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INTRODUCTION 

 Light-frame, wood residential structures are indeterminate structural systems that 

rely on complex interactions between structural members and connections to transfer 

loads through the structure and into the foundation.  The majority of light-frame wood 

structures are comprised of sub-assemblies including vertical shear walls spanned by 

horizontal floor and roof diaphragms.  Sub-assemblies share and transmit forces through 

inter-component connections comprised of nails, bolts, and other mechanical connectors.  

The sequence in  which the loads are transferred from their source  to components and 

cladding, then to the main-load carrying systems, and finally to the foundation and 

supporting ground is referred to as the load path (Taly 2003). Load paths are dependent 

on the relative stiffness of individual components and sub-assemblies within the structure 

as well as the direction of loading.  Gravity loads act vertically downward and are created 

by the self-weight of the structure as well as possible snow accumulation on the roof.  

Additional uplift and lateral loads can be created by pressures from strong wind events 

(tornadoes and hurricanes) and ground acceleration during earthquakes.  Due to their 

light weight, wood frame houses are particularly vulnerable to uplift pressures created by 

strong winds.  

 The damage caused by Hurricane Andrew in 1992, demonstrated this weakness.  

In the wake of Hurricane Andrew, building codes for high wind events were developed in 

Florida and adopted in hurricane prone areas of the United States (van de Lindt et al. 

2007).  However, since more than 80 percent of single-family homes in the US were 

constructed before these updated codes, wind damage to residential structures is still a 

pressing concern (Prevatt et al. 2009).  Structural investigations performed by van de 

Lindt et al. (2007) after the 2005 hurricane Katrina, showed that the prevalent source of 

structural damage in light-frame houses was an overall lack of design for uplift load 

paths.  Failures were seen in roof-to-wall connections and wall-to-foundation 

connections, where mechanical connectors were of insufficient strength and spacing to 

transfer the required uplift loads.  Loss of sheathing on roof and gable-end trusses was 

another common issue, which was attributed to improper edge nail spacing used to 
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connect the sheathing to the wood framing (van de Lindt et al. 2007).  Structural 

investigations performed after the 2011 Joplin and Tuscaloosa tornadoes showed similar 

damage along the outskirts of the tornado paths where lower wind speeds occurred 

(Prevatt et al. 2012a).  In light of this, it was suggested that high wind codes and retrofits 

developed for coastal communities could also help to reduce damages in tornado-prone 

areas (Prevatt et al. 2012a). 

 Due to the complex and indeterminate nature of light-frame wood structures, 

developing economic yet effective building codes and retrofits requires a detailed 

understanding of full building system behavior.  Unfortunately, full-scale testing of 

complete structures is costly and limited by the size of existing testing facilities.  In light 

of this, a considerable amount of research has focused on developing accurate and 

practical methods for modeling full building systems using computer software programs.  

A detailed review of previous full- scale testing and modeling is included in Appendix A 

of this thesis. 

OBJECTIVES 

 The two main objectives of the current study were to: (1) develop and validate 

practical modeling methods and (2) analyze the effects of plan geometry, wall openings 

and gable-end retrofits on lateral and uplift wind load paths through a realistic house with 

complex geometry. 

RESEARCH APPROACH 

The modeling methods used in this study were based on the work of Martin et al. 

(2011) and intended to represent practical methods that could be easily applied in 

industry.  All models were developed using commercially available software, SAP2000 

Version 14 (Computers and Structures 2009).  Inter-component connections were 

modeled with linear springs, or as simple pinned or rigid connections.  Additionally, 

industry standards and specifications were used to select the material properties used in 

the model. 
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A four-step validation procedure was used to validate load sharing and system 

behavior in the model: 

1. Two-dimensional trusses were modeled and validated against full-scale tests 

from Wolfe et al. (1986) – (Appendix B) 

2. Three-dimensional roof assemblies were modeled and validated against full- 

scale tests from Wolfe and McCarthy (1989) – (Appendices C and D) 

3. Two-dimensional shear-walls were modeled and validated against full-scale 

tests from Dolan and Johnson (1996) – (Appendices E and F) 

4. A three dimensional, L-shaped house was modeled and validated against full- 

scale tests from Paevere et al. (2003) – (Appendices G and H) 

Results from the validation procedure are briefly discussed in the journal manuscript and 

fully detailed in the appendices listed above.  Once validated, the modeling methods were 

used to create various models for two load path investigations: 

1. Uniform Uplift Investigation: The effects of large wall openings and a re-

entrant corner on uplift load paths were investigated in models of simple 

buildings with no interior walls.  The models were loaded with a uniform 

uplift pressure applied normal to the roof. – (Appendix J) 

2. Wind Load Investigation: The effects of gable-end retrofits and re-entrant 

corner dimensions on lateral and uplift load paths were investigated in a 

realistic, L-shaped house.  Models of the house were loaded with ASCE 7-05 

Main Force Resisting System (MWFRS) design wind loads (ASCE 2005). – 

(Appendices K and L) 

Details for the models used in the load path investigations are included in Appendix I.  

Results from the investigations are included in the appendices listed above, and discussed 

in the manuscript. 
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ABSTRACT 

 The objective of this study was to develop and validate practical modeling 

methods for investigating load paths and system behavior in a realistic, light-frame wood 

structure.  The modeling methods were validated against full-scale tests on sub-

assemblies and an L-shaped house.  The model of the L-shaped house was then modified 

and used to investigate the effects of re-entrant corners, wall openings and gable-end 

retrofits on system behavior and load paths.  Results from this study showed that the 

effects of adding re-entrant corners and wall openings on uplift load distributions were 

dependent on the orientation of the trusses with respect to the walls.  Openings added to 

walls parallel to the trusses had the least effect on loads carried by the remaining walls in 

the building.  Varying re-entrant corner dimensions under ASCE 7-05 (ASCE 2005) 

design wind loads caused increasing degrees of torsion throughout the house, depending 

on the relative location and stiffness of the in-plane walls (parallel to the wind loads) as 

well as the assumed direction of the wind loads.  Balancing the stiffness of the walls on 

either side of the house with the largest re-entrant corner helped to decrease torsion in the 

structure under lateral loads.  Finally, although previous full-scale tests on gable-end 

sections verified the effectiveness of the gable-end retrofit that was recently adopted into 

the 2010 Florida building code, questions remained about the effects of the retrofit on 

torsion in a full building.  The current study found that adding the gable-end retrofits to 

the L-shaped house did not cause additional torsion. 

INTRODUCTION 

 In the United States wind damage accounted for approximately 70 percent of 

insured losses from 1970 to 1999 (Holmes 2001).  Wood-frame residential structures are 

particularly vulnerable to damage from wind due to their light weight.  Additionally, the 

majority of existing single-family houses in the United States were constructed before 

building codes were updated after Hurricane Andrew in 1992.  More recent wind storms 

in the United States, including the 2005 hurricane Katrina and the 2011 Joplin, Missouri, 

and Tuscaloosa, Alabama, tornadoes have shown that structural damage from wind is still 
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a prevalent issue, especially for wood-framed residential structures.  Structural 

investigations from these hurricane and tornado events showed that the main source of 

damage in houses was an overall lack of design for uplift load paths (van de Lindt et al. 

2007 and Prevatt et al. 2012a).  Additionally, gable-end failures were reported as an area 

of concern (van de Lindt et al. 2007 and Prevatt et al. 2012a).  In order to develop 

retrofitting options and improve building codes for residential structures, it is necessary 

to gain a better understanding of system behavior and load paths in light-frame structures. 

 Analyzing system behavior in complex structures requires the development of 

practical and accurate analytical models validated against full-scale tests.  Phillips et al. 

(1993) and Paevere et al. (2003) performed full-scale tests on realistic, rectangular and L-

shaped residential structures.  Results from these studies showed that light-frame roof 

diaphragms act relatively stiff compared to shear walls.  Additionally, in-plane walls 

(parallel to applied lateral loads) are capable of sharing approximately 20 to 80 percent of 

their loads with other walls in the structure depending on the relative location and 

stiffness of the surrounding walls (Paevere et al. 2003).  Data from these tests have also 

been used by a number of researchers to develop practical models for load path analysis. 

 Doudak (2005) developed a non-linear model of the Paevere et al. (2003) house, 

using a rigid element for the roof diaphragm.  Individual sheathing nail connections were 

modeled using non-linear spring elements.  The model was capable of predicting lateral 

load distributions to the walls, however, the level of detailing in the walls proved time 

consuming.  Kasal (1992) and Collins et al. (2005) developed non-linear models of the 

Phillips et al. (1993) and Paevere et al. (2003) houses, respectively, also using rigid 

elements for the roof diaphragm.  Unlike Doudak (2005), the in-plane stiffness of the 

shear walls was controlled using diagonal non-linear springs.  This reduced the amount of 

time required for modeling; however, full-scale tests were necessary to determine the 

non-linear stiffness of the springs and material properties for the structure.  None of these 

models were used to examine uplift load paths.  Shivarudrappa and Nielson (2011) 

modeled uplift load paths in light-frame roof systems.  For increased accuracy, the 

models incorporated individual trusses, sheets of sheathing (modeled with individual nail 

connections) and semi-rigid roof-to-wall connections.  Results from the model showed 
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that the load distribution was affected by the location of gaps in the sheathing as well as 

the stiffness of the sheathing and connections.   

Martin et al. (2011) developed a simple, linear model of a rectangular structure 

tested at one-third scale at the University of Florida.  The model relied on material 

properties and wall stiffness properties readily available in industry standards.  The in-

plane stiffness of the walls was controlled by adjusting the shear modulus of the wall 

sheathing.  The roof diaphragm was modeled as semi-rigid with individual trusses and 

sheathing, although gaps between individual sheets of sheathing were not included.  

Martin et al. (2011) found that the linear modeling methods were sufficient for predicting 

lateral load paths as well as uplift load paths through the structure when loaded within the 

elastic range.  Additionally, the distribution of uplift loads was highly dependent on the 

orientation of the roof trusses.  The modeling methods developed by Martin et al. (2011) 

were used in the current study to analyze lateral and uplift load paths in a more realistic 

light-frame house.  A more detailed review of previous full-scale testing and modeling 

can be found in Pfretzschner (2012). 

RESEARCH METHODS 

 The two main objectives of this study were to: (1) further develop and validate the 

practical, linear modeling methods of Martin et al. (2011) for a rectangular building, and 

(2) apply the modeling methods towards investigating uplift and lateral load paths in a 

realistic light-frame structure with complex geometry (L-shaped house).  The modeling 

methods were developed using SAP2000 software (Computers and Structures, Inc. 2009).  

Additional details about the research methods can be found in Pfretzschner (2012). 

Modeling Methods 

Framing Members  

Framing members, including wall studs, truss chords, etc., were modeled using 

SAP2000’s frame element.  The frame element was assigned the actual cross-section of 

each framing member. Multiple framing members located side by side, such as a “double 
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stud” or “double top-plate,” were modeled using a single frame element with a cross 

section equal to the sum of the individual cross sections of the framing members. 

Isotropic material properties for the framing members were determined using 

longitudinal design properties listed in the AF&PA (2005a) National Design 

Specification for Wood Construction (NDS) based on wood species and grade.  

Adjustment factors for moisture content, incising, etc, were applied to the design 

properties as specified by the NDS (AF&PA 2005a). 

Sheathing 

Wall sheathing in the current study was modeled using SAP2000’s layered shell 

element with plywood and gypsum wallboard (GWB) assigned as individual layers.  

Each shell element was modeled through the center of the wall studs with the sheathing 

layers displaced to either side of the wall.  Roof and ceiling sheathing were also 

represented using the layered shell element; modeled through the centerline of the truss 

chords, with one layer of either plywood or GWB displaced accordingly. 

 Plywood layers were assigned orthotropic properties calculated using Nairn 

(2007) OSULaminates software. Plywood sheathing layers for the walls and roof were 

assigned in-plane and out-of-plane properties, respectively, based on their general 

behavior within the full building.  GWB layers were assigned isotropic material 

properties listed by the Gypsum Association (2010). 

 In accordance with Martin et al. (2011), individual sheets of plywood and GWB 

were not modeled as separate elements.  Instead, one continuous shell element was 

applied to each wall, ceiling and roof surface, and meshed into smaller elements for 

analysis.  Although the effects of “gaps” between individual sheathing members were 

neglected, validation studies against full-scale tests showed that these methods were 

sufficient for portraying system behavior and load distribution.  

Framing Connectivity 

 All framing connections were modeled as either simple “pinned” or “rigid” 

connections.  Trusses were modeled with pinned connections at the ends of the webs and 

at the ridge.  Rigid connections were used at the truss heels, and top and bottom chords 
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were modeled as continuous members through the web connections.  Truss-to-wall 

connections were modeled as rigid connections and were not coincident with the heel 

connections (Martin et al. 2011).  Gable-end trusses were also rigidly connected to the 

gable-end walls. 

 All framing connections in the walls were modeled as pinned connections.  This 

allowed for the stiffness of the walls to be controlled entirely by the sheathing properties.  

Shear wall stiffness is highly dependent on the spacing of the nail connections between 

the sheathing and framing members.  As in Martin et al. (2011), the effects of edge nail 

spacing on wall stiffness were incorporated by adjusting the shear modulus, G12, of the 

wall sheathing. 

Sheathing G12 Adjustment Procedure 

 To account for the effects of sheathing edge nail spacing, the shear modulus, G12 

of the sheathing was adjusted using a procedure similar to the “correlation procedure” 

used by Martin et al. (2011).  The procedure in the current study was performed using a 

simple “calibration model” of a wall in SAP2000; with a specific length, rigid supports, 

no openings, and sheathed on one side only.  Material properties were assigned to the 

sheathing using previously described methods.  G12, of the sheathing was then altered 

until the deflection of the calibration model matched a predicted deflection calculated 

using Equation C4.3.2-2 from AF&PA (2005b) for a specific edge nail spacing and wall 

length.   

 Equation C4.3.2-2 is a three-term, linear equation used to predict deflections of 

wood-framed shear walls based on “framing bending deflection, panel shear deflection, 

deflection from nail slip, and deflection due to tie-down slip” (AF&PA 2005b). The 

effects of panel shear and nail slip are incorporated into an apparent stiffness term, Ga.  

Values for Ga are tabulated in AF&PA (2005b) based on sheathing material, framing lay-

out and edge-nail spacing.  Since rigid supports were used in the calibration model, the 

deflection due to tie-down slip was negated from the three-term equation.  The purpose of 

the calibration model was to determine the required stiffness of the sheathing element.  

The effects of the anchor bolts and hold downs were incorporated later on, into the actual 

wall models, by using linear springs with realistic stiffness properties. 
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 Repeating this method for shear walls of various lengths revealed that the required 

G12 for a specific edge nail spacing changed approximately linearly with wall length.  

Thus, for a building with multiple wall lengths and uniform edge nail spacing, this 

procedure is only necessary for the shortest and longest walls in the building.  

Additionally, G12 for the plywood sheathing and GWB sheathing can be determined 

separately using the procedure above for a wall sheathed on one side and applied to the 

respective sides of a wall sheathed on two sides.  This method is supported by Patton-

Mallory et al. (1984), who found that the stiffness of a wall sheathed on two sides is 

equal to the sum of the stiffnesses of two walls sheathed on one side with the same 

materials. 

Wall Anchorage 

 Anchor bolts and hold-downs were modeled using directional linear spring 

elements.  Three springs were used for the anchor bolts: one oriented in the vertical, Z-

direction (representing the axial stiffness of each bolt connection), and two oriented in the 

lateral, X- and Y- directions (representing the shear stiffness of each bolt connection).  

Hold-down devices were represented with only one spring oriented in the Z-direction. 

   The axial stiffness of the anchor bolts was assigned in accordance with Martin et 

al. (2011) based on full-scale tests performed by Seaders (2004).  The full-scale tests 

incorporated the effects of bolt slip and wood crushing under the washers.  The lateral 

stiffness of the anchor bolts was calculated using equations for the load slip modulus, γ, 

for dowel type connections in Section 10.3.6 of the NDS (AF&PA 2005a).  Finally, the 

axial stiffness of the hold-down devices was determined from properties published by the 

manufacturer, Simpson Strong-Tie. 

Model Validation Procedure 

 Similar to Martin et al. (2011), the modeling methods in this study were validated 

against full-scale tests.  Sub-assembly models, including two-dimensional trusses, three- 

dimensional roof assemblies and two-dimensional shear walls, were validated against 

tests performed by Wolfe et al. (1986), Wolfe and McCarthy (1989) and Dolan and 
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Johnson (1996), respectively.  Shear walls from Dolan and Johnson (1996) were 

anchored with both anchor bolts and hold-downs allowing for the simultaneous validation 

of anchorage and shear wall modeling methods.  Details for the sub-assembly models are 

included in Pfretzschner (2012).  The final validation study was performed using full-

scale tests on a realistic L-shaped house from Paevere et al. (2003). 

Paevere et al. (2003) House 

 Paevere et al. (2003) performed static, cyclic and destructive load tests on a full-

scale, L-shaped house.  The house was designed to reflect a typical, North American 

“stick frame” house with a gable-style roof.  Construction details for the L-shaped house 

can be found in Paevere et al. (2003) and Paevere (2002).  Results from the static load 

tests were used to validate a model of the house.   

 Figure 1 shows the layout and framing used for the walls in the house, including 

six exterior shear walls (W1, W2, W4, W5, W7 and W9) and three interior non-load 

bearing walls (W3, W6 and W8).  The exterior walls were 2.4 m (7.9 ft) tall.  The interior 

walls were modeled 25 mm (1 in.) shorter than the exterior walls so that the trusses 

spanned the exterior walls only (Dr. Phillip Paevere, personal communication, June 25, 

2012).  W3 was connected to the trusses using non-structural slip connections to restrain 

the trusses laterally (Paevere 2002).  These connections were modeled in SAP2000 using 

two-joint link elements, “fixed” in the direction parallel to the wall.  Interior walls 6 and 

8 were not connected to the trusses. 

 
Figure 1: (a) Floor Plan with Centerline Dimensions [m (ft-in)] and Wall Designation, (b) 

Wall framing (mm) (Paevere 2002) 



 
 

12 
 

The gable roof was modeled as a semi-rigid diaphragm with 1.6-m- (5.2-ft-) tall, 

Fink trusses, spaced 0.6 m (2 ft) on center and oriented as shown in Figure 2, and 

plywood sheathing.  Unsheathed Fink trusses were also used for the gable-end trusses.  

Framing members used for the truss chords and webs were 35x90 mm (1.4x3.5 in.) and 

35x70 mm (1.4x2.8 in.), respectively.  Details for the roof over-framing, where the two 

legs of the “L” meet above the garage, were not included in Paevere (2002) or Paevere et 

al. (2003).  Therefore, over-framing in the model was assumed based on typical, North-

American residential construction methods as shown in Figure 2. 

 
Figure 2: Truss Orientation and Gable-End Framing 

 All framing members in the house were Australian radiata pine sawn lumber.  

Since radiata pine is not included in AF&PA (2005a), the MOE reported by Paevere 

(2002) of 10000 MPa (1450 ksi) was used for the frame elements in SAP2000.  Sheathing 

consisted of 9.5-mm- (0.375-in.-) and 12.5-mm- (0.492-in.-) thick plywood on the walls 

and roof respectively, with 13-mm- (0.5-in.-) thick GWB interior lining on the walls and 

ceiling.  All walls were fully sheathed on the interior with GWB.  Exterior walls were 

fully sheathed on the outside with plywood with the exception of walls 5 and 9.  The 

partial exterior sheathing used for walls 5 and 9 is shown in Figure 3.   

  

Assumed 
Over-Framing 
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Figure 3: Plywood Sheathing on Exterior of Walls 5 and 9 (Paevere et al. 2003) 

Table 1 provides the material properties used to model the sheathing elements. Figure 4 

shows the required G12 versus wall length for the plywood and GWB wall sheathing 

based on edge fastener spacing.  The fasteners used for the plywood sheathing were 

equivalent to 6d common nails spaced at 152 mm (6 in.) along the edges.  The GWB 

fasteners were equivalent to No. 6 drywall screws spaced 305 mm (12 in.) along the 

edges.  The maximum fastener spacing listed in AF&PA (2005b) of 203 mm (8 in.) for 

GWB sheathing was used to determine values of G12 for the GWB in the model. 

Table 1: Sheathing Material Properties 

Material Properties Source 

Plywood Sheathing  
(Roof) 

E1 = 8280 MPa (1201 ksi) 
OSULaminates (Nairn 2007) 

(Flexural Properties) 
E2 = 2393 MPa (347 ksi) 
U12 =  0.011 
G12 = 482 MPa (70 ksi) 

Plywood Sheathing 
(Walls) 

E1 = 7017 MPa (1018 ksi) 
OSULaminates (Nairn 2007) 

(In-Plane Properties) 
E2 = 3657 MPa (530 ksi) 
U12 =  0.016 

Gypsum Wallboard  
(Walls and Ceiling) 

E1 = 1820 MPa (264 ksi) 
Gypsum Association (2010) E1 = 1820 MPa (264 ksi) 

U12 =  0.3 
 

Plywood None 
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Figure 4: G12 vs. Wall Length for Plywood and GWB Wall Sheathing 

 The walls were anchored with 12.7 mm (0.5 in.) diameter anchor bolts, only (no 

hold-downs were used).  Vertical and lateral springs used to represent the axial and shear 

behavior of the bolt connections were assigned a stiffness of 6.1 kN/mm (35 kip/in) and 

16.7 kN/mm (95.5 kip/in), respectively.  Stiffness properties were determined from 

Seaders (2004) and AF&PA (2005a) as explained in the modeling methods.  Each anchor 

bolt in the full-scale house was connected to a load cell capable of measuring lateral and 

vertical reactions.  Reactions at the anchor bolts in the model were validated against 

reactions from Paevere et al. (2003) for 15 static load tests consisting of one gravity load 

test and 14 lateral, concentrated load tests.  Table 2 lists the material densities used to 

model the self weight (gravity loads) of the house.  A complete list of lateral load cases 

can be found in either Paevere (2002) or Pfretzschner (2012). 

Table 2: Material Densities used for Building Self-Weight 

Material 
Density 

kg/m3 (pcf)
Source 

Framing Members 550 (1.07) Paevere (2002) 

Plywood 600 (1.16) EWPAA (2009) 

GWB 772 (1.50) Gypsum Association (2010) 
 

Load Path Investigations 

 After the modeling methods were validated, variations of the Paevere et al. (2003) 

house were created and used to perform load path investigations for uniform uplift 
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pressures and ASCE 7-05 design wind loads.  All structures used in the investigations 

were modeled based on the materials and construction methods used by Paevere et al. 

(2003) with the following exceptions: (1) Gable-end overhang framing was changed to 

“out-looker” or “out-rigger” style framing commonly used in North America (Martin et 

al. 2011).  (2) Gable-end trusses were changed from Fink trusses to more common, non-

structural gable-end trusses.  Modified gable-end framing is shown in Figure 5.  (3) The 

exterior was fully sheathed with plywood, including the gable-end trusses.  The shell 

element used to model the sheathing on the gable-end truss was not connected to the shell 

element used for sheathing on the gable-end wall.  (4) Simpson Strong-Tie HDU2 hold-

downs, modeled with an axial stiffness of 6.1 kN/mm (35 kip/in), were added to the 

exterior walls at the ends and at either side of door openings. 

 
Figure 5: Modified Gable-End Framing for Load Path Investigations 

  For each load path investigation, index buildings were created as a baseline for 

load path comparisons.  The index buildings were then altered systematically to analyze 

the effects of geometric variations (wall openings and re-entrant corners) and gable-end 

retrofits on uplift and lateral load paths.  Detailed descriptions of the structures used in 

the load path investigations can be found in Pfretzschner (2012). 

Uniform Uplift Investigation 

 As an extension of Martin et al. (2011), the effects of re-entrant corners and large 

wall openings were explored under a uniform uplift pressure of 2.4 kPa (50 psf) acting 

normal to the surface of the roof.   

Two simple index buildings were used for the uplift investigation: a rectangular 

index building and an L-shaped index building.  The L-shaped index building had the 

same plan geometry as the Paevere et al. (2003) house; with the modifications described 
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previously, no interior walls, no wall openings and no GWB lining.  The rectangular 

index building was then created by removing the short leg of the “L” and extending wall 

2.  Note that the wall designations used by Paevere et al. (2003) (shown in Figure 1) were 

maintained throughout both load path investigations.  Similar to Martin et al (2011), the 

self-weight of the buildings was not included in order to analyze load paths due to uplift 

pressures, only.  Reactions at the anchor bolts and hold-downs of the L-shaped index 

building were compared to the rectangular building to analyze the effects of the re-entrant 

corner. 

The redistribution of load paths due to large wall openings was also explored in 

this investigation.  Martin et al. (2011) analyzed the effects of wall openings on uplift 

load paths in a simple rectangular building.  In the current study, the effects of large, 3.2-

m- (10.5-ft-) long, wall openings in the L-shaped index building were explored.  Wall 

openings were added to the building one at a time in the following locations, representing 

scenarios that were not previously explored by Martin et al. (2011): wall 2 adjacent to the 

re-entrant corner, wall 4 opposite the re-entrant corner, wall 9 centered under the gable 

end, and wall 9 opposite the re-entrant corner.  Due to the configuration of the roof, wall 

9 represents both a gable-end wall and a side wall, with trusses running both parallel and 

perpendicular to the wall. 

Wind Load Investigation 

 The second load path investigation explored load paths in a more realistic house 

with applied ASCE 7-05 design wind loads.  Design loads were calculated using the 

Main Wind Force Resisting System, MWFRS, method 2 (ASCE 2005).  Although ASCE 

7-05 MWFRS codified pressures are intended for buildings with regular plan geometry, a 

method for adapting the pressures to buildings with re-entrant corners is given in Mehta 

and Coulbourne (2010).  This methodology was adopted for the current study.  

Additional methods of determining design wind loads for irregular buildings are 

discussed in Pfretzschner (2012).   

Three wind directions were considered with design loads calculated based on 

ASCE 7-05 Load Cases 1 and 3 as shown in Figure 6.  Load Case 1 includes all 

windward, leeward, sidewall and “roof parallel to wind” pressures indicated by ASCE 7-
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05 Figure 6-6.  Load Case 3 is meant to simulate diagonal winds by combining leeward 

and windward pressures for X and Y winds acting simultaneously at 75% of their full 

design value (Mehta and Coulbourne 2010).  Parameters for the design wind loads were 

selected in accordance with Martin et al. (2011) including: a basic wind speed of 209 

km/h (130 mph), a topographic factor, Kzt, of 1.0 and exposure category, B.  The building 

was assumed to be a low-rise, enclosed building with occupancy category II, and an 

importance factor of 1.0.  Positive internal pressure was used to produce “worst-case” 

uplift scenarios. 

 
Figure 6: Wind Directions and ASCE 7-05 Load Cases 

The index structure for this investigation was a realistic L-shaped index house, 

different from the L-shaped index building, representing the Paevere et al. (2003) house 

with the gable-end framing, sheathing and hold-down modifications described 

previously.  The L-shaped index house was then altered to investigate the effects of (1) 

the addition of gable-end retrofits at every gable-end stud, and (2) the effects of 

increasing the size of the re-entrant corner.  The gable end retrofits were modeled based 

on the C-shaped, gable-end retrofit recently adopted into the 2010 Florida Building Code 

(ICC 2011).  An additional stud was added at each vertical web in the gable-end trusses, 

with the strong axis oriented perpendicular to the wall (forming an “L”) to reinforce the 

webs against out-of-plane winds.  Additionally, horizontal braces were added to help 

transfer load from the gable-end wall into the roof and ceiling diaphragm.  Additional 

details about the retrofit can be found in ICC (2011).  Figure 7 shows one of the C-shaped 

retrofits in the model, added at every gable-end stud.   Connections between the retrofit 

(a) (b) 

(a) and (b) 
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studs and horizontal braces were accomplished with steel L-straps and compression 

blocks, and  modeled as rigid connections.   

 
Figure 7: Example C-Shaped Gable-End Retrofit at Gable-End Stud 

The effects of the re-entrant corner were explored by altering the short leg of the 

L-shaped index house to create three different sized re-entrant corners: small, medium, 

and large.  For the small and medium re-entrant corners, the leg was shortened and 

lengthened by 2.4 m (7.9 ft) respectively.  The large re-entrant corner was created by 

extending the leg so that the dimensions of the re-entrant corner had a 1:1 ratio.  Wind 

loads for the re-entrant corner variations were adjusted accordingly based on the 

dimensions of the house. 

RESULTS AND DISCUSSION 

Model Validation 

Sub-Assemblies 

Sub-assembly models were used to validate the applicability of previously 

described modeling methods in predicting two- and three-dimensional system behavior.  

Two-dimensional models of individual trusses validated the use of ideal pinned and rigid 

connections between truss chords and webs.  Three-dimensional models of roof 

assemblies validated the use of the layered shell element for modeling plywood 

sheathing.  The roof assembly models were capable of predicting load sharing and 
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relative truss deflection in roofs with variable truss stiffness. Finally, models of two-

dimensional shear walls validated methods for incorporating the effects of sheathing 

edge-nail spacing, wall openings and wall anchorage on shear wall stiffness.  Full details 

and results for the sub-assembly validation studies are included in Pfretzschner (2012). 

Paevere et al. (2003) House 

 The full-scale L-shaped house, tested by Paever et al. (2003), was used to validate 

the ability of the model to predict load sharing between walls connected by the roof 

diaphragm in a realistic house.  Reactions at the anchor bolts in the model were compared 

against reactions in the full-scale house for 15 static load cases.  The first static load case 

included gravity loads only to determine the self-weight of the house.  Paevere et al. 

(2003) measured a self-weight of 50.8 kN (11.4 kips), which was 9% smaller than the 

self-weight of the model: 55.7 kN (12.5 kips).  Paevere (2002) reported uplift reactions at 

some of the load cells during the gravity load test, which were attributed to possible 

residual stresses from construction.  This could account for the smaller self-weight seen 

in the test house.  The error could also stem from differences in the framing methods used 

to represent roof over-framing.   

The remaining 14 load cases consisted of concentrated lateral loads applied at 

various locations along the top chords of walls 4 and 5, and at various angles at the roof 

ridge directly above wall 5.  The distribution of lateral loads to the in-plane walls of the 

model was compared to reactions from Paevere et al. (2003).  Figure 8, for example, 

compares the load distributions from the test house and the model for Load Case 4.  

Results from all 14 lateral load cases can be found in Pfretzschner (2012).  Overall, the 

model proved capable of predicting the overall trends in load distributions (Figure 8) to 

the in-plane walls.  Reactions at the walls carrying the maximum in-plane load were 

predicted within 20% error on average.  For example, the largest load in Figure 8 

occurred at wall 3 and was accurate to about 17%.  This is similar to the level of accuracy 

reported by Doudak (2005) for static loading and  elastic behavior  of the structure.    
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Figure 8: Load Distribution Plot for Paevere et al. (2003) Load Case 4 

Uniform Uplift Investigation 

 The vertical reactions and changes in reaction at the anchor bolts and hold-downs 

of the models used in the uplift investigation were recorded and plotted in “bubble” plots.  

Each bubble represented an anchor bolt or hold-down while the size of the bubble 

represented the magnitude of either the uplift reaction or change in reaction at that 

anchorage device.  The locations of the hold-downs were designated with an x.  Detailed 

reaction plots for all model variations can be found in Pfretzschner (2012). 

Rectangular vs. L-Shaped Buildings 

To analyze the effects of re-entrant corners, the uplift reactions for the rectangular 

and L-shaped index buildings were plotted in Figure 9.  Uplift reactions in the rectangular 

building were symmetrical with a maximum reaction of 11.0 kN (2.5 kips), occurring at 

the anchor bolts at the center of the side walls (walls 2 and 4).  Since the roof trusses 

spanned between the side walls, the majority of the load applied to the roof was directed 

into the side walls rather than the gable-end walls.  The maximum uplift reaction in the 

L-shaped index building, on the other hand, was 14.7 kN (3.3 kips), occurring at the hold-

down directly under the re-entrant corner.  In this case, the uplift loads that would have 

been transferred to the west side of wall 2 in the rectangular building, were instead 

transferred to the garage beam in the L-shaped building (shown in Figure 1b).  The 

garage beam then directed the loads to the re-entrant corner and wall 9 opposite the re-

entrant corner, causing load concentrations at these locations.   Uplift load concentrations 

also occurred at anchor bolts under wall 4, directly opposite the re-entrant corner.  The 
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flow  of loads in the L-shaped index building is illustrated by the arrows in Figure 9.  

Note that trusses span perpendicularly from the re-entrant corner to wall 4 at this 

location.  The load distribution to wall 5, parallel to the trusses, was not affected by the 

addition of the re-entrant corner.  This suggests that the re-distribution of uplift loads due 

to a re-entrant corner is dependent on the orientation of the roof trusses with respect to 

the walls.  A similar observation was noted by Martin et al. (2011) when investigating the 

effects of wall openings. Future research should examine the effects of re-entrant corners 

in buildings with different truss orientations. 

 
Figure 9: Uplift Reactions for Rectangular (Left) and L-shaped (Right) Index Buildings 

Effects of Wall Openings 

 Martin et al. (2011) explored the effects of large wall openings placed in the 

gable-end walls and side walls of a rectangular building under uniform uplift pressure. 

The current study examined openings in an L-shaped building with a re-entrant corner 

and trusses oriented in two orthogonal directions.  Similar to Martin et al. (2011), the 

opening centered under the gable-end portion (North end) of wall 9 caused relatively 

localized effects, increasing uplift loads in the side wall portion (South end) of wall 9, 

and having negligible effects on walls on the opposite side of the building.  The openings 

placed in the side walls, on the other hand, had more global effects on uplift reactions 

throughout the building.  Figure 10 shows the change in uplift reactions due to openings 

in the two different side walls: wall 4 (opposite the re-entrant corner) and wall 2 (adjacent 

to the re-entrant corner).  As expected, uplift loads at the location of the openings were 

re-directed through the headers to either side of the doors, causing load concentrations at 
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the hold-downs directly under the door jams.  The largest load concentrations were seen 

on the side of the opening in wall 2, closest to the re-entrant corner.  Uplift reactions at 

this point increased by 60 percent over the reactions seen in the building without 

openings.  Comparatively, the opening in wall 4 caused less than a 30 percent increase in 

uplift loads at either side of the opening.  The larger load concentration at the opening in 

wall 2 was likely due to the uplift load concentrations in wall 2 from the re-entrant corner 

itself.   

 
 

Figure 10: Change in Uplift Reactions (Magnified 4x) due to Openings in Wall 2 (Left) and 
Wall 4 (Right) – arrows represent load paths 

 As in Martin et al. (2011), openings placed in the side walls in this investigation 

also caused uplift load concentrations in the remaining side walls.  Examining the truss 

orientation in the building shows that uplift loads at these points of concentration were 

clearly transferred from either side of the wall opening by the roof trusses.  In the case of 

the opening in wall 4, for example, uplift loads were transferred from the east side of the 

wall opening, through the north-south trusses, to the opposite side wall (wall 2).  Uplift 

loads were also transferred from the west side of the opening, through the north-south 

trusses to the garage beam shown in Figure 1(b), and redirected through the garage beam 

and the east-west trusses to wall 9 (adjacent to wall 4).  Similar system behavior was seen 

for the opening in wall 2 as shown in Figure 10, and for other side wall openings included 

in Pfretzschner (2012).  This strongly supports findings from Martin et al. (2011) that the 

effects of openings on uplift load distribution are dependent on the relative truss 

orientation with respect to the walls.  The effects of openings in walls perpendicular to 
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the trusses were shared by other walls in the building spanned by the same trusses, while 

the effects of openings in walls parallel to the trusses were more isolated. 

 Finally, Martin et al. (2011) reported that the addition of an opening to any wall 

resulted in a decrease in the total load carried by the wall.  In the current study, the 

opening in wall 2 also caused a decrease in the total load carried by the wall of up to 20 

percent. The opening placed in wall 4, however, caused a 0.2 percent increase in the 

amount of total uplift load carried by the wall.  It is likely that this small increase was due 

to the effects of the re-entrant corner.  

Wind Load Investigation 

 Uplift reactions for each of the model variations in the wind load investigation 

were also plotted in bubble graphs and included in Pfretzschner (2012).  Figure 11 shows 

the uplift reactions at the anchor bolts and hold-downs in the L-shaped index house for 

each wind load case.  In all cases, uplift load concentrations were seen at the hold-downs 

located under the corners of the house, as well as on either side of the door openings.  In 

addition, to determine whether the large uplift reactions at the west gable-end were due to 

the geometry of the building or the selected load cases, a fourth load case for east to west 

winds was added.  This demonstrated that uplift reactions at the east gable end under the 

east to west wind loads were of similar magnitude to the reactions at the west gable-end 

under west to east wind loads. 

 
Figure 11: Uplift Reactions in L-Shaped Index House 
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Lateral load distributions to the walls parallel to the wind loads, for each model, were 

also plotted (Figure 12) and used to support the findings described below.  For the 

southeast-northwest load case, lateral load distributions to both the N-S and E-W walls 

were plotted.  Note that walls 6, 7 and 8 (shown individually in Figure 1) were grouped 

together here to simplify data presentation. 

Addition of Gable-End Retrofits 

 Due to the number of gable-end failures seen in the aftermath of hurricanes, the 

2010 Florida Building Code recently adopted a C-shaped gable-end retrofit for existing 

buildings (ICC 2011).  Full-scale tests performed on gable-end sections (comprised of 

four Fink trusses and a gable-end wall) by Suksawang and Mirmiran (2009) showed that 

the retrofit sufficiently increased the strength of the gable-ends.  However, questions 

remained about whether load redistribution due to the retrofit could cause additional 

torsion within a full building (beyond the original design).  To address this question, C-

shaped retrofits were modeled at every gable-end stud within the L-shaped index house 

used in this investigation.   

The distribution of lateral loads and top plate deflections of the walls were then 

analyzed under ASCE 7-05 design wind loads for signs of torsion.  For all wind load 

cases, the addition of the gable-end retrofits to the L-shaped index house caused 

negligible changes in lateral reactions under the walls parallel to the wind loads.  

Changes in deflections were equally small, within 0.1 mm (0.004 in), and showed no 

signs of additional torsion.  These results were based on the three ASCE 7-05 load cases 

shown in Figure 6 only.  Additionally, alternative retrofits recommended by the 2010 

Florida Building Code for buildings with pre-existing obstacles were not explored in this 

investigation. 

Effects of Re-Entrant Corner Dimensions 

 Figure 12 shows the lateral load distributions to the walls parallel to the wind 

loads and displaced shapes of the exterior wall top-plates for each wind load case.  For 

north to south (N-S) design wind loads, the displaced shape of the top-chords for each 

model variation showed little to no torsion due to the increasing size of the re-entrant 
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corner.   As walls 7 and 9 were extended, lateral loads carried by the outer walls running 

N-S (walls 5 and 9) were re-distributed to the inner N-S walls 6, 7 and 8.  The percent of 

N-S loads carried by these central walls increased by 14 percent; while the percent of N-S 

loads carried by the outer walls, walls 5 and 9, decreased by 7 and 3 percent, respectively. 

 In the case of west to east (W-E) wind loads, the displaced shape of the top chords 

clearly showed increasing degrees of torsion as the size of the re-entrant corner increased.  

Although the relative distribution of these loads to each of the W-E walls changed by less 

than 5 percent, increasing the length of the southern end of wall 9 (perpendicular to the 

wind) increased the total amount of W-E wind load on the house.  As a result, the relative 

in-plane deflections of southern walls 1 and 2 as compared to northern walls 3 and 4 

increased dramatically.  This can be attributed to the fact that walls 1 and 2 were 

significantly less stiff than walls 3 and 4, due to the shorter lengths and relatively large 

opening to surface-area ratios of walls 1 and 2. This asymmetry in relative stiffness 

between the north and south sides of the house caused torsion to occur with increasing 

loads in the W-E direction.  Wind loads applied diagonally, southeast to northwest (SE-

NW), into the re-entrant corner also caused increasing amounts of torsion as the size of 

the re-entrant corner increased. For all load cases, the effects of increasing the size of the 

re-entrant corner were dependent on the relative stiffness and location of the walls, as 

well as the orientation of the wind loads.  Additionally, the displaced shapes of the top 

plates in Figure 12 show a combination of torsional behavior and in-plane  displacements 

characteristic of a semi-rigid diaphragm. 
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Figure 12: Lateral Load Distribution and Top Plate Deflected Shapes for Re-Entrant Corner 

Variations 

 The results of this study imply that balancing the stiffness of the walls along each 

of the major axes of the house may reduce torsion due to large re-entrant corners.  In an 

effort to reduce torsion in the model with the largest re-entrant corner, the stiffnesses of 

walls 1 and 2 were increased by assuming realistic changes in the construction of the 

walls: (1) blocking was added to the walls, (2) the edge fastener spacing for the GWB 

was decreased to 102mm (4 in), (3) the nails used for the plywood were upgraded from 

6d to 8d common nails and (4) the edge nail spacing for the plywood was decreased to 51 
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mm (2 in).   Based on these assumptions, new values of G12 for the GWB and plywood 

sheathing on walls 1 and 2 were calculated using the adjustment procedure described in 

the modeling methods section.  Figure 13 shows the deflected shapes of the original 

model and the model with increased stiffnesses in walls 1 and 2 for the W-E and SE-NW 

wind loads.  In both cases, increasing the stiffnesses of walls on the south side of the 

house slightly decreased the amount of torsion seen in the deflected shape of the top 

chords. 

 

 
Figure 13: Displaced Shape of Large Re-Entrant Corner Building with Increased 

Stiffness in Walls 1 and 2 

CONCLUSIONS 

Based on the validation studies, the simplified linear modeling methods created by 

Martin et al. (2011), and further developed in this study, were capable of predicting uplift 

and lateral load paths in a light-frame, wood residential structure with complex, realistic 

plan geometry.  This conclusion is strictly for loading conditions within the elastic range 

of the structure.  The modeling methods used in this study cannot be applied for inelastic 

or failure analysis. 

Using the validated modeling methods, two different load path investigations were 

performed using uniform uplift pressures and ASCE 7-05 design wind loads.  The 

following conclusions were drawn based on results from the load path investigations: 

1. The addition of a re-entrant corner in a low-rise structure, under uniform uplift 

pressure, caused load concentrations at the re-entrant corner as well as in either 

wall directly opposite the re-entrant corner; depending on the truss orientation. 
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2. The addition of wall openings in a low-rise structure under uniform uplift pressure 

caused load concentrations on either side of the openings.  Uplift loads at these 

points of concentration were further distributed to the remaining walls by the roof 

trusses.  The largest load concentrations occurred when an opening was placed in 

a side wall, directly adjacent to the re-entrant corner.  Openings in walls parallel 

to the trusses had the least effect on uplift reactions in the remaining walls. 

3. ASCE 7-05 Main Wind Force Resisting System (MWFRS) design wind loads 

caused uplift load concentrations at the hold-downs placed under the door jams 

and the corners of the L-shaped house. 

4. There was no evidence that the gable-end retrofit adopted by the 2010 Florida 

Building Code caused additional torsion in the L-shaped house when loaded with 

ASCE 7-05 MWFRS design wind loads. 

5. The effects of increasing the size of the re-entrant corner in an L-shaped house, 

under ASCE 7-05 MWFRS design wind loads, were dependent on the location 

and relative stiffness of the in-plane walls, as well as the assumed direction of the 

wind.   
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CONCLUSIONS AND RECOMMENDATIONS 

 In order to establish effective building codes and retrofit options for houses in 

high wind zones, it is important to fully understand the system behavior and propagation 

of load paths through these structures. In this study, practical, linear modeling methods 

were developed for analyzing load paths in light-frame wood structures.  The methods 

were validated against full-scale tests and found to be sufficient for predicting load paths 

and system behavior when loaded within the elastic range.  Once validated, the methods 

were used in two load path investigations to analyze the effects of geometric variations 

and gable-end retrofits in light-frame wood structures. 

 The first investigation considered uniform uplift pressures applied to simple 

rectangular and L-shaped buildings with no interior walls, no gypsum wall board 

(GWB) and no wall openings.  Uplift reactions at the anchor bolts and hold-downs in the 

two structures were compared to examine the effects of adding a re-entrant corner.  In 

the L-shaped building, uplift concentrations appeared under the re-entrant corner and 

under walls opposite the re-entrant corner.  These concentrations occurred in locations 

where trusses spanned directly between the re-entrant corner and the opposite walls.  

Similar behavior was observed when large openings were systematically added to walls 

in the L-shaped building.  All openings added to the building caused uplift load 

concentrations at either side of the opening.  Openings placed in the side-walls caused 

additional uplift load concentrations under opposite walls spanned by perpendicular 

trusses, while openings placed in gable-end walls (parallel to roof trusses) had little 

effect on the remaining walls in the building.  This suggested that geometric variations 

in a structure can have global effects on uplift loads throughout the structure depending 

on the orientation of the roof trusses.  Effects of large openings can be contained to local 

areas of the building by placing them in gable-end walls, parallel to the trusses. 

 The second load path investigation evaluated lateral and uplift load paths in a 

realistic L-shaped house (with interior walls, GWB and realistic door and window 

openings) under ASCE 7-05 MWFRS design wind loads.  During the investigation, the 

house was modified to determine the effects of gable-end retrofits and varying re-entrant 
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corner dimensions on the distribution of loads.  Uplift reactions at anchor bolts and hold-

downs in the original L-shaped house showed load concentrations at either side of door 

openings and at the corners of the structure (including the re-entrant corner).  Gable-end 

retrofits recommended by the 2010 Florida building Code were added to investigate 

effects on lateral load distributions (ICC 2011).  Although the retrofits have proved 

effective in previous full-scale tests, questions remained about the possible effects on 

load paths and torsion within a full building.  Lateral load distributions and displaced 

shapes of the retrofitted, L-shaped house in this study showed no signs of additional 

torsion due to the gable-end retrofits.  The effects of re-entrant corner dimensions were 

analyzed by altering the length of one leg of the “L” in the original house.  Lateral load 

distributions and displaced shapes of the models with various re-entrant corner 

dimensions showed that the effects of large re-entrant corners were dependent on the 

relative stiffness of the walls and the direction of loading.  Balancing the stiffness of 

walls on either side of the building may help reduce the amount of torsion caused by the 

re-entrant corner. 

 Results from this study were limited to an L-shaped building.  Future research 

should consider buildings with T, Y, X and U-shaped plan geometries, as well as 

alternate truss orientations.  Furthermore, additional emphasis should be placed on using 

models to develop and verify retrofitting options for residential structures.  This task 

may require a combination of the simplified modeling methods described in the current 

study and more detailed models of sub-assemblies.  Finally, there was a considerable 

amount of debate concerning methods for calculating wind loads on buildings with 

irregular geometry and very little published information on the subject.  Combining full 

building models with wind tunnel tests on scaled structures could help to verify current 

methods for calculating wind loads on structures with re-entrant corners.  
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APPENDIX A 

EXTENDED LITERATURE REVIEW 

System Behavior and Modeling 

Full Building 

 Light-frame wood structures are highly indeterminate structural systems 

composed of vertical (shear walls) and horizontal (roof and floor) subassemblies, joined 

by inter-component connections (including nails, screws and other mechanical 

connectors).  Lateral and vertical external forces are transferred through out-of-plane 

walls, to the horizontal roof and floor diaphragms, to the shear walls and finally into the 

foundation. Consequently, load paths through the structure as a whole are dependent on 

both the behavior of the individual subassemblies, as well as the interaction between 

subassemblies. Current design methods often consider each subassembly separately, 

which can possibly lead to unsafe or inefficient designs.  In order to accurately predict 

load paths, the full system must be considered.   

Testing and Behavior 

 Due to the high costs associated with the construction and testing of complete 

structures, as well as the limited number of facilities capable of performing such tests, 

very few full-scale tests on light-frame wood structures have been performed.  Until 

recently, the majority of full- scale testing has focused on individual roof and wall 

assemblies (discussed in later sections of this review). 

 Phillips et al. (1993) performed full-scale static tests on a single-story, light-frame 

wood structure at Washington State University.  The structure was rectangular in plan, 

with two interior walls and door and window openings.  Doors, windows and other 

architectural finishes were not installed in the building.   Sheathing edge nail spacing was 

varied for each wall to create variable wall stiffness. The structure was cyclically loaded 

in three stages with hydraulic cylinders, and reaction forces under each shear wall were 

measured.  The objective of the project was to provide data for an analytical model 
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created by Kasal (1992). Therefore, materials and subassemblies were also tested during 

construction in order to assemble adequate data for model validation. 

Similarly, Paevere et al. (2003) performed full-scale testing on a North American 

style L-shaped light-frame wood house at the Commonwealth Scientific & Industrial 

Research Organization (CSIRO) Division of Building, Construction and Engineering in 

Melbourne, Australia.  Plans and specifications for the test structure were developed by 

the National Association of Home Builders (NAHB) Research Center, CSIRO, and North 

Carolina State University.  As in Phillips (1990), the objective was to provide data for 

finite element modeling.  Architectural finishes were not included in the test structure, 

and various tests were performed on the materials and subassemblies during construction.  

The full structure was tested in multiple stages including: elastic tests, non-destructive 

dynamic tests and destructive tests.  Reaction forces were measured by tri-axial load cells 

spaced evenly under all walls, and deflections were also measured at various locations.  

This structure was used to validate multiple finite element models that are discussed 

further in the next section.  

Doudak (2005) and Doudak et al. (2012) established a real time monitoring 

program on a wood-frame house located on the campus of the University of New 

Brunswick in Canada.  The structure has a simple rectangular plan and rests on a series of 

load cells around its perimeter.  The structure was first tested under a series of static point 

loads to validate an analytical model developed by Doudak (2005) as discussed in the 

next section.  The structure was then instrumented for continuous in-situ monitoring to 

measure the structure’s response to actual dynamic and static environmental loads.   

 Among the observations noted by Phillips et al. (1993), Paevere et al. (2003) and 

Doudak et al. (2012), the following behavioral aspects of structures are important to the 

research at hand: 

1. Despite its overall flexible behavior, the roof diaphragm acts relatively rigid when 

compared to the shear walls (Phillips et al. 1993, Paevere et al. 2003 and Doudak 

et al. 2012). 

2. In-plane shear walls can transfer approximately 20 to 80 percent of their load to 

the rest of the structure when loaded individually (Paevere et al. 2003 and Doudak 
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et al. 2012).  Additionally, the amount of load sharing is dependent on the relative 

location and stiffness of the loaded wall compared to the surrounding walls in the 

structure (Phillips et al. 1993 and Paevere et al. 2003). 

3. The transverse shear walls can carry approximately 5 to 25 percent of the load 

depending on the type of loading (Phillips et al. 1993 and Paevere et al. 2003).  

This percentage decreased with increasing magnitude of applied load (Phillips et 

al. 1993). 

Finally, Songlai et al. (2010) performed full-scale tests on a single-story, L-

shaped, light-frame wood house under uniform lateral loads.  The house was constructed 

with a floor diaphragm rather than a roof diaphragm, representing the first story of a 

structure.  Results of the study showed that gypsum sheathing had significant effects on 

the strength and stiffness of shear walls (Songlai et al. 2010).  Additionally, the floor 

diaphragm acted as a semi-rigid diaphragm in transferring lateral loads to the shear walls 

(Songlai et al. 2010). 

Analytical Modeling 

 As a result of the intrinsic level of complexity of light-frame wood structures, a 

number of simplifying assumptions must be made to develop a practical analytical model. 

The most debated assumptions for system models are those concerning the behavior of 

inter-component connections, which are semi-rigid and behave non-linearly.  Additional 

assumptions include representation of subassemblies, which can either be modeled using 

individual construction materials or idealized to various levels based on results from full-

scale tests.  Material properties can also be modeled based on recommended values from 

engineering design specifications, or can be entered as actual values given sufficient 

testing data.   

 Kasal (1992) used ANSYS finite-element software to develop an analytical model 

of the structure tested by Phillips (1990).  The roof and floor were modeled as relatively 

rigid, linear “superelements” incorporating only the degrees of freedom along the 

boundaries of the element.  Individual trusses and joists were not included.  The walls 

were modeled as simplified nonlinear systems based on full-scale tests as discussed 



 
 

42 
 

further in the shear wall section of this review.  Finally, inter-component connections 

were modeled using one-dimensional, nonlinear springs.  Nonlinear spring properties 

were based on load-displacement relationships developed through experimental tests 

performed at Oregon State University.  The model was accurate in predicting boundary 

reaction forces and deformations, but was relatively inaccurate when small loads were 

applied.  Similar methods were also employed by Collins et al. (2005a,b) in developing 

ANSYS models of the more realistic CSIRO house from Paevere et al. (2003).   

 The models discussed thus far present a few limitations.  For example, the level of 

simplification of the shear wall assemblies in the three-dimensional model requires that 

the boundary forces be taken from the original model and applied to separate, more 

detailed models of the individual walls in order to determine individual nail forces.  

Doudak (2005) addressed this problem in a model of the New Brunswick House and the 

Paevere et al. (2003) house created in SAP2000. Sheathing nail connections were 

individually detailed within each wall using spring elements.  The finite element model 

was able to accurately predict the three-dimensional behavior of the building under 

various loads, the interactions between the roof and walls, as well as the interactions 

within the individual walls without the need for additional models.  Unfortunately, the 

amount of time that was required for this level of detailing proved impractical for use in 

modeling for industry design. 

Another limitation to these models is the element used to represent the roof, 

which may not be applicable to more complex structures.  Like Kasal (1992) and Collins 

(2005a,b), Doudak (2005) also modeled the roof as a single linear element, neglecting the 

individual trusses.  The load distribution in roof assemblies, however, is dependent on the 

relative stiffness of individual trusses.  In roofs with complex geometries, different sizes 

and types of trusses lead to large variations in stiffness that would not be accounted for in 

the simplified models described above. 

Martin (2010) incorporated individual trusses into an analytical model of a simple 

rectangular building.  Similar to Kasal (1992), individual nails in the shear walls were not 

detailed.  Instead, the directional shear modulus in the sheathing was adjusted to 

incorporate the effects of nail spacing as explained in the shear wall section of this report.  
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The model was simplified even further than in earlier models by assuming linear 

behavior in the inter-component connections based on properties provided by the 

connection manufacturer.  Martin (2010) validated the full model against wind tunnel 

experiments performed on a scaled version of the building at the University of Florida 

with good results.  It is important to note that unlike the previous models, the methods 

used by Martin (2010) relied on properties found readily available in industry 

specifications rather than properties determined from tests performed on materials and 

connections for the particular building being modeled.   

The objective of the current project is to develop a practical means for exploring 

load paths through light-frame wood buildings with realistic, complex geometry.  For this 

purpose, the methods used by Martin (2010) are ideal.  The modeling of individual roof 

trusses allows for accurate representations of complex roofs.  Additionally, the model 

relies on properties that are easily found in specifications rather than properties measured 

from experimental tests.  This is ideal for industry since buildings are designed well 

before construction begins.  While Martin (2010) and other previous studies modeled 

structures with simple plans, the current model accounts for the growing geometric 

complexity in actual residential structures. 

Roof Assemblies 

Light-framed wood roof assemblies typically consist of a series of trusses spaced 

approximately 0.6 m (2 ft) on center and sheathed with plywood or OSB to produce a 

system capable of complex load transfer mechanisms. Conventionally, trusses are 

designed individually by incorporating a tributary area approach for calculating design 

loads.  Under this methodology, system behavior within the full assembly is accounted 

for by a repetitive system factor.  Although roofs designed in this manner have performed 

favorably in the past, the increasingly complicated geometries of modern roof systems 

over the past few decades have created a need for a better understanding of load transfer 

through complex truss assemblies (Gupta 2005).  
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Testing and Behavior 

In the 1980’s, the Forest Products Laboratory in Wisconsin began a series of full-

scale tests on light-frame wood truss assemblies  to compile a database of information on 

system behavior for use in developing structural models.  Wolfe et al. (1986) began the 

series by testing 42 full-sized Fink trusses using 38 x 89 mm (1.5 x 3.5 in), referred to as 

nominal 2x4, wood framing members with variable stiffness properties and metal plate 

connections.  Wolfe and McCarthy (1989) and Wolfe and LaBissoniere (1991) continued 

the study by testing four 9-truss roof assemblies: two with highly variable truss stiffness 

properties, and two with more uniform, conventional construction.  Based on the roof 

assembly tests, Wolfe and McCarthy (1989) and Wolfe and LaBissoniere (1991) 

concluded that: 

1. Individual trusses and trusses within the assembly behaved approximately 

linearly when loaded up to twice their design loads. 

2. Deflections of the individual trusses within the assembly were 50% lower 

than trusses outside the assembly under similar loading. 

3. Composite action between the sheathing and the top chords effectively 

increased the stiffness of the top chords by up to 20%. 

4. 40 – 70% of loads applied to trusses within the assembly were transferred 

through the sheathing to adjacent trusses. 

5. Stiffer trusses tended to attract and carry a larger percentage of the applied 

loads. 

6. Assemblies acted as parallel systems, in which loads are carried in proportion to 

truss stiffness rather than being uniformly distributed across tributary areas as 

commonly assumed by conventional design practices.  

Lafave and Itani (1992) also performed tests on 9-truss gable roof assemblies 

constructed using conventional construction and tested on pinned and roller supports.  

The end trusses were placed on wooden blocks to simulate stiffer gable end trusses that 

were not considered in previous studies.  The results of these tests showed that the stiffer 

gable end trusses attracted a large amount of the load away from adjacent trusses up to 

two trusses away from the ends. 



 
 

45 
 

Shanmugam et al. (2008) performed in-situ tests on existing roof to wall toe-nail 

connections to analyze differences between as-built connections and laboratory tests.  

Results showed that the average capacity of the as-built connections was lower than 

previous laboratory tests, with a higher variability.  Additionally, there was a strong 

correlation between the uplift capacity and stiffness of the connections. 

Analytical Modeling 

Using information collected by the Forest Products Laboratory, several different 

analytical models were developed by various researchers.  Cramer and Wolfe (1989) used 

a matrix analysis program called ROOFSYS to model four nine-truss roof assemblies 

(two with high degrees of stiffness variation) similar to those tested by the Forest 

Products Laboratory.  Individual trusses were modeled with simple pinned connections 

throughout.  Sheathing was modeled using continuous beam elements on either side of 

the truss ridge to incorporate the effects of load transfer.  Composite effects from the 

addition of roof sheathing were modeled by adjusting the moment of inertia of the top 

chords for each truss.  The model portrayed similar load sharing behavior as the full-scale 

assembly tests, showing that approximately 50% of loads applied to a single truss within 

the assembly were transferred to adjacent trusses.  Cramer and Wolfe (1989) recognized 

that although the model performed well for the nine-truss assemblies that were studied, it 

would be difficult and time consuming to apply to more complex roof systems.  

LaFave and Itani (1992) developed and validated a comprehensive finite element 

model of a simple gable roof assembly.  The finite element model included more realistic 

semi-rigid spring elements for the metal plate connections, and successfully predicted the 

load distributions seen in the actual assembly.  The model validated that the stiffer gable 

end trusses attracted load away from adjacent trusses up to two trusses away from the 

ends.  While this model attempted to simulate a more realistic gable roof, however, its 

applicability to more complex geometries was still questionable. 

Mtenga (1991) and Cramer et al. (2000) used computer modeling to derive system 

(or load sharing) factors for application to roof design.  Mtenga (1991) developed a 9-

truss, simple gable roof model in a non-linear modeling program called NARSYS.  
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Composite and load sharing effects were included in the same manner as Cramer and 

Wolfe (1989), and non-linear, semi-rigid connections were used to incorporate the 

behavior of plate connections.  Mtenga (1991) found that the repetitive system factor of 

1.15, recommended by the National Design Specification (AF&PA 2005a), was relatively 

conservative.  A sensitivity study was also performed, demonstrating that sheathing 

thickness had little effect on the system factors.  Changes in configuration or slope of the 

assembly, on the other hand, could affect the factors dramatically.   

Cramer et al. (2000) used a non-linear modeling program called SAWFTR.  

Unlike the model by Mtenga (1991), Cramer et al. (2000) modeled six different truss 

assemblies and a joist floor assembly.  Composite action was neglected, and only load 

sharing behavior was explored.  Cramer et al. (2000) agreed that the NDS repetitive 

system factor of 1.15 was conservative for floor assemblies, and some roof trusses, 

however, the roof truss system factors ranged from 1.06 to 1.24, depending largely on the 

stiffness and strength of the truss in question, and those of adjacent trusses. 

With the development of commercialized software for modeling, researchers 

including Li (1996), Dung (1999) and Limkatanyoo (2003) began creating models for 

more practical applications.  Li (1996) modeled simple gable style truss assemblies 

similar to those tested by the Forest Products Laboratory using a commercial program 

called ETABS.  Linear, semi-rigid connections were modeled at the heels of the trusses 

only, while all other joints were modeled with simple rigid or pinned connections.  

Composite action was incorporated by adjusting the moment of inertia of the top chords, 

and sheathing was modeled using the program’s beam elements, which were assigned the 

same thickness and stiffness properties as structural grade plywood.  Sheathing was 

connected to the top chords using rigid connections where sheathing joints were flush, 

and pinned connections where gaps were present.  The model accurately depicted the 

three-dimensional system behavior of tests performed in the literature, and demonstrated 

that simplified joint connections could still provide accurate results. 

Dung (1999) and Limkatanyoo (2003) took commercial program modeling one 

step further, by incorporating more complex, realistic geometries.  Both studies were 

performed in SAP2000 and validated against the Forest Products Laboratory full- scale 
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tests.  Dung (1999) modeled an L-shaped hip roof assembly, as well as a T-shaped 

assembly with two gable end trusses.  Individual trusses were simulated with semi-rigid 

connections at heal and peak joints in accordance with material properties provided by 

truss-plate manufacturers.  All other joints were modeled as either rigid or pinned as in Li 

(1996).  Roof sheathing was also modeled with beam elements having the same 

thickness, stiffness, and width of actual plywood.  Gaps between sheathing elements and 

composite action were not considered based on sensitivity studies performed by previous 

researchers.  Limkatanyoo (2003) simplified the modeling methods of Dung (1999) even 

further and validated that the use of rigid connections to represent plate connections 

produced reasonably accurate results compared to semi-rigid modeling.  This more 

practical approach was used to model and compare assemblies with the same geometries 

used by Dung (1999) in addition to creating and exploring a complex hip roof system. 

 Dung (1999) and Limkatanyoo (2003) determined combined stress indices 

(CSI’s) for trusses within the complex assemblies, and compared them to CSI values 

recommended by truss manufacturers.  While most CSI values determined within the 

assemblies were smaller than recommended values due to system effects; a few trusses 

surpassed a CSI of 1.0 suggesting potentially unsafe conditions.  Such conditions 

occurred where trusses with more flexible supports (trusses supported by other trusses) 

transferred significantly large loads to supporting and neighboring trusses.  Most 

surprisingly, Limkatanyoo (2003) noted that compression within bottom chords was 

observed in some areas of the complex hip roof system.  Conventional design assumes 

that the bottom chords of trusses experience tension forces, and does not consider 

compression. 

 Limkatanyoo (2003) highlighted an issue with using beam elements for sheathing, 

as the behavior was highly dependent on the orientation of the elements.  This issue was 

addressed by Martin (2010), who substituted the beam elements with SAP2000’s thick 

shell element.  This substitution was applied to the same pinned and rigid modeling 

techniques employed by Limkatanyoo (2003) in order to model the gable roof assembly 

tested by Wolfe and McCarthy (1989).  The model showed that the use of the shell 

element surpassed the beam elements as a representation in sheathing in both practicality 
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as well as accuracy.  The current project uses the same practical modeling techniques as 

Martin (2010), but applies them to a roof assembly with a more complex geometry, 

similar to Limkatanyoo (2003). 

 Rocha et al. (2010) analyzed the reliability of roof sheathing panels under realistic 

hurricane wind loads using detailed modeling methods.  Individual sheets of sheathing 

were depicted using plate elements, disconnected along the edges to form gaps.  Frame 

elements were used to represent individual sheathing nail connections.  When compared 

to more simplified models, the detailed model showed significant differences concerning 

the reliability of sheathing panels, suggesting that detailed models should be used for 

analysis beyond the elastic range of a structure. 

Shear Walls 

 Shear walls serve as one of the main force resisting systems in structures exposed 

to wind, seismic and other lateral loads.  Until recently, analysis and design for these 

substructures was simple and straight forward. With the growing complexity of geometry 

and the increasing number and size of openings for doors and windows in residential 

structures, however, traditional methods of analysis are no longer viable (Doudak 2005). 

Testing and Behavior 

 Doudak (2005) performed full-scale tests on seven different 2.4 m x 2.4 m (8 ft x 

8 ft) shear wall configurations, containing various openings and tie-down patterns.  The 

walls were constructed using conventional Canadian construction methods and tested 

under a combination of gravity and racking loads.  Doudak (2005) observed the following 

behavior during testing: 

1. The main modes of deformation were racking and in-plane rigid body rotation. 

2. Openings caused significant decreases in both the ultimate capacity and stiffness 

of the walls.  For example, a wall with an opening that was 28% of the total 

surface area of the wall showed decreases in ultimate capacity and stiffness of 

55% and 44%, respectively, when compared to a wall with no openings. 
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3. The presence of tie-downs effectively decreased the loss of ultimate capacity and 

stiffness due to openings, and nearly eliminated in-plane rigid body rotation. 

Additional full scale shear wall tests were performed by Sinha (2007), Langois (2002) 

and Lebeda (2002).  The 2.4 x 2.4 m (8 x 8 ft) shear walls tested in these studies include 

unsheathed walls, walls with oriented strand board (OSB) sheathing only, walls with both 

OSB and gypsum board sheathing, as well as walls containing door or window openings. 

These tests are useful for validating finite element models, but will not be discussed 

further in this section. 

 Patton-Mallory et al. (1984) performed a series of tests on shear walls with aspect 

ratios ranging from 1 to 3; and sheathed on one or both sides with plywood, gypsum 

wallboard (GWB) or a combination of the two.  Tests of one and two- sided walls 

showed that the stiffness of a wall sheathed on two sides is equal to the sum of two walls 

sheathed on one side only.  Additionally, Mallory et al. (1984) noted that the stiffness per 

foot of wall length for a wall with an aspect ratio of 1 could be used to reasonably predict 

the stiffness of a wall with an aspect ratio of 3. 

 Finally, Dolan and Johnson (1996) performed full scale tests on 12.2 m (40 ft) 

long shear walls with various opening configurations.  Each shear wall was sheathed with 

plywood on one side and GWB on the other.  Results from Dolan and Johnson were used 

to validate the methods used in this thesis for modeling two-sided shear walls with wall 

openings. 

Analytical Modeling 

 When modeling sheathing for shear walls, both in-plane shear and out-of-plane 

behavior must be considered.  Doudak (2005) accomplished this through a complex and 

detailed finite element model using SAP2000. Studs and lintels were represented by 

beam-like framing elements.  Sheathing was modeled using an orthotropic shell element, 

which incorporated both in-plane and out-of-plane effects.  Finally, individual nail 

connections were detailed using non-linear spring elements. Although the model proved 

accurate when validated against full-scale tests, the level of detailing required for the nail 

connections was overly time consuming. 
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Alternatively, Kasal and Leichti (1992) developed a simplified finite element 

approach using an equivalent energy method.  Out-of-plane stiffness was modeled with 

an orthotropic plate element (having zero membrane stiffness), and a diagonally oriented, 

non-linear spring was used to simulate in-plane shear strength.  The equivalent energy 

model was validated against results in the literature, and proved accurate in predicting 

shear wall behavior (both with and without openings).  Similar modeling techniques were 

later implemented by Collins et al. (2005a).  Finally, Martin (2010) performed a 

correlation study on in-plane shear with respect to various nail schedules using a 3-term 

equation for shear walls from the AF&PA Special Design Provisions for Wind and 

Seismic (2005b).  This information was used to determine directional shear modulus 

values that could be applied to orthotropic shell elements to incorporate the effects of nail 

spacing in shear walls without meticulous detailing.  The algorithm proved accurate in 

predicting shear wall behavior when validated against full-scale tests performed by Sinha 

(2007), Langlois (2002) and Lebeda (2002).  

 Of the previous research, the modeling procedures developed by Martin (2010) 

prove the most practical for the project at hand.  However, Martin (2010) did not model 

gypsum wall board sheathing on the shear walls.  Since the current model contains 

interior walls with gypsum board as sheathing, a correlation procedure was necessary to 

determine directional shear modulus values to apply to the gypsum board in addition to 

the plywood sheathing. 

Wind Effects and Engineering 

Wind Storms and Structural Damage 

According to Holmes (2001), strong winds are created and driven by a variety of 

forces, the largest of which are atmospheric pressure differences due to differential 

heating of the earth’s surface and ground movement due to the rotation of the earth.  

Wind storms capable of generating large wind loads can manifest in several different 

forms and locations across the globe.  Among such wind storms are gales created by 

depressions (areas of low atmospheric pressure), downslope winds in areas near large 

mountain ranges, and downbursts caused by the cooling effects of thunderstorms.  The 



 
 

51 
 

strongest wind loads generally come from cyclone-type storms including tornadoes 

(created by strong thunderstorms known as “supercells”) and tropical cyclones also 

known as hurricanes or typhoons (Holmes 2001).  Strong wind loads from these types of 

storms are capable of causing extensive damage to structures.  In the United States, alone, 

wind damage accounted for approximately 70 percent of insured losses from 1970 to 

1999 (Holmes 2001). 

More recent wind storms in the United States, including Hurricane Katrina (2005) 

and the Joplin and Tuscaloosa Tornadoes (2011), have shown that structural damage 

from wind is still a prevalent issue, especially for wood-framed residential structures.  

Van de Lindt et al. (2007) investigated damage to residential structures in non-flooded 

areas affected by Hurricane Katrina.  The main cause of structural damage seen in these 

areas was a lack of design and construction for uplift load paths at both wall-to-

foundation and roof-to-wall connections (van de Lindt et al. 2007).  Loss of sheathing on 

gable-end walls was also noted as an area of concern.  Similar issues with uplift load 

paths and gable-end failure were seen in houses located on the outskirts of the Joplin and 

Tuscaloosa Tornado paths where lower wind speeds occurred (Prevatt et al. 2012a).   

Although it is not considered economical to design for tornado wind loads, fragility 

models developed by Amini (2012) showed that current high-wind design methods could 

be beneficial during tornadoes with wind speeds up to 177 km/hr (110 mph).  Prevatt et 

al. (2012a) reported that most of the houses with significant structural damage during the 

2011 Tuscaloosa, AL and Joplin, MO tornadoes were not constructed to meet current 

wind codes.   

Gable-End Retrofitting 

 Since the majority of single-family residential structures in the United States were 

built before updated building codes following Hurricane Andrew in 1992, the 

development and implementation of retrofitting options for these structures is important.  

Weaknesses in non-structural gable-end walls have become an area of particular concern.  

According to Reynolds (2008), three common gable-end failures can occur during high-

wind events: 
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1. Loss of support along the top edge of the gable-end wall due to loss of sheathing. 

2. Hinging action at the connection between the triangular gable-end truss and 

rectangular wall under suction pressures. 

3. Collapse of gable-end framing members due to bending stress under positive wind 

pressures. 

In light of these vulnerabilities, the Florida Building Commission adopted a gable-end 

retrofitting option into the 2010 Florida Building Code as detailed in ICC (2012).  The 

gable-end retrofit (shown in Appendix I of this paper) was tested in full- scale tests 

performed by Suksawang and Mirmiran (2009) at Florida International University.  

Based on the tests, it was concluded that the retrofit was capable of increasing gable-end 

strength to meet current building codes.  However, Suksawang and Mirmiran (2009) 

expressed concern about possible load path alteration and unforeseen torsional effects 

due to the addition of the general retrofit and variations of the retrofit used for pre-

existing obstacles.  In light of this concern, the effects of the general gable-end retrofit on 

load path redistribution in a realistic L-shaped house were explored in the current study. 

Design Wind Loads for Buildings with Irregular Plan Geometry 

 Mensah et al. (2010) discussed the development and validation of a database- 

assisted design (DAD) methodology for simulating realistic, spatiotemporal wind loads 

on building components.  Prevatt et al. (2012b) used DAD methods to determine uplift 

loads on a light-frame wood structure tested at 1/3rd scale.  Uplift reactions calculated 

using ASCE (2005) design loads and tributary analysis underestimated reactions under 

the building loaded with DAD wind loads by up to 50 percent.  While DAD methods may 

be  preferable to codified wind pressures, they are still under development and require 

specific software for implementation.  As far as codified pressures are concerned, there 

are few provisions addressing irregular buildings.  ASCE 7-05, for example, contains 

design provisions for calculating wind pressures on buildings with regular geometry only, 

and recommends wind tunnel simulation for all other structures (ASCE 2005).   

Mehta and Coulbourne (2010), Wind Loads: Guide to the Wind Load Provisions 

of 7-05, provides examples for adapting ASCE 7-05 codified pressures to buildings with 
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re-entrant corners.  Under this methodology, each surface of the structure is designated as 

windward, leeward, etc., based on wind exposure (regardless of its proximity to the re-

entrant corner).  Wind pressures for each surface are then calculated using ASCE 7-05 

Main Wind Force Resisting System (MWFRS) Method 2.  This same methodology was 

recommended by Fanella (2008).  Cook (1985), on the other hand, argued that in the case 

of wind blowing at a skew angle into a re-entrant corner, a “region of stagnant air” 

becomes trapped in the corner, increasing the pressure in this area.  In order to account 

for this, Cook (1985) outlined a method of calculating the local area within a re-entrant 

corner for which higher pressure should be considered.  For consistency in the current 

study, ASCE recommended methods outlined by Mehta and Coulbourne (2010) were 

selected for calculating ASCE 7-05 MWFRS wind loads as outlined in Appendix K. 
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APPENDIX B 

TWO-DIMENSIONAL TRUSS MODEL VALIDATION 

Introduction 

 Modeling methods for two dimensional trusses were validated against full- scale 

tests performed by Wolfe et al. (1986).  Wolfe et al. (1986) tested forty-two 12.8-meter 

(28-foot) span Fink trusses spaced 61 cm (24 in) on center in a residential roof.  Half of 

the trusses had a slope of 3:12 and the other half had a slope of 6:12.  Truss members 

were comprised of No. 2 southern pine lumber, divided into three Modulus of Elasticity 

(MOE) categories: high, medium and low.  Each truss was constructed with 38x89 mm 

(1.5x3.5 in) lumber from one of the MOE categories and labeled with a three-part 

identification including its slope (3 or 6), MOE category (H, M, or L) and a sequence 

number (1-7).  From the original 42 trusses, four 6:12 sloped trusses from each MOE 

category and four 3:12 sloped trusses from each MOE category were selected for 

individual truss tests.  The remaining trusses were tested by Wolfe and McCarthy (1989) 

in three dimensional roof assemblies.  

The individual trusses were loaded in a horizontal position with 3.5-inch supports 

located at either end of the truss.  The 3:12 trusses were tested with a live load of 0.84 

kPa (17.5 psf), the 6:12 trusses were tested with a live load of 1.10 kPa (23 psf), and both 

were tested with a dead load of 0.48 kPa (10 psf).  All loads were applied along the top 

chords of the trusses.  Deflections were measured at the ridge and at the ends of each 

web, and averaged to determine the total deflection of each truss. 

Modeling Methods 

The chords and webs of each truss were modeled using SAP2000’s frame 

elements.  The geometry for the trusses was determined using the centerlines of the top 

and bottom chords as shown in Figures B-1 and B-2.   
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(a)

 
(b) 

 

Figure B-1: 6:12 Truss Geometry – (a) Actual truss from Wolfe and 
LaBissoniere (1991) and (b) centerline model used in SAP2000. 

(a) 

 
(b) 

 

Figure B-2: 3:12 Truss Geometry – (a) Actual truss from Wolfe and LaBissoniere 
(1991) and (b) centerline model used in SAP2000 
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Each framing member was assigned a cross section equal to the actual cross section of 

the lumber used by Wolfe et al. (1986).  The connections between members were 

idealized as either pinned or rigid based on previous studies conducted by Li (1996) and 

Martin (2010).  Pinned connections were used at the ridge and the ends of each web, 

while rigid connections were used at the truss heels.  The splice in the bottom chord of 

the truss was modeled both as a pinned connection and as a rigid connection, and proved 

to have negligible effect on the stiffness of the truss model.  Figure B-3 shows the 

connectivity used in the truss models as well as the joint and member labels.  Martin 

(2010) created a similar pinned and rigid model, which closely followed the geometry 

used by Li (1996) (K. Martin, personal communication, July 27, 2010). 

 

Figure B-3: Connectivity and Element Labels for 2D Truss Model –J3 was restrained 
in the R2 direction (in-plane rotation) to prevent instability warnings. 

Three sets of material properties for the framing members were explored in this 

study.  First, the 6:12 trusses were modeled using the exact MOEs listed by Wolfe et al. 

(1986) for each individual member.  This allowed for the most accurate comparison 

between the tested trusses and the modeled trusses.  A list of MOEs is included in Table 

B-1.  To simplify the model for practical use in the three-dimensional roof assemblies 

modeled in Appendix C, the 6:12 and 3:12 trusses were then modeled using average 

MOEs for each stiffness category applied uniformly to every member of the truss.  

Averaged MOEs for each category and truss slope are listed in Table B-2.  
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Table B-1: Modulus of Elasticity Assignments – MOEs per Wolfe et al. (1986). 

MOE (MPa) 
Truss TC1 TC2 TC3 TC4 BC1 BC2 WB1 WB2 WB3 WB4

6L2 7102 8550 9515 9032 8481 8825 7860 9239 6895 8067

6L3 8136 8067 9515 7998 9032 6757 8067 8618 9377 9239

6L5 9032 8687 8825 8550 7653 9446 7033 9653 7308 9239

6L7 7515 8067 8205 8963 9446 9515 9239 8963 7239 9653

6M1 13514 12893 12342 13376 13583 11790 11445 10342 11721 9997

6M2 13238 12342 12893 13031 11997 9722 11101 11445 12893 11170

6M4 12893 11307 9860 13307 13652 11238 13307 11101 10963 11583

6M7 13445 9860 11307 13514 10618 11101 10342 11032 9997 10963

6H1 14755 16341 16341 16410 16616 16892 15513 15513 16272 16272

6H2 14410 15031 15031 17375 15927 15237 16961 16272 17788 16272

6H6 15720 16203 15100 15789 14272 13927 15031 13996 16478 17237

6H7 15996 16203 15100 14479 14272 15168 15031 14203 16823 17237

MOE (ksi) 
Truss TC1 TC2 TC3 TC4 BC1 BC2 WB1 WB2 WB3 WB4

6L2 1030 1240 1380 1310 1230 1280 1140 1340 1000 1170

6L3 1180 1170 1380 1160 1310 980 1170 1250 1360 1340

6L5 1310 1260 1280 1240 1110 1370 1020 1400 1060 1340

6L7 1090 1170 1190 1300 1370 1380 1340 1300 1050 1400

6M1 1960 1870 1790 1940 1970 1710 1660 1500 1700 1450

6M2 1920 1790 1870 1890 1740 1410 1610 1660 1870 1620

6M4 1870 1640 1430 1930 1980 1630 1930 1610 1590 1680

6M7 1950 1430 1640 1960 1540 1610 1500 1600 1450 1590

6H1 2140 2370 2370 2380 2410 2450 2250 2250 2360 2360

6H2 2090 2180 2180 2520 2310 2210 2460 2360 2580 2360

6H6 2280 2350 2190 2290 2070 2020 2180 2030 2390 2500

6H7 2320 2350 2190 2100 2070 2200 2180 2060 2440 2500
 

Table B-2: Average MOEs Used for Individual 6:12 Trusses 

 
Average MOE MPa (ksi) 

Slope Low Medium High 

6:12 8515  (1235) 11804 (1712) 15741 (2283) 
3:12 8446 (1225) 12080 (1725) 15451 (2241) 
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Finally, the trusses were assigned a uniform design MOE determined from the 

2005 edition of the NDS National Design Specification for Wood Construction.   Based 

on Table 4B from AF&PA (2005a), an MOE value of 11030 MPa (1600 ksi) was chosen 

for No. 2 grade Southern Pine lumber.  No adjustment factors were used since the 

members were assumed to be of normal moisture content, with no incisions and tested at 

normal temperatures.  This MOE value was applied to both the 3:12 and 6:12 trusses and 

compared to the overall average deflection of trusses listed in the deflection tables of 

Wolfe et al. (1986) regardless of MOE category. 

The truss models were loaded with the same truss loads used by Wolfe et al. 

(1986): 0.96 kN/m (66 lb/ft) applied along the top chords of the 6:12 trusses and 0.80 

kN/m (55 lb/ft) applied along the top chord of the 3:12 truss.  The deflections from joints 

J1 through J3 were then averaged and compared to the deflections reported by Wolfe et 

al. (1986). 

Results and Discussion 

 The resulting deflections for each truss model with exact MOE’s and averaged 

MOE’s are included in Tables B-3 through B-5.  For both the exact MOEs and the 

averaged MOEs, the models were able to predict the average deflection of the trusses in 

each stiffness category within 10% of the actual deflections listed by Wolfe et al. 1986.  

Martin (2010) managed to reduce this discrepancy to less than 5 percent, mainly due to 

differences in the geometry used to simulate the trusses.  As stated before, Martin (2010) 

used a truss model that was similar to the geometry used by Li (1996), which was 20.3 

mm (0.8 in) taller and 88.2 mm (3.47 in) wider than the current model, with the same 

clear-span.   

The models that were assigned a design MOE from AF&PA (2005a) predicted the 

overall average deflection for both the 3:12 sloped trusses and the 6:12 sloped trusses 

within 5% of the deflections reported by Wolfe et al. (1986).  Table B-6 shows results for 

the trusses modeled with AF&PA (2005a) properties.  In all cases, the truss models were 

stiffer than the actual tested trusses.  This is likely due to the use of a rigid connection at 

the heels of the truss as opposed to a more realistic semi-rigid connection. 
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Table B-3: Comparison of Experimental and Model Displacements – Percent differences 
between computer models and the experimental data of Wolfe et al. (1986). 

Wolfe et al. (1986) Current Study Martin (2010) 

Truss Deflection Deflection 
% Diff. 

from 
Deflection 

% Diff. 
from 

 
mm (in) mm (in) 

Wolfe et 
al. (1986) 

mm (in) 
Wolfe et 
al. (1986) 

6L2 4.369 (0.172) 4.318 (0.170) -1% 4.547 (0.179) 4% 
6L3 4.572 (0.180) 4.496 (0.177) -2% 4.724 (0.186) 3% 
6L5 4.927 (0.194) 4.267 (0.168) -14% 4.470 (0.176) -9% 
6L7 5.029 (0.198) 4.242 (0.167) -16% 4.445 (0.175) -12% 

Average 4.724 (0.186) 4.318 (0.170) -8% 4.547 (0.179) -4% 
6M1 3.124 (0.123) 2.870 (0.113) -8% 2.997 (0.118) -4% 
6M2 3.454 (0.136) 3.099 (0.122) -11% 3.226 (0.127) -7% 
6M4 3.073 (0.121) 3.048 (0.120) -1% 3.200 (0.126) 4% 
6M7 2.972 (0.117) 3.200 (0.126) 8% 3.353 (0.132) 13% 

Average 3.150 (0.124) 3.048 (0.120) -3% 3.200 (0.126) 1% 
6H1 2.718 (0.107) 2.260 (0.089) -17% 2.388 (0.094) -12% 
6H2 2.718 (0.107) 2.362 (0.093) -13% 2.464 (0.097) -9% 
6H6 2.184 (0.086) 2.438 (0.096) 12% 2.565 (0.101) 17% 
6H7 2.718 (0.107) 2.413 (0.095) -11% 2.591 (0.102) -5% 

Average 2.591 (0.102) 2.362 (0.093) -8% 2.515 (0.099) -3% 
 

Table B-4: Comparison of Average Displacements for Simplified 6:12 Trusses using 
Average MOE Values 

Wolfe et al. (1986) Current Study with Averaged MOEs 

Truss 
Average Disp. Average Disp. % Diff. from 

mm (in) mm (in) Wolfe et al. (1986) 

Average L 4.724 (0.186) 4.293 (0.169) -9% 
Average M 3.150 (0.124) 3.100 (0.122) -2% 

Average H 2.591 (0.102) 2.311 (0.091) -10% 
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Table B-5: Comparison of Average Displacements for 3:12 Trusses using Average MOE 
Values - *Note that the deflection tables found in Wolfe et al. (1986) are inconsistent.  
The average deflections in the 6:12 tables were calculated using the deflection = A x 
(design load ratio) + B equation found at the top of the table, whereas the average 
deflections for the 3:12 tables were calculated from Column A only.  This inconsistency 
has been corrected in Table A-9 so that the 3:12 averages also incorporate the straight 
line deflection equation. 

Wolfe et al. (1986) Current Study with Averaged MOEs 

Truss 
Average Disp. Average Disp. % Diff. from 

mm (in) mm (in) Wolfe et al. (1986) 

Average L 11.66 (0.459) 11.30 (0.445) -3% 
Average M 8.204 (0.323) 8.026 (0.316) -2% 

Average H 6.833 (0.269) 6.172 (0.243) -9% 

 

Table B-6: Comparison of Average Displacements for trusses with AF&PA (2005a) 
design MOE 

Wolfe et al. (1986) 
Current Study with AF&PA (2005a) Design 

MOE 

Truss 
Total Average Disp. Average Disp. % Diff. from 

mm (in) mm (in) Wolfe et al. (1986) 

3:12 Slope 8.890 (0.350) 8.636 (0.340) -3%
6:12 Slope 3.480 (0.137) 3.327 (0.131) -5% 

 

Conclusions 

 The simplified, linear modeling techniques described in this appendix are 

sufficient for predicting the behavior of two-dimensional trusses with various pitches and 

stiffness.  Based on the results described above, the following methods were adopted for 

use in the current study: 

   Pinned connections were used at the ends of each web member and at the ridge 

of the truss.  Rigid connections were used along top chords, bottom chords and at 

truss heels.  Figure B-3 shows the connectivity used in the truss models. 

 Truss chords and web members were modeled using the SAP2000 frame element 

with an assigned cross section equal to the actual cross section of the member. 
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 Material properties for the framing members were assumed to be linear and 

isotropic.  The modulus of elasticity for each member was determined using 

design properties listed in AF&PA (2005a). 

For the three-dimensional truss assembly validation described in Appendix C, the average 

MOE from Wolfe et al. (1986) for each stiffness category was used in lieu of AF&PA 

(2005a) design properties so the effects of varying truss stiffness within the assembly 

could be explored. 
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APPENDIX C 

THREE DIMENSIONAL ROOF ASSEMBLY MODEL VALIDATION 

Introduction 

Methods for modeling roof assemblies were validated against full- scale tests 

performed by Wolfe and McCarthy (1989) on two nine-truss gable roof assemblies.  One 

assembly had a 3:12 roof pitch and the other had a 6:12 roof pitch.  The trusses, 

constructed by Wolfe et al. (1986), were spaced 0.61 m (2 ft) on center.  As in Wolfe et 

al. (1986), the trusses were grouped into high (H), medium (M), and low (L) Modulus of 

Elasticity (MOE) categories based on the individual MOE’s of the 2x4 members used to 

construct the trusses.  Within the assemblies, trusses were arranged into a pattern of: M-

H-L-M-H-L-L-M-H moving from West to East based on MOE category as shown in 

Figure C-1.  

 

Figure C-1: Pattern of Truss Stiffness in Assemblies – Low MOE (L), Medium MOE 
(M) and High MOE (H) as used by Wolfe and McCarthy (1989) 
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  The sheathing used in the assembly was 11.9-mm-thick (15/32-in-thick) Southern 

Pine 3-ply plywood.  The average bending stiffness (EI) of the plywood was measured by 

Wolfe and McCarthy (1989) using a plate bending test and found to be 1.19 N·m2/m 

(196,000 lb·in2/ft).  The assembly was supported along the north and south sides by 0.9-

m-tall (3-ft-tall) wood framed walls with a clear span of 8.4 m (27 ft, 5 in). 

Modeling Methods 

Individual Trusses 

 The trusses in the current study were modeled as described in Appendix B, using 

only pinned and rigid connections.  The MOE for each of the stiffness categories was 

determined by averaging the individual MOE’s of the 2x4’s used to construct each of the 

trusses as shown in Tables C-1 and C-2.  The self-weight of the material was not included 

in the model. 

Table C-1: Average MOE’s used for Trusses* in 3:12 Truss Assembly 

Average MOE MPa (ksi) 

Low: *3L2, 3L4, 3L6 Medium: *3M2, 3M4, 3M6 High: *3H1, 3H3, 3H5 

8667 (1257) 11004 (1596) 16443 (2383) 
 

Table C-2: Average MOE’s used for Trusses* in 6:12 Truss Assembly 

Average MOE MPa (ksi) 

Low: *6L1, 6L4, 6L6 Medium: *6M3, 6M5, 6M6 High: *6H3, 6H4, 6H5 

8450 (1226) 12080 (1752) 16171 (2345) 
 

Plywood Sheathing 

 The sheathing was represented using a continuous, orthotropic “Layered Shell 

Element” from SAP2000, with a thickness of 11.9 mm (0.469 in) and local coordinates 

oriented as shown in Figure C-2.  The sheathing layer was displaced 50.4 mm (1.98 in) 

from the centerline of the top chord framing members towards the top surface of the 

assembly.  This was done so that the plywood is modeled at its true physical location 

rather than through the centerlines of the top chords. 
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Figure C-2: Local Coordinate Orientation of Thick Shell Elements for Sheathing – 
with strong axis (1) running perpendicular to the truss supports 

Material properties for the plywood sheathing were calculated using 

experimentally determined values provided by Wolfe and McCarthy (1989), as well as 

design specifications and publically available software.  A moment of inertia (I) of 

1.41x10-7 m4/m (0.103 in4/ft) was determined using the 2008 APA Panel Design 

Specification for 32/15-in-thick, 3-ply plywood from Species Group 1.  The MOE along 

the strong axis (“E1” as designated by SAP2000) was then determined by dividing the 

measured EI from Wolfe and McCarthy (1989) by the moment of inertia suggested by 

APA (2008) to give an MOE of 13,120 MPa (1,903 ksi).   

Martin (2010), found the most sensitive material properties for the sheathing to be 

the MOE along the strong and weak axes (E1 and E2 in SAP2000), the in-plane shear 

modulus (G12 in SAP2000), and the Poisson’s Ratio related to E2 (u12).  It is important to 

note that the subscript notation for Poisson’s Ratio in SAP2000 is the inverse of 

conventional notation, where νij is typically related to Ei as illustrated in Figure C-3. 

1

2
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Figure C-3: Hooke’s Law for Orthotropic Materials – (left) conventional notation 
from Bodig and Jayne (1982) and (right) SAP2000 notation (CSI Technical Support, 

personal communication, July 29, 2011). 

Since the bending stiffness along the strong axis was the only property provided 

in the literature, the remainder of the material properties were found using 

OSULaminates, a publically available software package developed by Dr. John Nairn at 

Oregon State University (Nairn 2007).  Using the software, a 3-ply panel was created 

with 3.97-mm-thick (0.1563-in-thick) wood-plies from Species Group 1, alternating 90-

degree grain orientations and the strong and weak axes oriented along x and y, 

respectively.  The engineering properties in flexure were used since the roof sheathing is 

loaded out-of-plane.  Table C-3 lists the engineering properties generated by 

OSULaminates.  To better represent the actual material properties of the plywood used in 

the full- scale tests; Ex, Ey and Gxy generated from OSU Laminates were scaled (by a 

factor of 1.31) equating Ex to the experimental MOE from Wolfe and McCarthy (1989). 

The remaining orthotropic parameters were found to have a negligible effect on the 

behavior of the model and were chosen somewhat arbitrarily (Martin 2010). 
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Table C-3: Engineering Properties in Bending for 3-Ply Panel Generated by OSU 
Laminates and scaled to Wolfe and McCarthy (1989) – Scaled properties are used in 

the model 

Orthotropic Properties 
Generated from OSU 

Laminates 
Scaled to Wolfe and McCarthy 

(1989) 

Ex (E1 in SAP2000) 

M
P

a 
(k

si
) 9991 (1449) 13120 (1903) 

Ey (E2 in SAP2000) 669 (97) 878 (127) 

Gxy (G12 in SAP2000) 483 (70) 634 (92) 

vyx (u12 in SAP2000) 0.011 0.011 

Meshing and Boundary Conditions 

 As in Martin (2010), the roof sheathing was meshed into elements with a 

maximum size of 610 mm (24 in) so that the sheathing elements would align with the 

framing elements of the trusses.  This was accomplished using the Automatic Mesh tool 

in SAP2000. 

 With respect to boundary conditions, it was reported that the “supports within the 

assembly behaved as something between [pinned] and roller” (Wolfe and McCarthy 

1989).  The current study used the “roller-roller” conditions shown in Figure C-4, with 

horizontal restraint provided at the line of symmetry at the peak.  Lateral displacements 

were measured in the U1 direction at the roller supports of the model during loading and 

were found to be less than 0.87 mm (0.034 in), which is consistent with the maximum 

displacement of 0.89 mm (0.035 in)  reported by Wolfe and McCarthy (1989). 
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Figure C-4: “Roller-Roller” Support Conditions – for each truss the heel supports are 
restrained in the U3 (vertical) direction only.  The ridge at each end of the assembly is 

also restrained in the U1 and U2 (lateral) directions to prevent instability warnings. 

Loading and Data Collection 

Following procedures outlined in Wolfe and McCarthy (1989), the trusses in both 

the 3:12- and 6:12-sloped assemblies were loaded one at a time.  The trusses in the 3:12 

assembly were loaded with 803 N/m (55 lb/ft) uniformly distributed along the top chord, 

and the trusses in the 6:12 assembly were loaded with 963 N/m (66 lb/ft).  For each 

loaded truss, the relative vertical deflections and support reactions of every truss in the 

assembly were measured and plotted against the results reported in the literature. 

Relative vertical reactions (Rrel) were determined as the ratio of the total vertical 

support reaction at each individual truss to the total load applied to the assembly as 

shown in Equation C-1.  For the 3:12 assembly, the total load for a distributed load of 

803 N/m (55 lb/ft) along the top chord of a truss was found to be 7068 N (1589 lb).  For 

the 6:12 assembly, the total load for a distributed load of 963 N/m (66 lb/ft) along the top 

chord of a truss was found to be 9212 N (2071 lb). 

 ܴ௥௘௟,௝ ൌ
ோೕ

∑ ோ೔
వ
೔సభ

݆	ݎ݋ܨ				%100	ݔ	 ൌ  Equation C-1 9	݋ݐ	1

 Note that in Equation C-1, i and j refer to individual trusses within the assembly, 

where truss 1 is located on the West side of the assembly, and truss 9 is located on the 
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East side of the assembly.  This notation was used for all tables and charts related to the 

roof assembly validation. 

Deflections were measured at four locations on each truss, as shown in Figure C-

5, and averaged to determine the average deflection (Δavg) at each truss.  The average 

deflections of all trusses were then summed to give the total average deflection of the 

assembly.  In accordance with Wolfe and McCarthy (1989), the percent contribution of 

an individual truss to the total average deflection of the assembly was defined as the 

“relative deflection” of that truss. The relative deflections (Δrel) were calculated as shown 

in Equation C-2. 

 
Figure C-5: Locations for Deflection Measurement on Each Truss – The average 

deflection (Δavg) at each truss was calculated as the average of the deflections measured at 
each of the four locations shown. 

௥௘௟,௝߂  ൌ
∆ೌೡ೒,ೕ

∑ ∆ೌೡ೒,೔
వ
೔సభ

݆	ݎ݋ܨ				%100	ݔ	 ൌ  Equation C-2 	9	݋ݐ	1

Results and Discussion 

Relative deflections and reactions for the 3:12 and 6:12 assembly models were 

plotted against results from Wolfe and McCarthy (1989) and organized into influence 

matrices as shown in Appendix D.   The percent error in relative deflections and reactions 

at the loaded trusses were calculated based on the full- scale tests.  At the loaded trusses, 

relative reactions were predicted with an average error of 9 percent from the full-scale 

tests in the 3:12 assembly and 17 percent in the 6:12 assembly as shown in Table C-4.  

Relatively high errors were seen at trusses 2, 5, 6 and 8 in the 6:12 assembly, however, 

there is not enough information to determine why errors were high at these trusses.  Both 

models accurately predicted the overall load distributions to non-loaded trusses as shown 

in Figures D-1 through D-18 in Appendix D. 

North South
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Table C-4: Absolute Error in Predicted Relative Reactions at Loaded Trusses in 
Each Assembly – Compared to Wolfe and McCarthy (1989) 

Loaded 
Truss # 

Percent Error 

3:12 Assembly 6:12 Assembly 

1 3% 7% 

2 18% 32% 

3 20% 11% 

4 1% 11% 

5 7% 26% 

6 13% 25% 

7 11% 7% 

8 3% 27% 

9 9% 7% 

Average 9% 17% 

Although the main focus of this study is force distribution through the structure, 

the relative deflections were also checked to provide additional validation as shown in 

Table C-5.   

Table C-5: Absolute Error in Predicted Relative Deflections at Loaded Trusses in 
Each Assembly – Compared to Wolfe and McCarthy (1989) 

Loaded 
Truss # 

Percent Error 

3:12 Assembly 6:12 Assembly 

1 10% 9% 

2 24% 15% 

3 38% 0% 

4 45% 14% 

5 16% 8% 

6 30% 9% 

7 21% 4% 

8 10% 11% 

9 21% 0% 

Average 24% 8% 

At the loaded trusses, the 3:12 model predicted relative deflections with an 

average error of 24 percent compared to Wolfe and McCarthy (1989).  The 6:12 

assembly more accurately predicted relative deflections with an average error of only 8 

percent.  It was observed that the 3:12 model was more accurate in predicting force 



 
 

70 
 

distributions than deflections while the 6:12 assembly was more accurate in predicting 

deflections than force distributions.  The reason for this discrepancy is unknown.  Overall 

distributions of relative deflections for each loading scenario were plotted in Figures D-

19 through D-36.   

Conclusions 

 The two nine-truss gable roof assemblies with varying slope and individual truss 

stiffness were adequate in predicting assembly behavior.  Based on the results in this 

appendix, the following modeling methods were adopted for use in the current study: 

 Roof sheathing was modeled using a continuous “layered shell element” from 

SAP2000.   

 The plywood layer was displaced from the centerline of the truss top chord so that 

the bottom surface of the plywood was even with the top surface of the truss top-

chord cross section. 

 Material properties for the plywood sheathing were assumed to be orthotropic and 

were determined using flexural engineering properties calculated by OSU 

Laminates Software. 
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APPENDIX D 

PLOTS FOR ROOF ASSEMBLY MODEL VALIDATION 

 This appendix contains influence matrices and plots for the 3:12 and 6:12 

assemblies that were modeled in Appendix C. 

3:12 Assembly – Relative Reactions 

 
Figure D-1: Relative Reactions for 3:12 Truss Assembly When Truss 1 is Loaded 

‐15%

‐5%

5%

15%

25%

35%

45%

55%

65%

75%

1 2 3 4 5 6 7 8 9

P
e
rc
e
n
t 
o
f 
To

ta
l R

e
ac
ti
o
n

Truss #

Relative Reactions (Truss 1 Loaded) ‐ 3/12 Assembly

Wolfe and McCarthy 1989

Current Study



 
 

72 
 

 

Figure D-2: Relative Reactions for 3:12 Truss Assembly When Truss 2 is Loaded 

 

Figure D-3: Relative Reactions for 3:12 Truss Assembly When Truss 3 is Loaded 
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Figure D-4: Relative Reactions for 3:12 Truss Assembly When Truss 4 is Loaded 

 

Figure D-5: Relative Reactions for 3:12 Truss Assembly When Truss 5 is Loaded 
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Figure D-6: Relative Reactions for 3:12 Truss Assembly When Truss 6 is Loaded 

 

Figure D-7: Relative Reactions for 3:12 Truss Assembly When Truss 7 is Loaded 
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Figure D-8: Relative Reactions for 3:12 Truss Assembly When Truss 8 is Loaded 

 

Figure D-9: Relative Reactions for 3:12 Truss Assembly When Truss 9 is Loaded 
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Influence Matrices for 3:12 Assembly – Relative Reactions 

Table D-1: Relative Reactions of Trusses in 3:12 Assembly from Wolfe and McCarthy (1989) 

Loaded Truss 
Relative Reactions at Truss # 

1 2 3 4 5 6 7 8 9 

1 57% 29% 12% 10% 3% 0% -1% -4% -8% 

2 20% 49% 18% 11% 6% 2% 0% -1% -2% 

3 10% 20% 36% 20% 7% 3% 2% 1% -1% 

4 5% 10% 12% 44% 16% 5% 4% 3% 0% 

5 1% 5% 7% 18% 45% 11% 8% 6% 3% 

6 0% 3% 5% 8% 17% 37% 13% 9% 7% 

7 -1% 1% 3% 5% 9% 12% 39% 19% 13% 

8 -2% -2% 1% 3% 6% 6% 16% 48% 24% 

9 -4% -4% -1% 0% 4% 6% 10% 26% 63% 
 

Table D-2: Relative Reactions of Trusses in 3:12 Assembly from Current Study 

Loaded Truss 
Relative Reactions at Truss # 

1 2 3 4 5 6 7 8 9 

1 58% 28% 11% 9% 7% 1% -1% -4% -10% 

2 19% 58% 10% 9% 8% 2% 1% -1% -5% 

3 13% 19% 43% 9% 10% 4% 2% 1% -1% 

4 9% 13% 7% 44% 13% 5% 4% 3% 3% 

5 5% 8% 6% 8% 48% 7% 6% 6% 7% 

6 2% 4% 4% 7% 13% 42% 8% 9% 12% 

7 -1% 1% 2% 5% 11% 8% 43% 12% 19% 

8 -4% -2% 1% 3% 8% 7% 10% 50% 27% 

9 -7% -5% -1% 2% 7% 7% 10% 18% 69% 
 

Table D-3: Difference in Relative Reactions for 3:12 Assembly 

Loaded Truss 
Difference in Relative Reactions: (Wolfe and McCarthy 1989) - (Current Study) 

1 2 3 4 5 6 7 8 9 

1 -1% 1% 1% 1% -4% -1% 0% 0% 2% 

2 1% -9% 8% 2% -2% 0% -1% 0% 3% 

3 -3% 1% -7% 11% -3% -1% 0% 0% 0% 

4 -4% -3% 5% 0% 3% 0% 0% 0% -3% 

5 -4% -3% 1% 10% -3% 4% 2% 0% -4% 

6 -2% -1% 1% 1% 4% -5% 5% 0% -5% 

7 0% 0% 1% 0% -2% 4% -4% 7% -6% 

8 2% 0% 0% 0% -2% -1% 6% -2% -3% 

9 3% 1% 0% -2% -3% -1% 0% 8% -6% 
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6:12 Assembly – Relative Reactions 

 
Figure D-10: Relative Reactions for 6:12 Truss Assembly When Truss 1 is Loaded 

 
Figure D-11: Relative Reactions for 6:12 Truss Assembly When Truss 2 is Loaded 
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Figure D-12: Relative Reactions for 6:12 Truss Assembly When Truss 3 is Loaded 

 
Figure D-13: Relative Reactions for 6:12 Truss Assembly When Truss 4 is Loaded 
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Figure D-14: Relative Reactions for 6:12 Truss Assembly When Truss 5 is Loaded 

 

Figure D-15: Relative Reactions for 6:12 Truss Assembly When Truss 6 is Loaded 
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Figure D-16: Relative Reactions for 6:12 Truss Assembly When Truss 7 is Loaded 

 

Figure D-17: Relative Reactions for 6:12 Truss Assembly When Truss 8 is Loaded 
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Figure D-18: Relative Reactions for 6:12 Truss Assembly When Truss 9 is Loaded 
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Influence Matrices for 6:12 Assembly – Relative Reactions 

Table D-4: Reactions of Trusses in 6:12 Assembly from Wolfe and McCarthy (1989) 

Loaded Truss 
Relative Reactions at Truss # 

1 2 3 4 5 6 7 8 9 

1 58% 25% 12% 12% 5% 1% -1% -4% -8% 

2 25% 44% 15% 13% 7% 2% 1% -1% -6% 

3 11% 19% 39% 18% 7% 3% 2% 1% -2% 

4 8% 10% 13% 41% 15% 4% 5% 4% 2% 

5 3% 7% 7% 16% 39% 11% 7% 7% 5% 

6 1% 3% 5% 7% 16% 34% 13% 10% 10% 

7 0% 2% 3% 6% 6% 10% 41% 16% 16% 

8 -3% -2% 1% 4% 6% 6% 17% 41% 29% 

9 -5% -4% -1% 1% 4% 6% 12% 24% 65% 
 

Table D-5: Reactions of Trusses in 6:12 Assembly from Current Study 

Loaded Truss 
Relative Reactions at Truss # 

1 2 3 4 5 6 7 8 9 

1 62% 26% 9% 9% 6% 1% -1% -4% -9% 

2 19% 58% 10% 8% 7% 2% 1% -1% -5% 

3 13% 19% 43% 12% 9% 3% 2% 1% -1% 

4 9% 11% 8% 46% 13% 4% 3% 3% 2% 

5 5% 7% 4% 10% 49% 7% 5% 6% 6% 

6 2% 4% 3% 6% 14% 42% 9% 8% 12% 

7 -1% 1% 2% 5% 9% 9% 44% 15% 17% 

8 -4% -2% 1% 3% 8% 6% 11% 52% 25% 

9 -7% -5% -1% 2% 6% 6% 9% 19% 69% 

Table D-6: Difference in Relative Reactions for 6:12 Assembly 

Loaded Truss 
Difference in Relative Reactions: (Wolfe and McCarthy 1989) - (Current Study) 

1 2 3 4 5 6 7 8 9 

1 -4% -1% 3% 3% -1% 0% 0% 0% 1% 

2 6% -14% 5% 5% 0% 0% 0% 0% -1% 

3 -2% 0% -4% 6% -2% 0% 0% 0% -1% 

4 -1% -1% 5% -5% 2% 0% 2% 1% 0% 

5 -2% 0% 3% 6% -10% 4% 2% 1% -1% 

6 -1% -1% 2% 1% 2% -8% 4% 2% -2% 

7 1% 1% 1% 1% -3% 1% -3% 1% -1% 

8 1% 0% 0% 1% -2% 0% 6% -11% 4% 

9 2% 1% 0% -1% -2% 0% 3% 5% -4% 
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3:12 Assembly – Relative Deflections 

 

 
Figure D-19: Relative Deflections for 3:12 Truss Assembly When Truss 1 is Loaded 

 

Figure D-20: Relative Deflections for 3:12 Truss Assembly When Truss 2 is Loaded 
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Figure D-21: Relative Deflections for 3:12 Truss Assembly When Truss 3 is Loaded 

 

Figure D-22: Relative Deflections for 3:12 Truss Assembly When Truss 4 is Loaded 
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Figure D-23: Relative Deflections for 3:12 Truss Assembly When Truss 5 is Loaded 

 

Figure D-24: Relative Deflections for 3:12 Truss Assembly When Truss 6 is Loaded 
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Figure D-25: Relative Deflections for 3:12 Truss Assembly When Truss 7 is Loaded 

 

Figure D-26: Relative Deflections for 3:12 Truss Assembly When Truss 8 is Loaded  
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Figure D-27: Relative Deflections for 3:12 Truss Assembly When Truss 9 is Loaded 
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Influence Matrices for 3:12 Assembly – Relative Deflections 

Table D-7: Relative Deflections of Trusses in 3:12 Assembly from Wolfe and McCarthy (1989) 

Loaded Truss 
Relative Deflections at Truss # 

1 2 3 4 5 6 7 8 9 

1 64.9% 26.2% 11.2% 3.4% -0.9% 0.4% -0.8% -0.3% -4.1% 

2 27.6% 49.0% 19.3% 5.8% -0.1% 0.8% -0.9% 0.0% -1.5% 

3 3.1% 21.3% 56.2% 18.1% 2.2% 2.2% 0.2% -1.2% -2.1% 

4 -1.2% 4.0% 25.7% 58.8% 7.9% 3.3% 0.6% 0.3% 0.6% 

5 1.1% 0.3% 7.2% 23.5% 35.5% 24.0% 6.3% 1.5% 0.7% 

6 1.1% 2.9% 2.8% 5.0% 8.0% 47.6% 20.3% 5.7% 6.7% 

7 3.1% 0.1% 1.8% 2.0% -1.6% 16.0% 44.4% 14.6% 19.6% 

8 0.0% -0.2% 0.0% 0.3% 0.5% 4.6% 17.5% 43.3% 34.0% 

9 -2.8% -1.4% -0.1% -0.1% 0.1% 2.7% 7.6% 24.7% 69.2% 
 

Table D-8: Relative Deflections of Trusses in 3:12 Assembly from Current Study 

Loaded Truss 
Relative Deflections at Truss # 

1 2 3 4 5 6 7 8 9 

1 58.5% 26.0% 13.4% 8.0% 4.0% 1.3% -1.1% -3.6% -6.5% 

2 27.8% 37.3% 20.8% 10.0% 5.7% 2.9% 0.6% -1.4% -3.7% 

3 13.3% 19.3% 35.0% 17.9% 7.6% 4.7% 2.4% 0.7% -1.0% 

4 8.1% 9.5% 18.4% 32.1% 15.5% 7.2% 4.9% 2.9% 1.4% 

5 4.3% 5.7% 8.1% 16.3% 29.7% 17.0% 8.6% 6.0% 4.4% 

6 1.2% 2.6% 4.6% 6.9% 15.5% 33.2% 18.7% 9.5% 7.7% 

7 -1.0% 0.6% 2.3% 4.6% 7.7% 18.3% 34.9% 20.0% 12.6% 

8 -3.6% -1.4% 0.7% 2.9% 5.8% 10.0% 21.4% 39.0% 25.3% 

9 -7.3% -3.8% -1.1% 1.5% 4.5% 8.9% 14.7% 27.6% 54.9% 

Table D-9: Difference in Relative Deflections for 3:12 Assembly 

Loaded Truss 
Difference in Relative Deflections: (Wolfe and McCarthy 1989) - (Current Study) 

1 2 3 4 5 6 7 8 9 

1 6% 0% -2% -5% -5% -1% 0% 3% 2% 

2 0% 12% -1% -4% -6% -2% -2% 1% 2% 

3 -10% 2% 21% 0% -5% -3% -2% -2% -1% 

4 -9% -5% 7% 27% -8% -4% -4% -3% -1% 

5 -3% -5% -1% 7% 6% 7% -2% -5% -4% 

6 0% 0% -2% -2% -8% 14% 2% -4% -1% 

7 4% 0% -1% -3% -9% -2% 9% -5% 7% 

8 4% 1% -1% -3% -5% -5% -4% 4% 9% 

9 4% 2% 1% -2% -4% -6% -7% -3% 14% 
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6:12 Assembly – Relative Deflections 

 

Figure D-28: Relative Deflections for 6:12 Truss Assembly When Truss 1 is Loaded 

 

Figure D-29: Relative Deflections for 6:12 Truss Assembly When Truss 2 is Loaded 
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Figure D-30: Relative Deflections for 6:12 Truss Assembly When Truss 3 is Loaded 

 

 

Figure D-31: Relative Deflections for 6:12 Truss Assembly When Truss 4 is Loaded 
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Figure D-32: Relative Deflections for 6:12 Truss Assembly When Truss 5 is Loaded 

 

Figure D-33: Relative Deflections for 6:12 Truss Assembly When Truss 6 is Loaded 
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Figure D-34: Relative Deflections for 6:12 Truss Assembly When Truss 7 is Loaded 

 

 

Figure D-35: Relative Deflections for 6:12 Truss Assembly When Truss 8 is Loaded 
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Figure D-36: Relative Deflections for 6:12 Truss Assembly When Truss 9 is Loaded 
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Influence Matrices for 6:12 Assembly – Relative Deflections 

Table D-10: Relative Deflections of Trusses in 6:12 Assembly from Wolfe and McCarthy (1989) 

Loaded Truss 
Relative Deflections at Truss # 

1 2 3 4 5 6 7 8 9 

1 59.2% 26.2% 13.1% 4.6% 1.2% 0.3% 0.2% -2.1% -2.7% 

2 36.0% 37.2% 21.3% 8.0% 2.6% 0.5% -0.2% -1.9% -3.6% 

3 18.7% 20.7% 42.3% 14.8% 3.3% 0.8% 0.2% -0.4% -0.3% 

4 7.4% 7.0% 18.6% 45.5% 15.7% 3.2% 0.7% 1.9% 0.1% 

5 1.7% 2.6% 8.2% 17.2% 39.9% 18.6% 5.7% 4.4% 1.6% 

6 -1.5% 0.9% 3.8% 5.6% 15.8% 44.7% 16.0% 8.0% 6.7% 

7 1.8% 0.5% 1.8% 0.9% 5.5% 14.7% 43.3% 19.1% 12.5% 

8 -1.6% 0.1% 0.6% 0.0% 1.7% 4.0% 14.9% 49.5% 30.9% 

9 -2.4% 0.3% 1.1% -0.2% -0.3% 5.1% 9.9% 25.2% 61.3% 
 

Table D-11: Relative Deflections of Trusses in 6:12 Assembly from Current Study 

Loaded Truss 
Relative Deflections at Truss # 

1 2 3 4 5 6 7 8 9 

1 64.8% 23.5% 9.7% 5.9% 2.9% 0.9% -0.7% -2.4% -4.6% 

2 25.2% 42.7% 20.9% 7.5% 4.4% 2.1% 0.6% -0.9% -2.5% 

3 9.4% 18.9% 42.3% 18.6% 5.5% 3.6% 1.8% 0.6% -0.6% 

4 6.0% 7.1% 19.5% 39.0% 16.0% 5.4% 3.9% 2.2% 1.1% 

5 3.1% 4.3% 6.0% 16.8% 36.8% 18.3% 6.6% 4.7% 3.2% 

6 0.9% 1.9% 3.5% 4.9% 15.9% 40.6% 19.8% 7.0% 5.7% 

7 -0.7% 0.5% 1.7% 3.5% 5.7% 19.4% 41.7% 19.4% 9.0% 

8 -2.4% -0.9% 0.6% 2.1% 4.4% 7.5% 21.5% 44.1% 23.0% 

9 -5.0% -2.6% -0.7% 1.1% 3.3% 6.7% 10.9% 25.1% 61.2% 

Table D-12: Difference in Relative Deflections for 3:12 Assembly 

Loaded Truss 
Difference in Relative Deflections: (Wolfe and McCarthy 1989) - (Current Study) 

1 2 3 4 5 6 7 8 9 

1 -6% 3% 3% -1% -2% -1% 1% 0% 2% 

2 11% -6% 0% 0% -2% -2% -1% -1% -1% 

3 9% 2% 0% -4% -2% -3% -2% -1% 0% 

4 1% 0% -1% 7% 0% -2% -3% 0% -1% 

5 -1% -2% 2% 0% 3% 0% -1% 0% -2% 

6 -2% -1% 0% 1% 0% 4% -4% 1% 1% 

7 2% 0% 0% -3% 0% -5% 2% 0% 4% 

8 1% 1% 0% -2% -3% -4% -7% 5% 8% 

9 3% 3% 2% -1% -4% -2% -1% 0% 0% 
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APPENDIX E 

TWO-DIMENSIONAL SHEAR WALL MODEL VALIDATION 

Introduction 

 Modeling methods for two-dimensional shear walls were validated against full- 

scale tests performed by Dolan and Johnson (1996).  Ten light-frame, wood shear walls 

were tested: two from each of the five configurations shown in Table E-1 (Dolan and 

Johnson 1996).  Shear wall types A through D were used for validation in the current 

study.  All shear walls were 12.2 m (40 ft) long, and sheathed on both sides (one side 

with plywood and the other with gypsum wall board).  No. 2, Spruce-Pine-Fir (SPF) 

sawn lumber was used for all wall framing members including studs, plates and headers.  

A detailed description of materials and fabrication methods used by Dolan and Johnson 

(1996) is included in Table E-2 and the connectors and connector spacing used in the 

wall assemblies are listed in Table E-3. 

Table E-1: Description of Shear Wall Configurations (Dolan and Johnson 1996) 
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Table E-2: Description of Materials and Construction Methods (Dolan and Johnson 1996) 

 
Table E-3: Description of Connections used in Construction (Dolan and Johnson 1996) 
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 The shear walls were tested horizontally, in-plane to the wall using the apparatus 

shown in Figure E-1 (Dolan and Johnson 1996).  The top and bottom chords of the walls 

were anchored to steel tubes to prevent out-of-plane displacement during testing. A series 

of increasing horizontal displacements were applied along the top chord of each wall, 

representing increasing degrees of inter-story drift.  The resultant force was then 

measured and plotted against inter-story drift in a P-∆ plot.  An “equivalent energy 

elastic-plastic curve” was then developed for each wall configuration and used to 

determine an equivalent elastic stiffness for each wall configuration (Dolan and Johnson 

1996). 

 

Figure E-1:  Testing Apparatus and Sensor Locations (Dolan and Johnson 1996) 

Modeling Methods 

Framing Members 

Studs, plates (top and bottom) and headers were modeled using SAP2000’s frame 

elements.  Opening headers constructed by Dolan and Johnson (1996) consisted of two 

pieces of dimension lumber with an intermediate layer of plywood.  To simplify the 

modeling process, headers in the model were represented as one framing element with a 

cross section equal to the total cross section of the header assembly and material 

properties for the sawn lumber only.  Table E-4 lists the frame element sections used in 

the SAP2000 model. 
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Table E-4:  Frame Sections Used for Modeling in SAP2000 – modeled through center of cross-section 
unless otherwise noted 

Name of Frame Section Cross Section Dimensions 

2x4 header 89 x 89 mm (3.5 x 3.5 in) 

2x8 header 89 x 184 mm (3.5 x 7.25 in) 

2x12 header 286 x 89 mm (3.5 x 11.25 in) 

Single Stud 38 x 89 mm (1.5 x 3.5 in) 

Double Stud/Single Jack 76 x 89 mm (3.0 x 3.5 in) 

Double Jack 76 x 89 mm (4.5 x 3.5 in) 

Double Top Plate 
89 x 76 mm (3.5 x 3 in) 

(modeled through top of section) 

Bottom Plate 
89 x 38 mm (3.5 x 1.5 in) 

(modeled through bottom of section) 

 Figures E-2 and E-3 show an example of the framing layout for the wall Type D model.  

All frame elements were assigned linear, isotropic material properties.  A modulus of 

elasticity (MOE) of 9653 MPa (1400 ksi) was determined from AF&PA (2005a) Table 

4A for No. 2 SPF.  No adjustment factors were used since the members were assumed to 

be of normal moisture content (less than 19 percent), with no incisions and tested at 

normal temperatures.   



 
 

99 
 

 



 
 

100 
 

Plywood and Gypsum Wall Board Sheathing 

Plywood and GWB sheathing were modeled using SAP2000’s layered shell 

element as described in Table E-5 (with local axis 1 oriented parallel to the long side of 

the plywood and local axis 3 oriented through the thickness of the plywood).  The shell 

element was modeled through the centerline of the wall with the plywood and GWB 

layers displaced a distance of half the thickness of the wall framing members plus half 

the thickness of the sheathing to either side of the wall centerline.  In concurrence with 

Martin (2010), one continuous shell element applied to each wall and meshed into 

smaller, approximately square shaped elements for analysis.   

Table E-5:  Layered Shell Element Used for Modeling Sheathing in SAP2000 

Layer Thickness 
Displacement (δ): from 

centerline of wall to 
centerline of layer 

 

Layer 1: 
Plywood 
Sheathing 

11.9 mm 
(15/32 in) 

50.4 mm 
(1.984 in) 

Layer 2: 
Gypsum Wall 

Board 

12.7 mm 
(1/2 in) 

50.8 mm 
(2 in) 

 

Linear, orthotropic material properties for the plywood sheathing were determined 

using the in-plane engineering properties from OSULaminates with the following inputs: 

 Number of Plies = 4 

 Ply Thickness = 3.97 mm (0.156 in) 

 Ply Orientation = 0º - 90º - 90º - 0º 

 Plywood Species Group 1 

The gypsum wallboard was assigned linear isotropic properties using the orthotropic 

input in SAP2000 so that the shear modulus, G12 , could be adjusted freely to account for 

edge nail spacing (discussed later in this appendix and in Appendix F).  The modulus of 

elasticity for the GWB was determined as the average of the stiffness range listed by the 

δ1 

δ2 

Wall Centerline 

Layer 1 

Layer 2 
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Gypsum Association (2010).  An value of 0.3 was used for Poisson’s ratio.  Table E-6 

contains a full list of material properties assigned to each sheathing layer. 

Table E-6:  Material Properties Used for Modeling in SAP2000 

Sheathing Material Properties 

Plywood Sheathing 
(In-Plane Properties) 

 Orthotropic Properties 
 E1 = 5337 MPa (774 ksi) 
 E2 = 5337 MPa (774 ksi) 
 U12 = 0.021 

 
Calculated using 
OSULaminates 

 G12 = 147 MPa (21.3 ksi) See Appendix F 

Gypsum Wall Board 

 OrthotropicProperties 
 E1 = 1820 MPa (264 ksi) 
 E2 = 1820 MPa (264 ksi) 
 U12 = 0.3 

 
Gypsum Association 
(2010) 
 
 

 G12 = 641 MPa (9.3 ksi) See Appendix F 

 

Connectivity and Anchorage 

Simple pinned connections were used to connect all framing members so that the 

assembly stiffness of each wall could be controlled using the shear modulus (G12) of each 

sheathing layer.  Overall wall assembly stiffness (based on edge nail spacing and wall 

length) was predicted using shear wall deflection equations from AF&PA (2005b) 

Special Design Provisions for Wind and Seismic.  Values of G12 for each sheathing layer 

were then adjusted to reflect the predicted wall stiffness through a procedure similar to 

the sheathing correlation procedure developed by Martin (2010).  The procedure used in 

the current study is described in detail in Appendix F. 

 Anchor bolts and hold-downs were modeled using directional linear spring 

elements.  The anchor bolts were represented using three springs: one oriented in the Z-

direction (representing the axial stiffness of each bolt) and two oriented in the X- and Y- 

directions (representing the shear stiffness of each bolt).  Hold-down devices were 

represented with only one spring oriented in the Z-direction.  Figure E-4 illustrates the 
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local axes orientation used for each anchorage device (Martin 2010).  Figure E-5 shows 

the location of the anchor bolts and hold- downs in the model.   

 
Figure E-4:  Local Axes for Anchor Bolts and Hold-downs (Martin 2010) 

 

Figure E-5:  Anchor Bolt and Hold-Down Placement in SAP2000 Model 

Stiffness properties for anchorage devices are listed in Table E-7.  The axial stiffness for 

the anchor bolts was determined experimentally by Seaders (2004) and incorporates 

wood crushing as well as bolt elongation and slip.  The shear stiffness was determined 

using Equation E-1, below, taken from AF&PA (2005a) Section 10.3.6 for load/slip 

modulus, γ (kips/in), of dowel type connectors with diameter, D (in).  

ߛ  ൌ 270000ሺܦଵ.ହሻ Equation E-1 

Anchor bolts representing attachment of top plate to 
steel tube (Figure-E-1) 

Anchor bolts representing bottom plate attachments  

Hold-downs 
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The axial stiffness of the hold-down device was determined using the allowable tension 

load and displacement at allowable tension load reported by Simpson Strong-Tie (2012b) 

for an HTT5 hold down with 16d fasteners connected to SPF wood.  The HTT5 

connector is listed by Simpson Strong-Tie (2012a) as the recommended alternative to the 

HTT22 since the HTT22 has been discontinued.  

Table E-7:  Properties for Wall Anchorage used for Modeling in SAP2000 

Anchorage Device 
Stiffness 

Placement 
Shear Axial 

Anchor Bolts 
23.3 kN/mm 
(133 kip/in)* 

6.1 kN/mm 
(35 kip/in)** 

Spaced 0.6 m (2 ft) on center 
and within 0.3 m (1 ft) of wall 

ends 

Hold-Downs --- 
5674 kN/m 

(32.4 
kip/in)*** 

One at each end of wall 

*Calculated from AF&PA (2005a) Section 10.3.6 
**From Seaders (2004) 
***Simpson Strong-Tie (2012b) 

Results and Discussion 

 The stiffness of each shear wall model was found by displacing the top plate of 

the model 8 mm (0.32 in) and then summing the lateral reactions at the anchors along the 

base of the wall.  Since the SAP2000 models are linear, the stiffness of the walls remains 

constant regardless of displacement.  Table E-8 compares the stiffness of the SAP2000 

wall models to the equivalent elastic stiffness experimentally determined by Dolan and 

Johnson (1996).  For all cases, the models were able to predict the experimental elastic 

stiffness of the walls within 5 percent error.  The models were also accurate in predicting 

the reduction in stiffness due to the addition of openings. 
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Table E-8:  Stiffness Comparison between the SAP2000 Models from the Current 
Study and Tests from Dolan and Johnson (1996) 

Wall 
Type 

Dolan and Johnson (1996) Current Study 

% 
Difference

Equivalent 
Elastic 

Stiffness 
kN/mm (kip/in) 

% Stiffness 
Reduction 
from Type 

A

Model 
Stiffness 

kN/mm (kip/in)

% Stiffness 
Reduction 

from Type A 

A 11.1 (63.6) --- 11.6 (66.4) --- 4% 

B 7.6 (43.5) 32% 7.2 (41.3) 38% -5% 

C 3.8 (21.5) 66% 3.7 (21.2) 68% -1% 

D 3.3 (18.6) 71% 3.2 (18.1) 73% -3% 
 

Conclusions 

 The modeling procedures used in this appendix to represent light-frame, wood 

shear walls were accurate in predicting the behavior of two-dimensional shear walls with 

various opening configurations.  Based on the results described in this appendix, the 

following shear wall modeling methods were adopted for use in the current study: 

 Framing members were modeled using the SAP2000 frame element with cross 

sections equal to either the actual cross section of the member or the sum of the 

cross sections when multiple members are placed side by side (as in double top 

plates or built-up headers). 

 Isotropic material properties for the framing members were determined using 

design properties listed in AF&PA (2005a). 

 Plywood and GWB sheathing were represented using a layered shell element with 

each layer displaced as shown in Table E-5. 

 Orthotropic material properties for the plywood sheathing were determined using 

in-plane engineering properties from OSULaminates. 

 Isotropic material properties for the GWB sheathing were determined from 

properties published by the Gypsum Association (2010) and inserted into the 

model using orthotropic material assignments. 
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 The effects of edge nail spacing and wall length were incorporated by adjusting 

the shear modulus (G12) for the plywood sheathing and GWB based on the 

procedure described in Appendix F. 

 Anchor bolts and hold-downs were modeled using directional linear spring 

elements oriented as shown in Figure E-4. 

 Anchor bolt axial stiffness was determined from the experimental results of 

Seaders (2004) and shear stiffness was calculated from AF&PA (2005a). 

 Hold-down stiffness was determined from publications provided by the 

manufacture. 
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APPENDIX F 

SHEATHING G12 ADJUSTMENT PROCEDURE FOR EDGE NAIL SPACING 

The effects of edge nail spacing on shear wall stiffness were incorporated through 

a procedure similar to that used by Martin (2010).  The shear modulus (G12) of the 

sheathing was adjusted in SAP2000 to control the stiffness of the shear wall.  This was 

done by equating the deflection of a simple “calibration model” in SAP2000 to an 

expected deflection calculated using Equation C4.3.2-2 (Equation F-1, below) from 

AF&PA (2005b).  The deflection of the calibration model is controlled by altering the 

G12 of the sheathing.  Equation F-1 gives a linear approximation for shear wall 

deflections based on “framing bending deflection, panel shear deflection, deflection from 

nail slip, and deflection due to tie-down slip” (AF&PA 2005b).  The effects of panel 

shear and nail slip are incorporated into an apparent stiffness term, Ga.  Values for Ga are 

tabulated in AF&PA (2005b) based on sheathing material, framing lay-out and edge-nail 

spacing. 

஺ி&௉஺ߜ  ൌ
଼௩௛య

ா஺௕
൅ ௩௛

ଵ଴଴଴ீೌ
൅ ௛

௕
∆௔ Equation F-1 

 Where: δAF&PA = Expected shear wall deflection (in) 
  v = Induced unit shear (plf) 
  h = Shear wall height (ft) 
  E = Modulus of elasticity of end posts (psi) 
  A = Area of end post cross-section (in2) 
  b = Shear wall length (ft) 
  Ga = Apparent shear wall shear stiffness (kips/in) 
  Δa = Total vertical elongation of wall anchorage system (in) 

The following is a step-by-step example for determining the value of G12 for the plywood 

sheathing used on the shear walls in Appendix E: 

Step 1: A simple calibration model was created in SAP2000 for a 12.2-m-long (40-ft-

long) shear wall sheathed on one side, only, with the plywood used in shear wall 

validation (Appendix E).  Section and material properties for the plywood are 

listed in Tables E-5 and E-6.   In place of anchor bolts and hold-downs, rigid 

supports were used in the calibration model as shown in Figure F-1.  
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This was done so that the vertical elongation of wall anchorage, ∆a, in Equation 

F-1 could be set equal to zero.  The purpose of the calibration model is to 

determine the required stiffness of the plywood sheathing for a specific edge 

nail spacing and wall length.  The effects of the anchor bolts and hold downs are 

incorporated into the actual wall models later on by using linear springs with 

realistic stiffness properties as explained in Appendix E and listed in Table E-7. 

Step 2: A range of values for G12 of the plywood sheathing were entered into the 

calibration model in SAP2000.  For each value of G12, the deflection of the 

model under an applied shear force, V, of 13.3 kN (3 kips) was recorded as 

shown in Table F-1.  G12 vs. deflection for the calibration model was then 

plotted in Figure F-2, and fitted with a power curve described by Equation F-2. 

Table F-1: Example of Shear Wall Deflections vs. Sheathing Shear Modulus, G12 in 
SAP2000  

Plywood Sheathing Properties used in SAP2000 Wall Deflection at 
V = 13.3 kN (3 kips)

mm (in) 
E1

 

MPa (ksi) 
E2 

MPa (ksi) 
Poisson’s Ratio, U12 

G12 
MPa (ksi) 

5337  
(774) 

5337  
(774) 

0.021 

414 (60) 0.356 (0.014) 

276 (40) 0.584 (0.023) 

138 (20) 1.295 (0.051) 

69 (10) 2.743 (0.108) 
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Figure F-2: Sheathing G12 vs. Shear Wall Deflection in SAP2000 for Example 
Calibration Model 

ௌ஺௉ଶ଴଴଴ߜ  ൌ 345.17ሺܩଵଶሻିଵ.ଵଷ଼ Equation F-2 

 Where: δSAP2000 = Model shear wall deflection (mm) 
  G12 = Sheathing shear modulus (MPa) 

Step 3: Using equation F-1, an expected deflection, δAF&PA, of 1.17 mm (0.046 in) was 

calculated for an equivalent wall with an edge nail spacing of 162 mm (6 in) and 

an applied shear force, V, of 13.3 kN (3 kips) as shown in Table F-2.  The 

vertical elongation of wall anchorage, ∆a, was set to zero as explained in Step 1. 
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Table F-2:  Example Shear Wall Deflection Calculation using Equation F-1 (AF&PA 
2005b Equation C4.3.2-2) – in specified units 

Edge Nail Spacing = 6 (in o.c.) 
Shear Wall Height (h) = 8 (ft) 
Shear Wall Length (b) = 40 (ft) 

1Modulus of Elasticity of End Posts (E) = 1.4x106 (psi) 
2Area of End Post Cross-Section (A) = 10.5 (in2) 

3Apparent Shear Wall Shear Stiffness (Ga) = 13.2 (kip/in) 

Total Vertical Elongation of Anchorage (Δa) = 0 (in) 
4Force applied to top of wall = 3 (kips) 

Induced Unit Shear (v) = 75 (plf) 

Calculated Deflection =
0.046 
1.17 

(in) 
(mm) 

1AF&PA (2005a) Table 4A 
2For two 38 x 89 mm (1.5 x 3.5 in) studs 
3AF&PA (2005b) Table A.4.3A (increased by 1.2 for 4-ply sheathing per Table A.4.3A, Footnote 2) 
4Chosen arbitrarily 
 

Step 4: Finally, the required sheathing shear modulus, G12, was determined by equating 

δSAP2000 in Equation F-2 to δAF&PA (converted to mm) calculated in step 3.  

Solving for G12 gives a required shear modulus of 147 MPa (21.3) ksi for an edge 

nail spacing of 162 mm (6 in). Repeating this method for several shear walls of 

various lengths reveals that the required G12 for a specific edge nail spacing 

changes approximately linearly with wall length as shown in Figure F-3.  Thus, 

for a building with multiple wall lengths and uniform edge nail spacing, this 

procedure is only necessary for the shortest wall and the longest wall in the 

building.  Linear interpolation can be used for all other wall lengths. 
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Figure F-3: AF&PA (2005b) Predicted Deflection and Required G12 in SAP2000 vs. Wall 
Length 

Through a series of tests performed on shear walls sheathed on one and two sides, Patton-

Mallory et al. (1984) found that the stiffness of a shear wall sheathed on two sides is 

equal to the sum of two shear walls sheathed on one side only.  Based on this finding, it 

was decided that the properties for plywood sheathing and GWB sheathing could be 

determined separately using the procedure above for a wall sheathed on one side only.  

The resulting sheathing properties can then be applied to each side of a wall sheathed on 

two sides. 
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APPENDIX G 

DETAILS FOR FULL BUILDING MODEL OF PAEVERE ET AL. (2003) HOUSE 

 The final validation study for the modeling methods described in this paper was 

performed using the full-scale, realistic, L-shaped house tested by Paevere et al. (2003).  

The full- scale house was designed jointly by the National Association of Home Builders 

(NAHB) Research Center in the United States and the Commonwealth Scientific & 

Industrial Research Organization (CSIRO) to reflect a typical North American “stick 

frame” house (Paevere et al. 2003).  Construction and testing of the house was done at the 

CSIRO division of Building, Construction and Engineering testing facility in Melbourne, 

Australia using equivalent Australian construction materials. 

 This Appendix contains construction and modeling details used for the Paevere et 

al. (2003) house.  Additional details for the house can be found in Paevere (2002).  The 

methods used to model the trusses, roof assemblies and wall assemblies are the same 

methods described in detail in Appendices B through H.  It is important to note the 

following details: 

 A modulus of elasticity of 10000 MPa (1450 ksi) given by Paevere (2002) was 

used for the framing members in lieu of design properties from AF&PA (2005) 

since radiata pine is not included in the AF&PA (2005a) NDS. 

 The interior walls were modeled 25mm lower than the exterior walls so that the 

roof trusses spanned the exterior walls only. 

 Wall 3 was connected to the roof trusses using 2-joint link elements in SAP2000 

to represent the slotted brackets used by Paevere (2002).  Walls 6 and 8 were not 

connected to the trusses. 

 Wall corner framing was represented as one 90 x 90 mm (3.5 x 3.5 in) member to 

simplify the modeling process. 
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Table G-1: Construction Details from Paevere (2002) 

Wall Framing: 
Studs:  90x35 mm Machine Graded Pine (MGP) 10 spaced 400 mm on center without 

blocking 
Bottom Plate:  90x45 mm MGP 10 
Top Plate:  double 90x35 mm MGP 10 
Header Plate:  190x90 mm (short span) or 290x90 mm (long span) 
MOE: 10000 MPa (short duration) 
Average Density at 12% MC: 550 kg/m3 

Bottom Plate Anchorage: 
Anchor Bolts: 12.7 mm bolts with plate washers spaced approximately 1000 mm 

Roof Framing: 
Trusses: Pre-fabricated ‘gang-nailed’ pine trusses spaced 600 mm on center without 

blocking 
Truss Connectors:  Connected to top plate with pryda ‘triple-grip’ plate connectors 
Truss Top and Bottom Chords:  90x35 mm MGP 10 
Truss Web Members:  70x35 mm MGP 10 

Plywood Bracing: 
Walls: 2400x1200x9.5 mm F11 Bracing Ply (Laid Vertically) 
Roof:  2400x1200x12.5 mm F11 Ply (Laid Horizontally) 
Bending MOE: 10500 MPa 

Gypsum Board Lining: 
1200x2400x13 mm Gypsum Wall Board (Laid Horizontally) 

Sheathing Nails: 
2.87x50 mm machine driven nails spaced 150 mm on perimeter and 300 mm in field 

Gypsum Board Lining: 
6 gauge x 30 mm Needle-point Type 1 Gypsum Board Screws spaced 300 mm 

 

  



 
 

114 
 

Table G-2:  Frame Sections Used in SAP2000 Model: Modeled through center of cross 
section unless otherwise noted. 

Name of Frame Section Cross Section Dimensions 

190x90 Header 190 x 90 mm (7.5 x 3.5 in) 

290x90 Header 290 x 90 mm (11.4 x 3.5 in) 

35x90 Header 
35 x 90 mm (1.4 x 3.5 in) 

(used above doorways in interior walls) 

290x90 Garage Beam 
290 x 90 mm (11.4 x 3.5 in) 

(modeled through top of section) 
Single Stud 35 x 90 mm (1.4 x 3.5 in) 

Double Stud 70 x 90 mm (2.8 x 3.5 in) 

Corner Stud 90 x 90 mm (3.5 x 3.5 in) 

Double Top Plate 
90 x 70 mm (3.5 x 2.8 in) 

(modeled through top of section) 

Bottom Plate 
90 x 45 mm (3.5 x 1.8 in) 

(modeled through bottom of section) 

Truss Chord 
35 x 90 mm (1.4 x 3.5 in) 

(modeled through bottom of section) 

Truss Web 
35 x 70 mm (1.4 x 2.8 in) 

(modeled through bottom of section) 

Table G-3: Sheathing Material Properties used in SAP2000 Model 

aPlywood Sheathing 
(for roof) 

Orthotropic Properties 
 E1 = 8280 MPa (1201 ksi) 
 E2 = 2393 MPa (347 ksi) 
 U12 = 0.011 
 G12 = 482 MPa (70 ksi) 

 
From OSULaminates 
(Flexural Properties) 

bPlywood Sheathing 
 (for walls) 

Orthotropic Properties 
 E1 = 7017 MPa (1018 ksi) 
 E2 = 3657 MPa (530 ksi) 
 U12 = 0.016 
 G12 = See Figure G-1(a) 

From OSULaminates  
(In-Plane Properties) 

Gypsum Wall Board 
(for walls and ceiling) 

Isotropic Properties 
 E1 = E2 = 1820 MPa (264 ksi) 
 U12 = 0.3 
 G12 = See Figure G-1(b) 

Gypsum Association 
(2010) 
 

a.  Assumed: 5-ply sheathing, 0⁰-90⁰-0⁰-90⁰-0⁰ ply orientation, species group 1 
b.  Assumed: 3-ply sheathing, 0⁰-90⁰-0⁰ ply orientation, species group 1 
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Table G-4:  Properties for Wall Anchorage used for SAP2000 Model 

Anchorage Device 
Stiffness 

Placement 
Sheara Axialb

Anchor Bolts 
16.7 kN/mm 
(95.5 kip/in) 

6.1 kN/mm 
(35 kip/in) 

1.0 m (3.3 ft) maximum  
(See Figure G-2) 

a.  Calculated from AF&PA (2005a) Section 10.3.6 
b.   From Seaders (2004) 

Table G-5:  Material Densities used for Building Self-Weight 

Material 
Density 

kg/m3 (pcf) 
Source 

MGP 10 Framing Members 550 (1.07) Paevere (2002) 

F11 Plywood 600 (1.16) EWPAA (2009) 

Gypsum Wall Board 772 (1.50) Gypsum Association (2010) 
 

   

Figure G-1:  G12 vs. Wall Length for 9.5 mm Plywood and 13 mm GWB Sheathing – 
Calculated using the procedure from Appendix F.  Note: parameters for the GWB were 

determined based on a fastener edge spacing of 200 mm (8 in) rather than 300 mm (12 in) 
since the latter is not included in AF&PA (2005b) Table 4.3B. 
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Figure G-2:  Anchor Bolt and Load Sensor Placement (Paevere 2002) 

 

Figure G-3:  Wall Locations Used in SAP2000 Model – m (ft-in) 
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Figure G-4:  Wall Configurations (Paevere 2002) – Note: (1) The doorway in W3 was 
relocated as shown in Figure G-5 based on the point of intersection between W6 and W3. 

(2) Interior walls were modeled 25 mm shorter than the exterior walls (Dr. Phillip 
Paevere, personal communication, June 25, 2012). 

  

(see note 2, below)

(see note 1, below)
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Figure G-5:  Wall 3 Configuration used for SAP2000 Model – m (ft-in) 

 

Figure G-6:  Wall Framing (Paevere 2002) 
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Figure G-7:  Example of Assumed Framing with SAP2000 Wire Frame Overlay for 

Wall 2 –  m (ft-in) 
 

 
Figure G-8: Example Frame Section Assignment for Wall 2 – All connections are 

pinned  
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Figure G-9: Assumed Framing with SAP2000 Wire Frame Overlay for Type A 

Trusses – m (ft-in) 

 

Figure G-10: Assumed Framing with SAP2000 Wire Frame Overlay for Type B 
Trusses – m (ft-in) 

 

 

Figure G-11: Example Frame Section Assignment used for Trusses 
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Figure G-12: Truss Layout for Type A and Type B Trusses 

 
Figure G-13: 2-Joint Links used to Connect Wall 3 to Truss Bottom Chords – U2 

(translation along the wall) is “fixed” for all links 

 

2 
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Figure G-14: Gable-End Overhang Framing used in SAP2000 Model 

 

Figure G-15: Gable-End Sheathing Placement used in SAP2000 Model 
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APPENDIX H 

FULL BUILDING MODEL VALIDATION 

 Paevere et al. (2003) ran a series of static load tests on the full- scale house 

described in Appendix G including: 

 Gravity loads only (load case 1) 

 Lateral point loads applied in N-S and E-W directions at various locations 

along the top plates of the walls (load cases 2 through 12) 

 Lateral point loads applied at various angles to the roof ridge above wall 5 

(load cases 13 through 15) 

This appendix contains plots comparing the load distributions in the house tested by 

Paevere et al. (2003) to the SAP2000 model from the current study for load cases 2 

through 15.  The load distributions were determined by summing the reactions in the 

direction parallel to the applied loads at the anchor bolts underneath the in-plane walls.  

For load cases 13 through 15, where the load is applied at an angle, the load vector was 

factored into N-S and E-W components applied simultaneously at the ridge. 

 In Load Case 1 (gravity only loads), Paevere (2002) noted that several load cells 

were showing negative (uplift) reactions likely due to residual stresses from construction 

(Paevere (2002). Consequenly, the load distribution to individual walls for Load Case 1 

was not considered for this validation.  The total self weight of the model was 55.7 kN, 

which is 9.6% larger than the 50.8 kN reported by Paevere et al (2003).  This 

discrempancy could be due to the previously discussed uplift reactions seen in the tests, 

differences in modeled and actual material densities and differences in over-framing used 

to frame the roof above the garage.  Details for the over-framing were not included in 

Paevere et al. (2003).  The load cells were zeroed for Load Cases 2 through 15 to negate 

the effects of self weight, therefore the self weight of the model was also set to zero for 

these cases.  
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Load Case 2: Wall 1 Loaded 

 

Figure H-1: Load Case 2 – 2.78 kN Applied to Top-Plate at Wall 1 

 

Figure H-2: Lateral Load Distribution to E-W Walls (Load Case 2) 
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Load Case 3: Wall 2 Loaded 

 

Figure H-3: Load Case 3 – 4.79 kN Applied to Top-Plate at Wall 2 

 

Figure H-4: Lateral Load Distribution to E-W Walls (Load Case 3) 
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Load Case 4: Wall 3 Loaded 

 

Figure H-5: Load Case 4 – 4.92 kN Applied to Top-Plate at Wall 3 

 

Figure H-6: Lateral Load Distribution to E-W Walls (Load Case 4) 
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Load Case 5: Wall 4 Loaded 

 

Figure H-7: Load Case 5 – 4.92 kN Applied to Top-Plate at Wall 4 

 

Figure H-8: Lateral Load Distribution to E-W Walls (Load Case 5) 
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Load Case 6: Wall 8 Loaded 

 

 

Figure H-9: Load Case 6 – 5.18 kN Applied to Top-Plate at Wall 8 

 

Figure H-10: Lateral Load Distribution to N-S Walls (Load Case 6) 

  

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

Wall 9 Wall 6,7,8 Wall 5

R
e
ac
ti
o
n
 (
kN

)

Lateral Load Distribution to N‐S Walls

Paevere et al. (2003)

Current Study

5.18  kN



 
 

129 
 

Load Case 7: Walls 2 and 8 Loaded 

 

 

Figure H-11: Load Case 7 – 5.07 kN Applied to Top-Plate at Wall 2 and 5.13 kN 
Applied to Top-Plate at Wall 8 

 

 

Figure H-12: Lateral Load Distribution to E-W Walls (Load Case 7) 
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Figure H-13: Lateral Load Distribution to N-S Walls (Load Case 7) 
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Load Case 8: Wall 5 Loaded 

 

 

Figure H-14: Load Case 8 – 5.16 kN Applied to Top-Plate at Wall 5 

 

Figure H-15: Lateral Load Distribution to N-S Walls (Load Case 8) 
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Load Case 9: Walls 4 and 5 Loaded 

 

Figure H-16: Load Case 9 – 8.04 kN Applied to Top-Plate at Wall 4 and 5.17 kN 
Applied to Top-Plate at Wall 5 

 

 

Figure H-17: Lateral Load Distribution to E-W Walls (Load Case 9) 
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Figure H-18: Lateral Load Distribution to N-S Walls (Load Case 9) 
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Load Case 10: Walls 2 and 5 Loaded 

 

Figure H-19: Load Case 10 – 5.12 kN Applied to Top-Plate at Wall 2 and 3.18 kN 
Applied to Top-Plate at Wall 5 

 

 

Figure H-20: Lateral Load Distribution to E-W Walls (Load Case 10) 
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Figure H-21: Lateral Load Distribution to N-S Walls (Load Case 10) 
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Load Case 11: Load Applied between Walls 2 and 3 

 

Figure H-22: Load Case 11 – 6.80 kN Applied to Top-Plate between Walls 2 and 3 

 

Figure H-23: Lateral Load Distribution to E-W Walls (Load Case 11) 
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Load Case 12: Load Applied to Walls 1, 2, 3 and 4 

 

Figure H-24: Load Case 12 – 1.10 kN, 5.43 kN, 15.0 kN and 6.50 kN Applied to Top-
Plate at Walls 1, 2, 3 and 4, respectively 

 

 

Figure H-25: Lateral Load Distribution to E-W Walls (Load Case 12) 
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Load Case 13: Load Applied to Roof Ridge (at -5 degrees)  

 

Figure H-26: Load Case 13 – 5.09 kN Applied to Roof Ridge of East Gable-End (at -5 
degrees) 

 

Figure H-27: Lateral Load Distribution to E-W Walls (Load Case 13) 
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Figure H-28: Lateral Load Distribution to N-S Walls (Load Case 13) 
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Load Case 14: Load Applied to Roof Ridge (at -10 degrees)  

 

Figure H-29: Load Case 14 – 5.21 kN Applied to Roof Ridge of East Gable-End (at -10 
degrees) 

 

Figure H-30: Lateral Load Distribution to E-W Walls (Load Case 14) 
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Figure H-31: Lateral Load Distribution to N-S Walls (Load Case 14) 
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Load Case 15: Load Applied to Roof Ridge (at 20 degrees)  

 

Figure H-32: Load Case 15 – 2.80 kN Applied to Roof Ridge of East Gable-End (at 20 
degrees) 

 

Figure H-33: Lateral Load Distribution to E-W Walls (Load Case 15) 
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Figure H-34: Lateral Load Distribution to N-S Walls (Load Case 15) 
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APPENDIX I 

MODEL VARIATIONS USED IN UPLIFT AND WIND LOAD INVESTIGATIONS 

 Using the validated modeling methods discussed in this study, multiple variations 

of the Paevere et al (2003) house were created for use in uplift and lateral load path 

investigations.  All building variations were based on the same materials and construction 

methods described in Appendix G, with the following modifications: 

 Gable-end overhang framing was modified to reflect out-looker or out-

rigger style framing commonly used in North America as shown in Figure 

I-1 (Martin 2010). 

 Gable-end trusses were changed from Fink trusses to non-structural gable-

end frames and sheathed with plywood (Figure I-1). 

 Simpson Strong-Tie HDU2 hold-downs (also used by Martin 2010) were 

added to external walls at wall ends and at either side of openings.  Hold-

downs were modeled with a stiffness of 6.1 kN/m (35 k/in) as listed by the 

manufacturer (Martin 2010).  

Wall designations used by Paevere et al. (2003) were also kept constant throughout the 

load path investigations. 

Two main investigations were performed: (1) an uplift investigation (2) a wind-

load (combined lateral and uplift) investigation.  For each investigation, an index model 

was created and systematically modified to explore the effects of geometric variations 

and retrofits options.  This appendix contains details for the buildings used in each 

investigation.  Further information including loading details and results from the 

investigations are included in Appendices J through L. 
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Figure I-1:  Gable End-Framing and Sheathing Modifications for Uplift and Wind 
Load Investigations 

Uplift Investigation 

 
Figure I-2:  Progression of Building Variations Used in Uplift Investigation 
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Rectangular and L-Shaped Index Buildings for Uplift Investigation 

 

 

Figure I-3: Rectangular Index Building for Uplift Investigation – rectangular building 
with no openings, no interior walls and no GWB.  Walls and gable-ends are fully 

sheathed on the exterior with plywood. 

 

Figure I-4: L-Shaped Index Building for Uplift Investigation – L-Shaped building 
with no openings, no interior walls and no GWB.  Walls and gable-ends are fully 

sheathed on the exterior with plywood. 
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Openings Used in Uplift Investigation 

 

Figure I-5:  Framing Detail for Openings used in Uplift Investigation 

 

Figure I-6: Locations of Openings Used for Uplift Investigation 
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Wind Load Investigation 

 
Figure I-7: Progression of Building Variations Used in Wind Load Investigation 

 
L-Shaped Index House for Wind Load Investigation 

 

Figure I-8: L-Shaped Index House for Wind Load Investigation – Paevere (2002) 
house with modified gable-end framing, anchor bolt spacing and addition of hold-downs 

as described previously.  Walls and gable-ends are fully sheathed on the exterior with 
plywood. 
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Gable-End Retrofit 

 

Figure I-9:  Gable-End Retrofit Detail from 2010 Florida Building Code (ICC 2011) 

 

Figure I-10:  Gable-End Studs + Retrofit Studs Modeled with L-Shaped Cross-
Section 
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Figure I-11:  Example of Gable-End Retrofit in the Model – Retrofits are located at 
every gable-end stud.  Retrofit connections are modeled as rigid connections. 

Re-Entrant Corner Variations Used in Wind Load Investigation 

 

 

Figure I-12: Re-Entrant Corner Variations Used in Wind Load Investigation – Small re-entrant corner 
(top left), index (top right), medium (bottom left) and large (bottom right) 
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Figure I-13: Re-Entrant Corner Variation Dimensions for Wind Load Investigation – m (ft-in) 
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APPENDIX J 

UNIFORM UPLIFT INVESTIGATION 

 As a continuation of the research performed by Martin (2010), the propagation 

and redistribution of uplift load paths due to changes in plan geometry and the addition of 

openings in a simple light-frame, wood structure were investigated.  Model variations 

used in this study are described in detail in Appendix I and include: 

 A rectangular index building with no interior walls, no wall openings and no 

gypsum wall board lining. 

 An L-shaped index building with no interior walls, no wall openings and no 

gypsum wall board lining. 

 Variations of the L-shaped building with openings added one at a time to each 

of four locations as shown in Figure I-6. 

 L-shaped index building with the addition of GWB on the ceiling and on the 

interior of the walls. 

 Two of the wall-opening variations with the addition of GWB on the ceiling 

and on the interior of the walls. 

In concurrence with Martin (2010), a uniform uplift pressure of 2.4 kPa (50 psf) was 

applied to the roof of the buildings, normal to the surface.  The self-weight of the 

buildings was not included in the uplift investigation (Martin 2010).  Resulting reactions 

and changes in reaction for each building variation are included as “bubble plots” in this 

appendix.  Each bubble represents an individual hold-down or anchor bolt.  The size of 

the bubbles represents the magnitude of either the uplift reaction or change in reaction at 

each anchorage device. 
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Index Buildings 

 

Figure J-1: Uplift Reactions for Rectangular Index Building under Uniform Uplift 
Pressure 

 

Figure J-2: Uplift Reactions for L-Shaped Index Building under Uniform Uplift 
Pressure 

Max = 11.0 kN

Uplift Reactions for Rectangular Index Building

N

Max = 14.7 kN

Uplift Reactions for L‐Shaped Index Building

N



 
 

154 
 

 

Figure J-3: Difference in Uplift Reactions between Rectangular and L-Shaped Index 
Buildings under Uniform Uplift Pressure 
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Opening Investigation 

L-Shaped Building with Opening in Wall 2 

 
Figure J-4: Uplift Reactions for L-Shaped Building with Opening in Wall 2 (under 

Uniform Uplift Pressure) 

 

Figure J-5: Difference in Uplift Reactions due to Opening in Wall 2 
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L-Shaped Building with Opening in Wall 4 

 

Figure J-6: Uplift Reactions for L-Shaped Building with Opening in Wall 4 (under 
Uniform Uplift Pressure) 

 

Figure J-7: Difference in Uplift Reactions due to Opening in Wall 4 
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L-Shaped Building with Opening in Wall 9 (Centered Under Gable-End) 

 

Figure J-8: Uplift Reactions for L-Shaped Building with Opening in Wall 9, 
Centered Under Gable-End (under Uniform Uplift Pressure) 

 

Figure J-9: Difference in Uplift Reactions due to Opening in Wall 9, Centered 
Under Gable-End 
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L-Shaped Building with Opening in Wall 9 (Opposite Re-Entrant Corner) 

 

Figure J-10: Uplift Reactions for L-Shaped Building with Opening in Wall 9, 
Opposite Re-Entrant Corner (under Uniform Uplift Pressure) 

 

Figure J-11: Difference in Uplift Reactions due to Opening in Wall 9, Opposite Re-
Entrant Corner 
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Effects of Gypsum Wall Board (GWB) 

L-Shaped Building with GWB 

 

Figure J-12: Uplift Reactions for L-Shaped Building with GWB (under Uniform 
Uplift Pressure) 

 

Figure J-13: Difference in Uplift Reactions from L-Shaped Building due to addition 
of GWB 
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L-Shaped Building with Opening in Wall 2 and GWB 

 

Figure J-14: Uplift Reactions for L-Shaped Building with Opening in Wall 2 and 
GWB (under Uniform Uplift Pressure) 

 

Figure J-15: Difference in Uplift Reactions in L-Shaped Building with Opening in 
Wall 2 Due to Addition of GWB 
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L-Shaped Building with Opening in Wall 9 and GWB 

 

Figure J-16: Uplift Reactions for L-Shaped Building with Opening in Wall 9 and 
GWB (under Uniform Uplift Pressure) 

 

Figure J-17: Difference in Uplift Reactions in L-Shaped Building with Opening in 
Wall 9 Due to Addition of GWB 
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APPENDIX K 

ASCE 7-05 DESIGN LOADS USED FOR WIND LOAD INVESTIGATION 

 Design wind loads for the wind load investigation were calculated using ASCE 7-

05 Main Wind Force Resisting System (MWFRS) Method 2 following methods outlined 

in Mehta and Coulbourne (2010) Example 3.9.  Three main wind directions were 

considered: North-South, West-East and Southeast-Northwest as shown in Figure K-1.  

ASCE 7-05 Wind Loads for MWFRS Method 2, Case 1 was used for the North-South 

and West-East wind directions and Case 3 was used for the Southeast-Northwest wind 

direction (Figure K-2).   

 
Figure K-1: Wind Directions Considered for Wind Load Investigation 

 

  



 
 

163 
 

 

 

Figure K-2: ASCE 7-05 Design Wind Load Cases for Main Wind Force Resisting 
System, Method 2 (ASCE 7-05 Figure 6-9) – Case 1 used for North-South and East-

West wind directions and Case 3 used for Southeast-Northwest wind direction.  PWX, PWY 
= windward face design pressure acting in the x, y principal axes, respectively and PLX, 

PLY = leeward face design pressure actin in the x, y principal axes, respectively. 

In accordance with Martin (2010), the house was considered to be a rigid, 

enclosed building with positive internal pressure.  Additionally, the parameters for basic 

wind speed, exposure category, etc., from Martin (2010) were also used in the current 

study as outlined in Table K-2.  Velocity pressure (qz) and design wind loads (p) were 

calculated using ASCE 7-05 Equations 6-15 and 6-17 (Equations K-1 and K-2) 

respectively.  Since the building is classified as a low-rise building, the velocity pressure, 

was evaluated at the mean roof height, only, and designated as qh in accordance with 

Section 6.5.6.4.2 of ASCE 7-05.  

௭ݍ  ൌ  Equation K-1 ܫௗܸଶܭ௭௧ܭ௭ܭ0.00256

݌  ൌ ௣ܥܩݍ െ  ௣௜ Equation K-2ܥܩݍ

 Each surface of the house was designated with a number as shown in Figure K-3.  

For each wind load direction, surfaces were categorized as a windward surface, leeward 

surface, side wall, etc., based on expected wind exposure.  Wall and roof pressure 

coefficients (CP) were then determined using ASCE 7-05 Figure 6-6.  Tables K-2 through 

K-6 show the calculated pressure coefficients and design loads for each surface and wind 

load direction for the index and gable-end retrofit models.  For the re-entrant corner 
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variations, where the overall dimensions of the house changed, the surface wind loads 

were adjusted accordingly. 

 
Figure K-3:  Surface Designations used for Wind Pressure Calculations 

Table K-1:  Parameters used for ASCE 7-05 MWFRS Design Wind Loads Method 2 
– Given in specified units for ASCE 7-05 Equation 6-15 

Exposure Category = B Martin (2010) 

Occupancy Category = II Martin (2010) 

Building Type = Low-rise, enclosed 

Basic Wind Speed (V) = 130 mph Martin (2010) 

Wind Directionality Factor (Kd) = 0.85 ASCE 7-05 Table 6-4 

Importance Factor (I)  = 1 Martin (2010) 

Topographic Factor (Kzt) = 1 Martin (2010) 
Internal Pressure Coefficient 

(GCpi) =
(+) 0.18 ASCE 7-05 Figure 6-5 

Gust Factor (G) = 0.85 ASCE 7-05 6.5.8.1 - Rigid Structure 

Mean Roof Height (h) = 10.35 ft 
Exposure Category (Kz) = Kh = 0.57 ASCE 7-05 Table 6-3 

Velocity Pressure (qz) = qh = 20.96 psf ASCE 7-05 Equation 6-15 
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Table K-2:  Design Pressures for Index House under North-South Wind 
ASCE 7-05 Load Case 1 (Figure K-2) 

Surface Type Designation 
(Figure K-3)

Cp         
(ASCE 7-
05 Figure 

6-6) 

External 
Pressure 
qGCp Pa 

(psf) 

(+) Internal 
Pressure 

qh(GCpi) Pa 
(psf) 

Net Pressure, 
p Pa (psf) 

Windward Wall 6 0.8 685 (14.3) 182 (3.8) 503 (10.5)

Overhanga 6 0.8 685 (14.3) 0 685 (14.3)

Side Wall 1,3,5 -0.7 -599 (-12.5) 182 (3.8) -776 (-16.2)

Leeward Wallb 2,4 -0.5 -426 (-8.9) 182 (3.8) -608 (-12.7)
Windward Roofc 7 -0.28 -239 (-5.0) 182 (3.8) -421 (-8.8)

Leeward Roof 8,9,10,11 -0.6 -512 (-10.7) 182 (3.8) -694 (-14.5)
a.  Cp = 0.8 (ASCE 7-05 Section 6.5.11.4.1) 
b.  For L/B = 0.82 
c.  Interpolated for θ = 23⁰ and h/L = 0.35 

 
Table K-3:  Design Pressures for Index House under West-East Wind 

ASCE 7-05 Load Case 1 (Figure K-2) 

Surface Type Designation 
(Figure K-3)

Cp          
(ASCE 7-
05 Figure 

6-6) 

External 
Pressure 

qGCp  
Pa (psf) 

(+) Internal 
Pressure 
qh(GCpi)  
Pa (psf) 

Net 
Pressure, p 

Pa (psf) 

Windward Wall 1 0.8 685 (14.3) 182 (3.8) 503 (10.5)

Overhanga 1 0.8 685 (14.3) 0 685 (14.3)

Side Wall 2,4,6 -0.7 -599 (-12.5) 182 (3.8) -776 (-16.2)

Leeward Wallb 3,5 -0.46 -393 (-8.2) 182 (3.8) -575 (-12.0)
Windward Roofc 9 -0.21 -177 (-3.7) 182 (3.8) -359 (-7.5)

Leeward Roof 10,11 -0.6 -512 (-10.7) 182 (3.8) -694 (-14.5)

Roof // to Ridge        
0 to 1.6 m 7,8 -0.9 -766 (-16.0) 182 (3.8) -948 (-19.8)

1.6 m to 3.1 m 7,8 -0.9 -766 (-16) 182 (3.8) -948 (-19.8)
3.1 m to 6.3 m 7,8 -0.5 -426 (8.9) 182 (3.8) -608 (-12.7)

> 6.3 m 7,8 -0.3 -254 (-5.3) 182 (3.8) -436 (-9.1)
a.  Cp = 0.8 (ASCE 7-05 Section 6.5.11.4.1) 
b.  For L/B = 1.2 
c.  Interpolated for θ = 26⁰ and h/L = 0.28
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Table K-4:  ASCE 7-05 Design Pressures for Index House under South-North Wind 

Surface Type Designation 
(Figure K-3) 

Cp         
(ASCE 7-
05 Figure 

6-6) 

External 
Pressure 
qGCp Pa 

(psf) 

(+) Internal 
Pressure 
qh(GCpi)  
Pa (psf) 

Net 
Pressure, p 

Pa (psf) 

Windward Wall 2,4 0.8 685 (14.3) 182 (3.8) 503 (10.5)

Overhang 2,4 0.8 685 (14.3) 0 685 (14.3)

Leeward Wall 6 -0.5 -426 (8.9) 182 (3.8) -608 (-12.7)
Windward Roof 8,11 -0.28 -239 (-5.0) 182 (3.8) -421 (-8.8)

Leeward Roof 7 -0.6 -512 (-10.7) 182 (3.8) -694 (-14.5)
a.  Cp = 0.8 (ASCE 7-05 Section 6.5.11.4.1) 
b.  For L/B = 0.82 
c.  Interpolated for θ = 23⁰ and h/L = 0.35
 
Table K-5:  ASCE 7-05 Design Pressures for Index House under East-West Wind 

Surface Type Designation 
(Figure K-3) 

Cp         
(ASCE 7-
05 Figure 

6-6) 

External 
Pressure 
qGCp Pa 

(psf) 

(+) Internal 
Pressure 
qh(GCpi)  
Pa (psf) 

Net Pressure, 
p Pa (psf) 

Windward Wall 3,5 0.8 685 (14.3) 182 (3.8) 503 (10.5)

Overhang 3,5 0.8 685 (14.3) 0 685 (14.3)

Leeward Wall 1 -0.46 -393 (-8.2) 182 (3.8) -575 (-12.0)
Windward Roof 10 -0.21 -177 (-3.7) 182 (3.8) -359 (-7.5)

Leeward Roof 9,8 -0.6 -512 (-10.7) 182 (3.8) -694 (-14.5)
a.  Cp = 0.8 (ASCE 7-05 Section 6.5.11.4.1)
b.  For L/B = 1.2 
c.  Interpolated for θ = 26⁰ and h/L = 0.28
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Table K-6:  Design Pressures for Index Building under Southeast-Northwest Wind = 0.75(S-N) + 
0.75(E-W) – ASCE 7-05 Load Case 3 (Figure K-2) 

Surface Type Designation 
(Figure K-3) 

S-N Net Pressure 
p 

Pa (psf) 

E-W Net Pressure 
p  

Pa (psf) 

0.75*p  
Pa (psf) 

Windward Wall 2,4 503 (10.5)  378 (7.9)

Overhang 2,4 685 (14.3)  512 (10.7)

Windward Wall 5,3  503 (10.5) 378 (7.9)

Overhang 5,3  685 (14.3) 512 (10.7)

Leeward Wall 6 -608 (-12.7)  -455 (-9.5)

Leeward Wall 1  -575 (-12.0) -431 (-9.0)

Windward Roof 11 -421 (-8.8)  -316 (-6.6)

Windward Roof 10  -359 (-7.5) -268 (-5.6)

Leeward Roof 7 -694 (-14.5)  -522 (-10.9)

Leeward Roof 9,8  -694 (-14.5) -522 (-10.9)
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APPENDIX L 

WIND LOAD INVESTIGATION 

For the wind load investigation, the propagation of lateral and uplift wind loads 

through an L-shaped house were modeled and analyzed.  The house was then 

systematically modified to study the redistribution of wind loads due to the addition of a 

gable-end retrofit and various re-entrant corner dimensions.  Model variations used for 

the wind load investigation are detailed in Appendix I and include: 

 A model of the Paevere et al. (2003) house with the gable-end framing, hold-

down and sheathing modifications described in Appendix I.  This building is 

designated as the L-shaped index house for this investigation. 

 The L-shaped index house with the addition of gable-end retrofits as 

recommended in the 2010 Florida Building Code (Figure I-9). 

 The L-shaped index house with one leg of the “L” shortened/extended as 

shown in Figure I-13 to create three re-entrant corner variations: 

o Small re-entrant corner (leg shortened by 1.2 m) 

o Medium re-entrant corner (leg extended by 1.2 m) 

o Large re-entrant corner (leg extended to create a re-entrant corner 

with 1:1 dimensional ratio) 

All model variations in this investigation include the self weight of the construction 

materials for realistic results. Models were loaded with ASCE 7-05 design wind loads for 

each of the three wind directions described in Appendix K.  Uplift and change in uplift 

reactions for each building were plotted using the same “bubble plots” used in Appendix 

J.  Lateral load distributions to in-plane walls were also plotted for each model and load 

case. 
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L-shaped index house 

North to South Wind Loads 

 
Figure L-1: Uplift Reactions for L-shaped index house under North-South Wind 

Loads (with Self Weight) 

 

Figure L-2: Lateral Load Distribution to North-South walls under North-South 
Wind Loads (with Self Weight) 
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West to East Wind Loads 

 

Figure L-3: Uplift Reactions for L-shaped index house under West-East Wind 
Loads (with Self Weight) 

 

Figure L-4: Lateral Load Distribution to East-West walls under West-East Wind 
Loads (with Self Weight) 
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Southeast-Northwest Wind Loads 

 

Figure L-5: Uplift Reactions for L-shaped index house under Southeast-Northwest 
Wind Loads (with Self Weight) 

 

Figure L-6: Lateral Load Distribution to North-South walls under Southeast-
Northwest Wind Loads (with Self Weight) 
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Figure L-7: Lateral Load Distribution to East-West walls under Southeast-
Northwest Wind Loads (with Self Weight) 
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Gable-End Retrofit Investigation 

North-South Wind Load 

 
Figure L-8: Uplift Reactions for Building with Gable-End Retrofits under North-

South Wind Loads (with Self Weight) 

 
Figure L-9: Difference in Uplift Reactions between Building with Gable-End 

Retrofits and L-shaped index house under North-South Wind Loads (with Self 
Weight) 
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Figure L-10: Lateral Load Distribution to North-South walls under North-South 
Wind Loads (with Self Weight) 
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West to East Wind Loads 

 

Figure L-11: Uplift Reactions for Building with Gable-End Retrofits under West-
East Wind Loads (with Self Weight) 

 

Figure L-12: Difference in Uplift Reactions between Building with Gable-End 
Retrofits and L-shaped index house under West-East Wind Loads (with Self 

Weight) 
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Figure L-13: Lateral Load Distribution to East-West walls under West-East Wind 
Loads (with Self Weight) 
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Southeast to Northwest Wind Loads 

 
Figure L-14: Uplift Reactions for Building with Gable-End Retrofits under 

Southeast-Northwest Wind Loads (with Self Weight)  

 
Figure L-15: Difference in Uplift Reactions between Building with Gable-End 

Retrofits and L-shaped index house under Southeast-Northwest Wind Loads (with 
Self Weight) 
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Figure L-16: Lateral Load Distribution to East-West walls under Southeast-
Northwest Wind Loads (with Self Weight) 

 

Figure L-17: Lateral Load Distribution to North-South walls under Southeast-
Northwest Wind Loads (with Self Weight) 

 

0

1

2

3

4

5

6

7

8

9

10

Wall 1 Wall 2 Wall 3 Wall 4

R
e
ac
ti
o
n
 (
kN

)
Lateral Load Distribution to E‐W Walls

L‐Shaped Index House

Building with Gable‐End Retrofit

N

0

1

2

3

4

5

6

7

8

9

10

Wall 9 Wall 6,7,8 Wall 5

R
e
ac
ti
o
n
 (
kN

)

Lateral Load Distribution to N‐S Walls

L‐Shaped Index House

Building with Gable‐End Retrofit

N



 
 

179 
 

Re-Entrant Corner Investigation 

North to South Wind Loads 

 
Figure L-18: Uplift Reactions for Building with Small Re-Entrant Corner under 

North-South Wind Loads (with Self Weight)  

 
Figure L-19: Difference in Uplift Reactions between Building with Small Re-Entrant 

Corner and L-shaped index house under North-South Wind Loads (with Self 
Weight)  
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Figure L-20: Uplift Reactions for Building with Medium Re-Entrant Corner under 

North-South Wind Loads (with Self Weight)  

 

Figure L-21: Difference in Uplift Reactions between Building with Medium Re-
Entrant Corner and L-shaped index house under North-South Wind Loads (with 

Self Weight)  

Max = 1.5 kN

Uplift Reactions (Medium Re‐Entrant Corner) ‐
with Self Weight

N

Max =  0.27 kN

Difference in Uplift Reactions (from L‐Shaped Index House) ‐
with Self Weight

N

Magnified 4x 



 
 

181 
 

 
Figure L-22: Uplift Reactions for Building with Large Re-Entrant Corner under 

North-South Wind Loads (with Self Weight)  

 
Figure L-23: Difference in Uplift Reactions between Building with Large Re-

Entrant Corner and L-shaped index house under North-South Wind Loads (with 
Self Weight)  
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Figure L-24: Lateral Load Distribution to North-South walls under North-South 

Wind Loads (with Self Weight) 

 

Figure L-25: Unit Shear in North-South walls under North-South Wind Loads (with 
Self Weight) 
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West to East Wind Loads 

 
Figure L-26: Uplift Reactions for Building with Small Re-Entrant Corner under 

West-East Wind Loads (with Self Weight)  

 
Figure L-27: Difference in Uplift Reactions between Building with Small Re-Entrant 
Corner and L-shaped index house under West-East Wind Loads (with Self Weight)  
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Figure L-28: Uplift Reactions for Building with Medium Re-Entrant Corner under 

West-East Wind Loads (with Self Weight)  

 
Figure L-29: Difference in Uplift Reactions between Building with Medium Re-

Entrant Corner and L-shaped index house under West-East Wind Loads (with Self 
Weight)  
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Figure L-30: Uplift Reactions for Building with Large Re-Entrant Corner under 

West-East Wind Loads (with Self Weight)  

 
Figure L-31: Difference in Uplift Reactions between Building with Large Re-

Entrant Corner and L-shaped index house under West-East Wind Loads (with Self 
Weight)  
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Figure L-32: Lateral Load Distribution to East-West walls under West-East Wind 
Loads (with Self Weight) 
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Southeast to Northwest Wind Loads 

 
Figure L-33: Uplift Reactions for Building with Small Re-Entrant Corner under 

Southeast-Northwest Wind Loads (with Self Weight)  

 
Figure L-34: Difference in Uplift Reactions between Building with Small Re-Entrant 

Corner and L-shaped index house under Southeast-Northwest Wind Loads (with 
Self Weight)  

Max = 1.6 kN

Uplift Reactions (Small Re‐Entrant Corner) ‐
with Self Weight

N

Max = 0.31 kN

Difference in Uplift Reactions (from L‐Shaped Index House) ‐
with Self Weight

N

Magnified 4x 



 
 

188 
 

 
Figure L-35: Uplift Reactions for Building with Medium Re-Entrant Corner under 

Southeast-Northwest Wind Loads (with Self Weight)  

 
Figure L-36: Difference in Uplift Reactions between Building with Medium Re-

Entrant Corner and L-shaped index house under Southeast-Northwest Wind Loads 
(with Self Weight)  

 

Max = 1.6 kN

Uplift Reactions (Medium Re‐Entrant Corner) ‐
with Self Weight

N

Max = 0.27 kN

Difference in Uplift Reactions (from L‐Shaped Index House) ‐
with Self Weight

N

Magnified 4x 



 
 

189 
 

 
Figure L-37: Uplift Reactions for Building with Large Re-Entrant Corner under 

Southeast-Northwest Wind Loads (with Self Weight)  

 
Figure L-38: Difference in Uplift Reactions between Building with Large Re-

Entrant Corner and L-shaped index house under Southeast-Northwest Wind Loads 
(with Self Weight) 
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Figure L-39: Lateral Load Distribution to East-West walls under Southeast-

Northwest Wind Loads (with Self Weight) 

 

Figure L-40: Lateral Load Distribution to North-South walls under Southeast-
Northwest Wind Loads (with Self Weight) 
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Figure L-41: Unit Shear in North-South walls under Southeast-Northwest Wind 
Loads (with Self Weight) 
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