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THE IMPLICIT DERIVATIVE MATCHING TECHNIQUE FOR
MAXWELL’S EQUATIONS IN COMPLEX HETEROGENEOUS
MEDIA

1. INTRODUCTION

1.1. Introduction

The simulation of electromagnetic waves is important to many areas of study. For
example, in medicine, electromagnetic interrogating waves can be used to detect cancerous
tumors. The tumors are found by determining the properties of the tissue using an inverse
problem [3]. It is important to design a fast, efficient forward solver in an inverse problem.

In this thesis we consider Maxwell’s equations in complex media that incorporate
material dispersion. In particular we study dispersive models of Debye type that are used
to model electromagnetic wave propagation in materials such as water and living tissue,
and are based on the phenomenon of orientational polarization [2, 3]. The macroscopic
polarization driven by the electric field describes the averaged behavior of the model in re-
sponse to the incident electromagnetic field. We employ the auxiliary differential equation
(ADE) technique for modeling a dispersive medium in which an evolution equation for the
polarization field, forced by the electric field, is appended to the time dependent Maxwell’s
equations [3]. Finite difference methods for Debye type dispersive models are obtained by
discretizing Maxwell’s equations, as well as the polarization evolution equation.

In the presence of material interfaces that represent discontinuities in the material

parameters, the finite difference methods lose accuracy [21]. To restore accuracy, we im-
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plement a technique called the Implicit Derivative Matching (IDM) technique. This is one
technique in a class of methods that are collectively called embedded finite difference time
domain (FDTD) methods [21], in which the stencil of the FDTD methods are locally modi-
fied around the interface with the goal of maintaining the accuracy that the FDTD method
exhibits in homogeneous media. There are several ways in which the FDTD stencils can
be modified. In the IDM technique, we ask that jump conditions requiring continuity of
the field variables and their time derivatives be satisfied across material interfaces. The
implementation of these jump conditions is done by the introduction of fictitious nodes
and values of field variables. In a pre-processing stage we obtain representation coefficients
for the fictitious values which are then used to locally modify the FDTD stencils around
the interface.

The major contribution of this thesis is the extension of the IDM technique, which
has been previously employed for Maxwell’s equations in dielectrics [21], to complex dis-
persive media of Debye type. We demonstrate that this extension is not trivial and requires
additional considerations that are necessitated by the presence of polarization, which is
specific to dispersive media. In this thesis, the IDM technique is used to modify the sec-
ond order in space and time accurate Yee scheme for Debye media so that second order
accuracy is maintained in the presence of material interfaces. In addition to numerically
demonstrating the effectiveness of the IDM modified Yee scheme for Debye media, the
thesis concludes with a discussion of the extension of the IDM technique to higher order
FDTD methods for dispersive media.

In Chapter 2, we discuss Maxwell’s equations in free space and Debye media and the
reduction of these equations to one dimension. We examine the Yee scheme for discretizing
these equations and its properties. We also discuss the (2,4) FDTD scheme for discretizing
Maxwell’s equations in free space, which is second order accurate in time and fourth order

in space. In Chapter 3, we present the IDM technique for dielectrics. We demonstrate
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how this technique is used to modify the Yee and (2,4) finite difference methods to restore
the accuracy of these schemes for wave propagation in presence of material interfaces in
one dimension. Finally, in Chapter 4, which is the major contribution of this thesis, we
extend the IDM technique to modify the Yee scheme in Debye dispersive media. We
present numerical validations of our new technique. Conclusion and future directions are

presented in Chapter 5.



2. MAXWELL’S EQUATIONS AND THE YEE SCHEME

2.1. Maxwell’s Equations

2.1.1 Free Space

Maxwell’s equations in a free space domain, i.e. Q C R3, from time 0 to T are given

as the following system of partial differential equations

Faraday’s Law: VxE= —%—]?, (2.1)
Ampere’s Law: VxH= %—]t) +Jcs, (2.2)
Gauss’ Laws: V-B =0, (2.3)

V-D =p, (2.4)

where each of the fields (bold face type) are functions of time ¢ and spatial coordinate

x = (x,y, 2). The imposed boundary and initial conditions are

E(t,z) xn=0, for x € 99, t € (0,7 (2.5)

E(0,z) =0=H(0,x), for x € Q. (2.6)

Equation (2.5) defines a perfect electric conducting boundary condition on the boundary
09 of Q2. The vector n is the unit outward normal to the boundary 9€2. The electric field,
E, and the magnetic field, H, are 3D vectors with E = (E,, E,, E;) and H = (H,, H,, H.).

The electric and magnetic flux densities are defined by the constitutive laws

D = ¢E, (2.7)

B = joH, (2.8)

where ¢ is free space permittivity and and pyg is free space permeability (both constants).

The source current and conduction current (Ohm’s Law) densities are both accounted for
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in the term J. s = Js + oE, where o is the conductivity of the medium [7, 3]. Note that
the focus of this thesis will be on dielectric materials, which are nonconducting, so we will
have J. = 0 and no free charges, i.e., p = 0. An important property of dielectrics is their

ability to store electrical energy, and the permittivity of the material is a measure of this

[16].
The curl of a three dimensional vector V = (V, V), V)T, denoted as V x V, is
defined as
i
— 0 o) 9
VxV= 5% o5 55 |
Vo Vy Vi
which we can expand into the vector form
v, oV, oV, OV, Vv, oV,\"
v (&Y _ 9Yy OV OV. Oy OVa) 2.9
VX <8y 0z 0z Oxr Oz 83/) (2:9)

The Poynting theorem for Maxwell’s equations tells us that energy is conserved if
we have a lossless medium (i.e. no source J) and if we have PEC boundary conditions [4].

The theorem is stated as [4]

Theorem 2.1.1.1 (Energy Conservation). If E and H are solutions of Mazwell’s equa-
tions in a lossless medium, i.e. equations (2.1) through (2.4) with J.s = 0, and satisfy

the PEC boundary conditions
nxE=0, ornxH=0,

then the energy

E(t) = eOHE(t)Hg + ,uOHH(t)Hg = constant

Yt > 0 where the L*(Q) norm is defined as

[ut)| :/Q|u(t, ) de.



2.1.2 Debye Media

In this thesis, we are concerned with Maxwell’s equations in dispersive dielectrics,
specifically those represented by the Debye model [6]. A dispersive medium of Debye
type is one that can be polarized by an electric field. Debye materials have orientational
polarization, which means its molecules have a permanent dipole moment [6]. When an
electric field is applied to a Debye medium, each entire molecule aligns itself with the field,
as opposed to a displacement of the electrons or atoms alone. The canonical example of
Debye media is water, and another important one is biological tissue [16].

In order to model the propagation of electromagnetic waves in Debye materials, we
must account for the polarization. One approach is to model the macroscopic polarization
as an average of the effects of the molecules’ alignment with the electric field. Polarization
may have instantaneous or delayed effects. The delayed effects are affiliated with relaxation
times 7, which govern the amount of time it takes for the molecules to return to their
original state after the incident electromagnetic field is removed. In Debye media, the
constitutive law (2.7) becomes

D =¢E + P, (2.10)

where P is the macroscopic electric polarization. We will assume no magnetic effects so

that we still have B = pygH. We can write P as
P=P;+Pr=¢cxE+Pg, (2.11)

i.e., as the sum of its instantaneous and relaxation parts [3]. The susceptibility, denoted
by x, is a measure of the material’s ability to be polarized by an electric field. Now, we

substitute (2.11) into (2.10) to obtain the constitutive law for Debye media
D =¢(1+ x)E+ Ppg.

From here on, we denote Pr as P and let e, = 1+, where €4 is the relative permittivity

of the material at infinite frequency [3]. As mentioned above, one way to describe the
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behavior of the polarization is to model it as an average of effects. Thus, we define
polarization as
t
P(t,x) = / g(t — s,x)E(s,x) ds, (2.12)
0
where ¢ is the susceptibility kernel. Note that this is a general model for P, so it can
be used for more than orientational polarization. For the Debye model, the susceptibility

kernel is

g(t) = ot/ 0l —Eo0) (2.13)

T

where €, is the relative static permittivity, and € is the infinite frequency relative per-
mittivity. In general, €, €5, and 7 can vary with space or time, but here we assume they
are constants. The differential form for (2.12) is obtained by using the Leibniz integral

rule, which differentiates (2.12) with respect to ¢ and substitutes in (2.13):

oP )
G %) = gt = OB(x) — 0+ [ So(t = 5)B(s. ) ds
_ t_
= ME(t,X) + / —19(75 — 5)E(s,x) ds.
T o T
This implies
¢ _
Ta—P(t,x) = eo(€s — €0 E(t,x) — / e_(t_s)/TME(s,x) ds,
ot 0 T

which gives us the evolution equation for the polarization as

oP

Tﬁ(t,x) + P(t,x) = €p(es — €x0) E(2, %). (2.14)

Equation (2.14) is the auxiliary differential equation that we append to the system of

Maxwell’s equations to account for polarization, along with the revised constitutive law
D = ¢yeE + P. (2.15)
2.1.3 Reduction to One Dimension

We consider the 1D case where E oscillates in the x-direction and H oscillates in

the y-direction, i.e., E = Ey(t,2)j and H = H,(t, 2)i. Here on, we denote E, = E and
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H, = H to simplify notation. All fields propagate in the z-direction, thus each field is
represented by a scalar-valued function [3]. The curl of a scalar is reduced to a spatial

derivative with respect to z, i.e.

oV
% 0z’

where | is a unit vector in the x direction if V. = H, and 1 is a unit vector in the y direction
if V.= E. Then Faraday’s law (2.1) becomes

OFE OH

9. Mo
using the constitutive law B = ugH. If we apply the free space constitutive law D = ¢gF
to Ampere’s law (2.2), we obtain

8£_ 8£+J
9z Vot 5

Thus, Maxwell’s equations for one-dimensional free space are
OH 1 0F
ot o 0z
OF 10H 1
ot N €0 0z €0 §

For one dimensional Debye media, Faraday’s Law will be the same since the constitutive

(2.16)

law for the magnetic flux density does not change from free space. However, we apply
(2.15) to Ampere’s law (2.2) to get

oH OE 0P
- = -+ =+ Js 2.17
R R T (2.17)
We also have the auxiliary differential equation for polarization P (2.14) to add to our

system, which in one dimension is simply

0P  eples — €xo) 1
S B —P (2.18)

Now, we want each of the equations in our system to be in terms of only one time
derivative, so we apply (2.18) to (2.17) to obtain

oH oF — 1
OH _ O als o)y 1p, 5
0z ot T T



Thus, Maxwell’s equations in 1D Debye media (after rearrangement) are

or _ 108

ot pg 0z

OF 1 0H ¢—1 1 1

—_— = — E P - B 2.1
ot €0€co 0% T + €0€c0T 60600J (2.19)
or — 760(68 _ EOO)E _ lp,

ot T T

where €; = €;/€x. Note that the perfect electric conductor (PEC) conditions on the
boundary of a one dimensional domain Q = [a, b] reduce to E(a) = E(b) = 0. In a lossless
medium we have shown energy conservation in Theorem 2.1.1.1. In a dispersive medium

such as Debye, there is loss that results in energy decay. We thus have the result

Theorem 2.1.3.1 (Energy Decay). If E and H are solutions of Mazwell’s equations in
Debye media (2.19) and satisfy the PEC boundary conditions E = 0 on OS2, then we have

the energy decay
E) <EW0)VE>0,
where

2
29

2 2 1
E(t) = eocool [ E)]|; + ol HD|, + —— [ P(0)
with the L*(Q) norm and inner product defined as
Hu(t)H; :/\u(t,z)\2dz and (u,v) = / u(t, z)v(t, z) dz.
Q Q
Proof. From the first equation in (2.19) we have
0H OFE
—H | =(—,H|. A
m)(at’ ) <8z’ ) (8)

From the second equation in (2.19) we have

€0€oo <%§,E> - (%Z,E) - 606°"(jq_1)(13,157) +%(P,E). (B)

From the third equation in (2.19) we have

1 oP 1 1
— | =,P | =—-(E,P)— P,P).
—(Gr)=rEn- . (©
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Now add together (A), (B), and (C) to get

OH oF 1 (0P
( ET ) + €0€xo (at,E> + — 606d (815 P) (2.20)
- IvegEl + =Pl - 2. 221
In the above we have used the fact that ( 5. H ) = (%g , E) which we can show by

integration by parts as

ok ok
(aZ,H> 5.}[ dZ
= 8—HE dz+ EH
8 o0

0H
= (aE)

since E = 0 on 9. Simplifying further in (2.20), we have

OH OF 1 [OP
( o ) + €0€x0 <8t’E> + — vy <8t ) = —H\/eoe E - FPHQ (D)

Note that
0 oOH OH OH
O (.m) = <&H)+(Hat) 2((% H>

OH
which implies <8t’ H ) 5 atHH H27 and similarly for F, P. Then the inequality (D)

becomes
10 10
30 [l + coes B2 + PR = 5 e <o.
0
= 5¢1) <0.

The time derivative of the energy is strictly decreasing, thus,

£(t) < £(0).
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2.2. Yee Scheme for Maxwell’s Equations in Free Space

We consider finite difference time domain (FDTD) methods for a forward solver of
Maxwell’s equations in complex dispersive media, an example of which is biological tissue.
These FDTD methods are advantageous because they use a uniform grid and are explicit,
which means we do not have to solve a linear system at each time step. On the other hand,
FDTD methods suffer from a lack of “geometric flexibility”, which means it is not easy to
use these methods for complicated domains [12]. Alternatively, we could use variational
methods such as the finite element (FE) method, which would be unconditionally stable,
unlike the FDTD methods that are only conditionally stable [1]. However, FE methods
are generally more difficult and costly to implement than an FDTD method.

We will use explicit (2,2m) schemes [3] to discretize Maxwell’s equations, which are
second order in time and (2m)th order in space. In particular, we will use the classic
Yee scheme, which is (2,2), and also the (2,4) scheme. There are complications with
implementing a FDTD method across material interfaces, which represent a discontinuity
in the electric permittivity and the magnetic permeability. In heterogeneous media, the
full accuracy of a higher order FDTD method (2nd, 4th, etc) deteriorates to essentially
first order accuracy [21].

The Yee scheme is an explicit finite difference method for discretizing Maxwell’s
equations that is second order accurate in both time and space. Second order accuracy is
achieved by staggering the electric and magnetic field grid nodes for the approximations
of both the spatial and temporal derivatives [20]. Let Az > 0 and At > 0 be the mesh
size along the z direction and the time step size, respectively. For n = 0,1,...N and

j=0,1,...,J define

(tn7 Zj) = (nAt,jAZ)

1 o1
<tn+%,zj+%) = <(n+2> At, <]—|—2) Az).
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2 4 4 4 4
' @ ® ® ® ®
12 4 4 4 4
-0 @ @ ® ® @

j=0 12 1 3/2

FIGURE 2.1: Staggered grid used in the Yee scheme. The horizontal axis represents space
in the z direction and the vertical axis represents time. Electric field values (circles) lie
on the primary grid, and magnetic field values lie on staggered grid.

The grid function E7 is defined on the primary grid in space-time, whereas the grid

1
function H;l:f is defined on the staggered space-time grid (see Figure 2.1). Here

2

1
E? ~ E(ty, zj) and H'?

J i+3 n+%’zj+%)'

Figure 2.2 shows the computational stencil of the Yee scheme. The Yee scheme for free

space is
n+3 . nf%
At Lo Az ’
1 1
En-‘rl —_ Em 1 Hn+f — Hﬁjf
J J _ = Jt3 )73 (2 23)
At €0 Az ' '

2.2.1 Accuracy

As mentioned above, the Yee scheme is second order accurate in both space and
time. We show this is true by finding the local truncation error (LTE) of (2.22) and
ntl
(2.23), denoted (CH)Z_l and (CE)j+2, respectively. If we substitute the exact solution
2

into the finite difference equation written in a form that models the differential equation,

which it is not expected to satisfy exactly, then the discrepancy is the LTE [13]. First
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n+1/2 n+1

n n+1/2

n-1/2 ‘ n ‘

j j+1/2 j+1 j-1/2 j j+1/2

‘ = H, magnetic field

. = E, electric field

FIGURE 2.2: Stencil for the Yee scheme. The update step for the electric field grid values

E;-LH depends on the previous electric field grid value E7' and the magnetic field grid
1 1

values at a half time step before and on either side, i.e. H;HQ and H;jf A similar
2

1
2

1
situation holds for the update of the magnetic field at H;L:f
2

1
n+3

we find (Cg); *, then (CH);LJF% will follow by the same idea. The discretizations in (2.23)

are centered around the point (¢, 1,2;), so we consider the following Taylor expansions
2

around the same point:

At 9F N At? 9°E N At? O3FE
2 Ot 8 Ot2 48 Ot3
AtOE AP 0’°E At 9’E A
Az0H AZ20°H AZ}93H

E(tp1,2j) = E+ +O(Ath) (2.24)

— 4
H(tn+%’zj+%)_H+7$+ S 022 + 48 023 +O(AZ ) (226)
AzO0H AZ20°H A 0°H A

where the electric field and magnetic field terms on the right hand side are evaluated at

the space-time grid point (¢, 1,2;). The LTE of (2.23) is
2

E(tn+1, Zj) — E(tn, Zj) _ iH(tn-i-%’ Zj—‘r%) - H(tn-i-%’ Z—%)

(co)te =
J At €0 Az
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Substituting in our Taylor expansions, we have

ntl 1 AtOE  APO°E AP OE 4
R ) O et At
(Ce); MNPt S T3 e T s o T OAY)
AtOE AP ’E A3 O’FE A
~E-g ot s e 1 o OB

1 : +g87H+Az262H+Az3a3H
YAV 2 0z 8 022 48 023
AzOH Az20?°H A3O3H
(g - 2292 . AzY)].
( > 9. T 8 02 18 a2 OB

+0(AzY

After cancellations, we have

1 9E At?93E 10H A2?3H

n+§_7 =y v 4_77_77 4
(CE)J ot * 24 Ot3 +O(AT) €g 0z €924 023 +0(AZ)
At* E Az* O°H
=7 A 4y =/~ Y7 A 4
21 op T OB~ o OB
E 10H n+i
Since %t - —%—Z = 0, we can see that (CE)j+2 = O(At? + Az?). By a similar process
€0

it can be shown that the LTE of (2.22) is also O(At? + Az?). This implies our system is

second order accurate in both space and time, and we have the following lemma.

Lemma 2.2.1.1 (Truncation Error). Assume that the solutions to Mazwell’s equations
n+%

are smooth enough, i.e., E € C3([0,T); C3(Q)) and H € C3([0,T]; C3(Q)). Let (CE);

and (QH);‘_% denote the truncation errors of the Yee scheme equations (2.23) and (2.22),

respectively. Then the truncation errors can be bounded by

41
{6 21 @)y < eleo )@+ 22),
n 2
where c(€g, o) s a constant independent of the mesh parameters At > 0 and Az > 0.

2.2.2 Stability Analysis

The Lax-Richtmyer Equivalence Theorem [13] gives us the requirements needed
for convergence of a finite difference scheme. First we need to define the concepts of

consistency and stability [17].
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Definition 2.2.2.1 (Consistency). Given a partial differential equation, Pu = f, and a
finite difference scheme, Paya.v = f, we say that the finite difference scheme is consis-

tent with the PDE if for any (sufficiently) smooth function ¢(t, z)
P¢ — Paypz9 — 0 as At, Az — 0

the convergence being pointwise convergent at each point (t,z).

Definition 2.2.2.2 (Stability). A finite difference scheme Pa¢ azvy, =0 for a first-order
equation is stable in the region A if there is an integer J such that for any positive time

T, there is a constant Cp such that

J
[o"laz < Cr 3o la

=0
for 0 < nAt <T, with (At,Az) € A.
Note that ||w||a, in Definition 2.2.2.2 is the L? norm of the grid function w, which

is defined by

m=co 1/2
[wllaz = (Az > !wm\2> :

m=—00

Theorem 2.2.2.1 (Lax-Richtmyer Equivalence Theorem). A consistent finite difference
scheme for a partial differential equation for which the initial value problem is well-posed

s convergent if and only if it is stable.

Now that we know the importance of stability for a finite difference scheme, we
will explore the stability of the Yee scheme. It is well known that the Yee scheme is
conditionally stable under the necessary condition that v = ¢At/Az < 1, which is called
the Courant-Friedrichs-Lewy (CFL) condition. Note that ¢ = 1/,/ug€g is the speed of
light in a vacuum and v is called the Courant number [14, 11]. We have the following

result

Theorem 2.2.2.2 (Conditional Stability of the Yee Scheme). A necessary condition for

the stability of the Yee scheme (2.22) and (2.23) is the CFL condition v = cAt/Az <1
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Proof. Assume the electric and magnetic field nodes have the spatial dependence

E;z — Eneikzj’
(2.28)
HJn — ﬁneikzj’
where k is the wave number. We will first find the amplification matrix A such that the
Yee system (2.22), (2.23) can be written in the form
En+1 En
=A
E[nJr% E[nfé
First, substitute (2.28) into the Yee scheme update steps to obtain

1 zkz 1 ikz.

Entleikz — prgikz 4 20 At (H" ze — H"F3e - %), (2.29)
YA
R G Ry L)) (2:30)
HoRZ

Now divide (2.29) by e#% = k147 and (2.30) by o Fith = oih(i+3)Az, Then, using Euler’s

identity, we have

~ - At~
Ertl — B 4 iH”‘F%(Qi sin(kAz/2)), (2.31)
EOAZ
H': = H" 5 4+ Al E"(2isin(kAz/2)). (2.32)
poAz

Finally, substitute (2.32) into (2.31), which gives

2
e () e (3) ) () e

Then our matrix A from (2.32) and (2.33) is

1-4 2sin ( ) 2 At sm(kAZ)

oAz

2@‘#?& sm(’CA ) 1

A necessary condition for stability is that all the eigenvalues of the amplification matrix A

must be less than or equal to one in magnitude. This is called the von Neumann condition
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[17]. The eigenvalues of A are

M =1-262+268V32—1
Ao=1-23%-28p32 -1,

where 8 = vsin (%‘2) First assume that 0 < v < 1, which implies § < 1 and then

\/ﬁ is complex. Then we can express the eigenvalues as
Mz =1-26"+2i3y/1- 52,
where \/ﬁ is a real number. Then we have
Mol = (1 =268 + (26VT =) =1,

so that the von Neumann condition is satisfied.

Next, assume that v > 1. By letting sin (kgz) = 1 we have 32 > 1. In this case

|A2| > 1, and the Yee scheme is unstable. O

It can be shown that the condition 0 < v < 1 is both necessary and sufficient for
stability. However, v < 1 is not sufficient for stability because the Yee scheme can be
unstable when v = 1 [14]. The value of the Courant number v = 1 is called the Magic
Time Step, because if At satisfies v = ¢At/Az =1 and you have exact data at time step

n, then the Yee scheme will produce exact data at the next time step n + 1 [18].
2.2.3 Dispersion Analysis

Dispersion is defined as the variation of a propagating wave’s speed with frequency
f [18]. A dispersive equation admits plane wave solutions of the form eilkz=wt) - where
w = 27 f is the angular frequency, f is the frequency in Hz, and k = 27/ is the wavenum-
ber. Furthermore, there exists a relationship between these quantities of the form w = w(k)
called the dispersion relation. A wave of this form propagates at the speed w(k)/k called

the phase velocity. When a partial differential equation is discretized, the discrete model
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will be dispersive, regardless of whether the continuous equation was or not [19]. Thus,
in order for the numerical simulation to be successful, the continuous and numerical dis-
persion relations need to be “similar”. We will now find the dispersion relations for the
continuous and numerical versions of Maxwell’s equations in one dimensional free space.

First assume we have plane wave solutions E = Eoei(kz_‘”t) and H = Hoei(kz_‘”t)
and substitute into Maxwell’s equations for free space in one-dimension (2.16). Note that
the time derivative satisfies the equation B = iwk and the spatial derivative satisfies

OF
= —ikFE, and similarly for H. Then Maxwell’s equations transform to the equations

9z
, i(ha—wt) _ UK i(ka—wt)
wkye"\V* ™Y = —— Hpe"\W* <Y
€0
, i(he—wt) _ UK L i(hz—wt)
iwHpe""" ™ = Epe" "=
Ho
which we can simplify to
—k
wEo = 7H0,
€0
—k
wHo = 7E0.
Ho
Combining the above two equations we have
—k _
Ey=—Hy= el Hy
wWeo k
2
— k2 = w260,u0 =—
c
— k= (2.34)

Thus, the dispersion relation for Maxwell’s equations in one dimensional free space is
w = ke. Note that the phase velocity is w/k = ¢, which is a constant, so the continuous
equations are dispersionless [18].

For the numerical case, we similarly assume E]” = Epetlkifz—wnit) 44 H]” =

Hoe!(kiAz=wnAl) and substitute these into the Yee scheme (2.23), and simplify this ex-
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pression by dividing by /(¥ Az—w(nt3)AL) ¢, get

Eo ( _iwat2) a2 _ Ho (agaze)  —ikaz2)
At (e ¢ ) = @Az (e ¢ ) '

Using Euler’s formula ' = cos(x) + isin(x) we get

@ . LAt _ Hy . kAz
At St 2 Az Sl 2 '

We can do the same process for equation (2.22) and we obtain

@ —sin w—At = Eo in ROz
At > 2 T oAz > 2 ’

Finally, combining the two equations gives us

.o (WAL A2, (kAz 9 . o [ kAZz
sin 5 ) = Az 5 ) =visin®{ —— ).
0HORZ

Thus, the dispersion relation for the Yee scheme in one dimensional free space is

A A
sin <w2 t) = vsin <k2Z) . (2.35)

2.2.4 Numerical Experiments

A scaled numerical example was tested for the Yee scheme in free space with the

following parameter values

te[0,1], =ze€]0,1]

60:1.0, u():lo - CZl/\/EOIU, =1
cAt

— =10.9
Az

k=1 —= w=ck=c=1,
and given the initial conditions

E? = sin(7kz;),

1 TwAL
.
Hj+% = sin <2 ) cos (Trkszr%) )
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12 Initial Profile of E, H in Free Space
. T T T T T

E

-0.2 I I I I I I I I I
0

FIGURE 2.3: Initial profile of the exact solution for E, H in free space.

Final Profile of E, H in Free Space
T T

0.4 T

0.2+ i

FIGURE 2.4: Final profile for £, H at time ¢t = 1 in free space after the Yee scheme is
applied.
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TABLE 2.1: Relative error in the energy norm for the Yee Scheme in free space with

varying spatial step size. The Courant number v = % is fixed at 0.9.

Az Rel. Error | ratio | rate

0.02 9.8892¢-05 - -

0.01 2.4523e-05 4.0327 | 2.0117

0.005 | 6.1306e-06 4 2

0.0025 | 1.5326e-06 4 2

for each zj, Zj1 in the domain. Figure 2.3 depicts the initial profile and Figure 2.4 shows
the final profile of £ and H. Table 2.1 shows how decreasing step size At by half, while
maintaining the Courant number v = %‘; = 0.9, gives an error ratio that converges to 4.

This means the numerical approximation is second order accurate as predicted. The error

used was the relative error in the energy norm, which is defined in free space as

E(t) = /Q (Bt 2)? + [H(t,2)[) dz = | E(t, 2) ||+ || H(t, 2) | >

2.3. Yee Scheme for Maxwell’s Equations in Debye Media

Recall Maxwell’s equations in one dimensional Debye media (2.19). Using time step

At > 0 and mesh step size Az > 0, the Yee scheme for this system is

n+% . n*% n
B~y 1B B (2.360)
At 140 Az ’ '
1 1
+1 g +1 +l
At €0€oo Az T 2 €0€c0T 2 ’ '
n+1 n+1 n+1
B -0 _ele—ed) B HE 10+ P (2.36¢)

At T 2 T 2
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Note that E, P are averaged around the point (zj,¢,, 1). This allows us to keep second

n+3
order accuracy, which is proved using the same method as for free space. Also note that
P is defined on the same grid points as E since they are related by the constitutive law
(2.15).

As written, equations (2.36b) and (2.36¢) both require knowledge of E}Hl and Pj"H,
so to get proper update steps, we will take out the dependence on Pj”Jrl in (2.36b). To do

this, we simply solve (2.36¢) for P]-"H, which is

€o€qhr
1+h,

1—h,
(B + E}) + PP (2.37)

P,n+1:
J 1+hT]’

where h,; = At/27 and €5 = €5 — €5. Now substitute this into (2.36b) and simplify to get

6O(Eoo + 6shT)E‘n—&—l _ ﬁ

n—i—%) €0€oo(1 +2hr —€ghr) . 2hs
14+ h; J Az

1
H' 2 g E P™. (2.
(j% -1 T h P D (2.38)

Thus, we can write our discrete Yee system as the following explicit update steps:

n+% . nfé At n _ n
Hj+% N Hj+% + quz(EjH Ef),
1+h At n+i n+i 60600(1 + 2h-,— — € hT) 2h
prtl— T = gtta o gtta q En T n
J 60(€oo+€sh7') AZ( ]+% J_%)+ 14+ h; J * 1+h 7 ’
h 1—-h
prtl _ 0% oot g T pn
e T A P F

We will call this the P-formulation of the Yee scheme for Debye media. There are other
equivalent ways to define the Yee scheme for Debye media. For example, the D-formulation
keeps the electric flux density D in the constitutive law and eliminates P instead. The

D-formulation update steps are given in [11]

”+% _ "_% At n __ mn
H]—F% - H]+% ,U,(]AZ( J+l E] )7
At ntl n+3
n+l _ npn 2 2 2.39
el _ At + 2TD7~H_1 n At — 2TD’.‘ n €0(2T€x0 — GSAt)ET.L’
J n J n J n J

where 1 = €9(27€x + €5At). For a proof of equivalence, see [11].
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2.3.1 Stability Analysis

In [3], Bokil and Gibson examine the stability of (2,2m) schemes in Debye media.
They show that a necessary and sufficient condition for stability of the Yee scheme (m = 1)

in Debye media is
Coo AT

= <1,
v Az

where co = is the maximum speed of light in Debye media. Note that this stability

€co
condition is the same as for the Yee scheme in free space.

2.3.2 Dispersion Analysis

We begin by finding the dispersion relation for the continuous Maxwell’s equations
in Debye media. Similar to the free space case, we assume the fields have a plane wave

solution, with the addition of P = Pye?(F*~“t) Now substitute these into the system (2.19)

to obtain
—k
HO = 7E(), (2.40&)
WHo
1
(—iwegeos + LY Ey = ikHy + - Py, (2.40b)
T T
€€
PO = ﬁE{) (240C)

Now apply (2.40a) and (2.40c) to (2.40b) to get the continuous dispersion relation

PP
w [T~ iwes
c

1
p

k=

— 1w

Petropoulos [15] finds the numerical dispersion relation for the Yee scheme in Debye media

to be
k 2 ., |wAz \/E; cos(#51) — iwensse,
num — 4 _ S — 5 Sw 1 RN ; )
Az c 2 ~cos(¥57) — iwsy,
sin(“’TAt)
Sw = wAt

2

As written, notice the similarities between the continuous and numerical dispersion rela-

tions. It can be shown that as Az, At go to zero, knym — k.
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2.3.3 Numerical Experiments

A numerical example was tested for the Yee scheme in Debye media with the fol-

lowing parameter values:
te[0,2x107%, z€]0,0.1]

€ =8.85x 10712, ¢=3x10% m/s
1 cAt

=—, —=1.0
ey’ Az

Ho
€ =80.35, €x =10, T=813x10"'%s
k=1 = w=ck=c

and zero initial conditions. The time units are in seconds. The source chosen was a

truncated sine wave of the form

(- 2))

where f = 10'° Hz and T is the current time step. The domain was comprised of three
sub-domains: first was free space, then a Debye medium, and then free space again (see
Figure 2.6). The source pulse originates in free space and then moves into the Debye
medium. Various values of h, were used (see Table 2.2), which determined the time step
size, and then the spatial step size was determined using the CFL condition. Figure 2.5
shows the trace of the electric field at a point at depth 0.015 m inside the Debye medium
with various time step sizes At. Clearly, the graphs are converging to a solution as we

increase accuracy.

2.4. Fourth Order Scheme for Maxwell’s Equations in Dielectrics

The explicit (2,4) scheme uses centered finite differences on a staggered grid as in

the Yee scheme, but is second order accurate in time and fourth order accurate in space.
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Time Trace of E at depth 0.015 in the Debye medium, h‘ =05
6 T T T T T T T T T

Time Trace of E at depth 0.015 in the Debye medium, h = 0.1
8 T T T T T T T T T

Time Trace of E at depth 0.015 in the Debye medium, hT =0.01
8 T T T T T T T T T

FIGURE 2.5: These graphs show the trace of the electric field over time at a point at
depth 0.015m inside the Debye medium. The graphs are ordered with decreasing time
step to show convergence to a solution: 0.57, 0.17, 0.017, where the relaxation time
T=28.13 x 10712
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Debye
F F
r r
e e
e e
S S
p p
a a
C o}
e e
0 3Az 0.09 041

FIGURE 2.6: Domain for testing the Yee scheme in Debye media, where a source origi-
nated at z = 0 and then propagated into the Debye media.

TABLE 2.2: Varying values of h; = At/7 determine the value of At, where the relaxation
time 7 = 8.13 x 1072, Decreasing values give a longer run time.

hr | Runtime (sec)

0.5 12.816002

0.1 63.612313

0.01 624.427988
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n+1 n+1/2
n+1/2 n
t=n t=n-1/2
z=j-3/2 12§ 12 j+3/2 z=j1 i j+1 j*2

€@ =H, magnetic field

@ -=E, electric field
FIGURE 2.7: Stencil for the (2,4) scheme.

The scheme equations are written in the form

ntx n+2 nti n+s
E;H—l _ E}m B lHj_%2 — 27Hj_%2 +27Hj_~_%2 — Hj+%2
At €0 24Nz ’ (2.41)
Hn—&—% o Hn—% ’
j+l j+i 1 E} - 2TE} +2TEY  — E7,
At " o 24Az '

Figure 2.7 shows the computational stencil for the (2,4) scheme.

2.4.1 Boundary Conditions

Recall we assumed perfect electric conductor (PEC) boundary conditions for Maxwell’s

equations, which means we have
E(t,a) = E(t,b) =0Vt € [0,T], (2.42)

in a one dimensional domain 2 = [a,b]. Figure 2.8 shows that we need fictitious points
outside of our domain to update the nodes closest to the boundary. We require two
fictitious points for both the left and right boundaries, so we need four extra boundary
conditions. We can derive these from (2.42) by applying Maxwell’s equations (2.16). First
apply the time derivative to (2.42)

oOF oF
E(taa) = E(t’ b) = 0.
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Then by Maxwell’s equations we have two new conditions on the boundary

ea=n =0 (2.49

0z
Now we apply the time derivative to (2.43) to get

0 0H 0 0H
5 9. 0= 5, B =0,

which by (2.16) is equivalent to

0*F 0*F
52 (t,a) = ﬁ(t, b) = 0. (2.44)

We need to discretize the new boundary conditions and to get representations for the fic-

.. . n+i n+i
titious points H ,?, H 3
2

» Hy L5 E™, Ex 4 for each n =0,1,..., N. We use standard central

differences to discretize the first and second derivatives in (2.43) and (2.44), respectively.

First, we discretize (2.43) at the left boundary z = a to get

and similarly we can show that

for the right boundary. Now we discretize (2.44) at the left boundary to get

B — 2Ep + E",
=0. 2.45
Az? (245)

Note that from equation (2.42) we have
E(t,z0) = E(t,2ny) =0 = Ej = Ey =0,
and applying this to (2.45) gives us
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E_4 Ey Fr
tn+% /\ L i ¥
H.p 0 Hyp
O—@ @
E—l EO E1
Z0=a i

FIGURE 2.8: Layout of the grid near the left boundary of Q = [a, b] for the (2,4) scheme.
The update of H 1 and Fj require nodes that lie outside of our domain, thus we need the

fictitious points H_1 and E_;. An analogous situation takes place at the right boundary.

M)

Similarly, we can show for the right boundary that

n _ n
EN-H - _EN—l'

Now that we have representations for the fictitious points, we can modify the (2,4) scheme

(2.41) near the boundaries to get the following update steps.

At n+i nti nti
Erftl=—fpr4 = (_926H," 2 27H 2 _H. 2 2.46
1 YN ( I 5 ) (2.46a)
1 -1 At
H' 2 —ghe g 26E™ — E), 2.46b
7 3 24MOAZ( 1 2) ( )
At l n+ls
n+l _ n 2 2 2
EW =E} |+ —— Tic Az (H i 27H N3t 6HN_% ) , (2.46¢)

At

1 1
H'2 =H 2 4+ ——— (B}
3 1 2410z (ER—

N —26ER_;) . (2.46d)

Note that in general for a (2,2m) scheme, we would need 2m fictitious points outside of
our domain. Therefore, we require 2m extra boundary conditions to find a representation
of these fictitious points. If we continue the method outlined above, we would see that
the boundary conditions of any order are

o’E y O’E

@( ,a):@(t,b):()forp:(),zll,...
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OPH OPH
57 (t,a) = ﬁ(t,b) =0forp=1,3,5,....

2.4.2 Stability Analysis

The explicit (2,4) scheme is also conditionally stable and we have the following result

which is valid away from the boundaries of the domain.

Theorem 2.4.2.1 (Conditional Stability of the (2,4) Scheme). A necessary condition for

stability of the explicit (2,4) scheme (2.41) is the CFL condition v = cAt/Az < 6/7.

Proof. As before, assume the electric and magnetic field nodes have the spatial depen-

dence.

E;z — Eneikz]"
(2.47)
HY = e,
We will obtain the amplification matrix A such that the (2,4) system (2.41) can be written

in the form
En—i—l E'n
=A
gn—l—% gn—%

First, apply (2.47) to the scheme (2.41) to get

~ ; . ~ : . At ~ 1 ikz . 3 ikz. 1 ikz. 1 ikz . 3
Ertlehs = prets 4 —— _H"a(e 8 —2Te 73 +27e T2 —e Iti),
24e0Az
Frn4 k2, 1 Frn—1 dkz, 1 At rn( ikz; ikz; ikz; ikz;
H""2¢ 7%t2 = H" 2e 7%2 4 E" (et — 27e"%i 4 27e™Fi+1 — e'ME+2))
24p0Az

which we can simplify by dividing by e**% and e Z”%, respectively, to get

At -

Bl — B DU [ (o YRAN  g7e kA2 g7thAs/2 _ ikAs/2) (2,48
€Az
At = A2 + 24AtA E”(G:’:"”"“AZ/2 — 27e A2 | 976ikAZ/2 _ eSikAzﬂ)- (2.49)
Hoaz

We need to take out the dependence on H™"2 in equation (2.48) by substitution of (2.49),
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and we can also simplify the e”2? terms. Then our system becomes

EnJrl — En

At N\ 1 . 2
1+ (12Az> corio (27isin(y) — isin(37y)) ]

Fn— 1 . e
+H"" 2 |:1260AZ (27isin(7y) zsm(?ry))} )

il el mm t . o
H""2 =H"" 24+ F [12M0AZ (27isin(7y) zsm(?w))} ,

where v = kAz/2. Recall the Courant number is v = cAt/Az, and let

5= 2 ((27isin(y) — isin(37)).

T 12
Then our matrix A is
. 1+ B2 1222,2 (27isin(y) — isin(37))
712@12 (27isin(y) — isin(3y)) 1

which has the eigenvalues
2
)\1’2 = 1+%i§\/ﬁ2+4.

Note that (3 is purely complex and so 2 is real.

Assume that v > 6/7. By letting p = 1 we have that 82 + 4 < 0. This in turn
implies that |A2| > 1, and the von Neumann condition is not satisfied and the scheme is
unstable.

Next, assume that the condition v < 6/7 holds. Using the triple angle formula [11]

we have the relation

B 44 v :
ya 1- @(27 sin(y) — sin(3v))?

2\ 2

where p = sin (kAz/2). Since 0 < p? < 1, we have the bound

(2.50)

2\ 2
49
V22 (1 n p) <12 <1 (2.51)
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TABLE 2.3: Relative error in the energy norm for the (2,4) Scheme in free space with

spatial step size Az and the Courant number v = CA—A; reduced by half each time. Then

the time step At is reduced by one fourth each time so that we can see the fourth order
accuracy in space.

v Az Rel. error | ratio | rate

0.8 0.04 0.0010262 - -

0.4 0.02 6.4697e-05 | 15.862 | 3.9875

0.2 0.01 4.0538e-06 | 15.96 | 3.9963

0.1 0.005 2.5345e-07 | 15.995 | 3.9995

0.05 | 0.0025 | 1.5843e-08 | 15.998 | 3.9998

0.025 | 0.00125 | 9.902¢-10 15.999 | 3.9999

Using the bound (2.51) in (2.50) we have that

2
4
5: >0, (2.52)

This in turn implies that |[A;2| = 1, and the von Neumann condition is satisfied. As
mentioned for the Yee scheme, the von Neumann condition is a necessary but not sufficient

condition for stability.

2.4.3 Numerical Experiments

To show the fourth order accuracy in space in a numerical example, we have to
reduce the time step by % and the space step by % The same parameters and initial
conditions were used as in the example in Section 2.2.4. The results of this experiment

are shown in Table 2.3.
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2.5. Fourth Order Scheme for Maxwell’s Equations in Debye Media

A (2,4) scheme (D-formulation) is presented in [11] for Maxwell’s equations in Debye
media. It is similar to the D-formulation of the Yee scheme, but the second order accurate
spatial derivative approximations are replaced with fourth order accurate discretizations.

The explicit update steps of the scheme are [11]

n+i n—i At
Hj+£ = Hj-i-; ST (E;-L_l —2TE} +2TE}, — E;L+2),
At n+i n+3 n+s n+l
n+l _ pn I 2 _ 2 2 2 2.53
D; D7 + 1AL (Hj—% 27Hj_% + 27Hj+% Hj+% ), ( )
el At + 2TD7.L+1 n At — 2TDT-L n €0(2T€x0 — GSAt)ETP
J n J n 7 n YR

where 1 = €9(27€x + €5AL).

In [3], Bokil and Gibson show that the CFL condition for stability of the scheme

(2.53) is Cﬁ?t < %. In addition, they analyze the dispersion relation of this scheme. This

scheme is also analyzed in [11].
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3. IMPLICIT DERIVATIVE MATCHING TECHNIQUE FOR
(NON-DISPERSIVE) DIELECTRICS

3.1. Introduction

Finite difference methods have the advantage of being easy to implement, and in our
case, the explicit schemes are also inexpensive to use. However, across material interfaces
these methods lose accuracy, because of the discontinuity in the parameters defining the
media [21]. We will study the implicit derivative matching (IDM) technique proposed by
Zhao and Wei in [21] as a remedy to this problem. The idea of the IDM is based on
ideas used by Driscoll and Fornberg in their block pseudospectral (BPS) method [9]. The
BPS method, using a domain decomposition perspective, breaks the domain down into
blocks and uses fictitious points to improve accuracy at the interfaces of the blocks and
at the boundaries. The solution at the fictitious points is calculated at each time step
using derivative matching conditions. However, in the IDM technique, a preprocessing
scheme is used to find a representation for the solution at the fictitious points once at
the beginning of the computation. Then this representation is used to locally modify the

scheme near the interface, much like the embedded FDTD method [8].

3.2. Reflection-Transmission Analysis

Before we can run a simulation of the FDTD schemes in a heterogeneous material,
an exact solution is needed. We use reflection-transmission analysis to develop the exact
solution. The idea is that a wave incident in the first region will decompose into a trans-
mitted wave and a reflected wave after crossing the material interface [5]. In addition, we
have perfect electric conductor boundary conditions, which means any wave that reaches

the boundary will be completely reflected back. Thus, the exact solution will be a combi-
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nation of forward and backward moving waves in both regions of the material. With this

knowledge, we can assume the following forms for ' and H in the domain Q = [—1,1].

Efrei(wt—klz) + E;ei(Wt+k12), ~1<2<0

E(t,z) = (3.1)

<
E;-ei(wtfkgz) + E;ei(wt+k2z), 0<z<1

Hi&-ei(wtfklz) + Hl_ei(thrklz), —-1<2<0
H(t,z) = (3:2)
H;ei(wt—kgz) + ngi(wt-i—kgz)’ 0<z<1

Note that E]i and H]i are coefficients that we need to determine, £; is the wave number
for media j, and w is the angular frequency. The discontinuity lies in the value of the
permittivity €., which we call €; in medium 1 and €2 in medium 2. The magnetic perme-
ability is constant and set to ;x = 1 in both media. In a dielectric, the electric constitutive

law is D = €peo X and here we are assuming ¢g = 1.
oF 10H

From Maxwell’s equations (2.16), we have T v where € = €peo, and with
the above forms for E, H it is easy to see
iwe, Bf = (—ik)H = Hf = —%Ef,
iwe) By = (iky)Hy = Hj = %E;,
iwey B = (—iky)Hf = Hj = —%E;,
iwey By = (iko)Hy, = Hy = %E;

The dispersion relation for Maxwell’s equations in dielectrics is w = kco (recall equation

weq €1
- = €1C1 = — = €1,
k1 V w1

and similarly for medium 2. Then we can rewrite the H representation (3.2) as

(2.34)). Then we have

_ €1E+ei(u}t—klz) + €1E_ei(Wt+klz), —1<2<0
H(t,z) = var Ve (3.3)
_\/aEgrei(wt—kgz) + \/aE;ei(Wt+k22), 0<z2<1
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Next we need to find the coefficients Ef JEr, E; , B . There are four constraints that our
equations need to satisfy: continuity of ¥ and H across the interface, and £ = 0 on the

boundaries. Applying the PEC boundary conditions to (3.1) gives us the following:

Efe®™ + Ere ™ =0 = Ef = —Fye %k, (3.4)

Efe *2 y Breib2 — 0 —= Ef = —F; %2, (3.5)

Continuity at the interface gives us two more conditions on our coefficients

Ef +Ef =Ej +E;, (3.6)
—VaBf +VaEy = —J/aby +/ak;. (3.7)

Now applying (3.4) and (3.5) to the continuity relations (3.6), (3.7) gives

Ve (l+e*h)

ET = E NGl (3.8)
3 3 1— eQikQ

There is one free parameter in the set of coefficients £, Efr , By, E; . We choose
E;, = e~ w(Vatve) o be our free parameter. Applying this to (3.8) gives E;, and
subsequently, we can find E]” and E; from (3.4), (3.5), respectively. Then our coefficients

are

Bf = —pretova, - - Yeosl/a)
1 1 ) 1 \/aCOS(\/a)7

Ef = —Eyoiva, By — e wlVatva),

The final thing we need is a way to calculate the angular frequency w, which is not
straightforward as in homogeneous media. In a heterogeneous dielectric, we have two

wave numbers ki, ko and one angular frequency w that needs to satisfy the corresponding
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dispersion relations. We can relate k; to ka through (3.8) and (3.9). Then we have

1— eQik‘g B \/6(]— + e?ikg)
1— 872ik1 - \/a(l + 6727;161)

14 %k 1+ e %M
= Veiam = Va7 .
—cos(ka) cos(kq)

— €9

sin(kz) :\/aSin(kl)
— — /e tan(ky) = /&3 tan (k).

From the dispersion relation, k = wce = w/€xo, since we assumed p = 1, then we have

—Ve1 tan(wy/e2) = \/ea tan(wy/e1). (3.10)

The angular frequency w can now be found numerically from (3.10).

3.3. Numerical Test of FDTD Schemes in Heterogeneous Media

To show the loss of accuracy in FDTD schemes, we use the exact solution to
Maxwell’s equations that was derived in Section 3.2. for a dielectric with one interface.
For this simulation, we set ¢; = 1 in medium 1 and €3 = 2.25 in medium 2. As mentioned
before, the magnetic permeability is constant and set to 4 = 1 and we are also assuming

€0 = 1. The exact solution as derived above is

E( ) (alei\/awz _ blefi\/awz)eiwt7 -1 <z< 0
t,z) =
(CLQGZ'\/sz _ bge—i\/éwz)eiwt‘7 0<z<1
(3.11)
H( ) \/a(alei\/awz + ble—i\/awz)eiwt’ —1<2<0
t,z) =
Ve (ageVews 4 ppemiaw)eiwt 0 < 2 <1
where
o — V€2 cos(y/exw) by = aye2VEw,

= Varcos(yew)’
ay = e wlWatve), by = ape®Vew,
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Initial Profile (E) Initial Profile (H)

—real AR )
B — — — imaginary 1 \ /

—real
15 -~ ~ imaginary

—05}

1L

-15r

-2 L L L L L L L L L -3 L L L L L L L L L
-1 -08 -06 -04 -0.2 0 0.2 0.4 0.6 0.8 1 -1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1

(a) Electric field (b) Magnetic field

FIGURE 3.1: Initial conditions in a heterogeneous dielectric, where the interface between
the two materials lies at z = 0.

We used the value w ~ 5.07218116182516 in our experiments [21]. Figure 3.1 plots the
initial values for ¥ and H at time ¢ = 0 with the Courant number v = 1.0. Note that
the solution is continuous, but not smooth across the interface at z = 0. To derive the
accuracy of the Yee scheme, we would decrease At and Az by half repeatedly. Doing this
for the interface experiment gives the results in Table 3.1 and Figure 3.2. Note that the
rate at which the error is converging is less than 1, indicating that the Yee scheme loses
its second order accuracy in the presence of the material interface. We perform the same
experiment with the (2,4) scheme and Table 3.2 and Figure 3.3 show that the accuracy is
once again reduced to first order. The L? norm of a grid function is used to find the error

at the final time ¢y = NAt, and is defined as
1/2

J
12~ Buunll, = { 42 |Blex,2) - BY]|
=0

for the electric field error and similarly defined for the magnetic field.
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TABLE 3.1: Error in L? norm for the Yee scheme in a dielectric with one interface. Note
that the rate of convergence is approaching 1, which indicates loss of second order accuracy
of the Yee scheme.

Az | E Error | ratio rate H Error | ratio rate

0.04 | 0.14548 - - 0.18722 - -

0.02 | 0.095679 | 1.5205 | 0.60453 | 0.12297 | 1.5225 | 0.60641

0.01 | 0.054039 | 1.7706 | 0.8242 | 0.069222 | 1.7765 | 0.82904

0.005 | 0.028484 | 1.8972 | 0.92387 | 0.036459 | 1.8986 | 0.92497

L2 error vs step size, Yee Scheme

L2 error
=
o
L

h? reference
—*— E error
— & — Herror

10° : S : e
102 10"
Az

FIGURE 3.2: Log plot showing that the Yee scheme is reduced to first order accuracy in
a heterogeneous dielectric material.
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TABLE 3.2: Error in L? norm for the (2,4) scheme in a dielectric with one interface. Note
that the rate of convergence is approaching 1, which indicates loss of fourth order accuracy
of the (2,4) scheme.

Az E error | ratio | rate H error | ratio | rate

0.04 | 0.2402 - - 0.2996 - -

0.02 | 0.12038 | 1.9953 | 0.99664 | 0.15191 | 1.9722 | 0.97984

0.01 | 0.06011 | 2.0027 | 1.0019 | 0.076442 | 1.9872 | 0.99075

0.005 | 0.030024 | 2.002 | 1.0015 | 0.038325 | 1.9946 | 0.99609

L2 error vs step size, (2,4) Scheme
T

L2 error
=
o

— h*reference
—®— E error

— & — Herror

12 . . L

102 10"

Az

FIGURE 3.3: Log plot showing that the (2,4) scheme is reduced to first order accuracy
in a heterogeneous dielectric material.
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3.4. Formulation of IDM Technique

The IDM technique uses a preprocessing scheme to enforce physical jump conditions
at the material interface [21]. For the moment, we will consider Maxwell’s equations in
dielectrics and later extend to dispersive dielectrics of Debye type in Chapter 4. Let us

write the 1D Maxwell’s equations (2.16) in vector form as

Ju ou

— =A—, 3.12
ot 0z ( )

1

E o -

with u = and A = 1 €0

H — 0

Ho

Suppose our domain has a material interface at z = & Now we have discontinuous

coefficients across the interface of our material, i.e., A takes on different values for z < &

than z > £. We denote these as Aj, Ay for medium 1 and 2, respectively, and write this

as 1
0 _
Ai=1 € | fori=1,2.
— 0
1223

We impose the following interface conditions

n X (El — EQ) = 0, n- (D1 — Dg) = 0, (313)

nx (Hl — Hg) = 0, n- (Bl — BQ) = O, (314)

where n is the unit normal vector to the interface. Note that in one dimension E; =
(0, E;,0) for i = 1,2, where E; denotes the electric field approaching from the left and

right respectively, i.e.,

Ey = E(t,2)| Ey = E(t,2)|

2 Zmgt

and similarly for the other fields. The interface conditions tell us that £ and H are

continuous across the interface, which we now show.
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Let n = (0,0,1). Consider

i j k
nx (E; —E3) =0 0 1
0 Ey—Ey O

= —(E, — E»)i.

By the interface condition (3.13), we must have

Fi—FEy=0 = FE|=F,.

This implies, E(t, z)}z_)g, = E(t, z)|z_)£+. Now consider
ik
nx (H —Hy)=| o0 0 1
Hi—Hy 0 0

= (Hy — Hy)j

By the interface condition (3.14), we must have
H1—H2:0 — HlZHQ.

This implies, H (¢, z)‘z _ = H(t,2)|

—¢

The continuity relations just derived are called the zeroth order physical jump con-

z—Et

ditions, which can be expressed as

u(t, z)‘zﬁf, = u(t, Z)‘z—>§+' (3.15)

In the IDM technique we require that u and its time derivatives be continuous, so
Maxwell’s equations can be used to show that any order derivative jump condition can be
constructed. For example, taking the time derivative of the zeroth order jump condition

(3.15) gives
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which by the differential equation (3.12) is equivalent to

ou ou
Ala(t,z)\z%, = Ay (1, 2, (3.16)

Equation (3.16) is called the first order jump condition because it involves the first order

spatial derivatives. In general, the pth-order jump condition is

A’i’u(p) (t, &) = Agu(p)(t, &)

P
where u(® (t,{i) = 271;(75, Z)‘Zﬁgﬂ:-
z

The backbone of the IDM method is the use of fictitious points (FPs). These points

are located at the same positions as E or H on the grid. We assume the representation
2m
fi=>>_7iig (3.17)
j=1

where f; represents either an electric or magnetic fictitious point, and g; is an actual
value of either E or H depending on which we are considering. The coefficients r; ; are
called representation coefficients. The total number of fictitious points needed to restore
accuracy for the (2,2m) scheme is 2m (see Figure 3.4). For example, in the Yee scheme
we only need 2m = 2 fictitious points (m = 1) since it is second order accurate. The
representation coefficients are obtained by discretizing the physical jump conditions in a
preprocessing scheme as detailed below. Once we know these values, we modify the FDTD

scheme using the fictitious values to calculate the update step near the interface [21].

3.5. Yee Scheme with IDM modification

In Zhao and Wei [21], the idea of the IDM technique is described for general (2, 2m)
schemes. The specific details for the (2,2) and (2,4) schemes were derived and imple-

mented in this thesis.
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€1, U1 €2, U2

fi fma  Im fm+1 fom—1  fom
_______ O O : O O O
L 4 L

¢ ————— ¢

20 g1 9m—1 9Im égm-i—l 9om—-1  Gom ZN

z¥£

O =fictitious point

@ = actual point

FIGURE 3.4: For a (2,2m) scheme, we use 2m fictitious points around the interface.

n+1

n+1/2

j-1/2 i

zzf

’ = H, magnetic field

@ -c: clectiic field
FIGURE 3.5: Stencil for the Yee scheme with an interface at z = £. Note the Yee scheme
must cross the material interface to approximate E;-LH, so in the IDM method we place

1
a fictitious point (FP) at the location of H na

Py Similarly, we would need a FP at the
2

1
location of E? to approximate the FP at the location of H]n;rf
2
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3.5.1 Representation Coefficients

Figure 3.5 gives the stencil for the update of the electric field using the Yee scheme.
Note that in a material with an interface at z = £ the scheme requires an H node in
medium 2 to update a E node in medium 1. To find the matrix R = (r;;) of 4m?
unknown representation coefficients, we use up to the (2m — 1)th order jump conditions,

which in the case of the Yee scheme (m = 1) are

u@(t,¢7) =u@(t,¢h) (3.18)

AuD(t,67) = ApuW(¢, 7). (3.19)

The jump conditions can be approximated using the actual functional values and the
fictitious values as in Figure 3.6. The finite difference weights for the spatial derivatives of
different orders are calculated via the algorithm in [10]. The zeroth jump conditions are
the same for F and H, so we only need to perform this approximation once. The weights
for second order accuracy are {1/2,1/2}, which gives

1

5[91 + fo] = %[fl + g2]

= fo—fi=92— a1

Note that g; = I;G and f; = R;G, where I; and R; are the jth rows of the identity and

representation matrices, respectively, and G = [g1, g2]7. Then we have

(R — R1)G = (I, — I)G

—1
— R - RT = : (3.20)
1

The first order jump condition (3.19) can be represented as the system

1 1
—EWN(t,¢7) = —EW (¢,
o (&) i (t.€7)

LrO@ ey = Lamg eh.
€1 €9
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Again, we only approximate the equations once in a general form by letting ¢; = €;, y;
and using the weights {—1/Az,1/Az}, so we have:
1 1
—[—g1+ fo] = —[-f1 + 92
C1 (&)

1 1 1 1
= —fi+—fo=—g+ —g

(&) C1 C1 Cc2

1 1 1/
— —Ri + R} = / . (3.21)

€2 “ 1/62

Now we put together (3.20) and (3.21) to get the system

-1 1 r1,1 7’172 -1 1

1/02 1/61 7“271 7"2,2 1/61 1/62

We solve for the r; ;’s and substitute in ¢; = p; for £ and ¢; = ¢; for H to get

pr_ 1 2pe i — 2
H1t 2 M2 — H1 2
and
1 262 €1 — €2
R =
€11 €2 €9 — €1 261

3.5.2 Modification of Yee Scheme

Figure 3.6 shows the locations of the fictitious points needed for the IDM technique
applied to the Yee scheme. Note that the electric field variables E; now represent nodal
values, and similarly for the other field variables. We see that Ey depends on Hjp, which
lies across the material interface. Thus, we modify the Yee scheme for Es by using the
fictitious point Hj in place of Hy. Note that Hf = R¥YGH where R¥ is the first row of

RH and G = [Hy, Hs)" is the vector of actual values. Using these facts, we can modify
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E, v By

Hi | Hy
z=¢
FIGURE 3.6: Layout of the grid around the material interface at z = . The starred (*)

field variables are the fictitious points, which lie at the same position as the corresponding
actual points.

the Yee scheme for E5™! (see Figure 3.6) as

At 1 xn+ti
Eg-l—l = EJ + A <H;l+2 ~ H, n+2)

At 1 1 1
At 1 1
= Fy + A ((1 - r{é) H;H_Q — TﬁH;H_Q)
At €1 — €2 n+l 262 n+l
—Ep e —|(1- oyt - ot
2+€2AZ [( €1+€2> 2 €1 + €2 1
At 2¢9 n+1i 2¢9 n+ i
= B} —H, % - H, 2
2 +62AZ [61+62 2 €1+ €9
_mpa B (gt gt
2 <61 + €2> 2 1
g )H

We need to do the same sort of modification for H; since its update requires the node Fs
that lies across the interface (see Figure 3.6). The modification of the Yee scheme for H;

needs the fictitious point Ej = Rf G¥, where GF = [Ey, Ey]T. Using these facts we can
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1
modify the Yee scheme for H 11 2 (see Figure 3.6) as

1 1At
HY™2 = H 72 = (B~ EY)
Az
T AL BB+ e - By
! 1Az
n—1i At
= H, 2+H1AZ((7~§1 1) B} + ri,E)
_1 At — 2
:HIL p <<M2 H1 _1> EP 4+ H1 E§>
1Az \ \ p2 + 1 p2 + p1
1At -2 2
—H 74 < P pnoy 2 EQ)
w1z \ pa + 1 2 + 1
1 At
=H *+-—— (B —E}).

Thus applying the IDM technique to the Yee scheme gives the following method, in which
the IDM modification is to take an average of the permittivities €1, €2 near the interface,
and similarly for the permeabilities 1, ps. The electric field update in the modified Yee

scheme 1is

Bt =gy 2 <H”+5 - HT‘*})

LU NEAz \Tits i—3
# : if z; nearest to interface
where ¥ = €1 cz < &
€9 tz > &

while the magnetic field update in the modified Yee scheme is

At

1
n+3 n—

1
_ 2 mn n
Hi+% a Hz'+%2 + N (Bl — E7)
w tif z;41/2 nearest to interface
where X' = G} Fzip1y2 <&

2 P Zig12 > €



3.5.3 Numerical Experiment

Recall in Section 3.3. we had an exact solution (3.11) for Maxwell’s equations in
a dielectric medium with an interface. We demonstrated that the accuracy of the Yee
scheme was reduced to first order due to the presence of a material interface. Now we
use the same initial conditions derived from (3.11) and apply the Yee scheme with IDM
modification. Table 3.3 gives the results of this numerical simulation and clearly we have

the second order rate of convergence restored to the modified Yee scheme. Figure 3.7

shows the second order accuracy in a log-log plot.

TABLE 3.3: Error in L2 norm for the Yee scheme with IDM modification in a dielectric

medium with one interface.

Az E L? error | ratio | rate H L? error | ratio | rate
0.04 | 0.11038 - - 0.13649 - -

0.02 | 0.027636 3.9941 | 1.9979 | 0.03413 3.999 | 1.9996
0.01 | 0.00691 3.9994 | 1.9998 | 0.0085299 4.0012 | 2.0004
0.005 | 0.0017249 4.006 | 2.0021 | 0.0021292 4.006 | 2.0022

3.6. Fourth Order Scheme with IDM modification

3.6.1 Representation Coefficients

We first show how to calculate the representation matrix RY. For the case m = 2,
we have four magnetic field nodes to consider: H_o, H_1, Hy, Ho (see Figure 3.8). The

standard centered finite difference weights centered at z = £ for the derivatives indicated
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L2 error vs step size, Yee Scheme with IDM

L2 error
=
o

h? reference
—®— E error

— B —Herror

10°® : — : :
107 107 10
Az
FIGURE 3.7: Log plot showing the Yee scheme with the IDM modification is second order
accurate in space.

1

B H_, B H_, l?o H, o H, b2
¢ o o+ o
O o O O
H*, H*, :_ HT Hj

z

FIGURE 3.8: Layout of the grid around the material interface at z = . The starred (*)
field variables are the fictitious points, which lie at the same position as the corresponding
actual points
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(below) are calculated using Fornberg’s algorithm in [10]

Oth . =1 9 9 =1
. 16 16> 16> 16

1st . 1 -9 9 —1
o 24Az0 8Az’ 8Az’ 24Az

2nd . 1 —1 —1 1

2Az2°  2Az2°  2Az2%2°  2Az22
3rd . —1 3 -3 1
: Az37 Az3? Az3? Az3

As before, denote actual magnetic field values by g; and fictitious points by f;. We

discretize the pth order jump conditions for H according to the weights above.

e Zeroth order jump condition: H® (t,é7) = HO)(t,£F). We have

-1 9 9 -1 -1 9 9 -1
16 9-3/2 + 169-1/2 + T6f1/2 + Ef3/2 = Ef_?’ﬂ + T6f_1/2 + 1691/2 + 16 93/2

1
= fos2 = 9f-12+9f1)2 — f32] = 6 [9-3/2 — 99_1/2 + 9912 — 932)

&
16
— R1G —-9RyG +9R3G — RyG = I1G — 9I,G + 913G — [L,G

1

— R —9RI +9R] — RI = . (3.22)

1 1
e First order jump condition: —H W (t,67) = —HW (¢, ). We have

€1 €9
1|1 -9 9 -1
o 519-3/2 + g 9172 + §f1/2 + ﬂf3/2
1 {1 -9 9 -1
=G ﬂffz/z + ?f71/2 + g91/2 + 51 93/2
1 [—1 27 27 1
= 2 sz—:;/Q + gf—1/2 + gfl/? - 61f:a/z]

1 -1 27 27 1

=9 [619—3/2 + 29—1/2 + 591/2 - 6293/2]
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2 2
leG-f- R2G+

27 27

52

R3G + 7R4G

711G + —IzG + —IgG + lI4G

— —e;RT +27¢;RY + 273 RY — e2RY

€2

—e9

2762

(3.23)
27¢1

—€1

1
e Second order jump condition: —— H®(t,£7) = 2(t,£1). We have
€11 €242
! [9—3/2 —9-1/2 — f1/2 + f3/2} =5 [f—3/2 o2 — g1t 93/2}
2e111 26
1| -1
—— = _
5 Lzu J-3/2 f 1/2+ f1/2+ f3/2}
1 [ 1 + 1 )+ 1 )+ 1 }
2 L g-3/2 1 —9-1/2 eall2 —91/2 cojia —3g3/2
1 _
- R1G + RoG + RgG + R4G
€202 €202 €11 E€1H1
-1 -1
= LG+ LG+ I3G + L,G
€1H1 €1H1 €202 €202
—€2/42
T T T T €212
- —61,u1R1 —|—€1,LL1R2 — 62M2R3 +62;L2R4 = (3.24)
—€101
€141 |

H2(tf) —H

2M

e Third order jump condition:

61M1

1 1
+ 3 -3 + =
6%#1 [ g-3/2 g-1/2 f1/2 f3/2} 2

1
= 7f 3/2 T f 1/2 + f1/2 + 7f3/2

S5 —9-3/2+

9 1/2+
elu

91 /2T

)(t,€F). We have

[ Jo3/2+3f-1/2— 3912 + 93/2}

93/2
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1 -3 -3 1
- R1G+TR2G+TR3G+ 5 R4G
€212 €212 €111 €1H1
1 -3 -3 1
= LG+ TIQG + TIgG + 5 L,G
€1H1 €1H1 €142 €142
€3H2
2 T 2 T 2 T | 2 pT —3€312
— 51N1R1 _3€1H1R2 _362H2R3 +€2M2R4 = ) (325)
—3ein
6%#1 ]

Now put together the equations (3.22), (3.23), (3.24), (3.25) to get following the system

for R
[ 1 9 9 1] 1 9 9o 1|
—€1 27¢1 27¢9 —€9 RH _ —€9 27¢o 27¢1 —€1
—€1M1 €1H1 —Ea2 €22 —€242 €202 —€1M1 €11
| e —3efm —3e3un s | Suz —33pe 36 Gy

Next we do a similar analysis in order to find R”. There are five electric field nodes

to consider E_o, E_1, Ey, F1, E2 (see Figure 3.8), so we use up to the 4th order jump

conditions to find the representation coefficients. The standard fourth order centered

finite difference weights for the derivatives needed are

oth: 0, 0, 1, 0, 0
1st . 1 —2 0 2 —1

. 12Az° 3Az’ ) 3Az° 12Az
2nd . —1 4 —5 4 —1

©12A220 3Az20 2Az27  3Az20  12Az2
3rd . -1 1 0 1 1

: 2A 237 Az3? ’ Az3 2A 23
4th . 1 —4 6 —4 1

: Az% Az% Az% Azt Az%

e Zeroth order jump condition: E©)(t,67) = EO)(¢,£1). We have

go=fo = Rs=1Is. (3.26)



(t,67) =

1
e First order jump condition: — FE(!
2
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EM(t, ). We have

Ll + —2 + 0go + f f
129 2 3 - 9-1 90 1 2
1 2 1
= _ _ 0
f 2+ — f 1+ 090+ 501 = 1592
-1 8 8 1
= ff 2+ f 1+ fl—*f2 *9 2+ —g-1+—g1— —g2
11 pe” e
—H2
82
— —ulRlT + 8#1Rg + 8M2RZ - /LzRg =10 (3.27)
81
__Ml_
e Second order jump condition: E@(t, ) = 2(t,£1). We have
€141 €242
1 -1 n 4 n -5 n f 1 f
L 1292 391 290 1— 22
1 ) 4 -1
= o f—2 + f—1 t 5%t 50
—16 30 16 —1
- —J2+ —J- fo+ 1 2
€242 €242 €202 €11 €1H1
1 —16 30 16 —1
=—0g2+—g-1+ 90 (1 g2
€11 €1H1 €1p1 €212 €242
€242
—16e2p12
= ey R — 161y Ry + 30e1p1 Ry + 16eap0R) — eapiaRe = | 30eap10
16€1 1
| e

(3.28)



e Third orde

1

e Fourth order jump condition:

1

-

=

- l9-
€ u%

r jump condition:
61M1

—g-2+g-1+0g0— f1+ f2

Bt e7) =

|

62,“2

E(3)(t £1). We have

112
SR e +1
= 62#% 5 -2 -1 go — g1 292
—2 —2 1
= ——fot—Flat——FhH+t—7=h
€2/45 €2/45 €1HT €1HT
1 —2 —2
= 59-2 + 91+0+7291+ —502
€117 1# €2/45 €2/45
€24t
—2e2043
— e piRT — 26143 RY — 26013 RY + eou3RE = 0
—2e143
| ani |
EW(t, & ! SE@ (et h
55 (t,§7) =5 (t,€7). We have
SVt €545
2 —4g_1+6g0 —4f1+ fo] = 2.2 [f—2 —4f_1+ 690 — 491 + g2]
23
-1 4 —6 —4 1
5 5fot+t55fa+ Jo+ fi+ f2
€313 €513 epzs euit  eut
1 4 _ _
S5 59-2+ g-1+ go + g1+ 92
T eiui TGRS 17 M T
—613
de3u3
—luiR] + 4l iR} — 6t piRY — AR + Sus Ry = | 6343
—4ef g
| Lefud

55

(3.29)

(3.30)
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Now put together the equations (3.26), (3.27), (3.28), (3.29), (3.30) to get following the

system for RP.

0 0 1 0 0

— 81 0 82 — 42

E
eipr —16erp1 30e1pn 16eaps  —eapo | B

eipi  —2e1pd 0 —2eo115 €t

-t i odi ik |
[ 0 0 1 0 0 ]
— 2 8112 0 81 —H1

= | eaua2 —16e2u2  30eap2  16e1p;  —erp

ey —2eapl3 0 —2e1pi eyt

2.2 2,2 2,2 2,2 2,2
—€ky  deuy  —Gepuy  —dejuy  efpy

3.6.2 Numerical Experiment

Recall in Section 3.3. we had the exact solution (3.11) for Maxwell’s equations in a
dielectric medium with a material interface. We demonstrated that the accuracy of the
(2,4) scheme was reduced to first order due to the presence of the material interface. Now
we use the same initial conditions derived from (3.11) and apply the (2,4) scheme with
IDM modification. Table 3.4 gives the results of this experiment and clearly we have the
fourth order rate of convergence restored to the (2,4) scheme. Figure 3.9 shows the fourth

order accuracy in a log-log plot.
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TABLE 3.4: Error in L? norm for the (2,4) scheme with IDM modification in a dielectric

with one interface. The spatial step size Az and the Courant number v = %‘Zt are reduced

by half each time. Then the time step At is reduced by one fourth each time so that we
can see the fourth order accuracy in space.

v Az E L? error | ratio | rate H L2 error | ratio | rate

0.8 0.04 0.034928 - - 0.043867 - -

0.4 0.02 0.0021825 16.003 | 4.0003 | 0.0027401 16.009 | 4.0008

0.2 0.01 0.00013631 | 16.012 | 4.0011 | 0.00017111 | 16.014 | 4.0013

0.1 0.005 8.5178e-06 | 16.002 | 4.0002 | 1.0692e-05 16.003 | 4.0003

0.05 | 0.0025 | 5.3239e-07 | 15.999 | 3.9999 | 6.6829e-07 15.999 | 3.9999

0.025 | 0.00125 | 3.3274e-08 | 16 4 4.1768e-08 16 4

L2 error vs step size, (2,4) Scheme with IDM

L2 error
=
S}
&

h reference
—*— Eerror
— ® — Herror

=12 X X X X X N
102 107
Az

FIGURE 3.9: Log plots show the (2,4) scheme with the IDM modification is fourth order
accurate in space.

1
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4. IMPLICIT DERIVATIVE MATCHING TECHNIQUE FOR
DISPERSIVE DIELECTRICS

4.1. Introduction

In this chapter we extend the IDM technique to modify the Yee scheme in dispersive
media of Debye type. For this media we obtain jump conditions by requiring that the
electric field F, the magnetic field H, and the polarization P, and their time derivatives
are all continuous across an interface. Material interfaces represent discontinuities in
the parameters of the medium, namely the infinite frequency permittivity e, the zero
frequency permittivity €5, and the relaxation time 7. We place fictitious points for FE, H,
and P at appropriate locations in order to implement the jump conditions. For a scheme
of spatial order 2m(m > 1) we need 2m fictitious points as in the IDM technique derived
in Chapter 3 for dielectrics. However, for Debye media, we have to make a different
assumption regarding the representation coefficients. We make the assumption that the
electric field fictitious points are given as linear combinations of 2m actual electric field
values. The polarization field fictitious points are given as linear combinations of 2m actual
electric field values and 2m actual polarization field values. Finally, the magnetic field
fictitious points are given as linear combinations of 2m actual electric field, polarization
field and magnetic field values. This modification in the representation of the fictitious
values for the three fields has to be made due to the presence of zero order terms in
the partial differential equations for the three fields, and such an assumption avoids an
overdetermined system for the fictitious values.

First we derive a scaled model of Maxwell’s equations in Debye media in Section
4.2. We develop the IDM technique as outlined above for the Yee scheme in Debye media
in Sections 4.3 and 4.4. In order to do this, we derive an exact solution for Maxwell’s

equations with Debye polarization using reflection-transmission analysis in Section 4.5.
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In Section 4.6, we demonstrate the loss of accuracy to first order for a problem with a
material interface using the Yee scheme without modification. In addition, we modify the
Yee scheme locally around material interfaces using the IDM technique and demonstrate
second order accuracy for the same interface problem. We conclude with a discussion of
the extension of the IDM technique for the modification of 2m(m > 1) order in space

FDTD schemes to maintain 2m order spatial accuracy.

4.2. Model Formulation

Recall Maxwell’s equations plus Debye polarization in one dimension are

OH 1 OF
- — 4.1
ot o 0z (4.1a)
OF O0H «€peq 1
oc—=———F+-P 4.1b

co ot 0z T + T ( )

oF _«cap 1p (4.1c)

ot T T

where €5 = €5 — €. We will re-scale the equations in order to simplify calculations in the

forthcoming sections. To do this, we assume the following relations:

1

E=./qE, P=—P, H=/wH,
Vo (4.2)
-~ t z
i==, 7=",
T CoT

where ¢ is the speed of light. Note that from the relations (4.2) we get
9 _00t_10
ot ottt Tt
0 _9092 10
0z 0% z  c¢yr0F

OH
Now we use the scalings to transform the system (4.1), starting with the equation for —.

ot
OH 1 0F
Dt o 9z
1 90H 1 OFE

_ — — = -
Vi OF oy 0z
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ot Jioe 0z oz

10H 1 OF
9T

T ot coT  0Z
OH OFE
—_ 4.3
ot 0z (4.3)
. E
Next we scale the equation for B
OF O0H ¢peq 1
—— —FE+-P
€0Coc 0z T + T
OF 1 0H \Jeoeq - /€0
= =—— — E P
Veoeoo ot /o 0z T + T
OB _ o dH ap 1z
T Ot coT 0% T T
OE OH -
€0 o7 07 €4ty + ( )
And finally we scale the equation for o
oP
or _eca, 1,
ot T T
VAP _ aawp Vag
T Ot T T
oP . .
5 = €ql — P =ex(eq—1)E - P, (4.5)

where €, = €5/€x. The new scaled system for Debye media (drop the ~ to simplify

notation) is

or _ op

ot 0z’

oF 1 OH 1

= T — — 4.6
at €oo 82 (Eq 1)E + €oo P? ( )
OP

5 = €so(€q—1)E — P.

Note that in this scaled version €y = pug = 7 = 1. We can write our system as a matrix

equation as in Section 3.4.

ou ou
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1 1
E 00 — —(eg—1) — 0

€00 €
withu=| P |,A=1|90 0 o |, and B= eoleg—1) =1 0
H 10 O 0 0 0

In a heterogeneous material, we will have A; in medium 1 and A in medium 2, and

similarly for B, i.e.,

1 1
—(egi — 1
0 0 o (€q, ) o 0
Ai = 00 0 and Bl = 60072‘(6%2‘ _ 1) -1 ol - (48)
10 0 0 0 0
4.3. Derivation of Jump Conditions
As before, we impose the following interface conditions
nX(El—EQ):O, n-(Dl—Dg):O,
I’lX(Hl—Hz):O, n-(Bl—BQ):(],

where D = ¢peo E + P and B = poH, and n is the unit normal vector to the interface.

Additionally, for the polarization P we assume that

Py = P(t,£7), Py = P(t,£"), where P; = (0, P;,0),i = 1,2,

anan(Pl—Pg):O = P — DP.

The zeroth order jump conditions can be derived from the interface conditions, as for the

dielectric case in Section 3.4.
u@(t,¢7) =u@(t,eh).

As before, we assume that the time derivatives are also continuous, so we have

oul® oul®

W(taé_) ot (t7£+)'
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The differential equation (4.7) then gives us
A (1, 67) + Bru0(1,67) = AuV (1, 67) + Bou0(1,¢7), (4.9)

where A;, B; are the coefficient matrices for media i = 1,2 (see Equation (4.8)). Clearly,
0
on either side of the interface the time derivative n is equivalent to Aia— + B;. We can
z
apply the time derivative as many times as we like in order to get any pth order jump

condition. For example, we will derive the second order jump condition from (4.9).

%(mu“wﬁv+3m@@@v)=§(@MDWﬁv+&w%uﬁ0

— (g4 1) (A, + B 6))

— (A + B (40,6 + B (e 67))

— A2 (t,e7) + 4BVt ¢7) + BiAuW(t,67) + BluO(t,e7)

= A2u?) (£, 67) + AyBouM (£, 67) + BoAyuV (8, 1) + B2u (¢, ¢7).
In general, we can write the pth order jump condition as

42 s O ey=(A 9 ) O, ¢t)
182 1] ua ) = zaz 2 u ) .
4.4. IDM for Yee Scheme in Debye Media

The implicit derivative matching technique for the Yee scheme (m = 1) in dielectric
materials required 2m = 2 fictitious points for both £ and H, so there are 4 fictitious
points total. Now we have three fields to consider, E, P, H, so we have 3 X 2m = 6m =6
fictitious points in total. Unlike the dielectric case, the jump conditions do not decouple for
Debye media. This means we will have only one 6 x 6 matrix of representation coefficients.
As before, we use up to the (2m — 1)th order jump conditions to construct the system

to solve for R, so we only need the zeroth and first order conditions for the Yee scheme.
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P* E* v EX P
<§> alz i(:)
[ i
0O -O o
P E_ | E. Py

FIGURE 4.1: Fictitious points needed in the IDM modification of the Yee scheme are
designated by *. In general, the distance of F_ from the interface is @Az and Az is the

distance for H_, where o, 3 € [0, %] and |a — (| = % a and 3 are used to calculate the
weights for discretizing the derivative jump conditions.

Let G=[E_, E,, P_, Py, H_, H,]", where Figure 4.1 shows the positions of the needed

nodes. The new assumptions for the representation of the fictitious points are

2m
* E 1.
E; = E TijEJ,
Jj=1
2m 2m
* PE 1. Pp.
Pr=3 i B+ P
Jj=1 Jj=1

2m 2m 2m
*__E: HE 1. E: HP p. E Hrr.
H’i = rij Ej + 'rij P] -+ rij H]‘
j=1 j=1 j=1

In this case the structure of the representation matrix R is
RE
‘RHE <RHP ‘RH
where each R is a 2 x 2 block. Then we have the following definitions for the fictitious

points, where R; is the ith row of R.

E* = R,G, E% = RyG,
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P* = RyG, P = RyG,

H* = RsG, H* = RsG.

Now we are ready to discretize the zeroth and first order jump conditions that we derived
in Section 4.3. The zeroth order jump conditions are straightforward to discretize, because
they are the same as for the Yee scheme in dielectrics, with the addition of the P equation.
With the positioning of the nodes in Figure 4.1, the zeroth derivative weights for £ and

P are {1 — a, a}, and the weights for H are {1 — 3, 3}.
EOt,67) = EO(t,¢%)
= (1l-a)E_+aFl =(1—-a)E* +aF;
— —(1-a)E* +aF* = —(1-a)E_ + aE,
= —(1-a)RiG+aRG=—(1—-a)LG+ albG
= —(1—a)R; +aRy = [_(1 — ), a] . (4.10)

We do the same discretization for P and H conditions to get:

PO(t,¢7) = PO, ")
= —(1-a)R3+ Ry = __(1—04), a}, (4.11)

HOt,e7) = HO(t,¢")

= —(1-B)Rs + R = _—(1 - 0), ﬁ] : (4.12)

The weights for discretizing the first derivative are {—1/Az, 1/Az} for all three
fields. Note that for &« = 0, and § = 1/2, i.e., the case where the nodes are symmetrically
placed around the interface, the first derivative discretization is second order accurate.
However, in all of the other cases where the nodes are not symmetric around the interface,
this discretization is only first order accurate. In our experiments, we will consider the

symmetric case, but note that the IDM will need to be modified in the asymmetric case
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so that we maintain second order accuracy of the IDM-Yee scheme. Of course, we can
always choose our grid so that the nodes are symmetric about the interface, and then the

above method will give second order accuracy.

Now we discretize the first order jump conditions. We start with the first order
jump condition on H.
L g ey 4 L poyg ¢ ) (. ¢~
—HU(t,&7) + ——PU(,67) — (€1 —DEY(8,€7)
€o0,1 €00,1

= O eh) + POt eh) — (g0~ DEO (1,67

€00,2 €00,2
= Q.o,iAZ(_Hlﬂ + Hij) + 60171((1 —Q)P_1 4 aPf) = (eg1 — 1)((1 — a)E_; + aE})
= Q.()7;AZ(—Hi1/2 + Hyjo) + 60172((1 —a)P* 4+ aP)) — (eg2— 1)((1 — @) E*, + aE))
= €00,2A% 5 eoojAzRﬁ N 16;720[]%3 + 26(:;1 Ry+ (€2 —1)(1 — a)R1 — (€41 — 1)aRy
N EoojAZ’ eoo;Az’ _16;7104’ 6:12’ (I—a)(eg1—1), —alege—1).  (4.13)

It is important to note that we have not said anything about the time step. In the
dielectric case, each jump condition only involved one of the fields, so everything was at
the same time step. Now we have a condition that involves all three fields, and we only
know H at half time steps and E, P at full time steps. We actually have E”, E" and

H fH/ 2, H:fﬂ/ 2, but have dropped the time step information to simplify notation. Now

we discretize the first order condition for E.

BVt ) = EW(t,e")

1 1 1 1
— ——FE +—F =——F +—

E
Az Az T Az Az T

— E*+FE, =FE_+FE,
= R1G+ R:G=1NLG+ IL,G

— R1+ Ry = |:1’ 1:| . (4.14)
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Finally we discretize the first order jump condition for P.

ea 1 BO(t,¢7) = PO(1,67) = eqa B0 (1,67) — PO (2,¢7)
= i((1-a)E_+al}) - ((1 - a)P- 4+ aPy)
=eio((1—a)E* +aFEy) — (1 —a)P* +aPy)
= —€io(l—a)E” +eg1aF) + (1 —a)PX —aPy
=—€i1(1 —a)E_ +egoab, + (1 —a)P- —aPy
= —(1—a)egaRi +aeqg 1R+ (1 — )Rz — aRy
=|-(1—a)eq1, aeq2, (1—a), —af- (4.15)

Now we can put together the equations (4.10) through (4.15), and solve the system CR =

D using LU factorization with partial pivoting (via MATLAB’s 1linsolve function), where

—(1—-a) a 0 0 0 0
1 1
el — 0 0 0 0
Az Az
0 0 —(1-a) o 0 0
C =
—(1—a)egz aed,1 (l-a) - 0 0
0 0 0 0 —-(1-5) B
—(1-a) « 1 1
1— —-1) - -1
_( a)(€g2 — 1) —ale —1) €002 €01  Az€o Az€oon’
—(1-a) a 0 0 0
1 1
~ s 0 0 0
0 0 —(1—-a) o 0 0
D=
—(1—a)eqq Q€q2 (1-a) -« 0 0
0 0 0 0 —(1-0) B
(=) o 1 1
1-— —-1) - -1
_( a)(€q1 ) —olege—1) €l €02 Az€so1 Az€sg2]

Once the representation coefficients are obtained, we can modify the Yee scheme for Debye
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media, given in (2.36), around the interface.

4.5. Reflection-Transmission Analysis

Before using the IDM to modify the Yee scheme in a heterogeneous Debye medium,
an exact solution is needed. We use reflection-transmission analysis to develop the exact
solution as in Section 3.2. We assume the following forms for £ and H in the domain
Q=[-1,1].

wErei(wt—klz) + wE;ei(wt+k1z)’ —1<2<0

E(t,z) = (4.16)
wEyelWi=hez)  yE eiWithz) < 2 <1

Hii-ei(wt—klz) + Hl—ei(wt+klz), —1<2<0

H(t,z) = (4.17)
H;rei(wt—k’gz) + I{;ei(a.)t—‘,—krgz)7 0<z2<1

Note that E;E and H;E are coefficients that we need to determine, k; is the wave number for

O0H OF
media j, and w is the angular frequency. From Maxwell’s equations, we have —

ot~ 0z
(4.1a) and with the above forms for F, H it is easy to see

iwH] = (—ik))wEf = H} = -k EY,
iwH{ = (ik1)wE] = H{ =kE],
iwHS = (—ike)wEy = Hy = —koEJ,

inQ_ = (ikQ)wEQ_ — H2_ = k2E2_.
Then we can rewrite the H representation (4.17) as

_klEf-ei(wtfklz) + ]€1E11—ez‘(u)t+k:1z)7 —1<2<0
H(t, 2) = (4.18)
_kQE;rei(wt—kgz) + kiQE;ei(tmﬁ—i—lﬂgz)7 0<z<1
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Now we need to find a form for P by substituting (4.16) and (4.18) into the equation
(4.1b) from Maxwell’s equations. This implies that

%];(t, ) = (ik%E{“ei(“t_klz) + ik%Efei(“’Hklz)) X[—1,0]
+ (ik%Ejei(“’t’kQZ) + z‘kgE;e“wH’f?Z)) Xou]
— €501 (inEfrei(‘”t_klz) + iszfei(“’t+klz)) X[=1,0]
— €00,2 (inE;ei(“’t*k?Z) + inEQ_ei(wHk?Z)) X[0,1]-
Thus,

aap(tv Z) _ Z(k‘% - 60071(4}2) (Efrei(Wt_klz) + E;ez’(wt-l-klz)) X[10]
t (4.19)

(R — coogw?) (EF t7h20) 4 Brefertthen)) v )
where X4 18 the characteristic function on the interval [a,b]. Now we can substitute
(4.19) along with (4.16) into (4.1c) from Maxwell’s equations to find P, as
P(t, Z) =€q1 (wEfrei(wt—klz) + wE;ei(wt+l€1z)> X[—l,(]]

4 6d72 (wE;-e’L'(wtkaZ) 4 wEZ—ei(wt+k22)> X[fLO}

o Z(k% _ foo,1w2) (Efrei(wt—klz) + E;ei(wt-‘rklz)) X[-1,0]

_ Z(k% _ 600,2012) (E;—ei(wtfkgz) + EQ—ei(wt+kgz)) X[o,1]-
Thus, we have the representation for P

P(t,2) = (cgaw — ik + iew?)[Bf e=*17) 4 Bre?)e!, 1 <2 <0 (4.20)
(caqw — ik? +icrw?) By e~™*22) 4 By eh2?)]eit 0 < 2 < 1
Next we need to find the coefficients Ef BT, E; , E5 . There are four constraints that our

equations need to satisfy; continuity of ¥ and H across the interface, and £ = 0 on the

boundaries. Applying the PEC boundary conditions to (4.16) gives us the following:

Efet £ Eremt =0 —= Bl = —E;e7 %M, (4.21)

Efe *2 y Breib2 — 0 —= Ef = —F; %2, (4.22)
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Continuity at the interface gives us two more conditions on our coeflicients

—ki1Ef + kiE] = —koEy + koEs (4.23)

Ef +Ef =Ef +E;. (4.24)

Now applying (4.21) and (4.22) to the continuity relations (4.23), (4.24) gives

]62(1 + e2ik2)

3 11— eQikg

We need a way to calculate the angular frequency w, which is not straightforward as in

homogeneous media. The dispersion relation for Debye media with normalized 7 = 1 is

3]
_ W /& + tw
Coo V 14w’
€0 .
where coo = . In a heterogeneous Debye medium, we have two wave numbers ki, ko
€0

and one angular frequency w that needs to satisfy the corresponding dispersion relations.

We can relate k1 to ko through (4.25) and (4.26). Then we have

1 — e%ik2 ko (1 + e?ik2)

1—e 2k~ k(1 +e 2ik)
1+ o2ike 1 4 o—2ik1
= ke 1 — e2ik2 ki 1 — e—2ik1
—cos(ka)  cos(ky)
sin(ka)  sin(ky)

:>k52

— -k tan(kg) = k9 tan(kl). (4.27)

The angular frequency w can be found numerically from (4.27) if we substitute in the

dispersion relations for k; and ks, which gives us

w  [eg1 +iw tn: W [eg2+iw w  [eg2+iw to w  [€g1 +iw
— n = n .
Coo,1 1+ w Coo,2 1+ w Coo0,2 1+ w Coo,1 1+ w

(4.28)
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Initial Conditions from Debye Exact Solution
w=0.34127 + 0.05741i

_100 1 1 |

real
- — — imag

FIGURE 4.2: Initial conditions for Debye media given by the exact solution at time ¢t = 0.
Interface at z = 0.

There is one free parameter in the set of coefficients E|, Efr , By, E;r . We choose E, =
et k1tk2) 6 be our free parameter. Applying this to (4.25) gives E;, and subsequently,

we can find Ef" and E from (4.21), (4.22), respectively. Then our coefficients are

gy = feeoste) o, o hacosthy)
k1 cos(k1) k1 cos (k1)
E;_ = _e*ilﬂ eikz’ EZ_ — e*i(lirkz)'

4.6. Numerical Experiment

Figure 4.2 shows the initial conditions given by our exact solution at time ¢ = 0.

The following parameters were used to test the Yee scheme with and without the IDM
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modification.

Coo AL
=1.0
Az ’

€1 =80.35,  €2=85.35, €1 =10, €xa=060,

z € [—1,1] with interface at z =0,  t € [0, ],

k1 ~ 3.09714 — 0.015144, ko = 3.18718 4+ 0.01603¢,

w =~ 0.34127 4- 0.05741%.

The angular frequency w was calculated numerically using MATLAB’s fsolve function
from the equation (4.28). The positioning of the interface requires that an electric field
node be exactly on the interface, and hence also a polarization node. Thus, we have o = 0
and 3 = % in the setup of Figure 4.1.

Figure 4.3 shows that the solution is converging with first order accuracy for the
Yee scheme without the IDM modification and the accuracy is restored when the IDM is

applied. Note the absolute error uses the energy norm defined in Theorem 2.1.3.1.

1/2
e 199 (ol — Eul ol o+~ Pl2)]
where Vyum is the numerical solution and Vi is the exact solution. Figure 4.4 shows the
exact solution at the final time ¢ = w. The scheme was also tested over a longer time
period t € [0,507] and the time trace of this simulation is shown in Figure 4.5, which
shows the numerical solution dissipates over the long period. Table 4.1 shows the Yee

scheme in heterogeneous Debye media is first order accurate, while we see in Table 4.2

that the Yee scheme with IDM modification has second order accuracy.

4.7. Conclusion

The IDM technique developed in this chapter was successfully implemented in Debye
media on a test problem for which an exact solution exists. Based on the results obtained

in this chapter we now discuss the extension of the technique to higher order schemes. For
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FIGURE 4.3: Log plot showing the Yee scheme is first order accurate without IDM
modification (dashed line), while the Yee scheme with IDM modification is second order

accurate (solid line with circles).

TABLE 4.1: Absolute error and rates of convergence without IDM modification.

Az Abs Error | ratio | rate
0.0025 0.000211 - -
0.00125 9.6373e-05 | 2.1894 | 1.1305
0.000625 | 4.7353e-05 | 2.0352 | 1.0252
0.0003125 | 2.3661e-05 | 2.0013 | 1.0009
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TABLE 4.2: Absolute error and rates of convergence with IDM modification.

Az Abs Error | ratio | rate

0.0025 0.00011332 | - -

0.00125 2.8325e-05 | 4.0007 | 2.0003

0.000625 | 7.0825e-06 | 3.9993 | 1.9998

0.0003125 | 1.77e-06 4.0014 | 2.0005

Yee-like FDTD schemes that are 2m (m > 1) accurate in space and second order in time,
we can modify the scheme stencil locally around a material interface by introducing 2m
fictitious points each for E, H and P, and implementing 2m jump conditions requiring
continuity of E, H and P and their time derivatives up to order 2m — 1 across material
interfaces. We make similar assumptions on the representations of the fictitious values
for the three fields E, H and P, as in the IDM technique for the modification of the Yee
scheme in Debye media, namely, that the electric field fictitious points are given as linear
combinations of 2m actual electric field values. The polarization field fictitious points are
given as linear combinations of 2m actual electric field values and 2m actual polarization
values. Finally, the magnetic field fictitious values are given as linear combinations of 2m
actual electric field, polarization field and magnetic field values. This assumption leads to
a block lower triangular matrix system of size (3 x 2m) x (3 x 2m) for the representation
coefficients for the fictitious values of £, H and P. We note that even though the size of
this system for the fictitious points grows with the order of the scheme, this system has
to be solved just once in a pre-processing stage to obtain the representation coefficients.
After this solve, the finite difference stencil is locally modified using the representation
coefficients. This is as opposed to, for example, the Block Pseudospectral method [9], in

which the fictitious values are solved for at every time step of the finite difference scheme.
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5. CONCLUSIONS AND FUTURE DIRECTIONS

In this thesis we have successfully implemented an extension of the IDM technique
[21] to dispersive media of Debye type. In such media, an additional evolution equation
for the polarization vector driven by the electric field has to be appended to Maxwell’s
equations. The discretization of Maxwell’s equations along with this evolution equation
is called the auxiliary differential equation (ADE) approach [3]. The addition of the po-
larization field requires modification of the IDM technique as implemented for dielectrics.
In particular, we require continuity of the polarization field and its time derivatives across
material interfaces in addition to the continuity of the electric and magnetic field and
their time derivatives across interfaces. The presence of zero order terms presents addi-
tional complications. In particular the representation coefficients for the fictitious electric,
magnetic and polarization field values are no longer decoupled from those of the fictitious
values of the other fields. We locally modified the Yee scheme stencil using the IDM tech-
nique and showed how second order accuracy is regained by simulating a problem with
material interfaces. In the conclusions of Chapter 4 we give an idea of how this technique
can be extended to locally modify the stencils of higher order in space and second order
in time finite difference methods for Debye media.

We expect similar additional requirements will need to be satisfied for other types
of dispersive media such as Lorentz media, Drude media, and cold plasma, among others.
Media specific requirements will probably be needed in this process. For future work it
will be important to consider the stability, and convergence analysis of the IDM technique
as applied to 2m order accurate in space and second order in time finite difference schemes

for Debye media.
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