
AN ABSTRACT OF THE THESIS OF

Damien D. Macielinski for the degree of Master of Science in Computer Science

presented on October 28. 1994.

Title: Task-Parallel Extension of a Data-Parallel Language.

Abstract Approved:

Dr. Walter G. Rudd

Two prevalent models of parallel programming are data parallelism and task

parallelism. Data parallelism is the simultaneous application of a single operation to a data

set. This model fits best with regular computations. Task parallelism is the simultaneous

application of possibly different operations to possibly different data sets. This fits best

with irregular computations. Efficient solution of some problems require both regular and

irregular computations. Implementing efficient and portable parallel solutions to these

problems requires a high-level language that can accommodate both task and data

parallelism. We have extended the data-parallel language Dataparallel C to include task

parallelism so that programmers may now use data and task parallelism within the same

program. The extension permits the nesting of data-parallel constructs inside a task-

parallel framework. We present a banded linear system to analyze the benefits of our

language extensions.

Redacted for Privacy

© Copyright by Damien D. Macielinski

October 28, 1994

All Rights Reserved

Task-Parallel Extension of a Data-Parallel Language

by

Damien D. Macielinski

A THESIS

submitted to

Oregon State University

in partial fulfillment of the

requirements for the degree of

Master of Science

Completed October 28, 1994

Commencement June 1995

Master of Science thesis of Damien D. Macielinski
presented on October 28. 1994

APPROVED:

Major Professor, representing Computer Science

Chair of Computer Science Department

Dean of Graduate

I understand that my thesis will become part of the permanent collection of Oregon State

University libraries. My signature below authorizes release of my dissertation to any

reader upon request.

Damien D. Macielinski, Author

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

ACKNOWLEDGEMENTS

I would like to thank my committee members who have influenced my intellectual

growth and personal development throughout my studies and work at Oregon State

University. Thank you, Walter Rudd; your continuous guidance and influence as my major

professor was indispensable. Thank you, Cherri Pancake, for expanding my horizons and

including me in your group efforts. Thank you, Mike Quinn, for your lessons and

influence in parallel computing.

Special thanks to Santhosh Kumaran for his brilliant input to my project and

examples.

Special thanks to James Reinders for encouraging me to pursue a Master's degree.

Where would I be without it?

Thanks to my parents, Ostap and Anna, for backing all of my decisions. Thanks for

starting me on the right foot and making sure I stayed there.

ii

TABLE OF CONTENTS

Page

1 INTRODUCTION 1

1.1 Data-Parallel Programming 2

1.2 Task-Parallel Programming 2

1.3 Data-Parallel and Task-Parallel Programming 3

1.4 Types of Parallel Applications 3

1.5 The Need for Paradigm Integration 4

1.6 Objectives 5

2 PREVIOUS WORK 7

2.1 Level 1: A Message Passing Environment on MIMD Computers 8

2.2 Level 2: Adapt and Assign: Application-Oriented Parallel Compilers 9

2.3 Level 2: Dataparallel C with Modules 9

2.4 Level 2: Fortran M with HPF 10

2.5 Level 3: FX (Fortran-X) 11

2.6 Level 4: ANSI Parallel Extensions for Programming Language C 12

2.7 Summary 13

3 DATAPARALLEL C OVERVIEW 15

3.1 Dataparallel C: The Programmer's View 15

3.2 Dataparallel C: The Compiler's View 16

3.3 Pseudo Task Parallelism in Dataparallel C: The i f Statement 17

3.4 Resource Allocation 22

3.5 Summary 22

4 LANGUAGE EXTENSIONS 23

4.1 New Syntax 23

4.2 Data Dependency 25

iu

TABLE OF CONTENTS (Continued)

Eaga

4.3 Scheduling Tasks 28

4.4 Compiler Feedback 30

4.4.1 Schedule Output 30

4.4.2 Dependency Flowgraph Output 31

4.5 Summary 32

5 LANGUAGE IMPLEMENTATION 33

5.1 Communication Libraries 33

5.1.1 Eliminating the First Assumption 33

5.1.2 The Second Assumption 34

5.2 Statement Scanning and Parsing 35

5.2.1 New Tokens 35

5.2.2 New Productions 35

5.3 Example Source Code 36

5.4 Collecting Information 37

5.5 Creating a Flowgraph 38

5.6 DFS and Topological Sort 38

5.7 Scheduling 39

5.8 Code Generation 42

5.8.1 Static Tables 42

5.8.2 Assigning Processors 43

5.8.3 Communication Optimization 45

6 USING THE LANGUAGE: A SIMPLE EXAMPLE 47

6.1 Double Matrix Multiply Using Only Data-Parallelism 47

6.2 Adding Task Parallelism 48

6.3 Timing Results 51

iv

TABLE OF CONTENTS (Continued)

u
7 BANDED SYSTEM SOLVER 53

7.1 Introduction 53

7.2 Parallelization 54

7.3 Solving A Banded System of Linear Equations 55

7.4 Implementation of the Solution Technique 60

7.4.1 Data-Parallel Solution 61

7.4.2 Augmenting the Example with Task-Parallelism 61

7.5 Summary of Findings 61

7.5.1 Purely Data-Parallel Implementation 62

7.5.2 Combined Task-Parallel and Data-Parallel Implementation 64

7.6 Chapter Summary 66

8 CONCLUSION 67

8.1 Conclusion 67

8.2 Future Work 68

8.2.1 Dynamic Virtual Processors 68

8.2.2 Scheduling Heuristics 69

8.2.3 Automatic Data Dependency Analysis 69

8.2.4 Nesting 69

8.2.5 Run-time Feedback 70

8.2.6 Automatic Task Compilation 70

BIBLIOGRAPHY 71

APPENDICES 74

APPENDIX A Source Code for Double Matrix Multiply 75

APPENDIX B Source Code for the Banded System Solver 77

LIST OF FIGURES

Figure Eagt

2-1 Example p f or usage in ANSI X3H5 C 12

2-2 Example psect ions usage in ANSI X3H5 C 13

3-1 A Dataparallel Cif statement: updating a poly variable 18

3-2 A Dataparallel Cif statement: updating the same mono variable 19

3-3 A Dataparallel Cif statement: updating different mono variables 20

3-4 An i if statement without the as-if-serial rule applied 21

4-1 Example psections statement usage 24

4-2 Example IN and OUT statement usage 26

4-3 Ambiguity in dependency lists 27

4-4 Example ON statement usage 29

4-5 Compiler feedback scheduling 31

4-6 Example dependency graph visualization with xvcg 32

5-1 Language extension productions 36

5-2 Pseudocode for examples in this chapter 37

5-3 Scheduling illustration 40

5-4 Example static table information 43

5-5 Simplified example of generated code 44

vi

LIST OF FIGURES (Continued)

Figure Rug
6-1 Data-parallel matrix multiplication 48

6-2 Task-parallel matrix multiplication 50

6-3 Timing results for double matrix multiply (1120 x 1120 doubles) 52

7-1 System of linear equations 56

7-2 Rearranged input matrix 57

7-3 Sub-Matrices within the rearranged input matrix 58

7-4 Pseudocode for repeated matrix-vector multiplications 60

7-5 Speed vs. Processors for all implementations 63

vu

PREFACE

Organization of this Document

Chapter 1 provides a brief introduction to data and task parallelism and the integration

of the two.

Chapter 2 provides related work by summarizing previous languages and methods of

integrating task and data parallelism.

Chapter 3 gives a brief introduction to Dataparallel C and discusses how task

parallelism is related to the language.

Chapter 4 summarizes the language extensions to Dataparallel C. This chapter

functions as an informal user manual.

Chapter 5 delves into the intricacies of implementing the language extensions.

Chapter 6 provides a simple example which shows one way to use the language in

order to improve the performance of a parallel program.

Chapter 7 reports my finding in coding a real parallel application using the language

extensions.

Chapter 8 provides a conclusion and ideas for further research in this area.

Appendix A provides source code for the example in Chapter 6.

Appendix B provides source code for the example in Chapter 7.

Terminology

A paradigm is considered to be a set of methods found to be effective in handling a

certain types of problems [1]. Two parallel programming paradigms are:

Data-parallel - applying the same operation simultaneously over a data set.

Task-parallel - applying possibly different operations over one or more data sets.

viii

More detailed definitions and explanations can be found in Chapter 1. Data-parallel

programming is synonymous with "domain decomposition". Task-parallel programming

should be considered synonymous with "control-parallel", "control decomposition", or

"functional decomposition".

Two of the most important architectures used in parallel computing are:

SIMD - Single Instruction Multiple Data. Every processing element executes the same

instruction in lock-step fashion (that is, instruction execution is fully synchronized).

MIMD - Multiple Instruction Multiple Data. Processing elements execute

independently and synchronization must be coded explicitly in the program.

There are two types of MIMD computer, based on how the memory layout appears to the

user:

Multiprocessor The total memory of the system appears to be centrally located. All

addresses are equally accessible from every processor.

Multicomputer The memory of the system is physically distributed among the

processors. Communication and synchronization are achieved through message

passing (at some level).

Conventions

Pseudocode or actual code is in courier font.

Variables in equations are italicized.

MATRIX names are capitalized; vector names are lower-case.

PARAMETER names are capitalized and boldface.

O(p(n)) describes an algorithm whose complexity is on the order of some polynomial

in n.

Task-Parallel Extension of a Data-Parallel Language

CHAPTER 1

INTRODUCTION

The introduction of high performance computing has led to a multitude of proposed

and implemented parallel architectures. As evidenced by Pancake in [16], the high

performance computing industry is still expanding. The technology and availability of

parallel systems has increased dramatically, while the software accompanying parallel

systems has not demonstrated a similar "ramp-up" in development [14]. This disparity has

led to a concerted effort from the research community to provide some form of all-

encompassing software to enable efficient use of the latest systems.

This thesis deals with the software which connects the user's problem to the

hardware: the programming language. High-level programming languages have been

prevalent since the dawn of computers, when programmers quickly realized how difficult

it was to code in assembly language. When used for high-performance computing,

standard programming languages fall short of meeting the needs and expectations of the

parallel programmer. Once again, users are finding it too difficult to attain optimal

performance. Difficulties include:

identifying parallel portions of an algorithm

finding the optimal data distribution (granularity)

finding the optimal task concurrency (load balancing)

determining the minimum number of processors for optimal performance

knowing details about the underlying hardware

receiving performance feedback from an executing program

coping with non-deterministic execution

The frenzy with which the research community has been developing new parallel

languages (some based on old languages) has led to a myriad of high-level languages for

2

high performance computing [15]. Each has its own unique contribution for the parallel

programming community. The language we have implemented combines two forms of

parallel programming simultaneously: data-parallel and task-parallel programming.

The remainder of this chapter will discuss data-parallel and task-parallel

programming, and the integration of these paradigms. We will also present a taxonomy

used for classifying parallel applications. Finally, the objectives of our work are discussed.

1.1 Data-Parallel Programming

Data-parallel programming is defined as "the simultaneous application of a single

operation to a data set" ([9] p.1). This means that each processing element is

simultaneously executing an identical task on different portions of a data set. Information

is exchanged at well defined synchronization points where every processing element must

meet. Many problems in the real world are inherently data-parallel in nature.

1.2 Task-Parallel Programming

Task-parallel programming is the simultaneous application of (possibly) different

functions to a data set (or several data sets) simultaneously. It lies in "the ability to

translate a program into a set of functions to be applied in parallel" ([18] p.3). Information

is also exchanged at synchronization points, but only the sender and receiver(s) need to

observe a particular synchronization point. This form of parallel programming is difficult

to understand and has problems with scalability and determinism. Nevertheless, some

applications require task parallelism for efficient execution. Signal processing,

multidisciplinary, and asynchronous applications are well suited for task parallelism.

3

1.3 Data-Parallel and Task-Parallel Programming

There is some ambiguity surrounding the relationship between task and data

parallelism. One definition of task parallelism states: "Each processor is doing a

completely different thing" ([5]). We disagree, since a subset of processors performing the

same function may be executing concurrently with other processors performing a different

function. This case is still task parallelism even though some processors are doing the

same thing. Note that a task parallel application which has all processors executing the

same function degenerates to data parallelism when all processing elements participate in

all synchronization points and there is a synchronization point after every statement or

block of statements. Therefore, data parallelism is a special case of task parallelism.

1.4 Types of Parallel Applications

Geoffrey Fox ([7]) proposed a classification system for parallel applications. The

system takes into account the programming paradigm and the type of architecture for

solving the problem. His system has three main classes:

Class I - Synchronous Applications. These programs are temporally and spatially

regular. Synchronization is performed at the individual instruction level. A SIMD

architecture is a natural target for these applications. These applications fit well into

the data-parallel programming style.

Class II - Loosely Synchronous Applications. These programs are similar to those in

Class I, except that the synchronization is performed only when it is needed to

coordinate the activities of the processing elements. Hence, these applications are

temporally irregular and spatially regular. The natural target architectures for these

systems is MIMD with distributed memory. Hatcher & Quinn [9] have illustrated how

these programs also map onto a data-parallel style. The programmer maintains a

SIMD view of the program, while the compiler (such as C* [24] or Dataparallel C [9])

4

is able to loosen the synchronization and bring the compiler output program into Class

II. This allows a migration path for Class I programs onto MIMD architectures. This

has allowed significant performance improvement for many data-parallel applications.

Class III - Asynchronous Applications. These applications are spatially and

temporally irregular. The natural target architecture for these applications is unclear

(Fox suggests the possibility of MIMD or Shared Memory). The programming style

for these applications must be task-parallel. Data-parallel schemes require a degree of

synchronization which would not allow this class of applications to execute at

maximum speed.

Fox also claimed that "... many complicated problems are mixtures of the basic

classification". This led him to propose a classification that lies between II and III called

This is a Course Grained asynchronous program controlling Fine Grained

loosely synchronous subproblems. In other words, it is a task-parallel framework

controlling data-parallel functions (because the tasks being executed concurrently are

themselves data-parallel routines).

A language that efficiently compiles programs from the "mixed" class may prove to

be the bridge between Class II and Class 111 (much as C* and Dataparallel C have bridged

Class I and Class II). This language needs to integrate both data-parallel and task-parallel

programming styles with the ability to nest data parallelism inside task parallelism. This

language allows some Class II applications to join Class IIICG -IIFG with significant

performance improvement (like the applications that moved to Class II from Class I via

Dataparallel C or C*).

1.5 The Need for Paradigm Integration

A parallel language which encompasses both data-parallel and task-parallel

programming paradigms is necessary for efficient and simple coding of type HICG-IIFG

programs. Current data-parallel languages are too restrictive and do not allow different

functions to be executed concurrently with minimal synchronization. A different style is

needed to ease these restrictions and allow an integrated style of parallel programming.

5

Having both paradigms in the same language will allow programmers to choose a

purely data-parallel or task-parallel style, as well as the ability to alternate between the

paradigms and nest the paradigms at will. Having these features in one language has

several advantages:

Ease of use: Only one language needs to be written and debugged. No communication

or synchronization primitives need to be explicitly coded (the compiler generates

these).

Flexibility: The programmer chooses the programming style, and is given the ability

to nest styles.

Power: Some algorithms do not execute efficiently in a purely data-parallel or purely

task-parallel environment. The combination of paradigms will give the programmer

the opportunity to efficiently execute their programs.

Portability: By eliminating low level system routines (for message passing or

synchronization) the compiler will be able to target almost any system.

Code Reuse: By using one language, libraries of common parallel subroutines may be

written.

Optimization: Using one compiler provides the ability to balance the important trade­

offs in using both paradigms simultaneously ([22],[23]).

1.6 Objectives

Given the advantages of data-parallel programming and the prevalence of data-

parallel programming languages, we decided to add the necessary features to exploit task

parallelism in an existing data-parallel language. By adding functionality to an existing

language, we keep the syntax, semantics, and functionality of the original language.

Programs previously written in the language still compile and execute correctly, and

become amenable to simple modifications to exploit any task parallelism. Also, any

architectures targeted by the original language are also targeted with our modifications.

We used Dataparallel C as the base language for the extensions because of our

familiarity with this language and previous exposure to the compiler. The compiler

6

sources are readily available, and we have contact with the current maintainers of the

language.

We will also show how this language provides a migration path for applications from

Class II programs into Class IIICG-IIFG. The language improves the performance of

some data-parallel programs by allowing programmers to exploit concurrency among

data-parallel operations. We have strived to make this migration easier by providing

simple task-parallel extensions to Dataparallel C. All programming is done within one

language. The user does not need to be concerned with explicit message passing, modules,

channels, or processor allocation. Since the compiler handles these low-level details, the

programmer need only be concerned with efficient implementation of parallel algorithms.

7

CHAPTER 2

PREVIOUS WORK

In this chapter we describe some of the previous attempts at combining the two

parallel programming paradigms discussed in Chapter 1. We present this overview in a

manner that describes the evolution of these methods. The evolution of this class of

parallel languages has been at four conceptual levels:

1. Message passing libraries

2. Communicating modules

3. Compiler directives

4. Language extensions

The first level encapsulates the oldest method for writing parallel programs on a

MIMD computer. It uses a sequential language (C or Fortran) with libraries that facilitate

the injection and reception of data onto/from the computer's network. This is achieved

through send and receive function calls (at the lowest level).

The second level, modules, abstracts from the first by allowing the programmer to

think in terms of parallel operations and their necessary inputs and outputs. The user

solves smaller problems with groups of processors (sometimes one) and connects them

with channels. Channels are simplifications built on top of the message passing method.

The third level, directives, tries to abstract away any notion of connections. The user

typically uses a traditional language with the addition of "hints" to the compiler. These

hints are in the form of compiler directives that specify data distribution (for data

parallelism) or the necessary values for input before a computation can begin (for task

parallelism).

The fourth level builds on the third by adding language constructs to a base language

(e.g. special looping syntax and semantics). Directives may still be used. This level is

perhaps the closest to a truly parallel language because parallel expression is part of the

language semantics.

The remainder of this chapter will cite examples of languages from each level. All

the languages are sufficiently powerful enough to express both task and data parallelism.

8

2.1 Level 1: A Message Passing Environment on MIMD Computers

This is the most well known method of parallel programming. Every distributed-

memory MIMD supercomputer provides the user with some way of programming at this

low level. Users are required to write a separate program for each processor they will be

using. The programs include calls to library routines that can send (receive) messages to

(from) the supercomputer's interconnection network. Messages are used for two purposes:

to transmit data and to synchronize activities between processors.

Data parallelism is achieved by writing an identical program for all of the

processors. In a typical application, data is distributed to each copy of the program, and

computation begins. Eventually, the processors need to communicate their data, so each

issues a send, with a matching receive command at the other end. Once the data has been

received, computation continues. Eventually, a final result is collected, and all the

programs halt.

Task parallelism requires separate programs or control flow for each of the tasks to

be performed. Each task issues a receive command and waits for the data to arrive. Once

all data is available, the task may begin execution. When completed, the task sends its

results on to the next destination.

Programming with explicit message passing is extremely tedious. Coding a data-

parallel program requires just one program for all the processors, while task parallelism

potentially requires separate programs. The message passing calls need to know processor

numbers, size of the message, and the actual data in the message. Some systems even

require the specification of a route through the network. Not only is the programming

tedious, but code development takes a long time, and scalability is virtually nonexistent.

The hardest part is debugging an application, especially when the problem involves

deadlock resolution or a non-deterministic sequence of events.

9

2.2 Level 2: Adapt and Assign: Application-Oriented Parallel Compilers

Intel has developed two programming tools that are special purpose or "niche"

compilers ([18]). Adapt is used for image processing applications, and is a data-parallel

language. The user specifies routines that are to be applied simultaneously to an input

image. Assign is used for signal processing applications, and is a task-parallel language.

The user specifies functions that are to be applied to streams of data. The functions are

connected by paths representing data dependencies between the functions.

Both of these languages target an intermediate Level 1 style interface called PCS

(Programmed Communication Service). This layer specifies the message passing between

processors, and hierarchically groups operations into modules. These modules may later

be connected with another PCS program.

To combine the two paradigms, programmers must compile task and data parallel

modules separately with the appropriate compiler. They must then write a PCS program to

instantiate and connect the modules with channels that will carry the data among the

modules.

The entire procedure is time consuming and convoluted (perhaps because no tool is

provided that can simplify this procedure). The user must be familiar with three different

programming environments in order to achieve an integration of task and data parallelism.

Scalability and debugging are problematical, since the modules are not aware of the

existence of other modules.

2.3 Level 2: Dataparallel C with Modules

Seevers, Quinn, and Hatcher [19] devised a method to combine Dataparallel C

programs via channels to allow data parallelism to be nested in a task-parallel control

structure. This environment requires the programmer to explicitly code any data

transmission between modules with f read and f wri t e commands to an opened

channel. Therefore, modules must agree on their communication patterns at compile time.

10

The programmer must also write a "link file" using a control language, and pass this

information onto a module loader and channel linker. This tool determines processor

allocation and channel construction, all at compile time.

Once again, programming is tedious because the user must write a separateprogram

for each module, then write a link file. Although not as tedious as Level 1 type

programming, the user must still open and close channels which are read from and written

to explicitly. This practice is error prone and hinders the scalability of programs.

The language we are proposing also extends Dataparallel C, but in an entirely

different manner. The user writes only one program and never has to worry about message

passing or channels. The user specifies only data dependencies, which the compiler

converts into explicit message passing. The programs are completely scalable with

minimal effort on the programmer's part.

2.4 Level 2: Fortran M with HPF

Fortran M ([4],[5]) is a task-parallel language which uses modules to connect

operations via channels. The advantage over the Assign/Adapt/PCS environment and the

modular Dataparallel C environment is that both programming and module connection are

done in a single language (Fortran with language extensions).

HPF (High Performance Fortran) is a set of extensions to Fortran 90 which support

data-parallel programming. Special directives are used to allocate processing elements,

align data, and distribute data. A forall statement is then used to execute operations in

parallel.

The integration of task and data parallelism lies in the combination of these two

languages ([2],[6]). More specifically, HPF data-parallel subroutines are wrapped with a

subroutine that controls data input/output via Fortran M channels. A Fortran M program is

then used to invoke the HPF routines from within a processes / endprocesses

section which allows concurrency among the calls in the section. Hence, a task parallel

11

framework (written in Fortran M) is used to coordinate data-parallel modules (written in

HPF).

This approach is tedious because two languages must be used. Nevertheless, the

combination is relatively new, and the developers have plans to incorporate the two in a

more coherent structure.

This language may be considered Level 1, because the user must explicitly send and

receive data through ports. The advantages over Level 1 is that these commands are not

machine dependent, and that the compiler may perform type checking between the ports.

This language might also be considered Level 3 because of the directives used in HPF. It

might also be considered Level 4, because of the language extensions provided by Fortran

M and HPF. Nevertheless, the main thrust of the language is to allow programmers to

define individual modules which may be arbitrarily combined or reused. The methods

used to achieve this modular interconnection have implications from Levels 1, 3, and 4,

but we will consider this a Level 2 language.

2.5 Level 3: FX (Fortran-X)

FX ([20],[21]) is another Fortran based parallel language, developed at Carnegie

Mellon University. Task parallelism is attained through the use of compiler directives that

specify input and output values for each task. Directives are also used to identify the

sections of the code that contain parallel constructs or subroutines. Data parallelism "is in

the form of independent parallel loop iterations" ([20] p. 6). Each task subroutine may be

data-parallel, and hence data parallelism may be nested inside task parallelism.

The programmer is not concerned with ports, channels, messages, or modules; these

are handled transparently by the compiler. Therefore, the language resides purely in Level

3. The ability of the compiler to handle low-level programming tasks is a much needed

benefit for the simplification of parallel programming. It will also be easier to support

debugging and portability between systems.

12

An interesting feature of this compiler is the ability to generate efficient schedules

for programs that have data parallelism nested in a task-parallel framework ([22],[23]).

The code is executed at most 5 times in purely data-parallel and task-parallel forms. Run­

time parameters are collected and used to determine an optimal final mapping onto the

system. FX also has the ability to replicate parallel operations that do not scale well with

the addition of processors. The replicated pieces take turns computing results for each

iteration, thereby increasing throughput.

2.6 Level 4: ANSI Parallel Extensions for Programming Language C

An attempt is currently being made towards a standardization of parallel languages.

One group is concerned with the addition of language constructs to the ANSI C language

([25]). The proposed language is at a very high level; the programmer need not be

concerned with channels, modules, or special directives. Variables may be declared as

shared (among processing elements) or private (local to each processing element). All

parallelism is expressed through natural language constructs. For example, a for loop

which has the potential for executing the loop body concurrently is shown in Figure 2-1.

The executions of f 1 may be done in a data-parallel style if the iterations are independent

of one another.

parallel {
pfor(i=0; i < ITERS; i++; latch) {

fl();

}

}

Figure 2-1. Example p for usage in ANSI X3H5 C

13

Task parallelism is expressed through a parallel and psections statement.

Figure 2-2 shows how three (possibly different) functions may be executed concurrently.

Data and task parallelism may be arbitrarily nested, and subroutines may themselves

contain parallel sections.

parallel (

psections

fl () ;

f2 () ;

f3 () ;

}
}

Figure 2-2. Example psections usage in ANSI X3H5 C

Despite its apparent simplicity, this language requires the user to handle process

synchronization explicitly. If synchronization is overlooked, or mistakes are made, the

program will not execute correctly.

Several supercomputing companies (including KSR and Convex) have implemented

languages similar to, or based on, this standard. It appears that this language is most

conducive to systems that support efficient dynamic process creation and migration (as

opposed to compile-time allocation of resources).

2.7 Summary

The languages presented above illustrate the variety of methods used to express data

and task parallelism within a single framework. We have attempted to delineate these

languages based on what the programmer needs to do to express parallelism. We have

14

divided them into four levels. The most difficult to program is Level 1, with the easiest

being in Level 4. The trade-off is that the user has more control at the lower levels at the

cost of more tedious programming.

Several implementation styles can be derived from the languages above. There are

trade-offs associated with each:

Run-time vs. compile-time allocation of processing elements. Some languages

incorporate both, or gather run time information for compile time allocation.

Fortran vs. C language base. Fortran has been preserved for the sake of scientific

programmers and "dusty-deck" codes. C has also been used for those who have moved

to a newer programming language.

Directives vs. Constructs. Directives allow any original language syntax to be used

without modification. Language constructs allow new programs to be written in an

easier and more consistent manner.

Synchronization vs. Data Dependence. These are two different methods which allow

the user to express the correct order of operations.

The language we have implemented is discussed in more detail in the forthcoming

chapters. The trade-offs discussed above are resolved in the following manners:

Task and data parallelism are incorporated by extending an already existing data-

parallel language (Dataparallel C) with task-parallel constructs. The constructs are

modelled after the ANSI proposal discussed above.

C is the base language used (instead of Fortran) because of our previous experience

with C compilers, and the availability of Dataparallel C for our work.

Scheduling and processor allocation is resolved at compile-time. The systems

available to us did not have efficient mechanisms for the creation, reuse, and

destruction of parallel threads of execution at run-time. Dataparallel C already uses

compile-time allocation, and it is worthwhile to remain consistent with the base

language's methods.

The next chapter describes Dataparallel C from the user's and the compiler's

perspectives. A discussion of the Dataparallel C i f statement is included to show how a

programmer may try to induce task parallelism in Dataparallel C.

15

CHAPTER 3

DATAPARALLEL C OVERVIEW

This chapter provides a short introduction to Dataparallel C. First the programmer's

role is summarized, followed by a short explanation of the inner workings of the compiler.

Finally, an investigation of the Dataparallel C i f statement is presented. The i f

statement is important in understanding how a programmer may try to induce task

parallelism in Dataparallel C, and how the language will not allow true concurrency.

Without true concurrency, something else must be done to allow task parallelism in

Dataparallel C. Chapter 4 will then discuss the language extensions that allow true

concurrency.

3.1 Dataparallel C: The Programmer's View

The brief description included here is by no means complete. The intent is to define

some terms and syntax that are used in the remainder of this thesis. A more thorough

explanation of Dataparallel C may be found in [9].

The Dataparallel C programmer keeps in mind a vision of a SIMD style architecture

while programming. This implies that there is a front-end uniprocessor connected to

numerous "smaller" back-end processors. The sequential portions of the program appear

to execute on the front end, while the parallel portions appear to execute on all of the

back-end processors. The programmer selects the number of active processors on the

back-end, and these are called virtual processors.

Virtual processors are used as abstractions of the real processors in the system.

Therefore, the programmer may select any arbitrary number of virtual processors without

having to consider the actual number of physical processors on the underlying system.

Each virtual processor has an identical memory layout. Variables which are local to each

virtual processor (called poly data) are declared in a domain declaration section. Variables

16

not declared in a domain declaration are shared variables (also called mono data), and

appear to reside in the front-end memory.

Poly variables have scope only inside a domain select statement. The front-end waits

while the back-end processors synchronously execute the code inside the domain select

statement. Both poly and mono data may be accessed here, except that writing to a mono

or accessing another virtual processor's domain data will incur a communication penalty,

slowing the resulting computation.

Functions declared inside a domain declaration are called member functions. When

called from parallel or sequential code, the member function is executed by all active

virtual processors. The member functions have access to the variables declared in the

corresponding domain declaration.

Sequential (non-member functions) may also be called from sequential code or from

parallel code. When invoked from sequential code, the body of the function is executed by

the front-end processor. If called from parallel code (inside a domain select), each virtual

processor executes the function body.

3.2 Dataparallel C: The Compiler's View

Despite the SIMD view presented to the programmer, the actual target architecture is

a MIMD multicomputer, a multiprocessor, or a network of heterogeneous processors.

Virtual processors are assigned in a many-to-one fashion to the physical processors of the

underlying system. Every physical processor executes the sequential code, and parallel

code is modeled by a virtual processor emulation loop. This is a for loop which iterates

over all of the virtual processors assigned to a physical processors. Each iteration executes

the necessary code for each virtual processor. Hence, lock-step synchronous execution is

only emulated. Synchronization (communication) points are introduced at appropriate

points in the program, where active virtual processors can update non-local variables.

Poly variables (from the domain declaration) are represented as an array of variables

with one entry for each virtual processor on the physical processor. Shared variables are

17

maintained as a single copy on each physical processor. Whenever a mono variable is

read, the local copy is used. Whenever a mono variable is written, all processors must

communicate in order to update their local copies.

The next section describes the semantics of the i if statement and how it relates to

task parallelism.

3.3 Pseudo Task Parallelism in Dataparallel C: The i if Statement

One place of particular interest is the i if statement. A programmer may try to force

different virtual processors into different pieces of code by branching on the virtual

processor number. This may appear to induce task parallelism, but the i if statement must

abide by the as-if-serial rule. This means that any virtual processors that evaluate the

conditional expression to true execute the then clause of the statement. If a shared variable

is updated in the then clause, then all other virtual processors must wait until this portion

is completed. Once the then clause is finished, a communication occurs (1) to make sure

all processors are synchronized and (2) to communicate the new values of any shared

variables which were modified by the then clause. Next, the virtual processors that

evaluate the condition to false execute the else clause while the others wait (assuming a

shared variable is updated in the else clause). Then another communication is performed

at the end of the else clause. Notice that this allows arbitrary nesting of i if statements

inside each other. Because of the as-if-serial rule, true task concurrency is not possible

because all of the physical processors participate in each of the statements in the i f-then­

else block.

Figure 3-1 shows a portion of a Dataparallel C program and its corresponding

translation (by the compiler) into the intermediate representation (C with message

passing) that is executed on each physical processor. The translation has been greatly

simplified for readability. The value being modified by the i f statement is a poly, so every

virtual processor maintains its own copy. This case does not apply to the as-if-serial rule,

because each virtual processor may perform the update simultaneously without interfering

18

with the value maintained by other virtual processors. There is no synchronization

between the clauses of the i f, since the new values do not need to be broadcast to the

other virtual processors.

exl.dpc ex2.c

domain x struct x {int poly_var;};

{ int poly_var; P[3]; struct x P;

main() { main(){

int mono_var; int mono_var;

[domain x]. { for (vp_number = vp_start;

if (ID == 0) vp_number < vp_end;

poly_var = 0; vp_number++)

else if (ID == 1) if (vp_number == 0)

poly var = 1; P.poly var = 0;

else if (ID == 2) else if (vp_number == 1)

poly_var = 2; P.poly_yar = 1;

else if (vp_number == 2)

P.poly_var = 2;

else

; /* Empty else */

Figure 3-1. A Dataparallel C i if statement: updating a poly variable

Figure 3-2 shows another case, where the value being updated is a mono variable

(the same one in each clause). This is the particular case of interest, when each of the

virtual processors may be updating a shared variable. Any virtual processors that

determine the i f statement to be true execute the then clause, while the virtualprocessors

determining it to be false have to wait until all of the true virtual processors have

completed their work. Then a synchronization will take place, and any shared variables

are reduced to a single value and broadcast to all of the physical processors for an update.

Now the first group must wait while the false virtual processors execute the else clause.

Finally, another synchronization is done to reduce and broadcast any shared variables

modified in the else clause.

19

ex2.dpc ex2.c

domain x

(char dummy;} P[3];

main() (

int mono_var;

[domain x].
 1

if (ID =. 0)

mono_yar = 0;

else if (ID == 1)

mono var = 1;

else if (ID == 2)

mono_var = 2;

main()(

int mono_var, temp;

for (vp_number = vp_start;

vp_number < vp_end;

vp_number++)

if (vp_number == 0)

temp = 0;

Reduce(temp);

mono_yar = temp;

for (vp_number = vp_start;

vp_number < vp_end;

vp_number++)

if (vp_number == 1)

temp = 1;

Reduce(temp);

mono_var = temp;

for (vp_number = vp_start;

vp_number < vp_end;

vp_number++)

if (vp_number == 2)

temp = 2;

Reduce(temp);

mono var = temp;

Figure 3-2. A Dataparallel C i f statement: updating the same mono variable

The main difference between Figure 3-1 and Figure 3-2 is the communication

introduced by updating a shared variable in the call to Reduce. This routine will collect

all of the values of the shared variable being updated. One value is chosen and broadcast

to all of the physical processors so that they will all have identical copies. The reduction is

done after each clause in the three stage i if statement in Figure 3-2. This communication

is very time consuming, but is a necessary evil to guarantee correct results by the as-if­

serial rule.

The next example is a slight variation on the last one. What if the shared variable

being updated in each of the clauses is different? The code generated is shown in Figure 3­

3 and is basically identical to that in Figure 3-2, except that the new mono variable names

are used.

20

ex3.dpc

domain x

{ char dummy;} P[3];

#define ID (this P)

main() {

int mono_yarl;

int mono_yar2;

int mono_yar3;

[domain x]. {

if (ID == 0)

mono_varl = 0;

else if (ID == 1)

mono_var2 = 1;

else if (ID == 2)

mono_yar3 = 2;

ex3.c

main())

int mono_varl, tempi;

int mono_var2, temp2;

int mono_var3, temp3;

for (vpnumber = vp_start;

vp_number < vp_end;

vp_number++)

if (vp_number == 0)

templ = 0;

Reduce(templ);

mono_varl = templ;

for (vp_number = vp_start;

vp_number < vp_end;

vp_number++)

if (vp_number == 1)

temp2 = 1;

Reduce(temp2);

mono_var2 = temp2;

for (vp_number = vp_start;

vp_number < vp_end;

vp_number++)

if (vp_number == 2)

temp3 = 2;

Reduce(temp3);

mono_var3 = temp3;

Figure 3-3. A Dataparallel C i if statement: updating different mono variables

The code generated in this example is important. It shows how programmers would

try to achieve task parallelism in a data-parallel language. They would assign work to

virtual processors based on virtual processor numbers, and mask off the remaining

processors. Each task may access shared variables in a manner that is non-intrusive to the

other processors. Unfortunately, because of the as-if-serial rule, there is no concurrency

among the i if statement blocks, and true task parallelism cannot be achieved.

Since the three blocks update different shared variables, the communication

(reduction) is not really necessary until after the entire i if statement. Figure 3-4 shows

what this code would look like, without the as-if-serial rule applied. Notice that the shared

variable assignments (tasks) are now done concurrently, and the new values are broadcast

21

at the end of the statement (once as opposed to three times). Also notice that only one

virtual processor emulation loop is needed for each physical processor.

ex4.dpc ex4 . c

domain x main(){
char dummy;} P[3]; int mono_varl, templ;

#define ID (this P) int mono_var2, temp2;
main() { int mono_var3, temp3;
int mono_yarl; for (vp_number = vp_start;
int mono_yar2; vp_number < vp_end;
int mono_yar3; vp_number++)
[domain x]. if (vp_number == 0)
if (ID == 0) templ = 0;
mono_varl = 0; if (vp_number == 1)

else if (ID == 1) temp2 = 1;
mono_var2 = 1; if (vp_number == 2)

else if (ID == 2) temp3 = 2;
mono_var3 = 2; Reduce(templ,temp2,temp3);

mono_varl = tempi;
mono_var2 = temp2;
mono_var3 = temp3;

Figure 3-4. An i f statement without the as-if-serial rule applied

"Loosening" of the as-if-serial rule is one method of allowing task parallelism in

Dataparallel C. Unfortunately, this method of task-parallel programming (Figure 3-4) is

tedious and inefficient. The programmer must be concerned with which operations are

assigned to which virtual processors. The final mapping of virtual to physical processors is

not controllable by the user. Therefore, the order of assignment of tasks to virtual

processors has an impact on program performance.

Also note that in order to achieve complete concurrency, no communication can be

allowed inside the if clauses. This is an unrealistic restriction since concurrently

executing data-parallel operations must communicate when operating in parallel.

22

Therefore, real task-parallel programming cannot be "induced" in Dataparallel C in its

current state.

3.4 Resource Allocation

An interesting side effect results from the as-if-serial rule. We call this the all-or-one

rule. The processors allocated to the program execution execute in a well defined manner:

In parallel code, all physical processors must cooperate in communication, even if

they have no work to do. This follows directly from the as-if-serial rule.

In sequential code, each processor computes exactly the same result as if only one

processor were doing the work.

This method of allocating resources to tasks is too restrictive for task parallelism. After

all, we would most likely want some intermediate number of processors (neither one nor

all) to execute each of the concurrent tasks. Without loosening the restriction imposed by

the all-or-one rule, true task concurrency cannot be achieved.

3.5 Summary

Our proposed language extension "loosens" the as-if-serial rule, but in a way that

allows communication inside the concurrently executing sections. It also provides a more

convenient syntax than the i f statement. The all-or-one rule is also "loosened" since the

number of resources dedicated to each task is allowed to vary anywhere from 1 to all of

the processors. Assignment of resources to tasks is handled by the compiler after the user

specifies how many resources should be allocated to each task (i.e. the user need not be

concerned with explicit assignment of tasks to processors). The details regarding the

syntax and language usage is described in the next chapter.

23

CHAPTER 4

LANGUAGE EXTENSIONS

In extending Dataparallel C, several issues must be resolved by the new language.

The resolution of these issues influence the way in which the language is extended. Some

of the issues (and their resolution) discussed below are:

Expressing Concurrency

Data Dependency

Scheduling Tasks

Chapter 5 gives implementation details for these extensions. Chapter 6 provides an

example program to show how the new language extensions can be used to add task

parallelism to a data-parallel program.

4.1 New Syntax

Recall from the last chapter that we can express task parallelism in Dataparallel C

with a special i if statement which does not use the as-if-serial rule (while maintaining the

rule for all other i f statements). Two possible implementations have been considered:

1. A p s ec t ions statement similar to the one proposed by the ANSI X3H5 committee in

[25] (see "Level 4: ANSI Parallel Extensions for Programming Language C" on

page 12).

2. A pi f statement (parallel i f) that is used exactly like the standard i if statement,

except that the as-if-serial rule does not apply.

Both statements are semantically equivalent, but the first one is easier to use. The

programmer does not need to be concerned with explicit task allocation, which is done by

the compiler. Also, a pif statement may imply a run-time partitioning of tasks to

processors. This cannot happen since all scheduling is done statically at compile time.

Therefore a psect ions statement is used to express the task parallel operations in the

language extension.

24

The psections statement may appear anywhere in sequential code. The general

usage is given in Figure 4-1. The open and close braces enclosing the psections block

are mandatory. Each statement inside the psections can be a block, function call, or

any legal compound statement. psections may not be nested, and may not appear in a

domain statement.

psections {
statementl;

statement2();

{ /* statement3
st;

st;

0

st;
}

statement4;

}

Figure 4-1. Example psections statement usage

Each top-level statement inside the psections becomes a candidate for concurrent

execution with all of the other statements inside the psections. Therefore, the

statements can potentially be executed in an undefined order, unless data dependencies are

specified to impose a "correct" order of execution.

25

4.2 Data Dependency

As mentioned previously, some tasks may have to wait for the completion of other

tasks. For example, execution of task A results in a vector, which will become the input to

task B. Therefore, tasks B and A cannot execute concurrently because task B depends on

data from A.

The data dependency must either be expressed by the user, or detected by the

compiler. A task graph results from this analysis, with nodes representing tasks and edges

representing data dependencies. This graph is then used to schedule the tasks in a way that

maximally exploits concurrency between tasks, and minimizes communication between

processors.

Efficient data flow analysis for automatic dependency detection is needed when the

user is not required to specify the dependencies. This is very difficult and time consuming

to implement correctly, and is beyond the scope of this project. Nevertheless, investigating

the addition of data-flow analysis for ease in programming is an interesting topic for future

work (see "Future Work" on page 68).

Without data flow analysis, the user must provide the dependencies. Asking the user

to specify data dependencies is not unusual. The Fortran M language ([4]) achieves this by

making the user specify channels between tasks (much like the edges in the task graph).

The CMU Fx compiler ([21]) uses compiler directives to specify input and output

variables for each task.

Therefore, we do not consider user specification of dependencies to be unreasonable,

especially for this project. Two possible implementation schemes exist:

Compiler directives

Dependency specification as part of the language construct

Compiler directives may be used since the dependence information is needed only at

compile time (for scheduling), and no dynamic analysis need be performed. One

advantage to directives is that they may be easily removed or ignored if the language

evolves to support automatic compiler dependency analysis. The second alternative has

the advantage of being more comfortable for programming. The dependency specification

26

is part of the language; hence the compiler can issue warning messages if the dependency

is incorrectly specified.

The distinction between the two is minimal. We have chosen two language

constructs that will allow the user to specify dependencies. Type checking is done by the

compiler to make sure any variables specified in the dependency lists conform to language

restrictions.

The programmer uses IN and OUT statements to specify a comma-delimited list of

mono variables that are used in dependency analysis. Figure 4-2 shows an example of how

these statements are used. Any values which are needed by a task in order to begin

execution are listed in the IN statement. Any mono values which are computed as outputs

to another task are listed in the OUT statement. If a task has dependencies, then the IN and

OUT statements must appear before their corresponding statement inside the psec t ions

block. The IN and OUT statements are entirely optional since a task may not have input or

output dependencies. There are no restrictions on the type of variable that can be used (as

long as it is not a poly). Also note that the variables specified in the OUT statement are not

available for use until the end of the statement.

psections {

IN x,y,z;

OUT a,b,c;

statementl;

IN a,b;

statement2 ;

}

Figure 4-2. Example IN and OUT statement usage

27

Notice that there are no explicit ports or channels used to specify dependencies (like

some of the languages cited in Chapter 2). The programmer need only specify the input

and output variables to the corresponding statement. The major drawback of this system is

the possibility of ambiguity. For example, Figure 4-3 shows an example where two

statements have the same variable in their OUT lists (statements 1 and 3). Then a third

statement has the variable in its IN list (statement 2). The compiler cannot determine

which of the two OUT values is supposed to be sent to this statement. When ambiguity is

detected, the compiler issues an error during compilation.

Figure 4-3. Ambiguity in dependency lists

A variable repeated in several IN lists does not constitute ambiguity (as long as it

comes from only one OUT list). The compiler can detect this "fan-out" case and

automatically send the data to all of the desired IN variables, wherever they may appear.

IN variables that do not have a corresponding OUT are called dangling inputs. The

compiler assumes that these values are coming IN from outside the psections

statement. Since these mono variables are already present on every processor, no special

handling is needed. Dangling inputs are ignored.

28

Conversely, dangling outputs are OUT variables with no corresponding IN match.

The compiler assumes that these values are to be updated to all of the processors at the

END of the psect ions statement. Therefore, upon completion of the psect ions, all

of the dangling OUT values are broadcast from one of their statement's processors to all

other processors. The values being broadcast are not guaranteed to be updated until the

end of the psections statement.

Using this scheme, it is also easy to create a cycle in the dependency list. Cycles are

not allowed because the compiler cannot always determine the correct order of execution

of the statements inside the psections. We have also stated that a task cannot begin

execution until all of its inputs are available. In a cycle, this rule cannot be maintained.

The compiler can detect cycles and will issue an error whenever one is detected (no matter

how large or small).

4.3 Scheduling Tasks

Since the all-or-one rule for resource allocation in Dataparallel C (see "Resource

Allocation" on page 22) has been eliminated, the compiler must know exactly how many

processors need to be allocated to each task. Again, this is left to the programmer who

must specify the number of processors via the ON statement. An example is shown in

Figure 4-4. The ON statement must be used before each statement in the psections

block. The number specified determines how many actual (not virtual) processors are to

be devoted to the task. The number must be a constant expression and a power of twos.

1. The power of two restriction is necessary because the Dataparallel C libraries are used for
communication within a task. These communication primitives are implemented for use on a power of
two number of processors.

29

#define P 16

psections {

OUT a;

ON 4;

statement1;

IN a;

ON P/2;

statement2;

}

Figure 4-4. Example ON statement usage

Allowing the user to specify virtual processors (instead of physical processors)

might be the ideal way to allocate resources, but this causes a major problem in

implementation when two virtual processors from the same physical processor are each

assigned two different tasks to operate on concurrently. Synchronization, and hence

message passing, should only occur within the context of each task. Therefore, the two

virtual processors should compute independently of the other. This is not physically

possible, since the two virtual processors are being emulated by one physical processor,

which cannot execute two separate pieces of code simultaneously2.

By forcing the user to specify physical processors in the ON statement, the problem

presented above is resolved. Unfortunately, this solution has an undesirable side effect on

the way a user must write programs which have data-parallel code nested inside a

psections. The user must be aware of how many virtual processors were statically

allocated to each physical processor. Then, when coding each task, the programmer must

multiply the amount of work done (and space used) by a virtual processor so that all of the

virtual processors in the task will emulate all of the virtual processors in the system. This

2. Multiple threads may be able to emulate this, but true concurrency would be limited by context
switching. Also, Dataparallel C does not currently support virtual processor emulation with threads.

30

restriction does not limit scalability, but makes scalable code more tedious to write. This is

evident in the toy program code given in Appendix A. "Future Work" on page 68

examines some possible methods for solving this problem.

4.4 Compiler Feedback

The compiler provides two forms of feedback to the user. It shows the generated

schedule in a textual format and the dependency flowgraph in a graphical form.

4.4.1 Schedule Output

By allowing constant expressions in the ON statements, the programmer may adjust

resource allocation on the command line when the compiler is invoked. This alleviates

constant changing, saving, and compiling of the program to run on various sized systems

or smaller numbers of processors within the system. Unfortunately, the user may lose sight

of what the compiler is doing "under the hood" with resource allocation. Therefore, the

compiler emits a simple Gantt chart depicting the schedule. The programmer can quickly

scan the chart to ensure proper resource allocation for each compilation. An example of

the compiler output is shown in Figure 4-5. Gaps in the schedule are filled in with " -1"

values. All other values represent a statement numbering scheme which is also dumped

with the schedule. Processors are numbered in Gray Code ordering - the same way virtual

processors are numbered by Dataparallel C.

31

0 1 2 3 4 5 6 7

p0 p1 p3 p2 p6 p7 p5 p4

row 3 : 6 6 7 7 8 8 9 9

row 2: 5 -1 -1 -1 -1 -1 -1 -1

row 1: 4 4 4 4 4 4 4 4

row 0: 0 0 1 1 2 2 3 3

Figure 4-5. Compiler feedback scheduling

4.4.2 Dependency Flowgraph Output

By allowing the user to specify dependencies through variables, we have alleviated

the cumbersome notion of ports and channels used in previous languages. One drawback

to this new system is that mistakes may easily go unnoticed. For example, if the

programmer forgets to specify an IN variable for a certain OUT, then the compiler will

consider it a dangling output. No error or warning is emitted.

To alleviate the problem, we have added an extra option to the compiler, -vcg, which

causes it to emit a file that can be read by xvcg ([12]). Xvcg allows visualization of graphs,

and allows the user to see how the compiler interpreted the dependency specifications.

The xvcg tool is publicly available via anonymous ftp to ftp.cs.uni-sb.de in the directory /

pub/graphics/vcg. An example is given in Figure 4-6. The nodes in the graph represent

statements. The "DFS" numbering represents the Depth First Search number given to the

statement (for statement prioritizing and cycle detection purposes). The "sr' value

represents the statement's order within the psections block (numbered from top to

bottom). The edges in the graph represent the data dependencies. By selecting "edge

labels" from the xvcg main menu, each edge becomes decorated with its corresponding

variable name (not shown).

http:ftp.cs.uni-sb.de

32

Figure 4-6. Example dependency graph visualization with xvcg

4.5 Summary

By using the psect ions statement, the programmer can allow statements inside

the block an opportunity to be executed concurrently. The number of processors allocated

to each statement is specified with the ON statement. Dependencies determine the correct

order of execution of the statements and are specified with variables in the IN and OUT

statements for each statement inside the psect ions.

33

CHAPTER 5

LANGUAGE IMPLEMENTATION

This chapter summarizes some of the implementation details for extending

Dataparallel C. It also illustrates design decisions and provides justifications for some of

the decisions.

The Dataparallel C language implementation is divided into two parts: the compiler

and the communication library. The code generated by the compiler makes calls to the

library routines for communication purposes. This isolates the compiler from

modifications between target architectures. Only the communication libraries need to be

updated to use the architecture's communication primitives (i.e. message send and receive

function calls). The first section in this chapter summarizes the changes to the

communication libraries and all remaining sections discuss compiler modifications.

5.1 Communication Libraries

The communication library is made up of several primitive operations invoked by

the compiler output program. Each library was coded with the assumption that all

processors contribute to communication at the same time (which supports the as-if-serial

rule and the all-or-one rule). Another assumption is that the number of available

processors is a power of two.

5.1.1 Eliminating the First Assumption

To efficiently implement concurrent data-parallel tasks, the first assumption must be

discarded. Therefore, the library routines need to access some run-time information to

determine exactly how many processors are in the subset at any time (since the size and

membership of subsets changes during execution). Consequently, the new compiler

34

generates static lookup tables along with the output program (described below). These

tables are accessed by the communication routines so that every processor can determine

important information used in performing the communication algorithm:

The node's local number in the subset

The numbers of its predecessor and successor nodes

The size (dimension) of the current subset

Along with the global lookup tables for this information, the compiler maintains a

global flag to indicate when the program has entered a ps ect ions statement. Whenever

the flag is not set, the communication primitives function exactly as before. Only when the

flag is set do the communication primitives access the information in the tables and

perform communication locally within each processor subset.

5.1.2 The Second Assumption

The second assumption maintained by the communication libraries is that the

number of processors in the system is always a power of twos. We do not find this

assumption to be restrictive in any way, so it was not eliminated. It means that the current

algorithms have all been reused in their current implementations. This is why the value

passed to the ON statement must be a power of two. The feature also has advantages in

scheduling and communication, since all subsets know that other subsets must also be a

power of two in size.

1. This assumption originally comes from hypercube implementations, and has been maintained for
universality and efficiency purposes.

35

5.2 Statement Scanning and Parsing

5.2.1 New Tokens

The new tokens added to the 1 ex input program are:

psections

IN

OUT

ON

TIME

These tokens are reserved by the compiler and cannot be used as variables, labels,

function names, etc. Explanation of the TIME directive can be found in "Scheduling

Heuristics" on page 69.

5.2.2 New Productions

Figure 5-1 shows the new or modified yacc productions used to scan the language

extension semantics. Each of these productions creates a node for insertion into the parse

tree. The first production simply creates a statement node like all other statements, except

that a new tag is used to identify the psections statement. The second production

creates a parse tree node labelled as a psections, and adds the compound statement as

a child. The third production creates directives nodes, but not before doing some error

checking. The IN and OUT list variables are type checked to ensure that each of them are

mono variables. The ON value is checked to make sure the value is a power of two. All of

the recorded tree information is used during code generation. This is described in later

sections.

36

statement ::

psections_statement

I

psections_sub_statement ..
I

psections_statement

PSECTIONS compound_statement

psections_sub_statement

IN argument_expression_list
 ;

OUT argument_expression_list ;

ON constant_expression ;

TIME constant_expression
 ;

Figure 5-1. Language extension productions

5.3 Example Source Code

The remainder of the chapter uses a simple example to illustrate the various steps in

compilation. Pseudocode for this example is given in Figure 5-2.

37

main() { IN c;
OUT e;

psections { ON 4;
OUT a,b; task2();
ON 4;
task5(); IN c, d;

OUT f;
IN b; ON 8;
OUT d; taskl();
ON 2;
task4(); IN e,f;

ON 4;
IN a; task° () ;

OUT c;
ON 2;
task3();

Figure 5-2. Pseudocode for examples in this chapter

5.4 Collecting Information

During code generation, when a psections statement is encountered, a special

parse table is created (called the psections parse table). Every entry in the table

corresponds to one top-level statement in the psections block. Each statement is assigned a

number corresponding to its order inside the block. While walking the children of the

psections node, the IN, OUT, and ON information (if present) is collected and entered into

the table for each statement. Every table entry contains a list of input and output ports, one

for each variable in an IN or OUT statement, respectively. Every entry also contains a

pointer to the parse tree for the corresponding statement. This table is used throughout

code generation, and will be described in more detail below.

38

5.5 Creating a Flowgraph

The dependency flowgraph is created by traversing every output port in every

psections table entry. For each output port, all of the input ports are scanned to find a mate

with the same variable name. Any output ports without a mate are considered dangling

outputs (described earlier). Any unconnected input ports at the end of the connection

algorithm are considered dangling inputs, and are ignored. If an output port encounters

more than one viable input port, it is cloned and connected so that each output port only

has one input mate. If an output port discovers a mate that is already connected to another

output port, then an error is emitted because this case illustrates the ambiguity problem

discussed in Chapter 4 (see "Data Dependency" on page 25).

5.6 DFS and Topological Sort

Now that the flowgraph exists, a Depth First Search2 (DFS) is performed to impose a

more meaningful numbering scheme on the nodes. The deepest nodes in the flowgraph

(those with no connected output ports) are assigned the lower numbers. The nodes at the

next lowest level are then numbered, until the top is reached. The top-most nodes (with no

connected input ports) have the largest numbers.

By assigning this numbering scheme to the nodes, a topological ordering is imposed

on the nodes in the flowgraph. Once again, every node in the flowgraph (a psections table

entry) is visited and every connected output port compares its DFS number with that of its

mate's DFS node number. If the mate's DFS node number is greater than or equal to the

output port's node number, a cycle exists in the graph and an error message is emitted.

2. The DFS algorithm was adopted from [3] p.478.

39

5.7 Scheduling

Now that the statements and their imposed order is known, we can schedule the tasks

onto the available processors. Using the recorded ON value, the scheduling algorithm can

determine how many processors it must reserve for each statement. The order in which the

nodes are scheduled is identical to the DFS numbering imposed earlier. Therefore, the

schedule is filled in from the bottom; the first node to be scheduled is the last one to

execute (because it has the lowest DFS number). The algorithm finds the lowest level in

the schedule where enough processors are available to execute the task being scheduled.

This lowest slot must also be above the level where any children were scheduled (to

maintain the correct order of execution). An illustration (using the code from Figure 5-2)

is shown in Figure 5-3. Notice that the task numbers correspond to their DFS number.

40

Task ON

0 4

1 8

2 4

3 2

4 2

5 4

Figure 5-3. Scheduling illustration

(a) Flowgraph and DFS numbering; (b) ON information; (c) A possible

schedule generated from (a) and (b)

The algorithm described above is sufficient to create a correct schedule. The

algorithm is only a heuristic, so the resulting schedule is not guaranteed to be optimal (i.e.

have the lowest possible execution time). In order to guarantee an optimal schedule, an

exponential time algorithm must be used. This is because the scheduling problem

presented here is NP-Complete (proof given below). An exponential time algorithm is not

practical for this purpose, since minor increases in the number of tasks to be scheduled

will cause a drastic increase in execution time. The compiler is no longer useful if the user

41

must wait days, months, or years for an executable to be generated. After all, they

probably could hand-code the application faster in that amount of time!

We will now prove that scheduling of data-parallel tasks is NP-Complete. We will

call the problem DATA-PARALLEL TASK SCHEDULING (DPTS) since each of the

tasks is a data-parallel operation that uses 1 or more processors. Two things must be

shown to constitute an NP-Complete problem:

1. The problem is in NP (show DPTS E NP)

2. The problem is polynomial-time reducible to some other problem known to be NP-

Complete (show PCS Sp DPTS).

The problem we will reduce to is Precedence Constrained Scheduling (PCS) found in

Garey & Johnson [8] p. 239. To begin, we must provide a general instance of the problem

and phrase the problem in an equivalent yes/no question (decision problem).

INSTANCE: A number of processors m E Z+, a set T of tasks t, each
having length l(t) =1, each having a width w such that w>0 and
a partial order Gp on T, and a deadline D E Z+.

QUESTION: Is there an m processor schedule a for T that meets the
overall deadline D, obeys the precedence constraints (i.e. such that t Gp t'
implies GO O(t) + 1(t) = cr(t) + 1), and every task t is allocated w
consecutive processors?

The INSTANCE of the problem provides the necessary building blocks:

The number of processors (m)

The tasks (t), which are the statements inside the psect ions block

The time to execute each task is assumed to be identical (l(t) =1).

The number of processors requested for each statement (w)

The partial order induced by the dependency analysis (

The QUESTION then asks if the schedule can be created within a deadline. This

represents the notion of finding an optimal schedule, where the deadline is as low as

42

possible. Minimization of the deadline is no longer a decision problem, and would involve

an NP-Hard proof (not provided here).

Proof for part 1: To show that DPTS E NP, we need to verify a solution to the

problem (not solve the problem) in polynomial time. Therefore, given any schedule, we

need to find a processor with the highest (latest scheduled) task t, and make sure that

a(t)+1 < D. This verification algorithm is clearly O(p(n)). Therefore, DPTS E NP

Proof for part 2: To show PCS S DPTS, we show that DPTS can emulate PCS in

polynomial time. This is true because PCS is merely a restricted case of DPTS. When w=1

for all t E T (ON 1) then DPTS can solve any PCS problem. Clearly, DPTS can emulate

PCS in O(p(n)) time. Therefore, PCS Sp DPTS

As a result of these informal proofs, DPTS is an NP-Complete problem. This means

that there is no polynomial time algorithm that can solve the problem (unless P = NP).

5.8 Code Generation

Once scheduling is complete, the compiler can generate the static tables (described

above), the code to assign different processors to different statements, and some global

variables to manage the psections tables.

5.8.1 Static Tables

The static tables are generated into a separate header file which is included in the

generated main program. The table is generated directly from the schedule. For every row

in the schedule, the table has a smaller table that contains a mapping from every real

processor to a local processor number and local size. Figure 5-4 shows the static table

43

information for the first three rows corresponding to schedule in Figure 5-3 (c). Any

unscheduled slots treat the processors as subsets of size 1.

row 1 row 2 row 3

P num I size num size num size

1 1 4 1 2 1 4

2 2 4 2 2 2 4

3 3 4 1 1 3 4

4 4 4 1 1 4 4

5 1 1 1 1 1 2

6 1 1 1 1 2 2

7 1 1 1 1 1 1

8 1 1 1 1 1 1

Figure 5-4. Example static table information

5.8.2 Assigning Processors

When a psect ions is encountered in the main program, the processors must be

able to go their separate ways and work on different pieces of the program. Therefore,

every row in the schedule causes the generation of the five parts listed below. Figure 5-5

shows an example of this generated code corresponding to the examples used above

(Figure 5.3(c) third row). Not all of these parts are in the example because of

communication optimization discussed below. The five parts generated are:

1. An update of the global static table pointer

2. A switch / case statement to divert processors to the right code

3. Communication for any incoming values

44

4. The actual statement

5. Communication to send any outgoing values

PsectionsTablePtr=
PsectionsTable[2];) update static table ptr

switch(DPC_nodenum) () divide the processors
case 0:
case 1:
case 2:
case 3:

broadcast(...);)10- no receive, only broadcast

task2();)0.- perform task t2

) no send is necessary

break;

case 4:

case 5:

if (DPC_nodenum == 4) > only the leader

receive_message(...);)0- receives input from task 5

broadcast(...); > distribute it locally

task4();)0-perform task t4

if (DPC_nodenum == 4) > only the leader

send_message(...);) send the result to task 1

}

break;

default:	 > procs 6 & 7 do nothing

) end switch

Figure 5-5. Simplified example of generated code

The first action is to update a global pointer into the static table. Any communication

primitive calls made by the tasks in this schedule row will need the correct subset

information. All the needed information is given in the sub-table for this schedule row

(Figure 5-4).

45

The processors must now be diverted to their appropriate code. The same program is

running on all processors in the system. Switching on the actual processor number, groups

of case statements divide the processors into their subsets to execute their separate tasks.

Once the appropriate case has been entered, all input ports must be checked. For

every mated input port (of the current task), a call to message receive is generated for the

leader-processor only. The leader-processor is the lowest numbered processor in the

subset. Then a (local) broadcast is used to update the received value to all of the

processors in the subset.

The statement is now generated. This is done by unparsing the users code as if it

were outside the psections.

Finally, once the execution of the statement has completed, the output ports must be

checked. For every mated output port (of the current task), a message send is generated by

the leader-process.

By traversing every row in the schedule (from top to bottom), almost all of the code

will be generated when these five steps are applied to every row. The final code generation

step handles any dangling outputs. For each dangling output, a broadcast is generated

from the task's leader-processor to all of the other processors in the system.

5.8.3 Communication Optimization

The generated code appears to use a lot of communication which may be stifling to

performance. Fortunately, much of the communication is unnecessary. The compiler can

detect when communication is unnecessary and eliminate it.

Recall that values sent between tasks must be mono. This means that a copy exists

on every processor in the subset. Also recall that every subset has a leader-processor. With

this in mind, the following optimizations are possible:

If the sending and receiving leader-processors are identical, no message needs to be

sent.

46

If the leader-processors are the same and the receiving subset size 5 sending subset

size, no communication or broadcast is necessary.

If the subset size is 1, no broadcast call needs to be made

Figure 5-5 shows that task 2 does no receives or sends. This is because its only input

is from task 3, which has the same leader-processor (0). Since task 3 is only allocated 2

processors while task 2 is on four, a broadcast must be done to update the value on all the

processors in the task 2 subset. Task 2 has an output to task 0, but since they share a

leader-processor, no message is sent.

47

CHAPTER 6

USING THE LANGUAGE: A SIMPLE EXAMPLE

This chapter uses a simple example to illustrate how to use the language extensions

discussed in Chapter 4. The example program is a double matrix multiply where two

independent matrix multiplications are performed to yield two matrix results. Relevant

portions of the program are provided below while the full source code is provided in

Appendix A. Even though this is a contrived toy program, the simplification is necessary

to illustrate how to get performance improvement using the language extensions; a more

substantial example is described in the next chapter. The remainder of this chapter

explains the purely data-parallel implementation, explains the addition of task parallelism,

and summarizes performance improvement.

6.1 Double Matrix Multiply Using Only Data-Parallelism

Matrix multiply is commonly implemented in a data-parallel fashion by distributing

each of the rows in the first matrix and each of the columns in the second matrix to the

virtual processors. The columns are communicated among the virtual processors in a

neighbor-to-neighbor fashion throughout the computation. Each virtual processor will

have one row of the solution when the multiplication is complete. Some code for the

Dataparallel C implementation is shown in Figure 6-1. Because this is a purely data-

parallel implementation, the two multiplications are done consecutively, each using all of

the available processors (second member function not shown).

More details regarding data-parallel matrix multiplication may be found in [17].

Dataparallel C implementations of matrix multiply may be found in [9].

48

#define ROW (this P)

#define SIZE 1120

domain D (/* poly variables */

double a[SIZE];

double b[SIZE];

double c[SIZE];

double sum;

void matrix_mult1(void);

void matrix_mult2(void);

) P[SIZE]; /* SIZE vp's */

void D::matrix_multl(void) (

int j,k;

/* implicit [domain D] */

for(j=0; j<SIZE; j++)

sum = 0.0;

for(k=0; k<SIZE; k++)

sum += a[k] * b[k];

c[(j+ROW)%SIZE] = sum;

predecessor()->b = b;

}

main() (

D::matrix_mult1();

D::matrix_mult2();

Figure 6-1. Data-parallel matrix multiplication

6.2 Adding Task Parallelism

Since the two matrix multiplies are independent of each other, they can be done

concurrently. Each operation uses half of the available processors to do the multiplication

in a data-parallel fashion. Therefore, the virtual processors in each half must do twice as

much work. Each virtual processor has two rows and computes two rows of the solution.

There is a decrease in overall communication because two columns are communicated per

iteration of the outer loop. Since fewer physical processors are participating in each

49

solution, the number of actual messages sent decreases. Because of this increase in work

and decrease in communication, the performance of the application should theoretically

improve.

Figure 6-2 shows some of the code for the task parallel example. By doubling the

work done by each virtual processor, four solution elements are actually computed inside

the inner loop. The x and y values help determine the correct location of each result.

The main program contains the psections statement around the two member

function calls (each member function is a data-parallel operation). There are no

dependencies, so no IN or OUT statements are used. This allows the compiler to schedule

the calls concurrently (when enough resources are present). The "ON PP/2" statement

instructs the compiler to use half of the available processors (assuming PP is defined on

the compiler invocation line with a -D option).

50

#define ROW (this P)

#define SIZE 1120

domain D (/* poly variables */

double al(SIZE], a2[SIZE];

double b[2*SIZE];

double cl[SIZE], c2[SIZE];

double suml, sum2, sum3, sum4;

void matrix_multl(void);

void matrix_mult2(void);

) P[SIZE]; /* SIZE vp's */

void D::matrix_multl(void) (

int j, k, x, y;

/* implicit [domain D] */

for(j =0; j<SIZE/2; j++)

suml = sum2 = sum3 = sum4 = 0.0;

for(k=0; k<SIZE; k++) (

suml += al[k] * b[k];

sum2 += al[k] * b[k+SIZE];

sum3 += a2[k] * b[k];

sum4 += a2[k] * b[k+SIZE];

)

x = ROW%(SIZE/2);

y = ROW%(SIZE/2)+SIZE/2;

ci[(j +x) %SIZE] = suml;

cl[(j+y)%SIZE] = sum2;

c2[(j +x)%SIZE] = sum3;

c2[(j+y)%SIZE] = sum4;

predecessor()->b = b;

main() (

psections

ON PP/2;

D::matrix_multl();

ON PP/2;

D::matrix mult2();

)

)

Figure 6-2. Task-parallel matrix multiplication

51

6.3 Timing Results

Running both programs on dedicated partitions of the Meiko CS-2 supercomputer

with 1120 x 1120 sized matrices of doubles yields the results in Figure 6-3. Note that this

is a log-log plot and the y-axis shows speed as the inverse of execution time. The "task­

parallel" curve actually represents the program which has data-parallelism nested inside

task-parallelism. The "data-parallel" curve represents the purely data-parallel solution.

Clearly, the "task-parallel" curve shows better performance on 2, 4, and 8

processors. Table 1-1 shows the performance improvement of the task-parallel case over

the purely data-parallel case for each of these instances.

Table 1-1. Double Matrix Multiply Improvement with Task-Parallelism

Processors % Improvement

2 61.2%

4 65.4%

8 66.7%

52

Figure 6-3. Timing results for double matrix multiply (1120 x 1120 doubles)

53

CHAPTER 7

BANDED SYSTEM SOLVER

The description of our parallel language extensions is not complete without

implementing some real-world applications that can benefit from the language's strengths.

Applications are essential to validate the language and to benchmark the generated code

against other languages and programming styles. In our case, application execution times

are compared against the purely data-parallel solutions. This chapter illustrates how a

data-parallel application executes faster when the data-parallel subroutines can be
executed concurrently.

The example given in this chapter also illustrates a path for converting Fox's Class II

applications into Class IIICG-IIFG (see "Types of Parallel Applications" on page 3) via

the new language. Some programs written in Dataparallel C may benefit from this

migration path.

7.1 Introduction

Real-world systems are commonly modeled using complex equations to describe the

systems' behavior. Once a satisfactory model is obtained, the systems may be simulated

under conditions which do not (yet) exist.

Given the complexity of these models, the size of the systems to be modeled, the

desired accuracy of the simulation, and the length of the simulation, it is easy to see that

high performance computers should be ideally suited for the simulations. After all, the

simulation is only useful if it can return desired results in a timely manner. Unfortunately,

there are three issues which may confound the use of parallel computers for numerical

simulation:

Architectural adaptability

Efficiency (performance)

Programmability

54

The solution technique used for this chapter's example has been shown ([11]) to

alleviate the first two problems by choosing an appropriate algorithm for the problem at

hand (discussed below). The third problem can be eased by using a high-level parallel

language for the implementation, although there may be a loss in efficiency.

7.2 Parallelization

The remainder of the chapter describes our results in parallelizing a solution

technique for modeling ocean currents. The solution technique uses domain

decomposition because of its proven usefulness in this system; Santhosh Kumaran [11]

compared different parallelization techniques in a finite element regionalocean circulation

model. He showed that by using domain decomposition, it is possible to develop a

portable and efficient implementation of the simulation. The methodology behind

Kumaran's implementation is reused in this example.

The critical portion of the implementation is the solution of a system of linear

equations obtained from the domain decomposition (Figure 7-1 on page 56). The

coefficient matrix has a peculiar structure, which the solution scheme exploits to improve

the performance. Figure 7-1 shows this coefficient matrix (M), where all of thenon-zero

values lie in a "band" across the diagonal of the matrix (shaded region). Details regarding

the solution scheme are given in the next section of this chapter.

Solution of the system of equations appears to be ideally suited for a data-parallel

implementation. Unfortunately, this system is not efficiently solved with conventional

data-parallel languages. For example, Dataparallel C maintains SIMD semantics which

restrict the solution to using either one or all of the processing resources (for a detailed

description of the all-or-one rule see "Resource Allocation" on page 22). This restriction

hinders performance when parts of the solution show optimal performance on a subset of

resources.

A solution technique which uses task parallelism to allocate smaller sets of resources

to data-parallel solutions is required to achieve optimal performance. The task-parallel

55

framework not only limits communications to within each subset of resources, but it also

allows concurrent solution of data-parallel subsets by optimally utilizing all processing

resources simultaneously.

The language used to implement the combined task and data parallel solution is our

extension of Dataparallel C discussed throughout this thesis. The compiler was used to

generate all executables. No "hand-coding" was done. The source code is given in

Appendix B.

The remainder of the chapter summarizes the solution technique and reports our

findings in implementing the linear system solver. The advantages of a combined task-

parallel and data-parallel solution (over the purely data-parallel solution) are expounded

upon.

7.3 Solving A Banded System of Linear Equations

After collecting the data from a Finite Element Method, a system of linear equations

results. Let M represent the coefficient matrix data, x represent the vector of unknowns,

and b the known right-hand-side solution vector. The equation being solved is then:

Mx = b

Solving for the equations' unknowns corresponds to one time step in the simulation. The

solution vector x then becomes the b vector in the next time step. The M matrix retains the

same values for every time step.

As mentioned previously, all non-zero values in M lie in a "band" across the

diagonal of the matrix (Figure 7-1; shaded areas represent known non-zero values). The

width of this band is the bandwidth, and will be denoted by B.

56

Figure 7-1. System of linear equations

The first step in solving the banded system requires cutting the matrix into partitions

and rearranging the rows and columns. The width of this cut will be denoted by

equal to (B- l)/2. The number of partitions induced by the cuts is P, each of size PS

(Partition Size). The cuts are applied in even intervals across the columns of the matrix.

The cut regions are all moved to the top of the matrix, with all partition rows moving

downward to fill in the gaps. The values in the solution vector b are moved in a

corresponding manner. Similarly, the cuts are then applied across the rows with the cut

regions being moved to the left side of the matrix and all partition columns sliding to the

right to fill in the gaps. A rearranged matrix with 3 partitions is shown in Figure 7-2

(shaded areas contain non-zero values), and will be denoted A. The thick horizontal and

vertical divisions represent the boundary between the moved partitions and the remaining

data. The dashed lines represent boundaries among the partitions and remaining data.

57

m

..,:%.'.
...' 3:::.-P: ; :.,

\ 0,
:.:Vife.

I I

7+Akr.

'fg:v. ,':=

fe
$P.X::

..V.: 1.
,NR6A1

. Mi:::::::

.

I I

- Mk
I I I

VA.. I
?:': iii ?:iii:i: }ref

I

I
I

:.,-a:4M­ ::........-- 2:0.:
Nigadi

I

A .., ,....::.

, ,
, 4....::::::::.'"::: I

.

'4" ... ''''' ;:i.3..ia;:'

Ag

:::::::4 .'.'"
..,::: .4:'::'-:. I

...M.'.!'

: :­

I

........, 1::11*
I

I I I

Figure 7-2. Rearranged input matrix

The area where the cuts were moved is called the interface portion of A. The

remainder is called the domain part of A. The areas these names refer to depend on

whether you are considering rows or columns. Once the matrix is rearranged, names are

assigned to some of the sub-matrices that appear inside the rearranged matrix (those with

values). These are shown in Figure 7-3, along with the naming conventions for the

matrices within each sub-matrix.

58

Figure 7-3. Sub-Matrices within the rearranged input matrix

59

Using these sub-matrix names, the equations to solve for the unknowns are given in

the following equations:

7-0 = [Aoi (Aid-lbj (EQ 1)

= FA -A (AII) (EQ 2)xo 00 0/ //)

xi1 = A1 [bi- Aiox 0] (EQ 3)
i= 1,2,...,P

where xo and bo are the interface portions of the x and b vectors respectively; xi and bi are

the domain portions corresponding to each partition.

At first, it may seem that this scheme cannot possibly perform efficiently because of

all the matrix inversions involved. As stated earlier, the input matrix does not change for

each iteration of the simulation. Therefore, some of the values need only be computed

once before the simulation begins. These computations are therefore removed from the

simulation loop and only computed once:

Al = A . (A.) -1 (EQ 4)01 it

A2 = [A00 AO/ (Aid IOJ (EQ 5)

A = A-1 (EQ 6)3 ii

Substituting Equation 4 into Equation 1, Equation 5 into Equation 2, and Equation 6

into Equation 3 finally yields the equations which are done in parallel for each simulation

iteration:

ro = b [A bi] (EQ 7)o i = 1 1

xo = A
2ro (EQ 8)

xi I = A3 [b A iox 0] (EQ 9)
i = 1, 2, ...,P

60

7.4 Implementation of the Solution Technique

Without providing pseudocode for all of the equations, we will explain the basic

structure of the implementation of these equations. The two prevalent operations in

Equation 7, Equation 8, and Equation 9 are matrix-vector multiplication and vector

addition (subtraction). For simplification, we will focus on the multiplication because it is

much more time consuming.

Matrix-vector multiplication involves 2 loops, one nested inside the other. The outer

loop traverses the rows of the matrix and elements of the solution vector. The inner loop

traverses the columns of the matrix and the elements of the input vector, performing a

summation into the solution vector space. Recall that in Equation 7 and Equation 9, the

matrix-vector multiplications are done P times, adding a third loop around the matrix

vector multiplications. The pseudocode for this is shown in Equation 7-4.

for i 4- 1 to number of partitions P) Loop 1

for j 4- 1 to number of rows)1 Loop 2

for k 4 1 to number of columns) Loop 3

v2i[j] 4- Mi[j][k] * vli[k] > matrix x vector

Figure 7-4. Pseudocode for repeated matrix-vector multiplications

Note that Equation 8 actually involves only loop 2 and loop 3 because only one matrix-

vector multiplication is performed.

61

7.4.1 Data-Parallel Solution

The initial data-parallel implementation is created by parallelizing loop 2 in

Figure 7-4. Each virtual processor is assigned one row of the matrix and one element of

the solution for each of the P matrix-vector multiplications. The communication involved

is neighbor-write inside the inner loop.

Another way to implement a data-parallel solution is to parallelize loop 1 instead of

loop 2 (Figure 7-4). Each virtual processor now computes its own matrix-vector multiply,

alleviating much of the communication.

7.4.2 Augmenting the Example with Task-Parallelism

A good task-parallel solution would involve pipelining the simulation iterations and

overlapping operations from different iterations. Unfortunately, this implementation

would be slow because all of the previous iteration's answers are needed in Equation 7 to

solve for the r0 value used in Equation 8. This bottleneck would result in an inefficient

pipeline, and is not worth discussing further.

The next best way to add task-parallelism is to unroll loop 1 (the outer loop) and

perform these independent operations concurrently, each on a subset of the available

processors. Data parallelism is maintained by parallelizing loop 2, as in the initial data-

parallel implementation discussed above. Therefore, each of the unrolled iterations is a

data-parallel solution using the subset of resources assigned to it.

7.5 Summary of Findings

The graph in Figure 7-5 may look overwhelming at first, but a brief explanation will

elucidate how this data shows an improvement when task parallelism is added to

Dataparallel C. Note that the y-axis of the graph is expressed in speed rather than time.

64

even when larger systems are input. The next section describes a different approach which

allows more resources to be used in an efficient way.

7.5.2 Combined Task-Parallel and Data-Parallel Implementation

By adding task parallelism to the solution of this system, better performance is

obtained by using more of the available processing resources. Dataparallel C maintains the

all-or-one rule for allocating processor resources: sequential code is done on every

processor; parallel code, especially communication, is divided among all of the processors

(which must maintain loose synchronization with the other processors). The addition of

task parallelism loosens this restriction and allows subsets of resources to be applied to

simultaneous data-parallel operations. Any communication is limited to the subset and

does not require any synchronization with other processors.

The solid line graphs in Figure 7-5 represent the task-parallel implementation of the

system. Data parallelism is maintained by parallelizing loop 2 (as in DP2), and task

parallelism is obtained by unrolling loop 1 (the outermost loop) and assigning a subset of

resources to the solution of each of these unrolled iterations. Each of the unrolled

iterations is a data-parallel solution using the subset of resources assigned to it. The

number of processors assigned to a subset is depicted by the ON value in Figure 7-4.

Therefore, the best solution for this input size is actually obtained by executing on 8 or

more processors, with 2 processors allocated to each of the P=4 data-parallel subsets (ON

2).

The observant reader will notice that the ON 4 and ON 8 cases have disappointing

speedup. This can be attributed to the following reasons:

Adding more processors to a data-parallel subset will eventually show a decrease in

performance when less work, and more communication, is done per processor (just as

in a purely data-parallel application). Hence the slope of these curves is not as steep as

in the ON 1 and ON 2 cases.

65

The total number of processors needed by the ON 4 and ON 8 cases is 16 (P=4 * ON

4) and 32 (P=4 * ON 8) respectively. Whenever these cases are compiled onto fewer

than this number of processors, the compiler overlaps the task-parallel work being

done (i.e. the subsets take turns using the resources that are available when not enough

are available for total concurrency). This overlapping causes the overall performance

to degrade below that of the purely data-parallel version, unless enough processors are

used so that overlapping does not occur. Notice that the ON 4 case is faster than the

purely data-parallel version only when the number of processors is 16.

The observant reader will also notice that the ON 1 case is simply a data-parallel

solution. By allowing only one processor to solve each subset, we are modelling the data-

parallel solution (DP1) because in both implementations, each processor is solving one of

the P outer loop iterations. This is possible because data parallelism is a special case of

task parallelism. Unfortunately, the task-parallel model (ON 1 curve) mimics, but does not

equal the data-parallel solution (DP1). The gap between the two curves is a result of extra

overhead incurred by the calls to communication routines in the task-parallel solution

(which are not present in the data-parallel solution). Even though nomessages are actually

sent, communication among virtual processors on each single processor is implemented

with memcpy calls. The data-parallel implementation does not have any communication

among the virtual processors in the inner loop, and does not suffer from this overhead.

Now notice that beyond 8 processors, the ON 1 case actually does outperform the

data-parallel case. As mentioned earlier, these instances do not use all of the resources

because the number of processors is greater than P. The difference is that the purely data-

parallel version still uses all of the processors for communication, and the overhead

degrades performance. Conversely, the task-parallel implementation does not need to use

the processors, so that any extra processors sit idle and don't interfere with computation

and communication. This explains why the ON 1 graph flattens off after 4 processors, and

the ON 2 case flattens off after 8 processors. The addition of processors past these points

does not provide any extra computation power.

66

7.6 Chapter Summary

The purely data-parallel implementation of the banded linear system solver is

improved by adding task parallelism. Improvements result from:

More efficient use of available resources

Concurrency between operations

Independent concurrent operations

No interference of unused resources with utilized resources

67

CHAPTER 8

CONCLUSION

8.1 Conclusion

How can the usefulness and completeness of our work be determined? One of the

renowned masters of programming languages has provided some insight. The following

quote is taken from "Hints on Programming Language Design" by C.A.R. Hoare

presented at POPL 1973 ([10] p. 39):

The designer of a new feature should concentrate on one feature at a time.
If necessary, he should design it in the context of some well known
programming language which he likes. He should make sure that his
feature mitigates some disadvantage or remedies some incompleteness of
the language, without compromising any of its existing merits. He should
show how the feature can be simply and efficiently implemented. He
should write a section of a user manual, explaining clearly with examples
how the feature is intended to be used. He should check carefully that there
are not traps lurking for the unwary user, which cannot be checked at
compile time. He should write a number of example programs, evaluating
all the consequences of using the feature, in comparison with its many
alternatives.

The following list summarizes how we have abided by Hoare's guidelines:

Concentrate on one feature: The only feature is the addition of task parallelism to a

data-parallel language.

Design in the context of a well know language we like: We chose to design our

language extensions in the context of Dataparallel C. The language is well known, and

we like it.

Mitigate a disadvantage: The as-if-serial rule and the all-or-one rule of processor

allocation are overly restrictive and do not allow optimal performance for some

applications. By loosening these rules, we have extended Dataparallel C to allow task

parallelism.

68

Don't compromise the language's existing merits: None of the existing merits of

Dataparallel C were compromised. Data-parallel programming is still supported and

the extended language can still compile Dataparallel C programs.

Show implementation: Chapter 5 provides an overview ofour implementation.

Write a user manual: Chapter 4 provides an explanation of the language features and

Chapter 6 provides a simple example.

Eliminate lurking traps: The compiler provides feedback to the user describing what

it is doing during dependency analysis and scheduling. These are possible areas where

the user can make a mistake without the compiler being able to catch it.

Write example programs: Chapter 6 provides a simple program, while Chapter 7

shows the implementation of a real simulation program. The programs were compared

with their alternatives pure data-parallelism.

8.2 Future Work

This section lists some ideas for future work which may be interesting for future

Masters or Ph.D. topics. The ideas provided here are intended to expand upon the work we

have already done.

8.2.1 Dynamic Virtual Processors.

Investigating dynamic virtual processors (possibly in C*) may help alleviate the

coding difficulties described earlier. By assigning different numbers of virtual processors

(instead of physical processors) to tasks, any data-parallel code could run on any subset of

processors without modification. The investigator needs to be wary of the following

issues:

Full concurrency must be maintained between all of the processors. All of the virtual

processors being emulated by a processor must be assigned to the same task.

69

Proper allocation of memory for all poly variables residing on each virtual processor.

The worst case is when one processor must emulate all of the virtual processors in a

domain because all poly variables will reside in one physical memory as if they were

mono. The space advantage of poly variables would be lost in this case.

8.2.2 Scheduling Heuristics

We have already added a fourth statement to our set of language extensions. The

TIME statement accepts an integer value which is currently ignored. The value is a hint by

the user as to how long the current task will take relative to the other tasks. This value can

be used by the scheduler heuristic to possibly create a better schedule ([13], [18]).

Another improvement to the scheduler would take into account message sizes. Tasks

sharing lengthy communications should be scheduled as close to each other as possible. If

they are scheduled onto the same processor, the communication can be eliminated entirely.

Elimination of costly communication should cause significant increases in performance.

8.2.3 Automatic Data Dependency Analysis

If a compiler can analyze the data dependencies between tasks of a ps ect ions,
then the IN and OUT statements can be eliminated. Data flow analysis can reveal which

tasks must wait on others, and the variables which must be communicated between them.

Programming with our language extensions would be simplified.

8.2.4 Nesting

The use of data-parallel and task-parallel library routines would help parallel

programmers by providing a simple method of code reuse. The algorithms inside the

70

libraries would also be optimized for the best possible performance. Providing our

language with the ability to arbitrarily nest data-parallel and task-parallel modules within

each other will facilitate the use of parallel libraries.

8.2.5 Run-time Feedback

Jaspal Subhlok (Carnegie Mellon) has proposed and implemented an efficient

method of automatically mapping tasks to processors [22]. His compiler executes the

program with various mappings, collects run-time information, and determines an optimal

mapping of the tasks to processors. If dynamic virtual processors are implemented (as

discussed above), a similar mapping scheme may be used. This would eliminate the need

for the ON statement.

8.2.6 Automatic Task Compilation

If the feedback system were combined with automatic dependency analysis (both are

discussed above), the need for any extra compiler directives or statements would be

eliminated. The psections statement is the only extension left. With so much

automatic analysis, the psections statement might also be removed. The compiler

could assume that all the code is inside a psect ions, and "do the right thing" with these

smart modifications. This means that all Dataparallel C programs would be automatically

amenable to task parallelism without any modification by the programmer.

71

BIBLIOGRAPHY

[1]	 Henri Bal and Dick Grune. Programming Language Essentials. Addison-
Wesley, 1994.

[2]	 Mani Chandy and Ian Foster. Integrated Support for Task and Data
Parallelism. California Institute of Technology & Argonne National Lab,
August 27, 1993. To appear in International Journal of Supercomputer
Applications.

[3]	 Cormen, Leiserson, Rivest. Introduction to Algorithms. Massachusetts
Institute of Technology, 1990.

[4]	 Ian Foster and Mani Chandy. FORTRAN M: A Language for Modular
Parallel Programming. Argonne National Laboratory, October 1992.

[5]	 Ian Foster and Carl Kesselman. Integrating Task and Data Parallelism. In
Proceedings of Supercomputing '93, (Portland, OR., November 1993).

[6]	 Ian Foster, Ming Xu, Bhaven Avalani, Alok Choudhary. A Compilation
System That Integrates High Performance Fortran and Fortran M. Argonne
National Lab and Syracuse University, to appear in Proc. 1994 Scalable
High Performance Computing Conf., IEEE Computer Science Press.

[7]	 Geoffrey Fox. The Architecture of Problems and Parallel Portable Software
Systems. Tech Rep. CRPC-TR91172, Northeast Parallel Architectures
Center, 1991.

[8]	 Garey & Johnson. Computers and Intractability A Guide to the Theory of
NP-Completeness. Bell Telephone Laboratories Inc., 1979.

[9]	 Philip Hatcher and Michael Quinn. Data-Parallel Programming on MIMD
Computers. Massachusetts Institute of Technology, 1991.

[10] E. Horowitz. Programming Languages: A Grand Tour. Computer Science
Press Inc., Second Edition, 1985.

[11] Santhosh Kumaran and Robert Miller. A Comparison of Parallelization
Techniques for Finite-Element Modelling of Quasi-Geostrophic Circulation.
Submitted to International Journal of Supercomputer Applications and High
Performance Computing.

72

[12] Iris Lemke and Georg Sander. Visualization of Compiler Graphs Design
Report and Documentation. Universitat des Saarlandes and the COMPARE
Consortium, 1994.

[13] Richard Maliszewski and James Reinders. Scheduling Task Parallel
Programs Using VLIW Techniques. Proceedings of the Intel Software
Development Conference. October 10-12, 1994.

[14] Cherri Pancake. Software Support for Parallel Computing: Where Are We
Headed? Communications of the ACM. November 1991, Volume 34, No. 11,
pp.53-64.

[15] Cherri	 Pancake. Languages for High-Performance Computing: A
Smorgasbord? IEEE Parallel and Distributed Technology (Systems &
Applications). February 1993, pp.68-72.

[16] Cherri Pancake. The Changing Face of Supercomputing. IEEE Parallel and
Distributed Technology (Systems & Applications). November 1993 pp.12-15.

[17] Michael Quinn. Parallel Computing Theory and Practice. McGraw-Hill Inc.,
1994.

[18] James Reinders and Damien Macielinski. Application Oriented Parallel
Compilers. Proceedings of the Intel Software Development Conference.
September 8-10, 1993.

[19] Brad Seevers, Michael Quinn, and Philip Hatcher. A Parallel Programming
Environment Supporting Multiple Data-Parallel Modules. International
Journal of Parallel Programming. Vol. 21, No. 5, 1992.

[20] Jaspal Subhlok, James Stichnoth, David O'Hallaron, Thomas Gross.
Exploiting Task and Data Parallelism on a Multicomputer. Carnegie Mellon
University. In the Fourth ACM SIGPLAN Symposium on Principles &
Practices of Parallel Programming. May 1993, San Diego, CA.

[21] Jaspal Subhlok and Thomas Gross. Task Parallel Programming in FX.
Technical Report CMU-CS-94-112 (Preliminary Version), School of
Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213.

[22] Jaspal Subhlok. Automatic Mapping of Task and Data Parallel Programs for
Efficient Execution on Multicomputers. November 1993, CMU-CS-93-112,
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA
15213.

73

[23] Jaspal Subhlok, David O'Hallaron, Thomas Gross, Peter Dinda, and Jon
Webb. Communication and Memory Requirements as the Basis for Mapping
Task and Data Parallel Programs. January 1994, CMU-CS-94-106, School
of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213.

[24] Thinking Machines Corporation. C* Programming Guide. August 1990.

[25] X3HS Parallel Extensions for Programming Language C. Document number
X3H5/93-SD3, Revision E, October 26th 1993.

74

APPENDICES

75

APPENDIX A

Source Code for Double Matrix Multiply

#include <stdio.h>

#define ID (this P)

#define ROW (this P)

#define SIZE 1120

domain D (

double al[SIZE];

double a2[SIZE];

double b[2*SIZE];

double cl[SIZE];

double c2[SIZE];

double dl[SIZE];

double d2[SIZE];

double suml, sum2, sum3, sum4;

void matrix_multl(void);

void matrix_mult2(void);

void Init(void);

) P[SIZE];

void D::matrix_multl(void)

int j;

int x,y;

for(j=0; j<SIZE/2; j++) {

int k;

suml = sum2 = 0.0;

for(k=0; k<SIZE; k++) {

suml += al[k] * b[k];

sum2 += al[k] * b[k+SIZE];

sum3 += a2[k] * b[k];

sum4 += a2[k] * b[k+SIZE];

x = ROW%(SIZE/2);

y = ROW%(SIZE/2)+SIZE/2;

cl[(j+x)%SIZE] = suml;

cl[(j+y)%SIZE] = sum2;

c2[(j+x)%SIZE] = sum3;

c2[(j+y)%SIZE] = sum4;

predecessor()->b = b;

) /* for j */

void D::matrix_mult2(void)

76

int j;

int x,y;

for(j=0; j<SIZE/2; j++) {

int k;

sum]. = sum2 = 0.0;

for(k=0; k<SIZE; k++) {

sum]. += al[k] * b[k];

sum2 += al[k] * b[k+SIZE];

sum3 += a2[k] * b[k];

sum4 += a2[k] * b[k+SIZE];

)

x = ROW%(SIZE/2);

y = ROW%(SIZE/2)+SIZE/2;

d1[(j+x)%SIZE] = sum1;

d1[(j+y)%SIZE] = sum2;

d2[(j+x)%SIZE] = sum3;

d2[(j+y)%SIZE] = sum4;

predecessor()->b = b;

) /* for j */

)

void D::Init(void)

int j;

for(j=0;j<SIZE;j++) {

int x,y;

x = ROW%(SIZE/2);

y = ROW%(SIZE/2)+SIZE/2;

al[j] = 1.0 + SIZE * x + j;

a2[j] = 1.0 + SIZE * y + j;

b[j] = 1.0 / (1.0 + SIZE * j + x);

b[j+SIZE] = 1.0 / (1.0 + SIZE * j + y);

)

)

main()

D::Init();

start_timer();

psections {

ON PP/2;

D::matrix_mult1();

ON PP/2;

D::matrix_mult2();

)

stop_timer();

) /* main */

77

APPENDIX B

Source Code for the Banded System Solver

Most of the source code for the banded system solver is given in this appendix. Set­

up and bookkeeping code has been removed. Gaps in the provided code are represented

with "...". Phase 0 is initial setup. Phase 1 corresponds to Equation 7; Phase 2 corresponds

to Equation 8; Phase 3 corresponds to Equation 9 in Chapter 7.

#define N 1008

#define P 4

#define B 33

#define NUM_ITERATIONS 200

/* CONC and PP are defined on the compiler line with -D */

typedef double TYPE;

typedef TYPE * VECTOR;

typedef TYPE ** MATRIX;

#define NC (P-1) /* number of cuts */

#define BA ((B-1)/2) /* width of cut */

#define RI (NC*BA) /* Rows in interface part

#define CI RI /* Cols in interface part

#define RD N-RI) /* Rows in domain part */

#define CD N-CI) /* Cols in domain part */

#define PS (N-RI)/P) /* partition size */

#define ID1 (this VP1)

domain DOMAIN1 (

TYPE templ[CONC];

int index[CONC];

TYPE poly_x_o[CONC/P];

} VP1[RI);

#define ID2 (this VP2)

domain DOMAIN2 (

TYPE temp[CONC];

int index[CONC];

TYPE x_i[CONC][P]; /* you don't really need this many

} VP2[PS];

TYPE mono_temp[CONC];

TYPE mono_templ[CONC];

TYPE x_o[RI];

TYPE OutVec_O[RI];

TYPE OutVec_l[RI];

78

TYPE OutVec_2[RI];

TYPE OutVec_3[RI];

main(int argc, char *argv[])

{

int iters;

MATRIX A;

VECTOR b;

VECTOR x;

MATRIX A_ii_inv[P];

TYPE r_o[RI];

MATRIX Al[P];

MATRIX A2;

/* parse the command line */

CommandLine(argc,argv);

/* Create a banded input system (diagonally dominant)*/

A = AllocMatrix(N,N);

x = AllocVector(N);

b = CreateProblem(A, x);

/* rearrange some rows of the A matrix to get the right shape */

}

/*

PHASE 0: This is all of the stuff that gets done ONCE

and only ONCE, for all solution iterations.

pre-compute the A_ii_inv

pre-compute Al <- A_Oi * A_ii_inv (P of them)

pre-compute A2 <- Inverse(A_00 (A_OI*A_II_inv*A_IO))

*

StartTimer();

for(iters=0; iters<NUM_ITERATIONS; iters++) (

int i,j,k;

TYPE sum[RI];

VECTOR b_i;

MATRIX A_i0;

int entry;

#undef STATEMENT

#define STATEMENT

ON PP/CONC;

OUT OV;

VECTOR b_i;

b_i = b + (SECTION*PS+RI);

79

[domain DOMAIN1]. {

for(i=0;i<CONC;i++) {

templ[i] = (TYPE)0.0;

index[i] = (ID1%(RI/CONC))+((RI/CONC)*i);

)

for(k=0;k<PS;k++) {

for(i=0;i<CONC;i++) (

templ[i] += A1[SECTION][index[i]][k] * b_i[k];\

)

}

k = (RI/CONC) * (SECTION % CONC);

for(;k<HRI/CONC)*((SECTION%CONC)+1));k++) { \

mono_templ = VP1[k].temp1;

for(i=0;i<CONC;i++) {

entry = (k%(RI/CONC))+((RI/CONC)*i);

OV[entry] = mono_templ[i];

)

)

)

psections {

#	 undef SECTION

#	 define SECTION 0

#	 undef OV

#	 define OV OutVec_O

STATEMENT

#	 undef SECTION

#	 define SECTION 1

#	 undef OV

#	 define OV OutVec_1

STATEMENT

#	 undef SECTION

#	 define SECTION 2

#	 undef OV

#	 define OV OutVec_2

STATEMENT

#	 undef SECTION

#	 define SECTION 3

#	 undef OV

#	 define OV OutVec_3

STATEMENT

ON 1;

IN OutVec_O,OutVec_1,OutVec_2,OutVec_3;

OUT r_o;

for(j=0;j<RI;j++)

r_o[j]=b[j]-(OutVec_0[j]+OutVec_1[fl+OutVec_2[fl+OutVec_3[j]);

ON P * PP / CONC;

IN r_o;

80

OUT x_o;

int conc;

/* phase 2 */

if ((P*PP/CONC) < PP)

conc = CONC/P;

else

conc = 1;

[domain DOMAIN1]. {

for(i=0;i<conc;i++)

poly_x_o[i] = (TYPE)0.0;

for(k=0; k<RI; k++) (

for(i=0;i<conc;i++) (

poly_x_o[i] += A2[ID1+(i*RI/conc)][k] * r_o[k];

)

}

/* reduce poly_x_o to x_o (mono) */

for(i=0;i<RI/conc;i++) (

for(j=0;j<conc;j++) (

x_o[i+(j*RI/conc)] = VP1[i].poly_x_o[j];

#undef STATEMENT

#define STATEMENT

ON PP/CONC;

IN x_o;

{ \
int off = (SECTION*PS+RI);

A_i0 = A + off;

b_i = b + off;

[domain DOMAIN2]. (

int col;

for(i=0;i<CONC;i++) (

temp[i] = (TYPE)0.0;

index[i] = (ID2%(PS/CONC))+((PS/CONC)*i);

)

for(k=0;k<CI;k++)

for(i=0;i<CONC;i++)

temp[i] += A_iO[index[i])[k] * x_o[k];

for(i=0;i<CONC;i++) (

temp[i] = b_i[index[i]] temp[i];

x_i[i][SECTION) = (TYPE)0.0;

)

k = (PS/CONC) * (SECTION % CONC);

forOk<HPS/CONC)*((SECTION%CONC)+1));k++) (\

mono_temp = VP2[k].temp;

for(i=0;i<CONC;i++) (

col = (k%(PS/CONC))+((PS/CONC)*i);

for(j=0;j<CONC;j++) (

x_i[j][SECTION] +=

81

A_ii_inv(SECTION][index[j]](coll*mono_temp[i];\

)

)

undef SECTION
define SECTION 3

STATEMENT
undef SECTION
define SECTION 2

STATEMENT
undef SECTION
define SECTION 1

STATEMENT
undef SECTION
define SECTION 0

STATEMENT

) /* end of psections statement */

} /* iters */

StopTimer();

Time=ResetTimer();

