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Currently little is known about the mechanisms and locations of 

lymphocyte development in teleosts. In this study several aspects of the 

underlying factors which govern B lymphocyte development in trout 

were investigated which included: the isolation and characterization of 

immunoglobulin heavy chain (IgH) genes, the recombination activating 

genes 1 and 2 (RAG1 and RAG2) and the use of cellular markers to 

identify tissues harboring precursor B-cells. 

Immunoglobulin heavy chains are part of the structural 

components which make up antibody molecules produced by B-cells. 

We isolated various full-length IgH cDNA clones, some of which 

contained the secreted while others contained the membrane bound 

form of IgH. Upon characterization of the membrane bound forms, 

typical features common to all IgH cDNAs were found including a 
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leader peptide, a variable region and constant domain containing 

transmembrane (TM) segments as well. Further sequence analysis of 

this region revealed that the TM domains were spliced directly to the 

CH3 domains which results in the loss of the entire CH4 region. Our 

results support previous observations of unusual splicing events in fish 

IgH genes. 

RAG1 and -2 in mammals have been shown to be essential for 

carrying out V (D) J recombination of lymphocyte receptors and are 

found to be expressed within primary lymphoid tissues and precursor 

lymphocytes. We isolated the RAG locus from a rainbow trout genomic 

library and characterized their conservation and expression. 

Overall the complete amino acid sequences of RAG1 and RAG2 

displayed 78% and 75% similarity when compared to RAG genes from 

higher vertebrates thus demonstrating the highly conserved nature of 

these genes. Tissue specific expression of both genes was primarily 

associated with the thymus and pronephros in both juvenile and adult 

trout. Based upon these observation we conclude that the thymus and 

pronephros likely serve as the tissue sites for V (D) J recombination in 

trout and are thus primary lymphoid organs. 

Finally we addressed the question as to where B-cell 

lymphopoiesis occurs in trout. Our results using both 

immunofluorescence and confocal microscopy putatively demonstrate 

that the thymus harbors precursor B-cells and thus alludes to a dual 

function for both B and T-cell development in trout. 
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B-Cell Development in Rainbow Trout: a Molecuinr/Cellullar
 

Based Approach
 

CHAPTER 1 

Introduction and Literature Review 

Introduction 

The characterization of genes involved in the immune response of 

salmonids is of interest from a phylogenetic point of view as well 

providing insights into the mechanisms controlling the overall 

development of the immune system in fish. The genes encoding the 

immunoglobulin heavy and light chains are by far the most heavily 

investigated in lower vertebrate taxa (Wilson and Warr 1992). Relatively 

little is known about the ontological sites and mechanisms involved in 

the generation of the primary immunoglobulin and antigen receptor 

repertoires of B and T-cells in fish. 

In mammals, the progenitor cells of the lymphocyte lineages (B 

and T cells) originate within the bone marrow. T-cell progenitors 

migrate to the thymus where they mature, whereas the B-cell 

progenitors remain in the bone marrow microenvironment during 

development. In these tissues, site specific recombination of variable 

region gene segments leads to the genesis of the primary immune 

repertoire. Recently two genes, the recombination activating genes 1 

and 2 (RAG1 and RAG2) have been demonstrated to be essential for the 

somatic recombination of lymphocyte receptor variable region genes 
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(Schatz et al 1989, Carlson et al 1991). In teleost fish, early histological 

analysis indicated that the thymus may be the primary source of 

lymphocytes (Grace and Manning 1980, Josefsson and Tatner 1993). 

Indeed the thymus is the first lymphoid tissue to develop and to display 

lymphocytes during the ontogeny of fish, but others contend that the 

pronephros is the bone marrow equivalent in fish based upon 

observations of hematopoietic foci and functional analysis (Razquin et al 

1990, Irwin and Kaattari 1986). Therefore it has yet to be clearly shown 

where lymphopoiesis occurs in teleost. 

This thesis deals with the isolation and characterization of genes 

involved in the generation of the immune repertoire in trout. The first 

manuscript, Chapter 2, consists of the isolation cDNAs coding for 

membrane bound forms of immunoglobulin heavy chains in trout and 

discusses relevant features found from sequence analysis. Chapter 3 

describes the isolation of RAG1 from a rainbow trout genomic library 

using a degenerate PCR-based approach and defines the tissues and 

lymphocyte phenotypes which specifically express RAG1. This work 

provides an initial step in the determination of the tissues most likely 

associated with V (D) J recombination. Finally in Chapter 4, I 

addressed several features involved in the development of the trout 

immune system. This analysis provided a more sensitive approach in 

identifying the primary lymphoid tissues in trout using both molecular 

and cellular based approaches. 
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Literature Review 

B cell development 

The generation of mature B and T lymphocytes in mammals is a 

complex process that occurs in the bone marrow and thymus 

respectively. Aside from maturing in different tissues, both are 

common descendants of pluripotential hematopoietic stem cells, which 

also form the myeloid and erythroid lineages. The differentiation of B 

lymphocytes from bipotential progenitors (B/T) proceeds through 

multiple steps that are under the control of coordinately expressed 

lineage-specific genes. The overall process can be thought of as two 

major events during B cell differentiation: the recombination and 

expression of immunoglobulin genes. A cascade of developmental 

factors (Fig 1.1) control the productive and sequential rearrangement of 

immunoglobulin genes such that the heavy chain loci are rearranged 

first, expressed, then the light chain loci are similarly rearranged and 

expressed (Blackwell and Alt 1988). 

Pluripotential hematopoietic stem cells in the bone marrow bind 

to stromal cells where they receive initial signals in the form of stem cell 

factor and interleukins-6 and 7 to induce the differentiation into B-cell 

progenitors (Palacios and Samaridis 1992, Faust et. al 1993, Dong and 

Wortis 1994). The establishment of various stem, progenitor and pre-B 

cell lines has proved invaluable in the process of determining the 

development of B lymphocytes. It appears that binding of the stem cell 

surface molecule CD44 to hyaluronic acid on bone marrow stromal cells 
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Figure 1.1 B-cell development. Schematic representation of 

transcription factor expression and the appearance of stage specific 

proteins during the ontogeny of a B-cell. At the progenitor B-cell (pro-B) 

stage, the immunoglobulin variable region genes of both the heavy and 

light chains are in the germline configuration (IgHg and IgLg). At the 

final stage designated "B-cell", all Ig genes are fully rearranged, 

expressed and associated with mb-1 (Ig-alpha) and B29 (Ig-beta) to form 

the complete B-cell receptor. Placement of lineage specific markers is 

based upon Palacios and Samaridis 1992, Ikuta et al 1992, Li et al 1993 

and Bain et al 1994. 



5 
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induces upregulation of the receptors for stem cell factor (c-Kit) and 

interleukins 6r and 7r. This binding also induces stromal cells to 

express and secrete interleukins 6 and 7 which induce progenitor 

proliferation. At about this point in the early life of the B cell progenitor 

a virtual cascade of transcription factors are synthesized which will 

directly and indirectly influence the fate of the developing B-cell. 

Transcription factors involved in B cell ontogeny 

It appears that a group of transcription factors control the 

development of progenitor B-cells through the mature B cell form. In a 

progenitor B-cell all of the immunoglobulin genes are in the germline 

configuration. Two camps seem to dominate the thoughts regarding 

how lymphocytes descend from stem cells: one believes that B-cell, T-

cell, monocyte and erythrocyte lineages are directly derived from one 

stem cell while others contend that an intermediate bipotential 

precursor is involved (Ikuta et al 1992). Regardless of which is correct, 

researchers have been successful in resolving some of the various stages 

in B-cell development. 

Recently, a putative master switch in the process of committing 

stem cells to the lymphocyte lineages has been characterized. The gene 

Ikaros which codes for four alternatively spliced zinc finger DNA 

binding proteins is thought to be the master switch (Georgopoulus et al 

1992, Hahm et al 1994). Some of the different isoforms produced by the 

Ikaros gene have binding affinities for the TdT, lambda 5 and VpreB 

promoters which are utilized in later stages of B cell development. In 

mice homozygous for a disrupted/dysfunctional Ikaros gene there is a 
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complete failure to generate B and T cell progenitors, while the erythroid 

and myeloid lineages appear to develop normally (Georgopoulus et al 

1994). 

Once committed to the B and T-cell pathways there are several 

other transcription factors that dictate B cell development including the 

products of the E2A, Pax5 and Id genes. The E2A gene encodes two 

basic helix-loop-helix DNA binding proteins, E12 and E47, which are 

produced by differential mRNA splicing. These transcription factors 

bind to the enhancer regions of the immunoglobulin heavy and light 

chains (Murre et al 1991, Bain et al 1993) and are thought to induce their 

subsequent transcription. Bain et al (1993) demonstrated that although 

the E2A products are produced in a variety of cell types, DNA binding 

activity was only associated with nuclear extracts from pre-B cells. It 

has also been shown that expression of cDNA constructs containing E2A 

transfected into precursor T-cells resulted in the expression of germline 

immunoglobulin heavy chain genes followed by induction of V-D-J 

recombination at the immunoglobulin heavy chain loci (Schlissel et al 

1991). Using knockout technology the EA2 genes have been shown to be 

required for the differentiation of progenitor B cell to the precursor B-cell 

stage. In these mice there is a failure of the pre-B cells to rearrange 

their immunoglobulin loci and as well as displaying significantly lower 

levels products related to B-cell differentiation (lambda 5, VpreB1) 

(Zhuang et al 1994). 

EA2 gene products appear to be under the influence of the Id gene 

products, Id-1 and -2, via post-translational control. The Id gene which 

codes for a group helix-loop-helix proteins is heavily expressed 
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during the early progenitor stages and is then down regulated during B 

cell differentiation (Sun et al 1991, Wilson et al 1991). It appears that the 

products of Id can inhibit the action of the Ig heavy chain enhancers 

(Wilson et al 1991) as well as forming inactive heterodimers with E12 

and E47 though their helix-loop-helix motif (Sun et al 1991, Riechmann 

et al 1994). Taking this into account along with the expression patterns 

of both the EA2 and Id genes, Sun (1994) tested whether the Id gene 

products are responsible for inactivating EA2 proteins at the pro-B stage 

and then, upon downregulation, allow the E12/E47 products to become 

active during precursor stages. In transgenic mice that overexpress the 

Id gene, precursor B-cells failed to develop. In addition it was found that 

there were significantly lower levels of RAG1, RAG2 and lambda 5 

expression. These results indicate that the Id products inactivate 

E12/E47 during early stages of development and upon down regulation of 

Id, E12/E47 are free to bind to their target sites to allow for the transition 

to the precursor B stage. 

Another B-cell differentiation factor is produced by the Pax-5 gene, 

a member of the paired box family of DNA binding proteins. The Pax-5 

gene codes for a product known as the B-cell specific activating protein, 

BSAP, which is found in all early stages of B-cell development (Adams et 

al 1992). Potential targets for BSAP include the VpreB, lambda 5 

promoters and several regulatory regions found within the Ig loci 

(Okabe 1992, Liao et al 1992). BSAP has also been implicated in the 

proliferation of B cells and the switch recombination events which lead 

to the production of the different immunoglobulin isotypes found in 

plasma cells (Max et al 1995). Mice with a homozygous disruption of 

Pax-5 have B cells arrested in the early precursor stages of development 



9 

(Urbanek et al 1994). Thus, BSAP is another essential transcription 

factor involved in the overall ontogeny of B-cells. 

Genes involved in Ig receptor generation 

As previously mentioned , the transcription factors produced by 

the Ikaros, EA2, Id and Pax-5 genes have been found to be important 

regulators of early events in B cell development. These events include 

the up and down regulation of genes involved in the generation of B cell 

antigen receptors. This regulation involves the products of three sets of 

genes expressed during the early stages of B cell development. The first 

set includes the genes essential for the recombinatorial events which 

generate mature immunoglobulin heavy and light chain genes (RAG1, 

RAG2 and TdT). The second set includes the genes that encode the 

surrogate light chain proteins, lambda 5 and VpreB. Finally is the set 

responsible for the assembly and function of the membrane bound 

antigen receptor (Mbl and B29). 

The immunoglobulin heavy and light chains are encoded by 

multiple germline gene elements (variable, diversity and joining) which 

are somatically recombined by a site specific recombinatorial process in 

developing B lymphocytes (Schatz et al 1992). The recombination 

activating genes, RAG1 and 2, have been shown to be essential for this 

rearrangement (Schatz et al 1989, Carlson 1991). Transfection of the 

RAG genes into non-lymphoid cells can induce V (D) J recombination 

and were cloned based upon this capability (Schatz 1989). The 

expression patterns of RAG1 and 2 are unique to the sites and cell types 

that undergo V (D) J recombination. The exact role of the gene products 
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of RAG1 and 2 is not precisely known, but several current studies have 

indicated that they are actual components of the V(D)J recombination 

machinery. Their obligate role in the recombinatorial process has been 

demonstrated in mice made deficient in either RAG1 and RAG2 

(Mombaerts et al 1992, Shinkai et al 1992). In these studies, knockouts 

for RAG1 or 2 resulted in mice lacking mature B and T cells. This 

phenotype can be rescued by the introduction of immunoglobulin or T-

cell receptor transgenes into RAG deficient mice (Spanopoulou et al 

1994, Shinikai et al 1993, Mombaerts et al 1992). On a similar note, 

expression of the RAG genes coincides with variable region 

recombination in RAG inducible B-cell lines (Oltz et al 1993). Some 

believed that the RAG genes code for yet another set of transcription 

factors involved in lymphocyte development or that RAG1 was a type of 

topoisomerase, but mutagenic analysis disfavors these hypotheses 

(Silver et al 1993). 

Terminal deoxynucleotidyl transferase, TdT, is believed to be 

enzyme directly involved in the base addition events (N insertions) 

observed during the recombination of antigen receptors (Kallenbach et al 

1992). The base addition events contribute to the overall diversity 

observed in antigen binding sites. Disruption of the TdT gene in mice 

results in a total lack of N-insertions in the immunoglobulin heavy 

chains (Gilfillan et al 1993), thus limiting the potential diversity of the 

primary Ig repertoire. The expression patterns for TdT corresponds 

with that of the RAG genes, but its activity ceases at the time of light 

chain rearrangement. This fact explains the lack of N-insertions in the 

variable regions of light chains. 
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The surrogate light chains, lambda 5 and VpreBl, consist of two 

noncovalently associated proteins which form a light chain-like 

structure during the early precursor stages and are essential for the 

proper development of B cells (Melchers et al 1994). They are expressed 

in all early stages, but are shut off following the rearrangement of a 

function light chain. In the late progenitor stages they are found on the 

surface of the B cell complexed with gp130 and gp 35-65 (surrogate heavy 

chain). This suggests that the surrogate light chain may act as a 

receptor prior to the appearance of heavy chain molecules. Lambda 5 

knockout mice have provided evidence that surrogate light chain 

expression is essential for B cells to proceed past this point (Kitamura et 

al 1992, Ehlich et at 1993). In the subsequent developmental stage, the 

surrogate light chains are found associated with a truncated form of 

immunoglobulin heavy chain. It is believed that this complex serves to 

screen for proper reading frame formation during heavy chain 

rearrangements. Finally the surrogate light chains are found on the 

surface complexed with functional heavy chain. This complex is 

thought to stimulate clonal expansion due to proper association with the 

heavy chain, mediate allelic exclusion at the heavy chain loci, and to 

signal for the activation of light chain rearrangement (Kitamura and 

Rajewsky 1992, Melchers et al 1993). Once a functional light chain is 

produced, it displaces the surrogate light chains which are thought to 

halt further light chain rearrangement. 

The genes responsible for forming the complete membrane bound 

B-cell antigen receptor include the products of the mb-1 and the B29 

genes. These genes encode the immunoglobulin-alpha and -beta chain 

respectively (Sakaguchi et al 1988, Hermanson et al 1988). The two 
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transmembrane glycoproteins together are required for proper 

localization of membrane immunoglobulin on the surface of pre-B cells 

and mediate signal transduction of engaged membrane bound 

immunoglobulin antigen receptors (Matsuuchi et al 1992) in a way 

analogous to CD3 in T-cell receptors. These genes are expressed during 

late progenitor stages and in all stages prior to the differentiation of B-

cells into plasma cells. Northern blot analysis has indicated that mb-1 

expression precedes DH-JH rearrangement in late progenitor B cells 

and thus marks one of the earliest events in B cell differentiation 

(Palacios and Samaridis 1993). Besides governing the proper 

localization of mIg and inducing proliferation, the alpha and beta 

chains are involved in antigen internalization and processing (Patel and 

Neuberger 1993). Additionally, a recent paper has indicated that the 

beta chain is essential for allelic exclusion of immunoglobulin heavy 

chains (Patavasiliou et a 1995). 

Generation of lymphocyte receptor diversity 

The specificity of the humoral immune response and its ability to 

adapt to new antigens is largely due to the plasticity of the antibody 

response which is produced by B-cells (Honjo and Habu 1985). It has 

been clearly shown that fish possess B-cells with of the same general 

characteristics as that found in mammalian B-cells (rev Kaattari 1992). 

B-cells in general can be defined as those lymphocytes which express 

membrane bound immunoglobulin and can secrete immunoglobulins in 

response to antigenic stimulation with specificity for these antigenic 

stimuli (McKinney et al. 1977, Marchalonis 1982, Sima and Vetvicka 
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1990). The activated B-cell (antigenically stimulated) undergoes a rapid 

proliferative response to generate a pool of B-cell clones. These clones 

actively secrete antibodies (plasma cells) while other clones act as a 

memory pool for future encounters with the same antigenic stimuli. 

Thus far, it appears that immunoglobulin production is restricted 

to the jawed vertebrates (gnathostomata). Molecules resembling 

immunoglobulins have been detected in the sera of hagfish (Varner et al 

1991), but upon actual cloning and sequencing the cDNAs were found to 

encode components of the complement system (Ishiguro et al 1992). 

Therefore further studies need to be undertaken to determine if the 

agnathans (hagfish and lampreys) actually have true B-cells capable of 

producing antibodies. 

In the lymphoid system of vertebrates, immunoglobulins 

(antibodies) serve as the effector molecule for B-cells. They can be found 

on the surface of B-cells as well as in the circulation. Immunoglobulins 

can exert their effector roles in a variety of ways: via neutralization of 

toxin or viruses, as adhesins, as opsonins for phagocytes, through 

complement fixation, roles in ADCC or as agglutinins. Over the last two 

decades a wealth of information has been obtained in regard to fish 

immunoglobulins and the genes that encode them. Fish 

immunoglobulins, like mammalian immunoglobulins are composed of 

a basic monomeric structure containing 2 heavy chains (-70 kilodaltons) 

and 2 light chains (-22 kilodaltons) (Wilson and Warr 1992). In 

mammals, B-cells have the ability to generate five major classes 

(isotypes) of antibodies, which differ functionally (effector role), 

physically (isoelectric point, molecular weight) and antigenically (allo-, 

idio- and isotypic differences). Regardless of the immunoglobulin 
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isotypes which are characterized by distinct constant domains, 

antibodies produced by each B cell clone are uniquely specific for distinct 

antigenic determinants. One can think of the antibody/ antigen 

interaction as a lock and key type of event, where the lock is the 

antibody's antigen binding site and the key is the antigen. The 

combining site, or antigenic cleft is composed of the association of the 

variable regions of the heavy and light chain polypeptides. Variable 

regions are composed of three complementary determining domains 

(CDRs) and four framework regions. CDRs form the antigenic cleft, 

while the framework regions are responsible for overall stability of the 

antigen combining sites (Tonegawa 1983). 

It seems that practically any foreign substance is capable of 

eliciting an antibody response. Even more so, the response itself to a 

simple antigen can be quite diverse, comprising antibodies with 

differing degrees of affinity and fine specificity. This massive collection 

of antibodies which is capable of binding practically any type of antigen, 

is known as the B-cell immune repertoire and is believed to be composed 

of at least 1011 different antibody molecules (Berek and Milstein 1988). 

Prior to the ability to biochemically examine immunoglobulins in fine 

detail there were two main theories as to the generation of such large 

repertoires of antibodies. The germline theorists proposed that for every 

different immunoglobulin, there is a separate germline gene and that 

an individual acquires this repertoire simply by inheritance. On the 

other side were the somatic theorists who conjectured that diversity was 

accomplished by mutation of one of a limited number of inherited genes 

within each B-cell. It turned out that both camps were correct to a 

certain degree. The immunoglobulin repertoire is generated from a 
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large, but limited number of antibody genes by somatic rearrangement 

and the repertoire is further diversified by somatic hypermutational 

events within the CDRs of antibody molecules (Alt et al 1986, Schatz et al 

1992). 

Immunoglobulin polypeptides (heavy and light chains) consist of 

separate structural domains: a variable region which forms the antigen 

combining site, and the constant domain which is responsible for 

effector function. The gene segments which encode for the heavy (V D J) 

and light (V J) chain variable regions are encoded by multiple germline 

gene segments which are somatically recombined in an orderly fashion 

during the development of B-cells in the bone marrow as depicted in 

figure 1.2 (Tonegawa 1983, Alt et al 1986, Schatz 1992). The heavy chain 

variable region is generated by the joining of three gene segments; VH, 

DR and JR all of which belong to multigene families based upon DNA 

sequence similarity analysis (Seidman et al 1978). Recombination 

begins with the joining of DR to JR which is then recombined with up to 

one of 1000 VET gene segments (Sakano et al 1980, Kurosawa and 

Tonegawa 1982, Pascual and Capra 1991) and is believed to be mediated 

by the products of the recombination activating genes 1 and 2 (Schatz et 

al 1992). Considering that in mice there are more than 20 DR gene 

segments, -6 JR segments and possibly more than 1000 VH gene 

segments it is not hard to imagine the generation of 105-6 different heavy 

chains through random joining of these gene segments (Bangs et al 

1991). Light chain diversity is generated by the joining of 2 gene 

segments VL and JL which are also members of multigene families 

(Brack and Tonegawa 1977). Thus the random association of 
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recombined heavy and light chains generates a considerable amount of 

antibody diversity in itself. 

Recombination of the various variable gene segments is mediated 

in part by highly conserved sequence motifs which flank one or both 

sides of the gene segments involved in the generation of antibody 

diversity (Sakono et al 1979, Sakano et al 1980, Hesse 1989). The motifs, 

termed recombination signal sequences (RSSs), consist of a highly 

conserved dyad-symmetric heptamer sequence which is separated from 

an A/T rich nonomer sequence by either a 12 or 23 by non-conserved 

spacer. All gene segments involved in variable region recombination 

have one type of configuration (12 or 23 by spacer) and the joining 

partner has the opposite type (12/23 rule). The non-conserved spacer 

corresponds roughly to 1 or 2 helical twists such that the heptamer and 

nonamer are positioned on the same side of the helix permiting 

recombination. The joining of two regions such as DR to JR involves 

recognition of RSSs, double stranded cuts at the heptamer segment 

border followed by re-ligation of the two coding sequences forming a 

coding joint (Roth et al 1992). Pairing of the RSSs between two segments 

to be joined results in the looping out of intervening DNA which is 

subsequently lost when recombination occurs at the ends of the 

heptameric sequences. This pairing process is believed to be mediated 

in part by a set of proteins which specifically recognizes the signals and 

brings them together prior to recombination. Such proteins would also 

need to discriminate spacer lengths in order to comply with the 12/23 

spacer rule. Using radiolabeled RSSs as probes, several investigators 

have isolated cDNA clones which when expressed were shown to 

specifically recognize and bind to the recombination signal sequences 
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Figure 1.2 Basic steps involved in the somatic recombination events 

leading to the generation of the primary immunoglobulin repertoire. 

Shown is the proposed process for the rearrangement of the variable 

region gene segments variable (V), diversity (D) and joinging (J) for the 

Ig heavy chain loci. The leader peptide is designated as VL. A similar 

process is utilized for the generation of the light chain variable region, 

the difference being the lack of diversity gene segments. Recombination 

signal sequences (RSS) which are composed of a highly conserved 

heptamer (Hep), a 12 or 23 by spacer and a conserved nonamer sequence 

are found flanking each of the germ-line variable region gene segments 

and are brought together by a process which has yet to be fully defined 

(Tonegawa 1983, Hesse et al 1989). Studies indicate a set of proteins 

known as RSS binding proteins which may be partly responsible for 

holding gene segments in place (Matsunami et al 1989). The 

recombination activating proteins -1 and -2 are also believed to mediate 

the joining of gene segments (Schatz et al 1989, Carlson et al 1991). 

Shown are the steps for the generation of a unique heavy chain, a 

similar single recombination event would be utilized to join the light 

chain variable region. Junctional diversity is created prior to the actual 

joining of the two gene segments in question and is accomplished by 

base trimming via an exonuclease and base addition thought to be due to 

terminal deoxynucleotidyl transferase (TdT) (Landau et al 1987, 

Kallenbach et al 1992, Heinrich et al 1984). The intervening genes and 

recombination signal sequences are looped out and lost as a deletional 

circle during the joining process. The signal joint containing the 

recombination signal sequences and the coding joint are most likely 

joined by DNA ligase. 
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Figure1.2 
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(Matsunami et al 1989,Shirakata et al 1991, Amakawa et al 1993). Upon 

sequence analysis, these clones displayed a high degree of similarity to 

the non-histone chromosomal protein HMG-1. A small region within 

the clones (40 amino acids) also suggests some similarity to the 

resolvase and integrase families which are involved in genome 

rearrangements. As stated before, recombination occurs between 

segments with different spacer lengths, ensuring that specific gene 

segments are joined in the proper order. For example, DH gene 

segments in mice are flanked on both sides by RSSs with 12 by spacers 

and VH and JH are flanked 3' and 5' respectively by RSSs containing 23 

by spacers (Kurosawa et al 1981). Therefore joining of VH to JH in the 

assembly of the immunoglobulin heavy chain variable region is not 

possible due to the 12/23 spacer rule. A similar process is used for 

assembly of the light chain, the main difference being that the light 

chain is encoded by 2 gene segments, VH and JH, which are also 

governed by the 12/23 spacer rule. 

Even though recombinatorial events can lead to a wide diversity of 

antigen receptors, the process is not flawless thus resulting in some 

amount of junctional diversity. When the double stranded cuts occur at 

the two heptameric sequences (Roth et al 1992,1993), coding joint 

imprecision may occur as the result of base loss and/or addition prior to 

ligation of the two gene segments (coding joint). The joining events 

between variable region gene segments can be imprecise in two aspects: 

bases can be trimmed via exonucleases and bases can be added between 

the joining junctions (Alt and Baltimore 1986, Landau et al 1987, Lieber 

et al 1988, Kallenbach et al 1992) further adding to diversity. There are 

two type of base additions seen in variable region assembly, one is 
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templated and the other random. P insertions, which occur on both 

heavy and light chains, are formed by a filling in process mediated by 

asymmetric cleavage of a hairpin intermediate during the 

recombination process resulting in palindromic insertions. N-

insertions which occur only on the heavy chain are not encoded by the 

gene segments, but are simply inserted in a random fashion by the 

enzyme terminal deoxynucleotidyl transferase. 

The joining of V-D-J segments produces the third CDR region, 

thus base trimming and addition events prior to joint ligation greatly 

enhances binding site diversity in antibody molecules (Tonegawa 1983). 

Occasionally, when a cell undergoes a null (nonproductive) V (D) J 

rearrangement due to a frameshift in the coding joint, the rearranged 

heavy chain can be rescued. A cryptic recombination signal has been 

found in mice which has been shown to allow replacement of a VH 

region with a different VH segment which then may be ligated in the 

proper reading frame resulting in a now functional rearrangement 

(Reth et al 1986) 

The final stage of antibody diversity is generated through a 

process known as somatic hypermutation which is dependent upon 

antigen stimulation and T-cell help (Heinrich et al 1984, Manser 1987). 

In mammals somatic hypermutation is a process leading to point 

mutations in the complementary determining regions of 

immunoglobulins. These somatic mutants occur within germinal 

centers (Berek et al 1991, Kallberg et al 1993) which are the sites of 

intense B-cell clonal expansion and maturation (Kroese et al 1987, Jacob 

et al 1991), differentiation into memory and plasma B-cells (Coico et al 

1983, Tew et al 1992), and cell death during an antibody response (Liu et 
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al 1989). A germinal center is developed by 2-3 antigen stimulated B-

cells (centroblasts) which colonize a follicle in a secondary lymphoid 

tissue (spleen or lymph node). 

Within the germinal centers, follicular dendritic cells take up 

antigen and hold it in the form of a non-processed immune complex 

(native) for considerable periods of time (months to years). Centroblasts 

possessing membrane bound antibodies with intermediate to high 

affinity for the antigen bind and are stimulated to undergo rapid 

proliferation. During this rapid proliferative response, the machinery 

responsible for V-region hyper-mutational events is initiated resulting 

in a wider repertoire from which higher affinity B-cells (antibodies) are 

selected for stimulation by antigen (affinity maturation). Centroblasts 

with lower affinity antibodies are not able to remain bound to the antigen 

and are negatively selected via apoptosis, where as centrocytes with 

higher affinity remain bound which correlates with the expression of 

bcl -2, an inhibitor of apoptosis (Berek 1992, Green and Scott 1994). 

Centroblasts undergoing these proliferative responses down regulate 

their overall surface antibody expression ten-fold, thus only those cells 

with high affinity can remain bound to the antigen complex. Thus we 

know where affinity maturation occurs, and some of the cell types 

involved, but little is still know about the machinery involved in the 

generation of mutants. Recently investigators have found ways of 

dissecting this problem by using methods for isolating and analyzing 

single cells during a response within the germinal centers (Kuppers et 

al 1993, Pascual et al 1994)Through this type of work it may be possible to 

isolate the enzymes responsible for the observed mutational events. 
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Affinity maturation thus can be thought of as a true form of 

natural selection. First via somatic hypermutation, variability is 

generated in the antigen-binding regions resulting in higher and lower 

affinity antibodies which is then followed by selection of those B-cells 

possessing antibodies with the highest affinity for the antigen in 

question. These selected B-cells then further differentiate into short 

lived antibody secreting plasma cells required for the primary response 

or may form a pool of high affinity memory B-cells. 

Immunoglobulin gene families 

Within the last ten years a great deal of knowledge has be gained 

in the field of vertebrate immunogenetics. One of the most intensely 

investigated areas concerns the genes encoding the heavy and light 

chains of immunoglobulins. It has long been believed that mammals 

contain hundreds if not thousands of VH gene segments which compose 

a portion of the actual variable region (antigen binding site) in 

antibodies. Though this may be true for rodents, it does not appear to 

hold true for humans. Recently the entire VH, DH and JH gene families 

in humans have been mapped and characterized. The VH genes in 

humans fall into 7 distinct families (Matsuda et al 1993) and 

approximately 14 in mice (Tutter et al 1991). Investigations have 

discovered that the actual functional repertoire in humans is only 

composed of -51 VH, 30 DH and 6 JH gene segments and that the locus 

spans a distance of -1.1 mbp (Cook et al 1994). Although hundreds to 

thousands of variable region gene segments have been identified, the 

vast majority have proved to be either pseudogenes or lacking in the 
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proper flanking sequences which govern rearrangement. Thus some 

may view the human repertoire as being restricted which has been 

widely used to describe the immune response in the lower vertebrates 

(Du Pasquier 1982). This limited repertoire of variable region genes only 

serves to stress the importance of junctional diversity, random 

association of heavy and light chains and the role of somatic 

hypermutation in the generation of a large functional repertoire of 

antibodies. 

Immunoglobulins are found in all classes of vertebrates, the 

exception being the Agnathans which has yet to be fully investigated. 

In mammals there are five classes of heavy chains and two of light 

chains based upon amino acid analyses and functional criteria. 

Antibodies also have the potential to be found as secreted or membrane 

bound forms (Ig receptor), the difference being due to the hydrophobicity 

or philicity of their respective carboxyl tails which are generated by 

alternative mRNA splicing events. Fish in general possess a high 

molecular weight antibody most similar to the mammalian IgM 

molecule. In carp one report has described differences in antibodies 

found in the serum and mucus, but have not been defined functionally 

(Rombout et al 1993) In elasmobranchs (sharks and rays) and Dipnoi 

(lungfish) immunoglobulins are composed of a pentameric structure 

while a tetrameric form is found in osteichthyan fish (bony fish) (Wilson 

and Warr 1992). These multimeric forms seems to be the predominant 

species of immunoglobulins, but low molecular weight forms 

(monomers) have been reported in one teleost (Lobb and Clem 1981) and 

in the elasmobranchs (Kobayashi et al 1984, Kobayashi and Tomenaga 

1988). The antibodies produced by fish are considerably less diverse and 
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lower in intrinsic affinity compared to mammalian immunoglobulins, 

but are comparable though in overall avidity. 

The heavy chain loci in fish: 

The basic monomeric immunoglobulin structure is composed of 

two heavy and two light chains connected via disulfide linkages. The 

heavy chain molecules are formed by the fusion of variable, diversity and 

joining gene segments by somatic recombination and the addition of 

constant domain gene segments (3-4) by mRNA splicing. Thus the 

heavy chain locus is composed of VH, DH, JH gene families and C 

(constant) gene segments. The vertebrate organizational pattern for the 

gene segments in the heavy chain loci is quite diverse (figure 1.3). The 

mammalian and anuran amphibian loci is commonly referred to as the 

translocon type of pattern, where variable region gene families occur in 

the order of VH, DH, JH followed by one group of constant region genes 

(Early et al 1980a, Schwager et al 1988). It has now been shown via 

Southern blotting, gene titration and sequence analysis of genomic 

clones that the teleost heavy chain locus is of the mammalian type 

(Ghaffari and Lobb 1989, Amemiya and Litman 1990, Matsunaga et al 

1990, Lee et al 1993). Recently, Southern blot analysis has revealed that 

the Holstean fish are of the mammalian type as well (Wilson et al 1995a). 

Another commonality found in the IgH loci of bony fish and 

mammals, is the finding of a large assortment of VH gene families 

which have been extensively characterized in the channel catfish and 

rainbow trout using Southern blot and PCR (Ghaffari and Lobb 1991, 

Roman and Charlemange 1994, Anderson and Matsunaga 1995). The 
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catfish seem to possess -6-7 VH gene families while the trout appears to 

be more heterogeneous having as many as 12 families. These various 

gene families may play specific roles against particular pathogens or 

could be expressed differentially during ontogeny to suit the needs of 

developing fish. IgV genes are categorized into a small number of 

separate IgV families based upon overall nucleotide similarity, where 

80% similarity is used as the standard (Brodeur and 

Rib let 1984). Using nucleotide sequence analysis of the constant regions 

from immunoglobulin heavy chain cDNA clones, isotypic and allotypic 

differences have also been described in teleosts, whether these 

differences equate to functional differences has yet to be determined 

(Ghaffari and Lobb 1989, Hordvik et al 1992, Hansen et al 1994). A cDNA 

clone believed to encode the second class of immunoglobulin seen in the 

skate Raja kenojei has also been characterized (Harding et al 1990). 

In avian lineages, a quite different theme for their organizational 

pattern exists, which consists of a single functional VH and JH gene 

that undergo gene conversion events with upstream pseudogenes to 

generate diversity post-recombination (Reynaud et al 1989). The pattern 

found in elasmobranchs is quite different in that multiples (possibly 

hundreds) of prefused and nonjoined VDJC clusters are found in the 

IgH locus (Litman et al 1985, Kokubu et al 1988, Harding et al 1990). The 

IgH locus of the coelocanth, Latimeria chalumnae, has also been 

partially characterized. In this fish the VH and DH genes have been 

found to be separated by only two to three hundred base pairs and it thus 

appears that the coelacanth IgH arrangement is most likely a 

transitional state between the elasmobranch and teleost IgH and 
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Figure 1.3. Schematic representation of the IgH loci in vertebrates. 

Mammalian, amphibian, teleostean and holostean loci are based on the 

work of Early et al 1980, Kawakami 1980, Schwager et al 1988, Du 

Pasquier et al 1989, Ghaffari and Lobb 1989, Amemiya and Litman 1990, 

Lee et al 1993 and Wilson et al 1995a,b. Partial characterization of 

coelacanth heavy chain loci is the work of Amemiya et al 1993. 

Elasmobranch arrangement is based on studies conducted by Litman et 

al 1985, Kokubu et al 1988 and Harding et al 1990. Finally the avian 

organizational pattern is from Reynaud et al 1989. Figure modified from 

Wilson and Wan- 1992. 
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Figure 1.3 
Heavy chain loci of vertebrates 
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therefore represents a third type of IgH gene organization for fish 

(Amemiya et al 1993). 

cDNA clones encoding both the secreted and membrane bound 

forms of IgH have been isolated from a variety of fish. It appears that 

teleosts utilize an unusual splicing event compared to other vertebrates 

to yield their membrane bound forms of IgH. In mammals and 

elasmobranchs a cryptic donor site is found at the end of the fourth 

domain of the constant region which is utilized to splice to hydrophobic 

TM gene segments (Early et al 1980, Kokubu et al 1988). In teleosts, the 

typical 3' splice site of the C3 domain is spliced to the TM genes, leading 

to the deletion of the entire C4 domain (Bengten et al 1991,Warr et al 

1992, Anderson and Matsunaga 1993, Hansen et al 1994) The Holostean 

fish, bowfin and gar, which appear in the fossil record sometime 

between the elasmobranch and teleosts, appear to use both the 

mammalian and teleost type of splicing events to yield 2 types of 

membrane bound IgH, both of which appear to be functional (Wilson et 

al 1995b). 

The light chain locus 

The immunoglobulin light chain organizational pattern in fish 

has recently been established. All vertebrate light chains are composed 

of VH, JH and a single constant domain. As previously discussed , the 

IgH gene organization in vertebrates has been extensively investigated to 

a much greater extent compared to the light chain loci. The light chain 

gene organization has only recently been characterized for the lower 

vertebrates. In mammals and amphibians, clusters (100s- 1,000s) of VH 
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gene segments precede a few JH gene segments followed by the C 

segments (Zachau et al 1989, Schwager 1991). Thus the pattern for IgH 

and IgL loci are similar to one another in mammals and amphibians. 

Avian species have a single functional VH, JH and C gene and utilize 

gene conversion events from a pool of upstream VH pseudogenes in the 

same fashion as they do for IgH chains (Reynaud et al 1987, McCormack 

and Thompson 1990). 

In the elasmobranchs, the multicluster type of gene organization 

has been found in the horned, sandbar and nurse shark (Shamblot et al 

1989, Hohman et al 1992, Greenberg et al 1993) and has recently been 

extended to the spotted ratfish and little skate which are also members of 

the Chondrichthyes class (Rast et al 1994). In these species the light 

chain gene components for the variable region may be fully joined or 

unjoined in the multiclusters. The question that remained, is whether 

the teleosts would hold to the mammalian type of IgL organization as 

they do for the IgH loci. This question was answered by Daggfeldt and 

coworkers (1993) in their study of the light chain gene organization in 

Atlantic cod and rainbow trout. To do this polyclonal antisera was 

generated against the cod light chain and used to screen cDNA 

expression libraries. To the surprise of most comparative 

immunologists, they found that the teleost IgL loci is of the multicluster 

type of arrangement typical of the elasmobranchs, which may lead to 

limited diversity. 

In mammals there are two classes (isotypes) of light chains, 

designated as lambda and kappa, each of which is encoded by separate 

loci (Zachau et al 1989, Selsing et al 1989). It appears that the lambda 

designation may not be fully realistic for Hayzer (1990) has documented 
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that the lambda loci may contain several functional C region gene 

segments. Whether these "other" C segments are utilized has not been 

clearly shown. The amphibian organization which is represented by 

Xenopus has two types of light chains known as pi and sigma (Schwager 

et all 1991). In sigma, it appears that a recent gene duplication event has 

occurred. Expression and sequence analysis indicates that two types of 

sigma are made, each with their own set of variable region genes. 

Using mAbs Hsu et al (1992) demonstrated that three types of light 

chains (u,x and v) are produced in vivo based upon western blot and 2-D 

gel electrophoresis analysis which correlates with the above findings. 

These authors suggest that although the repertoire in amphibians is 

similar on a genetic basis, compared to mammals, it may be restricted 

possibly due to a preferential pairing of heavy and light chains. 

Lobb et al (1984) using mAbs has also found two types of light 

chain isotypes, known as F and G, in the channel catfish. Immuno­

precipitation analysis of these two isotypes demonstrated a preferential 

usage of the G light chain during the early response and the F isotype 

during the later response. In rainbow trout studies have suggested that 

at least three types of light chain isotypes exist based upon mAb analysis 

of lymphocyte cell populations (Sanchez and Dominguez 1991, Sanchez 

et al 1995). Upon LPS induction, the two trout light chain reagents were 

shown to account for -55-70% of total Ig in in vitro cultures and -30% of 

total Ig in sera whereas a heavy chain reagent, mAb 1-14 (Deluca et al 

1983), reacted with -95% of total trout Ig. Based upon genomic and 

cDNA analysis there could be a wide variety of potential light chain 

isotypes in all teleosts. Although it doesn't appear that trout possess 

additional heavy chain isotypes (Lee et al 1993, Anderson and 
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Matsunaga 1993), IgH isotype heterogeneity has been reported in the 

channel catfish (Lobb and Clem 1982, Lobb and Olsen 1988) and Atlantic 

salmon (Hordvik et al 1992) based upon surface determinants, cDNA 

sequence and chromatographic analysis. The elasmobranch light 

chains have yet to be fully analyzed on a cellular basis, but sequence data 

predicts that a variety of light chain isotypes are possible. 

Is the repertoire and maturation process restricted? 

As mentioned earlier, most comparative immunologists will 

agree that the immune response in lower vertebrates is restricted in 

comparison with the mammals. The main question then, is what 

causes this restriction in antibody heterogeneity. Many believe that the 

observed restriction is due to either the lack of: somatic hypermutation, 

the failure to select mutants, limited junctional diversity, preferential 

pairing of heavy and light chains or possibly inadequate numbers of 

germline variable region gene segments. 

In the amphibian Xenopus, Wilson et al (1992) set out to determine 

if somatic mutational events occurred during an immune response to 

DNP-KLH. In mice somatic hypermutation rates have been estimated to 

be between 10-3 to 10-5 per base pair per cell mitosis (Wabl et al 1985, 

Rajewsky et al 1988) resulting in 103 to 104 fold increase in the overall 

affinity of antibodies upon immunization. In the Xenopus study it was 

found that the mutational rate was about 7 times lower than that seen in 

mice resulting in a slight rise (-5 fold) in antibody affinity. The authors 

suggest that the mutational machinery is present and does indeed act 

upon functionally rearranged variable region genes, but due to the lack 
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of germinal centers, mutants are not properly selected. Investigations 

have shown that Xenopus does have a vast array of variable region 

genes, therefore restriction in this species is probably not due to a lack in 

the germline gene segments. Junctional diversity was then analyzed in 

Xenopus by characterizing the role of terminal deoxynucleotidyl 

transferase, TdT (Lee and Hsu 1994). Expression analysis demonstrated 

that TdT is expressed in adults, but not in tadpoles. This correlates with 

previous findings that showed a lack of N region insertions in tadpoles, 

but not in adults which display a more heterogeneous antibody 

repertoire (Hsu and Du Pasquier 1992). 

Somatic mutation events have also been observed in the horned 

shark, Heterodontus, using a PCR-based approach to analyze the hyper-

variable regions of expressed immunoglobulins. cDNAs of the variable 

regions were found to have minor, but definite signs of somatic mutation 

(Hinds-Frey et al 1993). Whether these mutations result in higher 

affinity antibodies was not investigated. It is reasonable to assume that 

the mutations would result in antibodies possessing higher and lower 

degrees of affinity. Immunologic memory has been demonstrated in 

teleosts (Lamers et al 1985, Arkoosh and Kaattari 1991), but affinity 

maturation greater than 10-fold has yet to be observed. Using an ELISA 

based approach, slight maturation in overall affinity (-4 fold) has been 

observed in trout (Shapiro and Kaattari 1994). One aspect that needs to 

be determined in teleosts is the observation of somatic mutants as 

observed in the amphibians and elasmobranchs. In one study, a 

histological investigation during the secondary immune response in 

carp reported the formation of what could be interpreted as a primitive 

germinal center in fish (Imagawa et al 1991), but true germinal centers 
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do not occur in the lower vertebrates. Similarly the process of class 

switching which is a hallmark of the secondary response in mammals, 

is not observed in teleost fish. 

Further investigations are needed to answer the questions 

regarding the limited diversity and poor affinity maturation seen in the 

lower vertebrates. Looking at the germline elements it does not appear 

that the lower vertebrates are limited as far their potential of generating 

unique antigen binding sites by recombinatorial processes is concerned. 

Some will argue that the multicluster type of arrangement seen in the 

IgH loci in elasmobranchs and IgL loci of elasmobranchs and teleosts 

would be expected to limit the overall potential diversity of antibodies. 

Seeing that some clusters are in the nonjoined configuration the 

possibility to rearrange with other clusters due to the presence of 

recombinatorial signal sequences still exists. The consensus is that the 

low degree of affinity maturation must be due to the lack of germinal 

centers which are required for the proper selection of high affinity 

antibodies as seen in mammals. Another possibility for the overall lack 

of diversity and affinity maturation may be due to regulatory 

mechanisms or environmental factors. 

Since the germ line Ig elements have been characterized in fish, 

investigators are now trying to elucidate the factors that control 

transcription of immunoglobulin loci. Recently the first 

immunoglobulin enhancer has been cloned and characterized from a 

teleost fish. Magor et al (1994) found that in channel catfish that the IgH 

enhancer was functional in both catfish and murine cell lines, thus 

demonstrating conservation of function. The position of the enhancer 

was not conserved, for it was found to be near the TM2 gene segments in 
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catfish where as in mammals it is located in the D gene segment area. 

These authors are currently attempting to identify other regulatory 

elements involved in immunoglobulin gene transcription in catfish 

which will no doubt be aided by the recent establishment of B cell lines in 

this teleost (Miller et al 1994). Similar findings have been reported in 

rainbow trout where reporter constructs containing murine 

immunoglobulin promoter/enhancer coupled to chloramphenicol 

transferase were used in the creation of transgenic trout. Expression of 

the murine promoter/CAT construct was observed only within B 

lymphocytes in the respective transgenic trout, whereas trout 

possessing the CMV/CAT contruct had expression in a variety of cell 

and tissue types (Michard-Vanh'ee et al 1994). These studies 

demonstrate that regulatory mechanisms involved in immunoglobulin 

transcription have been conserved over the last 150 million years. 

Other molecules of the immunoglobulin superfamily found in fish 

The immunoglobulin supergene family includes genes encoding 

immunoglobulins, T-cell receptors, components of the complement 

system, the major histocompatibility complex (MHC) plus a variety of 

other receptor-related molecules. The previous section was devoted to 

immunoglobulin genes due to the wealth of knowledge about them. 

Relatively little is known of T-cell receptor (TCR) molecules in the lower 

vertebrates even though immune responses typically mediated by these 

molecules have been cited in variety of investigations. Recently cDNAs 

coding for TCR-beta subunits have been isolated from amphibian, teleost 

(trout) and sharks using polymerase chain reaction technology (Fellah 
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et al 1993, Partula et al 1994, Rast and Litman 1994). All of these clones 

were shown to display conserved regions typically found in mammalian 

TCRs. In amphibians northern blot analysis demonstrated expression 

in the thymus and it was later determined that the beta subunits are 

organized in clusters of nine families similar to that found in mammals 

(Fellah et al 1994). Thymic RNA was the source of the trout clones 

suggesting that T-cells may develop within the thymus of teleosts. 

Shark TCR clones also proved to be of the multicluster type of gene 

arrangement as are their immunoglobulin genes. 

The fish major histocompatibility complex genes have been 

characterized. The human complex spans some 2 mbp and encodes 

both class I and II plus other genes involved in antigen presentation 

(Campbell and Trowsdale 1993). The organizational pattern has yet to be 

defined in fish. cDNAs coding for class I, II and III (B2-microglobulin) 

MHC molecules have been cloned in fish (Dixon et al 1995). The 

information drawn from these studies will no doubt aid in defining the 

mechanisms utilized by fish for antigen presentation and processing. 

Recently a novel type of antigen receptor has been cloned and 

characterized in fish. The molecule designated NAR (nurse shark 

antigen receptor) was cloned using 3' RACE technology (Greenberg et al 

1995) and based upon sequence and organizational analysis can be 

considered to be a new member of the immunoglobulin supergene 

family. NAR found as a dimer in sera, contains five constant regions 

and one variable region and appears to undergo somatic diversification. 
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Lymphocyte origins 

In vertebrates, the cells of the lymphoid system originate, develop 

and reside in specialized organs and environments. Over the course of 

two decades it has been demonstrated that the sites for the primary 

production of mammalian lymphoid, myeloid, and erythroid precursors 

include the yolk sac, liver, bone marrow and spleen during fetal 

development and the primarily the bone marrow in adults (Johnson and 

Moore 1975, Owen et al 1977, Kincade 1981, Whitlock et al 1985, Ikuta et 

al 1992, Schatz et al 1992). These precursor cells differentiate in the bone 

marrow to form pre-B and pre-T cells (LePault 1983). The progenitors 

for T-cells migrate to the thymus where they differentiate into T-cell 

subsets (Owen 1972), while the pre-B cells remain in the marrow to 

undergo B-cell differentiation (LePault 1983, Ikuta et al 1992). 

Precursor B lymphocytes, pre B-cells, which express cytoplasmic 

Ig heavy chain, but lack surface Ig, have been detected in the livers of 11 

day old mice and 7 week old human fetuses prior to the appearance of 

surface IgM positive B-cells (Raff et al 1976, Gathings 1977, Andrew and 

Owen 1978, Velardi and Cooper 1984). More recently investigators were 

able to isolate progenitor cells from murine yolk sac and embryos at 

somite stage 10 which corresponds to day-8 of gestation. These cells 

were capable of differentiating into both B and T cells and that the 

progenitors were diverse with respect to allotype and VH gene usage 

(Cumano et al 1993, Palacios and Imhof 1993, Godin et al 1995). 

Combined, these studies and others lay the foundation for the contention 

that these cells are the precursors of functionally mature B lymphocytes 

which can be found in various proportions in all lymphoid tissues. 
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Lymphocyte ontogeny in fish 

Investigations dealing with the immune system of fish is of 

phylogenetic interest mainly because fish are the first group of animals 

displaying the basic characteristics of higher vertebrate immune 

systems such as that found in mammals (Faisel and Hetrick 1992). 

These include the possession of well defined lymphoid organs and 

tissues, lymphocytes, and B/T cell cooperation. Using serological 

markers or functional assays, B cells have been detected in all fish 

immune organs. These include the thymus, spleen, kidney and gut 

(Ellis 1977, Fange 1982, Faisel and Hetrick 1992). Agnathans (hagfish 

and lampreys) lack well defined lymphoid tissue and lymphocytes 

(Riviere et al 1975, Page and Rowley 1982). Hagfish are devoid of thymus 

and spleen and it appears that lymphocytes are produced either in the 

head kidney or the gut. Lampreys also lack a well defined thymus, but 

appear to have a primitive spleen and tissues which may be the 

precursor of a bone marrow environment (Takeda, 1981, Zapata 1983). 

All jawed vertebrates, gnathostomata, have a well developed thymus, 

spleen, and gut associated lymphoid tissue. In cartilaginous fish, 

ontological studies have shown that the liver is the first organ to contain 

immunoglobulin positive cells at 2 months post hatch, followed by the 

kidney, thymus and later the spleen (Lloyd-Evans 1993). It has also been 

suggested that the spleen of the skate may be the site for B-cell 

development in this animal based upon the observation of double-isotype 

producing lymphocytes, but further studies need to be conducted to 

validate this point (Kobayashi et al 1985). 
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Mammalian B-cells are known to originate from pluripotent 

hematopoietic stem cells in the bone marrow, but the exact ontological 

locations of B-cell development has yet to be fully defined in teleosts. The 

anterior kidney, spleen and peripheral blood contain the vast majority of 

mature B-lymphocytes in fish, with a small population being found in 

the thymus. Most investigators agree that the anterior kidney and trunk 

kidney are the major sites of erythrocyte, monocyte and B-lymphocyte 

development (Ellis 1977, Zapata 1979, Bothman and Manning 1981) and 

are generally referred to as the bone marrow equivalent in teleost fish. 

The spleen is also considered a hematopoietic organ in teleost fish, but 

its role is thought to be strictly limited to erythropoiesis (Rowley et al 

1988). The fetal and adult liver is not thought to play a role in 

hematopoiesis in teleost fish (Zapata and Cooper 1990) 

During lymphocyte ontogeny in fish, the thymus is the first tissue 

to display lymphocytes prior to their appearance in the kidney, spleen 

and blood (Ellis 1977, Grace and Manning 1980, Secombes et al 1983, 

Razquin et al 1990, Josefsson and Tatner 1993). The thymus in fish is 

also the first defined lymphoid tissue to develop during ontogeny and as 

in higher vertebrates it is composed of lymphocytes and lymphoblasts 

contained within a network of reticular epithelial cells (Tatner and 

Manning 1983, Chilmonczyk 1985). The thymus in fish originates as a 

thickening from the pharyngeal epithelium, but instead of budding off 

as in higher vertebrates, it remains in direct contact with the pharynx 

(Chilmonczyk 1992). Thymic infiltration by lymphocytes has been 

detected 22 days pre-hatch in Atlantic salmon and 5 days pre-hatch in 

rainbow trout (Ellis 1977, Grace and Manning 1980). Using tritiated 

thymocytes, Tatner (1985) demonstrated that these in-situ labeled 
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thymocytes could be traced to the kidney and spleen after intrathymic 

injection. This observation demonstrates that thymocytes in fish as in 

mammals are exported from the thymus to peripheral organs and blood. 

In rainbow trout, thymocytes are separated from the external 

environment by a single layer of epithilial cells (Tatner and Manning 

1982). These authors postulate that this may lead to direct stimulation of 

thymocytes early in the ontogeny of fish which may be related to the 

early appearance of cellular immunity. The origins of thymocyte 

precursors has yet to be fully defined. One possibility is that the origin of 

the first thymocyte progenitor is external, such as being derived from 

the yolk sac or kidney and these stem cells are maintained throughout 

life within the thymic environment. It is not absolutely clear whether 

lymphocyte precursors originate from organs other than the thymus, 

but histological and functional studies indicate that the thymus is most 

likely the primary lymphoid tissue for T-cell development in fish 

(Chilmonczyk 1992). In support of the putative role of the thymus for T-

cell development in fish is the finding that thymectomy of young trout 

resulted in decreased numbers of lymphocytes in the spleen, but not in 

the kidney (Manning et al 1982 a,b). The use of serological markers to 

define lymphoid populations will certainly resolve this question. 

The thymus may be the first organ to contain lymphocytes, but the 

anterior kidney is the first organ during development to contain 

hematopoietic foci (Ellis 1977, Grace and Manning 1980, Bothman and 

Manning 1981, Razquin 1990, Josefsson and Tatner 1990). In Atlantic 

salmon, Ellis (1977) noted that hematopoietic foci were present in the 

kidney prior to the appearance of lymphocytes in the thymus. Most 
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investigators believe that the anterior kidney is the site of B-cell 

differentiation (Kaattari and Irwin 1985, Irwin and Kaattari 1986) and 

serves as the source of progenitors for thymocytes as well. Castillo et al 

(1993) reported the appearance of lymphocytes displaying cytoplasmic 

heavy chain at day 12 pre-hatch in trout and that surface Ig postitive 

(sIgIVI±) cells were observed 4 days later. These authors designated the 

cells observed at day 12 as "pre-B" cells, this may be the case, but for a 

true definition of pre-B cells, the absence of cytoplasmic light chain 

needs to be demonstrated. Razquin and coworkers (1990) demonstrated 

that the anterior kidney is the first site during trout ontogeny to bear 

sIg+ cells at about day 4-5 post hatch. Approximately 3 weeks later sIg+ 

positive cells could be found in the spleen and thymus. This correlates 

with the findings of Secombes et al (1983) who showed that sIg+ cells 

were first detected within the kidney in carp as well. As mentioned 

earlier the first sIg+ cells were detected before the kidney becomes 

lymphopoietic (Castillo et al 1993), therefore progenitors of B cells most 

likely have origins in other tissues during embryonic development and 

then colonize the kidney later during ontogeny. Histoenzymatic and 

immuno-histochemical analysis of rainbow trout kidney (Castillo et al 

1987, Razquin 1990) reveal that it possesses a framework of reticular 

cells and phagocytes which resemble the stromal microenvironment of 

mammalian bone marrow. Therefore the kidney likely serves as the 

primary organ for B-cell development as well as being the source of stem 

cells in developing fish. 

Affinity analysis has also been used in mammalian models to 

help characterize the development of B cell populations in proposed 

lymphopoietic organs (Goidl and Siskind 1974). In these studies organs 
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displaying repertoires of homogeneous B cells with low affinity were 

considered to be primary organs for B cell development whereas organs 

with more heterogeneous populations of B cells were designated as 

secondary lymphoid organs. Using plaque forming analysis in 

immunized coho salmon it was determined that the anterior kidney 

possessed restricted B-cell populations with low affinity while the spleen 

and posterior kidney contained a more heterogeneous population of B 

cells with a higher average affinity these clones (Kaattari and Irwin 

1985, Irwin and Kaattari 1986). The bone marrow in mammals has also 

been shown to contain a population of cells which are capable of 

regulating immunologic processes (Mortari et al 1986). Using 

irradiated and non-irradiated pronephros cells, DeKoning (1992) 

demonstrated that the trout kidney possess cells capable of regulating 

the mitogenesis of splenic and PBLs stimulated with lipopolysaccharide. 

These results provide further support for the notion that the kidney of 

fish has functions similar to that found in the bone marrow of 

mammals. 

With the advent of molecular biology investigators have the ability 

to take a different approach than the traditional use of serological and 

functional markers to define the organs involved in lymphocyte 

development. In the Atlantic cod, northern blot analysis determined 

that the major expression of the membrane-bound and secreted forms of 

IgH were found in the head kidney when compared to the liver, ovaries 

and spleen (Bengten et al 1990). The expression in the liver is somewhat 

surprising seeing that this organ is relatively devoid of lymphocytes. A 

plausible explanation could be that their liver preparation was 

contaminated via peripheral blood lymphocytes or possibly that the liver 
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serves some rudimentary function in lymphopoiesis. A similar study 

was conducted in Atlantic cod and rainbow trout using Ig light chain 

cDNA probes (Daggfeldt et al 1993). In this study light chain expression 

was noted in both the kidney and spleen in northern blots. Of interest 

was the finding that the constant domain of IgL was transcribed prior to 

rearrangement and regularly spliced to the J segment. The presence of 

these nonrearranged transcripts and multiple forms of IgL transcripts 

in general could be interpreted as identifying these organs as sites for B 

cell lymphopoiesis (Daggfeldt et al 1993). Reports investigating 

mammalian pre-B cells have shown similar findings and it is believed to 

be necessary for the induction of rearrangement (Nelson 1985, Schlissel 

et al 1989, Schlissel and Morrow 1994). Thus these findings suggest that 

the head kidney as well as the spleen in teleost fish may house 

populations of putative pre-B cells. Bernstein and co-workers (1994) 

proposed that the thymus and spleen are putative sites for lymphocyte 

development in sharks based upon RT-PCR expression analysis of shark 

RAG-1. These were the only organs investigated and negative controls 

were inappropriate, thus any conlusion drawn from this study are 

purely speculative and await confirmation. 

Basic types of teleost leukocytes 

The aspects governing the immune response in virtually all 

vertebrates is due to the activation or induction of immune cell types. 

The following sections will cover the basic 5 types of leukocytes seen in 

fish as follows: 1. monocytes/macrophages 2. granulocytes 3. T lineage 

lymphocytes, 4. Natural Killer/ non-specific cytotoxic cells and 5. B 
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lineage lymphocytes (brief coverage). The function of these cells in the 

immune response in vertebrate taxa including fish can be categorized 

into the nonspecific (innate), adaptive, or specific immunity (Golub and 

Green, 1991). 

Specific immune interactions display four main features: 

self/non-self recognition, inducibility via antigen, antigen specificity and 

a display of a memory component. Whereas nonspecific immune 

reactions generally deal with only two of these components, that is being 

inducible by antigen and the ability to distinguish self and non-self. The 

cells of the myeloid lineage, monocytes/macrophages/granulocytes are 

generally thought of as components of the innate and nonspecific 

immunity, whereas both the monocytic and lymphocytic lineages (B and 

T-cells) are thought of as the main mediators of the specific immune 

response. It will be discussed though how the monocyte lineage is 

involved in both the nonspecific immune response as phagocytes and the 

specific immune response as antigen processing and presenting cells. 

The latter of which is a key component for T-dependent immune 

response which leads to an enhanced production of antibodies via 

interactions of all three cell types. 

Monocytes and macrophages 

As in mammals, one refers to circulating mononuclear cells as 

monocytes, while macrophages are either wandering or fixed within 

tissues. A complete cytochemical analysis of these cells types in fish can 

be found in the review by Rowley et al 1988. There are basically two main 

types of macrophages in fish that have been characterized: 1. 
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melanomacrophages which contain melanin and other pigments such 

as lipofuscin and haemosiderin (Argius, 1985), 2. monocytes and 

macrophages which seem to differ both in size and lysosome quantities. 

By far the melanomacrophages are the most numerous in fish. 

Fish monocytes and macrophages possess the same basic 

functions as seen in mammalian species, such as phagocytosis of 

antigen-antibody complexes (reviewed by Secombes and Fletcher, 1992), 

antigen processing and presentation (Reviewed by Vallejo et al. 1992), 

production of cytokine-like molecules (Secombes, 1991) and potential 

immunomodulating factors such as leukotrienes (Secombes and 

Fletcher, 1992). In general the monocytes and macrophages are the key 

players in the overall specific vertebrate immune response. Through 

their actions, they induce and modulate both B and T-cells in almost all 

aspects of the specific immune response. 

Various receptor types have been demonstrated on fish 

macrophages which are thought to enhance phagocytosis and killing 

abilities. Studies using Onchorynchus rhodurus have shown lectin-like 

molecules to be present on the surface of fish macrophages. 

Investigators have demonstrated opsinization of complement in rainbow 

trout (Honda et al.,1985 , Michel et al., 1990) which is indicative that fish 

macrophages possess complement receptors. Griffin (1983) has shown 

that macrophages also possess a Fc receptor (FcR) in anti-Yersinia 

ruckeri immune responses in rainbow trout. In a more 

phylogenetically distant species, it was shown that the nurse sharks, 

Ginglymostoma cirratum, most likely have Fc receptors as well on 

splenic macrophages as demonstrated by an erythrocyte/antibody rosette 

assay (Haynes et al 1988). It has yet to be determined if the cyclostomes 
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(hagfish, lampreys) possess these basic receptors as well. Most likely it 

will be found that cyclostomes possess complement receptors since it has 

been shown that lampreys have genes which encode portions of the 

complement system. 

It is generally accepted that monocyte's and macrophage's key 

role in the specific immune response is that of antigen processing and 

presentation. Through this function they are able to stimulate the 

cellular arm (T-cells) of the immune system via presentation of foreign 

peptides in association with MHC class II molecules to antigen 

receptors on T-helper cells. This is a crucial event for B and T cell 

cooperation during the immune response. Antigen processing and 

presentation has been clearly shown in the carp (Rombout and Van de 

Berg, 1989) and channel catfish (Vallejo et al. 1990., Vallejo et a. 1991a). 

In the carp studies, it was shown that antigenic deteminants of ferritin 

orVibrio anguillarum were processed and presented on the surface of 

gut melanomacrophages after anal intubation. This presentation 

resulted in cellular proliferation. More extensive studies on this topic 

have been performed in the channel catfish by in vitro antigen pulsing 

of in vivo primed antigen presenting cells (APCs). A key feature of this 

and subsequent studies involving the catfish immune response was the 

generation of spontaneous (-30-40%) long term leukocytes lines from 

non-stimulated PBLs (Vallejo et al. 1991b). In this study, macrophage 

like cell lines were pulsed in vivo with antigen, fixed in 

paraformaldehyde and added to autologous PBLs in vitro. Both antigen 

specific proliferation and enhanced antibody production to T-dependent 

(TD) antigens were measured. In these studies PBLs that were fixed 

prior to antigen pulsing, displayed no marked proliferation or antibody 
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production when co-cultured with autologous PBLs. The same situation 

occured when the investigators used allogeneic PBLs as responders. 

The results of the channel catfish studies indicate that a MHC type of 

molecule regulates presentation of processed peptides and that the 

response in teleost is restricted (Vallejo et al. 1991c) as is seen in higher 

vertebrate species. 

As mentioned earlier, cytokine like production has been suggested 

in teleost species. Most investigators have focussed on an interleukin-1 

(IL-1) like factor produced by fish macrophages. IL-1 is known to be a 

pleotrophic molecule with many attributes, one being the essential co­

stimulatory signal for T-cell activation and proliferation (Weaver and 

Unanue 1990). IL-1 appears to be a very conserved molecule which 

evolved early in the phylogeny of the vertebrates for IL-1-like molecules 

and associated activities have been reported in a number of teleost 

species including carp (Verburg-van Kemenade et al 1995), channel 

catfish (Clem et al., 1991) and rainbow trout (Ortega 1993). Thus far the 

catfish and rainbow trout models have shown the greatest similarity to 

mammalian IL-1 molecules. Clem and cowokers demonstrated that 

LPS stimulated catfish monocytes produced supernatants which 

possessed an activity which could replace monocytes in in vitro assays. 

It was also shown that the factors (cytokines) within the stimulated 

supernatants were able to induce proliferation of murine cortical 

thymocytes in vitro and that this activity could be reduced if mammalian 

anti-IL-1 polyclonal sera was included. In the studies involving rainbow 

trout, Ortega demonstrated biological activity in plaque forming assays 

using supernatants derived from LPS or antigen stimulated adherent 

macrophages. The "factor" was later determined to have a molecular 
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weight of approximately 20 kda, similar to that of mammalian IL-1. 

Thus it is clear that fish leukocytes are capable of secreting factors 

which can potentially activate and regulate other leukocyte populations. 

Granulocytes 

Fish granuloctyes have been characterized primarily based upon 

giemsa staining, ultrastructure, resemblence to mammalian 

granulocytes, enzymatic activity (i.e. peroxidase) or via Sudan black 

staining (Ainsworth, 1992., Bielek, 1981 and Ellsaesser et al. 1985). To 

date, two comprehensive reviews may be found on teleost granulocytes 

(Ainsworth 1992 and Hine 1992). Catfish granulocytes have been 

characterized using mAbs specific for neutrophils (Bly et al. 1990). 

Neutrophils appear to be the only class of granulocytes found within 

catfish (Ellsaesser et al. 1985), but other classes such as eosinophils and 

basophils have been distinguished in carp (Temmink and Bayne 1987). 

More recently, Cross and Matthews (1991) have described yet a fourth 

class of granuloctyes in carp, further demonstrating the parallel of 

immune cell types found within all vertebrates. This fourth type, an 

eosinophilic granular cell, is present within the skin, but can not be 

found in the peripheral blood system. This resembles a primitive cell 

type found within salmonids which is believed to be a mast cell (Vallejo 

and Ellis 1989; Powell et al. 1990). 

As in mammalian species, teleost granuloctyes are involved in 

the inflammatory response (Hine, 1992) and have been shown to 

demonstrate chemotactic and phagoctytic activities (Ainsworth 1992). 

Studies in both plaice and carp clearly show that fish granuloctyes were 
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efficient in phagocytizing complement opsonized particles, but antibody 

opsonized particles revealed little effect (Nash et al. 1987; Matsuyama et 

al., 1992). From these experiments one could conclude that fish 

granulocytes possess receptors for complement, but not for antibodies 

(no Fc-like recptors) which differs from that seen in mammalian 

granulocytes (both receptor types). Carp neutrophils have also been 

shown to secrete a factor similar to interleukin-1 (Verburg-van 

Kemenade et al 1995). All of these studies indicate similarities and 

subtle differences of fish granulocytes to their mammalian 

counterparts. 

Thymus derived lymphocytes 

Thymus derived lymphocytes, or T-cells, are a set of lymphyocytes 

usually defined by the presence of cell surface receptors (TCR) which 

interact with MHC class I and II molecules and differentiate self from 

non-self. Their involvement in the immune response can be simplified 

to two functions, 1) detection of non-self antigens on autologous cells via 

contact of TCR with MHC presented antigens and 2) enhancement of 

antibody production by B-cells via T-cell help in the form of secreted 

lymphokines. Numerous reports in fish have described morphological, 

functional and mitogenic responses of fish lymphocytes which are 

reminscent of mammalian T-cells. Ellis was the first to give a complete 

morphological description of the cell types found within fish. He posed 

that fish lymphocytes are morphologically similar to their preposed 

mammalian counterparts (Ellis 1977b). They are generally small in size 

(3-10 microns) and have a high nuclear to cytoplasm ratio. The 
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lymphocytes found within teleosts are comprised of a rather 

heterogenous mixture thought to be similar to mammalian leukocytes. 

In mammals, a standard test for lymphoctyes is their 

proliferative response to the B cell mitogens pokeweed mitogen (PWM) 

and lipopolysacchride (LPS) and to the T-cell mitogens, 

phytohemagglutinin and concanavalin A ) (ConA) (Harwell et al 1976). 

In this assay, lymphocytes are stimulated in vitro with known B or T-

cell mitogens and their proliferative response is measured via 3-H 

thymidine uptake. Using this basic method investigators have been able 

to clearly distinguish that fish lymphocytes are composed of a 

heterogenous mixture (Et linger et al 1976, Cuchens and Clem 1977, 

Warr and Simon 1983, Caspi et al 1984). Et linger's study showed how 

the mitogenic response is tissue specific as well, indicating that specific 

fish tissues most likely harbor distinct lymphoid populations. 

Development of mAbs specific for lymphocyte surface determinants 

allowed investigators to partition fish lymphocytes into sIg- (T-cells, 

macrophages and pre-B cells) and sIg+ (B-cells) fractions (DeLuca et al 

1983, Sizemore et al. 1984, Ainsworth 1990). These studies revealed that 

the sIg- fractions in the presence of adherent cells responded well to the 

classical T-cell mitogens, but not to B-cell mitogens. According to 

Ellsaesser and coworkers (1988), the phenotypic class of lymphocytes 

within the thymus were of the sIg- nature, indicating that the thymus 

harbors a large population of potential fish T-cells. In similar studies, 

mAbs generated against catfish sIg- lymphocytes demonstrated that 

this pool of lymphocytes could act as helper cells in antibody production 

assays in response to T-dependent antigens (Miller 1987). This reagent 

however reacts with sIg- thymocytes, thrombocytes, neutrophils and 



50 

brain cells, therefore they can not be considered to be T-cell specific, but 

simply specific for sIg- lymphocyte phenotypes. Another aspect typical of 

T-cells is their role in the mixed lymphocyte reaction (MLR). A number 

of reports have described fish lymphocytes (T-cells) acting as both 

responders and stimulators in MLR assays (Ellis 1977a, Caspi and 

Avtalion 1984, Miller et al. 1986, Kaattari and Holland 1990). In these 

assays, when lymphocytes from two unrelated individuals are mixed 

together in culture, proliferation indicates the ability to distinguish 

allogenic differences in the major histocompatiblity antigens (MHC) 

present on the cell types. 

Some of the earliest methods used to show that fish could discern 

self from non-self came from experiments which examined both 

allograft rejection ability (Bothman and Manning 1981) and delayed type 

hypersensitivity reactions (Bartos and Sommer 1981., Pau ley and 

Heartwell 1983., Stevenson and Raymond 1990). So far the ability to 

reject allografts has been shown to be present in the most primitive 

species of fish including elasmobranchs and agnathans. Rejection is 

typically slow in these more phylogenetically distant groups, whereas 

teleosts display a fairly rapid response. In 1 year old carp, first-set 

rejection of scale implants occurs around day 14-16 and second-set grafts 

start to be rejected as early as days 6-7 indicating the presence of a 

memory component in the cellular arm of the immune system of 

teleosts. In this study autografts displayed no signs of rejection. 

Further studies showed that the cellular response develops quite early in 

the ontogeny of carp. In these studies, sixteen day old fry were capable 

of rejecting allografts and to show a more rapid response when second 

set grafts were implanted, thus showing that memory is present in 
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young fish as well (Manning et al 1982a, b). Other tests have 

demonstrated that fish lymphocytes display delayed type hypersensitivity 

reactions when antigen is injected into antigen primed fish. When 

killed mycobacteria was injected into primed fish, inflammation 

resulting from an accumulation of leukocytes could be seen within a few 

days at the site of injection. Therefore these studies dealing with graft 

rejection and DTH clearly prove cellular immunity in fish. 

Cytokine-like factors similar to those secreted by stimulated 

mammalian T-cells have also been described in fish. Using 

supernatants from ConA and phorbol myristate acetate stimulated trout 

PBLs, macrophages displayed enhanced killing capabilities and 

increased respiratory burst activity (Graham and Secombes 1988a). A 

futher investigation using panned cells, showed that sIg- pools and not 

sIg+ secrete this interferon-like factor, indicating that T-cells and or 

accessory cells are needed for this type of activation (Graham and 

Secombes 1988b). Tamai and coworkers (1993) have recently cloned and 

expressed a putative cDNA thought to encode flatfish interferon-

gamma. The amino acid sequence showed an average of 23% similarity 

to mammalian interferon-gamma and the expressed recombinant 

protein displayed antiviral activity in flatfish cells lines infected with a 

flatfish rhabdovirus. Upon close inspection of this analysis, whether or 

not this cDNA actually ecodes an interferon-like molecule will have to 

await future investigations. 

IL-2 which is produced by IL-1 (secreted from macrophages) 

induced helper T-cells, is one of the most intensively studied monokines 

in mammalian immunology shown to directly stimulate the 

proliferation of T-cells displaying an IL-2 receptor. Supernatants from 
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PHA-stimulated carp lymphocytes were shown to induce the 

proliferation of lymphoblasts in way similar to that observed when 

murine IL-2 was added (Caspi and Avtalion 1984). Further investigation 

in carp showed a similar response, but in this the study supernatants 

were derived from MLR cultures (Grondel et al 1984). To date, the only 

molecular data regarding fish IL-2 comes from PCR amplification of 

flatfish IL-2 (Tamai et al, 1992). In this study, a cDNA putatively 

encoding flatfish IL-2 was isolated and expressed within transfected 

COS cells resulting in the production of a 14 Kda protein. A region of the 

amino acid the sequence displayed 42% similarity to mammalian IL-2. 

The authors have yet to demonstrate that the synthesized protein has 

biological activity on fish leukocytes and, until this has been 

accomplished, its role in the fish immune response is still tentative. 

Basically these studies show that fish leukocytes are capable of 

producing and responding to"factors" which resemble those seen in 

mammalian T-cell analyses. Various laboratories are currently 

attempting to isolate and clone these genes which encode fish 

lymphokines. Until these factors have been isolated, their regulatory 

role in the overall immune response in fish will depend upon the use of 

supernatants from stimulated leukocytes. 

Non-specific cytotoxic cells 1 natural killer cells 

Natural killer cells (NK) are a class of lymphocytes with the ability 

to lyse and thus kill cells displaying foreign antigenic determinants 

without the need of prior activation, thus acting as a type of natural 

immune surveillance (Trinchieri 1989). Their main purpose is to 
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identify and kill virally infected, cancerous cells and intracellular 

parasites. NK cells are generally the earliest component of the host 

immune response to viral infections. In mammals, when NK cells are 

stimulated by IL-2 they are known as lymphokine-activated killer cells 

(LAK) and their associated killing activity is increased as is their ability 

to lyse a larger spectrum of targets. 

In teleosts the cellular homologue of NK cells are a class of cells 

known as non-specific cytotoxic cells (NCC). Using channel catfish, 

Graves and co-workers demonstrated that NCCs isolated from the pro­

nephos demonstrated a rapid killing capability of human tumor cell 

lines. In this study, over 90% of the target cells were lysed within a 90 

minute time peroid (Graves et al., 1984). Greenlee el al (1991) later 

showed that the killing resulted from a direct cell to cell contact by 

necrotic and apoptotic mechanisms of agranular NCCs as shown by 

chromium release assays and DNA fragmentation of target cells. The 

exact mechanism by which NCCs lyse target cells is unknown and must 

be somewhat different from NK cells due to the lack of cytoplasmic 

granules. Also the overall kinetics of killing, general morphology and 

target cell specificity are different for NCC and NK cells (Evans and 

Jaso-Friedmann 1992). 

Various mAbs have been generated against teleost NCCs that 

cross react with a conserved determinant (receptor) on NK cells (Evans 

et al 1988, Harris et al. 1991, Harris et al 1993). Using these anti-NCC 

reagents, investigators have shown that the mAbs most likely bind to the 

actual receptor on these cell types as shown by an inhibition of 

cytotoxicity against a variety of transformed cell lines. However, these 

reagents failed to diminish the ability of NCC or NK cells in their role in 
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antibody-dependent cell mediated cytotoxicity, thus lending further 

support that the mAb is an anti-NCC receptor reagent. 

As discussed earlier, when NK cells are activated (LAK) they 

display an enhanced killing ability. Recently a factor termed natural 

killer enhancing factor (NKEF) has been cloned and characterized in 

mammals which significantly augments NK cytotoxicity (Shau et al 

1994). NKEF was shown to be related to a class of molecules produced in 

organisms undergoing oxidative stress, therefore the factor may likely 

play a dual role in NK cells by increasing cytotoxicity and as a protective 

mechanism to deal with oxidative stress. Using a degenerate primer 

approach, a full-length cDNA for rainbow trout NKEF has been cloned 

and sequenced (Mourich et al 1995). This trout clone displays 70% and 

84% similarity at the nucleotide and amino acid level to the human clone 

of NKEF, thus showing a high degree of sequence conservation over the 

course of vertebrate evolution. Studies are currently underway using 

recombinantly produced trout NKEF to determine its role in enhancing 

NCC cytotoxicity of virally infected and transformed trout cell lines and 

thus potentially demonstrating a conserved function. 

Fish B -Cells 

The specificity of the humoral immune response and its ability to 

adapt to new pathogens/antigens is largely due to antibodies which are 

produced by B-cells (Honjo 1985). Investigations have shown that fish 

possess B-cells with many of the same general characteristics as found 

in mammalian B-cells (Kaattari 1992). B-cells can be defined as those 

lymphocytes which express membrane bound immunoglobulin 
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(receptor) and in response to antigenic or mitogenic stimulation can 

secrete immunoglobulins (effector) with specificity to the antigenic 

stimuli (McKinney et al 1977, Marchalonis 1982). These activated B-cells 

undergo a rapid proliferative response to generate a pool of memory and 

plasma B cells. The plasma cells are capable of secreting large 

quantities of antibodies while the memory pool serves as a "watch-dog" 

for future encounters with the same antigenic stimuli. This memory 

pool is largely responsible for the secondary immune response. Upon 

secondary encounter of the same antigen, the relatively quiescent pool of 

memory cells are induced to quickly produce large quantities of antigen 

specific antibodies. One report contends that B cells found in the 

primary and secondary immune response are actually formed from 

separate precursor subpopulation (Linton et al 1989). In mammals, a 

class switching event is seen in the transition from the primary to 

secondary response. Class switching events during an immune 

response nor true affinity maturation has yet to be demonstrated in fish. 

As discussed earlier, a classical measure for discerning 

lymphocytes is their reactivity to specific mitogens. Early evidence for 

distinct populations of lymphocytes (B and T-cells) were derived from in 

vitro mitogenic characterization of various fish organs. The B-cell 

mitogens, LPS and PWM, have been used in several studies to 

demonstrate that fish B-cells react in a similar way as compared to 

mammalian B-cells. Generally speaking when exposed to B-cell 

mitogens, fish B-cells undergo a proliferative response and increase the 

production of polyclonal antibodies (Et linger et al. 1977, Kaattari and 

Irwin 1985, Kaattari and Yui 1987). Kaattari and Irwin demonstrated 

that lymphocytes from the pronephros (head kidney) responded well to 
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0-extract preparations of Vibrio anguilarium in plaque forming assays. 

Similar studies using panned sIg÷ lymphocytes from carp 

demonstrated that upon stimulation with LPS, a marked proliferative 

response was seen compared to sIg- lymphocytes [(T-cells) (Koumans 

van-Diepen et al. 1984)]. 

The hemolytic plaque assay has been used in fish immunology to 

define antibody producing cells (plasma cells). Briefly, this assay is 

composed of coupling a specific antigen to sheep red blood cells and 

adding antigenically primed peripheral blood leukocytes in the presence 

of comlement. If B-cells specific for the antigen in question are present 

they will produce antibodies which bind to the antigen followed by 

complement which will lyse the target red blood cells. The amount of 

plaques formed is indicative of the quantitiy of antibody producing B-

cells present and thus can serve as a measure of memory as well. 

Using this technique pioneering studies in teleost immunology were 

able to discern that antibody producing cells could be found in the 

spleen, peripheral blood and pronephros in trout and perch (Chiller et al 

1969a, Chiller et al 1969b, Pontius and Ambroisius 1971). In teleosts 

memory induction does occur, but only by 10-30 fold over the primary 

response, as compared to mammals which exhibit roughly 100 fold or 

more improvement. In trout in vivo and in vitro analysis of antibody 

producing cells demonstrated that memory occurs, but not to the degree 

found in mammals. The authors indicated though that memory in fish 

may be attributed to a simple exansion of the B-cell precursor pool due to 

polyclonal activation based upon limiting dilution analysis of splenic 

responders (Arkoosh and Kaattari 1991). Another explantion may be 

related to findings by Gray and coworkers. In these studies it was found 
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that low levels of antigen must remain present to maintain lymphocyte 

memory to the said antigen in murine models (Gray and Skarvall 1989, 

Gray and Matzinger 1991). Most memory studies in fish are based upon 

injection of the antigen along with a suitable adjuvant and then some 

time later a second injection is given and the response is measured. 

Few studies have documented memory spanning years which would be 

an essential quality in the design of efficacious vaccines against fish 

pathogens. Some qualities that are found in both mammalian and 

teleost secondary immune responses include a heightened antibody 

titer, faster response and increased sensitivity to the antigen in question 

(Kaattari 1992). 
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Introduction 

The molecular characterization of genes involved in the 

humoral and cellular immune response in fish is important in the 

understanding of immune development in vertebrate species. There 

have been several reports dealing with immunoglobulin heavy chain 

(IgH) genes from primitive taxa ranging from elasmobranchs 

(Kokubu et al., 1988) to Atlantic salmon (Hordvik et al., 1992). 

Recently, there have been two reports dealing with cDNAs encoding 

for complete secretory Ig Hs along with partial clones of membrane-

bound forms of IgH in trout (Lee et al., 1993 and Andersson and 

Matsunaga 1993). Polymerase chain reaction amplification (PCR) 

with degenerative primers were used to derive a rainbow trout VH 

probe that, in turn was used to screen a peripheral blood leukocyte 

(PBL) cDNA library from a single rainbow trout (Onchorynchus 

mykiss ) , Shasta strain. Several full length secretory and membrane-

bound forms of trout Ig Hs were isolated. Here we briefly describe the 

complete nucleotide sequence from one of the membrane-bound forms 

of trout IgH, clone RBTIGTM2. 
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Materials and Methods 

An alignment of amino acid and nucleotide sequences of several 

vertebrate VH genes were used as the basis for designing degenerative 

oligonucleotide primers which were as follows: Sense FR1=5'­

CCISAIMGNCCTGYAMAGCCTCYGGITT-3' and antisense FR3=51­

C CGGATCCGCACAITAATAAVNYGCNGTGTCYTC-3'. The FR3 

primer incorporates the fact that most VH genes end in the amino acid 

motif of Y-Y-C-A-R. PCR was conducted using genomic trout DNA as 

the template. The resulting amplified product was cloned using a TA 

cloning kit (Invitrogen) and then sequenced for verification of identity. 

The VH gene clone was then radiolabeled using random hexamers 

(BRL) and used to screen a trout PBL cDNA library which had been 

constructed in a Uni-ZAPXRII vector system as per manufacturer's 

instructions (Stratagene). The library was screened under high 

stringency conditions and several putative clones were isolated and 

characterized. Sequencing of the VH clone and full length IgH clones 

were accomplished using both manual and automated sequencing in 

both directions. Manual sequencing was performed using the 

Sequenase 2.0 system (USB) and automated sequencing was conducted 

using an ABI 373A sequencer located at the OSU Center for Gene 

Research and Biotechnology Central Services Facility. All sequence 

analysis were conducted using the Genetics Computer Group 

Sequence Analysis Software Package Version 7.2-UNIX. 
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Results and Discussion
 

Clone RBTIGTM2 encodes 1703 nucleotides, including an 18 amino 

acid leader peptide, VH region, CH1-3 domains and a TM domain 

followed by 3' UT sequences including a putative polyadenylation site 

(Fig 1). The nucleotide sequence of the RBT VH region was most 

similar to ladyfish (Amemiya and Litman 1990; -81% identity). The 

CH1-3 domains were most similar to trout (Lee et al., 1993; -98% 

identity) and to Atlantic salmon (Hordvik et al., 1992; -95% identity). 

One notable difference was the addition of an extra codon (GCA) 

between the CH2-CH3 boundary which was not seen in other published 

reports of trout IgH cDNAs. The TM domain was completely 

conserved when compared to the other trout TM sequences. This clone 

adds further support to the unusual splicing patterns seen in other 

teleosts including Atlantic salmon (Hordvik et al., 1992), Atlantic cod 

(Bengten et al., 1991) and catfish (Wilson et al., 1990), where the entire 

CH4 domain was missing in the membrane bound forms of IgH. A 

second full length membrane bound IgH was sequenced and 

compared to RBTIGTM2. The second clone possessed a limited 

number of nucleotide differences in the constant domains (Fig 1) 

which resulted in 5 amino acid substitutions. Although this clone 

could conceivably be representative of another isotype, the limited 

amino acid variance suggests an allotypic variant of RBTIGTM2. 



62 

Acknowledgements 

Funds for this research were derived from N.I.E.H.S grant # ES05783. 

Oregon State Technical Paper Number 10,400. 



63 

Fig. 2.1. Nucleotide and predicted amino acid sequence of a complete 

rainbow trout membrane-bound form of IgH from clone RBTIGTM2. 

The assignment of domains and segment boundaries is based on 

comparisons with previously published trout IgH genes (Lee et al., 

1993). Cysteinyl residues assumed to form intradomain disulfide 

bridges are in parentheses. Putative glycosylation sites are boxed and 

the proposed polyadenylation site is underlined. The additional codon 

not seen in other trout Ig Hs is shown in brackets. Allelic differences 

are shown below the primary amino acid translation. This sequence 

along with the other membrane-bound IgH have been submitted to the 

GenBank/EMBL databases under the accession numbers U04616 

(RBTIGTM1) and U04615 (RBTIGTM2). 



FIG. 2.1
 

Leader peptide- FR1 ->
I
 

ATGTTTCCTACCACAGGAATACTCTTAATGATAGTCTATCTAACAGGTGTTCAGGGTCAGACATTGACTGAGTCTGGACCAGTGGTTAAA 90
MFPTTGILLMIVYLTGVQGQTLTESGPVVK
 
<-FR1 <-CDR1- FR2 ->
I
 

I
 

AATCCTGGAGAATCACACAAACTGACCTGTACAGGCTCTGGGTTCACATTCAGTAGCTATGGGATGAACTGGATCAGACAGGCTCCTGGG 180
 
N P G E S H K L T (C) T G S G F T F S S Y G M N W I R Q A P G
 

1
<-FR2 CDR2-> <-CDR2 FR3->
I
 

AAAGGATTGGAGTGGATTGCCTATAGTTATAGTACTACTACATATTACTCCCAGTCATTTCAGGGTAGATTCACCATCTCCAGAGATGAC 270
K GLEWIAYSYSTTTYYSQSFQGRFTISRDD
 
<-FR3 < -DH ->
I
 

TCCAGCAGTAAGCTATACCTACAGATGAACAGTCTGAGGAGTGAGGACACAGCAGTGTATTACTGTGCTAGAGAGGGCAACTACTACCGT 360
S SSKLYLQMNSLRSEDTAVyy(C)AREGNYYR 
1
 

I I
JH -> <-JH CH1 ->
 

TTTGACTACTGGGGGAAAGGGACAATGGTTACTGTTTCATCAGCCTCATCAACTGCTCCGACTTTGTTCCCTCTTGCGCAATGTGGCTCC 450
 
F D Y W G K G T M V T V S S A S S T A P T L F P L A Q (C) G S
 

GGGACCGGAGATATGATGACTCTGGGTTGCATTGCCACTGGCTTCACGCCTGCCTCCCTCACCTTCAAATGGAATGACGAAGGCGGGAAT 540
 
G T G D M M T L G (C) I A T G F T P A S L T F K W N D E G G N
 

TCCCTGACTGATTTCGTTCAGTACCCTOCGGTCCAAACCGGTGGAAGCTACATGGGAGTCAGTCAACTCCGTGTAAAGAGAGCAGACTGG 630
S LTDFVQYPAVQTGGSYMGVSQLRVKRADW
 
<-CH1 CH2 ->
I
 

GACAGTAAAAAATTTGAATGCGCCGTGGAACATTCTGCTGGATCAAAGAAAGTACCAGTGAAAAAACAACCGGAATATCTGCAGCAGCCG 720
D SKKFE(C)AVEHSAGSKKVPVKKQPEyLQQP
 
TCTCTTTACGTAATGACCCCCTCTAAAGAGGAGATGTCAGAAAATAAGACGGCTTCCTTCGCCTGCTTTGCCAATGACTTTTCACCCCGT 810
 
S L Y V M T P S K E E M S E [N K T] A S F A (C) F A N D F S P R
 

ACACACACAATCAAATGGATGAGGATGGAAAAAGGAACAGAACAAGAAGTTGTATCTGATTTCAAGAGTTCTTGTGAGAGTGAGAAGAAG 900
THTIKWMRMEKGTEQEVVSDFKSSCESEKK
 



FIG. 2.1 Continued
 

AGTGAGACAACTCTGTACAGCACAACCAGCTATCTCAGAGTCAATGAGAGTGAGTGGAAGAGTGAAGAAGTAACATTCACTTGCGTGTTT 990
 
S E T T L Y S T T S Y L R V [N E S] E W K S E E V T F T (C) V F
 

<-CH2 CH3->
I
 

GAGAACAAAGCTGGAAATGTGAGGAGAACTGTGGGCTACACTTCATCAGATGCAGGTCCAGTCCATGGACATTCAGTAGTCATTACGATC 1080
E NKAGNVRRTVGYTSSD{A}GPVHGHSVVITI
 
ATCGAGCCGTCTCTTGAGGATATGCTTATGAACAAAAAAGCGCAGCTTGTGTGTGATGTCAATGAACTAGTTCCTGGCTTCCTGAGCGTC 1170
 
I E P S L E D M L M N K K A Q L V (C) D V N E L V P G F L S V
 

E I M
 

AAATGGGAAAATGACAATGGAAAGACCTTAACCAGCCGAAAGGGTGTCACTGACAAAATTGCCATACTTGACATCACTTATGAGGACTGG 1260
K WENDNGKTLTSRKGVTDKIAILDITYEDW
 
<-CH3 TMD->
I
 

AGCAATGGGACAGTATTCTACTGCGCTGTAGATCACATGGAAAACCTGGGGGACTTGGTAAAGAAAGCCTACAAGAGGGAGACCGATTGT 1350
 
S [N G T] V F Y (C) A V D H M E N L G D L V K K A Y K R E T D C
 

L G
 
CTCGTGTTGACTGACTGTCCATGCAGCAACACCATGGAAACCGACAGGGACAGCATGGGAAAAACAGCCTTCACCTTCATCATACTCTTC 1440
L VLTDCPCSNTMETDRDSMGKTAFTFIILF
 
CTCATAACTCTGCTGTATGGCGTTGGAGCAACTGCCATCAAGGTGAAATGAAGAAACTGAGTTTGAAGTACTTGAAGAAGATATTACTTT 1530
 
L I T L L Y G V G A T A I K V K STOP signal 3' untranslated region
 

TCATACTTACAATACAGTATATGAATGGATACAATACATGTAACTGTTCTCCTGCTTGTCTTTATTGTTGATTTTGTTTGAATAGTTCAA 1620
 

CTGTAGAGGTTAGATTTGTAAATATTTCATTGTGCCTTTTTAAACTATTAAGATAATAAAGTGTAACTGAAGTGAAAAAAAAA 1703
 

a 
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Abstract 

The characterization of genes involved in the generation of the 

immune repertoire is an active area of research in lower vertebrate 

taxa. The recombination activating genes have been shown to be 

essential for V (D) J recombination of T cell antigen receptor (TCR) and 

immunoglobulin (Ig) genes, leading to the generation of the primary 

repertoire. As RAG1 is critical to the differentiation of pre-B and -T 

cells, its expression within an associated primary lymphoid organ can 

serve as a developmental marker. To examine the ontogeny of 

lymphocytes in Oncorhynchus mykiss, we cloned RAG1 from trout and 

examined its tissue and lymphocyte specific expression. The 

polymerase chain reaction, coupled with degenerate oligonucleotide 

primers was used to amplify a homologous probe (633 bp) from rainbow 

trout genomic DNA, which in turn was used to isolate a lambda 

genomic clone. Sequence analysis of this genomic clone confirmed the 

RAG1 nature of this gene (3,888 bp) and revealed an internal intron of 

666 bp. When compared to other previously reported RAG1 sequences, 

the predicted amino acid translation (1073 aa) displayed a minimum of 

78% similarity for the complete sequence and 89% similarity in the 

conserved region (aa 417-1042). Using northern blot analysis, expression 

of RAG1 was found to be limited to surface immunoglobulin negative 

(sIg-) lymphocytes within the thymus. This data forms the basis for a 

proposal that the thymus of teleost species plays an essential 

developmental role in lymphopoiesis and thus, can be regarded as a 

primary lymphoid organ. 
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Introduction
 

In mammals, the primary immune repertoire is generated somatically 

by site specific recombination events that occur in pre-B and -T 

lymphocytes (Schatz et al. 1992). V (D) J recombination of antigen 

receptor and immunoglobulin germline gene segments is thought to be 

facilitated by recombinational signal sequences (RSS) that are found 

within the noncoding sequences flanking the variable region gene 

segments (Sakano et al. 1980; Hesse et al. 1989). These flanking 

sequences consist of a highly conserved palindromic heptamer which is 

separated from an Air rich nonamer by either a 12 or 23 by conserved 

spacer sequence. The high degree of sequence conservation of these 

RSSs lend support to the notion that a common V (D) J recombinase 

has also been conserved over the course of vertebrate evolution 

(Tonegawa 1983; Litman et al. 1985; Yancopoulos et al. 1986; Hesse et al. 

1989; Schatz et al. 1992). Besides random association of variable region 

gene segments, diversity of lymphocyte receptors is further enhanced by 

such events as imprecise joining of gene segments due to P and N 

insertions, base trimming and somatic hypermutation (Landau et al. 

1987; Kallenbach et al. 1992; Heinrich et al. 1984). 

The recombination activating genes 1 and 2, have been shown to 

be essential for the recombinatorial process leading to the genesis of 

TCR and Ig repertoires (Schatz et al. 1989; Carlson et al. 1991). These 

genes were initially isolated by their cosegregation with V (D) J 

recombination activity on artificial substrates when transfected into 

NIH 3T3 fibroblasts (Schatz and Baltimore 1988, Schatz et al. 1989). 
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V (D) J recombination has been shown to occur within the primary 

lymphoid organs of mammals, bone marrow and thymus, and thus can 

serve as a developmental marker for primary lymphoid organs. Studies 

utilizing targeted germline gene disruption of RAG1 and RAG2 have 

shown them to be critical in activating or carrying out V (D) J 

recombination (Mombaerts et al. 1992; Shinkai et al 1992). In these 

studies, mice that were made deficient in RAG1 or RAG2 were not 

capable of producing mature B or T lymphocytes, resembling the SCID 

mouse scenario (Bosma et al. 1983; Schuler et al. 1986). It was later 

determined that the SCID mutation resided on a different chromosome 

than the RAG genes, but the possibility remained that recombination 

may be impaired in this disease state (Schatz et al. 1992). 

The carboxyl-terminus of RAG1 shares some sequence similarity 

to the yeast protein HRP1 (Wang et al. 1990) which, in turn, has 

sequence similarity to yeast topoisomerase 1 (Aguilera et al.1990). 

Recently, it has been shown that the RAG1 C-terminal end alone was 

capable of carrying out V (D) J recombination in transfected cells 

carrying variable region gene segments on plasmids (Silver et al. 1993). 

The relationship between RAG1 and topoisomerase-1 was further 

investigated with mutation of a specific tyrosine residue in the C-

terminus of murine RAG1 (Y998). This mutation which was created 

because it corresponded to the proposed active site of yeast HRP1 (Y532), 

was still able to effect V (D) J recombination activity. Thus, the actual 

active site of RAG1 has not been determined and any relationship 

between RAG1 and HRP1 is speculative at this time. 

The RAG genes have been isolated from vertebrate species 

including human, mouse, chicken and more recently from rabbit and 
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Xenopus (Schatz et al. 1989; Oettinger et al. 1990; Carlson et al. 1991; 

Fuschiotti et al. 1993; Greenhalgh et al. 1993). In mammals 

coexpression of RAG1 and RAG2 was found within the lymphopoietic 

organs of the thymus, bone marrow and fetal liver (Schatz et al. 1992). 

In rabbits, expression of RAG1 and RAG2 was seen within the thymus. 

It appears that the rabbit RAG2 gene may undergo alternative splicing 

events yielding a large 4.4 kilobase (kb) and a smaller 2.2 kb mRNA 

species. Using northern blot analysis, the major site of RAG1 and 2 

expression in the amphibian Xenopus was seen within the thymus, with 

slight expression of RAG2 detected in the ovaries. The more sensitive 

assay, reverse transcription-PCR (RT-PCR), found that RAG1 and 

RAG2 were expressed within the thymus, liver, and spleen in juvenile 

frogs, and within the thymus and bone marrow of adults. In avian 

species, RAG1 and RAG2 were expressed within the thymus, but 

expression of RAG2 in the absence of RAG1 occurred in the bursa of 

Fabricius, the site of gene conversion of Ig repertoires. It was later 

shown that RAG2 was not essential for further gene conversion events, 

but it is possible that RAG2 may be required for initiating gene 

conversion events (Takeda et al. 1992). 

Rainbow trout and other fish possess immune systems with many 

of the same features and functions found in mammals including 

antibodies, V (D) J recombinatorial mechanisms, B/T cell cooperation, 

and distinct lymphoid tissue and organs (Reviewed in Faisal and 

Hetrick 1992). The genomic organization of the immunoglobulin heavy 

and light chain loci has recently been characterized in teleosts 

(Amemiya and Litman 1990; Wilson et al. 1990; Daggfeldt et al. 1993). 

The heavy chain organization is similar to that found in mammals 
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(Earley et al 1980), but the light chain repertoire is more elasmobranch­

like in that a multiple V-(D)-J-C cluster type of arrangement is found 

(Litman et al. 1985; Kokubu et al. 1988; Hohman et al. 1992; Rast et al. 

1994). In amphibians, both the heavy (Schwager et al. 1988; Du Pasquier 

et al. 1989) and light chain loci (Schwager et al. 1989) are comparable to 

mammalian organization (Reviewed by Zachau et al. 1989). The cDNAs 

encoding TCR subunits have been recently isolated from amphibian, 

teleost, and elasmobranch species and their isolation provides the initial 

characterization of these T-cell receptor genes (Fellah et al. 1993; 

Partula et al. 1994; Rast and Litman 1994). 

Early histological analysis indicated that the thymus may be the 

primary source of lymphocytes in teleosts (Grace and Manning 1980; 

Tatner 1985; Josefsson and Tatner 1993), but it also been conjectured that 

the pronephros (anterior kidney) could be the bone marrow equivalent 

(Ellis 1977; Razquin et al. 1990). To date, very little is known about the 

actual sites and mechanisms involved in teleost lymphopoiesis. To 

determine the likely location of V (D) J recombination, and thus the 

primary lymphopoietic tissue(s) in trout, we cloned RAG1 and examined 

its expression patterns during ontogeny. 
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Materials and Methods 

Animals 

Rainbow trout (Oncorhynchus mykiss, shasta strain) were obtained 

from the Marine Freshwater Biomedical Sciences Center at Oregon 

State University, and maintained at the Salmon Disease Laboratory in 

Corvallis, Oregon. This facility receives pathogen-free water at a 

constant temperature of 12° C. AU fish were fed Oregon Moist Pellet 

commercial salmon food daily. Tissue samples were obtained from 

trout sacrificed by anesthetic overdose in benzocaine (ethyl p­

aminobenzoate, Sigma, St. Louis, MO) (Kaattari and Irwin 1985). 

Tissues were used fresh or frozen immediately with liquid nitrogen and 

stored at -85° C until needed. 

Rainbow trout RAG1 probe 

The polymerase chain reaction (PCR) was executed using degenerate 

primers based upon an alignment of the highly conserved 3' region of 

RAG1 from all previously cloned RAG1 genes. This procedure 

amplified a homologous probe (633 bp) from rainbow trout genomic DNA 

which in turn was used for northern blot analyses and to screen a 

rainbow trout genomic library. All primers used for PCR amplification 

and sequencing were synthesized at the Oregon State Center for Gene 

Research and Biotechnology Central Services facility. The RAG1 

degenerate primers were as follows: Sense RAG1L1= 5'- CAYTGYGA 

YATHGGIAAYGC-3' (aa 830-836) and antisense RAG1R1= 5'-RTGNG 

CRTTCATRAAYTTYTG-3' (aa 1035-1041). Numbers in parentheses 
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refer to primer positions relative to the coding region of rainbow trout 

RAG1. Primers were purified using Oligoclean (BMB, Indianapolis, 

IN). Rainbow trout genomic DNA was isolated by standard methods 

(Strauss 1989) and used as the template in a hot-start PCR. Genomic 

DNA (500 ng) was added to a lx PCR cocktail (98 ul) containing 50 mM 

KC1, 10 mM Tris-HC1, pH9.0, .01% gelatin, 2.5 mM MgC12, 200 uM 

dNTPs, 0.5 U Perfect Match (Stratagene, La Jolla, CA) and 250 pmoles of 

each primer. PCR samples were then overlaid with mineral oil and 

heated to 95°C for 10 min, cooled to 80°C at which time 2.5 U of Taq DNA 

polymerase (Promega, Madison, WI) was added and then the profile of 

95° C for 45 sec, 54° C for 1 min and 72° C for 1.5 mM for 35 cycles 

followed by an additional extension time of 7 min at 72° C was used for 

amplification. 5 ul of the reaction was electrophoresed through a 1.5 % 

agarose gel and a product (633 bp) of the expected size was observed. The 

product was subsequently cloned using the TA cloning kit from 

Invitrogen as per manufacturer's specifications (San Diego, CA) and 

sequenced for verification of identity. The rainbow trout RAG1 PCR 

clone, pTARAG1, was digested with Eco R1, purified (Geneclean, Bio 

101, La Jolla, CA) and used as a homologous probe for northern blot 

analysis and library screening. The probe was randomly labeled with 

[32-P] dCTP according to the protocol of Feinburg and Vogelstein (1983) 

using a commercial kit (BRL, Gaithersburg, MD) to a specific activity of 

1.5 X 109 cpmlug. Non-incorporated nucleotides were removed using 

G-50 Quick-Spin columns (BMB) prior to use in hybridizations. All 

hybridizations and washings for library screening, Southern and 

northern analyses took place in a Techne Hybridiser, HB-1D (Techne, 

Inc, Princeton, NJ). 
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Library screening and restriction analysis 

A rainbow trout genomic library (a kind gift from Dr. Thomas Chen, 

Center of Marine Biotechnology, University of Maryland, Baltimore, 

MD) was used for isolating genomic clones encoding the trout RAG 

locus. The library was constructed into the Barn HI site of lambda Dash­

2 (Stratagene) after a partial Sau 3a digestion of trout testis DNA. The 

amplified library was titered, plated and plaque-lifted onto BA-85 

supported nitrocellulose (Schleicher & Schuell, Keene, NH) using the 

manufacturer's suggested conditions. Approximately 1 X 106 PFUs 

were screened in duplicate with the randomly labeled PCR generated 

RAG1 probe. Filters were prehybridized for 4 h at 68° C in 5x SSC, 5x 

Denhardt's solution and 0.5% SDS (w/v) and then hybridized for 18 h 

under the same conditions with the addition of radiolabeled probe. 

Duplicate filters were washed at low stringency (42° C, 2x SSC/0.5% SDS) 

and finally at high stringency (65° C, 0.2x SSC/ 0.2% SDS). 

Autoradiography was then conducted using Kodak XAR-5 film and one 

intensifying screen for 18 h at -20° C. Upon tertiary screening, positive 

plaques were confirmed via PCR using trout specific primers derived 

from sequencing the PCR amplified trout RAG1 probe. Upon this 

secondary confirmation, positive plaques were selected and used for 

small scale phage preparations and restriction endonuclease analysis. 

Phage DNA was digested with restriction endonucleases (Promega), 

separated by agarose gel electrophoresis, transferred to Nytran (S & S) 

using 10x SSC and UV fixed. The blot was then hybridized and washed 

as described for library screening. The majority of trout RAG1 was 
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localized to a 6.6 kbp Eco RI fragment which was cloned (pRBTRAG1) 

into pGEM-3Z for sequencing. 

Cloning the 5' end of trout RAG1 

5' RACE technology based upon minor modifications of the methods of 

Frohman et al (1988) and Renu et al (1992) were used to amplify and 

clone the 5' end of trout RAG-I. Briefly, 500 ng of total thymic RNA was 

reverse transcribed using 100 pmoles antisense anchor primer (5'-CCA­

GGA-AGC-CCT-TAG-CTG-3', by 1079-1096) and 200 U M-MLV reverse 

transcriptase (Promega) for 60 min at 42° C and then at 52° C for 30 min. 

After degradation of the RNA template with 0.5 U of RNase H 

(Promega), excess primers and dNTPs were removed using a Microcon­

30 spin filter (Amicon, Inc, Beverly, MA). The subsequent retentate was 

concentrated and the first strand cDNA was tailed with dATP using 12 

U TdT (Promega). Following the addition of the poly A tail, the products 

were amplified using 15 pmoles dT-adapter primer (5'-GAC-TCG-AGT­

CGA-CAT-CGA-T17) and 25 pmoles anchor primer using the following 

profile: 50° C for 5 min, 72° C for 45 min followed by 5 cycles of PCR, 95° 

C for 45 sec, 50° C for 1 min and 72° C for 2 min. The final cycle was 

extended for 5 min at 72° C. The reaction products were again filtered to 

remove dNTPs and primers and an aliquot was then used in a second 

amplification reaction using 25 pmoles each of nested gene specific 

primer (5'-CAG-CAG-TCT-GGC-ACT-AAG-3', by 871-888) and adapter 

primer (5.-GAC-TCG-AGT-CGA-CAT-CG-3') for 30 cycles at 95° C for 45 

sec, 55° C for 1 min, 72° C for 2 min followed by an extension time of 10 

min at 72° C. The product was gel purified and cloned using the TA 
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cloning kit. This cDNA clone was partially sequenced and a sense 

primer (5'-CCG-TTG-CTG-ACA-CTA-TGG-3', by -14 to + 4) was 

constructed . The sense primer, along with the nested antisense primer 

used in the 5' RACE RT-PCR amplification, were used to amplify the 5' 

end of trout RAG1 from genomic DNA. Reaction conditions were 

similar to that used to generate the trout RAG1 PCR probe, except 25 

pmoles of each primer was used. Products were purified, cloned (TA 

cloning kit) and sequenced in both directions from two independent PCR 

amplifications. 

RNA isolation and northern analysis 

Total RNA was isolated from specified tissues by homogenization in 4M 

guanidine isothiocyanate buffer followed by organic solvent extraction 

and finally precipitated using isopropanol (Chomczyncki and Sacchi 

1987). RNA concentrations and relative purity were checked by UV 

spectroscopy (A260/280) prior to loading. Equivalent amounts of RNA 

were loaded onto a 1.2%/6.6% agarose/formaldehyde gel, 

electrophoresed, transferred to Nytran using 10X SSPE and UV fixed. 

Prior to hybridization, the blot was stained with Methylene Blue (MRC, 

Inc., Cincinnati, OH) for a qualitative assessment of integrity. The blot 

was then scanned by laser densitometry (Biomed Instruments, Inc., 

model #SL-DNA, Fullerton, CA) to establish that equivalent amounts of 

RNA had been transferred to the membrane based upon ribosomal RNA 

staining. Methylene blue was removed during prehybridization (50% 

formamide, 5X SSPE, 0.5% SDS and 5X Denhardt's soln at 42° C for 2 h) 

and the blot was hybridized overnight using the radiolabeled PCR 
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generated probe under the same conditions as described for 

prehybridization. The blots were then washed as previously described 

for library screening and exposed to Kodak X-OMAT AR film for 48 h at 

-80° C. The molecular weight of trout RAG1 message was calculated by 

comparison to rRNA bands and to RNA molecular weight markers 

(Promega). 

Cell partitioning into sIg- & sIg+ populations 

Single cell suspensions from the tissue samples were prepared using a 

Cellector tissue sieve (VWR Scientific, Seattle, WA). Cells were washed 

twice in cold PBS (pH 7.6) and underlaid with an equivalent amount of 

Histopaque-ficoll 1077 (Sigma). After centrifugation, the interface layer 

of cells was collected, washed twice, and viability determined by trypan 

blue exclusion. Only those cells displaying at least 95% viability were 

used in subsequent panning assays. For panning, monoclonal antibody 

(mAb) 1-14 (mouse anti-trout Ig heavy chain, DeLuca et al. 1983) was 

conjugated to tosylactivated M-450 Dynabeads (Dynal, Inc, Lake Success, 

NY). Cells were brought to a concentration of 5 x 107 cells/ml in 

RPMI/2% FCS and approximately 1.5 x 108 mAb 1-14/M450 beads were 

then added per ml of cells. After incubation on a rotator at 4° C, 

positively selected cells (sIg+ ) were collected using a magnetic particle 

concentrator (Dynal), washed twice in PBS and enumerated. 

Supernatants were panned again to ensure depletion of sIg+ cells and 

sIg- cells were then recovered from the final supernatant by 

centrifugation, washed twice and enumerated. Cell partitioning into 

sIg- and slg+ populations was confirmed by fluorescence microscopy 
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using mAb 1-14 and goat anti-mouse IgG conjugated with Texas Red® 

(Molecular Probes, Eugene, OR). RNA was isolated from equivalent 

numbers of sIg- and sIg+ cells. RNA isolation and northern blot 

analysis were as previously described. 

Sequencing 

Sequencing of the trout RAG1 clones was accomplished using both 

manual and automated DNA sequencing methods based upon dideoxy 

chain termination chemistry (Sanger et al. 1977). Manual sequencing 

was performed using the Sequenase 2.0 system (USB, Cleveland, OH) 

and automated sequencing was carried out using an ABI 373A 

sequencer located at the Center for Gene Research and Biotechnology on 

the Oregon State campus. Sequences were determined in both directions 

using specific or universal primers. 

Computer programs 

All amino acid sequence comparisons were conducted using the best fit 

function in the Genetics Computer Group (GCG) Analysis Software 

Package Version 7.2-UNIX (Devereux et al. 1984). Positions with 

insertions/deletions were omitted from these comparisons. Sequence 

alignments were performed using the Clustal function (Higgins et al. 

1992) along with manual corrections in the Genetic Data Environment 

(GDE version 2.2, beta release by Steve Smith) software package. Trees 

were constructed using the DeSoete algorithm (DeSoete 1983) and 

branching positions were verified by bootstrap parsimony (Felsenstein 

1989), a component of Phylip (version 3.5 release by Joseph Felsenstein) 



79 

Results and Discussion 

Isolation and characterization of RAG1 from rainbow trout 

A portion of trout RAG1 was amplified from rainbow trout genomic 

DNA using degenerate oligonucleotide primers. These primers were 

based upon a highly conserved block of amino acid residues found in the 

3' region of the gene as a result of a sequence alignment of all known 

RAG1 genes (unpublished data). The product, 633 base pairs (bp), was 

cloned and sequenced to determine its identity as being derived from 

trout RAG1. This PCR generated probe was then employed to screen a 

rainbow trout genomic library under highly stringent conditions. Upon 

tertiary screening, positive plaques were confirmed as clones of RAG1 

via PCR with trout specific primers. These positive plaques were 

purified and characterized via restriction endonuclease analysis. Phage 

DNA from four plaques were digested with a battery of restriction 

enzymes, blotted and hybridized with the trout RAG1 probe. A 6.6 

kilobase pair (kbp) Eco R1 fragment hybridized with the trout RAG1 

probe and this fragment was subsequently isolated, subcloned and 

sequenced. 

Upon sequence analysis of this genomic clone it was found that 

the clone was truncated at the 5' end. The remaining 5' end of trout 

RAG1 was amplified and cloned from thymic total RNA using 5' RACE 

RT-PCR technology. This cDNA clone was sequenced and used to 

construct a sense primer to amplify the 5' end of RAG1 from rainbow 

trout genomic DNA. The sequence of rainbow trout RAG1 along with 

the locations of a putative nuclear localization signal (NLS) (Dingwall 
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and Laskey 1991) and a zinc finger motif (Brunk et al. 1991; Freemont et 

al. 1991) are depicted in Figure 3.1 a and b. Sequence analysis of this 

genomic clone revealed an internal intron of 666 bp. 

Although PCR clones from zebrafish (595 bp) and the nurse shark 

(318 bp) have recently been reported (Greenhalgh and Steiner 1995), to 

our knowledge, this is the first report of a complete teleost RAG gene 

and of an intron existing within a RAG gene. Sequences analysis of the 

trout RAG1 gene and its predicted amino acid translation were 

compared to the other full length clones of RAG1 (human, mouse, 

chicken, Xenopus and rabbit). The predicted amino acid translation for 

trout RAG1 was compared to that of the other RAG1 genes and found to 

have a minimum of 78% and 89% similarity for the complete and 

conserved regions (aa 417-1042). This analysis revealed that trout RAG1 

was most similar to chicken RAG1 at the protein level for the complete 

and conserved regions with 81% and 92% respectively. The presence of 

the cysteine motif, putatively a zinc-finger, supports the notion that 

RAG1 interacts in some way with chromosomal DNA to orchestrate V 

(D) J recombination. Our findings of RAG1 in trout lend further 

support to the concept of a specific recombinase complex or 

recombination activating factor(s) being conserved throughout 

vertebrate evolution. 

Tissue and lymphocyte-specific expression of RAG1 

Using northern blot analysis, we then examined the tissue specific 

expression of RAG1 in lymphoid organs of trout. As Figure 3.2 

demonstrates, a strong signal (5.8 kb) was detected in both 3 month 
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(juvenile) and adult (> 2 years) fish using the trout specific RAG1 probe. 

This hybridization for RAG1 specific RNA was only found in thymic 

tissue. The signal strength for the thymic RNA was the same intensity 

for all time points assayed, including 2, 6 and 12 month old trout 

(unpublished data). The lower molecular weight species corresponding 

to 3.5 kb was not detected when poly A+ mRNA was used in the northern 

blot. No signal was observed in the other tissues even with prolonged 

exposure (5 days). The trout RAG1 message (5.8 kb) is smaller in size to 

RAG1 mRNAs (6.6 kb) in other vertebrates. The size of the message 

suggests that the trout RAG1 gene has a large 3' noncoding region 

similar to that found in human and murine RAG1 mRNAs. To 

determine whether this was the case, a cDNA library was constructed 

and screened with the trout RAG1 probe. A putative poly adenylation 

signal and poly A tract was found approximately 2.6 kbp downstream of 

the termination codon within the cDNA clone (unpublished data). 

The source of the lymphocytes specifically expressing RAG1 was 

more precisely delineated by an initial partitioning of lymphocytes from 

various tissues into sIg- and sIg+ pools. This was accomplished by 

conjugating mAb 1-14, mouse anti-trout Ig heavy chain, to magnetic 

beads which were used in a double panning assay to select the various 

lymphocyte phenotypes. RNA from equivalent amounts of sIg- and sIg+ 

cells were used in the northern blot, for hybridization to the trout RAG1 

probe. As can be seen in Figure 3.3, only sIg- cells from the thymus 

displayed a strong hybridization signal at 5.8 kb. A faint signal (60 fold 

less by densitometry scanning, data not shown) was also observed in 

sIg+ cells from the thymus. This latter expression was most likely due 

to the transient expression of RAG1 in immature lymphocytes which 
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have recently emerged within the thymus (Ma et al. 1992; Petrie et al. 

1993). 

Since expression of RAGI is limited to precursor lymphocytes and 

primary lymphoid organs in mammals, the presence of RAGI mRNA is 

characteristic of a primary lymphoid organ where V (D) J 

recombination occurs. The data presented here demonstrates that 

expression of RAG1 in trout is limited to sIg- lymphocytes in the 

thymus, and suggests that the thymus is most likely a primary 

lymphoid organ. Since teleost thymic cells also express T cell receptor 

mRNAs (Partula et al. 1994) and RAGI, the recombination events 

leading to diversity of T cell receptors more than likely occurs in the 

thymus. RAGI transcripts have also been detected by the more sensitive 

RT-PCR assay, in the kidney tissue of juvenile and adult trout 

(unpublished data). Thus, V (D) J recombination may also occur within 

the kidney, but at levels much lower than that seen in the thymus. 

These data all indicated that the thymus and possibly the kidney, serve 

as the primary locations of lymphocyte development in teleosts. 

Phylogenetic analysis 

Due to the high degree of conservation of RAGI and the hypothesis that 

it serves a similar role in all organisms carrying out V (D) J 

recombination, we decided to conduct a phylogenetic comparison of 

RAG1 genes, also known as a gene tree (Fig 3.4). To do this, a sequence 

alignment was performed using the Clustal alignment program 

(Higgins et al. 1992) and trees were constructed using the DeSoete 

algorithm (DeSoete 1983). Bootstrap parsimony (Felsenstein 1989) 
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analysis of 1,000 replications was performed to confirm branching 

positions. Trees based upon the complete and highly conserved region of 

RAG1 (aa 412-1042) were also compared with no variation in the 

branching orders seen, therefore we chose to use the tree based upon the 

complete coding region of RAG1. As mentioned earlier, the conserved 

region was found to be sufficient in carrying out V (D) J recombination 

in vitro (Silver et al. 1994). The branching order among these genes 

matched the known evolutionary pattern for the organisms from which 

they came. Starting with trout RAG], the next divergence is a lineage 

leading to amphibians and birds, which is consistent with the known 

evolution of these groups, and finally mouse, human and rabbit genes 

diverged as a relatively shallow cluster. The position of the mouse 

RAG1 gene supports the general hypothesis that the order Rodentia 

diverged sometime prior to the divergence of lagomorphs, primates and 

the other mammalian orders (Li et al. 1990). Overall, the disposition of 

taxa within the tree was consistent with paleontological evidence on the 

evolution of these organisms (Pough et al. 1989). 

In other words, the RAG1 gene may server as a molecular clock. 

Typically, genes which make good molecular clocks are genes with 

highly conserved functions which have not been transferred laterally in 

evolution (Li and Graur 1991). For the RAG1 gene, this conclusion is 

supported by the observations that RAG1 amino acid sequences are at 

least 78% and 89% similar in the complete and conserved regions of 

RAG1. Sequence alignment of all cloned RAG1 genes shows that 

relatively few insertions and deletions occur within the conserved region 

and that most nucleotide substitutions are found in the 3rd codon 

position, so they are essentially synonymous substitutions . Other 
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differences found within this region were composed mainly of conserved 

or similar amino acid substitutions. 

In summary 

We were able to clone RAG1 from rainbow trout using a degenerative 

PCR-based approach and to show that expression of this gene was 

limited to sIg- thymocytes within our northern blot analyses. RAG1 

expression analysis indicates that the thymus and possibly the kidney 

serve as the major sites for V (D) J recombination of lymphocytes in 

teleosts. Also due to the high conservation of this gene and its proposed 

function in all vertebrates, we suggest that RAGI may serves as a 

molecular clock for evolutionary analyses of various taxa that carry out 

V (D) J recombination. We are currently investigating the expression of 

RAG1 during earlier stages of trout ontogeny and characterizing the 

role of a newly discovered trout RAG2 in lymphocyte development 

(unpublished work, Hansen et al.). 
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A. 

Schematic of the rainbow trout RAG-1 genomic locus 

ATG Int TGA 
5' UT 3' UT 

NLS Zn finger I L1-010- -410R1 

Bp 1 1466 - 2126 Bp 3822 

Fig. 3.1. a, Schematic representation of the rainbow trout RAG1 

genomic clone. The location of the intron (bp 1466-2131) is labeled as Int. 

The initiation codon site at +1 was chosen based upon matching the 

consensus initiation site for eukaryotic translation (Kozak 1986). 

Locations of degenerate primers initially used to generate the RAG1 

probe are indicated as L1 (RAGL1) and R1 (RAGR1). Also depicted in 

this schematic are the relative locations of a possible nuclear 

localization signal (Dingwall and Laskey 1991) and zinc finger-like 

motif, C3HC4 type (Brunk et al. 1991; Freemont et al. 1991). The location 

of a putative poly-adenylation signal would be located approximately 2.6 

kbp downstream from the TGA stop codon in the 3' untranslated region 

(unpublished data). b, The nucleotide sequence for the coding region of 

rainbow trout RAG1 and its predicted amino acid translation is shown. 

The location of a stretch of amino acid residues possibly representing a 

NLS are underlined and the conserved residues involved in forming a 

potential zinc finger motif are indicated by boxes (residues 310-348). The 

nucleotide and predicted amino acid sequence for trout RAG1 have been 

deposited with GenBank under accession # U15663. 



B. TROUT RAG1 

ATGGAGGAGACATATGCCCCCCGGTGCTCCATGCCGGCCGAGCTCCATCATCCCTACTCCAAGTTCTCAGACTGGAAGTTCAAGCTGTTCCGGGTCAGGTCCATGGAGAGGGCCCCACTG -120 
M E E T Y A P R C S MP A E H P Y S F S D W K F L F R V R S M E R AP L -40L H K K 

CCCGGGGAGATGCAGCTAGAGAGAGGGGCCTTGTCTGGTGTTGTGGCCTCTGCACCCCTGGGGGAAACTGTGGGGGATGTGGTGGGTCTCCCAGGGAGTGTGATGAAGCTTTGGCTGGGG -240
SP GE M Q L E R G A L S G V V A A P L GE T V G D V V GL P GS V M K L W L G -80 

GGTAAGAGCAAGGAGAACGTAGAGGGCCCGGGAAAGAGAGTGGACCTGAAACTCCAGGAGATGGACACATACATGAACCACCTCAGGTGTCTGTGCCGTCTCTGTGGCGGGGCCCTGAGG -360 
G K SK ENV E GP G K R V D L K L Q E M D T Y M N H L R C L C R L C G G A L R -120 

AAAGCCAAAGGTCCAGAGCATGAAGTCCAGGGGCTTCTGGACGAGGCTAGCATGAGTGCCCTGCGTAGGGTGGGCTGCAAGGCCACCAGCTGGCCAGAGGTCATCCTCAAGGTCTTCAAA- 480
K AK GP E HE V Q GL L DE A S MS A L R R V G C K A T S W P E V IL K VF K -160 

GTGGACGTGGCGGGGGACATGGAGGTCGTCCATCCACCATTCTTCTGCCAGCGCTGCTGGACATTGGCCATGCGAGGAGGGGGCTTCTGCAGCTTCTCCAGGACCCATGTCCCTGGGTGG -600
G P 

AGACCCCACACCACCCTCTGCCTCCTCTGCACCCCAAGAAACCCTCACTACAGAGGAGAGAGGAAGAGGAGGAAGCCTACTCGTGGAGCCCAACACCTGGCCAAGAGGACCAAGTGGGAC -720 

DV AG D M E V V HP P F F C Q R C W T L AMR G G F CS F SR T H V G W -200 

R P H T T L C L L C T P R N P H Y R G E R K RR K P T R G A Q H L AK R T K W D -240 

CTCCAGGATAATGCTGCTATTGTTGGTGAGAAGAGAGCCTGGAGAACAGTGATAGATCCTCCCCAGGGACCTGGACTTAGACCCTGGGTGAGATCCAGCGTCCAGAGAGCTCAGTGGGTG -840 
L Q D N A A I V G E K R A W R TV I DP P Q GP GL R P WV R S S V Q R A Q W V -280 

AAGAGCATCACCCTCTGCCAGAAAGAGCACCTTAGTGCCAGACTGC'rGTCCGAGGACCIVCCTGTGGACTTCCTGAGCTCAGTCACCTGTCAGGTGTGTGACCACCTGTTGTCTGAGCCC -960 
Q D SK S I T L C K E H L S AR L L S E L P V D F L S S V T[C]Q[V][C]DHL L E P -320 

GTCCAGTCCCCCTGCAGACACCTCTTCTGCCGCAGCTGCATCGCTAAATATATTTACTCTCTGGGCCCCCACTGCCCGGCTTGCACCCTGCCCTGCGGCCCTGCCGACCTTACTGCCCCA- 1080 
Y P 

GCTAAGGGCTTCCTGGGGGTCCTGCACTCCCTGCCGCTGCTTTGCCCCAGAGAGAGCTGTGGGGAGCAGGTACGGCTGGACTCCTTCAGAGCCCACTGTTTGGGTCACCATCTGGAGGAA-1200

Q S P[C]R[H]L[F][C]R S[C][I]AK Y I S L GP H[C][P]A[C]T L C G P ADL T AP -360 

AK G F L G V L HS L P L L C P R E S C G E Q V R L DS F R A H L G H H L EE -400C 

GTGGATGGGGACCACAAGTCAGCGGAAAATAGCCTGGACAACTTCCTGCCTGTCAACAAAGGGGGAAGGCCCCGACAGCATCTCTTGTCACTGACGAGGCGTGCCCAGAAGCACCGGCTG -1320 
D G D H K S A ENS L D N F L P V N K G G R P R Q H L L S L T R R A Q K H R L -440 

AGGGACCTGAAGACCCAGGTGAAGGTGTTTGCAGAGAAGGAAGAAGGTGGAGACACCAAGTCGGTGTGCCTGACCCTGTTCCTGCTAGCTTTGAGGGCTGGAAACGAACACCGGCAGGCA -1440 

R D L K T Q V K V F A E K EE G G D T K S VC L T L F L A L R A G N E R Q A -480L H 

GACGAACTGGAGGCCATGATGCAAGGCAGGGGCTTTGGCCTGCATCCTGCTGTGTGTCTGGCCATCCGGGTCAACACATTCCTGAGCTGCAGCCAGTACCACAAGATGTACCGCACCGTC -1560 
D E L E A M M Q G R G F L H P A V C L A I R V N T F L S C S Y H K MY R TV -520G Q 



AAGGCCACCAGTGGGCGTCAGATCTTCCAGCCCCTACACACCTTACGCACTGCAGAGAAGGAGCTCCTCCCAGGCTACCACCCCTTTGAGTGGCAGCCGGCCCTCAAGAGTGTGTCCACA-1680
 
K A T S G R Q I F Q P L H T L R T A E K EL L P G Y H P F E W Q P AL K S V S T -560
 

TCCTGCCATGTGGGGATCATTGATGGGCTATCAGGGTGGATCGCTTCGGTAGACGACTCCCCAGCAGATACAGTCACGCGACGGTTTCGCTACGACGTGGCCCTGGTGTCAGCCCTGAAG -1800
 
S CH V GI I D G L S G W I A S V D D S P A D T V T R R F R Y D V A L V S A L K -600
 

GACCTGGAGGAGGACATCATGGAGGGGCTGAGAGAGCGAGGCCTGGAGGACAGTGCTTGCACCTCGGGCTTCAGCGTTATGATCAAGGAGTCCTGCGATGGTATGGGGGACGTCAGTGAG -1920

S E -640
 

AAGCATGGCGGAGGGCCGCCCGTCCCGGAAAAGCCTGTGCGTTTCTCCTTCACCATCATGTCCGTCTCTA'PTCAAGCTGAGGGAGAAGATGAGGCGATCACCATTTTCCGGGAGCCCAAG -2040
 

D LEEDINEGLRERGL E D S A C T S G F S V14 I K E S CD G M G D V
 

K H G G G P P V P E K P V R F SF T I M S V S I Q A E G E D E A I T I F R EP K -680
 

CCCAACTCAGAGATGTCCTGCAAGCCGCTAAGCCTGATGTTTGTGGACGAGTCGGACCACGAGACTCTCACAGGCGTCCTGGGGCCTGTGGTGGCCGAAAGGAATGCTATGAAGCACAGC -2160
 
P N S EMS C K P L S Ll4F V DE S D H E T L T G V L GP V V A E R N A N K HS -720
 

CGTCTCATCCTGTCTGTGGGCGGCCTTTCTCGCTCCTTCCGCTTCCACTTCCGGGGCACGGGCTATGATGAGAAGATGGTGCGAGAGATGGAGGGTTTGGAGGCCTCTGGCTCCACTTAC -2280
 
R L I L S V G G L SR S F R F H F R G T G Y D E K M V R E M E G L E A S G S T Y -760
 

ATCTGCACGCTGTGTGACTCCACTCGGGCAGAGGCCTCCCAAAACATGACTCTCCACTCTGTCACCCGCAGCCATGACGAGAACCTGGAGCGCTACGAACTTTGGAGGACCAACCCTCAT -2400
 
IC T L C D S T R A E A S Q N M T L HS V T R S H D E N L ER YE L W R T N P H -800
 

TCTGAGTCAGCTGAAGAGCTGCGAGACCGAGTCAAAGGCGTCTCTGCCAAGCCCTTCATGGAGACCCAGCCCACACTGGACGCCCTGCACTGTGATATCGGCAATGCCACTGAGTTCTAC -2520
 
S E S A E E L R DR V K G V S AK P F ME T Q P T L D AL H C D I G N A T E F Y -840
 

AAGATCTTCCAGGATGAGATAGGGGAGGTCTATCACAAGGCAAACCCCAGCCGGGAGCAGCGTCGGAGCTGGCGGGCCGCCCTGGACAAGCAGCTGAGGAAGAAGATGAAGCTGAAGCCT -2640
 
K IF Q DE I G E V Y H K A N P SR E Q R R S W R A A L D K Q L R K K M K L K P -880
 

GTGATGAGGATGAATGGGAACTATGCACGGAAGCTGATGACCCGGGAGGCAGTGGAGGCAGTGTGTGAGCTGGTGTGCTCAGAGGAGCGTCAGGAAGCTCTGAGGGAGCTGATGGGGCTC -2760
 
M R MN G N Y ARK L M T R E AVE A V CE L V C S E ER QE A L R EL M G L -920
 

TACATCCAGATGAAGCCTGTGTGGCGCTCCACCTGCCCGGCCAAGGAGTGCCCAGACGAGCTCTGCCGGTATAGCTTCAACTCCCAACGCTTTGCAGAGCTGCTCTCCACCGTCTTCAAG -2880
 
Y I Q M K P V W R S T C P AK E C P DE L C R Y S F N S Q R F A E L L S T V F K -960
 

TACAGGTATGACGGAAAGATCACCAACTACCTGCACAAGACCTTGGCCCATGTGCCAGAGATTGTGGAGAGGGATGGCTCCATCGGGGCCTGGGCCAGCGAGGGGAATGAGTCTGGGAAC -3000
 
Y R Y D G K I T N Y L H K TL A H V P E I V E R D G S I G A W A S E G N E S G N -1000
 

AAGCTGTTCAGACGGTTCAGGAAGATGAATGCCCGCCAGTCCAAGACCTTTGAGCTGGAGGACGTGCTGAAGCACCACTGGCTCTACACATCCAAGTACCTGCAGAAGTTC.ATGGAAGCT -3120
 
K L F RR F R K M N A R Q S K T F E L E D V L K H H W L Y T S K Y L Q K F ME A -1040
 

CACAAGGACTCTGCCAAAGCTCTGCAGGCCACCATTGACACTGTGGGGAGTCAGGAGACACAGGAGGATGCTGACATGTCACTGGATGTCCCAGACTTTTGA -3240
 

H K DS AK A L Q A T ID TV GS QE T Q E D A D M S L DV P D F STOP -1080
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Fig. 3.2. Tissue specific expression of RAG1 in rainbow trout. Northern 

blot analysis of total RNA (8ug) from spleen (Sp), thymus (Th), liver (Lv) 

and anterior kidney (Kd) from juvenile (3 months) and adult trout (30 

months) using a trout specific RAG1 probe. RAG1 expression (5.8 kb 

message) is only detected in the thymus at similar intensity levels. No 

signal was seen in other tissues even with prolonged exposure (5 days). 

The lower molecular weight species, 3.5 kb, is not seen when poly A+ 

mRNA was used. Equivalent amounts of total RNA were loaded and 

transferred as verified by methylene blue staining. The molecular 

weight of trout RAG1 message was calculated by comparison to rRNA 

bands and to RNA molecular weight markers. 
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Fig. 3.3 Immunoglobulin phenotypes of lymphocytes expressing RAG1 

in rainbow trout. Northern blot analysis of total RNA (5ug) from sIg+ 

and sIg- lymphocyte populations from the spleen (Sp), peripheral blood 

(Pb), anterior kidney (Kd) and thymus (Th) from 3 month old trout was 

hybridized with the trout specific RAG1 probe. Cells were isolated using 

a double panning assay which incorporated mAb 1-14, a mouse anti-

trout Ig heavy chain reagent (DeLuca et al. 1983). A strong signal for 

RAG1 expression was seen in the sIg- cells from the thymus. A weak 

signal was detected in the sIg+ cells from the thymus which was most 

likely due to the transient expression of RAG1 in immature lymphocytes 

(Ma et al. 1992; Petrie et al. 1993). Relative % of sIg+ cells/tissue were as 

follows; spleen -40%, PBLs -65%, kidney -55% and thymus -3% as 

determined by immunofluorescence. RNA was isolated from equivalent 

numbers of sIg- and sIg+ cells and equivalent amounts of RNA were 

loaded and transferred as verified by methylene blue staining. 
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Fig. 3.4. Unrooted phylogenetic tree of the RAG1 complete coding region 

amino acid sequences. An amino acid sequence alignment was 

conducted using the Clustal alignment function (Higgins et al. 1992) in 

GDE and a tree was then constructed using the DeSoete algorithm 

(DeSoete 1983) in GDE. Sequence positions having insertions and or 

deletions were omitted from the analysis. Trees based upon the 

complete and conserved regions of RAG1 gives essentially the same 

branching order. Branching positions were verified by bootstrap 

parsimony (Felsenstein 1989) analysis of 1,000 replications. Numbers at 

the forks represent %s from the 1,000 replicants. RAG1 sequence data 

for the chicken (M58530), Xenopus (L19324), human (M29474), mouse 

(M29475) and rabbit (M77666) were obtained from Gen Bank using the 

fetch command in GCG (Devereux et al. 1984). Accession numbers are 

indicated in parentheses. 
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Abstract
 

The recombination activating gene 2 (RAG2 ) of trout has been cloned 

and characterized. Using degenerate primers based upon an alignment 

of amino acid residues from previously cloned RAG2 genes, a portion of 

trout RAG2 (1,140 bp) was amplified from genomic DNA. The identity of 

the fragment was confirmed and then used as a probe to isolate 

restriction fragments corresponding to RAG2 from RAG1 positive 

phage DNA. The trout RAG2 gene (1601 bp) displays an average of 60% 

and 75% similarity at the nucleotide and amino acid level when 

compared to clones from other species and was found to contain an 

acidic region in the carboxyl terminal end. Based upon sequence and 

restriction analysis, RAG1 and -2 in trout as in all species studied to 

date are convergently transcribed and found to be tightly linked (2.8 kb 

apart). Northern blot analysis of one year old trout demonstrated strong 

expression of RAG2 in the thymus, with a much weaker signal being 

detected in the pronephros. Using the more sensitive assay, RT-PCR, 

the highest expression of both RAG1 and -2 were detected in the thymus 

and pronephros, with fainter signals being observed in the spleen, 

mesonephros and liver. Expression of both genes was observed in 

embryos beginning at day 10 post fertilization. Finally, putative pre-B 

cells were detected in the thymus using both immunofluorescence and 

confocal microscopy. 
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Introduction 

In mammals, the cells of the lymphoid lineages originate from 

pluripotent hematopoietic stem cells located within the bone marrow. 

Progenitors of the T-cell lineages migrate to the thymus to mature, 

whereas progenitors of the B-cell lineages develop within the bone 

marrow microenvironment. The primary Ig and antigen receptor 

repertoires for B and T-cells are generated by site-specific recombination 

events of variable region gene segments, termed V (D) J recombination 

(Schatz et al 1992) within the primary lymphoid organs. This process is 

believed to be facilitated in part by evolutionary conserved sequence 

motifs found flanking the germline variable region genes (Schatz et al 

1992). The motifs, termed recombination signal sequences (RSSs), 

consist of a highly conserved dyad-symmetric heptamer sequence which 

is separated from an A/T rich nonomer sequence by either a 12 or 23 by 

non-conserved spacer (Sakano et al 1980, Hesse et al 1989). The length of 

the spacer is believed to govern the sequential joining of the gene 

segments. This pairing process is believed to be mediated by a set of 

proteins which would specifically recognize the RSSs and bring them 

into close proximity prior to recombination. Using radiolabeled RSSs as 

probes, investigators have isolated cDNA clones which when expressed 

were shown to specifically recognize and bind to the RSSs (Matsunami et 

al 1989, Shirakata et al 1991). It has yet to be demonstrated if these genes 

are critical for V (D) J recombination to occur, but the RSS motifs are 

required for the joining of two gene segments. Prior to the actual 

formation of the coding joint, further events can occur to enhance 

diversity including base trimming as well as templated (P) and non­
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templated (N) insertions (Landau et al 1987, Kallenbach et al 1992). 

Following surface Ig expression, the antibody repertoire may be further 

diversified by somatic hypermutation, an antigen-dependent response 

occurring within the germinal centers (Berek 1991). The overall process 

and machinery involved in V (D) J recombination is poorly understood, 

but recently two genes known as the recombination activating genes 1 

and -2 have been shown to be essential for recombinational activity 

(Schatz et al 1989, Carlson et al 1991). 

Transfection of the RAG locus into fibroblasts results in V (D) J 

recombination of artificial substrates which was the basis for the 

isolation of these two genes (Schatz et al 1989). Expression of the RAG 

genes coincides with the ontological locations and cell types known to 

undergo V (D) J recombination. The exact role of RAG1 and RAG2 are 

not precisely known, but studies involving knockouts of either of these 

genes have demonstrated that they are critical for the proper 

development of mature B and T lymphocytes (Mombaerts et al 1992, 

Shinikai et al 1992). This phenotype can be circumvented by the 

introduction of Ig and TCR transgenes into mice disrupted for the RAG 

genes (Spanopoulou et al 1994, Shinikai et al 1993). Similarily, 

expression of the RAG genes coincides with variable region 

recombination in RAG inducible B-cell lines (Oltz et al 1993). Mutagenic 

analysis of RAG1 and RAG2 have demonstrated that the C-terminal end 

of RAG1 and the first three quarters of RAG2 are all that is needed to 

induce V (D) J recombination of artificial substrates in transfected cells 

(Silver et al 1993, Cuamo et al 1994). Although the exact role of the RAG 

genes is unknown these studies elude that RAG1 and RAG2 are most 
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likely actual components of the V (D) J recombination machinery and 

not merely transcription factors. 

The overall genomic organization for both the heavy and light 

chain immunoglobulin loci have been well characterized in virtually all 

vertebrates. In mammals and amphibians the heavy chain loci is 

arranged such that VH, DH and JH gene segments are recombined to 

form the variable region which is then spliced to constant region gene 

segments (Early et al 1980, Schwager 1988, Du Pasquier 1989). In 

chickens and rabbits, the immunoglobulin heavy and light chain 

primary repertoires are generated by the recombination of a single 

functional V gene to the other variable region gene segments which are 

further diversified by somatic gene conversion events (Reynuad et al 

1989, McCormack and Thompson 1990, Knight and Crane 1994). The 

elasmobranch heavy and light chain loci are commonly referred to as 

the "multicluster type" of arrangement where tandem arrays of joined 

and nonjoined V(D)JC clusters can be found (Kokubu et al 1988, Rast et 

al 1994). In teleosts the heavy chain loci is of the mammalian type of 

organization (Wilson et al 1990, Bengten et al 1993) and the light chains 

have been shown to posses the multicluster pattern as found in the 

elasmobranchs (Daggfeldt et al 1994). The IgH loci of the coelocanth 

Latimeria chalumnae has also been partially characterized and was 

found to consist of clusters of VH and DH gene segments which were 

two to three hundred base pairs apart (Amemiya et al 1993) and thus 

may represent a transitional state between the elasmobranchs and 

teleosts. More recently Wilson and coworkers (1995) have extended the 

mammalian IgH organizational pattern to the Holostean fish, bowfin 

and gar. 
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In mice, coexpression of the RAG genes are found within the bone 

marrow and thymus, the ontological sites of B and T-cell lymphopoiesis. 

In Xenopus, expression of RAG1 and RAG2 was found in the spleen, 

thymus and liver of juvenile frogs. The spleen is believed to be the site 

for B-cell development. In chickens, expression of RAG1 and RAG2 

were found in the thymus (organ for T-cell lymphopoiesis), with sole 

expression of RAG2 within the bursa of Fabricius, the site of further 

diversification of Ig repertoires by gene conversion events. Later Takeda 

and coworkers ( 1992) demonstrated that RAG2 expression was not 

essential for gene conversion events, but that RAG2 may be involved in 

initiating the process. Bernstein and coworkers (1994) using RT-PCR 

demonstrated expression of RAG1 in the thymus and spleen in sharks, 

the putative locations for lymphopoiesis in elsamobranchs. In teleosts 

the Ig loci have been characterized, but the ontological locations of 

lymphopoiesis are not clear. Some believe that the thymus may serve as 

the primary source of lymphocytes (Grace and Manning 1980, Josefsson 

and Tatner 1993) whereas others believe that the pronephros (anterior 

kidney) may be the bone marrow equivalent in teleosts (Ellis 1977, Irwin 

and Kaattari 1986, Razquin et al 1990.) The thymus, based upon 

morphological and histological analyses is considered to be the organ for 

T-cell lymphopoiesis (Chilmonczyk et al 1992). Previously we reported 

the isolation and characterization of RAG1 from rainbow trout. In that 

study expression of RAG1 was found to be limited to sIg- lymphocytes 

within the thymus using northern blot analysis (Hansen et al 1995). 

Here we describe the isolation and characterization of RAG2 from trout 

and extend our analysis of lymphopoiesis in this teleost using a 

molecular and cellular based approach. 
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Materials and Methods 

Animals 

Rainbow trout (Oncorhynchus mykiss, shasta strain) were obtained 

from the Marine Freshwater Biomedical Sciences Center at Oregon 

State University, and maintained at the Salmon Disease Laboratory in 

Corvallis, Oregon. This facility receives pathogen-free water at a 

constant temperature of 12° C. All fish were fed Oregon Moist Pellet 

commercial salmon food daily. Embryos were generated from the eggs 

of a single female which were fertilized with the milt from a single 

male. Embryos and tissue samples were obtained from trout killed by 

anesthetic overdose in benzocaine (ethyl p-aminobenzoate, Sigma, St. 

Louis, MO) (Kaattari and Irwin 1985) and bled via the caudal vein prior 

to dissection to rid the organs of erythrocytes. Tissues were used fresh 

or frozen immediately with liquid nitrogen and stored at -85° C until 

needed. 

Trout RAG2 probe 

PCR was conducted using degenerate primer sets based upon an amino 

acid alignment of all cloned RAG2 genes. The proceedure was used to 

amplify a portion of RAG2,1,142 by , from rainbow trout genomic DNA. 

All primers used for PCR amplification and sequencing were 

synthesized at the Oregon State Center for Gene Research and 

Biotechnology Central Services facility. The RAG2 degenerate primer 

set was as follows: sense RAG2L1 5.-TTY-GGI-CAR-AAR-GGI-TGG-3' 

(bp 91-108) and antisense RAG2R1 5'-TCC-TCR-TCR-TCY-TCR-TA-3' 



99 

(bp 1213-1232). Numbers in parentheses refer to primer position relative 

to the complete RAG1 sequence. All primers were desalted using 

Oligoclean (BMB, Indianapolis, IN). Rainbow trout DNA was isolated 

using the procedure of Strauss (1989) which was subsequently used in 

PCR. Genomic DNA (250ng) was added to a 1 x PCR cocktail containing 

50mM KC1, 10mM Tris-HC1, pH 9.0, .01% gelatin, 3mM MgC12, 200 mM 

dNTPs, and 150 pmoles of each primer. PCR samples were then 

overlaid with mineral oil, heated for 10 minutes at 95 °C, cooled to 80 °C 

at which time 2.5 units of Taq polymerase (Promega) and 0.2 units of 

Perfect Match (Stratagene) were added and the profile of 94 °C for 45 s, 56 

°C for 1min, and 72 °C for 45 s for a total of 30 cycles followed by an 

additional extension time of 5 min at 72 °C was used for amplification. 

One tenth of the reaction was electrophoresed through a 2% agarose gel 

and a product of expected size (1,142) was observed. The amplified 

fragment was cloned into pCRII (Invitrogen) and sequenced for 

verification of identity. 

The PCR clone, pTARAG2, was digested with Eco R1 and the 

insert was gel purified (Geneclean:Bio 101) and used as a homologous 

probe in Southern and northern blots. The fragment was randomly 

primed with [32] dCTP (Amersham) using a commercial kit (BRL) to a 

specific activity of 1 x 109 cpm/ug. The probe was then cleared of non-

incorporated nucleotides using G-50 Quick-Spin columns (BMB) prior to 

hybridization. All hybridization and washings for Southern and 

northen blot analysis took place in a Techne Hybridiser, HB-1D (Techne) 
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Genomic cloning of RAG2 and restriction analysis of the RAG locus 

Previously we described the isolation of RAG1 from a rainbow trout 

lambda genomic library (Hansen et al 1995a). In all species investigated 

to date, the RAG genes have been shown to be tightly linked (Schatz et al 

1992). Using this knowledge we analysed RAG1 positive lambda clones 

for the presence of trout RAG2. Phage DNA from selected clones were 

digested with Eco R1, Bgl II and Hind III restriction endonucleases 

(Promega), separated on a 0.8 % agarose gel, stained with Et Br, 

transfered to Nytran (S & S) using 10 x SSC and UV fixed. The blot was 

then probed under high stringency (65 °C 5x SSC,5x Denhardts soln and 

0.5% SDS) conditions overnight with the radiolabeled RAG2 probe, 

washed (65 °C 0.2x SSC/0.2% SDS) and exposed to Hyperfilm 

(Amersham). The majority of RAG2 was localized to a 4.8 kbp Bgl-II 

restriction fragment which was cloned into pGEM-3Z for sequencing. 

The blot was then stripped and reprobed under the same conditions with 

a radiolabeled probe corresponding to the 5' end of RAG1 (Hansen et al 

1995) to determine its map position. 

Amplification and cloning of the 5' end of trout RAG2 

We have previously described minor modifications of the 5'RACE 

methods of Frohman and co-workers (1989) and Renu and co-workers 

(1992) were used to amplify and clone trout RAG1 (Hansen et al 1995a). 

The same methodology was employed to amplify and clone the 5' end of 

trout RAG2. Briefly, first strand cDNA was synsthesized using 10 ng of 

thymic poly A+ mRNA, M-MLV reverse transcriptase (Promega) and 

an antisense anchor primer (R2RACE1 5'-TGG-AGG-AGA-TCT-CGT­
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TGT-3', by 296-313). The mRNA template was degraded with Rnase H 

and dA tailed using TdT (Promega) and dATP. Second strand synthesis 

was accomplished using Taq polymerase and a dTn-adapter primer by 

PCR. Reaction products were filtered (Microcon-30 spin filter, Amicon) 

and used in a second PCR amplification with a nested gene specific 

primer (R2RACE2 5'-GAG-ATG-GGT-CGC-AGT-TTG-3', by 165-182) 

and the adapter primer. An aliquot from this nested PCR was then 

diluted 1:100 with TE and 1 ul of this dilution was used in a second 

nested PCR amplification (R2RACE3 5'-GAA-GAC-CCC-AGT-GGG­

ACA-3', by 121-138). The product (-220 by ) was cloned and sequenced to 

construct a sense primer (5'-CCT-GCG-GTA-GAT-GTC-3', by -10 to +5) 

for the amplification of the 5' end from trout genomic DNA. Products 

were gel purified, cloned (pCRII) and sequenced from two independent 

PCR amplifications. 

RNA preparation and northern analysis 

Total RNA was extracted from specified tissues and embryos using the 

Trizol (MRC,inc) reagent according to manufacture's specifications. 

Poly A+ mRNA was further isolated from total RNA using Oligotex-dT 

(Qiagen). RNA samples (15 ug total and 5 ug Poly A) were fractionated 

on a 1.2%agarose-6.6% formaldehyde-1x MOPS gel, transefered using 

10X SSPE and UV fixed. Prior to hybridization, blots were stained with 

Methylene blue (MRC) for a qualitative assessment of integrity. The 

blots were then photographed (Polaroid film 667) and positives were 

scanned by densitometry (Image QuaNT v4.1b, Molecular Dynamics) to 

establish equivalency of loading based upon rRNA bands. Methylene 
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blue was removed during prehybridization (50% formamide, 5x SSPE, 

3X Denhardts soln and 0.5% SDS at 42 °C) and the blots were probed 

overnight using the same conditions as with prehybridizations with the 

addition of the trout RAG2 radiolabeled probe. Blots were washed under 

high (RAG2- 0.2x SSPE/0.2% SDS at 65 °C) or moderate stringency 

(xTdT-1X SSPE/0.2% SDS at 55 °C) and exposed to Hyperfilm 

(Amersham) for periods ranging from 2-7 days at -80 °C. The molecular 

weight for RAG2 was calculated by comparison with RNA molecular 

weight standards (Promega) and to rRNA bands. 

RT-PCR expression analysis of trout RAG1 and -2 

The method used was based upon modifications from Greenhalgh et al 

(1993). Total RNA from specified tissues were incubated with RQ1 

RNase free DNase (Promega) at 0.667 units per ug RNA in lx digestion 

buffer (50 mM Tris-HC1, pH 7.5, 6 mM MgC12, 2 mM spermidine and 10 

mM NaCl) for 20 minutes at 37 °C. The reactions were extracted 2 times 

with an equal volume of DEPC ddH2O saturated phenol/chloroform, 1 

time with chloroform and finally precipitated with 3M Na-acetate and 

ethanol. RNA samples were quantitated by UV spectroscopy (A260) and 

aliquots were gel electrophoresed and stained with Et Br for an integrity 

check of the RNA. One ug of RNA was incubated with 100 ng random 

primers (Promega) in 10 ul DEPC H2O at 65 °C for 3 minutes and placed 

on ice. The reactions were then reverse transcribed using 200 U M-MLV 

reverse transcriptase (RNase H minus, Promega) at 37 °C for 60 

minutes in a total of 20 ul lx RT buffer (50 mM Tris-HC1, pH 8.3, 75 mM 

KC1, 3 mM MgC12, 10 mM DTT, 500 mM dNTPs and 5 U RNasin 
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(Promega). Following RT, samples were incubated for an additional 5 

min at 100°C and stored at -80 °C. Duplicate sets of samples were used, 

one contained reverse transcritase and the other did not. Portions of the 

RT reactions ranging from 1/200 to 1/5 of the total were added to 50 ul 

PCR reaction mixtures (supplemented with 2 uCi of [32]-P dCTP) 

containing 25 pmoles each of the RTRAG1 (sense 5'-GGA-GAA-GAT­

GAG-GCG-ATC-ACC-A-3', by 2002-2023 and antisense 5'-TTG-GCA­

GAG-ACG-CCT-TTG-ACT-3', by 2429-2450) and RTRAG2 (sense 5'­

GTG-GCT-GCA-ACC-GCA-AAG-T-3', by 341-359 and antisense 5'-CTC­

TTG-CCA-AAG-CTA-GGT-GGA-A-3', by 616-637) primers and overlaid 

with 2 drops of mineral oil. The reactions were heated to 80 °C at which 

time 1.5 U of Taq DNA polymerase was added. PCR amplification for 

both RAG1 and RAG2 were conducted using the following profile: 94 °C 

45 sec, 57 °C 1 min and 72 °C 45 sec for 24 cycles followed by a final 

extension time of 5 min at 72 °C. One tenth of the reaction products were 

fractionated on 6% polyacrlamide gels, stained with EtBr for 

visualization of PCR molecular weight markers (Promega) and dried. 

The dried gels were then exposed to Hyperfilm for detection of amplified 

products. 

Immunofluorescence and confocal microscopy 

Methods: Spleen , peripheral blood , kidney and thymus lymphocytes 

were isolated by ficoll gradient centrifugation. Cells were fixed, 

permeabilized with Triton-X 100, and allowed to adhere to polylysine 

coated coverslips. Live cells were used as controls. The samples were 

blocked with 1% BSA, 0.1% Tween-20 in PBS (pH 7.6) for 30 minutes and 
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then incubated with a 1:100 dilution (-50 ug/ml) of mAb 1-14 (mouse anti 

trout Ig heavy chain; DeLuca et al 1983) in PBS/1% BSA for one hour. 

The cells were washed and subsequently incubated with goat anti-mouse 

IgG conjugated with Texas Red® (5 ug/ml, Molecular Probes) for one 

hour. After washing the samples, fluorescein conjugated Concanavalin 

A (10 ug/ml, Molecular Probes) was added for 5 minutes. The cells were 

washed and then subjected to a dehydration series of 50%, 75%, and 

100% ethanol and mounted in Cytoseal (Stephens Sci). Cells were 

analyzed by fluorescence microscopy using a Nikon Labophot II 

equipped with a CF E Plan Achromat 100X 1.25 N.A. objective lens and a 

multiband filter set, DAPI/fluorescein/Texas Red® (Omega® Optical). 

Photomicrograph images were recorded with Ektachrome 400 ASA 

daylight film (Kodak). Cell preparations for confocal microscopy were 

the same as that used in immunofluorescence. Cells were visualized 

using a Zeiss LSM-410 confocal microscope. 

Sequencing 

Sequencing of trout RAG2 clones was attained using both manual and 

automated DNA sequencing methods based upon dideoxy chain 

termination chemistry. Manual sequencing was performed using the 

Sequenase 2.0 system (USB) and automated sequencing was conducted 

using an ABI 373A sequencer located at the Center for Gene Research 

and Biotechnology on the Oregon State campus. Sequences were 

determined in both directions using RAG2 gene specific or universal 

primers. 
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Computer analysis 

Amino acid and nucleotide sequence comparisons were conducted using 

the BEST FIT function in GCG V7.2 unix (Deveroux et al 1984). 

Positions with insertion/deletions were omitted from these comparison. 

Sequence alignments were performed using PILEUP found in GCG 

along with minor manual corrections. Phylogenetic trees were 

constructed using the DeSoete algorithm (DeSoete et al 1983) and 

banching positions were confirmed by bootsrap parsimony (Felsenstein 

1989), found in Phylip V3.5. Databases searches were conducted using 

BLAST 1.4.8MP unix (Altschul et al 1990). Primers utilized for 

sequencing and PCR amplifications were chosen using Right Primer v 

1.01 (Biodisk) and densitometric analyses were accomplished using 

Image QuaNT V4.1b from Molecular Dynamics. 
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Results 

RAG2 cloning and sequence analysis 

Previously we described the isolation of a lambda phage genomic clone 

encoding trout RAG1 using a degenerate PCR based approach (Hansen 

et al 1995a). We employed the same basic technique in this report to 

isolate genomic clones of trout RAG2. Reports dealing with the isolation 

of the RAG locus indicated that in all species studied to date, RAG1 and 

RAG2 are tightly linked (-6-8 kbp apart). Initially we used probes 

derived from Xenopus and murine RAG2 to identify restriction 

fragments containing RAG2 from RAG1 positive lambda phage DNA 

under low stringency conditions. A similar approach was successful in 

the isolation of RAG2 from Xenopus and rabbit using murine and 

chicken RAG2 probes (Greenhalgh et al 1993, Fuschiotti et al 1993), but 

this approach failed to identify trout RAG2 clones. Therefore we 

generated a set of degenerate primers, based upon an amino acid 

alignment of all cloned RAG2 genes, to amplify a homologous probe for 

RAG2 from trout genomic DNA by PCR. An expected product of 1,142 by 

was observed upon amplification. The product was then cloned and 

sequenced to validate its identity as being derived from trout RAG2. A 

BLAST search was conducted on the amplified sequence and was shown 

to be most similar to RAG2 sequences from other species. 

Restriction digests of RAG1 positive phage DNA were 

electrophoresed, blotted and hybridized with the trout RAG2 PCR 

generated probe. Upon autoradiography, a 4.8 kbp Bgl II fragment was 

shown to hybridize with the trout RAG2 probe. This fragment was gel 
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purified, subcloned into pGem-3Z and sequenced. Sequence analysis 

revealed that the Bgl II clone contained the majority of trout RAG2 

(amino acids 107-533), the 3' UT region for both RAG genes along with 

the carboxyl-terminal end of RAG1 (aa 841-1,072). Based upon the 

orientation and distance between the genes it was determined that, as in 

other species, trout RAG1 and RAG2 are convergently transcribed. The 

distance between the two genes was only 2.8 kbp apart, demonstrating 

that the trout RAG genes are tightly linked (Figure 4.1a). Southern blot 

analysis was also performed on trout genomic DNA and it appears that 

an additional locus may exist for the RAG genes (data not shown). 

As mentioned above the genomic clones for RAG2 were found to be 

truncated at the 5' end. Using the technique of 5' RACE, thymic mRNA 

was used as a template to amplify and clone cDNAs coding for the 5' end 

of RAG2. The cDNAs were sequenced and used to compose a sense 

primer for the amplification of the 5' end from trout genomic DNA. 

Three independent clones were sequenced. The sequence of trout RAG2 

along with its predicted amino acid translation are shown in figure 4.1b. 

The initiation codon was based upon an alignment of all cloned RAG2 

genes (figure 4.2), which predicts that trout RAG2 would consist of 533 

amino acids. An acidic region is found near the carboxyl terminal end 

which is characteristic of all cloned RAG2 genes thus far. 

The nucleotide and amino acid sequence of trout RAG2 was then 

compared to the other published clones for RAG2. Trout RAG2 averaged 

60% and 75% similarity at the nucleic and amino acid level when 

compared to the other clones of RAG2. Based upon the alignment found 

in figure 4.2, a phylogenetic gene tree (figure 4.3) was constructed using 

the DeSoete treetool to further illustrate the conserved nature of RAG2. 
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Bootstrap parsimony analysis of 200 replicants was then used to support 

the branching positions. The overall branching order for the taxa 

within the tree, is consistent with the paleontological records for these 

organisms (Pough et al 1989). 

Expression analysis of trout RAG1 and RAG2 

The tissue specific expression pattern of RAG2 was initially investigated 

using northern blot analysis. Figure 4.4 shows the results of total RNA 

samples prepared from a 1-year old trout which were blotted and 

hybridized with the trout RAG2 probe. In the thymus, a strong signal 

corresponding to a 2.2 kb transcript was observed along with a much 

weaker signal at -3.8 kb. The size of the 2.2 kb message is consistent to 

other reported RAG2 transcripts. The transcript detected at -3.8 kb 

could possibly be due to an alternative splicing event or may be the result 

of incomplete processing of RAG2 hnRNA. A faint signal at 2.2 kb is 

also observed in the pronephros sample. The pronephros signal was 

found to be 510x less abundant in comparison to the thymic signal as 

determined by densitometry. No signal was detected in the other 

tissues. Similar patterns for RAG2 expression were observed using 

juvenile trout (data not shown). 

Using the more sensitive expression assay, RT-PCR, tissue 

samples from 1-year old trout were analyzed for the presence of both 

RAG1 and RAG2 transcripts. Total RNA was first treated with RNase­

free DNase to eliminate the possibility of amplification resulting from 

minute quantities of genomic DNA or frequently used plasmids 

containing RAG1 or RAG2. The samples were then organically 
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extracted, precipitated and quantified. An aliquot of each sample was 

also gel electrophoresed and stained with Et Br for a qualitative 

assessment of integrity. RNA samples were reverse transcribed using 

random primers (hexamers) and for all analyses RNA samples without 

reverse transcriptase were used as negative control. Duplicate sets of 

samples with and without reverse transcriptase treatment were then 

used in a semi-quantitative PCR assay with RAG1 and RAG2 gene 

specific primers. The reactions were amplified in the presence of [32]-P 

dCTP for detection of products by autoradiography. Signal intensity 

correlated with the volume of reverse-transcribed products that were 

added to the PCR reaction. 

The results depicted in figure 4.5 a (RAG1) and b (RAG2) reveal 

that the RAG transcripts can be found in a variety of tissues using this 

sensitive method. All samples used in the PCR reactions contained 

-1/50 and -1/100 of the RNA used in northern blots for RAG1 (Hansen et 

al 1995a) and RAG2 respectively, with the exception of the pronephros 

(1/150 for RAG1, -1/300 for RAG2) and thymus (1/1500 RAG1, -1/3000 

for RAG2) samples. Strong signals corresponding to the expected sizes 

of the amplified portions of the RAG1 and RAG2 (448 and 296 bp) were 

observed in the thymus and pronephros, followed by much fainter 

signals in the spleen, mesonephros and liver. Taking the dilutions into 

perspective, the signals seen in the thymus and pronephros are quite 

considerable. Amplified products were not observed in the samples 

corresponding to the upper and lower gastro-intestinal tract or brain. 

All RNA samples which did not receive reverse transcriptase treatment 

were negative (data not shown). 
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We then directed our attention to the point in ontogeny when 

embryos begin to express the RAG genes. To do this, eggs were collected 

at various points post fertilization, embryos were isolated and RNA from 

three individuals was harvested per time point. Using the RT-PCR 

assay as described above, we analyzed RNA from day 7,10, 13 and 18 post 

fertilization. Faint transcripts for both genes could be detected 

beginning on the tenth day post fertilization as shown in figure 4.6. This 

is consistent with the observations by Castillo and coworkers (1993) of the 

first cIg+ cells in developing trout embryos. The relative levels are 

similar for both genes, with the expression of RAG1 being slightly more 

intense than that of RAG2 at all time points. 

Immunofluorescence and confocal analysis of putative pre-B cells 

The expression patterns observed for the RAG genes indicates that the 

thymus and pronephros are most likely the sites of lymphopoiesis in 

trout. To determine the location of developing pre-B cells in trout we 

analyzed tissue preparations using both immunofluorescence and 

confocal imaging. Cytoplasmic expression of immunoglobulin heavy 

chain in the absence of surface expression of Ig is a hallmark of pre-B 

cells. Using a mouse anti-trout heavy chain reagent coupled to Texas 

Red, mAb1-14 (DeLuca et al 1983), we assayed thymic, peripheral blood, 

pronephros and splenic cell preparations for the presence of putative 

pre-B cells. ConA labeled FITC was used to demonstrate lymphocyte 

surfaces. Nonpermeabolized cells (controls) displayed only ConA FITC 

staining alone (T-cells and monocytes) or together with surface Texas 

Red signal (mature B-cells) in all tissues examined (data not shown). 
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No red cytoplasmic signal was observed in nonpermeabilized cells. Both 

intracellular and extracellular, or exclusively extracellular, Ig-Texas 

Red signals were detected in the fixed and permeabilized cells of the 

peripheral blood, pronephros and spleen; however, no cells were stained 

red exclusively inside the cell (data not shown). In the fixed and 

permeabilized cells of the thymus (figure 4.7a), cells exclusively 

expressing cytoplasmic Ig were found without evidence of surface 

staining for Ig. We extended this observation using laser confocal 

microscopy to verify that true cytoplasmic expression of IgH in the 

absence of a surface signal was being observed in the thymic 

preparations. Figure 4.7b clearly demonstrates that this is indeed the 

case and implies that the thymus in trout harbors cells which may be 

the precursors of mature B-cells. 
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Discussion 

This study addressed several questions regarding lymphopoiesis 

in rainbow trout including: the isolation and characterization of a RAG2 

homologue, the expression patterns of both RAG1 and RAG2 in tissue 

samples, the point in time at which embryos initiate V (D) J 

recombination as measured by expression of the RAG genes and the 

location of precursor B-cells in trout tissue. 

Using a degenerate PCR based approach, we were able to amplify 

a portion of trout RAG2 from genomic DNA. Primers were selected 

based upon the high degree of amino acid conservation of RAG2 amino 

acid sequences. The amplified product was verified as being derived 

from trout RAG1 and used as a probe to identify restriction fragments 

from RAG1 positive phage DNA. The majority of RAG2 was isolated 

was found in a 4.8 kbp Bgl II restriction fragment. The remaining 5' 

end was obtained by PCR amplification of genomic DNA. 

Our results demonstrate that the RAG locus in teleosts is similar 

to that found in all species thus far examined (fig 4.1a). The RAG genes 

are tightly linked and are found to be convergently transcribed (Schatz et 

al 1992). In all species investigated prior to trout, the genes were found 

to be -6-9 kbp apart, but in our analysis the distance between the 

respective 3' ends was less than 3 kbp apart. Due to the close proximity 

of the genes, a post-transcriptional method of regulation may be possible 

via anitsense transcripts of either RAG1 or RAG2. We have yet to 

completely sequence the 3' UT region, but anticipate finding poly­

adenylation signals for both genes in this area. Previously investigators 

had postulated that the origins of the RAG genes might be from the 
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recombinatorial machinery of a virus or fungus that subsequently 

introduced the locus into the genome of vertebrates which in turn 

evolved into the central mechanism mediating V (D) J recombination 

(Oettinger et al 1990). This is still pure speculation, but it will be 

interesting to see what the organization of the RAG locus will be in the 

elasmobranchs and if this will shed some light on the subject. 

The trout RAG2 open reading frame of 1601 by coding for 533 

amino acids, is similar in size to that found in all RAG2 genes. The 

overall conservation of RAG2 can be observed in the alignment of the 

amino acid sequences from vertebrates (fig 4.2 ). Contrary to what is 

seen in alignments of RAG1, conserved substitutions in RAG2 are 

evenly distributed throughout the entire sequence. Taking this into 

consideration along with the observation that cysteine and proline 

residues are absolutely conserved within the alignment, it appears that 

the overall structure of RAG2 has been maintained during evolution. 

The alignment also dipicts absolute conservation of serine and a 

threonine residues believed to be potential regulators of RAG2 activity 

via phosphorylation events (Lin and Desiderio 1995). Thus it appears 

that essential regulatory and conformation residues have been 

conserved during evolution. 

The predicted amino acid sequence was 53% identical and 75% 

similar overall in comparison to the other RAG2 sequences. As found in 

all other RAG2 amino acid sequences a stretch of acidic residues can be 

observed in trout as well from amino acids 367-417. A BLASTP search of 

this region resulted in matches that contained acidic regions such as 

Drosophila Troponin-T, UBF1 and papillomavirus early protein E7. 

Based upon the conserved nature of RAG2 a phylogenetic gene tree was 
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conducted using the complete coding region of all cloned RAG2 genes. 

The tree (fig 4.3) generated in this study is quite similar to that of RAG1 

(Hansen et al 1995). Overall both analyses demonstrate that the 

branching positions of the taxa within the trees are consistent with the 

known evolution of these organisms. Therefore the RAG genes have the 

potential of being utilized as molecular clocks for future phylogenetic 

comparisons within species that undergo V (D) J recombination. 

Tissue specific expression of the RAG genes has been shown to 

occur within tissues and cell types known to undergo V (D) J 

recombination of Ig and TCR molecules. Therefore expression of the 

RAG genes coincides with the location of hematopoietic and primary 

lymphoid tissues as well as precursor B and T lymphocytes. In both 

juvenile and adult trout a high degree of mRNA expression of both 

RAG1 (Hansen et al 1995) and RAG2 were found in the thymus using 

northern blot analysis (fig 4.4). Within the RAG2 northern blots an 

additional band at approximately 3.2 kb was noted. This signal most 

likely represents incomplete processing of hnRNA or alternative 

splicing events. Analysis of RAG2 expression in other vertebrates also 

noted the appearance of additional transcript sizes. An extremely faint 

band corresponding to the pronephros sample was detected when 

hybridized with the RAG2 probe. Based upon these initial northern blot 

analyses, it appears that the thymus and possibly the pronephros serve 

as primary lymphoid organs in trout. 

For a more sensitive analysis of RAG expression, we employed a 

RT-PCR assay to assess relative expression levels of these genes in a 

variety of tissue sources (fig 4.5). Expression of both genes was noted 

within the thymus, spleen, pronephros, as well as faint signals within 
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the mesonephros and liver. No expression of either gene was found in 

the samples derived from the brain or upper and lower gastrointestinal 

tract. The signal intensities of both genes was greatest within the 

thymus and pronephros which further suggests that these organs serve 

as the locations for V (D) J recombination of lymphocyte receptors in 

trout. 

We also determined the time at which embryos begin to express 

the RAG genes (fig 4.6). In our analysis expression could be detected at 

day 10 post fertilization and was found at all time points past the initial 

detection. Previously, Castillo and coworkers (1993) investigated the 

ontological appearance of proposed pre-B cells in trout. In their 

immunofluorescence study, pre-B cells as determined by cytoplasmic 

expression of IgH could be observed at day 14 post fertilization followed 

by surface expression at day 18 post fertilization. Our results are 

therefore consistent with the expression of the RAG genes prior to the 

actual recombination of IgH as observed in mammals. 

During the development of trout the thymus is the first tissue to 

display lymphocytes prior to their appearance in the kidney and spleen 

(Ellis 1977, Secombes 1983, Razquin 1990). The thymus in fish is also the 

first lymphoid tissue to develop during ontogeny and, as in higher 

vertebrates, is composed of a lymphocytes and lymphoblasts contained 

within a reticular network of epithelial cells. Thymic infiltration by 

lymphocytes has been detected as early 22 days pre-hatch in Atlantic 

salmon and 5 days pre-hatch in rainbow trout (Ellis 1977, Grace and 

Manning 1980). Most investigators will agree though that the 

pronephros is the site of hematopoiesis and is generally referred to as 
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the bone marrow equivalent in teleost fish (Ellis 1977, Razquin et al 

1990). In their study dealing with immunoglobulin light chains in fish, 

Daggfeldt and coworkers (1993) noted heavy expression of 

nonrearranged and multiple forms of IgL transcripts in the pronephros 

and spleen which was suggested to be indicative of the presence of pre-B 

cells. Previously we noticed expression of RAG1 in sIg+ lymphocytes 

from the thymus. It is quite possible that this expression was due to 

newly emergent immature B-cells which were transiently expressing 

RAG1 or pre-B cells with IgH associated with surrogate light chain. 

We therefore decided to analyze various tissues for the presence of cells 

expressing cytoplasmic IgH in the absence of surface expression. Using 

immunofluorescent analysis we found what could be perceived as pre-B 

cells only within thymic cell preparations. In support of these findings, 

cytoplasmic only expression was also observed in thymocytes using 

confocal microscopy as well. Clearly these results suggest that the 

thymus in trout may contain pre-B cells, but absolute confirmation will 

have to await analysis using both IgH (Warrsl -14) and IgL (not available 

yet) serological reagents. 

In summary, our investigation has shown several aspects 

associated with lymphopoiesis in trout. Firstly, our characterization of 

the RAG locus has demonstrated that the RAG genes are highly 

conserved in sequence as well as in organization. We then examined 

the tissue specific expression patterns of both genes which indicated that 

V (D) J recombination most likely occurs within the thymus and 

pronephros in trout. Next it was shown that expression of the RAG 

genes correlated with the first onset of cIgH in embryos. Finally 
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we propose that pre-B cells may be located within the thymus which 

suggests that the thymus in trout may play a dual role in the 

development of B and T lymphocytes. We are currently investigating 

other markers such as TdT which are associated with the development 

of precursor B-lymphocytes in trout. 
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Figure 4.1 (A) Schematic representation of the RAG locus in rainbow 

trout. The dotted boxes represent the coding regions of RAG1 and RAG2 

with arrows indicating the direction of transcription. The black box 

indicates the RAG1 intron. The Eco R1 and Bgl II restriction sites 

located within the phage polylinker region are indicated by asterisks. 

Restriction sites shown are E. Eco RI and B. Bgl II. The approximate 

location of the RAG1 and RAG2 probes are also shown. (B) The 

complete nucleotide sequence of rainbow trout RAG2 and its predicted 

amino acid translation are shown. The acidic stretch is underlined. 

This sequence has been deposited with Genbank under accession 

#U31670. 



Fig 4.1B
 
Rainbow trout RAG2
 

90
 

ATGTCTCTGCAACCACTGACTGCAGTGAACTGTGGCAGCCTCCTGCAGCCTGGCTGCTCCCTGTTACAGCTGGATGGTGACATATTTCTG
 
P C S L P GC S
M S L Q L T A V N G L Q G L L Q L D GD I F L
 

180
 
TTTGGGCAGAAGGGGTGGCCCAGGCGCTCCTGTCCCACTGGGGTCTTCGGGGTACGCCTAAAGCATGGGGAGCTCAAACTGCGACCCATC
 
F G Q K G W P R R SC P T G V F G V R L K HG E L K L R P I
 

270
 
TCCTCCTCAAATGACTCCTGCTATCTTCCCCCTCTGCGTTGTCCCGCCTTGACCCGCCTTGAGCCCCATGATGGACACCCAGAGGGCTAC
 
S S S N D S C Y L PP L R P AL T R L E PHDGHP E G Y
C
 

360
 
CTCATCCATGGAGGGCGAACCCCAAACAACGAGATCTCCTCCAGCCTCTACCTGCTGACTCTGGACAGCCGTGGCTGCAACCGCAAAGTG
 
L I H G G R T P NNE I S S S L Y L L T L D S R G C N R K V
 

450
 
ACCCTGCGCTGTCAGGAGAGAGAGTTGGTGGGAGAGCAGCCAGGGCCCCGATACGGCCACACACTTAGCATGGTGCAGAGTCTGGGCAAG
 
T L R C Q ER EL VG E Q P G P R Y H T L M V Q S L GKG S
 

540
 
CGGGCCTGCGTTGTGTTTGGGGGCAGATCCTACATGCCGGCCGGGGAGCGGACAACAGAGAACTGGAACAGCGTTGTGGACTGCCCTCCT
 
R A V V F G R S Y PAGER R T T ENWNS V V DC P P
C G
 

630
 
CAGGTGTTCATCATCGACTTAGAATTTGGCTGCTGCTCTGCCCACACCTTACCTGAGCTCACTGACGGCCAGTCCTTCCACCTAGCTTTG
 

F I F H L T G S
Q V I D L E G C C S A T P S L D Q F HL AL
 
720
 

GCAAGAGACGACTATGTCTACTTCCTTGGGGGGCAAAGTCTGTCGCTTGATTTTCGCCCCCCTCGGGTATATAGCCTGAGGGATGGGGTT

AR D D Y V Y F L G G Q S L S L D F R P P R V Y S L R D G V
 

810
 
CCTGAAGGGAAGCCCGCTGTTTCCTGTAGCACCTGGACACCGTCCATGTCCATCTCCAGTGCTATTGCCACCCGTGTGGGGCCCTCCCAT
 
P E G K P A V C S T W T P S MS I S S A A T R V GP S H
S I
 

900
 
GAGTTCATTATCCTGGGTGGGTATCAGTTAGAGACCCAAAAGAGGATGGAGTGCAGCAGTGTGGTGCTGGATGACTCTGGGATAAACATC
 

L
E F I I L G G Y Q E T Q K R ME C S S V V L DD S GIN I
 
990
 



Fig 4.1B continued
 

GAGCCCAGAGAGGCCCCTGAGTGGACAGGGGAAATCAAACACAACCACACCTGGTTCGGAGGCAGCATGGGTGGAGGGAGCGCTCTGATT
 
E P R E A P E W T G E I K H N H T W F G S A AL I
 

1080
 
GGGATCCCCTCTGAGGGCAGGCAAGCCACGCCCGAAGCACATTACTTCTACCAGGTGTGCTTCCAAAAGGAGGGGGAAGGAAAGGGTGAA
 

G T
G I P S E R Q A TPE A H Y F YQVCF Q K EGEGK GE
 
1170
 

GATGGGAACCAGGTCTGCAGCCAGGAGTCCACAGACTTTGAGGACTCCGCCCCTCTGGAGGACTCTGAGGAGCTGTACTTCGGCCGCGAG
 
D G N Q C S Q E S T D F EE DD S A P L E D S E E
V EEL Y F GRE
 

1260
 
CCCCATGAGCTGGAGGACAGCAGCGAGGGAGAGGGGGATACGTACAATGAAGAGGATGAGGAGGATGAGAGCCAGACAGGCTATTGGGTC
P HEL EDS SEGEGD T YNEEDEEDESQ TG Y WV
 

1350
 
AAATGTTGCCTGGGCTGCCAGGTGGACCCCAACACTTGGGAGCCCTACTACTCCACAGAACTGCTGCGGCCAGCCATGATCTACTGCTCC
 
K C C L G C Q V D P N T W E P Y Y T E
S TEL L R PAMI YCS
 

1440
 
AAAGGGGAGGGAGGCCACTGGGTCCATGCCCAGTGTATGGAGCTGACTGAGGGCCTGCTGGTGAGGCTCTCGCAGGGAAACGGCAAGTAC
K GE GGHWVHAQCMEL T E L SQGNGK Y
G L L V R
 

1530
 
TTCTGCCTGGACCACGGGGGACTGCCCCGCCAGGAGATGACCCCGCCACGTCAGGTGCTGTCCCTGAAGAGGAGCCCCATGAAACCCCAG
 
F C L D H G G L P R Q E M T P P R Q V L S L K R S P M MK PQ
 

1602
 
CACAGGAAGGGCCCAATGATGCGAAGGATGACACCCGCCAAGAAGCGCTTCTTCAGGAGGCTGTTTGAGTAA
 
H R K G P M M R R M T P AK K R F F RR L F ESTOP
 



Fig 4.2 
Alignment of RAG2 

Trout-R2 MSLOPLTAVN CGSLLOPGCS LLOLDGDIFL FGOKGWPRRS CPTGVFGVRL KHGELKLRPI SSSNDSCYLP PLRCPALTRL 80 
Rabbit-R2 ....MI.VR. NTA.I...F. .MNF .Q F K HFDI .QNH...K A VF.K ...... ...Y..TCTF 
Xenopus-R2 .T.RIV.PGS NT..I...F. ..HFSSHV.Y L K LLD. .NND A TFT ....... ...H..VCSF 
Chicken-R2 ....MVS..S NS ...... S. ..NF..HV.F K FLDI .QN...MK A AF.R ...... ...Y..ICT. 
Mouse-R2 ....MV.VGH NIA.I...F. .MNF..QV.F K HFDI .QNH...K A IF.K ...... ...Y..TCSY 
Human-R2 ....MV.VS. NIA.I...F. .MNF..QV.F K HLDV ..NHV..K T IF.K ...... ...Y..TCTF 

Trout-R2 E-PHDGHPEG YLIHGGRTPN NEISSSLYLL TLDSRGCNRK VTLRCOEREL VGEOPGPRYG HTLSMVOSLG KRACVVFGGR 160
 
Rabbit-R2 QGSSESEKQQ .I....K... ..L.DKI.VM SVVCKN-.K. ..F..T..D. ..DV.EA... .S.DV.Y.R. .SMG.L....
 
Xenopus-R2 SASQG.EITQ ...... K... ....HK..IM .MAFPV-.KR FS.C.S.KD. A.DV.EA... .SMNV.F.R. .N.V.M....
 
Chicken-R2 RGNGESDKHQ .I....K... .DL.DKI.IM SMVNKT-TK. T.FQ.I.KD. G.DV.EA... ..INV.H.R. .SMI.I....
 
Mouse-R2 KGSI.SDKHQ .I....K... ..L.DKI.IM SVACKN-.K. ..F..T.KD. ..DV.E.... .SIDV.Y.R. .SMG.L....
 
Human-R2 KGSLESEKHQ .I....K... ..V.DKI.VM SIVCKN-.K. ..F..T.KD. ..DV.EA... .SINV.Y.R. .SMG.L....
 

Trout-R2 SYMPAGERTT ENWNSVVDCP POVFIIDLEF GCCSAHTLPE LTDGOSFHLA LARDDYVYFL GGOSLSLDFR PPRVYSLRDG 240
 
Rabbit-R2 ....SNQ... .K....A..L .H..LV.F.. ..ATSYI... .Q..L...VS I..N.T..I. ..H..ANNI. .ANL.RI.VD
 
Xenopus-R2 ....LNQ... ....N.I..E .L.YL...Q. ..STSFN.R. .Q..L...VS ...N.T..IF ..H..GNN.. ..N..KIKVD
 
Chicken-R2 ..I.LAQ... .K ....... L .S..LV.F.. ...TSYI... .Q..L...VS V....TI.I. ..H..QNNT. ..SL.K.KVD
 
Mouse-R2 ....STQ... .K....A..L .H..L..F.. ..ATSYI... .Q..L...VS I..N.T..I. ..H..ASNI. .ANL.RI.VD
 
Human-R2 ....STH... .K....A..L .C..LV.F.. ..ATSYI... .Q..L...VS I.KN.TI.I. ..H..ANNI. .ANL.RI.VD
 

Trout-R2 VPEGKPAVSC STWTPSMSIS SAIATRVGPS HEFIILGGYO LETOKRMECS SVVLDDSGIN IEPREAPEWT GEIKHNHTWF 320
 
Rabbit-R2 L.L.S..IN. TVLPGGI.V. ...L.QTNND -..V.V.... ..N....V.N I.S.E.NK.E .QEM.T.D.. PD...SKI..
 
Xenopus-R2 L L S TVINSKI.F. .S.V.QTS.D -..V.V...E SDS...LI.N G.F...ET.D .QEI.T.D.. ..... SK...
 

Chicken-R2 L.L.S.C.T. .ILPGGI.V. .G.V.QT.DT -..VLV.... SDN....I.N TI..E.NK.E .VE.VS.D.. PD...CRM..
 
Mouse-R2 L.L.T...N. TVLPGGI.V. ...L.QTNND -..V.V.... ..N....V.. L.S.G.NT.E .SEM.T.D.. SD...SKI..
 
Human-R2 L.L.S...N. TVLPGGI.V. ...L.QTNND -..V.V.... ..N....I.N IIS.E.NK.E .REM.T.D.. PD...SKI..
 

http:TI..E.NK
http:G.F...ET
http:SDS...LI
http:L.L.S..IN
http:T.FQ.I.KD
http:FS.C.S.KD


Fig 4.2 continued
 

Trout-R2 GGSMGGGSAL IGIPSEGROA TPE-AHYFYO V-CFOKEGEG KGEDGNQVCS QEST-DFEDS APLEDSEELY FGREPHELED 399 
Rabbit-R2 .SN..N..VF L...GDNK.I VS...F...M LK.--T.DDV HEDQRTFTN. .T..E.PG.. T.F FC .SA.ANSFDG 
Xenopus-R2 .AD..K.AV. F...VDNKHQ STDCSFF..V LNFGDNDPAL Q T.. .G..EEQ... M FT .N.DGNIFDE 
Chicken-R2 .CD..K..V. L...GANK.L ISD..N...I LR.NKA.EDE EE.LTA.T.. .A..E.QG.. T.F FS .SA.ASSFDV 
Mouse-R2 .SN..N.TIF L...GDNK.. MS...F...T LR.--S.EDL SEDQKIVSN. .T..E.PG.. T.F FC .SA.ATSFDG 
Human-R2 .SN..N.TVF L...GDNK.V VS..GF...M LK.--A.DDT NE.QTTFTN. .T..E.PG.. T.F FC .SA.ANSFDG 

Trout-R2 SSEGEGDTYN EEDEEDESQT GYWVKCCLGC QVDPNTWEPY YSTELLRPAM IYCSKGEGGH WVHAQCMELT EGLLVRLSQG 479
 
Rabbit-R2 -DD.F.... .D..D...E. ...IT..PT. D..I...V.F NK... ....H.D.-. ....K..D.A .RT.IH..E.
 
Xenopus-R2 -D----... .D..D...V. ...I...PD. DM.R F NK.S. .F...DG.-. ...S...D.S .TM.KY...N
 
Chicken-R2 -DD-I.... .D ...... E. ...II..AS. NI.I...V.F NK... .L..S.S.-. ....... D.S .SM.LQ..EA
 
Mouse-R2 -DD.F.... .D..D...V. ...IT..PT. D..I...V.F NK... ....H.D.-. ..... S.D.E .RT.IH..E.
 
Human-R2 -DD.F.... .D ...... E. ...IT..PT. D..I...V.F NK... ....H.D.-. ....... D.A .RT.IH..A.
 

Trout-R2 NGKYFCLDHG GLPRQEM-TP PRQVLSLKRS PMKPQHRKGP MMRRMTPAKK RFFRRLFE* 536
 
Rabbit-R2 SN..Y.NE.V EIA.A-LQ.. -KRTIP.RKP ...SL.K..S G-KIL S.L....D.
 
Xenopus-R2 .I....NE.V EVA.G-VQ.. -EKTPPV.KT SL.SVRKRTT I-N.LSAV S.L
 
Chicken-R2 .V....NE.V H.NKG-LQ.. -KKAVH..KQ ...RL.K.KT .-KLT..V.. S.L
 
Mouse-R2 SN..Y.NE.V QIA.A-LQ.. -KRNPP.QKP ...SL.K..S G-KVL S.L....D.
 
Human-R2 SN..Y.NE.V EIA.A-LH.. -QR..P..KP ...SLRK..S G-KIL S.L....D.
 

Figure 4.2 Comparison of the predicted amino acid sequences from trout, rabbit, Xenopus, chicken, mouse and 

human RAG2. The region essential for RAG2 associated V (D) J recombination activity is underlined. Serine 

and threonine residues believed to be involved in modulating the RAG2 protein by phosphorylation are in bold. 

http:SN..Y.NE
http:SN..Y.NE
http:EKTPPV.KT
http:SN..Y.NE
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Chicken-R2 

92 

88 

Xertopus-R2 

Trout-R2 

94 

98 

Human -R2 

Rabbit-R2 

Mouse-R2 

Figure 4.3 Unrooted phylogenetic tree of the RAG2 complete amino 

acid sequences. An amino acid alignment was conducted using the 

Clustal alignment function found in GDE along with manual 

corrections and a tree was then constructed using the DeSoete algorithm 

in GDE. Positions have insertions/deletions were masked and 

branching positions were confirmed by bootstrap parsimony analysis of 

200 replicants. Numbers at the forks represent %s obtained from the 

bootstrap analysis. 
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Liv UGI .LGI MS PR SP TH BR 

Figure 4.4 Northern analysis of RNA from various tissues of a one 

year-old trout. Total RNA was extracted from liver (Liv), upper GI 

(UGI), lower GI (LGI), mesonephros (MS), pronephros (PR), spleen 

(SP), thymus (TH) and brain (BR) and 15 ug was electrophoresed, blotted 

and hybridized with a trout-specific RAG2 probe (3 day exposure). 

RAG2 expression (2.2 kb) is observed in the thymus with a much weaker 

signal (510x less as determined by densitometry) being detected in the 

pronephros. The additional band at approximately 3.2 kb in the thymus 

is most like due to incomplete processing of hnRNA or a splice variant. 

Equivalent amounts of total RNA were loaded and transferred as 

verified by methylene blue staining. The molecular weight markers are 

indicated. 
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Figure 4.5 RT-PCR expression analysis of RAG1 (A) and RAG2 (B) 

from various tissues of a one year-old trout. Total RNA was extracted 

from the specified tissues, treated with RNase-free DNase, extracted, 

precipitated and quantified. Equivalent amounts of RNA were then 

incubated with random hexamers with or without reverse 

transcriptase. cDNA aliquots were then amplified with RAG1 or RAG2 

gene specific primers by PCR in the presence of 32P-dCTP. The amount 

of cDNA used for the thymus and pronephros amplifications were 1/20 

and 1/3 in comparison to that used for the other samples. One tenth of 

the amplified samples were electrophoresed in a 6 % polyacrylamide gel, 

dried and exposed overnight. PCR product sizes were verified by 

molecular weight standards and are indicated by arrows for RAG1 and 

RAG2. All samples which did not receive reverse transcriptase 

treatment were negative (data not shown). 
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Figure 4.6 RT-PCR analysis of trout embryos expressing RAG1 and 

RAG2. Total RNA was extracted from 3 embryos at days 7, 10, 13 and 18 

post fertilization. RNA was then treated with RNase-free DNase, 

extracted, precipitated and quantified. Equivalent amounts of RNA 

were then incubated with random hexamers with or without reverse 

transcriptase. cDNA aliquots (1/4 of RT reaction) were then amplified 

with RAG1 or RAG2 gene specific primers by PCR in the presence of 

32P-dCTP. One tenth of the amplified products were electrophoresed in 

a 6% polyacrylamide gel, dried and exposed to film for 3 days. 

Expression of both genes is observed beginning on day 10 post 

fertilization. All samples not treated with reverse transcriptase were 

negative (data not shown). 
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a
 

FIG 4.7 a. Fluorescence microscopy reveals putative pre-B cells 

within the thymus of trout. Fixed and permeabilized cells from the 

spleen, peripheral blood and kidney showed ConA-fluorescein staining 

alone, with surface alone or a combination of ConA-fluorescein/ 

extracellular Ig Texas Red®! intracellular Ig Texas Red® (data not 

shown). No cells from these sources were positive only for cytoplasmic 

red staining. Fixed and permeabilized cells from the thymus displayed 

a number of cells that were positive for cytoplasmic Ig expression with 

the absence of a surface signal. Arrows indicate putative pre-B cells. 

b. Confocal microscopy of fixed and fixed/permeabilized cells from the 

thymus. 
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CHAPTER 5 

Concluding Remarks 

The overall thrust of this thesis was to develop markers which 

assess the ontological locations of lymphopoiesis in trout. In mammals 

research in this area has been conducted for many years now with a 

wide variety of mAbs and molecular probes being available, but 

relatively little work in this area has been conducted in teleosts. The 

traditional method of using serological markers such as mAbs has been 

somewhat hampered in studies involving fish. Reagents are available to 

identify a few cell types within trout, but these are mainly limited to 

those cells expressing surface Ig. As far as the Ig heavy and light chain 

loci are concerned, great strides have been made in characterizing the 

relative organizational pattern for these loci (Wilson and Warr 1992). 

Few studies however looked at the expression of these receptor genes. It 

appears that expression is associated with tissues normally found 

harbor populations of mature B-cells. Recently the cDNAs encoding 

MHC class I and II molecules as well as clones for the beta chain of T-

cell receptor have been isolated and partially characterized in fish 

(Dixon et al 1995, Partula et al 1994). These clones provide a great 

opportunity for those interested in characterizing the development of the 

immune system in trout and other teleosts. They may be used outright 

as nucleic acid probes for expression analyses or moreover for providing 

a source of recombinately expressed proteins from which mAbs can be 

generated. With the advent of the polymerase chain reaction coupled 



131 

with degenerate primers, a wide variety of immunologically relevant 

genes will most certainly be found. 

In Chapter 2 it was demonstrated by using an amino acid 

alignment of higher vertebrate variable region genes that a trout specific 

probe could be amplified from genomic DNA using a degenerate primer 

set in a PCR assay. What was not discussed was that this primer set 

also had the ability to amplify variable region genes from a wide variety 

of vertebrate species which may be useful for future phylogenetic 

comparisons. Using the amplified probe, cDNAs from a peripheral 

blood lymphocyte library were isolated and found to encode full-length 

secreted and membrane bound forms of IgH. Approximately 20-25 

different full-length IgH cDNAs were isolated based upon restriction 

and partial sequence analysis of the inserts. Two of these clones, were 

sequenced and found to encode membrane bound forms of IgH as 

expected which showed strong similarity to other IgH clones from 

vertebrates. 

In catfish and Atlantic salmon, a quite different theme was found 

for the generation of mIgH as compared to that found in mammals and 

sharks. In these teleost species, an unusual splicing event occurs 

which leads to the complete loss of the CH4 domain. Previously 

investigators had reported partial cDNAs coding for trout mIgH, we on 

the other hand possessed complete clones which helped to validate that 

the splicing events found in the catfish and Atlantic salmon were typical 

of teleosts. Our mIgH cDNA clones also hinted at the possibility that 

they may contain isotypic differences, but it was concluded that the 

limited amino acid variability found most likely represented allotypic 

differences. 
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Our next goal in Chapter 3 was to identify a molecular marker 

associated with early events in the development of trout lymphocytes. 

Based upon the presence of recombination signal sequence motifs on all 

genomic variable region clones from mammals to fish, we asked the 

question if a common recombinase has also been conserved over course 

of evolution to perform V (D) J recombination of lymphocyte receptors. 

In mammals using a transfection based assay, genomic clones 

containing the recombination activating genes (RAG1 and RAG2) were 

isolated which proved to be essential for V (D) J recombination of 

lymphocyte receptors. We initially attempted to isolate trout RAG1 

using heterologous probes, but with little success. We therefore 

constructed an amino acid alignment of all cloned RAG1 genes. The 

alignment displayed a highly conserved region in the carboxyl terminal 

end of RAG1 which would eventually be the basis for our primer 

selection. 

Our initial PCR amplifications of RAG1 were not too encouraging 

as products of all sizes were observed. Success came upon the use of 

Hot-start PCR which basically entails fully denaturing the template for a 

period time prior to the addition of Taq polymerase in the PCR assay. 

Once we had concluded that the product of this reaction was derived 

from trout, it was used to isolate RAG1 from a lambda genomic library. 

The clone was sequenced and was shown to be most similar to the other 

RAG1 sequences upon a BLAST search. An interesting finding within 

the sequence analysis was the identification of an intron within RAG1. 

To this point, all RAG1 genes were shown to consist of a single exon, 

possibly during the course of evolution the intron was lost. Further 

analysis of other teleost and elasmobranch RAG1 genomic clones will 
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help to resolve if the intron is only found within teleosts and then 

possible lost at some later point in evolution. It should also be noted 

however, that southern blot analysis of genomic DNA indicated the 

presence of possibly another locus for the RAG genes which was not 

pursued. RAG1 in this second locus may be devoid of the intron. 

Since our interest relied mainly on the use of RAG1 as a 

molecular marker of lymphopoiesis in trout, we used it as a probe to 

assess its tissue specific expression in juvenile and adult trout. In 

mammals expression of the RAG genes is limited to the primary 

lymphoid organs, the thymus and bone marrow. In our northern blot 

analyses using both total and poly A+ RNA, expression was found to be 

limited to the thymus in both juvenile and adult trout at relatively the 

same levels. This was surprising for we anticipated expression to be 

found in the thymus as well as the pronephros, which is believed to be 

the primary organ for B-cell development. Using a double panning 

assay, we more precisely investigated the expression of RAG1 in sIg­

and sIg+ cells from various lymphoid sources. Again the only cell type 

displaying RAG1 expression were those from the thymus. The sIg+ 

expression in the thymocyte preparation was a bit surprising, but we 

attribute it to transient expression of RAG1 in immature cells which 

had recently undergone V (D) J recombination (possibly immature B-

cells). Another possibility is that the sIg+ cells found expressing RAG1 

are early pre-B cells displaying expression of surface heavy chain and 

surrogate light chain. These findings confirmed our initial beliefs that 

the thymus can be regarded as a primary lymphoid tissue in trout. This 

is also supported by the findings of T-cell receptor mRNA transcripts in 

the thymus of trout (Partula et al 1994). 
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In Chapter 4 it was demonstrated that the RAG locus in teleosts is 

similar to that found in all other species thus far examined. Both genes 

are tightly linked and were found to be convergently transcribed based 

upon sequence analysis. An interesting finding was that the common 3' 

untranslated region in trout was much smaller in comparison to that of 

all other species. It may be that the close proximity of the respective 3' 

ends leads to regulation of the respective transcripts via an antisense 

mechanism. Taking the size of the entire locus (-8.2 kbp) into 

consideration, it not beyond the imagination that a viral vector may have 

introduced the RAG genes into the vertebrate genome. As of yet the 5' 

flanking regions of the RAG genes has not been characterized. It will be 

extremely intriguing if sequence motifs resembling direct repeats or 

long terminal repeats are found which would support the viral 

hypothesis for the origin of the RAG genes in vertebrates. Using PCR 

many investigators have recently tried to amplify portions of RAG1 from 

more distant species such as the lamprey or even protochordates 

without luck. Sequence analysis of the amplified products displayed no 

signs of RAG1. Therefore the process of V (D) J recombination may 

have been initiated by the introduction of the RAG genes into the direct 

predecessors of fish. 

Keeping with the general theme of this thesis we extended our 

initial expression analyses of the RAG genes to include RAG2. In 

northern blots, expression of RAG1 was found in the thymus with an 

extremely faint signal observed in the pronephros. The expression of 

RAG2 and not RAG1 as noted by the northern blots is reminiscent of the 

situation in chickens. It has been postulated that RAG2 in avian species 

is involved in gene conversion events which further diversify the Ig 
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repertoires. Interestingly a variety of pseudo-variable region genes have 

been noted in teleost. Whether these are relevant findings will have to 

await future studies. Using a more sensitive expression assay (RT-PCR) 

we found transcripts of the appropriate sizes for the RAG genes in a 

variety of tissue sources. The heaviest levels of expression were found in 

the thymus and pronephros. Weaker signals were also noted in other 

tissue sources which may be due to immature cells which were recently 

exported to these tissues or that these tissues play some sort of 

rudimentary role in lymphopoiesis. Therefore based upon the overall 

expression patterns of the RAG genes, we conclude that the thymus and 

pronephros are most likely the sites of V (D) J recombination in trout 

and thus can be considered to be primary lymphoid organs. 

Our final analysis of lymphopoiesis in trout consisted of a cellular 

based approach to identify tissues harboring precursor B-cells. By strict 

mammalian definition, an early precursor B lymphocyte is that cell 

which expresses cytoplasmic IgH in the absence of surface expression, 

but has yet to rearrange its IgL germline genes. In mammals plasma 

cells are known to internalize surface Ig, but in fish it has been shown 

that Ig is still present on plasma cells. Our data using both confocal and 

immunofluorescence microscopy is consistent with our hypothesis that 

the thymus is the location for lymphopoiesis of both B and T 

lymphocytes. Confirmation of this hypothesis will have to await the use 

of mAbs specific for all light chain isotypes, but due to the organizational 

pattern of the light chain loci it may be some time before these reagents 

are available. Therefore the data presented in this thesis lays the 

foundation for future studies looking at the overall development of the 



136 

immune system in fish as well as providing insight for studies dealing 

with the evolution of the immune systems in higher vertebrates. 
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