMEAN,K,KREP,NOBS,IBLOK,IBALK,CAPQ2,
2RSUMVAR,RVAR,BIASQR,RMSE

C*** Perform the multiple comparisons
DO 50 J=1,KBATCH
DO 40 I=IS,J*IBATCH
SUMS(J)=IOBS(I)+SUMS(J)

40 CONTINUE
C*** Mean for each batch

BMEAN(J)=SUMS(J)/REAL(IBATCH)
IS=IS+IBATCH

50 CONTINUE
C*** Difference between those batch means

200 DIF1=ABS(BMEAN(1)-BMEAN(2))
DIF2=ABS(BMEAN(1)-BMEAN(3))
DIF3=ABS(BMEAN(2)-BMEAN(3))

C*** Select the maximum difference
DIF=AMAX1(DIF1,DIF2,DIF3)

C*** Compare the maximum difference and the epsilon value
IF (DIF.GT. 4.03) THEN

C*** The difference is greater than epsilon value, it is still in
C*** warm-up period and continue to make multiple comparisons
C***

IF (IS.GE.NOBS) THEN
CALL TRUNC

ELSE
C***

BMEAN(1)=BMEAN(2)
BMEAN(2)=BMEAN(3)
SUMS(3)=0.0
DO 60 I=IS,IS+IBATCH-1
SUMS(3)=IOBS(I)+SUMS(3)

60 CONTINUE
BMEAN(3)=SUMS(3)/REAL(IBATCH)
IS=IS+IBATCH
GO TO 200

C***
ENDIF

C***
ELSE

C*** The difference is less than epsilon value, it is already in
C*** steady state period

CALL TRUNC



ENDIF
RETURN
END

C
C
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SUBROUTINE TRUNC
COMMON/SIM/D(50),DL(50),S(50),sL(50),x(50),DTNOW,TNoW,TFIN,J,NRUN
COmMON/USER1/IOBS(300),I,IS,IBATcH,KBATcH,NUMSYS,SUMS(3),BMEAN(S),

lITRUNC,SCSUM,ZEROBS,SCMEAN,K,KREF,NOBS,IBLOK,IBALK,CAPQ2,
2RSUMVAR,RVAR,BIASQR,RMSE

C*** Set-up the truncation point
ITRUNC=IS-1

C***
IF (ITRUNC.GE.NOBS) THEN

IS=NOBS+1-IBATCH
ENDIF
DO 70 I=IS,NOBS
SCSUM=REAL(IOBS(I))+SCSUM

70 CONTINUE
C*** Calculate the Schriber mean for each replication

SCMEAN=SCSUM/REAL(NOBS-IS+1)
C
C*** Calculate the bias square for each replication

BIASQR=(SCMEAN-10.2631)**2
C

DO 80 I=IS,NOBS
RSUMVAR=RSUMVAR+(REAL(IOBS(I))-SCMEAN)**2

80 CONTINUE
C*** Calculate the Schriber variance for each replication

RVAR=RSUMVAR/REAL(NOBS-IS)
C
C*** Calculate MSE for each replication

RMSE=RVAR+BIASQR
C
C*** Set K to the number of simulation run

K=NRUN
IF (K.EQ.1) THEN

C * ** Create and open file RESULT.BBB for the first run
OPEN(UNIT=10,FILE='RESULT.BBB',STATUS=.NEW,ACCESS=.SEQUENTIAL',

1 FORM='FORMATTED')
ENDIF

C*** If # simulation runs is less than or equal the number of
replications

IF (K.LE.KREP) THEN
C*** Write the desire variables into the file

WRITE(10,'(F10.4,5X,F10.4,5X,F10.4,5X,F10.4,5X,F10.4,
1 5X,I5,5X,I5,5X,I5)')SCMEAN,BIASQR,RVAR,RMSE,ZEROBS,
2 ITRUNC,IBLOCK,IBALK
ENDIF

C*** If # simulation is equal to the number of replications
IF (K.EQ.KREP) THEN

C*** Close file RESULT.BBB
ENDFILE(UNIT=10)
CLOSE(UNIT=10,STATUS='KEEP')

C*** Call SCSTAT to perform Statistics Calculation
CALL SCSTAT

ENDIF
RETURN
END

C
C

SUBROUTINE SCSTAT
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COMMON/SIM/D(50),DL(50),S(50),SL(50),X(50),DTNOW,TNOW,TFIN,J,NRUN
COMMON/USER1/IOBS(300),I,IS,IBATCH,KBATCH,NUMSYS,SUMS(3),BMEAN(3),
lITRUNC,SCSUM,ZEROBS,SCMEAN,K,KREP,NOBS,IBLOK,IBALK,CAPQ2,
2RSUMVAR,RVAR,BIASQR,RMSE
GRSUM=0.0
SUMSQR=0.0

C*** Open the file and read its value
OPEN(UNIT=10,FILE='RESULT.BBB',STATUS='OLD',ACCESS='SEQUENTIAL',
1FORM='FORMATTED')
DO 90 I=1,KREP
READ(10,150,END=110)SCMEAN,BIASQR,RVAR,RMSE,ZEROBS,
lITRUNC,IBLOCK,IBALK

150 FORMAT(F10.4,5X,F10.4,5X,F10.4,5X,F10.4,5X,F10.4,5X,I5,5X,15,
15X,I5)
GRSUM=GRSUM+SCMEAN
SUMSQR=SUMSQR+(SCMEAN**2)

90 CONTINUE
110 CLOSE(UNIT=10,STATUS='KEEP')

C*** Calculate the Schriber-mean, bias, and variance for the number
C*** in the system, already in the steady-state condition

SCAVG=GRSUM/REAL(KREP)
SCBIAS=SCAVG-10.2631
VAR=(SUMSQR-(REAL(KREP)*(SCAVG**2)))/REAL(KREP-1)

C*** Calculate the expected MSE
SMSE=VAR+(SCBIAS**2)

C*** Calculate the Schriber standard error (SE)
SE=SQRT(VAR/REAL(KREP))

C*** Calculate the Half Length (HL) of the Schriber mean, using 10%
C*** level of confidence (Z = 1.645)

HL=SE*1.645
WRITE(*,'(8X,A,I5)') 'Number of batch size :',IBATCH
WRITE(*,'(8X,A,I5)') 'Number of batch count :',KBATCH
WRITE(*,'(8X,A,I5)') 'Number of replications :',KREP
WRITE(*,'(8X,A,F10.4)') 'Time between observations :',C0(6)
WRITE(*,'(8X,A,F10.4)') 'Schriber grand mean :',SCAVG
WRITE(*,'(8X,A,F10.4)') 'Schriber bias :',SCBIAS
WRITE(*,'(8X,A,F10.4)') 'Schriber variance :',VAR
WRITE(*,'(8X,A,F10.4)') 'Expected MSE :',SMSE
WRITE(*,'(8X,A,F10.4)') 'Standard Error (se) :',SE
WRITE(*,'(8X,A,F10.4)') 'Half Length :',HL
RETURN
END
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Appendix V-B Experimental Frame for two-machine system's program.

BEGIN;
PROJECT,TRY,BUDIMAN;
DISCRETE,4003;
;Parameters : 1 -- Arrival Rate : 0.2222
; 2 -- Service Rate of Machine 1 : 0.2
; 3 -- Batch Size : 5 or 10
; 4 -- Batch Count : 2

; 5 -- Number of replications : 1000
; 6 -- Time between observations : 0.25, 0.5,0.75,
; 1, 1.25
; 7 -- Number of observations per replication : 50
; 8 -- Service Rate of Machine 2 : 0.2
; 9 -- Capacity of Queue-2 : 15
PARAMETERS:1,0.2222:2,0.2:3,5:4,2:5,1000:6,0.75:7,50:8,0.2:9,15;
REPLICATE,1000,0.0,37.5;
END;
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Appendix VI-A : Program for the three-machine system.

c*****************************************************************c
C M123.FOR : STEADY STATE STUDY WITH 3 MACHINES IN SERIES
C C
C Type of Events:
C 1. Start processing on Machine 1 : ARIM1 C
C 2. Finish on Mach-1, start processing on Mach-2 : M1TOM2 C
C 3. Finish on Mach-2, start processing on Mach-3 : M2TOM3 C
C 4. Complete all processes
C
C
C
C
C
C
C
C
C
C
C
C

List of Variables :
X(1) : status of Mach-1 -

X(2) : status of Mach-2 -

X(3) : blocking status of

X(4) : status of Mach-3 -

X(5) : blocking status of

: ENDOS C
C
C
C
C
C
C
C
C
C
C
C
C

- 0 : idle
1 : busy

- 0 : idle
1 : busy

Mach-1 -- 0 : unblocked
- - 1 : blocked

- 0 : idle
1 : busy

Mach-2 -- 0 : unblocked
- - 1 : blocked

c*****************************************************************c
SUBROUTINE EVENT(JOB,N)
GO TO (1,2,3,4,5), N

1 CALL ARIM1(JOB)
RETURN

2 CALL M1TOM2(JOB)
RETURN

3 CALL M2TOM3(JOB)
RETURN

4 CALL ENDOS(JOB)
RETURN

5 CALL INCTIM(JOB)
RETURN
END

C
C

SUBROUTINE PRIME
COMMON/SIM/D(50),DL(50),S(50),SL(50),X(50),DTNOW,TNOW,TFIM,J,NRUN
COMMON/USER1/IOBS(300),I,IS,IBATCH,KBATCH,NUMSYS,SUMS(3),BMEAN(3),

lITRUNC,SCSUM,ZEROBS,SCMEAN,K,KREP,NOBS,CAPQ2,CAPQ3,
2RSUMVAR,RVAR,BIASQR,RMSE
CALL CREATE(JOB)
CALL SCHED(JOB,1,EX(1,5))
CALL CREATE(JOB)
CALL SCHED(JOB,5,0.0)

c**********************INITIALIzATION*****************************c
I=0
DO 210 L=1,5
X(L)=0.0

210 CONTINUE
NUMSYS=0
SCSUM=0.0
RSUMVAR=0.0
ZEROBS=0.0

C*** Batch size,i.e. number of observations per batch
IBATCH=C0(3)

C*** Batch count,i.e. number of batch means to be compared
KBATCH=C0(4)
K=0

C*** Number of replications required in simulation



KREP =CO(5)
C*** Number of observations per replications

NOBS =CO(7)
C*** Queue capacity for Machine 2

CAPQ2=C0(9)
C*** Queue capacity for Machine 3

CAPQ3=C0(11)
C

DO 160 J=1,KBATCH
SUMS(J)=0.0

160 CONTINUE
RETURN
END

C
C
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SUBROUTINE ARIM1(NEWJOB)
COMMON/SIM/D(50),DL(50),S(50),SL(50),X(50),DTNOW,TNOW,TFIN,J,NRUN
COMMON/USER1/IOBS(300),I,IS,IBATCH,KBATCH,NUMSYS,SUMS(3),BMEAN(3),

lITRUNC,SCSUM,ZEROBS,SCMEAN,K,KREP,NOBS,CAPQ2,CAPQ3,
2RSUMVAR,RVAR,BIASQR,RMSE

C*** For every arrival, increase number in the system by 1
NUMSYS=NUMSYS+1

C*** Schedule the next arrival in the system
CALL SCHED(NEWJOB,1,EX(1,5))

C*** Process the current job
CALL CREATE(JOB)

C
C*** If Machine 1 blocked, check Queue status of Machine 1.
C

IF (X(3).EQ.1) THEN
GO TO 170

C
C*** Else, Machine 1 unblocked & idle, set Machine 1 busy.
C Schedule the completion time.
C

ELSE
IF (X(1).EQ.0) THEN
X(1)=1.0
CALL SCHED(JOB,2,EX(2,2))

C
C*** Else, Machine 1 unblocked & busy, check Queue status of
C Machine 1.
C

ELSE
GO TO 170

ENDIF
ENDIF
RETURN

C
C*** If Queue of Machine 1 is available, put the job in Queue.
C

170 IF (NQ(1).LT.15) THEN
CALL INSERT(JOB,1)

C
C*** Else, no available queue of Machine 1, job is balking.
C

ELSE
CALL DISPOS(JOB)

ENDIF
RETURN
END

C



C
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SUBROUTINE M1TOM2(JOB)

COMMON/SIM/D(50),DL(50),S(50),SL(50),X(50),DTNOW,TNOW,TFIN,J,NRUN
COMMON/USER1/IOBS(300),I,IS,IBATCH,KBATCH,NUMSYS,SUMS(3),BMEAN(3),

lITRUNC,SCSUM,ZEROBS,SCMEAN,K,KREP,NOBS,CAPQ2,CAPQ3,
2RSUMVAR,RVAR,BIASQR,RMSE

C
C*** If Machine 2 idle, process the job on Machine 2.
C Set Machine 2 busy & schedule the completion time.
C Check Queue status of Machine 1.
C

IF (X(2).EQ.0) THEN
X(2)=1.0
CALL SCHED(JOB,3,EX(8,3))
GO TO 180

C
C*** Else, Machine 2 busy & Queue of Machine 2 is available,
C put the job in Queue for Machine 2.
C Check Queue status of Machine 1.
C

ELSE
IF (NQ(2).LT.CAPQ2) THEN
CALL INSERT(JOB,2)
GO TO 180

C
C*** Else, Machine 2 busy & no available Queue of Machine 2,
C put the blocking job in Q-dummy.
C Set Machine 1 idle and blocked.
C

ELSE
CALL INSERT(JOB,3)
X(1)=0.0
X(3)=1.0

ENDIF
ENDIF
RETURN

C
C*** If still job in Queue for Machine 1, process the job
C and schedule the completion time.
C

180 IF (NQ(1).GT.0) THEN
JOB=LFR(1)
CALL REMOVE(J08,1)
X(1)=1.0
CALL SCHED(JOB,2,EX(2,2))

C
C*** Else, no job in Queue for Machine 1, set Machine 1 idle.
C

C
C

ELSE
X(1)=0.0

ENDIF
RETURN
END

SUBROUTINE M2TOM3(JOB)

COMMON/SIM/D(50),DL(50),S(50),SL(50),X(50),DTNOW,TNOW,TFIN,J,NRUN
COMMON/USER1/IOBS(300),I,IS,IBATCH,KBATCH,NUMSYS,SUMS(3),BMEAN(3),

lITRUNC,SCSUM,ZEROBS,SCMEAN,K,KREP,NOBS,CAPQ2,CAPQ3,
2RSUMVAR,RVAR,BIASQR,RMSE

C
C*** If Machine 3 idle, process the job on Machine 3.
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C Set Machine 3 busy & schedule the completion time.
C

IF (X(4).EQ.0) THEN
X(4)=1.0
CALL SCHED(JOB,4,EX(10,5))

C
C*** Else, Machine 3 busy & Queue of Machine 3 is available,
C put the job in Queue for Machine 3.
C

ELSE
IF (NQ(4).LT.CAPQ3) THEN
CALL INSERT(JOB,4)

C
C* ** Else, Machine 3 busy & no available Queue of Machine 3,
C put the blocking job in Q-dummy.
C Set Machine 2 idle and blocked.
C

ELSE
CALL INSERT(JOB,5)
X(2)=0.0
X(5)=1.0
RETURN

ENDIF
ENDIF

C
C*** If still job in queue for Machine 2, process the job and
C schedule the completion time.
C

IF (NQ(2).GT.0) THEN
JOB=LFR(2)
CALL REMOVE(JOB,2)
X(2)=1.0
CALL SCHED(JOB,3,EX(8,3))

C
C* ** Else, no job in queue for Machine 2, set Machine 2 idle.
C

ELSE
X(2)=0.0

ENDIF
C
C * ** If Machine 1 blocked, transfer blocking job from dummy-queue
C to Queue of Machine 2. Set Machine 1 unblocked.
C

IF (X(3).EQ.1) THEN
JOB=LFR(3)
CALL REMOVE(JOB,3)
CALL INSERT(JOB,2)
X(3)=0.0

C
C*** Else, Machine 1 unblocked. No action taken (Machine 1 could
C be busy or idle)
C

ELSE
RETURN

ENDIF
C
C * ** If still job in Queue for Machine 1, set Machine 1 busy.
C Process the job and schedule the completion time.
C

IF (NQ(1).GT.0) THEN
JOB=LFR(1)
CALL REMOVE(JOB,1)



X(1)=1.0
CALL SCHED(JOB,2,EX(2,2))

C
C*** Else, no job in queue for Machine 1, set Machine 1 idle.
C

ELSE
X(1)=0.0

ENDIF
RETURN
END

C
C
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SUBROUTINE ENDOS(JOB)
COMMON/SIM/D(50),DL(50),S(50),SL(50),X(50),DTNOW,TNOW,TFIN,J,NRUN
COMMON/USER1/IOBS(300),I,IS,IBATCH,KBATCH,NUMSYS,SUMS(3),BMEAN(3),

lITRUNC,SCSUM,ZEROBS,SCMEAN,K,KREP,NOBS,CAPQ2,CAPQ3,
2RSUMVAR,RVAR,BIASQR,RMSE

C
C*** For every completed job, decrease number in the system by 1.
C Dispose the processed job from the system.
C

NUMSYS=NUMSYS-1
CALL DISPOS(JOB)

C
C*** If still job in queue for Machine 3, process the job and
C schedule the completion time.
C

IF (NQ(4).GT.0) THEN
JOB=LFR(4)
CALL REMOVE(JOB,4)
X(4)=1.0
CALL SCHED(JOB,4,EX(10,5))

C
C*** Else, no job in queue for Machine 3, set Machine 3 idle.
C

ELSE
X(4)=0.0

ENDIF
C
C*** If Machine 2 blocked, transfer blocking job from dummy-queue
C to Queue of Machine 3. Set Machine 2 unblocked.
C

IF (X(5).EQ.1) THEN
JOB=LFR(5)
CALL REMOVE(JOB,5)
CALL INSERT(JOB,4)
X(5)=0.0

C
C *** If still job in queue for Machine 2, process the job and
C schedule the completion time.
C

IF (NQ(2).GT.0) THEN
JOB=LFR(2)
CALL REMOVE(JOB,2)
X(2)=1.0
CALL SCHED(JOB,3,EX(8,3))

C
C*** Else, no job in queue for Machine 2, set Machine 2 idle.
C

ELSE
X(2)=0.0

ENDIF



C
C*** Else, Machine 2 unblocked. No action taken (Machine 2 could
C be busy or idle)
C

ENDIF
C
C*** If Machine 1 blocked, transfer blocking job from dummy-queue
C to Queue of Machine 2. Set Machine 1 unblocked.
C

IF (X(3).EQ.1) THEN
JOB=LFR(3)
CALL REMOVE(JOB,3)
CALL INSERT(JOB,2)
X(3)=0.0

C
C*** If still job in Queue for Machine 1, set Machine 1 busy.
C Process the job and schedule the completion time.
C

IF (NQ(1).GT.0) THEN
JOB=LFR(1)
CALL REMOVE(JOB,1)
X(1)=1.0
CALL SCHED(JOB,2,EX(2,2))

C
C*** Else, no job in queue for Machine 1, set Machine 1 idle.
C

ELSE
X(1)=0.0

ENDIF
C
C*** Else, Machine 1 unblocked. No action taken (Machine 1 could
C be busy or idle)
C

ENDIF
RETURN
END

C
C
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SUBROUTINE INCTIM(JOB)
COMMON/SIM/D(50),DL(50),S(50),SL(50),X(50),DTNOW,TNOW,TFIN,J,NRUN
COMMON/USER1/IOBS(300),I,IS,IBATCH,KBATCH,NUMSYS,SUMS(3),BMEAN(3),

1ITRUNC,SCSUM,ZEROBS,SCMEAN,K,KREP,NOBS,CAPQ2,CAPQ3,
2RSUMVAR,RVAR,BIASQR,RMSE

C*** I as counter for the ith job, maximum observation is NOBS
I=I+1

C*** Schedule the next observation according to TBO (Time Between
C*** Observation)

CALL SCHED(JOB,5,C0(6))
C*** Process the current job

CALL CREATE(JOB)
C*** Observe number in the system until NOBS observations

IF (I.LE.NOBS) THEN
IOBS(I)=NUMSYS
IF (IOBS(I).EQ.0) THEN

C*** Count the frequency of zero observations
ZEROBS=ZEROBS+1

ENDIF
ENDIF
RETURN
END

C
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SUBROUTINE WRAPUP
COMMON/SIM/D(50),DL(50),s(50),SL(50),X(50),DTNoW,TNOW,TFIN,J,NRuN
COMMON/USER1/I0BS(300),I,IS,IBATcH,KBATCH,NUMSYS,SUMS(3),BMEAN(3),

lITRUNC,SCSUM,ZEROBS,SCMEAN,K,KREP,NOBS,CAPQ2,CAPQ3,
2RSUMVAR,RVAR,BIASQR,RMSE

C CALL COUNT(1,1)
IS=1

C
C*** Check the batch count, if KBATCH = 2 .... pairwise comparisons ***C
C*** KBATCH > 2 multiple comparisons ***C

IF (KBATCH.EQ.2) THEN
C*** Perform the pairwise comparisons

CALL PAIRCOM
C*** Else, Perform the multiple comparisons

ELSE
CALL MULTCOM

ENDIF
RETURN
END

C
C

SUBROUTINE PAIRCOM
COMMON/SIM/D(50),DL(50),S(50),SL(50),X(50),DTNOW,TNOW,TFIN,J,NRUN
COMMON/USER1/IOBS(300),I,IS,IBATCH,KBATCH,NUMSYS,SUMS(3),BMEAN(3),
lITRUNC,SCSUM,ZEROBS,SCMEAN,K,KREP,NOBS,CAPQ2,CAPQ3,
2RSUMVAR,RVAR,BIASQR,RMSE

C*** Perform the pairwise comparisons
DO 20 J=1,KBATCH
DO 10 I=IS,J*IBATCH
SUMS(J)=IOBS(I)+SUMS(J)

10 CONTINUE
C*** Mean for each batch

BMEAN(J)=SUMS(J)/REAL(IBATCH)
IS=IS+IBATCH

20 CONTINUE
C*** Difference between those batch means

100 DIF=ABS(BMEAN(1)-BMEAN(2))
C*** Compare the difference and the epsilon value

IF (DIF.GT. 4.03) THEN
C
C*** The difference is greater than epsilon value, it is still in
C*** warm-up period and continue to make pairwise comparisons
C***

IF (IS.GE.NOBS) THEN
CALL TRUNC

ELSE
C***

BMEAN(1)=BMEAN(2)
SUMS(2)=0.0
DO 30 I=IS,IS+IBATCH-1
SUMS(2)=IOBS(I)+SUMS(2)

30 CONTINUE
BMEAN(2)=SUMS(2)/REAL(IBATCH)
IS=IS+IBATCH
GO TO 100

C***
ENDIF

C***
ELSE

C*** The difference is less than epsilon value, it is already in
C*** steady state period

CALL TRUNC



ENDIF
RETURN
END

C
C
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SUBROUTINE MULTCOM
COMMON/SIM/D(50),DL(50),S(50),SL(50),X(50),DTNOW,TNOW,TFIN,J,NRUN
COMMON/USER1/IOBS(300),I,IS,IBATCH,KBATCH,NUMSYS,SUMS(3),BMEAN(3),

lITRUNC,SCSUM,ZEROBS,SCMEAN,K,KREP,NOBS,CAPQ2,CAPQ3,
2RSUMVAR,RVAR,BIASQR,RMSE

C*** Perform the multiple comparisons
DO 50 J=1,KBATCH
DO 40 I=IS,J*IBATCH
SUMS(J)=IOBS(I)+SUMS(J)

40 CONTINUE
C*** Mean for each batch

BMEAN(J)=SUMS(J)/REAL(IBATCH)
IS=IS+IBATCH

50 CONTINUE
C*** Difference between those batch means

200 DIF1=ABS(BMEAN(1)-BMEAN(2))
DIF2=ABS(BMEAN(1)-BMEAN(3))
DIF3=ABS(BMEAN(2)-BMEAN(3))

C*** Select the maximum difference
DIF=AMAX1(DIF1,DIF2,DIF3)

C*** Compare the maximum difference and the epsilon value
IF (DIF.GT. 4.03) THEN

C*** The difference is greater than epsilon value, it is still in
C*** warm-up period and continue to make multiple comparisons
C***

IF (IS.GE.NOBS) THEN
CALL TRUNC

ELSE
C***

BMEAN(1)=BMEAN(2)
BMEAN(2)=BMEAN(3)
SUMS(3)=0.0
DO 60 I=IS,IS+IBATCH-1
SUMS(3)=IOBS(I)+SUMS(3)

60 CONTINUE
BMEAN(3)=SUMS(3)/REAL(IBATCH)
IS=IS+IBATCH
GO TO 200

C***
ENDIF

C***
ELSE

C*** The difference is less than epsilon value, it is already in
C*** steady state period

CALL TRUNC
ENDIF
RETURN
END

C
C

SUBROUTINE TRUNC
COMMON/SIM/D(50),DL(50),S(50),SL(50),X(50),DTNOW,TNOW,TFIN,J,NRUN
COMMON/USER1/IOBS(300),I,IS,IBATCH,KBATCH,NUMSYS,SUMS(3),BMEAN(3),
lITRUNC,SCSUM,ZEROBS,SCMEAN,K,KREP,NOBS,CAPQ2,CAPQ3,
2RSUMVAR,RVAR,BIASQR,RMSE

C*** Set-up the truncation point
ITRUNC=IS-1
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C***
IF (ITRUNC.GE.NOBS) THEN

IS=NOBS+1-IBATCH
ENDIF
DO 70 I=IS,NOBS
SCSUM=REAL(IOBS(I))+SCSUM

70 CONTINUE
C*** Calculate the Schriber mean for each replication

SCMEAN=SCSUM/REAL(NOBS-IS+1)
C
C*** Calculate the bias square for each replication

BIASQR=(SCMEAN-10.2631)**2
C

DO 80 I=IS,NOBS
RSUMVAR=RSUMVAR+(REAL(IOBS(I))-SCMEAN)**2

80 CONTINUE
C*** Calculate the Schriber variance for each replication

RVAR=RSUMVAR/REAL(NOBS-IS)
C
C*** Calculate MSE for each replication

RMSE=RVAR+BIASQR
C
C*** Set K to the number of simulation run

K=NRUN
IF (K.EQ.1) THEN

C*** Create and open file RESULT.BBB for the first run
OPEN(UNIT=10,FILE='RESULT.BBW,STATUS='NEW,ACCESS='SEQUENTIAL',

1 FORM='FORMATTED')
ENDIF

C*** If # simulation runs is less than or equal the number of
replications

IF (K.LE.KREP) THEN
C*** Write the desire variables into the file

WRITE(10,'(F10.4,5X,F10.4,5X,F10.4,5X,F10.4,5X,F10.4,
1 5X,I5)')SCMEAN,BIASQR,RVAR,RMSE,ZEROBS,ITRUNC
ENDIF

C*** If # simulation is equal to the number of replications
IF (K.EQ.KREP) THEN

C*** Close file RESULT.BBB
ENDFILE(UNIT=10)
CLOSE(UNIT=10,STATUS='KEEP')

C*** Call SCSTAT to perform Statistics Calculation
CALL SCSTAT

ENDIF
RETURN
END

C
C

SUBROUTINE SCSTAT
COMMON/SIM/D(50),DL(50),S(50),SL(50),X(50),DTNOW,TNOW,TFIN,J,NRUN
COMMON/USER1/IOBS(300),I,IS,IBATCH,KBATCH,NUMSYS,SUMS(3),BMEAN(3),

lITRUNC,SCSUM,ZEROBS,SCMEAN,K,KREP,NOBS,CAPQ2,CAPQ3,
2RSUMVAR,RVAR,BIASQR,RMSE
GRSUM=0.0
SUMSQR=0.0

C*** Open the file and read its value
OPEN(UNIT=10,FILE='RESULT.BBB',STATUS='OLD',ACCESS='SEQUENTIAL',
1FORM='FORMATTED')
DO 90 I=1,KREP
READ(10,150,END=110)SCMEAN,BIASQR,RVAR,RMSE,ZEROBS,ITRUNC

150 FORMAT(F10.4,5X,F10.4,5X,F10.4,5X,F10.4,5X,F10.4,5X,I5)
GRSUM=GRSUM+SCMEAN
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SUMSQR=SUMSQR+(SCHEAN**2)
90 CONTINUE
110 CLOSE(UNIT=10,STATUS='KEEP')

C*** Calculate the Schriber-mean, bias, and variance for the number
C*** in the system, already in the steady-state condition

SCAVG=GRSUM/REAL(KREP)
SCBIAS=SCAVG-14.8333
VAR=(SUMSQR-(REAL(KREP)*(SCAVG**2)))/REAL(KREP-1)

C*** Calculate the expected MSE
SMSE=VAR+(SCBIAS**2)

C*** Calculate the Schriber standard error (SE)
SE=SQRT(VAR/REAL(KREP))

C*** Calculate the Half Length (HL) of the Schriber mean, using 10%
C*** level of confidence (Z = 1.645)

HL=SE*1.645
WRITE(*,'(8X,A,I5).) 'Number of batch size :',IBATCH
WRITE(*,'(8X,A,I5)') 'Number of batch count :',KBATCH
WRITE(*,'(8X,A,I5)') 'Number of replications :',KREP
WRITE(*,'(8X,A,F10.4)') 'Time between observations :',C0(6)
WRITE(*,*(8X,A,F10.4)') 'Schriber grand mean :',SCAVG
WRITE(*,'(8X,A,F10.4)') 'Schriber bias :',SCBIAS
WRITE(*,'(8X,A,F10.4)') 'Schriber variance :',VAR
WRITE(*,*(8X,A,F10.4)') 'Expected MSE :',SMSE
WRITE(*,'(8X,A,F10.4)') 'Standard Error (se) :',SE
WRITE(*,'(8X,A,F10.4)') 'Half Length :',HL
RETURN
END
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Appendix VI-11 : Experimental Frame for the three-machine system's program.

BEGIN;
PROJECT,M123,BUDIMAN;
DISCRETE,4505;
;Parameters : 1 -- Arrival Rate : 0.2222

2 -- Service Rate of Machine 1 : 0.2
3 -- Batch Size : 5 or 10
4 -- Batch Count : 2
5 -- Number of replications : 1000

; 6 -- Time between observations : 0.375,0.5,0.625
7 -- Number of observations per replication : 50
8 -- Service Rate of Machine 2 : 0.2
9 -- Capacity of Queue-2 : 15

10 -- Service Rate of Machine 3 : 0.2
11 -- Capacity of Queue-3 : 15

PARAMETERS:1,0.2222:2,0.2:3,5:4,2:5,3:6,0.625:7,20:8,0.2:9,15:
10,0.2:11,15;

REPLICATE,3,0.0,12.5;
END;


