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THE IMPLICIT DERIVATIVE MATCHING TECHNIQUE FOR

MAXWELL’S EQUATIONS IN COMPLEX HETEROGENEOUS

MEDIA

1. INTRODUCTION

1.1. Introduction

The simulation of electromagnetic waves is important to many areas of study. For

example, in medicine, electromagnetic interrogating waves can be used to detect cancerous

tumors. The tumors are found by determining the properties of the tissue using an inverse

problem [3]. It is important to design a fast, efficient forward solver in an inverse problem.

In this thesis we consider Maxwell’s equations in complex media that incorporate

material dispersion. In particular we study dispersive models of Debye type that are used

to model electromagnetic wave propagation in materials such as water and living tissue,

and are based on the phenomenon of orientational polarization [2, 3]. The macroscopic

polarization driven by the electric field describes the averaged behavior of the model in re-

sponse to the incident electromagnetic field. We employ the auxiliary differential equation

(ADE) technique for modeling a dispersive medium in which an evolution equation for the

polarization field, forced by the electric field, is appended to the time dependent Maxwell’s

equations [3]. Finite difference methods for Debye type dispersive models are obtained by

discretizing Maxwell’s equations, as well as the polarization evolution equation.

In the presence of material interfaces that represent discontinuities in the material

parameters, the finite difference methods lose accuracy [21]. To restore accuracy, we im-
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plement a technique called the Implicit Derivative Matching (IDM) technique. This is one

technique in a class of methods that are collectively called embedded finite difference time

domain (FDTD) methods [21], in which the stencil of the FDTD methods are locally modi-

fied around the interface with the goal of maintaining the accuracy that the FDTD method

exhibits in homogeneous media. There are several ways in which the FDTD stencils can

be modified. In the IDM technique, we ask that jump conditions requiring continuity of

the field variables and their time derivatives be satisfied across material interfaces. The

implementation of these jump conditions is done by the introduction of fictitious nodes

and values of field variables. In a pre-processing stage we obtain representation coefficients

for the fictitious values which are then used to locally modify the FDTD stencils around

the interface.

The major contribution of this thesis is the extension of the IDM technique, which

has been previously employed for Maxwell’s equations in dielectrics [21], to complex dis-

persive media of Debye type. We demonstrate that this extension is not trivial and requires

additional considerations that are necessitated by the presence of polarization, which is

specific to dispersive media. In this thesis, the IDM technique is used to modify the sec-

ond order in space and time accurate Yee scheme for Debye media so that second order

accuracy is maintained in the presence of material interfaces. In addition to numerically

demonstrating the effectiveness of the IDM modified Yee scheme for Debye media, the

thesis concludes with a discussion of the extension of the IDM technique to higher order

FDTD methods for dispersive media.

In Chapter 2, we discuss Maxwell’s equations in free space and Debye media and the

reduction of these equations to one dimension. We examine the Yee scheme for discretizing

these equations and its properties. We also discuss the (2,4) FDTD scheme for discretizing

Maxwell’s equations in free space, which is second order accurate in time and fourth order

in space. In Chapter 3, we present the IDM technique for dielectrics. We demonstrate



3

how this technique is used to modify the Yee and (2,4) finite difference methods to restore

the accuracy of these schemes for wave propagation in presence of material interfaces in

one dimension. Finally, in Chapter 4, which is the major contribution of this thesis, we

extend the IDM technique to modify the Yee scheme in Debye dispersive media. We

present numerical validations of our new technique. Conclusion and future directions are

presented in Chapter 5.
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2. MAXWELL’S EQUATIONS AND THE YEE SCHEME

2.1. Maxwell’s Equations

2.1.1 Free Space

Maxwell’s equations in a free space domain, i.e. Ω ⊂ R3, from time 0 to T are given

as the following system of partial differential equations

Faraday’s Law: ∇×E = −∂B
∂t
, (2.1)

Ampere’s Law: ∇×H =
∂D
∂t

+ Jc,s, (2.2)

Gauss’ Laws: ∇ ·B = 0, (2.3)

∇ ·D = ρ, (2.4)

where each of the fields (bold face type) are functions of time t and spatial coordinate

x = (x, y, z). The imposed boundary and initial conditions are

E(t, x)× n = 0, for x ∈ ∂Ω, t ∈ (0, T ] (2.5)

E(0, x) = 0 = H(0, x), for x ∈ Ω. (2.6)

Equation (2.5) defines a perfect electric conducting boundary condition on the boundary

∂Ω of Ω. The vector n is the unit outward normal to the boundary ∂Ω. The electric field,

E, and the magnetic field, H, are 3D vectors with E = (Ex, Ey, Ez) and H = (Hx, Hy, Hz).

The electric and magnetic flux densities are defined by the constitutive laws

D = ε0E, (2.7)

B = µ0H, (2.8)

where ε0 is free space permittivity and and µ0 is free space permeability (both constants).

The source current and conduction current (Ohm’s Law) densities are both accounted for
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in the term Jc,s = Js + σE, where σ is the conductivity of the medium [7, 3]. Note that

the focus of this thesis will be on dielectric materials, which are nonconducting, so we will

have Jc = 0 and no free charges, i.e., ρ = 0. An important property of dielectrics is their

ability to store electrical energy, and the permittivity of the material is a measure of this

[16].

The curl of a three dimensional vector V = (Vx, Vy, Vz)T , denoted as ∇ × V, is

defined as

∇×V =

∣∣∣∣∣∣∣∣∣∣
i j k

∂
∂x

∂
∂y

∂
∂z

Vx Vy Vz

∣∣∣∣∣∣∣∣∣∣
,

which we can expand into the vector form

∇×V =
(
∂Vz
∂y
− ∂Vy

∂z
,
∂Vx
∂z
− ∂Vz

∂x
,
∂Vy
∂x
− ∂Vx

∂y

)T
. (2.9)

The Poynting theorem for Maxwell’s equations tells us that energy is conserved if

we have a lossless medium (i.e. no source J) and if we have PEC boundary conditions [4].

The theorem is stated as [4]

Theorem 2.1.1.1 (Energy Conservation). If E and H are solutions of Maxwell’s equa-

tions in a lossless medium, i.e. equations (2.1) through (2.4) with Jc,s = 0, and satisfy

the PEC boundary conditions

n×E = 0, or n×H = 0,

then the energy

E(t) = ε0
∥∥E(t)

∥∥2

2
+ µ0

∥∥H(t)
∥∥2

2
≡ constant

∀ t > 0 where the L2(Ω) norm is defined as

∥∥u(t)
∥∥2

2
=
∫

Ω
|u(t, z)|2 dz.
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2.1.2 Debye Media

In this thesis, we are concerned with Maxwell’s equations in dispersive dielectrics,

specifically those represented by the Debye model [6]. A dispersive medium of Debye

type is one that can be polarized by an electric field. Debye materials have orientational

polarization, which means its molecules have a permanent dipole moment [6]. When an

electric field is applied to a Debye medium, each entire molecule aligns itself with the field,

as opposed to a displacement of the electrons or atoms alone. The canonical example of

Debye media is water, and another important one is biological tissue [16].

In order to model the propagation of electromagnetic waves in Debye materials, we

must account for the polarization. One approach is to model the macroscopic polarization

as an average of the effects of the molecules’ alignment with the electric field. Polarization

may have instantaneous or delayed effects. The delayed effects are affiliated with relaxation

times τ , which govern the amount of time it takes for the molecules to return to their

original state after the incident electromagnetic field is removed. In Debye media, the

constitutive law (2.7) becomes

D = ε0E + P, (2.10)

where P is the macroscopic electric polarization. We will assume no magnetic effects so

that we still have B = µ0H. We can write P as

P = PI + PR = ε0χE + PR, (2.11)

i.e., as the sum of its instantaneous and relaxation parts [3]. The susceptibility, denoted

by χ, is a measure of the material’s ability to be polarized by an electric field. Now, we

substitute (2.11) into (2.10) to obtain the constitutive law for Debye media

D = ε0(1 + χ)E + PR.

From here on, we denote PR as P and let ε∞ = 1+χ, where ε∞ is the relative permittivity

of the material at infinite frequency [3]. As mentioned above, one way to describe the
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behavior of the polarization is to model it as an average of effects. Thus, we define

polarization as

P(t,x) =
∫ t

0
g(t− s,x)E(s,x) ds, (2.12)

where g is the susceptibility kernel. Note that this is a general model for P, so it can

be used for more than orientational polarization. For the Debye model, the susceptibility

kernel is

g(t) = e−t/τ
ε0(εs − ε∞)

τ
, (2.13)

where εs is the relative static permittivity, and ε∞ is the infinite frequency relative per-

mittivity. In general, εs, ε∞, and τ can vary with space or time, but here we assume they

are constants. The differential form for (2.12) is obtained by using the Leibniz integral

rule, which differentiates (2.12) with respect to t and substitutes in (2.13):

∂P
∂t

(t,x) = g(t− t)E(t,x)− 0 +
∫ t

0

∂

∂t
(g(t− s)E(s,x)) ds

=
ε0(εs − ε∞)

τ
E(t,x) +

∫ t

0

−1
τ
g(t− s)E(s,x) ds.

This implies

τ
∂P
∂t

(t,x) = ε0(εs − ε∞)E(t,x)−
∫ t

0
e−(t−s)/τ ε0(εs − ε∞)

τ
E(s,x) ds,

which gives us the evolution equation for the polarization as

τ
∂P
∂t

(t,x) + P(t,x) = ε0(εs − ε∞)E(t,x). (2.14)

Equation (2.14) is the auxiliary differential equation that we append to the system of

Maxwell’s equations to account for polarization, along with the revised constitutive law

D = ε0ε∞E + P. (2.15)

2.1.3 Reduction to One Dimension

We consider the 1D case where E oscillates in the x-direction and H oscillates in

the y-direction, i.e., E = Ey(t, z)j and H = Hx(t, z)i. Here on, we denote Ey = E and
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Hx = H to simplify notation. All fields propagate in the z-direction, thus each field is

represented by a scalar-valued function [3]. The curl of a scalar is reduced to a spatial

derivative with respect to z, i.e.

∇× V =
∂V

∂z
l,

where l is a unit vector in the x direction if V = H, and l is a unit vector in the y direction

if V = E. Then Faraday’s law (2.1) becomes

∂E

∂z
= µ0

∂H

∂t
,

using the constitutive law B = µ0H. If we apply the free space constitutive law D = ε0E

to Ampere’s law (2.2), we obtain

∂H

∂z
= ε0

∂E

∂t
+ Js.

Thus, Maxwell’s equations for one-dimensional free space are

∂H

∂t
=

1
µ0

∂E

∂z

∂E

∂t
=

1
ε0

∂H

∂z
− 1
ε0
Js.

(2.16)

For one dimensional Debye media, Faraday’s Law will be the same since the constitutive

law for the magnetic flux density does not change from free space. However, we apply

(2.15) to Ampere’s law (2.2) to get

∂H

∂z
= ε0ε∞

∂E

∂t
+
∂P

∂t
+ Js. (2.17)

We also have the auxiliary differential equation for polarization P (2.14) to add to our

system, which in one dimension is simply

∂P

∂t
=
ε0(εs − ε∞)

τ
E − 1

τ
P. (2.18)

Now, we want each of the equations in our system to be in terms of only one time

derivative, so we apply (2.18) to (2.17) to obtain

∂H

∂z
= ε0ε∞

∂E

∂t
+
ε0(εs − ε∞)

τ
E − 1

τ
P + Js.
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Thus, Maxwell’s equations in 1D Debye media (after rearrangement) are

∂H

∂t
=

1
µ0

∂E

∂z

∂E

∂t
=

1
ε0ε∞

∂H

∂z
− εq − 1

τ
E +

1
ε0ε∞τ

P − 1
ε0ε∞

Js (2.19)

∂P

∂t
=
ε0(εs − ε∞)

τ
E − 1

τ
P,

where εq = εs/ε∞. Note that the perfect electric conductor (PEC) conditions on the

boundary of a one dimensional domain Ω = [a, b] reduce to E(a) = E(b) = 0. In a lossless

medium we have shown energy conservation in Theorem 2.1.1.1. In a dispersive medium

such as Debye, there is loss that results in energy decay. We thus have the result

Theorem 2.1.3.1 (Energy Decay). If E and H are solutions of Maxwell’s equations in

Debye media (2.19) and satisfy the PEC boundary conditions E = 0 on ∂Ω, then we have

the energy decay

E(t) ≤ E(0) ∀ t > 0,

where

E(t) = ε0ε∞
∥∥E(t)

∥∥2

2
+ µ0

∥∥H(t)
∥∥2

2
+

1
ε0εd

∥∥P (t)
∥∥2

2
,

with the L2(Ω) norm and inner product defined as

∥∥u(t)
∥∥2

2
=
∫

Ω
|u(t, z)|2 dz and (u, v) =

∫
Ω
u(t, z)v(t, z) dz.

Proof. From the first equation in (2.19) we have

µ0

(
∂H

∂t
,H

)
=
(
∂E

∂z
,H

)
. (A)

From the second equation in (2.19) we have

ε0ε∞

(
∂E

∂t
, E

)
=
(
∂H

∂z
,E

)
− ε0ε∞(εq − 1)

τ
(E,E) +

1
τ

(P,E) . (B)

From the third equation in (2.19) we have

1
ε0εd

(
∂P

∂t
, P

)
=

1
τ

(E,P )− 1
τε0εd

(P, P ) . (C)
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Now add together (A), (B), and (C) to get

µ0

(
∂H

∂t
,H

)
+ ε0ε∞

(
∂E

∂t
, E

)
+

1
ε0εd

(
∂P

∂t
, P

)
(2.20)

= −1
τ

[∥∥√ε0εdE∥∥2

2
+
∥∥ 1
√
ε0εd

P
∥∥2

2
− 2(P,E)

]
. (2.21)

In the above we have used the fact that
(
∂E
∂z , H

)
= −

(
∂H
∂z , E

)
, which we can show by

integration by parts as (
∂E

∂z
,H

)
=
∫

Ω

∂E

∂z
H dz

= −
∫

Ω

∂H

∂z
E dz + EH

∣∣∣∣
∂Ω

= −
(
∂H

∂z
,E

)
since E = 0 on ∂Ω. Simplifying further in (2.20), we have

µ0

(
∂H

∂t
,H

)
+ ε0ε∞

(
∂E

∂t
, E

)
+

1
ε0εd

(
∂P

∂t
, P

)
= −1

τ

∥∥√ε0εdE − 1
√
ε0εd

P
∥∥2

2
< 0 (D)

Note that
∂

∂t
(H,H) =

(
∂H

∂t
,H

)
+
(
H,

∂H

∂t

)
= 2

(
∂H

∂t
,H

)
,

which implies
(
∂H

∂t
,H

)
=

1
2
∂

∂t

∥∥H∥∥2

2
, and similarly for E, P . Then the inequality (D)

becomes
1
2
∂

∂t

[
µ0

∥∥H∥∥2

2
+ ε0ε∞

∥∥E∥∥2

2
+

1
ε0εd

∥∥P∥∥2

2

]
=

1
2
∂

∂t
E(t) < 0.

=⇒ ∂

∂t
E(t) < 0.

The time derivative of the energy is strictly decreasing, thus,

E(t) < E(0).
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2.2. Yee Scheme for Maxwell’s Equations in Free Space

We consider finite difference time domain (FDTD) methods for a forward solver of

Maxwell’s equations in complex dispersive media, an example of which is biological tissue.

These FDTD methods are advantageous because they use a uniform grid and are explicit,

which means we do not have to solve a linear system at each time step. On the other hand,

FDTD methods suffer from a lack of “geometric flexibility”, which means it is not easy to

use these methods for complicated domains [12]. Alternatively, we could use variational

methods such as the finite element (FE) method, which would be unconditionally stable,

unlike the FDTD methods that are only conditionally stable [1]. However, FE methods

are generally more difficult and costly to implement than an FDTD method.

We will use explicit (2, 2m) schemes [3] to discretize Maxwell’s equations, which are

second order in time and (2m)th order in space. In particular, we will use the classic

Yee scheme, which is (2,2), and also the (2,4) scheme. There are complications with

implementing a FDTD method across material interfaces, which represent a discontinuity

in the electric permittivity and the magnetic permeability. In heterogeneous media, the

full accuracy of a higher order FDTD method (2nd, 4th, etc) deteriorates to essentially

first order accuracy [21].

The Yee scheme is an explicit finite difference method for discretizing Maxwell’s

equations that is second order accurate in both time and space. Second order accuracy is

achieved by staggering the electric and magnetic field grid nodes for the approximations

of both the spatial and temporal derivatives [20]. Let ∆z > 0 and ∆t > 0 be the mesh

size along the z direction and the time step size, respectively. For n = 0, 1, ...N and

j = 0, 1, ..., J define

(tn, zj) = (n∆t, j∆z)(
tn+ 1

2
, zj+ 1

2

)
=
((

n+
1
2

)
∆t,

(
j +

1
2

)
∆z
)
.
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j = 0 1/2 3/21 .  .  .

n = 0

1/2

1

3/2

.  .  .

FIGURE 2.1: Staggered grid used in the Yee scheme. The horizontal axis represents space
in the z direction and the vertical axis represents time. Electric field values (circles) lie
on the primary grid, and magnetic field values lie on staggered grid.

The grid function Enj is defined on the primary grid in space-time, whereas the grid

function H
n+ 1

2

j+ 1
2

is defined on the staggered space-time grid (see Figure 2.1). Here

Enj ≈ E(tn, zj) and H
n+ 1

2

j+ 1
2

≈ H(tn+ 1
2
, zj+ 1

2
).

Figure 2.2 shows the computational stencil of the Yee scheme. The Yee scheme for free

space is

H
n+ 1

2

j+ 1
2

−Hn− 1
2

j+ 1
2

∆t
=

1
µ0

Enj+1 − Enj
∆z

(2.22)

En+1
j − Enj

∆t
=

1
ε0

H
n+ 1

2

j+ 1
2

−Hn+ 1
2

j− 1
2

∆z
. (2.23)

2.2.1 Accuracy

As mentioned above, the Yee scheme is second order accurate in both space and

time. We show this is true by finding the local truncation error (LTE) of (2.22) and

(2.23), denoted (ζH)n
j+ 1

2

and (ζE)
n+ 1

2
j , respectively. If we substitute the exact solution

into the finite difference equation written in a form that models the differential equation,

which it is not expected to satisfy exactly, then the discrepancy is the LTE [13]. First
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= E, electric field

= H, magnetic field

j j+1/2j+1/2 jj-1/2j+1

n+1/2

n+1

n

n+1/2

n-1/2

n

FIGURE 2.2: Stencil for the Yee scheme. The update step for the electric field grid values
En+1
j depends on the previous electric field grid value Enj and the magnetic field grid

values at a half time step before and on either side, i.e. H
n+ 1

2

j− 1
2

and H
n+ 1

2

j+ 1
2

. A similar

situation holds for the update of the magnetic field at H
n+ 1

2

j+ 1
2

.

we find (ζE)
n+ 1

2
j , then (ζH)n

j+ 1
2

will follow by the same idea. The discretizations in (2.23)

are centered around the point (tn+ 1
2
, zj), so we consider the following Taylor expansions

around the same point:

E(tn+1, zj) = E +
∆t
2
∂E

∂t
+

∆t2

8
∂2E

∂t2
+

∆t3

48
∂3E

∂t3
+O(∆t4) (2.24)

E(tn, zj) = E − ∆t
2
∂E

∂t
+

∆t2

8
∂2E

∂t2
− ∆t3

48
∂3E

∂t3
+O(∆t4) (2.25)

H(tn+ 1
2
, zj+ 1

2
) = H +

∆z
2
∂H

∂z
+

∆z2

8
∂2H

∂z2
+

∆z3

48
∂3H

∂z3
+O(∆z4) (2.26)

H(tn+ 1
2
, zj− 1

2
) = H − ∆z

2
∂H

∂z
+

∆z2

8
∂2H

∂z2
− ∆z3

48
∂3H

∂z3
+O(∆z4) (2.27)

where the electric field and magnetic field terms on the right hand side are evaluated at

the space-time grid point (tn+ 1
2
, zj). The LTE of (2.23) is

(ζE)
n+ 1

2
j =

E(tn+1, zj)− E(tn, zj)
∆t

− 1
ε0

H(tn+ 1
2
, zj+ 1

2
)−H(tn+ 1

2
, zj− 1

2
)

∆z
.
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Substituting in our Taylor expansions, we have

(ζE)
n+ 1

2
j =

1
∆t

[E +
∆t
2
∂E

∂t
+

∆t2

8
∂2E

∂t2
+

∆t3

48
∂3E

∂t3
+O(∆t4)

− (E − ∆t
2
∂E

∂t
+

∆t2

8
∂2E

∂t2
− ∆t3

48
∂3E

∂t3
+O(∆t4))]

− 1
ε0∆z

[H +
∆z
2
∂H

∂z
+

∆z2

8
∂2H

∂z2
+

∆z3

48
∂3H

∂z3
+O(∆z4)

− (H − ∆z
2
∂H

∂z
+

∆z2

8
∂2H

∂z2
− ∆z3

48
∂3H

∂z3
+O(∆z4))].

After cancellations, we have

(ζE)
n+ 1

2
j =

∂E

∂t
+

∆t2

24
∂3E

∂t3
+O(∆t4)− 1

ε0

∂H

∂z
− ∆z2

ε024
∂3H

∂z3
+O(∆z4)

=
∆t2

24
∂3E

∂t3
+O(∆t4)− ∆z2

ε024
∂3H

∂z3
+O(∆z4)

Since
∂E

∂t
− 1
ε0

∂H

∂z
= 0, we can see that (ζE)

n+ 1
2

j = O(∆t2 + ∆z2). By a similar process

it can be shown that the LTE of (2.22) is also O(∆t2 + ∆z2). This implies our system is

second order accurate in both space and time, and we have the following lemma.

Lemma 2.2.1.1 (Truncation Error). Assume that the solutions to Maxwell’s equations

are smooth enough, i.e., E ∈ C3([0, T ];C3(Ω̄)) and H ∈ C3([0, T ];C3(Ω̄)). Let (ζE)
n+ 1

2
j

and (ζH)n
j+ 1

2

denote the truncation errors of the Yee scheme equations (2.23) and (2.22),

respectively. Then the truncation errors can be bounded by

max
n

{∣∣(ζE)
n+ 1

2
j

∣∣, ∣∣(ζH)n
j+ 1

2

∣∣} ≤ c(ε0, µ0)(∆t2 + ∆z2),

where c(ε0, µ0) is a constant independent of the mesh parameters ∆t > 0 and ∆z > 0.

2.2.2 Stability Analysis

The Lax-Richtmyer Equivalence Theorem [13] gives us the requirements needed

for convergence of a finite difference scheme. First we need to define the concepts of

consistency and stability [17].
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Definition 2.2.2.1 (Consistency). Given a partial differential equation, Pu = f , and a

finite difference scheme, P∆t,∆zv = f , we say that the finite difference scheme is consis-

tent with the PDE if for any (sufficiently) smooth function φ(t, z)

Pφ− P∆t,∆zφ→ 0 as ∆t,∆z → 0

the convergence being pointwise convergent at each point (t,z).

Definition 2.2.2.2 (Stability). A finite difference scheme P∆t,∆zv
n
m = 0 for a first-order

equation is stable in the region Λ if there is an integer J such that for any positive time

T , there is a constant CT such that

‖vn‖∆z ≤ CT
J∑
j=0

‖vj‖∆z

for 0 ≤ n∆t ≤ T , with (∆t,∆z) ∈ Λ.

Note that ‖w‖∆z in Definition 2.2.2.2 is the L2 norm of the grid function w, which

is defined by

‖w‖∆z =

(
∆z

m=∞∑
m=−∞

|wm|2
)1/2

.

Theorem 2.2.2.1 (Lax-Richtmyer Equivalence Theorem). A consistent finite difference

scheme for a partial differential equation for which the initial value problem is well-posed

is convergent if and only if it is stable.

Now that we know the importance of stability for a finite difference scheme, we

will explore the stability of the Yee scheme. It is well known that the Yee scheme is

conditionally stable under the necessary condition that ν = c∆t/∆z ≤ 1, which is called

the Courant-Friedrichs-Lewy (CFL) condition. Note that c = 1/
√
µ0ε0 is the speed of

light in a vacuum and ν is called the Courant number [14, 11]. We have the following

result

Theorem 2.2.2.2 (Conditional Stability of the Yee Scheme). A necessary condition for

the stability of the Yee scheme (2.22) and (2.23) is the CFL condition ν = c∆t/∆z ≤ 1
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Proof. Assume the electric and magnetic field nodes have the spatial dependence

Enj = Ẽneikzj ,

Hn
j = H̃neikzj ,

(2.28)

where k is the wave number. We will first find the amplification matrix A such that the

Yee system (2.22), (2.23) can be written in the form Ẽn+1

H̃n+ 1
2

 = A

 Ẽn

H̃n− 1
2

 .
First, substitute (2.28) into the Yee scheme update steps to obtain

Ẽn+1eikzj = Ẽneikzj +
∆t
ε0∆z

(H̃n+ 1
2 e
ikz

j+1
2 − H̃n+ 1

2 e
ikz

j− 1
2 ), (2.29)

H̃n+ 1
2 e
ikz

j+1
2 = H̃n− 1

2 e
ikz

j+1
2 +

∆t
µ0∆z

(Ẽneikzj+1 − Ẽneikzj ). (2.30)

Now divide (2.29) by eikzj = eikj∆z and (2.30) by e
ikz

j+1
2 = eik(j+ 1

2
)∆z. Then, using Euler’s

identity, we have

Ẽn+1 = Ẽn +
∆t
ε0∆z

H̃n+ 1
2 (2i sin(k∆z/2)), (2.31)

H̃n+ 1
2 = H̃n− 1

2 +
∆t
µ0∆z

Ẽn(2i sin(k∆z/2)). (2.32)

Finally, substitute (2.32) into (2.31), which gives

Ẽn+1 = Ẽn

(
1− 4

(
c∆t
∆z

)2

sin2

(
k∆z

2

))
+ H̃n− 1

2

(
2i

∆t
ε0∆z

sin
(
k∆z

2

))
. (2.33)

Then our matrix A from (2.32) and (2.33) is

A =

 1− 4( c∆t∆z )2 sin2
(
k∆z

2

)
2i ∆t
ε0∆z sin

(
k∆z

2

)
2i ∆t
µ0∆z sin

(
k∆z

2

)
1

 .
A necessary condition for stability is that all the eigenvalues of the amplification matrix A

must be less than or equal to one in magnitude. This is called the von Neumann condition



17

[17]. The eigenvalues of A are

λ1 = 1− 2β2 + 2β
√
β2 − 1

λ2 = 1− 2β2 − 2β
√
β2 − 1,

where β = ν sin
(
k∆z

2

)
. First assume that 0 < ν ≤ 1, which implies β ≤ 1 and then√

β2 − 1 is complex. Then we can express the eigenvalues as

λ1,2 = 1− 2β2 ± 2iβ
√

1− β2,

where β
√

1− β2 is a real number. Then we have

|λ1,2|2 = (1− 2β2)2 +
(

2β
√

1− β2
)2

= 1,

so that the von Neumann condition is satisfied.

Next, assume that ν > 1. By letting sin
(
k∆z

2

)
= 1 we have β2 > 1. In this case

|λ2| > 1, and the Yee scheme is unstable.

It can be shown that the condition 0 < ν < 1 is both necessary and sufficient for

stability. However, ν ≤ 1 is not sufficient for stability because the Yee scheme can be

unstable when ν = 1 [14]. The value of the Courant number ν = 1 is called the Magic

Time Step, because if ∆t satisfies ν = c∆t/∆z = 1 and you have exact data at time step

n, then the Yee scheme will produce exact data at the next time step n+ 1 [18].

2.2.3 Dispersion Analysis

Dispersion is defined as the variation of a propagating wave’s speed with frequency

f [18]. A dispersive equation admits plane wave solutions of the form ei(kz−ωt), where

ω = 2πf is the angular frequency, f is the frequency in Hz, and k = 2π/λ is the wavenum-

ber. Furthermore, there exists a relationship between these quantities of the form ω = ω(k)

called the dispersion relation. A wave of this form propagates at the speed ω(k)/k called

the phase velocity. When a partial differential equation is discretized, the discrete model
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will be dispersive, regardless of whether the continuous equation was or not [19]. Thus,

in order for the numerical simulation to be successful, the continuous and numerical dis-

persion relations need to be “similar”. We will now find the dispersion relations for the

continuous and numerical versions of Maxwell’s equations in one dimensional free space.

First assume we have plane wave solutions E = E0ei(kz−ωt) and H = H0ei(kz−ωt)

and substitute into Maxwell’s equations for free space in one-dimension (2.16). Note that

the time derivative satisfies the equation
∂E

∂t
= iωE and the spatial derivative satisfies

∂E

∂z
= −ikE, and similarly for H. Then Maxwell’s equations transform to the equations

iωE0ei(kz−ωt) =
−ik
ε0

H0ei(kz−ωt),

iωH0ei(kz−ωt) =
−ik
µ0

E0ei(kz−ωt),

which we can simplify to

ωE0 =
−k
ε0
H0,

ωH0 =
−k
µ0
E0.

Combining the above two equations we have

E0 =
−k
ωε0

H0 =
−ωµ0

k
H0

=⇒ k2 = ω2ε0µ0 =
ω2

c2

=⇒ k =
ω

c
. (2.34)

Thus, the dispersion relation for Maxwell’s equations in one dimensional free space is

ω = kc. Note that the phase velocity is ω/k = c, which is a constant, so the continuous

equations are dispersionless [18].

For the numerical case, we similarly assume Enj = E0ei(kj∆z−ωn∆t) and Hn
j =

H0ei(kj∆z−ωn∆t) and substitute these into the Yee scheme (2.23), and simplify this ex-
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pression by dividing by ei(kj∆z−ω(n+ 1
2

)∆t) to get

E0

∆t

(
e−i(ω∆t/2) − ei(ω∆t/2)

)
=

H0

ε0∆z

(
ei(k∆z/2) − e−i(k∆z/2)

)
.

Using Euler’s formula eix = cos(x) + i sin(x) we get

E0

∆t

(
− sin

(
ω∆t

2

))
=

H0

ε0∆z

(
sin
(
k∆z

2

))
.

We can do the same process for equation (2.22) and we obtain

H0

∆t

(
− sin

(
ω∆t

2

))
=

E0

µ0∆z

(
sin
(
k∆z

2

))
.

Finally, combining the two equations gives us

sin2

(
ω∆t

2

)
=

∆t2

ε0µ0∆z2 sin2

(
k∆z

2

)
= ν2 sin2

(
k∆z

2

)
.

Thus, the dispersion relation for the Yee scheme in one dimensional free space is

sin
(
ω∆t

2

)
= ν sin

(
k∆z

2

)
. (2.35)

2.2.4 Numerical Experiments

A scaled numerical example was tested for the Yee scheme in free space with the

following parameter values

t ∈ [0, 1], z ∈ [0, 1]

ε0 = 1.0, µ0 = 1.0 =⇒ c = 1/
√
ε0µ0 = 1

c∆t
∆z

= 0.9

k = 1 =⇒ ω = ck = c = 1,

and given the initial conditions

E0
j = sin(πkzj),

H
1
2

j+ 1
2

= sin
(
πω∆t

2

)
cos
(
πkzj+ 1

2

)
,
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FIGURE 2.3: Initial profile of the exact solution for E, H in free space.
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FIGURE 2.4: Final profile for E, H at time t = 1 in free space after the Yee scheme is
applied.
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TABLE 2.1: Relative error in the energy norm for the Yee Scheme in free space with
varying spatial step size. The Courant number ν = c∆t

∆z is fixed at 0.9.

∆z Rel. Error ratio rate

0.02 9.8892e-05 - -

0.01 2.4523e-05 4.0327 2.0117

0.005 6.1306e-06 4 2

0.0025 1.5326e-06 4 2

for each zj , zj+ 1
2

in the domain. Figure 2.3 depicts the initial profile and Figure 2.4 shows

the final profile of E and H. Table 2.1 shows how decreasing step size ∆t by half, while

maintaining the Courant number ν = c∆t
∆z = 0.9, gives an error ratio that converges to 4.

This means the numerical approximation is second order accurate as predicted. The error

used was the relative error in the energy norm, which is defined in free space as

E(t) =
∫

Ω

(
|E(t, z)|2 + |H(t, z)|2

)
dz =

∥∥E(t, z)
∥∥2

2
+
∥∥H(t, z)

∥∥2

2
.

2.3. Yee Scheme for Maxwell’s Equations in Debye Media

Recall Maxwell’s equations in one dimensional Debye media (2.19). Using time step

∆t > 0 and mesh step size ∆z > 0, the Yee scheme for this system is

H
n+ 1

2

j+ 1
2

−Hn− 1
2

j+ 1
2

∆t
=

1
µ0

Enj+1 − Enj
∆z

, (2.36a)

En+1
j − Enj

∆t
=

1
ε0ε∞

H
n+ 1

2

j+ 1
2

−Hn+ 1
2

j− 1
2

∆z
− εq − 1

τ

En+1
j + Enj

2
+

1
ε0ε∞τ

Pn+1
j + Pnj

2
, (2.36b)

Pn+1
j − Pnj

∆t
=
ε0(εs − ε∞)

τ

En+1
j + Enj

2
− 1
τ

Pn+1
j + Pnj

2
. (2.36c)
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Note that E, P are averaged around the point (zj , tn+ 1
2
). This allows us to keep second

order accuracy, which is proved using the same method as for free space. Also note that

P is defined on the same grid points as E since they are related by the constitutive law

(2.15).

As written, equations (2.36b) and (2.36c) both require knowledge of En+1
j and Pn+1

j ,

so to get proper update steps, we will take out the dependence on Pn+1
j in (2.36b). To do

this, we simply solve (2.36c) for Pn+1
j , which is

Pn+1
j =

ε0εdhτ
1 + hτ

(En+1
j + Enj ) +

1− hτ
1 + hτ

Pnj , (2.37)

where hτ = ∆t/2τ and εd = εs − ε∞. Now substitute this into (2.36b) and simplify to get

ε0(ε∞ + εshτ )
1 + hτ

En+1
j =

∆t
∆z

(H
n+ 1

2

j+ 1
2

−Hn+ 1
2

j− 1
2

)+
ε0ε∞(1 + 2hτ − εqhτ )

1 + hτ
Enj +

2hτ
1 + hτ

Pnj . (2.38)

Thus, we can write our discrete Yee system as the following explicit update steps:

H
n+ 1

2

j+ 1
2

= H
n− 1

2

j+ 1
2

+
∆t
µ0∆z

(Enj+1 − Enj ),

En+1
j =

1 + hτ
ε0(ε∞ + εshτ )

[
∆t
∆z

(H
n+ 1

2

j+ 1
2

−Hn+ 1
2

j− 1
2

) +
ε0ε∞(1 + 2hτ − εqhτ )

1 + hτ
Enj +

2hτ
1 + hτ

Pnj

]
,

Pn+1
j =

ε0εdhτ
1 + hτ

(En+1
j + Enj ) +

1− hτ
1 + hτ

Pnj .

We will call this the P-formulation of the Yee scheme for Debye media. There are other

equivalent ways to define the Yee scheme for Debye media. For example, the D-formulation

keeps the electric flux density D in the constitutive law and eliminates P instead. The

D-formulation update steps are given in [11]

H
n+ 1

2

j+ 1
2

= H
n− 1

2

j+ 1
2

+
∆t
µ0∆z

(Enj+1 − Enj ),

Dn+1
j = Dn

j +
∆t
∆z

(H
n+ 1

2

j+ 1
2

−Hn+ 1
2

j− 1
2

),

En+1
j =

∆t+ 2τ
η

Dn+1
j +

∆t− 2τ
η

Dn
j +

ε0(2τε∞ − εs∆t)
η

Enj ,

(2.39)

where η = ε0(2τε∞ + εs∆t). For a proof of equivalence, see [11].
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2.3.1 Stability Analysis

In [3], Bokil and Gibson examine the stability of (2, 2m) schemes in Debye media.

They show that a necessary and sufficient condition for stability of the Yee scheme (m = 1)

in Debye media is

ν =
c∞∆t
∆z

< 1,

where c∞ =
c
√
ε∞

is the maximum speed of light in Debye media. Note that this stability

condition is the same as for the Yee scheme in free space.

2.3.2 Dispersion Analysis

We begin by finding the dispersion relation for the continuous Maxwell’s equations

in Debye media. Similar to the free space case, we assume the fields have a plane wave

solution, with the addition of P = P0ei(kz−ωt). Now substitute these into the system (2.19)

to obtain

H0 =
−k
ωµ0

E0, (2.40a)

(−iωε0ε∞ +
ε0εd
τ

)E0 = ikH0 +
1
τ
P0, (2.40b)

P0 =
ε0εd

1− iωτ
E0. (2.40c)

Now apply (2.40a) and (2.40c) to (2.40b) to get the continuous dispersion relation

k =
ω

c

√
εs
τ − iωε∞

1
τ − iω

.

Petropoulos [15] finds the numerical dispersion relation for the Yee scheme in Debye media

to be

knum =
2

∆z
sin−1

[
ω

c

∆z
2
sω

√
εs
τ cos(ω∆t

2 )− iωε∞sω
1
τ cos(ω∆t

2 )− iωsω

]
,

sω =
sin(ω∆t

2 )
ω∆t

2

.

As written, notice the similarities between the continuous and numerical dispersion rela-

tions. It can be shown that as ∆z,∆t go to zero, knum → k.
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2.3.3 Numerical Experiments

A numerical example was tested for the Yee scheme in Debye media with the fol-

lowing parameter values:

t ∈ [0, 2× 10−9], z ∈ [0, 0.1]

ε0 = 8.85× 10−12, c = 3× 108 m/s

µ0 =
1
c2ε0

,
c∆t
∆z

= 1.0

εs = 80.35, ε∞ = 1.0, τ = 8.13× 10−12s

k = 1 =⇒ ω = ck = c

and zero initial conditions. The time units are in seconds. The source chosen was a

truncated sine wave of the form

sin
(

2πf
((

T − 1
2

)
∆t
))

where f = 1010 Hz and T is the current time step. The domain was comprised of three

sub-domains: first was free space, then a Debye medium, and then free space again (see

Figure 2.6). The source pulse originates in free space and then moves into the Debye

medium. Various values of hτ were used (see Table 2.2), which determined the time step

size, and then the spatial step size was determined using the CFL condition. Figure 2.5

shows the trace of the electric field at a point at depth 0.015 m inside the Debye medium

with various time step sizes ∆t. Clearly, the graphs are converging to a solution as we

increase accuracy.

2.4. Fourth Order Scheme for Maxwell’s Equations in Dielectrics

The explicit (2,4) scheme uses centered finite differences on a staggered grid as in

the Yee scheme, but is second order accurate in time and fourth order accurate in space.
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FIGURE 2.5: These graphs show the trace of the electric field over time at a point at
depth 0.015m inside the Debye medium. The graphs are ordered with decreasing time
step to show convergence to a solution: 0.5τ , 0.1τ , 0.01τ , where the relaxation time
τ = 8.13× 10−12.
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FIGURE 2.6: Domain for testing the Yee scheme in Debye media, where a source origi-
nated at z = 0 and then propagated into the Debye media.

TABLE 2.2: Varying values of hτ = ∆t/τ determine the value of ∆t, where the relaxation
time τ = 8.13× 10−12. Decreasing values give a longer run time.

hτ Runtime (sec)

0.5 12.816002

0.1 63.612313

0.01 624.427988
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= E, electric field

= H, magnetic field

FIGURE 2.7: Stencil for the (2,4) scheme.

The scheme equations are written in the form

En+1
j − Enj

∆t
=

1
ε0

H
n+ 1

2

j− 3
2

− 27H
n+ 1

2

j− 1
2

+ 27H
n+ 1

2

j+ 1
2

−Hn+ 1
2

j+ 3
2

24∆z
,

H
n+ 1

2

j+ 1
2

−Hn− 1
2

j+ 1
2

∆t
=

1
µ0

Enj−1 − 27Enj + 27Enj+1 − Enj+2

24∆z
.

(2.41)

Figure 2.7 shows the computational stencil for the (2,4) scheme.

2.4.1 Boundary Conditions

Recall we assumed perfect electric conductor (PEC) boundary conditions for Maxwell’s

equations, which means we have

E(t, a) = E(t, b) = 0 ∀ t ∈ [0, T ], (2.42)

in a one dimensional domain Ω = [a, b]. Figure 2.8 shows that we need fictitious points

outside of our domain to update the nodes closest to the boundary. We require two

fictitious points for both the left and right boundaries, so we need four extra boundary

conditions. We can derive these from (2.42) by applying Maxwell’s equations (2.16). First

apply the time derivative to (2.42)

∂E

∂t
(t, a) =

∂E

∂t
(t, b) = 0.
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Then by Maxwell’s equations we have two new conditions on the boundary

∂H

∂z
(t, a) =

∂H

∂z
(t, b) = 0. (2.43)

Now we apply the time derivative to (2.43) to get

∂

∂t

∂H

∂z
(t, a) =

∂

∂t

∂H

∂z
(t, b) = 0,

which by (2.16) is equivalent to

∂2E

∂z2
(t, a) =

∂2E

∂z2
(t, b) = 0. (2.44)

We need to discretize the new boundary conditions and to get representations for the fic-

titious points H
n+ 1

2

− 1
2

, H
n+ 1

2

N+ 1
2

, En−1, E
n
N+1 for each n = 0, 1, ..., N . We use standard central

differences to discretize the first and second derivatives in (2.43) and (2.44), respectively.

First, we discretize (2.43) at the left boundary z = a to get

H
n+ 1

2
1
2

−Hn+ 1
2

− 1
2

2∆z
= 0

=⇒ H
n+ 1

2

− 1
2

= H
n+ 1

2
1
2

,

and similarly we can show that

H
n+ 1

2

N+ 1
2

= H
n+ 1

2

N− 1
2

for the right boundary. Now we discretize (2.44) at the left boundary to get

En1 − 2En0 + En−1

∆z2
= 0. (2.45)

Note that from equation (2.42) we have

E(t, z0) = E(t, zN ) = 0 =⇒ En0 = EnN = 0,

and applying this to (2.45) gives us

En−1 = −En1 .
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FIGURE 2.8: Layout of the grid near the left boundary of Ω = [a, b] for the (2,4) scheme.
The update of H 1

2
and E1 require nodes that lie outside of our domain, thus we need the

fictitious points H− 1
2

and E−1. An analogous situation takes place at the right boundary.

Similarly, we can show for the right boundary that

EnN+1 = −EnN−1.

Now that we have representations for the fictitious points, we can modify the (2,4) scheme

(2.41) near the boundaries to get the following update steps.

En+1
1 = En1 +

∆t
24ε0∆z

(
−26H

n+ 1
2

1
2

+ 27H
n+ 1

2
3
2

−Hn+ 1
2

5
2

)
, (2.46a)

H
n+ 1

2
1
2

= H
n− 1

2
1
2

+
∆t

24µ0∆z
(26En1 − En2 ) , (2.46b)

En+1
N−1 = EnN−1 +

∆t
24ε0∆z

(
H
n+ 1

2

N− 5
2

− 27H
n+ 1

2

N− 3
2

+ 26H
n+ 1

2
s

N− 1
2

)
, (2.46c)

H
n+ 1

2

N− 1
2

= H
n− 1

2

N− 1
2

+
∆t

24µ0∆z
(
EnN−2 − 26EnN−1

)
. (2.46d)

Note that in general for a (2, 2m) scheme, we would need 2m fictitious points outside of

our domain. Therefore, we require 2m extra boundary conditions to find a representation

of these fictitious points. If we continue the method outlined above, we would see that

the boundary conditions of any order are

∂pE

∂zp
(t, a) =

∂pE

∂zp
(t, b) = 0 for p = 0, 2, 4, . . .
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∂pH

∂zp
(t, a) =

∂pH

∂zp
(t, b) = 0 for p = 1, 3, 5, . . . .

2.4.2 Stability Analysis

The explicit (2,4) scheme is also conditionally stable and we have the following result

which is valid away from the boundaries of the domain.

Theorem 2.4.2.1 (Conditional Stability of the (2,4) Scheme). A necessary condition for

stability of the explicit (2,4) scheme (2.41) is the CFL condition ν = c∆t/∆z ≤ 6/7.

Proof. As before, assume the electric and magnetic field nodes have the spatial depen-

dence.

Enj = Ẽneikzj ,

Hn
j = H̃neikzj .

(2.47)

We will obtain the amplification matrix A such that the (2,4) system (2.41) can be written

in the form  Ẽn+1

H̃n+ 1
2

 = A

 Ẽn

H̃n− 1
2

 .
First, apply (2.47) to the scheme (2.41) to get

Ẽn+1eikzj = Ẽneikzj +
∆t

24ε0∆z
H̃n+ 1

2 (e
ikz

j− 3
2 − 27e

ikz
j− 1

2 + 27e
ikz

j+1
2 − e

ikz
j+3

2 ),

H̃n+ 1
2 e
ikz

j+1
2 = H̃n− 1

2 e
ikz

j+1
2 +

∆t
24µ0∆z

Ẽn(eikzj−1 − 27eikzj + 27eikzj+1 − eikzj+2),

which we can simplify by dividing by eikzj and e
ikz

j+1
2 , respectively, to get

Ẽn+1 = Ẽn +
∆t

24ε0∆z
H̃n+ 1

2 (e−3ik∆z/2 − 27e−ik∆z/2 + 27eik∆z/2 − e3ik∆z/2), (2.48)

H̃n+ 1
2 = H̃n− 1

2 +
∆t

24µ0∆z
Ẽn(e−3ik∆z/2 − 27e−ik∆z/2 + 27eik∆z/2 − e3ik∆z/2). (2.49)

We need to take out the dependence on H̃n+ 1
2 in equation (2.48) by substitution of (2.49),
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and we can also simplify the ei∆z terms. Then our system becomes

Ẽn+1 = Ẽn

[
1 +

(
∆t

12∆z

)2 1
ε0µ0

(27i sin(γ)− i sin(3γ))2

]

+ H̃n− 1
2

[
∆t

12ε0∆z
(27i sin(γ)− i sin(3γ))

]
,

H̃n+ 1
2 = H̃n− 1

2 + Ẽn
[

∆t
12µ0∆z

(27i sin(γ)− i sin(3γ))
]
,

where γ = k∆z/2. Recall the Courant number is ν = c∆t/∆z, and let

β =
ν

12
((27i sin(γ)− i sin(3γ)).

Then our matrix A is

A =

 1 + β2 ∆t
12ε0∆z (27i sin(γ)− i sin(3γ))

∆t
12µ0∆z (27i sin(γ)− i sin(3γ)) 1


which has the eigenvalues

λ1,2 = 1 +
β2

2
± β

2

√
β2 + 4.

Note that β is purely complex and so β2 is real.

Assume that ν > 6/7. By letting ρ = 1 we have that β2 + 4 < 0. This in turn

implies that |λ2| > 1, and the von Neumann condition is not satisfied and the scheme is

unstable.

Next, assume that the condition ν ≤ 6/7 holds. Using the triple angle formula [11]

we have the relation

β2 + 4
4

= 1− ν2

242
(27 sin(γ)− sin(3γ))2

= 1− ν2ρ2

(
1 +

ρ2

6

)2 (2.50)

where ρ = sin (k∆z/2). Since 0 ≤ ρ2 ≤ 1, we have the bound

ν2ρ2

(
1 +

ρ2

6

)2

≤ ν2 49
36
≤ 1 (2.51)
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TABLE 2.3: Relative error in the energy norm for the (2,4) Scheme in free space with
spatial step size ∆z and the Courant number ν = c∆t

∆z reduced by half each time. Then
the time step ∆t is reduced by one fourth each time so that we can see the fourth order
accuracy in space.

ν ∆z Rel. error ratio rate

0.8 0.04 0.0010262 - -

0.4 0.02 6.4697e-05 15.862 3.9875

0.2 0.01 4.0538e-06 15.96 3.9963

0.1 0.005 2.5345e-07 15.995 3.9995

0.05 0.0025 1.5843e-08 15.998 3.9998

0.025 0.00125 9.902e-10 15.999 3.9999

Using the bound (2.51) in (2.50) we have that

β2 + 4
4

≥ 0. (2.52)

This in turn implies that |λ1,2| = 1, and the von Neumann condition is satisfied. As

mentioned for the Yee scheme, the von Neumann condition is a necessary but not sufficient

condition for stability.

2.4.3 Numerical Experiments

To show the fourth order accuracy in space in a numerical example, we have to

reduce the time step by 1
4 and the space step by 1

2 . The same parameters and initial

conditions were used as in the example in Section 2.2.4. The results of this experiment

are shown in Table 2.3.
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2.5. Fourth Order Scheme for Maxwell’s Equations in Debye Media

A (2,4) scheme (D-formulation) is presented in [11] for Maxwell’s equations in Debye

media. It is similar to the D-formulation of the Yee scheme, but the second order accurate

spatial derivative approximations are replaced with fourth order accurate discretizations.

The explicit update steps of the scheme are [11]

H
n+ 1

2

j+ 1
2

= H
n− 1

2

j+ 1
2

+
∆t

24µ0∆z
(Enj−1 − 27Enj + 27Enj+1 − Enj+2),

Dn+1
j = Dn

j +
∆t

24∆z
(H

n+ 1
2

j− 3
2

− 27H
n+ 1

2

j− 1
2

+ 27H
n+ 1

2

j+ 1
2

−Hn+ 1
2

j+ 3
2

),

En+1
j =

∆t+ 2τ
η

Dn+1
j +

∆t− 2τ
η

Dn
j +

ε0(2τε∞ − εs∆t)
η

Enj ,

(2.53)

where η = ε0(2τε∞ + εs∆t).

In [3], Bokil and Gibson show that the CFL condition for stability of the scheme

(2.53) is c∞∆t
∆z < 6

7 . In addition, they analyze the dispersion relation of this scheme. This

scheme is also analyzed in [11].
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3. IMPLICIT DERIVATIVE MATCHING TECHNIQUE FOR
(NON-DISPERSIVE) DIELECTRICS

3.1. Introduction

Finite difference methods have the advantage of being easy to implement, and in our

case, the explicit schemes are also inexpensive to use. However, across material interfaces

these methods lose accuracy, because of the discontinuity in the parameters defining the

media [21]. We will study the implicit derivative matching (IDM) technique proposed by

Zhao and Wei in [21] as a remedy to this problem. The idea of the IDM is based on

ideas used by Driscoll and Fornberg in their block pseudospectral (BPS) method [9]. The

BPS method, using a domain decomposition perspective, breaks the domain down into

blocks and uses fictitious points to improve accuracy at the interfaces of the blocks and

at the boundaries. The solution at the fictitious points is calculated at each time step

using derivative matching conditions. However, in the IDM technique, a preprocessing

scheme is used to find a representation for the solution at the fictitious points once at

the beginning of the computation. Then this representation is used to locally modify the

scheme near the interface, much like the embedded FDTD method [8].

3.2. Reflection-Transmission Analysis

Before we can run a simulation of the FDTD schemes in a heterogeneous material,

an exact solution is needed. We use reflection-transmission analysis to develop the exact

solution. The idea is that a wave incident in the first region will decompose into a trans-

mitted wave and a reflected wave after crossing the material interface [5]. In addition, we

have perfect electric conductor boundary conditions, which means any wave that reaches

the boundary will be completely reflected back. Thus, the exact solution will be a combi-
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nation of forward and backward moving waves in both regions of the material. With this

knowledge, we can assume the following forms for E and H in the domain Ω = [−1, 1].

E(t, z) =

 E+
1 ei(ωt−k1z) + E−1 ei(ωt+k1z), −1 ≤ z ≤ 0

E+
2 ei(ωt−k2z) + E−2 ei(ωt+k2z), 0 ≤ z ≤ 1

(3.1)

H(t, z) =

 H+
1 ei(ωt−k1z) +H−1 ei(ωt+k1z), −1 ≤ z ≤ 0

H+
2 ei(ωt−k2z) +H−2 ei(ωt+k2z), 0 ≤ z ≤ 1

(3.2)

Note that E±j and H±j are coefficients that we need to determine, kj is the wave number

for media j, and ω is the angular frequency. The discontinuity lies in the value of the

permittivity ε∞, which we call ε1 in medium 1 and ε2 in medium 2. The magnetic perme-

ability is constant and set to µ = 1 in both media. In a dielectric, the electric constitutive

law is D = ε0ε∞E and here we are assuming ε0 = 1.

From Maxwell’s equations (2.16), we have
∂E

∂t
=

1
ε

∂H

∂z
, where ε = ε0ε∞, and with

the above forms for E, H it is easy to see

iωε1E
+
1 = (−ik1)H+

1 =⇒ H+
1 = −ωε1

k1
E+

1 ,

iωε1E
−
1 = (ik1)H−1 =⇒ H−1 =

ωε1
k1

E−1 ,

iωε2E
+
2 = (−ik2)H+

2 =⇒ H+
2 = −ωε2

k2
E+

2 ,

iωε2E
−
2 = (ik2)H−2 =⇒ H−2 =

ωε2
k2

E−2 .

The dispersion relation for Maxwell’s equations in dielectrics is ω = kc∞ (recall equation

(2.34)). Then we have
ωε1
k1

= ε1c1 =
√
ε1
µ1

=
√
ε1,

and similarly for medium 2. Then we can rewrite the H representation (3.2) as

H(t, z) =

 −
√
ε1E

+
1 ei(ωt−k1z) +

√
ε1E

−
1 ei(ωt+k1z), −1 ≤ z ≤ 0

−√ε2E+
2 ei(ωt−k2z) +

√
ε2E

−
2 ei(ωt+k2z), 0 ≤ z ≤ 1

(3.3)
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Next we need to find the coefficients E+
1 , E

−
1 , E

+
2 , E

−
2 . There are four constraints that our

equations need to satisfy: continuity of E and H across the interface, and E = 0 on the

boundaries. Applying the PEC boundary conditions to (3.1) gives us the following:

E+
1 eik1 + E−1 e−ik1 = 0 =⇒ E+

1 = −E−1 e−2ik1 , (3.4)

E+
2 e−ik2 + E−2 eik2 = 0 =⇒ E+

2 = −E−2 e2ik2 . (3.5)

Continuity at the interface gives us two more conditions on our coefficients

E+
1 + E−1 = E+

2 + E−2 , (3.6)

−
√
ε1E

+
1 +
√
ε1E

−
1 = −

√
ε2E

+
2 +
√
ε2E

−
2 . (3.7)

Now applying (3.4) and (3.5) to the continuity relations (3.6), (3.7) gives

E−1 = E−2

√
ε2(1 + e2ik2)

√
ε1(1 + e−2ik1)

, (3.8)

E−1 = E−2
1− e2ik2

1− e−2ik1
. (3.9)

There is one free parameter in the set of coefficients E−1 , E+
1 , E−2 , E+

2 . We choose

E−2 = e−iω(
√
ε1+
√
ε2) to be our free parameter. Applying this to (3.8) gives E−1 , and

subsequently, we can find E+
1 and E+

2 from (3.4), (3.5), respectively. Then our coefficients

are

E+
1 = −E−1 e−2iω

√
ε1 , E−1 =

√
ε2 cos(

√
ε2)

√
ε1 cos(

√
ε1)

,

E+
2 = −E−2 e2iω

√
ε2 , E−2 = e−iω(

√
ε1+
√
ε2).

The final thing we need is a way to calculate the angular frequency ω, which is not

straightforward as in homogeneous media. In a heterogeneous dielectric, we have two

wave numbers k1, k2 and one angular frequency ω that needs to satisfy the corresponding
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dispersion relations. We can relate k1 to k2 through (3.8) and (3.9). Then we have

1− e2ik2

1− e−2ik1
=
√
ε2(1 + e2ik2)

√
ε1(1 + e−2ik1)

=⇒
√
ε2

1 + e2ik2

1− e2ik2
=
√
ε1

1 + e−2ik1

1− e−2ik1

=⇒
√
ε2
− cos(k2)
sin(k2)

=
√
ε1

cos(k1)
sin(k1)

=⇒ −
√
ε1 tan(k2) =

√
ε2 tan(k1).

From the dispersion relation, k = ωc∞ = ω
√
ε∞, since we assumed µ = 1, then we have

−
√
ε1 tan(ω

√
ε2) =

√
ε2 tan(ω

√
ε1). (3.10)

The angular frequency ω can now be found numerically from (3.10).

3.3. Numerical Test of FDTD Schemes in Heterogeneous Media

To show the loss of accuracy in FDTD schemes, we use the exact solution to

Maxwell’s equations that was derived in Section 3.2. for a dielectric with one interface.

For this simulation, we set ε1 = 1 in medium 1 and ε2 = 2.25 in medium 2. As mentioned

before, the magnetic permeability is constant and set to µ = 1 and we are also assuming

ε0 = 1. The exact solution as derived above is

E(t, z) =

 (a1ei
√
ε1ωz − b1e−i

√
ε1ωz)eiωt, −1 ≤ z ≤ 0

(a2ei
√
ε2ωz − b2e−i

√
ε2ωz)eiωt, 0 ≤ z ≤ 1

H(t, z) =


√
ε1(a1ei

√
ε1ωz + b1e−i

√
ε1ωz)eiωt, −1 ≤ z ≤ 0

√
ε2(a2ei

√
ε2ωz + b2e−i

√
ε2ωz)eiωt, 0 ≤ z ≤ 1

(3.11)

where

a1 =
√
ε2 cos(

√
ε2ω)

√
ε1 cos(

√
ε1ω)

, b1 = a1e−2i
√
ε1ω,

a2 = e−iω(
√
ε1+
√
ε2), b2 = a2e2i

√
ε2ω.
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(b) Magnetic field

FIGURE 3.1: Initial conditions in a heterogeneous dielectric, where the interface between
the two materials lies at z = 0.

We used the value ω ≈ 5.07218116182516 in our experiments [21]. Figure 3.1 plots the

initial values for E and H at time t = 0 with the Courant number ν = 1.0. Note that

the solution is continuous, but not smooth across the interface at z = 0. To derive the

accuracy of the Yee scheme, we would decrease ∆t and ∆z by half repeatedly. Doing this

for the interface experiment gives the results in Table 3.1 and Figure 3.2. Note that the

rate at which the error is converging is less than 1, indicating that the Yee scheme loses

its second order accuracy in the presence of the material interface. We perform the same

experiment with the (2,4) scheme and Table 3.2 and Figure 3.3 show that the accuracy is

once again reduced to first order. The L2 norm of a grid function is used to find the error

at the final time tN = N∆t, and is defined as

∥∥E − Enum

∥∥
2

=

∆z
J∑
j=0

∣∣E(tN , zj)− ENj
∣∣1/2

,

for the electric field error and similarly defined for the magnetic field.
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TABLE 3.1: Error in L2 norm for the Yee scheme in a dielectric with one interface. Note
that the rate of convergence is approaching 1, which indicates loss of second order accuracy
of the Yee scheme.

∆z E Error ratio rate H Error ratio rate

0.04 0.14548 - - 0.18722 - -

0.02 0.095679 1.5205 0.60453 0.12297 1.5225 0.60641

0.01 0.054039 1.7706 0.8242 0.069222 1.7765 0.82904

0.005 0.028484 1.8972 0.92387 0.036459 1.8986 0.92497

10−3 10−2 10−1
10−6

10−5

10−4

10−3

10−2

10−1

100

∆ z

L2  e
rr

or

L2 error vs step size, Yee Scheme

 

 

h2 reference
E error
H error

Student Version of MATLAB

FIGURE 3.2: Log plot showing that the Yee scheme is reduced to first order accuracy in
a heterogeneous dielectric material.
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TABLE 3.2: Error in L2 norm for the (2,4) scheme in a dielectric with one interface. Note
that the rate of convergence is approaching 1, which indicates loss of fourth order accuracy
of the (2,4) scheme.

∆z E error ratio rate H error ratio rate

0.04 0.2402 - - 0.2996 - -

0.02 0.12038 1.9953 0.99664 0.15191 1.9722 0.97984

0.01 0.06011 2.0027 1.0019 0.076442 1.9872 0.99075

0.005 0.030024 2.002 1.0015 0.038325 1.9946 0.99609

10−3 10−2 10−1
10−12

10−10

10−8

10−6

10−4

10−2

100

∆ z

L2  e
rr

or

L2 error vs step size, (2,4) Scheme
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FIGURE 3.3: Log plot showing that the (2,4) scheme is reduced to first order accuracy
in a heterogeneous dielectric material.



41

3.4. Formulation of IDM Technique

The IDM technique uses a preprocessing scheme to enforce physical jump conditions

at the material interface [21]. For the moment, we will consider Maxwell’s equations in

dielectrics and later extend to dispersive dielectrics of Debye type in Chapter 4. Let us

write the 1D Maxwell’s equations (2.16) in vector form as

∂u
∂t

= A
∂u
∂z
, (3.12)

with u =

E
H

 and A =

 0
1
ε0

1
µ0

0

 .
Suppose our domain has a material interface at z = ξ. Now we have discontinuous

coefficients across the interface of our material, i.e., A takes on different values for z < ξ

than z > ξ. We denote these as A1, A2 for medium 1 and 2, respectively, and write this

as

Ai =

 0
1
εi

1
µi

0

 , for i = 1, 2.

We impose the following interface conditions

n× (E1 −E2) = 0, n · (D1 −D2) = 0, (3.13)

n× (H1 −H2) = 0, n · (B1 −B2) = 0, (3.14)

where n is the unit normal vector to the interface. Note that in one dimension Ei =

(0, Ei, 0) for i = 1, 2, where Ei denotes the electric field approaching from the left and

right respectively, i.e.,

E1 = E(t, z)
∣∣
z→ξ− , E2 = E(t, z)

∣∣
z→ξ+

and similarly for the other fields. The interface conditions tell us that E and H are

continuous across the interface, which we now show.
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Let n = (0, 0, 1). Consider

n× (E1 −E2) =

∣∣∣∣∣∣∣∣∣∣
i j k

0 0 1

0 E1 − E2 0

∣∣∣∣∣∣∣∣∣∣
= −(E1 − E2)i.

By the interface condition (3.13), we must have

E1 − E2 = 0 =⇒ E1 = E2.

This implies, E(t, z)
∣∣
z→ξ− = E(t, z)

∣∣
z→ξ+ . Now consider

n× (H1 −H2) =

∣∣∣∣∣∣∣∣∣∣
i j k

0 0 1

H1 −H2 0 0

∣∣∣∣∣∣∣∣∣∣
= (H1 −H2)j

By the interface condition (3.14), we must have

H1 −H2 = 0 =⇒ H1 = H2.

This implies, H(t, z)
∣∣
z→ξ− = H(t, z)

∣∣
z→ξ+ .

The continuity relations just derived are called the zeroth order physical jump con-

ditions, which can be expressed as

u(t, z)
∣∣
z→ξ− = u(t, z)

∣∣
z→ξ+ . (3.15)

In the IDM technique we require that u and its time derivatives be continuous, so

Maxwell’s equations can be used to show that any order derivative jump condition can be

constructed. For example, taking the time derivative of the zeroth order jump condition

(3.15) gives
∂u
∂t

(t, z)
∣∣
z→ξ− =

∂u
∂t

(t, z)
∣∣
z→ξ+ ,
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which by the differential equation (3.12) is equivalent to

A1
∂u
∂z

(t, z)
∣∣
z→ξ− = A2

∂u
∂z

(t, z)
∣∣
z→ξ+ . (3.16)

Equation (3.16) is called the first order jump condition because it involves the first order

spatial derivatives. In general, the pth-order jump condition is

Ap1u
(p)(t, ξ−) = Ap2u

(p)(t, ξ+)

where u(p)(t, ξ±) =
∂pu
∂zp

(t, z)
∣∣
z→ξ± .

The backbone of the IDM method is the use of fictitious points (FPs). These points

are located at the same positions as E or H on the grid. We assume the representation

fi =
2m∑
j=1

ri,jgj , (3.17)

where fi represents either an electric or magnetic fictitious point, and gj is an actual

value of either E or H depending on which we are considering. The coefficients ri,j are

called representation coefficients. The total number of fictitious points needed to restore

accuracy for the (2, 2m) scheme is 2m (see Figure 3.4). For example, in the Yee scheme

we only need 2m = 2 fictitious points (m = 1) since it is second order accurate. The

representation coefficients are obtained by discretizing the physical jump conditions in a

preprocessing scheme as detailed below. Once we know these values, we modify the FDTD

scheme using the fictitious values to calculate the update step near the interface [21].

3.5. Yee Scheme with IDM modification

In Zhao and Wei [21], the idea of the IDM technique is described for general (2, 2m)

schemes. The specific details for the (2, 2) and (2, 4) schemes were derived and imple-

mented in this thesis.
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= fictitious point

= actual point

FIGURE 3.4: For a (2,2m) scheme, we use 2m fictitious points around the interface.

= H, magnetic field

= E, electric field

j+1/2jj-1/2

n+1/2

n+1

n

z =

FP

FIGURE 3.5: Stencil for the Yee scheme with an interface at z = ξ. Note the Yee scheme
must cross the material interface to approximate En+1

j , so in the IDM method we place

a fictitious point (FP) at the location of H
n+ 1

2

j+ 1
2

. Similarly, we would need a FP at the

location of Enj to approximate the FP at the location of H
n+ 1

2

j+ 1
2

.
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3.5.1 Representation Coefficients

Figure 3.5 gives the stencil for the update of the electric field using the Yee scheme.

Note that in a material with an interface at z = ξ the scheme requires an H node in

medium 2 to update a E node in medium 1. To find the matrix R = (ri,j) of 4m2

unknown representation coefficients, we use up to the (2m− 1)th order jump conditions,

which in the case of the Yee scheme (m = 1) are

u(0)(t, ξ−) = u(0)(t, ξ+) (3.18)

A1u(1)(t, ξ−) = A2u(1)(t, ξ+). (3.19)

The jump conditions can be approximated using the actual functional values and the

fictitious values as in Figure 3.6. The finite difference weights for the spatial derivatives of

different orders are calculated via the algorithm in [10]. The zeroth jump conditions are

the same for E and H, so we only need to perform this approximation once. The weights

for second order accuracy are {1/2, 1/2}, which gives

1
2

[g1 + f2] =
1
2

[f1 + g2]

=⇒ f2 − f1 = g2 − g1.

Note that gj = IjG and fj = RjG, where Ij and Rj are the jth rows of the identity and

representation matrices, respectively, and G = [g1, g2]T . Then we have

(R2 −R1)G = (I2 − I1)G

=⇒ RT2 −RT1 =

 −1

1

 . (3.20)

The first order jump condition (3.19) can be represented as the system

1
µ1
E(1)(t, ξ−) =

1
µ2
E(1)(t, ξ+),

1
ε1
H(1)(t, ξ−) =

1
ε2
H(1)(t, ξ+).
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Again, we only approximate the equations once in a general form by letting ci = εi, µi

and using the weights {−1/∆z, 1/∆z}, so we have:

1
c1

[−g1 + f2] =
1
c2

[−f1 + g2]

=⇒ 1
c2
f1 +

1
c1
f2 =

1
c1
g1 +

1
c2
g2

=⇒ 1
c2
RT1 +

1
c1
RT2 =

 1/c1

1/c2

 . (3.21)

Now we put together (3.20) and (3.21) to get the system −1 1

1/c2 1/c1


r1,1 r1,2

r2,1 r2,2

 =

 −1 1

1/c1 1/c2

 .
We solve for the ri,j ’s and substitute in ci = µi for E and ci = εi for H to get

RE =
1

µ1 + µ2

 2µ2 µ1 − µ2

µ2 − µ1 2µ1

 ,
and

RH =
1

ε1 + ε2

 2ε2 ε1 − ε2

ε2 − ε1 2ε1

 .
3.5.2 Modification of Yee Scheme

Figure 3.6 shows the locations of the fictitious points needed for the IDM technique

applied to the Yee scheme. Note that the electric field variables Ei now represent nodal

values, and similarly for the other field variables. We see that E2 depends on H1, which

lies across the material interface. Thus, we modify the Yee scheme for E2 by using the

fictitious point H∗1 in place of H1. Note that H∗1 = RH1 G
H , where RH1 is the first row of

RH and GH = [H1, H2]T is the vector of actual values. Using these facts, we can modify
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FIGURE 3.6: Layout of the grid around the material interface at z = ξ. The starred (*)
field variables are the fictitious points, which lie at the same position as the corresponding
actual points.

the Yee scheme for En+1
2 (see Figure 3.6) as

En+1
2 = En2 +

∆t
ε2∆z

(
H
n+ 1

2
2 −H∗n+ 1

2
1

)
= En2 +

∆t
ε2∆z

(
H
n+ 1

2
2 −

(
rH11H

n+ 1
2

1 + rH12H
n+ 1

2
2

))
= En2 +

∆t
ε2∆z

((
1− rH12

)
H
n+ 1

2
2 − rH11H

n+ 1
2

1

)
= En2 +

∆t
ε2∆z

[(
1− ε1 − ε2

ε1 + ε2

)
H
n+ 1

2
2 − 2ε2

ε1 + ε2
H
n+ 1

2
1

]
= En2 +

∆t
ε2∆z

[
2ε2

ε1 + ε2
H
n+ 1

2
2 − 2ε2

ε1 + ε2
H
n+ 1

2
1

]
= En2 +

∆t(
ε1 + ε2

2

)
∆z

(
H
n+ 1

2
2 −Hn+ 1

2
1

)
.

We need to do the same sort of modification for H1 since its update requires the node E2

that lies across the interface (see Figure 3.6). The modification of the Yee scheme for H1

needs the fictitious point E∗2 = RE2 G
E , where GE = [E1, E2]T . Using these facts we can
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modify the Yee scheme for H
n+ 1

2
1 (see Figure 3.6) as

H
n+ 1

2
1 = H

n− 1
2

1 +
∆t
µ1∆z

(E∗n2 − En1 )

= H
n− 1

2
1 +

∆t
µ1∆z

(
rE21E

n
1 + rE22E

n
2 − En1

)
= H

n− 1
2

1 +
∆t
µ1∆z

((
rE21 − 1

)
En1 + rE22E

n
2

)
= H

n− 1
2

1 +
∆t
µ1∆z

((
µ2 − µ1

µ2 + µ1
− 1
)
En1 +

2µ1

µ2 + µ1
En2

)
= H

n− 1
2

1 +
∆t
µ1∆z

(
−2µ1

µ2 + µ1
En1 +

2µ1

µ2 + µ1
En2

)
= H

n− 1
2

1 +
∆t(

µ2 + µ1

2

)
∆z

(En2 − En1 ) .

Thus applying the IDM technique to the Yee scheme gives the following method, in which

the IDM modification is to take an average of the permittivities ε1, ε2 near the interface,

and similarly for the permeabilities µ1, µ2. The electric field update in the modified Yee

scheme is

En+1
i = Eni +

∆t
χE∆z

(
H
n+ 1

2

i+ 1
2

−Hn+ 1
2

i− 1
2

)

where χE =


ε1 + ε2

2
: if zi nearest to interface

ε1 : zi < ξ

ε2 : zi > ξ

while the magnetic field update in the modified Yee scheme is

H
n+ 1

2

i+ 1
2

= H
n− 1

2

i+ 1
2

+
∆t

χH∆z
(
Eni+1 − Eni

)

where χH =


µ1 + µ2

2
: if zi+1/2 nearest to interface

µ1 : zi+1/2 < ξ

µ2 : zi+1/2 > ξ

.
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3.5.3 Numerical Experiment

Recall in Section 3.3. we had an exact solution (3.11) for Maxwell’s equations in

a dielectric medium with an interface. We demonstrated that the accuracy of the Yee

scheme was reduced to first order due to the presence of a material interface. Now we

use the same initial conditions derived from (3.11) and apply the Yee scheme with IDM

modification. Table 3.3 gives the results of this numerical simulation and clearly we have

the second order rate of convergence restored to the modified Yee scheme. Figure 3.7

shows the second order accuracy in a log-log plot.

TABLE 3.3: Error in L2 norm for the Yee scheme with IDM modification in a dielectric
medium with one interface.

∆z E L2 error ratio rate H L2 error ratio rate

0.04 0.11038 - - 0.13649 - -

0.02 0.027636 3.9941 1.9979 0.03413 3.999 1.9996

0.01 0.00691 3.9994 1.9998 0.0085299 4.0012 2.0004

0.005 0.0017249 4.006 2.0021 0.0021292 4.006 2.0022

3.6. Fourth Order Scheme with IDM modification

3.6.1 Representation Coefficients

We first show how to calculate the representation matrix RH . For the case m = 2,

we have four magnetic field nodes to consider: H−2, H−1, H1, H2 (see Figure 3.8). The

standard centered finite difference weights centered at z = ξ for the derivatives indicated
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FIGURE 3.7: Log plot showing the Yee scheme with the IDM modification is second order
accurate in space.

FIGURE 3.8: Layout of the grid around the material interface at z = ξ. The starred (*)
field variables are the fictitious points, which lie at the same position as the corresponding
actual points
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(below) are calculated using Fornberg’s algorithm in [10]

0th : −1
16 ,

9
16 ,

9
16 ,

−1
16

1st : 1
24∆z ,

−9
8∆z ,

9
8∆z ,

−1
24∆z

2nd : 1
2∆z2

, −1
2∆z2

, −1
2∆z2

, 1
2∆z2

3rd : −1
∆z3

, 3
∆z3

, −3
∆z3

, 1
∆z3

As before, denote actual magnetic field values by gi and fictitious points by fi. We

discretize the pth order jump conditions for H according to the weights above.

• Zeroth order jump condition: H(0)(t, ξ−) = H(0)(t, ξ+). We have

−1
16
g−3/2 +

9
16
g−1/2 +

9
16
f1/2 +

−1
16
f3/2 =

−1
16
f−3/2 +

9
16
f−1/2 +

9
16
g1/2 +

−1
16
g3/2

=⇒ 1
16
[
f−3/2 − 9f−1/2 + 9f1/2 − f3/2

]
=

1
16
[
g−3/2 − 9g−1/2 + 9g1/2 − g3/2

]
=⇒ R1G− 9R2G+ 9R3G−R4G = I1G− 9I2G+ 9I3G− I4G

=⇒ RT1 − 9RT2 + 9RT3 −RT4 =



1

−9

9

−1


. (3.22)

• First order jump condition:
1
ε1
H(1)(t, ξ−) =

1
ε2
H(1)(t, ξ+). We have

1
ε1

[
1
24
g−3/2 +

−9
8
g−1/2 +

9
8
f1/2 +

−1
24
f3/2

]
=

1
ε2

[
1
24
f−3/2 +

−9
8
f−1/2 +

9
8
g1/2 +

−1
24
g3/2

]
=⇒ 1

24

[
−1
ε2
f−3/2 +

27
ε2
f−1/2 +

27
ε1
f1/2 −

1
ε1
f3/2

]
=

1
24

[
−1
ε1
g−3/2 +

27
ε1
g−1/2 +

27
ε2
g1/2 −

1
ε2
g3/2

]
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=⇒ −1
ε2
R1G+

27
ε2
R2G+

27
ε1
R3G+

−1
ε1
R4G

=
−1
ε1
I1G+

27
ε1
I2G+

27
ε2
I3G+

−1
ε2
I4G

=⇒ −ε1RT1 + 27ε1RT2 + 27ε2RT3 − ε2RT4 =



−ε2

27ε2

27ε1

−ε1


. (3.23)

• Second order jump condition:
1

ε1µ1
H(2)(t, ξ−) =

1
ε2µ2

H(2)(t, ξ+). We have

1
2ε1µ1

[
g−3/2 − g−1/2 − f1/2 + f3/2

]
=

1
2ε2µ2

[
f−3/2 − f−1/2 − g1/2 + g3/2

]
=⇒ 1

2

[
−1
ε2µ2

f−3/2 +
1

ε2µ2
f−1/2 +

−1
ε1µ1

f1/2 +
1

ε1µ1
f3/2

]
=

1
2

[
−1
ε1µ1

g−3/2 +
1

ε1µ1
g−1/2 +

−1
ε2µ2

g1/2 +
1

ε2µ2
g3/2

]
=⇒ −1

ε2µ2
R1G+

1
ε2µ2

R2G+
−1
ε1µ1

R3G+
1

ε1µ1
R4G

=
−1
ε1µ1

I1G+
1

ε1µ1
I2G+

−1
ε2µ2

I3G+
1

ε2µ2
I4G

=⇒ −ε1µ1R
T
1 + ε1µ1R

T
2 − ε2µ2R

T
3 + ε2µ2R

T
4 =



−ε2µ2

ε2µ2

−ε1µ1

ε1µ1


. (3.24)

• Third order jump condition:
1

ε21µ1
H(2)(t, ξ−) =

1
ε22µ2

H(2)(t, ξ+). We have

1
ε21µ1

[
−g−3/2 + 3g−1/2 − 3f1/2 + f3/2

]
=

1
ε22µ2

[
−f−3/2 + 3f−1/2 − 3g1/2 + g3/2

]
=⇒ 1

ε22µ2
f−3/2 +

−3
ε22µ2

f−1/2 +
−3
ε21µ1

f1/2 +
1

ε21µ1
f3/2

=
1

ε21µ1
g−3/2 +

−3
ε21µ1

g−1/2 +
−3
ε22µ2

g1/2 +
1

ε22µ2
g3/2
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=⇒ 1
ε22µ2

R1G+
−3
ε22µ2

R2G+
−3
ε21µ1

R3G+
1

ε21µ1
R4G

=
1

ε21µ1
I1G+

−3
ε21µ1

I2G+
−3
ε22µ2

I3G+
1

ε22µ2
I4G

=⇒ ε21µ1R
T
1 − 3ε21µ1R

T
2 − 3ε22µ2R

T
3 + ε22µ2R

T
4 =



ε22µ2

−3ε22µ2

−3ε21µ1

ε21µ1


. (3.25)

Now put together the equations (3.22), (3.23), (3.24), (3.25) to get following the system

for RH

1 −9 9 −1

−ε1 27ε1 27ε2 −ε2

−ε1µ1 ε1µ1 −ε2µ2 ε2µ2

ε21µ1 −3ε21µ1 −3ε22µ2 ε22µ2


RH =



1 −9 9 −1

−ε2 27ε2 27ε1 −ε1

−ε2µ2 ε2µ2 −ε1µ1 ε1µ1

ε22µ2 −3ε22µ2 −3ε21µ1 ε21µ1


.

Next we do a similar analysis in order to find RE . There are five electric field nodes

to consider E−2, E−1, E0, E1, E2 (see Figure 3.8), so we use up to the 4th order jump

conditions to find the representation coefficients. The standard fourth order centered

finite difference weights for the derivatives needed are

0th : 0, 0, 1, 0, 0

1st : 1
12∆z ,

−2
3∆z , 0, 2

3∆z ,
−1

12∆z

2nd : −1
12∆z2

, 4
3∆z2

, −5
2∆z2

, 4
3∆z2

, −1
12∆z2

3rd : −1
2∆z3

, 1
∆z3

, 0, 1
∆z3

, 1
2∆z3

4th : 1
∆z4

, −4
∆z4

, 6
∆z4

, −4
∆z4

, 1
∆z4

• Zeroth order jump condition: E(0)(t, ξ−) = E(0)(t, ξ+). We have

g0 = f0 =⇒ R3 = I3. (3.26)
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• First order jump condition:
1
µ1
E(1)(t, ξ−) =

1
µ2
E(1)(t, ξ+). We have

1
µ1

[
1
12
g−2 +

−2
3
g−1 + 0g0 +

2
3
f1 −

1
12
f2

]
=

1
µ2

[
1
12
f−2 +

−2
3
f−1 + 0g0 +

2
3
g1 −

1
12
g2

]
=⇒ −1

µ2
f−2 +

8
µ2
f−1 +

8
µ1
f1 −

1
µ1
f2 =

−1
µ1
g−2 +

8
µ1
g−1 +

8
µ2
g1 −

1
µ2
g2

=⇒ −µ1R
T
1 + 8µ1R

T
2 + 8µ2R

T
4 − µ2R

T
5 =



−µ2

8µ2

0

8µ1

−µ1


. (3.27)

• Second order jump condition:
1

ε1µ1
E(2)(t, ξ−) =

1
ε2µ2

E(2)(t, ξ+). We have

1
ε1µ1

[
−1
12
g−2 +

4
3
g−1 +

−5
2
g0 +

4
3
f1 −

1
12
f2

]
=

1
ε2µ2

[
−1
12
f−2 +

4
3
f−1 +

−5
2
g0 +

4
3
g1 −

−1
12
g2

]
=⇒ 1

ε2µ2
f−2 +

−16
ε2µ2

f−1 +
30
ε2µ2

f0 +
16
ε1µ1

f1 +
−1
ε1µ1

f2

=
1

ε1µ1
g−2 +

−16
ε1µ1

g−1 +
30
ε1µ1

g0 +
16
ε2µ2

g1 +
−1
ε2µ2

g2

=⇒ ε1µ1R
T
1 − 16ε1µ1R

T
2 + 30ε1µ1R

T
3 + 16ε2µ2R

T
4 − ε2µ2R

T
5 =



ε2µ2

−16ε2µ2

30ε2µ2

16ε1µ1

−ε1µ1


.

(3.28)
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• Third order jump condition:
1

ε1µ2
1

E(3)(t, ξ−) =
1

ε2µ2
2

E(3)(t, ξ+). We have

1
ε1µ2

1

[
−1
2
g−2 + g−1 + 0g0 − f1 +

1
2
f2

]
=

1
ε2µ2

2

[
−1
2
f−2 + f−1 + 0g0 − g1 +

1
2
g2

]
=⇒ 1

ε2µ2
2

f−2 +
−2
ε2µ2

2

f−1 +
−2
ε1µ2

1

f1 +
1

ε1µ2
1

f2

=
1

ε1µ2
1

g−2 +
−2
ε1µ2

1

g−1 + 0 +
−2
ε2µ2

2

g1 +
1

ε2µ2
2

g2

=⇒ ε1µ
2
1R

T
1 − 2ε1µ2

1R
T
2 − 2ε2µ2

2R
T
4 + ε2µ

2
2R

T
5 =



ε2µ
2
2

−2ε2µ2
2

0

−2ε1µ2
1

ε1µ
2
1


. (3.29)

• Fourth order jump condition:
1

ε21µ
2
1

E(4)(t, ξ−) =
1

ε22µ
2
2

E(4)(t, ξ+). We have

1
ε21µ

2
1

[g−2 − 4g−1 + 6g0 − 4f1 + f2] =
1

ε22µ
2
2

[f−2 − 4f−1 + 6g0 − 4g1 + g2]

=⇒ −1
ε22µ

2
2

f−2 +
4

ε22µ
2
2

f−1 +
−6
ε22µ

2
2

f0 +
−4
ε21µ

2
1

f1 +
1

ε21µ
2
1

f2

=
−1
ε21µ

2
1

g−2 +
4

ε21µ
2
1

g−1 +
−6
ε21µ

2
1

g0 +
−4
ε22µ

2
2

g1 +
1

ε22µ
2
2

g2

=⇒ −ε21µ2
1R

T
1 + 4ε21µ

2
1R

T
2 − 6ε21µ

2
1R

T
3 − 4ε22µ

2
2R

T
4 + ε22µ

2
2R

T
5 =



−ε22µ2
2

4ε22µ
2
2

−6ε22µ
2
2

−4ε21µ
2
1

1ε21µ
2
1


.

(3.30)
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Now put together the equations (3.26), (3.27), (3.28), (3.29), (3.30) to get following the

system for RE .

0 0 1 0 0

−µ1 8µ1 0 8µ2 −µ2

ε1µ1 −16ε1µ1 30ε1µ1 16ε2µ2 −ε2µ2

ε1µ
2
1 −2ε1µ2

1 0 −2ε2µ2
2 ε2µ

2
2

−ε21µ2
1 4ε21µ

2
1 −6ε21µ

2
1 −4ε22µ

2
2 ε22µ

2
2


RE

=



0 0 1 0 0

−µ2 8µ2 0 8µ1 −µ1

ε2µ2 −16ε2µ2 30ε2µ2 16ε1µ1 −ε1µ1

ε2µ
2
2 −2ε2µ2

2 0 −2ε1µ2
1 ε1µ

2
1

−ε22µ2
2 4ε22µ

2
2 −6ε22µ

2
2 −4ε21µ

2
1 ε21µ

2
1


.

3.6.2 Numerical Experiment

Recall in Section 3.3. we had the exact solution (3.11) for Maxwell’s equations in a

dielectric medium with a material interface. We demonstrated that the accuracy of the

(2,4) scheme was reduced to first order due to the presence of the material interface. Now

we use the same initial conditions derived from (3.11) and apply the (2,4) scheme with

IDM modification. Table 3.4 gives the results of this experiment and clearly we have the

fourth order rate of convergence restored to the (2,4) scheme. Figure 3.9 shows the fourth

order accuracy in a log-log plot.
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TABLE 3.4: Error in L2 norm for the (2,4) scheme with IDM modification in a dielectric
with one interface. The spatial step size ∆z and the Courant number ν = c∆t

∆z are reduced
by half each time. Then the time step ∆t is reduced by one fourth each time so that we
can see the fourth order accuracy in space.

ν ∆z E L2 error ratio rate H L2 error ratio rate

0.8 0.04 0.034928 - - 0.043867 - -

0.4 0.02 0.0021825 16.003 4.0003 0.0027401 16.009 4.0008

0.2 0.01 0.00013631 16.012 4.0011 0.00017111 16.014 4.0013

0.1 0.005 8.5178e-06 16.002 4.0002 1.0692e-05 16.003 4.0003

0.05 0.0025 5.3239e-07 15.999 3.9999 6.6829e-07 15.999 3.9999

0.025 0.00125 3.3274e-08 16 4 4.1768e-08 16 4
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FIGURE 3.9: Log plots show the (2,4) scheme with the IDM modification is fourth order
accurate in space.
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4. IMPLICIT DERIVATIVE MATCHING TECHNIQUE FOR
DISPERSIVE DIELECTRICS

4.1. Introduction

In this chapter we extend the IDM technique to modify the Yee scheme in dispersive

media of Debye type. For this media we obtain jump conditions by requiring that the

electric field E, the magnetic field H, and the polarization P , and their time derivatives

are all continuous across an interface. Material interfaces represent discontinuities in

the parameters of the medium, namely the infinite frequency permittivity ε∞, the zero

frequency permittivity εs, and the relaxation time τ . We place fictitious points for E, H,

and P at appropriate locations in order to implement the jump conditions. For a scheme

of spatial order 2m(m ≥ 1) we need 2m fictitious points as in the IDM technique derived

in Chapter 3 for dielectrics. However, for Debye media, we have to make a different

assumption regarding the representation coefficients. We make the assumption that the

electric field fictitious points are given as linear combinations of 2m actual electric field

values. The polarization field fictitious points are given as linear combinations of 2m actual

electric field values and 2m actual polarization field values. Finally, the magnetic field

fictitious points are given as linear combinations of 2m actual electric field, polarization

field and magnetic field values. This modification in the representation of the fictitious

values for the three fields has to be made due to the presence of zero order terms in

the partial differential equations for the three fields, and such an assumption avoids an

overdetermined system for the fictitious values.

First we derive a scaled model of Maxwell’s equations in Debye media in Section

4.2. We develop the IDM technique as outlined above for the Yee scheme in Debye media

in Sections 4.3 and 4.4. In order to do this, we derive an exact solution for Maxwell’s

equations with Debye polarization using reflection-transmission analysis in Section 4.5.
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In Section 4.6, we demonstrate the loss of accuracy to first order for a problem with a

material interface using the Yee scheme without modification. In addition, we modify the

Yee scheme locally around material interfaces using the IDM technique and demonstrate

second order accuracy for the same interface problem. We conclude with a discussion of

the extension of the IDM technique for the modification of 2m(m > 1) order in space

FDTD schemes to maintain 2m order spatial accuracy.

4.2. Model Formulation

Recall Maxwell’s equations plus Debye polarization in one dimension are

∂H

∂t
=

1
µ0

∂E

∂z
(4.1a)

ε0ε∞
∂E

∂t
=
∂H

∂z
− ε0εd

τ
E +

1
τ
P (4.1b)

∂P

∂t
=
ε0εd
τ
E − 1

τ
P, (4.1c)

where εd = εs− ε∞. We will re-scale the equations in order to simplify calculations in the

forthcoming sections. To do this, we assume the following relations:

Ẽ =
√
ε0E, P̃ =

1
√
ε0
P, H̃ =

√
µ0H,

t̃ =
t

τ
, z̃ =

z

c0τ
,

(4.2)

where c0 is the speed of light. Note that from the relations (4.2) we get

∂

∂t
=

∂

∂t̃

∂t̃

t
=

1
τ

∂

∂t̃
,

∂

∂z
=

∂

∂z̃

∂z̃

z
=

1
c0τ

∂

∂z̃
.

Now we use the scalings to transform the system (4.1), starting with the equation for
∂H

∂t
.

∂H

∂t
=

1
µ0

∂E

∂z

=⇒ 1
√
µ0

∂H̃

∂t
=

1
µ0
√
ε0

∂Ẽ

∂z
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=⇒ ∂H̃

∂t
=

1
√
µ0
√
ε0

∂Ẽ

∂z
= c0

∂Ẽ

∂z

=⇒ 1
τ

∂H̃

∂t̃
=

1
c0τ

c0
∂Ẽ

∂z̃

=⇒ ∂H̃

∂t̃
=
∂Ẽ

∂z̃
(4.3)

Next we scale the equation for
∂E

∂t
.

ε0ε∞
∂E

∂t
=
∂H

∂z
− ε0εd

τ
E +

1
τ
P

=⇒
√
ε0ε∞

∂Ẽ

∂t
=

1
√
µ0

∂H̃

∂z
−
√
ε0εd
τ

Ẽ +
√
ε0
τ
P̃

=⇒ ε∞
τ

∂Ẽ

∂t̃
=

c0

c0τ

∂H̃

∂z̃
− εd
τ
Ẽ +

1
τ
P̃

=⇒ ε∞
∂Ẽ

∂t̃
=
∂H̃

∂z̃
− εdẼ + P̃ (4.4)

And finally we scale the equation for
∂P

∂t
.

∂P

∂t
=
ε0εd
τ
E − 1

τ
P

=⇒
√
ε0
τ

∂P̃

∂t̃
=
√
ε0εd
τ

Ẽ −
√
ε0
τ
P̃

=⇒ ∂P̃

∂t̃
= εdẼ − P̃ = ε∞(εq − 1)Ẽ − P̃ , (4.5)

where εq = εs/ε∞. The new scaled system for Debye media (drop the ∼ to simplify

notation) is

∂H

∂t
=
∂E

∂z
,

∂E

∂t
=

1
ε∞

∂H

∂z
− (εq − 1)E +

1
ε∞

P,

∂P

∂t
= ε∞(εq − 1)E − P.

(4.6)

Note that in this scaled version ε0 = µ0 = τ = 1. We can write our system as a matrix

equation as in Section 3.4.
∂u
∂t

= A
∂u
∂z

+Bu, (4.7)
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with u =


E

P

H

 , A =


0 0

1
ε∞

0 0 0

1 0 0

 , and B =


−(εq − 1)

1
ε∞

0

ε∞(εq − 1) −1 0

0 0 0

 .
In a heterogeneous material, we will have A1 in medium 1 and A2 in medium 2, and

similarly for B, i.e.,

Ai =


0 0

1
ε∞,i

0 0 0

1 0 0

 and Bi =


−(εq,i − 1)

1
ε∞,i

0

ε∞,i(εq,i − 1) −1 0

0 0 0

 . (4.8)

4.3. Derivation of Jump Conditions

As before, we impose the following interface conditions

n× (E1 −E2) = 0, n · (D1 −D2) = 0,

n× (H1 −H2) = 0, n · (B1 −B2) = 0,

where D = ε0ε∞E + P and B = µ0H, and n is the unit normal vector to the interface.

Additionally, for the polarization P we assume that

P1 = P (t, ξ−), P2 = P (t, ξ+), where Pi = (0, Pi, 0), i = 1, 2,

and n× (P1 −P2) = 0 =⇒ P1 − P2.

The zeroth order jump conditions can be derived from the interface conditions, as for the

dielectric case in Section 3.4.

u(0)(t, ξ−) = u(0)(t, ξ+).

As before, we assume that the time derivatives are also continuous, so we have

∂u(0)

∂t
(t, ξ−) =

∂u(0)

∂t
(t, ξ+).
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The differential equation (4.7) then gives us

A1u(1)(t, ξ−) +B1u(0)(t, ξ−) = A2u(1)(t, ξ+) +B2u(0)(t, ξ+), (4.9)

where Ai, Bi are the coefficient matrices for media i = 1, 2 (see Equation (4.8)). Clearly,

on either side of the interface the time derivative
∂

∂t
is equivalent to Ai

∂

∂z
+Bi. We can

apply the time derivative as many times as we like in order to get any pth order jump

condition. For example, we will derive the second order jump condition from (4.9).

∂

∂t

(
A1u(1)(t, ξ−) +B1u(0)(t, ξ−)

)
=

∂

∂t

(
A2u(1)(t, ξ+) +B2u(0)(t, ξ+)

)
=⇒

(
A1

∂

∂z
+B1

)(
A1u(1)(t, ξ−) +B1u(0)(t, ξ−)

)
=
(
A2

∂

∂z
+B2

)(
A2u(1)(t, ξ+) +B2u(0)(t, ξ+)

)
=⇒ A2

1u
(2)(t, ξ−) +A1B1u(1)(t, ξ−) +B1A1u(1)(t, ξ−) +B2

1u(0)(t, ξ−)

= A2
2u

(2)(t, ξ+) +A2B2u(1)(t, ξ+) +B2A2u(1)(t, ξ+) +B2
2u(0)(t, ξ+).

In general, we can write the pth order jump condition as(
A1

∂

∂z
+B1

)p
u(0)(t, ξ−) =

(
A2

∂

∂z
+B2

)p
u(0)(t, ξ+).

4.4. IDM for Yee Scheme in Debye Media

The implicit derivative matching technique for the Yee scheme (m = 1) in dielectric

materials required 2m = 2 fictitious points for both E and H, so there are 4 fictitious

points total. Now we have three fields to consider, E, P, H, so we have 3× 2m = 6m = 6

fictitious points in total. Unlike the dielectric case, the jump conditions do not decouple for

Debye media. This means we will have only one 6×6 matrix of representation coefficients.

As before, we use up to the (2m − 1)th order jump conditions to construct the system

to solve for R, so we only need the zeroth and first order conditions for the Yee scheme.
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FIGURE 4.1: Fictitious points needed in the IDM modification of the Yee scheme are
designated by *. In general, the distance of E− from the interface is α∆z and β∆z is the
distance for H−, where α, β ∈ [0, 1

2 ] and |α − β| = 1
2 . α and β are used to calculate the

weights for discretizing the derivative jump conditions.

Let G = [E−, E+, P−, P+, H−, H+]T , where Figure 4.1 shows the positions of the needed

nodes. The new assumptions for the representation of the fictitious points are

E∗i =
2m∑
j=1

rEijEj ,

P ∗i =
2m∑
j=1

rPEij Ej +
2m∑
j=1

rPijPj ,

H∗i =
2m∑
j=1

rHEij Ej +
2m∑
j=1

rHPij Pj +
2m∑
j=1

rHijHj .

In this case the structure of the representation matrix R is

R =


RE

RPE RP

RHE RHP RH

 ,

where each RV is a 2 × 2 block. Then we have the following definitions for the fictitious

points, where Ri is the ith row of R.

E∗− = R1G, E∗+ = R2G,
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P ∗− = R3G, P ∗+ = R4G,

H∗− = R5G, H∗+ = R6G.

Now we are ready to discretize the zeroth and first order jump conditions that we derived

in Section 4.3. The zeroth order jump conditions are straightforward to discretize, because

they are the same as for the Yee scheme in dielectrics, with the addition of the P equation.

With the positioning of the nodes in Figure 4.1, the zeroth derivative weights for E and

P are {1− α, α}, and the weights for H are {1− β, β}.

E(0)(t, ξ−) = E(0)(t, ξ+)

=⇒ (1− α)E− + αE∗+ = (1− α)E∗− + αE+

=⇒ −(1− α)E∗− + αE∗+ = −(1− α)E− + αE+

=⇒ −(1− α)R1G+ αR2G = −(1− α)I1G+ αI2G

=⇒ −(1− α)R1 + αR2 =
[
−(1− α), α

]
. (4.10)

We do the same discretization for P and H conditions to get:

P (0)(t, ξ−) = P (0)(t, ξ+)

=⇒ −(1− α)R3 + αR4 =
[
−(1− α), α

]
, (4.11)

H(0)(t, ξ−) = H(0)(t, ξ+)

=⇒ −(1− β)R5 + βR6 =
[
−(1− β), β

]
. (4.12)

The weights for discretizing the first derivative are {−1/∆z, 1/∆z} for all three

fields. Note that for α = 0, and β = 1/2, i.e., the case where the nodes are symmetrically

placed around the interface, the first derivative discretization is second order accurate.

However, in all of the other cases where the nodes are not symmetric around the interface,

this discretization is only first order accurate. In our experiments, we will consider the

symmetric case, but note that the IDM will need to be modified in the asymmetric case
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so that we maintain second order accuracy of the IDM-Yee scheme. Of course, we can

always choose our grid so that the nodes are symmetric about the interface, and then the

above method will give second order accuracy.

Now we discretize the first order jump conditions. We start with the first order

jump condition on H.

1
ε∞,1

H(1)(t, ξ−) +
1

ε∞,1
P (0)(t, ξ−)− (εq,1 − 1)E(0)(t, ξ−)

=
1

ε∞,2
H(1)(t, ξ+) +

1
ε∞,2

P (0)(t, ξ+)− (εq,2 − 1)E(0)(t, ξ+)

⇒ 1
ε∞,1∆z

(−H−1/2 +H∗1/2) +
1

ε∞,1
((1− α)P−1 + αP ∗1 )− (εq,1 − 1)((1− α)E−1 + αE∗1)

=
1

ε∞,2∆z
(−H∗−1/2 +H1/2) +

1
ε∞,2

((1− α)P ∗−1 + αP1)− (εq,2 − 1)((1− α)E∗−1 + αE1)

⇒ 1
ε∞,2∆z

R5 +
1

ε∞,1∆z
R6 −

1− α
ε∞,2

R3 +
α

2ε∞,1
R4 + (εq,2 − 1)(1− α)R1 − (εq,1 − 1)αR2

=
[

1
ε∞,1∆z

,
1

ε∞,2∆z
, −1− α

ε∞,1
,

α

ε∞,2
, (1− α)(εq,1 − 1), −α(εq,2 − 1)

]
. (4.13)

It is important to note that we have not said anything about the time step. In the

dielectric case, each jump condition only involved one of the fields, so everything was at

the same time step. Now we have a condition that involves all three fields, and we only

know H at half time steps and E, P at full time steps. We actually have En−, E
n
+ and

H
n+1/2
− , H

n+1/2
+ , but have dropped the time step information to simplify notation. Now

we discretize the first order condition for E.

E(1)(t, ξ−) = E(1)(t, ξ+)

=⇒ − 1
∆z

E− +
1

∆z
E∗+ = − 1

∆z
E∗− +

1
∆z

E+

=⇒ E∗− + E∗+ = E− + E+

=⇒ R1G+R2G = I1G+ I2G

=⇒ R1 +R2 =
[
1, 1

]
. (4.14)
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Finally we discretize the first order jump condition for P .

εd,1E
(0)(t, ξ−)− P (0)(t, ξ−) = εd,2E

(0)(t, ξ+)− P (0)(t, ξ+)

=⇒ εd,1((1− α)E− + αE∗+)− ((1− α)P− + αP ∗+)

= εd,2((1− α)E∗− + αE+)− ((1− α)P ∗− + αP+)

=⇒ −εd,2(1− α)E∗− + εd,1αE
∗
+ + (1− α)P ∗− − αP ∗+

= −εd,1(1− α)E− + εd,2αE+ + (1− α)P− − αP+

=⇒ −(1− α)εd,2R1 + αεd,1R2 + (1− α)R3 − αR4

=
[
−(1− α)εd,1, αεd,2, (1− α), −α

]
. (4.15)

Now we can put together the equations (4.10) through (4.15), and solve the system CR =

D using LU factorization with partial pivoting (via MATLAB’s linsolve function), where

C =



−(1− α) α 0 0 0 0
1

∆z
1

∆z
0 0 0 0

0 0 −(1− α) α 0 0

−(1− α)εd,2 αεd,1 (1− α) −α 0 0

0 0 0 0 −(1− β) β

(1− α)(εq,2 − 1) −α(εq,1 − 1)
−(1− α)
ε∞,2

α

ε∞,1

1
∆zε∞,2

1
∆zε∞,1

,



D =



−(1− α) α 0 0 0 0
1

∆z
1

∆z
0 0 0 0

0 0 −(1− α) α 0 0

−(1− α)εd,1 αεd,2 (1− α) −α 0 0

0 0 0 0 −(1− β) β

(1− α)(εq,1 − 1) −α(εq,2 − 1)
−(1− α)
ε∞,1

α

ε∞,2

1
∆zε∞,1

1
∆zε∞,2


.

Once the representation coefficients are obtained, we can modify the Yee scheme for Debye
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media, given in (2.36), around the interface.

4.5. Reflection-Transmission Analysis

Before using the IDM to modify the Yee scheme in a heterogeneous Debye medium,

an exact solution is needed. We use reflection-transmission analysis to develop the exact

solution as in Section 3.2. We assume the following forms for E and H in the domain

Ω = [−1, 1].

E(t, z) =

 ωE+
1 ei(ωt−k1z) + ωE−1 ei(ωt+k1z), −1 ≤ z ≤ 0

ωE+
2 ei(ωt−k2z) + ωE−2 ei(ωt+k2z), 0 ≤ z ≤ 1

(4.16)

H(t, z) =

 H+
1 ei(ωt−k1z) +H−1 ei(ωt+k1z), −1 ≤ z ≤ 0

H+
2 ei(ωt−k2z) +H−2 ei(ωt+k2z), 0 ≤ z ≤ 1

(4.17)

Note that E±j and H±j are coefficients that we need to determine, kj is the wave number for

media j, and ω is the angular frequency. From Maxwell’s equations, we have
∂H

∂t
=
∂E

∂z

(4.1a) and with the above forms for E, H it is easy to see

iωH+
1 = (−ik1)ωE+

1 =⇒ H+
1 = −k1E

+
1 ,

iωH−1 = (ik1)ωE−1 =⇒ H−1 = k1E
−
1 ,

iωH+
2 = (−ik2)ωE+

2 =⇒ H+
2 = −k2E

+
2 ,

iωH−2 = (ik2)ωE−2 =⇒ H−2 = k2E
−
2 .

Then we can rewrite the H representation (4.17) as

H(t, z) =

 −k1E
+
1 ei(ωt−k1z) + k1E

−
1 ei(ωt+k1z), −1 ≤ z ≤ 0

−k2E
+
2 ei(ωt−k2z) + k2E

−
2 ei(ωt+k2z), 0 ≤ z ≤ 1

(4.18)



68

Now we need to find a form for P by substituting (4.16) and (4.18) into the equation

(4.1b) from Maxwell’s equations. This implies that

∂P

∂t
(t, z) =

(
ik2

1E
+
1 ei(ωt−k1z) + ik2

1E
−
1 ei(ωt+k1z)

)
χ[−1,0]

+
(
ik2

2E
+
2 ei(ωt−k2z) + ik2

2E
−
2 ei(ωt+k2z)

)
χ[0,1]

− ε∞,1
(
iω2E+

1 ei(ωt−k1z) + iω2E−1 ei(ωt+k1z)
)
χ[−1,0]

− ε∞,2
(
iω2E+

2 ei(ωt−k2z) + iω2E−2 ei(ωt+k2z)
)
χ[0,1].

Thus,

∂P

∂t
(t, z) = i(k2

1 − ε∞,1ω2)
(
E+

1 ei(ωt−k1z) + E−1 ei(ωt+k1z)
)
χ[−1,0]

+ i(k2
2 − ε∞,2ω2)

(
E+

2 ei(ωt−k2z) + E−2 ei(ωt+k2z)
)
χ[0,1],

(4.19)

where χ[a,b] is the characteristic function on the interval [a, b]. Now we can substitute

(4.19) along with (4.16) into (4.1c) from Maxwell’s equations to find P , as

P (t, z) = εd,1

(
ωE+

1 ei(ωt−k1z) + ωE−1 ei(ωt+k1z)
)
χ[−1,0]

+ εd,2

(
ωE+

2 ei(ωt−k2z) + ωE−2 ei(ωt+k2z)
)
χ[−1,0]

− i(k2
1 − ε∞,1ω2)

(
E+

1 ei(ωt−k1z) + E−1 ei(ωt+k1z)
)
χ[−1,0]

− i(k2
2 − ε∞,2ω2)

(
E+

2 ei(ωt−k2z) + E−2 ei(ωt+k2z)
)
χ[0,1].

Thus, we have the representation for P

P (t, z) =

(εd,1ω − ik2
1 + iε1ω

2)[E+
1 e−ik1z) + E−1 eik1z)]eiωt, −1 ≤ z ≤ 0

(εd,1ω − ik2
1 + iε1ω

2)[E+
2 e−ik2z) + E−2 eik2z)]eiωt, 0 ≤ z ≤ 1

. (4.20)

Next we need to find the coefficients E+
1 , E

−
1 , E

+
2 , E

−
2 . There are four constraints that our

equations need to satisfy; continuity of E and H across the interface, and E = 0 on the

boundaries. Applying the PEC boundary conditions to (4.16) gives us the following:

E+
1 eik1 + E−1 e−ik1 = 0 =⇒ E+

1 = −E−1 e−2ik1 , (4.21)

E+
2 e−ik2 + E−2 eik2 = 0 =⇒ E+

2 = −E−2 e2ik2 . (4.22)
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Continuity at the interface gives us two more conditions on our coefficients

−k1E
+
1 + k1E

−
1 = −k2E

+
2 + k2E

−
2 , (4.23)

E+
1 + E−1 = E+

2 + E−2 . (4.24)

Now applying (4.21) and (4.22) to the continuity relations (4.23), (4.24) gives

E−1 = E−2
k2(1 + e2ik2)
k1(1 + e−2ik1)

, (4.25)

E−1 = E−2
1− e2ik2

1− e−2ik1
. (4.26)

We need a way to calculate the angular frequency ω, which is not straightforward as in

homogeneous media. The dispersion relation for Debye media with normalized τ = 1 is

[3]

k =
ω

c∞

√
εq + iω

1 + iω
,

where c∞ =
c0√
ε∞

. In a heterogeneous Debye medium, we have two wave numbers k1, k2

and one angular frequency ω that needs to satisfy the corresponding dispersion relations.

We can relate k1 to k2 through (4.25) and (4.26). Then we have

1− e2ik2

1− e−2ik1
=

k2(1 + e2ik2)
k1(1 + e−2ik1)

=⇒ k2
1 + e2ik2

1− e2ik2
= k1

1 + e−2ik1

1− e−2ik1

=⇒ k2
− cos(k2)
sin(k2)

= k1
cos(k1)
sin(k1)

=⇒ −k1 tan(k2) = k2 tan(k1). (4.27)

The angular frequency ω can be found numerically from (4.27) if we substitute in the

dispersion relations for k1 and k2, which gives us

− ω

c∞,1

√
εq,1 + iω

1 + iω
tan

(
ω

c∞,2

√
εq,2 + iω

1 + iω

)
=

ω

c∞,2

√
εq,2 + iω

1 + iω
tan

(
ω

c∞,1

√
εq,1 + iω

1 + iω

)
.

(4.28)
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FIGURE 4.2: Initial conditions for Debye media given by the exact solution at time t = 0.
Interface at z = 0.

There is one free parameter in the set of coefficients E−1 , E+
1 , E−2 , E+

2 . We choose E−2 =

e−i(k1+k2) to be our free parameter. Applying this to (4.25) gives E−1 , and subsequently,

we can find E+
1 and E+

2 from (4.21), (4.22), respectively. Then our coefficients are

E+
1 = −k2 cos(k2)

k1 cos(k1)
e−2ik1 , E−1 =

k2 cos(k2)
k1 cos(k1)

,

E+
2 = −e−ik1eik2 , E−2 = e−i(k1+k2).

4.6. Numerical Experiment

Figure 4.2 shows the initial conditions given by our exact solution at time t = 0.

The following parameters were used to test the Yee scheme with and without the IDM
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modification.

z ∈ [−1, 1] with interface at z = 0, t ∈ [0, π],
c∞∆t
∆z

= 1.0,

εs,1 = 80.35, εs,2 = 85.35, ε∞,1 = 1.0, ε∞,2 = 6.0,

k1 ≈ 3.09714− 0.01514i, k2 = 3.18718 + 0.01603i,

ω ≈ 0.34127 + 0.05741i.

The angular frequency ω was calculated numerically using MATLAB’s fsolve function

from the equation (4.28). The positioning of the interface requires that an electric field

node be exactly on the interface, and hence also a polarization node. Thus, we have α = 0

and β = 1
2 in the setup of Figure 4.1.

Figure 4.3 shows that the solution is converging with first order accuracy for the

Yee scheme without the IDM modification and the accuracy is restored when the IDM is

applied. Note the absolute error uses the energy norm defined in Theorem 2.1.3.1.

max
0≤t≤N∆t

[
(∆z)

(
ε0ε∞

∥∥Enum − Eex

∥∥2

2
+ µ0

∥∥Hnum −Hex

∥∥2

2
+

1
ε0εd

∥∥Pnum − Pex

∥∥2

2

)]1/2

,

where Vnum is the numerical solution and Vex is the exact solution. Figure 4.4 shows the

exact solution at the final time t = π. The scheme was also tested over a longer time

period t ∈ [0, 50π] and the time trace of this simulation is shown in Figure 4.5, which

shows the numerical solution dissipates over the long period. Table 4.1 shows the Yee

scheme in heterogeneous Debye media is first order accurate, while we see in Table 4.2

that the Yee scheme with IDM modification has second order accuracy.

4.7. Conclusion

The IDM technique developed in this chapter was successfully implemented in Debye

media on a test problem for which an exact solution exists. Based on the results obtained

in this chapter we now discuss the extension of the technique to higher order schemes. For
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FIGURE 4.3: Log plot showing the Yee scheme is first order accurate without IDM
modification (dashed line), while the Yee scheme with IDM modification is second order
accurate (solid line with circles).

TABLE 4.1: Absolute error and rates of convergence without IDM modification.

∆z Abs Error ratio rate

0.0025 0.000211 - -

0.00125 9.6373e-05 2.1894 1.1305

0.000625 4.7353e-05 2.0352 1.0252

0.0003125 2.3661e-05 2.0013 1.0009
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FIGURE 4.4: Final plot of exact solution in Debye media at time t = π.
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FIGURE 4.5: Time trace over [0, 50π] at a point of depth 3∆z in the Debye media.
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TABLE 4.2: Absolute error and rates of convergence with IDM modification.

∆z Abs Error ratio rate

0.0025 0.00011332 - -

0.00125 2.8325e-05 4.0007 2.0003

0.000625 7.0825e-06 3.9993 1.9998

0.0003125 1.77e-06 4.0014 2.0005

Yee-like FDTD schemes that are 2m (m > 1) accurate in space and second order in time,

we can modify the scheme stencil locally around a material interface by introducing 2m

fictitious points each for E, H and P , and implementing 2m jump conditions requiring

continuity of E, H and P and their time derivatives up to order 2m − 1 across material

interfaces. We make similar assumptions on the representations of the fictitious values

for the three fields E,H and P , as in the IDM technique for the modification of the Yee

scheme in Debye media, namely, that the electric field fictitious points are given as linear

combinations of 2m actual electric field values. The polarization field fictitious points are

given as linear combinations of 2m actual electric field values and 2m actual polarization

values. Finally, the magnetic field fictitious values are given as linear combinations of 2m

actual electric field, polarization field and magnetic field values. This assumption leads to

a block lower triangular matrix system of size (3× 2m)× (3× 2m) for the representation

coefficients for the fictitious values of E,H and P . We note that even though the size of

this system for the fictitious points grows with the order of the scheme, this system has

to be solved just once in a pre-processing stage to obtain the representation coefficients.

After this solve, the finite difference stencil is locally modified using the representation

coefficients. This is as opposed to, for example, the Block Pseudospectral method [9], in

which the fictitious values are solved for at every time step of the finite difference scheme.
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5. CONCLUSIONS AND FUTURE DIRECTIONS

In this thesis we have successfully implemented an extension of the IDM technique

[21] to dispersive media of Debye type. In such media, an additional evolution equation

for the polarization vector driven by the electric field has to be appended to Maxwell’s

equations. The discretization of Maxwell’s equations along with this evolution equation

is called the auxiliary differential equation (ADE) approach [3]. The addition of the po-

larization field requires modification of the IDM technique as implemented for dielectrics.

In particular, we require continuity of the polarization field and its time derivatives across

material interfaces in addition to the continuity of the electric and magnetic field and

their time derivatives across interfaces. The presence of zero order terms presents addi-

tional complications. In particular the representation coefficients for the fictitious electric,

magnetic and polarization field values are no longer decoupled from those of the fictitious

values of the other fields. We locally modified the Yee scheme stencil using the IDM tech-

nique and showed how second order accuracy is regained by simulating a problem with

material interfaces. In the conclusions of Chapter 4 we give an idea of how this technique

can be extended to locally modify the stencils of higher order in space and second order

in time finite difference methods for Debye media.

We expect similar additional requirements will need to be satisfied for other types

of dispersive media such as Lorentz media, Drude media, and cold plasma, among others.

Media specific requirements will probably be needed in this process. For future work it

will be important to consider the stability, and convergence analysis of the IDM technique

as applied to 2m order accurate in space and second order in time finite difference schemes

for Debye media.
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