


AN ABSTRACT OF THE DISSERTATION OF

David Josiah Wing for the degree of Doctor of Philosophy in Mathematics presented on

March 31, 2011.

Title: Notions of Complexity in Substitution Dynamical Systems

Abstract approved:

Robert M. Burton

There has been a lot of work done in recent decades in the field of symbolic dynamics.

Much attention has been paid to the so-called “complexity” function, which gives a sense

of the rate at which the number of words in the system grow. In this paper, we explore this

and several notions of complexity of specific symbolic dynamical systems. In particular,

we compute positive entropy and state some k-balancedness properties of a few specific

(random) substitutions. We also view certain sequences as subsets of Z2, stating several

properties and computing bounds on entropy in a specific example.



c©Copyright by David Josiah Wing

March 31, 2011

All Rights Reserved



Notions of Complexity in Substitution Dynamical Systems

by

David Josiah Wing

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Presented March 31, 2011
Commencement June 2011



Doctor of Philosophy dissertation of David Josiah Wing presented on March 31, 2011

APPROVED:

Major Professor, representing Mathematics

Chair of the Department of Mathematics

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection of Oregon

State University libraries. My signature below authorizes release of my dissertation to

any reader upon request.

David Josiah Wing, Author



ACKNOWLEDGEMENTS

Academic

I first would like to thank my advisor, Bob Burton, for his encouragement, enthu-

siasm, and guidance throughout my research studies. I would also like to thank Dennis

Garity for his generous patience and guidance. There are of course many other professors,

instructors, students, and staff I have worked with here at Oregon State University and

Portland State University who have contributed significantly to my education. Without

them my advancement to this point would not have been possible. I am deeply grateful

to them all.

Personal

I wish to sincerely thank my parents, Larry and Teressa Wing, and friends Gil Hartl,

Jacques Rossignol, Dan Rockwell, and Jason Schmurr for their support and encourage-

ment.



TABLE OF CONTENTS

Page

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 SYMBOLIC DYNAMICAL SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 SUBSTITUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Ergodicity and Mixing of Substitutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Frequency of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Structure of Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 RANDOMNESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Metric Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Topological Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Topological Entropy of Substitutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 ENTROPY, BALANCEDNESS, AND RECOVERABILITY . . . . . . . . . . . . . . . . . 65

5.1 Balancedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Recoverability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



TABLE OF CONTENTS (Continued)

Page

5.3 Recoverability and Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4 Entropy, Balancedness, and Recoverability - the Possibilities . . . . . . . . . . . . 82

6 A GEOMETRIC PICTURE OF SEQUENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.1 Complexity via Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7 A BEGINNING TO SYMBOLICS IN Z2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.1 Balancedness in Z2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8 CONCLUSION AND FUTURE DIRECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



NOTIONS OF COMPLEXITY IN SUBSTITUTION DYNAMICAL

SYSTEMS

1 INTRODUCTION

The concept of a symbolic dynamical system (that is, a set of infinite strings of

symbols under a certain continuous map, called the left shift map) has received much study

in the last several decades. Originally, it was realized that a partition of a space could

be coded under a transformation via the symbols that represent the partition elements,

called atoms. Iterating the transformation moves points between atoms, thus yielding

infinite strings of symbols. It became of great interest as to the connections (if any) of the

space of these strings to the general space at hand. Attention then shifted from studying

properties of a space to studying these spaces of infinite strings, of which it turned out

there are a great many questions that can be asked.

In this paper, we mainly explore a certain subclass of symbolic dynamical systems

called substitution dynamical systems. Substitutions provide a natural way to generate

sequences and the substitutive map that generates them aids in their study. We will

explore and further the results on several notions of complexity in these systems, called

entropy, k-balancedness, and recoverability. In particular, we compute positive entropy

(Section 4.2) and state some k-balancedness properties of a few specific (random) sub-

stitutions (Section 5.1). We also view certain sequences as subsets of Z2, stating several

properties and computing bounds on entropy in a specific example (Chapter 6).

The paper is organized as follows. We first discuss the notion of a symbolic dy-

namical system in general and review some basic properties it can have. We then focus
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on substitutions in Chapter 3 and define the so called FibMorse substitution (which orig-

inated this study). After these general concepts, we discuss the idea of randomness in

Chapter 4 and capture a way to quantify it (entropy). We attempt to give a helpful

heuristical view, after which we apply these ideas to compute this quantity for several

examples of substitution dynamical systems. We then study two different notions of how

complex a symbolic dynamical system can be in terms of k-balancedness (Section 5.1),

which tells us about how “uniform” a sequence is and recoverability (Section 5.2), which

tells us how “well we know it”. We then look briefly at how and if these notions are

connected. Finally in the last two chapters, we look at how a geometric view can study

complexity of sequences in general and to begin to see how balancedness looks in two

dimensions. We thank J. Rossignol and D. Rockwell for many helpful conversations.
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2 SYMBOLIC DYNAMICAL SYSTEMS

The study of spaces of infinite sequences of symbols, “symbolic dynamics”, was orig-

inally introduced as a means of studying more general dynamical systems. The techniques

involved eventually were applied to fields such as information theory, data compression,

cryptology, coding, and number theory. In this chapter, we define a symbolic dynamical

system and review some standard properties one may examine for such systems.

Definition 2.0.1 A dynamical system (X,T ) is a space X together with a transfor-

mation T : X → X. If X is a topological space and T is continuous, then (X,T ) is a

topological dynamical system.

Definition 2.0.2 Suppose (X,Σ, µ) is a measure space and T is Σ-measurable. Let P be

a finite collection of disjoint measurable sets of X of positive measure that cover X up to

a set of measure zero. Then (X,T ) = (X,Σ, µ, T ) is a measure-theoretical dynamical

system. P = {P1, . . . Pn} is a partition of X if X is a disjoint union of the Pi. We then

call (X,T ) = (X,Σ,P, µ, T ) a process.

Remark 2.0.1 In ergodic theory, T is often measure-preserving, meaning that if A ∈

Σ, then T−1 (A) ∈ Σ and µ
(
T−1 (A)

)
= µ (A) .

Standing Assumption: All of our measure spaces (X,µ) will be probability spaces

(that is, µ (X) = 1).

Throughout, denote by Z and Z+ the set of integers and the set of non-negative

integers, respectively. Let A = {0, 1, . . . , s− 1} be an alphabet. Elements of A are

called symbols or letters and elements of Ak =
k∏
i=1
A words of length k. Denote by
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A∗ = ∪k≥1Ak the set of all words on A. For i ∈ A and w ∈ A∗, let |w|i be the number of

times i occurs in w. Let

AZ+ =
∞∏
j=0

A = {x = (x0, x1, x2, · · · ) : xj ∈ A for all j ≥ 0}

be the set of all infinite-tuples on A. We will call elements of AZ+ infinite strings (or

strings) and denote x ∈ AZ+ by x0x1x2 . . .. A subword (or word) of length n of

x = x0x1x2 . . . ∈ AZ+ is a finite sequence of the form w = xixi+1 . . . xi+n−1. We also write

w = x[i,i+n−1]. In this case, we say that x contains w and denote this by w ∈ x. In this

case we denote the length of w by |w| = n. Similarly if x is only finite. If X ⊆ AZ+ ,

then w is a word in X if w is contained in some infinite string in X. The empty word

ε is the word having no symbols. The language of X is the set of all words in X.

Put the discrete topology on A and the product topology on AZ+ . We define a

metric dS on AZ+ given by

dS (x, y) =

 2−N if x 6= y

0 if x = y
,

where N = min {k ≥ 0 : xk 6= yk} . We will call dS the sequence metric.

Remark 2.0.2 Often, the set of bi-infinite sequences on A, defined by AZ =
∏∞
j=−∞A =

{x = . . . x−2x−1x0x1x2 · · · : xj ∈ A for all j ∈ Z} is used instead of AZ+ . Most all of the

work here can be naturally extended to AZ.

Lemma 2.0.1 dS metrizes the product topology on AZ+ .

Proof. Let x ∈ AN and B2−N (x) :=
{
y ∈ AN : dS (x, y) < 2−N

}
a dS-open neigh-

borhood of x. Let

U =

N−1∏
k=0

B 1
2

(x)×
∞∏
k=N

A.
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Then U is open in the product topology and x ∈ U ⊆ B2−N (x). Indeed, if y ∈ U then

d (xk, yk) <
1
2 for all 0 ≤ k ≤ N−1, where d is the discrete metric on A. But then xk = yk

for all 0 ≤ k ≤ N − 1 so that y ∈ B2−N (x) .

Conversely, suppose that U =
∞∏
k=0

Uk is a neighborhood of x, open in the product

topology so that Uk 6= A for at most finitely many k. Then N = max {k : Uk 6= A} exists

and is finite. We then have that x ∈ B2−N (x) ⊆ U since y ∈ B2−N (x) implies xk = yk

for all 0 ≤ k ≤ N − 1 and this means that d (xk, yk) = 0 for all 0 ≤ k ≤ N − 1 so that

y ∈ U (by the definition of N).

Definition 2.0.3 Define a transformation σ : AZ+ → AZ+, called the (left) shift on

AZ+, by

(σ (x))n = xn+1.

If X is any closed, shift-invariant (σ (X) ⊆ X) subset of AZ+, then (X,σ|X) is called

a symbolic dynamical system with alphabet A. If X = AZ+ , then (X,σ) is called

a full shift. If (X,σ) is a symbolic dynamical system, then any word in X is called

admissible and any word not in X is called forbidden.

It will follow from topological properties of “cylinder sets” (Definition 2.0.4) that

any symbolic dynamical system has at most countably many forbidden words.

Let u be an element of AZ+ or AZ. The orbit closure of u under the shift map

Orbσ (u) (with respect to the sequence metric dS) is a closed shift-invariant subset of the

full-shift, so is a symbolic dynamical system, called the dynamical system arising from

u. A more general construction of a symbolic dynamical system is the following.

Lemma 2.0.2 Let {wn} be a fixed sequence of words in A (that is, elements of A∗)

ordered by increasing length such that

lim sup
n→∞

|wn| =∞.



6

Let X be the set of all infinite sequences x ∈ AZ+ such that every finite subword of x is

contained in infinitely many wn’s. Then (X,σ|X) is a symbolic dynamical system.

Proof. By hypothesis, the lengths of the wn’s increase without bound so that X

is well-defined (that is, given `, there is a word of length ` in some wn). We show that

X is closed. So let z ∈ AZ+ be a limit point of X. Then there is a sequence
{
z(m)

}∞
m=1

in X such that z(m) → z as m → ∞. So, for every p ≥ 0, there is some M such that

ρ
(
z(m), z

)
< 2−p+1 whenever m ≥M so that z

(m)
k = zk for all 0 ≤ k ≤ p− 1. Now, let w

be a finite subword of z, say w = z[a,a+|w|−1]. Then for every m ≥ max {M,a+ |w| − 1} ,

z
(m)
k = zk for every 0 ≤ k ≤ max {M,a+ |w| − 1} − 1. That is, w is contained in z(m)

for every m ≥ max {M,a+ |w| − 1} . Since z(m) ∈ X for all m, we thusly have that w

is contained in infinitely many of the wn’s. Hence, X is closed. Now shift invariance is

clear: Any x ∈ X has the property that any finite subword of x is contained in infinitely

many of the wn’s. So, by definition of σ|X , any finite subword of σ|X (x) is contained in

infinitely many of the wn’s so that σ|X (x) ∈ X.

We will often write σ = (X,σ|X) when unambiguous.

Definition 2.0.4 Let (X,σ) be a symbolic dynamical system and w = w0w1 · · ·wn−1 an

admissible word of length n. The set

[w]i = {x ∈ X : xixi+1 · · ·xi+n−1 = w0w1 · · ·wn−1}

is called the cylinder set of w at position i. The sets [a]0 , where a ∈ A, are called the

time-zero sets.

Useful basic topological properties are the following (see, for example, [13], Chapter

6, for details). Cylinder sets are useful because they form a basis for the topology of

a symbolic dynamical system, which gives us that the shift-map σ is continuous. We

also have that (X,σ) is compact (which follows from the Tychonoff Theorem since A is

finite). Since a symbolic dynamical system X is closed, its complement is open and so is
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a countable union of cylinder sets since these form a basis for the topology. Thus, X has

at most countably many forbidden words.

It is a desirable property of a space to want it to be “indecomposable” in some sense,

or to be able to break it up in to “indecomposable pieces”. For example, if (X,T, µ) is a

measure-theoretic dynamical system, we might want the transformation T to move points

all throughout the space X and not miss any part of it. This leads to the following ideas.

A set E in a dynamical system (X,T ) is T -invariant if T (E) = E. If µ is a measure on

X, then E is called µ-invariant if µ
(
T−1E

)
= µ (E) . A (measure-theoretic) dynamical

system (X,µ, T ) is ergodic if the only T -invariant sets are metrically trivial. That is, if

E is µ-invariant, then µ (E) ∈ {0, 1} (recall that we are assuming (X) to be a probability

space). In this case, we also say that the transformation T is ergodic. A dynamical

system (or transformation) is uniquely ergodic if it has only one ergodic measure. A

dynamical system (X,T ) is minimal if the only closed T -invariant subsets are ∅ and X.

We note that if (X,µ, T ) is uniquely ergodic, then µ is an ergodic measure. Indeed,

suppose not. Then there is a T -invariant set E0 with 0 < µ (E0) < 1 and so we can define

measures µ1 and µ2 on X by

µ1 (B) :=
µ (E0 ∩B)

µ (E0)

and

µ2 (B) :=
µ ((X\E0) ∩B)

1− µ (E0)
.

Then, since T−1 (E0) = E0, µ1 and µ2 are both T -invariant probability measures on X,

at least one of which is distinct from µ. This contradicts the unicity of µ.

Lemma 2.0.3 A dynamical system (X,T ) is minimal if and only if every orbit is dense.

Proof. Suppose (X,T ) is minimal and x ∈ X. Orb (x) is T -invariant by the

continuity of T since y ∈ Orb (x) =⇒ y = limk→∞ T
nk (x) for some sequence {nk}∞k=1 so

that T (y) ∈ Orb (x). Therefore, Orb (x) = X by minimality. Conversely, let E ⊆ X be
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a closed and nonempty T -invariant set and let x ∈ X. Since every orbit is dense, given

e ∈ E, there is a sequence {nk}∞k=1 such that limk→∞ T
nk (e) = x. Then, by invariance

and continuity of T , {Tnk (e)} is a sequence in E converging to x. Since E is closed, this

means that x ∈ E. Therefore, X = E.

Example 2.0.1 The map x 7→ 2x (mod 1) on the unit interval is ergodic, by definition.

If α is irrational, then the map x 7→ x+α (mod 1) on the unit interval is minimal (orbits

are dense since α is irrational) and so is uniquely ergodic. The unique ergodic measure is

Lebesgue measure (see, for example, [25], Theorem 6.20).

Other basic properties orbits of points can have are as follows. A point x in a

dynamical system (X, ρ, T ) is periodic if there is an N such that TN (x) = x and even-

tually periodic if there is an N such that TN+k (x) = TN (x) for all k ≥ 0. Otherwise,

x is called aperiodic. x is almost periodic if, given ε > 0, there is some N = N (ε)

such that the set A =
{
n ≥ 1 : ρ

(
TN (x) , x

)
< ε
}

has gaps of size at most N (that is,

n,m ∈ A =⇒ |n−m| ≤ N). In this case, we say that x returns arbitrarily close to its

initial position with bounded gaps. If the gaps are not necessarily bounded, that is, if

there is an increasing sequence {nk}∞k=0 such that Tnk (x) = x, then x is recurrent.

Thus, if x is almost periodic, then it comes arbitrarily close to its initial position

under iterations of T. Note that for a sequence u in AZ+ or AZ, we have that u is

almost periodic if every word in u occurs in u with bounded gaps: Given B ∈ u, there

is a sequence {nk}∞k=1 such that σnk (u)[0,|B|−1] = B for all k ≥ 1. Note that almost

periodicity is stronger than minimality in that the gaps in a minimal sequence may not

be bounded. However, see Theorem 3.0.1, below.

Definition 2.0.5 A function f on a dynamical system (X,T ) is T -invariant if f (Tx) =

f (x) for almost all x ∈ X.
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Lemma 2.0.4 X = (X,µ, T ) is ergodic if and only if any T -invariant (complex-valued)

function on X is constant almost everywhere.

Proof. Suppose any T -invariant function is constant and let E be a T -invariant

set, so that T−1 (E) = E. If χE is the characteristic function on E, then

χE (Tx) =

 0 if Tx /∈ E

1 if Tx ∈ E

=

 0 if x /∈ T−1 (E) = E

1 if x ∈ T−1 (E) = E

= χE (x) .

Therefore, χE is T -invariant so that χE is constant on X. So either χE (x) = 0 for all

x ∈ X (in which case µE = 0) or χE (x) = 1 for all x ∈ X (in which case µE = µX = 1).

This shows that T is ergodic.

Conversely, suppose that T is ergodic and f invariant. Let Ey = {x ∈ X : f(x) > y}.

Since f is invariant, so is Ey for every y and therefore has measure 0 or 1 by ergodicity.

Now, if f is not constant almost everywhere, there is some Ey such that 0 < Ey < 1, a

contradiction.

Lemma 2.0.5 If (X,µ, T ) is minimal, then it is ergodic.

Proof. Let f : X −→ C be a continuous T -invariant function. Then by invariance,

f is constant on the orbit of any point in X. By minimality, every orbit is dense (Lemma

[2.0.3]). Hence, by continuity of f, f (x) = f (y) for every x, y ∈ X, which establishes

ergodicity by Lemma 2.0.4 .

Other basic questions about dynamical systems concern the following definitions:
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Definition 2.0.6 A dynamical system (X,µ, T ) is weakly mixing if, for all measurable

A,B ⊆ X, we have

lim
n→∞

1

n

n−1∑
j=0

∣∣µ (T−j (A) ∩B
)
− µ (A)µ (B)

∣∣ = 0.

Definition 2.0.7 A dynamical system (X,µ, T ) is strongly mixing if, for all measurable

A,B ⊆ X, we havelimn→∞ µ (T−n (A) ∩B) = µ (A)µ (B) .

Ergodicity and mixing tells us how “mixed up” a space is. We might instead be

interested in how “complicated” a space is. A nice survey of the following so-called com-

plexity function can be found in [8].

Definition 2.0.8 The complexity of a symbolic dynamical system (X,σ) is the function

p : Z+ → Z+ where p (n) is the number of distinct words of length n in X.

The idea is that the more distinct words of length n there are, the more “complex”

the system should be. Note that if uiui+1 . . . ui+n−1 is a word of length n occurring in u,

then uiui+1 . . . ui+n−1ui+n is a word of length n+1 occurring in u. So p is a non-decreasing

function.

Example 2.0.2 Let u be the constant sequence 0̄ = 00000 . . . . Then p (n) = 1 for all n.

Example 2.0.3 Let u be the concatenation of the positive integers, where each integer is

written in base 2. That is,

u = 0.1.10.11.100.101.110.111 . . . .

u is called the Champernowne sequence. Note that, for every n, u contains every

word (on {0, 1}) of length n. So p (n) = 2n.
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In terms of sequences, an element u of AZ+ is periodic if there is some d such that

uk+d = uk for all k and u is eventually periodic if there is some N and some d such that

uk+d = uk for all k ≥ N. In either case, d is called the period of u.

The following is a basic fact about periodic sequences. We refer the reader to [14],

chapter 1, for further details.

Proposition 2.0.1 Let u be a sequence on a finite alphabet A. If u is eventually periodic,

then p (n) is bounded and there is some n such that p (n) ≤ n. Conversely, if there is

some n such that p (n) ≤ n, then u is eventually periodic.

Proof. Suppose u is eventually periodic. Then there is some N ≥ 0 and some

period d ≥ 1 such that uk+d = uk for all k ≥ N. We may assume that N and d are the

smallest such. Then, for k ≥ N, the words

ukuk+1 . . . uk+d−1,

uk+1uk+2 . . . uk+d,

...

uk+d−1uk+d . . . uk+2d−1

are all distinct words of length d and any other word of length d occurring in uNuN+1 · · ·

equals one of these d words. There can be at mostN−1 words of length d in u0u1 · · ·uN+d−1.

Therefore, p (d) ≤ N + d− 1. Then, again by periodicity, p (N + d− 1) ≤ N + d− 1.

Conversely, suppose p (n) ≤ n for some n. Note that p (1) ≥ 2 or else u is constant (and

hence periodic). Then there is some k0 such that p (k0 + 1) = p (k0) . For if not, then

p (k + 1) > p (k) for all k (since p is increasing) so that p (k + 1) − p (k) ≥ 1 for all k.

Then for any n,

p (n) = p (1) +

n−1∑
k=1

p (k + 1)− p (k)

≥ 2 + (n− 1)

= n+ 1,
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contradicting our hypothesis. Now, since there are finitely many words of length k0

that occur in u, given i, there must exist some j > i such that uiui+1 . . . ui+k0−1 =

ujuj+1 . . . uj+k0−1. But for any word B of length k0 occurring in u, Ba must also occur in

u for some a ∈ A. But since p (k0 + 1) = p (k0) , there is only one such word Ba. Thus,

ui+k0 = uj+k0 . But then ui+1ui+2 . . . ui+k0 = uj+1uj+2 . . . uj+k0 is a word of length k0

and the same argument applies to show that ui+k0+1 = uj+k0+1. Continuing in this way,

we have that ui+k = uj+k for every k ≥ 0. Therefore, u is periodic with period j − i.

Define the height h (w) of a word w ∈ {0, 1}∗ to be the number of 1’s occurring

in w (that is, h (w) =
∑n−1

k=0 wk) and the ratio h(w)
|w| is called the slope of w. A sequence

u ∈ {0, 1}Z+ is balanced if for any integer n ≥ 1 and any two words w1 and w2 of length

n, we have |h (w1)− h (w2)| ≤ 1. This balancedness enables a bound on the complexity.

We will see later in 4.3.2 that the aperiodic balanced sequences are the ones with minimal

complexity.

It will be useful and interesting to talk about the slope of an infinite string.

Definition 2.0.9 If the limit

µ [1] = lim
n→∞

h (u0u1 · · ·un−1)

n

exists, then µ [1] is the frequency of 1 in u. We also call µ [1] the slope of u.

Remark 2.0.3 h (u0u1 · · ·un−1) ≤ n for any n and the sequence {h (u0u1 · · ·un−1)}∞n=1

of integers is non-decreasing.

Note that the slopes of sequences do not always exist. For example, if u ∈ {0, 1}Z+

is such that

an := h
(
u0 . . . u42

n−1−1

)
= 3

1
2

((−1)n+1) · 42n−1−1
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for n ≥ 1 (such a u exists since an is increasing and an < 42n−1
for all n so that the height

is always less than the length), then

h
(
u0 . . . u42n−1−1

)
42n−1 = 3

1
2

((−1)n+1) · 42n−1−1

42n−1

is the sequence 1
4 ,

3
4 ,

1
4 ,

3
4 , . . .. Thus, the limit limn→∞

h(u0...un−1)
n does not exist.

Example 2.0.4 It is known that the frequency of 1 in the Champernowne sequence is 1
2 .

This shows that the slope µ [1] does not necessarily have anything to do with the complexity

function p (n) since the Champernowne sequence has complexity p (n) = 2n.
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3 SUBSTITUTIONS

A lot of phenomena in nature are self-similar. That is, if we look close enough in a

certain object, we can sometimes see copies of that object inside itself. Such is the case

with fractals, for example. This phenomena also occurs in many crystalline structures. In

studying such structures, it is useful to be able to model such self-similarities. It turns out

that certain functions called “substitutions” allow us to model self-similar behavior study

the object’s properties using dynamical systems. We refer the reader to [21] for further

properties and details. Define word concatenation of two words w = w1w2 . . . wn and

v = v1v2 . . . vm as

wv = w1w2 . . . wnv = v1v2 . . . vm.

Let s ≥ 2 and let A = {0, . . . , s− 1} be a finite alphabet on s symbols. Any

function ω : A → A∗ is called a substitution on A. If there is an ` ∈ N such that

|ω (a)| = ` for all a ∈ A, then ω is said to be of constant length. We extend ω to a

map ω′ : A∗ → A∗ defined by

ω′ (w0w1 . . . wk−1) := ω (w0)ω (w1) . . . ω (wk−1) ,

which also extends to a map ω′′ : AZ+ → AZ+ defined by

ω′′ (w0w1w2 . . .) := ω (w0)ω (w1)ω (w2) . . . .

We shall abuse notation and write ω = ω′ = ω′′. For every n ≥ 2, we define ωn (a) :=

ω
(
ωn−1 (a)

)
, where a ∈ A and a map ωn : A∗ −→ A∗ by

ωn (w0w1 . . . wk−1) := ωn (w0)ωn (w1) . . . ωn (wk−1) .

This again extends to a map ωn : AZ+ → AZ+ defined by

ωn (w0w1w2 . . .) := ωn (w0)ωn (w1)ωn (w2) . . . .

We define substitutions similarly on AZ.
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Remark 3.0.4 Although the elements of the alphabet A formally consists of “symbols”,

we shall interpret these elements to be integers, when needed.

Given a ∈ A, if limn→∞ |ωn (a)| =∞ for every a ∈ A, there is an infinite sequence u

on A such that u[0,|ωn(a)|−1] = ωn (a) for all n ≥ 1. u is called a sequence generated by

ω, and is denoted by ω∞ (a) . Note that ω∞ (a) begins with ωn (a) for every n ∈ Z+. The

convention is to denote this a by 0. In this case, we also have ω∞ (0) = limn→∞ ω
n (0) ,

where convergence is with respect to the metric dS above. Any word in ω∞ (a) is called

ω-admissible. Note that a substitution may not give rise to an infinite sequence: For

example, ω :

 0 −→ 1

1 −→ 0
.

Standing Hypothesis: Unless otherwise stated, we shall henceforth assume that

limn→∞ |ωn (a)| =∞ for every a ∈ A and that such a symbol 0 exists.

Remark 3.0.5 If ω is irreducible and there is some a such that |ω (a)| ≥ 2, then the

sequence generated by ω is infinite and defined.

Definition 3.0.10 A substitution ω : A → A∗ is irreducible if, given a, b ∈ A, there

is some N = N (a, b) ≥ 0 such that ωN (a) contains b. ω is primitive if there is some

N ≥ 0 such that for every a, b ∈ A, ωN (a) contains b.

Definition 3.0.11 Let ω : A → A∗ be a substitution. Define the incidence matrix

M (ω) = {mij}|A|i,j=1 of ω to be the |A| × |A| matrix such that mij is the number of times

the symbol i occurs in ω (j) .

Remark 3.0.6 Note that the ij-entry of Mn is the number of times the symbol i occurs

in ωn(j).
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Lemma 3.0.6 ω is irreducible (primitive) if and only if its incidence matrix is irreducible

(primitive).

Proof. Let M = [m]ij be the incidence matrix of ω. Suppose ω is irreducible. Then

for each i, j ∈ {0, . . . .s− 1} , there is some N such that ωN (j) contains i. This means

by definition of M that
(

[m]ij

)
> 0. Therefore, M is irreducible. Conversely, if there is

some N such that
(

[m]ij

)N
> 0, then ωN (j) contains i. Therefore, ω is irreducible. The

same argument applies in the primitive case.

Example 3.0.5 Let A = {0, 1} and

ω1 :

 0 −→ 01

1 −→ 10
.

Then ω is primitive,

ω∞1 (0) = 0110100110010110 . . . ,

and

M (ω1) =

 1 1

1 1

 .
ω1 is called the Morse substitution and ω∞1 (0) the Morse sequence.

Example 3.0.6 Let A = {0, 1} and

ω2 :

 0 −→ 01

1 −→ 0
.

Then ω is primitive,

ω∞2 (0) = 01001010010010100101 . . . ,

and

M (ω2) =

 1 1

1 0

 .
ω2 is called the Fibonacci substitution and ω∞2 (0) the Fibonacci sequence.
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Example 3.0.7 Let A = {0, 1, 2} and

ω3 :


0 −→ 01

1 −→ 11

2 −→ 22

.

Then ω3 is not irreducible,

ω∞3 (0) = 011111111111 . . . ,

and

M (ω3) =


1 0 0

1 2 0

0 0 2

 .

Example 3.0.8 Let A = {0, 1} and

ω4 :

 0 −→ 0010

1 −→ 1
.

Then ω4 is not primitive,

ω∞4 (0) = 0010.0010.1.0010.0010.0010.1.0010.1.0010.0010 . . . ,

and

M (ω4) =

 3 1

1 0

 .
ω4 is called the Chacon substitution and ω∞4 (0) the Chacon sequence.

It is interesting to consider the possibility of a substitution mapping one symbol to

two (or more) different words, according to some probability distribution. We shall call

such things “random substitutions”. Suppose a word w occurs in a set with probability

p. Then we will denote this probability by w (p).
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Definition 3.0.12 Let A = {a0, . . . , as−1}. Define a discrete random map ρ : A → A∗ =

∪n≥1An by

ρ :



a0 7→


w1

0

(
p1

0

)
...

wi00

(
pi00

)

a1 7→


w1

1

(
p1

1

)
...

wi11

(
pi11

)
...

...

as−1 7→


w1
s−1

(
p1
s−1

)
...

w
is−1

s−1

(
p
is−1

s−1

)

,

where each wij ∈ A∗, 0 ≤ pij ≤ 1, and
∑ij

k=1 p
k
j = 1 for each j = 0, . . . , s − 1. That is,

the probability distribution of the random variable ρ(aj) is
(
p1
j , . . . , p

ij
j

)
. We call such a

random map ρ a random substitution on A.

For aj ∈ A, define the image of aj under ρ by Imρ (aj) :=
{
wij : 1 ≤ i ≤ ij

}
and

the image of ρ by ρ (A) := {Imρ (aj) : 0 ≤ j ≤ s− 1}. We wish to “generate” infinite

strings via random substitutions as before. For a word v = v1 . . . vk ∈ A∗, define

ρ (v) := ρ (v1) ρ (v2) · · · ρ (vk)

and denote by ρn the composition of n independent copies of ρ (that is, for each n ≥ 1,

inductively define ρn+1 (v) = ρ (ρn (v)), where ρ1 (v) := ρ (v)). Define set concatenation

ST for finite or countable sets S = {si} and T = {tj} as

ST = {sitj : si ∈ S, tj ∈ T}

(where sitj is word concatenation). Then we may define

Imρ (v) = Imρ (v1) Imρ (v2) · · · Imρ (vk)
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For n ≥ 2, inductively define ρn (A) :=
{
Imρn−1

(
wij

)
: 0 ≤ j ≤ s− 1, 1 ≤ i ≤ ij

}
to be

the image of ρn. Now, order the words in
∞⋃
n=0

ρn (A) by increasing length (and lexi-

cographically for words of the same length). Here, we define ρ0 (a) = a. Then apply

Lemma 2.0.2 to obtain a symbolic dynamical system Gρ∞. We call any element u of Gρ∞ a

sequence generated by ρ. Any word in u is called ρ-admissible.

Specific examples of random substitutions are considered in [17], [18], and [12]. In

this work, we study additional examples of random substitutions and various properties

concerning them. Of considerable interest is a sort of “intertwining” of the Fibonacci and

Morse substitutions (of which we will say more about in the sequel):

Example 3.0.9 Let 0 < p < 1 and q = 1− p. Define the (p, q)-Fibonacci-Morse Sub-

stitution (“(p, q)-FibMorse substitution” or “FibMorse substitution”) to be the random

substitution ζ : A −→ A∗ on the alphabet A = {0, 1} defined by

ζ :


0 7−→ 01

1 7−→

 0 (p)

10 (q)

.

We then have the sets

ζ (A) = {01, 0, 10} , ζ2 (A) = {010, 0110, 01, 001, 1001} ,

ζ3 (A) = {01001, 011001, 010001, 0101001, 0110001, 01101001, . . .}

etc. That is, ζn (A) consists of “all possible” words that can arise from applying n

independent copies of ζ to 0 or 1. The words obtained in ζn (A) arise from a finite sequence

of “Fibonacci choices” or “Morse choices”. We will call such a finite (or possible infinite)

sequence a driving sequence: Let σ be the shift transformation on X = {0, 1}Z+ and

ζ0, ζ1 the substitutions on Y = {0, 1}∗ =
⋃
n≥1
{0, 1}n given by

ζ0 :

 0 7−→ 01

1 7−→ 0
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and

ζ1 :

 0 7−→ 01

1 7−→ 10
.

Let τ : X × Y → X × Y be given by

τ (x,w) = (σ (x) , ζx0 (w)) .

Given a sequence x ∈ X, we obtain via τ a sequence u ∈ X from the second coordinate of

limn→∞ τ
n (x, 0). Then x is the driving sequence that produces u.

We have the following useful “set representation” of a random substitution on a

finite alphabet. Let ρ be a random substitution on A = {a0, . . . , as−1}. For each

i ∈ {0, . . . , s − 1}, let Ai0 = {ai}. Now, consider j ∈ {0, . . . , s− 1} and k ∈ {1, . . . , ij}

(where ij is as in the definition of ρ on page 18). Let a = aj ∈ A and write w = wkj as

w = w0w1w2 . . . wm−1 For each n ≥ 1, inductively define

Ajn+1 =

is−1⋃
`=1

Aw0
n Aw1

n Aw2
n · · ·Awm−1

n .

So, for example, Aj1 “mimics” Imρ (j) . As above, order the elements of
∞⋃
n≥0

A0
n by increas-

ing length (and then lexicographically) to obtain a symbolic dynamical system (SRρ∞, σ)

by Lemma 2.0.2 (where σ = σ|SRρ∞ is the restriction of the shift map). We call SRρ∞ the

set representation of the random substitution ρ.

Example 3.0.10 Let ζ by the FibMorse substitution and A0 = {0} , B0 = {1} . Induc-

tively define An+1 = AnBn and Bn+1 = BnAn ∪ An. Note that A0
n = An and A1

n = Bn.

Then

A1 = {01} , B1 = {10, 0}

A2 = {0110, 010} , B2 = {1001, 001, 01}

A3 = {01101001, 0110001, 011001, 0101001, 010001, 01001}

etc.
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Note that in this example, An consists of all words that “can arise” from ζn (0) .

For example, ζ2 (A) = A2 ∪B2. The next Proposition shows that this is true in general.

Proposition 3.0.2 Let ρ be a random substitution and Gρ∞ the set of all infinite sequences

generated by ρ. Then Gρ∞ = SRρ∞.

Proof. It suffices to show that Ajn = Imρn (A) for all n, j. We proceed by induction.

Indeed, the base case n = 0 is trivial by the definitions. Now suppose that for each j, there

is some N such that Ajn = Imρn (A) for all n ≤ N. If v ∈ AjN+1, then v = v0
Nv

1
N · · · v

s−1
N

for some viN ∈ A
wi
N = ImρN (wi) . This means that v ∈ ImρN+1 (A) . The reverse inclusion

is similar.

Remark 3.0.7 The FibMorse system thus defined is equivalent to the dynamical system

obtained from the Fibonacci-Morse substitution defined above (Definition 3.0.9).

We will see in Corollary 4.4.1 that the dynamical system arising from irreducible

substitutions are in a sense “deterministic”. First, we ask about some more “basic

ergodic” properties a dynamical system may have. For example, what does minimality

say for substitutions? We first note the following Theorem about sequences.

Theorem 3.0.1 ([21], Theorem 4.12) Let u ∈ AN and X = Orb (u). Then (X,σ) is

minimal if and only if u is almost periodic.

Proof. First, suppose that u is almost periodic but (X,σ) is not minimal. Then

there is some x ∈ X whose orbit under σ is not dense and so there is a word u0 . . . uj

in u that is not in x. Since x ∈ X = Orb (u), there is a sequence {nk}∞k=1 such that

limk→∞ σ
nk (u) = x. Since u is almost periodic, u0 . . . uj occurs in u with bounded gaps

so that unk+s . . . unk+s+j = u0 . . . uj for some s and infinitely many k. Now, by continuity
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of σ, limk→∞ σ
nk+s (u) = σs (x) . By definition of σ, this means that, for sufficiently large

k, unk+s . . . unk+s+j = xs . . . xs+j . But then u0 . . . uj = xs . . . xs+j ∈ x, a contradiction.

Conversely, suppose that (X,σ) is minimal. We will show that any word u0 . . . uj

in u occurs in u with bounded gaps. Let V be neighborhood of u (so that any se-

quence in V agrees with u for a long time). Then X = ∪n≥0σ
−n (V ) since σ−n (V ) =

{y : σn (y) ∈ V } . By compactness (as noted after Definition 2.0.4), there is a finite set

{nk}Nk=1 such that X = ∪Nk=1σ
−nk (V ) . Let M = max {nk : 1 ≤ k ≤ N} . Then any se-

quence enters V after at most M iterations of σ. In particular, one of the sequences

σj (u) , σj+1 (u) , . . . , σj+M (u) enters into V . Therefore, u is almost periodic.

Theorem 3.0.2 ([21], Theorem 5.2) Let u = ω∞ (a) be a sequence generated by a sub-

stitution ω such that ω (a) starts with a for some a ∈ A and let (X,σ) be the dynamical

system arising from u. (X,σ) is minimal if and only if ω is irreducible.

Proof. Suppose that (X,σ) is minimal. Then every word in u occurs in u with

bounded gaps (Theorem 3.0.1). In particular, a occurs with bounded gaps in u. Let

b ∈ A. Since u = ωn (u) for all n ≥ 0, (recall the Standing Hypothesis on page 15) u

contains ωn (b) for every n ≥ 0. Thus, since limn→∞ |ωn (b)| = ∞, there is some nb such

that ωnb (b) contains a.

Now suppose that for every b ∈ A, there is some nb ≥ 0 such that ωnb (b) contains

a. We will show that every word in u occurs in u with bounded gaps. For this, it is

enough to show that a occurs with bounded gaps. Indeed, if a occurs in u with bounded

gaps, then ωn (a) occurs in u with bounded gaps for every n. Then any word B will

occur in u with bounded gaps since B ∈ ωn (a) for n large enough. For each b ∈ A, let

Mb = min {n ≥ 0 : ωn (b) contains a} and let N = maxb∈A {Mb} . Note that, since ωnb (b)

contains a, by induction ωnb+k (b) contains a for every k ≥ 1. Then ωN (b) contains a

for every b ∈ A. Since u = ωN (u) = ωN (u0u1u2 · · · ) and ui ∈ A for all i, u is therefore

the concatenation of words of the form ωN (b) , each of which contains a. Hence, a occurs
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with bounded gaps, as was to be shown.

3.1 Ergodicity and Mixing of Substitutions

Do invariant probability measures exist for symbolic dynamical systems? If so, can

they be constructed, or is their existence just theoretical? Krylov and Bogolioulov answers

these questions in a general setting:

Theorem 3.1.1 (Krylov-Bogolioulov) Let T be a continuous transformation of a compact

metric space X. Then there is a T -invariant probability measure on X.

Proof. Fix x ∈ X and for each n ∈ N, define a measure µn on X by

µn (B) :=
1

n

n−1∑
k=0

χB

(
T kx

)
,

where χB is the characteristic function on B. Then any weak-* limit point of the sequence

{µn}∞n=1 is a T -invariant measure on X.

Alternatively, we can define the measure of a cylinder set [w] to be the frequency

with which w occurs. In fact, by Theorem 3.0.2, if the substitution is irreducible, then

this is the only way to define the measure:

Theorem 3.1.2 ([21], Theorem 5.13) If the dynamical system arising from a substi-

tution ω is minimal, then it is uniquely ergodic.

Ergodicity is, in a sense, the “weakest” notion of mixing in a system. On the other

hand, it turns out that primitive substitutions are not strongly mixing. Here is the idea.

Take, for example, the Fibonacci substitution sequence u = ω∞ (0). In this case, you

know that a 0 will always follow a 1. So the word ωn (0) will always eventually occur after
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ωn (1) and, moreover, the distance between their first symbols, sn = |ωn (0)| − |ωn (1)|, is

known. But then shifting ωn (0) to the left by sn places in u matches up with ωn (1) .

So if you looked at a cylinder set [w] of a word w ∈ ωn (1) , you will see w in σ−n ([w])

at the “same place” so that these cylinder sets are the same. This means they’re not

“approximately independent” and so we can not have strongly mixing.

Theorem 3.1.3 The dynamical system (X,µ, σ) arising from a primitive substitution ω

(so µ is an invariant probability measure) is not strongly mixing.

Proof. We include the proof originally due to Dekking and Keane [7]. For sim-

plicity, we assume ω is defined on the alphabet {0, 1}. Interchanging 0 and 1 if necessary,

µ ([00]) > 0, where µ is a σ-invariant probability measure (whose existence is guaran-

teed by Krylov-Bogolioulov, Theorem 3.1.1). Let w be a word in u, sn = |ωn (0)| and

Dn = [w]∩σ−sn ([w]) . If X were strongly mixing, then limn→∞ µ (Dn) = µ ([w])2. How-

ever, we will show that there exists a constant C > 0 that is independent of w such

that limn→∞ µ (Dn) ≥ Cµ ([w]) . This will show that X cannot be strongly mixing since

µ ([w]) can be made arbitrarily small by choosing w arbitrarily long (by Theorem 3.0.2

and Theorem 3.1.2).

Now, µ (Dn) is the limit of the occurrence frequency of two w’s at a distance sn in

the block ωN (0) , as N tends to infinity. That is, Dn ∈ ωN (0) if wBw ∈ ωN (0) for some

word B in u of length sn − |w| . Suppose that N is sufficiently bigger than n. Then

∣∣ωN (0)
∣∣
wBw

≥ |ωn (00)|wBw ·
∣∣ωN (0)

∣∣
ωn(00)

≥ |ωn (0)|w ·
∣∣ωN−n (0)

∣∣
00
,

since an occurrence of w in ωn (0) implies an occurrence of wBw in ωn (00), where B is

some block. Therefore, we have that

µ (Dn) ≥ lim
N→∞

1

sN
|ωn (0)|w ·

∣∣ωN−n (0)
∣∣
00
.
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Now, sk grows asymptotically with ρλkPF , where ρ > 0 and λPF > 1 is the Perron-

Frobenius eigenvalue of ω (see 3.2). Hence,

lim
N→∞

1

sN

∣∣ωN−n (0)
∣∣
00

= lim
N→∞

1

sN
µ ([00]) · sN−n

= µ ([00]) lim
N→∞

λ−nPF .

Thus,

lim
n→∞

µ (Dn) ≥ µ ([00]) lim inf
n→∞

|ωn (0)|w
sn

· sn
λnPF

= C · µ ([w]) ,

where C := µ ([00]) · ρ > 0 is independent of w.

Primitivity is not always required for mixing, however. For example, the dynamical

system arising from the Chacon substitution

ω4 :

 0 −→ 0010

1 −→ 1

turns out to be weakly mixing but not strongly mixing. See [15], Lemmas 5.5.1 and 5.5.4

for details.

3.2 Frequency of Symbols

It can be useful and interesting to know the frequencies with which the symbols in

a substitution occur. It is a consequence of the Perron-Frobenius Theorem on primitive

matrices that we can calculate this using the incidence matrix. We refer the reader to [21]

or [13] for proofs and details.

Theorem 3.2.1 (Perron-Frobenius) Let M be a non-zero primitive matrix with non-

negative entries. Then M has a eigenvector vPF with positive entries. There is a positive
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real λPF > 0 corresponding to vPF that has both geometric and algebraic multiplicity one.

Furthermore, if λ is any other eigenvalue for M , then |λ| < λPF .

We call vPF and λPF the Perron-Frobenius eigenvector and Perron-Frobenius

eigenvalue, respectively. As a corollary to Perron-Frobenius, we have (see [21], Proposi-

tion 5.9)

Theorem 3.2.2 Let ω be a primitive substitution and let M = M(ω) be its incidence

matrix. Then for every a, i ∈ A, the limit

lim
n→∞

|ωn (a)|i
|ωn (a)|

= vi

exists and is independent of a. Furthermore, vi > 0 is precisely the ith coordinate of the

Perron-Frobenius eigenvector vPF of M , normalized to one (so that the sum of the entries

of vPF of M is 1).

We will also use the similar consequence (see [21]) of Perron-Frobenius that

lim
n→∞

|ωn (a)|
λnPF

= ca > 0, (3.2.1)

where ca is a constant that involves the Perron-Frobenius eigenvector.

Example 3.2.1 Let ω1 be the Morse substitution as in Example 3.0.5. Then the inci-

dence matrix of ω1 has Perron-Frobenius eigenvector vPF = (1, 1) (corresponding to the

eigenvalue λPF = 2, which is
(

1
2 ,

1
2

)
when normalized to 1. This means that both the

symbols 0 and 1 occur with frequency 1
2 in ω∞1 (0) .

Example 3.2.2 Let ω2 be the Fibonacci substitution as in Example 3.0.6. Let Φ = 1+
√

5
2

and ϕ = 1−
√

5
2 be the eigenvalues of the incidence matrix of ω2. Then vPF = (Φ, 1)

corresponding to λPF = Φ. vPF normalized to 1 is the vector
(
Φ− 1, ϕ2

)
≈ (0.62, 0.38) .

So the symbol 0 occurs about 62% and 1 occurs about 38% of the time in ω∞2 (0) .
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Example 3.2.3 Let ζ be the (p, q)-FibMorse substitution as in Example 3.0.9. The

incidence matrix of ζ is

M = M (ζ) =

 1 1

1 q

 .
M has Perron-Frobenius eigenvector

vPF =

(
1− q +

√
q2 − 2q + 5

2
, 1

)

corresponding to the eigenvalue λPF = 1
2

(
1 + q +

√
q2 − 2q + 5

)
. Normalizing vPF to 1

yields the vector

fPF =

(
−1− q +

√
q2 − 2q + 5

2− 2q
,
3− q −

√
−2q + q2 + 5

2− 2q

)
.

Now, when q = 0, fPF =
(
Φ− 1, ϕ2

)
which agrees with the fact that in this case ζ is the

Fibonacci substitution. On the other hand, when q = 1,

fPF =

(
lim
q→1−

−1− q +
√
q2 − 2q + 5

2− 2q
, lim
q→1−

3− q −
√
−2q + q2 + 5

2− 2q

)

=

(
1

2
,
1

2

)
,

as expected since, in this case, ζ is the Morse substitution.

Example 3.2.4 Define the random substitution α by

α :



0 7−→

 10 1
2

02 1
2

1 7−→ 03

2 7−→ 04

3 7−→ 3

4 7−→ 4
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We have that

M = M (α) =



1 1 1 0 0

1
2 0 0 0 0

1
2 0 0 0 0

0 1 0 1 0

0 0 1 0 1


has Perron eigenvalue λPF = 1+

√
5

2 with normalized Perron eigenvector

vPF =



3−
√

5
2

√
5−2
2

√
5−2
2

3−
√

5
4

3−
√

5
4


≈



0.38197

0.11803

0.11803

0.19098

0.19098


.

3.3 Structure of Words

It can be beneficial to determine the structure of symbolic systems, such as knowing

what admissible and forbidden words look like. Towards this end, the set representation

of a random substitution can be useful.

Definition 3.3.1 A forbidden word w of length n is minimal if it contains no forbidden

word of length < n.

Example 3.3.1 Let ζ be the FibMorse substitution and An the sets that generate its set

representation (as in Example 3.0.10). We show that neither w1 = 111 nor w2 = 11011

are contained in any element of any An.

By definition of Ak = Ak−1Bk−1 and Bk = (Bk−1Ak−1)∪Ak−1, all words in ∪n An

start the same (up to the kth Fibonacci number). Suppose w1 ∈ An. Then, by definition
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of Ak and Bk, there is some k ≥ 0 and some x ∈ Ak and y ∈ Bk such that w1 = xy where

(A) x ends in 1 and y starts with 11, or (B) x ends in 11 and y starts with 1. The proofs

for both cases and for w2 are all similar. We provide a proof for case (A).

Consider the case (A) where x ends in 1 and y starts with 11. By definition of Bk, y

starts with 11 means that either some element of some Bm starts with 11 or some element

of some Am starts with 11. By induction, since the lengths of elements of the A’s and

B’s grow, we only need to look at m = 2. But no element of B2 or of A2 begins with 11.

This result about the minimal forbidden words w1 = 111 and w2 = 11011 in terms

of ζ translates to the following:

Corollary 3.3.1 Any minimal forbidden word contains or extends to a word of either the

form ζk (111) or of the form ζk (11011) .

For example, the minimal forbidden word 110101 extends to 1101010, which contains

ζ (111).

The method of analyzing the set representation of a random substitution can also

yield information about admissible words.

Example 3.3.2 Let w be an admissible word in the FibMorse substitution. We show

that if |w| is sufficiently large, then w must contain one of the following 6 words:

a = 0110010,

b = 001010,

c = 1010010,

d = 01100110,

e = 0010110,
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or

f = 10100110.

Let w be admissible. Then w is contained in some element of
⋃
n
An, where An =

An−1Bn−1 This means that there is an N such that w is contained in some element

of AN . Without loss of generality, we can assume N is the smallest such that w is

not contained in an element of AN−1 (that is, w ”breaks up” over AN−1 and BN−1).

Now, by inspection, we see that any element of any An ends in either 0110, 001, or

1010 and any element of any Bn starts with either 010 or 0110 (for n ≥ 4). Thus,

since AN = AN−1BN−1, either w must contain (at least) one of the 6 possible words

{a = 0110.010, b = 001.010, c = 1010.010, d = 0110.0110, e = 001.0110, f = 1010.0110} , or

some k-extension of w (that is, an extension by k-letters on the left and/or right) contains

one of {a, b, c, d, e, f}. Therefore, if |w| is sufficiently large (ie, large enough to ”be” a

k-extension), w must contain one of {a, b, c, d, e, f} .

How do we know if |w| is large enough? If we have a word w, we’d like to just

check if it contains one of {a, b, c, d, e, f} for admissability. If we do not find one of those

contained in w, one of the words a-f might be contained in an extension of w. Since this

is a finite list and the lengths of these words is small, it is not too difficult to get a lower

bound on how long w needs to be to do this simple test. Any of the words a, b, c, d, e, or

f will show up infinitely often, so some k-extension will contain it. Suppose w breaks up

over AN−1 and BN−1 (that is, suppose w ∈ uv where u ∈ AN−1 and v ∈ BN−1). Then,

since the longest word in {a, b, c, d, e, f} has 8 symbols, either a 7-extension on the right

or a 7-extension on the left (or a combination totalling 7 symbols) contains w. Since we

don’t know if it needs to be extended on the right or left (or both), |w| ≥ 14 is large

enough to contain one of {a, b, c, d, e, f} .

We can generalize this reasoning. We took the length `3 of the longest string in A3

and said that a (`3 − 1)-extension on either the right or left (or a combination totalling

`3 − 1 symbols) must contain w. Then |w| ≥ 2 (`3 − 1) is long enough to contain one of
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{a, b, c, d, e, f}. The length of the longest string in AN is 2N . So |w| ≥ 2
(
2N − 1

)
is long

enough to ensure that w contains an element of AN . Thus, if w be an admissible word

in the FibMorse substitution of length at least 6, then w must contain an element of AN ,

where N ≤ log2

(
1
2 |w|+ 1

)
.

Example 3.3.3 Any word of length 14 must contain an element of A3 and any word of

length 30 must contain an element of A4. However, the word 100 does not contain an

element of A1 = {01} (001 is not of length at least 6, which is the smallest length of the

words a - f above).
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4 RANDOMNESS

In many areas of mathematics and science, there are certain notions of “random-

ness”. This is a way to quantify to what degree something is disordered. For example,

if one were to flip a fair coin, then the probability of seeing a heads is 1
2 and intuitively

there is a lot of randomness involved in whether a heads or tails comes up. Much more

so than if flipping a coin in which there is a 99
100 chance of seeing a heads and a 1

100 chance

of seeing a tails. Indeed, with the latter biased coin, there is hardly any amount of ran-

domness involved, as it is almost certain of seeing a heads. That is, there is almost no

uncertainty in seeing a heads come up. We would like to apply and quantify the idea of

randomness to substitutions. We have already introduced the Fibonacci substitution and

the Morse substitution, and we will see that these (indeed, all primitive) substitutions are

not random at all in the following sense: Suppose, for example, we flip a coin once every

second forever, and the coin is biased so that when we write down the sequence of heads

and tails, we get the Fibonacci sequence that is generated by the Fibonacci substitution

(interpreting heads as 0 and tails as 1). Then a coin flip is not random at all in that we

already know what is going to come up (assuming we know where we are in the Fibonacci

sequence). In this sense, we will show later that any sequence arising from a primitive

substitution is not random. On the other hand, consider the FibMorse Substitution

ζ :


0 7−→ 01

1 7−→

 0 with probability p

10 with probability q

,

defined above. Then it seems that there is then some randomness involved in generating

an infinite string via ζ. This is the content of Theorem 4.2.2 below. But first, let’s

understand a little more about the precise nature of randomness.
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4.1 Entropy

Entropy is an old concept in science, being initiated in 1803 by the French mathe-

matician Lazare Carnot. The concept is generally interpreted as the amount of disorder

or randomness in a system. In 1948, Claude Shannon [23] investigated this concept in

information transmission (this theory was later made more precise in 1953 by Khinchine

[10]). He wanted to somehow quantify the amount of information gained or uncertainty

removed when bits of information was transmitted. From these ideas, he introduced the

idea of entropy in information theory, a concept that was abstracted to dynamical systems

in ergodic theory. In the next section, we discuss and define entropy (we refer the reader

to [20] or [25] for further details). We then use a method to calculate it for several specific

random substitutions (beyond previously known results).

4.2 Metric Entropy

There are many things in nature and science that are “random” or “unpredictable”.

We would like a way to measure this randomness. For example, flipping a fair coin is far

more unpredictable than flipping a coin weighted so that heads come up 95% of the time

and tails only 5% of the time. The fair coin seems more random than the weighted one

and so a measure of “randomness” should be greater for the former than the latter. The

coin can be modeled by a random variable Y taking values in {H,T} with probability

distribution
(

1
2 ,

1
2

)
(for the fair coin) or (0.95, 0.5) (for the weighted coin).

We now view randomness as an amount of uncertainty or “information gained”. Fix

a point c in the unit interval J = [0, 1] and divide J into two halves of equal length (call

the left half H for Heads and the right half T for Tails). If someone tells you which half

of J that c0 is in, then you’ve gained one bit (log2 2) of information about the location

of c0. Now divide the half that c0 is in into halves (so we’ve essentially divided J into 4
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subintervals of equal lengths, call them HH, HT, TH, TT ). If someone tells you which

“new half” (i.e., quarter of J) that c0 is in, you have gained two bits (log2 4) of information

about the location of c0. In general, divide J into 2n subintervals of lengths 1
2n each. If

someone tells you which of the subintervals that c0 is in, you have gained n = log2 (2n)

bits of information about the location of c0. Flipping a fair coin n times corresponds to

a person telling you which subinterval c0 is in. So, for example, a sequence of n random

variables taking values in {H,T}, each with probability distribution
(

1
2 ,

1
2

)
gives you n

bits of information.

We can generalize these ideas as follows. Let µ be a measure on J and let P =

{P1, . . . , PN} partition J into subintervals of lengths µ (Pi) (i = 1, . . . , N). If someone

tells you that c0 ∈ Pi, then you have gained log2
1

µ(Pi))
= − log2 µ (Pi) bits of information

about the location of c0. In general, for any partition P = {P1, . . . , PN} (all of positive

measure) of a probability space (X,µ) , define the information content of the partition

element Pi to be H (Pi) = − logµ (Pi). If we think of the partition elements as events

(for example, the outcomes of a random variable), then heuristically this definition makes

sense because it matches what properties a “measure of information” should have: (a) It

should be non-negative; (b) If the probability of an event Pi is one, then we should get no

information from that event; (c) If two events occur independently, then the information

gained from both evens should be the sum of the individual events; and (d) If we change

the probability of an even occurring a little bit, then the amount of information in that

even should only change by a little bit (that is, a measure of information should be

“continuous”).

For a parition P = {P1, . . . , PN}, how should we quantify the total amount of

information in P? A natural way would be to average the amount of information in each

partition element Pi. Since each Pi may have different measures, we therefore would ask

for a weighted average of the information content of all the partition elements. Thus, we

define:
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Definition 4.2.1 The entropy of a finite partition P = {P1, . . . , PN} of a measure

space (X,µ) is defined to be

H (P) = −
N∑
i=1

µ (Pi) log2 µ (Pi) ,

where we define 0 log 0 = 0.

Remark 4.2.1 The base of the logarithm is somewhat arbitrary. Sometimes the base is 10

or e. A base of 2 is natural because it can count the number of “Yes-No” decisions. It is

because of this arbitrarity of base that we are not requiring (X,µ) to be a probability space.

Entropy is usually just “normalized to 1”, but can differ up to a constant (depending on

the base). Henceforth we will often disregard the base.

Remark 4.2.2 Originally, entropy was denoted by the upper case Greek letter eta, H.

But then H was used for other things in mathematical theory, and so the lower case

Roman equivalent was used.

So the entropy of a partition is the (weighted) average amount of information we

get from an event in the partition. Note that by Jensen’s Inequality ([20], p. 230), H (P)

is maximal when µ (Pi) = 1
N for all i. For example, viewing the flip of a fair coin as the

unit interval J divided into equal halves, the average amount of information in this coin

flip is log2 2 = 1 bit whereas the average amount of information in flipping the unfair

coin having probability distribution (0.95, 0.05) is 0.2864 bits (implying that there is less

information in a coin in which we are not surprised to see a heads most of the time).

These ideas lead to:

Definition 4.2.2 The entropy of the random variable Y is

H (Y ) = −
N∑
i=1

pi log2 pi,

where (p1, . . . , pN ) is the probability distribution of Y.
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Let us now take a different (though related) useful heuristic for entropy: Shannon’s

entropy as applied to information transmission (cf [20]). Imagine a source, such as

a ticker-tape, which prints out a symbol from a finite set A of symbols, of cardinality

s. Suppose that each symbol ai ∈ A has a certain probability pi (so that
∑

i pi = 1)

of being printed by the ticker-tape. Then there is a certain amount of “surprise”, or

information gained, from reading that symbol. So we would like to measure the amount

of “information gained”. If the event that a symbol is printed is independent of what

symbols came before it, then the measurement function of the quantity we’re looking for

should be additive at the least. We would also want this function to be continuous since if

the probability of a symbol decreases a little, then the surprise in seeing it should increase

a little. In view of this, again the logarithm is the natural choice. That is, we might

say that the information content of the event of seeing the symbol ai is − log2 pi. In

this case, we might think to “average” the information content of each symbol. Thus, we

define the average amount of information per symbol by the quantity

H = −
∑
ai∈A

pi log2 pi.

Example 4.2.1 Let {Xn}∞n=0 be an i.i.d. (independent and identically distributed) and

equiprobable stochastic process on {0, 1} . Then

H = − (Pr (Xn = 0) log Pr (Xn = 0) + Pr (Xn = 1) log Pr (Xn = 1))

= log 2.

This particular process is called a Bernoulli coin flip because it models an exper-

imenter flipping a fair coin each day forever (see Example 4.2.2).

Again we see that entropy H satisfies two other properties we would want an “infor-

mation function” to have: If pi = 1 and pj = 0 for all j 6= i, then H = 0. That is, there is

no information gained if we know that only one of the symbols will ever be printed. Also,

it can be shown ([20], p. 230) by Jensen’s Inequality that H is a maximum when pi = 1
s
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for all i. Now, it may happen that the event that some symbol ai is printed depends

on some number of symbols printed before it. In this case, we are considering words of

symbols of length n, each word occurring with a certain probability. Letting Ωn be the

collection of all words of length n, the quantity

− 1

n

∑
w∈Ωn

Pr (w) log2 P (w) (4.2.1)

is the average amount of information in reading a word w (where Pr (w) is the probability

that the word w occurs). This leads to the following definition.

Definition 4.2.3 The entropy of the source is defined to be

h = lim
n→∞

− 1

n

∑
w∈Ωn

Pr (w) log2 Pr (w) . (4.2.2)

So h can be interpreted as the average amount of information gained in reading a

symbol from a ticker-tape that prints forever. How does this translate in ergodic theory?

Note that a ticker-tape that prints forever is printing out an infinite string x of elements of

A, that is, an element of AZ+ (or AZ) and the printing of a symbol is just an application

of the shift map σ on x. Now consider a partition P = {P1, P2, . . . , Pn} of a measure-

theoretical dynamical system (X,Σ, µ, T ) . Given x0 ∈ X, we may produce an element x

of AZ+ by letting xi = Pj if T ix0 ∈ Pj for all i ≥ 0. The x ∈ AZ+ obtained in this way

is called the coding of x0 by T (also known as the (P, T )-name of x0). If we consider

this coding as a “source”, the average amount of information gained in seeing a symbol

in x is just the quantity h in 4.2.2. To put this in terms of our coding, first define the

join of two partitions P and Q to be P ∨ Q = {P ∩Q : P ∈ P, Q ∈ Q}. Suppose a word

Pj0Pj1 · · ·Pjn−1 of length n appears at the ith place in x. Then T i (x0) ∈ Pj0 , T i+1 (x0) ∈

Pj1 , . . . , T i+n−1 (x0) ∈ Pjn−1 since T i+n (x0) ∈ Pjn if and only if T i (x0) ∈ T−n (Pjn) for

all n. So T i (x0) ∈ Pj0 ∩ T−1 (Pj1)∩ · · · ∩ T−n+1
(
Pjn−1

)
. Thus, by the definition 4.2.1 of

the entropy of a partition, the quantity 4.2.1 becomes

1

n
H
(
P ∨ T −1 (P) ∨ · · · ∨ T−n+1 (P)

)
,
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where T−n (P) is the finite partition {T−n (P ) : P ∈ P}. We may think of a partition Q

of X has a set of possible outcomes (events) of an experiment and P ∨ Q as the possible

outcomes of a joint experiment. In this case, H (Q) is a measurement in the amount of

surprise, or information gained, in performing the experiment and H (P ∨Q) that of the

joint experiment. As noted above, H (Q) is maximal when µ (Q) = 1
|Q| for each Q ∈ Q.

If µ is a probability measure, this means we are asking for each Q ∈ Q to occur with the

same frequency, which heuristically means that we should have “maximal surprise”.

We will show in Lemma 4.2.2 that the following limit exists for a measure-preserving

transformation T .

Definition 4.2.4 The metric entropy hµ (P, T ) of the partition P of the dynamical

system (X,P, µ, T ) is

hµ (P, T ) = h (P, T ) := lim
n→∞

1

n
H

(
n−1∨
i=0

T−i (P)

)
.

This represents the average information gained in knowing into which element of

P that T moves points of X. Equivalently, h (P, T ) represents the average amount of

information gained in reading an element of P. If the measure of a certain partition

element P is small, then we should gain more information (and more surprise) in knowing

that T (x) ∈ P . However, if too many sets in P are “too big”, then we may not gain much

information at all in knowing where T moves points. We therefore would like to consider

all possible partitions if we are to measure how much information is gained in knowing

where T moves points. We thus arrive at the following definition:

Definition 4.2.5 The metric entropy hµ (X,T ) of the dynamical system (X,P, µ, T )

is

hµ (X,T ) = h (X,T ) := sup
P
hµ (P, T ) ,

where the supremum is taken over all partitions P of X. If hµ (X,σ) = 0, then we call

the dynamical system (X,T ) deterministic.
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We can interpret hµ (X) as the average amount of information gained in knowing

where T moves points of X. In order to show that the limit hµ (X) exists, we need a

property of the entropy of partitions and an analytical Lemma.

Proposition 4.2.1 If P and Q are finite partitions of X, then H (P ∨Q) ≤ H (P) +

H (Q) .

Proof. We have

−H (P ∨Q) =
∑

P∩Q∈P∨Q
µ (P ∩Q) logµ (P ∩Q)

=
∑
P,Q

µ (P ∩Q) logµ (P ∩Q)

=
∑
P,Q

µ (P ∩Q) log

(
µP

µ (P ∩Q)

µP

)
=

∑
P,Q

µ (P ∩Q) logµP +
∑
P,Q

µ (P ∩Q) log
µ (P ∩Q)

µP
.

For each P ∈ P, we have that
∑

Q µ (P ∩Q) = µ (P ) since the sets in Q are disjoint and

cover X. So

−H (P ∨Q) =
∑
P

µP logµP +
∑
P,Q

µ (P ∩Q) log
µ (P ∩Q)

µP
.

Now, let

ϕ (x) =

 0 if x = 0

x log x if x 6= 0
.

ϕ is continuous and concave on [0,∞). Then by Jensen’s Inequality,

ϕ (ax+ by) ≤ aϕ (x) + bϕ (y)
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for all x, y ∈ [0,∞) and a, b ≥ 0 such that a+ b = 1. Then, for each Q ∈ Q,

µ (Q) logµ (Q) = ϕ (µQ)

= ϕ

(∑
P

µP
µ (P ∩Q)

µP

)

≤
∑
P

µP · ϕ
(
µ (P ∩Q)

µP

)
=

∑
P

µ (P ∩Q) log
µ (P ∩Q)

µP
.

Thus, summing over all Q ∈ Q, we have that∑
Q

µ (Q) logµ (Q) ≤
∑
P,Q

µ (P ∩Q) log
µ (P ∩Q)

µP

so that

−H (P ∨Q) ≥
∑
P

µP logµP +
∑
Q

µ (Q) logµ (Q)

= −H (P)−H (Q)

and thus

H (P ∨Q) ≤ H (P) +H (Q) ,

as desired.

This makes sense if we think in terms of experiments: We should gain more infor-

mation from performing experiment P and Q separately than if we perform P and Q as

one experiment.

A sequence {an} of real numbers is subadditive if an+m ≤ an + am for all n,m.

Lemma 4.2.1 If {an} is a subadditive sequence, then limn→∞
an
n exists and equals L :=

infn
an
n .

Proof. Fix m and let n ≥ m. Write n = km + ` for some k ≥ 0 and 0 ≤ ` < m.

Then

an ≤ kam + a`
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by subadditivity. As n → ∞, k → ∞ so that n
k = m + `

k → m since m is fixed and

0 ≤ ` < m. Thus,

lim sup
n→∞

an
n
≤ lim sup

n→∞

k

n
am + lim sup

n→∞

a`
n

=
am
m
.

Since m was arbitrary, we then have that

lim inf
n→∞

an
n
≤ lim sup

n→∞

an
n

≤ inf
n≥1

an
n

≤ lim inf
n→∞

an
n

since lim infn→∞
an
n = limn→∞

(
infk≥n

ak
k

)
. Therefore,

lim
n→∞

an
n

= lim inf
n→∞

an
n

= L.

Remark 4.2.3 A similar proof shows that limn→∞
an
n = lim supn→∞

an
n if {an} is su-

peradditive (that is, an+m ≥ an + am for all n,m).

Proposition 4.2.2 If T is measure-preserving, then the limit hµ (X,T ) exists.

Proof. We show that the sequence {an}∞n=1 defined by

an = H

(
n−1∨
i=0

T−i (P)

)
is subadditive. Indeed, we have

an+m = H

(
n+m−1∨
i=0

T−i (P)

)

≤ H

(
n−1∨
i=0

T−i (P)

)
+H

(
n+m−1∨
i=n

T−i (P)

)
(4.2.3)

= H

(
n−1∨
i=0

T−i (P)

)
+H

(
m−1∨
i=0

T−i (P)

)
(4.2.4)

= an + am.
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Equation 4.2.3 is true because of Proposition 4.2.1 and equation 4.2.4 is true because T

is measure-preserving. Therefore, hµ (T ) exists by Lemma 4.2.1.

In general, computing entropy can be very difficult since one must consider all

possible partitions of the dynamical system. In certain cases, however, we only need one

“nice” partition. This would be a partition which captures all the information at once.

Definition 4.2.6 A partition P of a dynamical system (X,Σ, T ) is called a generator

of (X,Σ, T ) if
∞∨

i=−∞
T i (P) = Σ.

In this case, we have the following useful result (see, for example, [20] for a proof).

Theorem 4.2.1 (Kolmogorov-Sinai) If P is a generator of (X,Σ, µ, T ) , then

hµ (X,T ) = hµ (P, T ) .

One of the great uses of entropy is that it is invariant under isomorphism (see [25],

Theorem 4.11).

Proposition 4.2.3 Let (X,P, µ, T ) and (Y,Q, ν, S) be isomorphic measure-theoretic dy-

namical systems. Then hµ (T ) = hν (S) .

Example 4.2.2 Let A = {a0, a1, . . . , as−1} be a finite alphabet and assign to each ai a

“weight” pi, such that pi ≥ 0 for all i and
∑

i pi = 1 (we think of each ai occurring

with probability pi). Let X = AZ+, let T be the left-shift on X, and let µ be product

measure (so that µ [ai0ai1ai2 · · · aik ] = pi0pi1pi2 · · · pik). The dynamical system (X,µ, T )

is called a Bernoulli shift, denoted B (p0, p1, . . . ps−1) . We think of B
(

1
2 ,

1
2

)
as modeling

an experimenter flipping a fair coin every day for eternity. The Bernoulli shifts B
(

1
2 ,

1
2

)
and B

(
1
3 ,

1
3 ,

1
3

)
are not isomorphic since h

(
B
(

1
2 ,

1
2

))
= log 2 and h

(
B
(

1
3 ,

1
3 ,

1
3

))
= log 3.
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Entropy is not in general a complete invariant. That is, two dynamical systems

with the same entropy may not be isomorphic. For example, let Xm be a space with

exactly m points and let Tm : Xm → Xm be a permutation of these points. Then Tm and

Tn are not isomorphic for all m 6= n. However, if we assign each singleton in Xm the same

measure, then the entropy of (Xm, Tm) is zero for all m. In 1970 [19], Donald Ornstein

showed that entropy is a complete invariant for the class of Bernoulli shifts (see also [24]

for a detailed exposition or [20] for a sketch of the theory). It is interesting to note that

it was unknown for a long time whether B1 = B
(

1
4 ,

1
4 ,

1
4 ,

1
4

)
and B2 = B

(
1
2 ,

1
8 ,

1
8 ,

1
8 ,

1
8

)
,

both having entropy 2 log 2, were isomorphic. In 1959, Melshalkin [16] constructed an

isomorphism between B1 and B2. However, it is this “Ornstein Isomorphism Theorem”

that answered the general case affirmatively.

A method of computation of entropy

What do the definitions involved in entropy say in the case that (X,T ) is a symbolic

dynamical system? Let Cn denote the set of all length-n cylinder sets at 0. That is, Cn

is the set of all cylinder sets [w] := {x ∈ X : x0x1 . . . xn−1 = w} where |w| = n. C0 is a

generating partition. So by Kolmogorov-Sinai,

hµ (P, T ) = lim
n→∞

1

n
H

(
n−1∨
i=0

T−i (C0)

)
.

Now, P ∨ T−1 (P) ∨ · · · ∨ T−n+1 (P) = Cn and so

H (Cn) = −
∑
C∈Cn

µC logµC

is the weighted average amount of information content we get in a word of length n.

Dividing this by n then gives us the average amount of information content per symbol

in a word of length n. Therefore,

hµ (P, T ) = lim
n→∞

1

n
H (Cn) (4.2.5)

is the average amount of information per symbol in an infinite string in X.
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In [12] and [17], the entropy of a randomized variant of the Fibonacci substitution

(which is similar to the FibMorse substitution defined above) is considered and bounds

given. This example is generalized in [18]. We now further this work to compute exactly

the entropy for several examples of random substitutions and compute a positive lower

bound for FibMorse. The method that accomplishes this is to use equation 4.2.5 and note

that H (Cn) is the probability distribution of a certain random variable.

Example 4.2.3 For fixed p and q = 1− p, define the Bridge Substitution βp,q as

β :



0 7−→

 010 (p)

020 (q)

1 7−→

 101 (p)

121 (q)

2 7−→

 202 (p)

212 (q)

.

We wish to compute the entropy hβ of β = βp,q when p = q = 1
2 . We therefore want to

know the average amount of information gained in reading a symbol in β∞ (0). Since

|βn (i)| = 3n, from equation 4.2.5 we have

hβ = lim
n→∞

1

3n
H (C3n) ,

where H (C3n) is the weighted average of the information content in βn (0). Note that

H (C3n) is the entropy of the probability distribution of βn (0), which we now calculate.

Let Bn be the set of all possible words arising from βn (0) . By induction,

|Bn| =
n∏
k=1

23k−1
.

Since p = q = 1
2 , each βn(i) is uniformly distributed and so each element of Bn occurs

with the same probability. The probability distribution of βn (0) is then
(

1
|Bn| , . . . ,

1
|Bn|

)
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so that

H (C3n) = − |Bn|
(

1

|Bn|
log

1

|Bn|

)
= log |Bn|

=

n∑
k=1

log 23k−1

= (log 2)

n∑
k=1

3k−1.

Therefore,

hβ = lim
n→∞

1

3n
H (C3n)

= (log 2) lim
n→∞

1

3n

n∑
k=1

3k−1

= (log 2) lim
n→∞

n∑
k=1

1

3k

= (log 2)
∞∑
k=1

1

3k

=
1

2
log 2

by geometric series. Heuristically, this says that on average, every other symbol in an

infinite string generated by β carries one bit of information (or that every symbol carries

1
2 bits of information).

Note that we can obtain the formula for |Bn| via the Set Representation SRβ∞ of

β. Let an = |An| , bn = |Bn| , and cn = |Cn|, where An, Bn, and Cn are the sets A0
n, A1

n,

and A2
n in the definition of the set representation SRβ∞ of β). So A0 = {0}, B0 = {1},

C0 = {2}, and

An+1 = AnBnAn ∪AnCnAn,

Bn+1 = BnAnBn ∪BnCnBn,

Cn+1 = CnAnCn ∪ CnBnCn.
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Then 
an+1 = a2

n (bn + cn)

bn+1 = b2n (an + cn)

cn+1 = c2
n (an + bn)

,

where a0 = b0 = c0 = 1. Noting that an = bn = cn, we obtain

an+1 = 2a3
n,

which has the closed form

an =

n∏
k=1

23k−1

=
√

2
3n−1

.

Then we may compute the entropy hβ as above:

hβ = lim
n→∞

1

n
H (Cn)

= lim
n→∞

1

3n
H (C3n)

= − lim
n→∞

1

3n

an∑
k=1

1

an
log

1

an

= − lim
n→∞

1

3n
log

1

an

= lim
n→∞

1

3n
log
√

2
3n−1

=

(
1

2
log 2

)
lim
n→∞

3n − 1

3n

=
1

2
log 2.

We can apply the ideas in this previous example to other random substitutions. We

only needed to know two things: The lengths of elements of βn(0) and the probability

distribution of βn(0).
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Example 4.2.4 Let φ be the random substitution

ϕ :


0 7−→ 0011

1 7−→

 1001 p

0101 q

.

We will show that hφ = 1
6 log 2. The set representation of ϕ is as follows: A0 = {0} ,

B0 = {1} , An+1 = AnAnBnBn, and Bn+1 = BnAnAnBn ∪ AnBnAnBn. So if an = |An|

and bn = |Bn| for n ≥ 1, then an+1 = a2
nb

2
n and bn+1 = 2a2

nb
2
n. Then

an+1 = 4a4
n

where a1 = 1. Then it can be shown by induction that

an = 2
2
3(4n−1−1)

for n ≥ 2. So the probability distribution of ϕn (0) is
(

1
an
, . . . , 1

an

)
(where this vector has

an elements). Thus, the entropy of the probability distribution of ϕn (0) is

H (C4n) = −
an∑
i=1

1

an
log

1

an

= log an

=
2

3

(
4n−1 − 1

)
log 2.

Note that every element of An has length 4n for n ≥ 1. Therefore,

hϕ = lim
n→∞

1

4n
H (C4n)

=

(
2

3
log 2

)
lim
n→∞

1

4n
(
4n−1 − 1

)
=

(
2

3
log 2

)(
1

4

)
=

1

6
log 2.

Note that we can view this heuristically either as saying that on average every symbol in

an infinite string generated by φ carries 1
6 bits of information or that we gain information

only about 16.7 % of the time.
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Example 4.2.5 Recall from Example 3.2.4 the 5-state substitution α defined by

α :



0 7−→

 10 1
2

02 1
2

1 7−→ 03

2 7−→ 04

3 7−→ 3

4 7−→ 4

where we computed the frequency of 0 to be We compute the entropy hα. Let SRα∞ be the

set representation of α so that A0 = {0} , B0 = {1} , C0 = {2} , D0 = {3} , E0 = {4} , and

An+1 = BnAn ∪AnCn

Bn+1 = AnDn

Cn+1 = AnEn

Dn+1 = Dn

En+1 = En

(As an aside, we will encounter this Example again when we talk about “recoverability”).

Note that for each n, every word in An has the same length `n. Let an = |An|. Then

since |Dn| = |En| = 1, by the definition of An above we see that an+1 = 2anan−1 with

a0 = 1 and a1 = 2. From this is follows (see SLOAN’s online encyclopedia of integer

sequences) that

2an = 2fn+2

where {fn}∞n=0 = 0, 1, 1, 2, 3, . . . is the Fibonacci sequence (easily proved by induction).

Note that since fn+2 = fn+1 + fn, limn→∞
fn
fn+1

= Φ− 1, where Φ = 1+
√

5
2 ≈ 1.618 is the
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Golden Mean. We see from the definition of An that `n = fn+3 − 1. Then we have that

hα = lim
n→∞

1

`n
H (C`n)

= lim
n→∞

log an
`n

= lim
n→∞

log
(

1
2 · 2

fn+2
)

fn+3 − 1

= lim
n→∞

fn+2 log 2

fn+3

= (Φ− 1) log 2.

Example 4.2.6 Define the substitution ρ1 by

ρ1 :


0 7−→

 01 with probability p

02 with probability q

1 7−→ 00

2 7−→ 00

.

We compute the entropy hρ1 for p = q = 1
2 . Let SRρ1∞ be the set representation of ρ1 so

that A0 = {0} , B0 = {1} , C0 = {2} , and

An+1 = AnBn ∪AnCn

Bn+1 = AnAn

Cn+1 = AnAn

So

An+1 = AnAn−1An−1.

Let an = |An|. We must be careful in using the set representation of ρ1 to calculate an

since iterates of ρ1 may produce duplicate words. For exampleρ1 (01) and ρ1 (02) produce

the same words 0100 and 0200 (and no more). We therefore argue combinatorially to

calculate an. Note that each 0 in a word in An produces two distinct words in An+1.

Also, each word in An has the same number of zeros zn and produce the same words in

An+1. Therefore, an+1 = 2zn . The incidence matrix of ρ1 is
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M =


1 2 2

1
2 0 0

1
2 0 0


and so, by diagonalization,

Mn =


1
3

(
2n+1 + (−1)n

)
2
3 (2n − (−1)n) 2

3 (2n − (−1)n)

1
6 (2n − (−1)n) 1

3

(
2n−1 + (−1)n

)
1
3

(
2n−1 + (−1)n

)
1
6 (2n − (−1)n) 1

3

(
2n−1 + (−1)n

)
1
3

(
2n−1 + (−1)n

)
 .

Thus, as in Remark 3.0.6,

zn =
2n+1 + (−1)n

3
.

Since each element of An has length 2n, we have that

hρ1 = lim
n→∞

1

2n
H (C2n)

= lim
n→∞

log an
2n

=

(
1

3
log 2

)
lim
n→∞

2n+1 + (−1)n

2n

=
2

3
log 2.

Heuristically, this says that 2
3 of the symbols in an infinite string u generated by ρ1 contains

a binary choice (ie, information). Note that the normalized Perron-Frobenius eigenvector

(see 3.2.2) of M is
(

2
3 ,

1
3 ,

1
3

)
(corresponding to the eigenvalue λ = 2, the length of ρ1),

signifying that 2
3 of the symbols in u is a 0, the only symbol that yields a choice.

Example 4.2.7 Define the substitution ρ2 by

ρ2 :


0 7−→

 01 with probability p

02 with probability q

1 7−→ 0

2 7−→ 0

.

As usual, we will assume p = q = 1
2 . We would expect the entropy hρ2 to be greater than

hρ1 in the previous example since “less space is used up” by ρ2 (1) and ρ2 (2) . This time,
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we have that

An+1 = AnBn ∪AnCn

= AnAn−1

so that a0 = 1 and an+1 = anan−1. Let fn = fn−1 + fn−2 be the Fibonacci sequence (with

f0 = 0, f1 = 1). We see from the definition of An+1 that the length of any word in An is

fn+2. Now

log an+1 = log an + log an−1

so that {log an}n≥0 is the Fibonacci sequence. Thus, log an = fn so that

an = 2fn .

We can alternatively reason combinatorially as in the previous example: Since every 0 in

a word in An produces two words in An+1 and all words in An produce the same words in

An+1, an+1 = 2fn. Thus,

hρ2 = lim
n→∞

log an
fn+2

= lim
n→∞

fn log 2

fn+2

=
1

Φ2
log 2

≈ 0.382 log 2,

where Φ = 1+
√

5
2 ≈ 1.618 is the Golden Mean. Note that hρ2 > hρ1 , as expected.

Example 4.2.8 ((p, q)-“Recoverable” constant-length FibMorse) Define the sub-

stitution ζ by

ζ :



0 7−→ 01

1 7−→

 10 with probability p

20 with probability q

2 7−→ 22

.
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Suppose that p = q = 1
2 . Let SRζ∞ be the set representation of ζ, so that A0 = {0} ,

B0 = {1} , C0 = {2} , and

An+1 = AnBn

Bn+1 = CnAn ∪BnAn

Cn+1 = CnCn

Let an = |An| , bn = |Bn| , and cn = |Cn| . Then, a0 = b0 = c0 = 1 and

an+1 = anbn

bn+1 = anbn + ancn

cn+1 = 1

for n ≥ 0. This gives us that

an+1 = an (an−1bn−1 + an−1cn−1)

= an (an + an−1) .

Therefore, we have the recurrence

an+2 = an+1 (an+1 + an) (4.2.6)

for all n ≥ 2 and a0 = a1 = 1. We apply techniques from [2] to find an asymptotic solution

to this recursion and thus get a formula for and approximate the topological entropy hζ .

Let

yn = log an

(where the log is taken to the base 2) and

Ln = log

(
1 +

an
an+1

)
for n ≥ 0. Note that by the recurrence (4.2.6),

an
an+1

=
1

an + an−1
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so that limn→∞ Ln = 0.

Using our recurrence (4.2.6), we have that

2yn + Ln−1 = log a2
n + log

(
1 +

anan−1

a2
n

)
= log

[
a2
n

(
1 +

an+1 − a2
n

a2
n

)]
= log an+1

= yn+1

so that

yn+1 = 2yn + Ln−1 (4.2.7)

for all n ≥ 1 and y0 = log a0 = 0. Note that the recurrence (4.2.7) has the solution

yn = 2n−1

(
L0

21
+
L1

22
+
L2

23
+ · · ·+ Ln−2

2n−1

)
=

n−1∑
j=1

2n−j−1Lj−1.

for n ≥ 2. Indeed,

2

n−1∑
j=1

2n−j−1Lj−1

+ Ln−1 =

n−1∑
j=1

2n−jLj−1

+ Ln−1

whereas

(n+1)−1∑
j=1

2(n+1)−j−1Lj−1 =
n∑
j=1

2n−jLj−1

=

n−1∑
j=1

2n−jLj−1

+ 2n−nLn−1

=

n−1∑
j=1

2n−jLj−1

+ Ln−1.

Thus, 2yn + Ln = yn+1. We note in passing that this solution did not depend on Ln and

we thus have a solution to any equation of the form (4.2.7) (see [22], P. 26). Since each
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word in An has length `n = 2n, we therefore have that

hζ = lim
n→∞

log an
`n

= lim
n→∞

yn
2n

= lim
n→∞

1

2n

n−1∑
j=1

2n−j−1Lj−1

=
∞∑
j=1

2−j−1Lj−1,

which is positive. We compute the first few partial sums Sn =
∑n

j=1 2−j−1Lj−1 of this

series:

n 0 1 2 3 4 5 6 7 8

Sn − 0.25 0.323 12 0.349 06 0.354 37 0.354 78 0.354 79 0.354 79 0.354 79

We then speculate that the entropy is (with log base 2)

hζ ≈ 0.3548 log 2.

Theorem 4.2.2 The entropy hµ (X (ζ) , σ) of the dynamical system arising from the(
1
2 ,

1
2

)
-FibMorse substitution ζ is positive.

Proof. The set representation of ζ is A0 = {0} , B0 = {1} , An+1 = AnBn, and

Bn+1 = BnAn ∪ An. Let an = |An| and bn = |Bn| for n ≥ 1. Then an+1 = anbn and

bn+1 = anbn + an so that

an+1 = an (an−1bn−1 + an−1)

= an (an + an−1) .

This is the same recursive formula as in the Constant-Length FibMorse substitution above

(Example 4.2.8), where we obtained that

lim
n→∞

1

2n
H (C2n) =

∞∑
j=1

1

2j+1
log

(
1 +

aj−1

aj

)
.
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Notice that the partial sums of this series form an increasing sequence since log
(

1 +
aj−1

aj

)
>

0, so this series is positive. Now, if x ∈ An, then fn ≤ |x| ≤ 2n, where fn is the nth

Fibonacci number. So hζ ≥ limn→∞
1

2nH (C2n) > 0.

4.3 Topological Entropy

In [1], the authors generalize the notion of entropy to topological dynamical systems

(X,T ) , where X is compact Hausdorff and T is a homeomorphism (see also [20] for an

exposition). Notice that if the partition
n−1∨
i=0

T−i (P) of X contains many small sets, then

the quantity H

(
n−1∨
i=0

T−i (P)

)
is large. We cannot necessarily measure the “size” of

partition elements in an arbitrary topological space, but we can count how many there

are. Thus, instead of partitions, consider an open cover U of X. Since X is compact,

there is a subcover of U of minimal cardinality. Denote this cardinality by N (U) and let

H (U) = log2N (U) .

Defining the join of open covers U and V to be U ∨V = {U ∩ V : U ∈ U , V ∈ V} , we may

let

h (U , T ) = lim
n→∞

1

n
H

(
n−1∨
i=0

T−i (U)

)
.

Proposition 4.3.1 The limit h (U , T ) exists.

Proof. Since U ∨ V = {U ∩ V : U ∈ U , V ∈ V} , N (U ∨ V) ≤ N (U)N (V) . So

H (U ∨ V) ≤ H (U) +H (V) . Hence, Lemma 4.2.1 applies.

Definition 4.3.1 Let X be compact Hausdorff and T be a homeomorphism. The topo-

logical entropy of the topological dynamical system (X,T ) is

htop (X,T ) = sup
U
h (U , T ) ,
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where the supremum is taken over all open covers U of X. If htop (X,T ) = 0, then we call

the dynamical system (X,T ) deterministic.

Just as generating partitions are useful for computing metric entropy, “refining

sequences” of open covers are useful for computing topological entropy. We say that an

open cover U refines an open cover V if every U ∈ U is contained in some V ∈ V. In this

case, we write U ≥ V. We also say that U is a refinement of V and that V is refined

by U .

Definition 4.3.2 Let (X,T ) be a topological dynamical system. Suppose {Un}n is a set of

open covers of X such that Un ≤ Un+1 for all n. Then {Un}n is a refining sequence of X.

For example, the cylinder sets in a symbolic dynamical system form a refining

sequence.

Proposition 4.3.2 If V ≤ U , then H (V) ≤ H (U) so that h (V, T ) ≤ h (U , T ) .

Proposition 4.3.3 Suppose that {Un}n is a refining sequence of a compact space X such

that any finite open cover is refined by some Un. Then

htop (X,T ) = lim
n→∞

h (Un, T ) .

Proof. Since the entropy of a partition increases with refinement (Proposition

4.3.2), htop (X,T ) is the limit of the net {h (Cα,T )}α∈J , where the index set J is the

collection of all open covers of X. Since X is compact, each Cα has a finite subcover Vα

which is refined by some Un (by hypothesis). So Un refines Cα. Therefore, since {Un}n is

a refining sequence, htop (X,T ) = limn→∞ h (Un, T ) .
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Example 4.3.1 Let (X,σ) ⊆ {0, 1}Z+ be a symbolic dynamical system. Since the more

words of length n there are, the more complicated the symbolic system is, it would make

sense that the topological entropy of (X,σ) should increase with the number of words. This

is indeed the case, as we now show. Let Un be the collection of cylinder sets of the form

[w]0 = {x ∈ X : x0x1 · · ·xn−1 = w0w1 · · ·wn−1} ,

where wi ∈ {0, 1} . That is, Un = {[w]0 : |w| = n} (so, for example, U0 consists of the

time-zero sets). Then {Un}n is a refining sequence of X and

Un =
n−1∨
i=0

σ−i (U0) .

We now show that h (Un, σ) = h (U0, σ) for all n. Indeed,

h (U0, σ) ≤ h (Un, σ)Prop.4.3.2 (4.3.1)

= lim
k→∞

1

k
H

(
k−1∨
i=0

σ−i (Un)

)

= lim
k→∞

1

k
H

(
n+k−2∨
i=0

σ−i (U0)

)

≤ lim
k→∞

1

k
H

(
k−1∨
i=0

σ−i (U0)

)
Prop.4.3.2 (4.3.2)

= h (U0, σ) .

Therefore,

htop (X,σ) = lim
n→∞

h (Un, σ)Prop.4.3.3 (4.3.3)

= lim
n→∞

h (U0, σ)

= h (U0, σ)

= lim
n→∞

1

n
H

(
n−1∨
i=0

σ−i (U0)

)

= lim
n→∞

1

n
H (Un)

= lim
n→∞

log2N (Un)

n
.
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Now, N (Un) is the (least) number of open sets needed to cover Un. But Un consists of

the length-n cylinders, which form a basis for the topology of X (as noted after Definition

2.0.4). So N (Un) is the number of admissible words of length n in X.

Recalling the definition 2.0.8 of the complexity function p (n) , Example 4.3.1 moti-

vates the following definition.

Definition 4.3.3 The topological entropy of a symbolic dynamical system (X,σ) is

given by

htop (X,σ) = lim
n−→∞

log|A| p (n)

n
.

One may wonder if there is a connection between metric and topological entropy.

There is a general “Variational Principle” that says that, for a dynamical system (X,T ),

htop (X,T ) = suphµ, where the supremum is taken over all T -invariant probability mea-

sures on X, so that htop ≥ hµ for all µ. This inequality is easily seen to be true in the

case of a symbolic dynamical system (a general proof can be found in [20]).

Theorem 4.3.1 Let (X,σ) be a symbolic dynamical system on the alphabet A = {0, . . . , s− 1},

with σ the shift on X. Then hµ (X,σ) ≤ htop (X,σ) for all µ.

Proof. As noted above, the quantity

H (Q) := −
∑
Q∈Q

µQ logµQ

is maximal when each Q ∈ Q occurs with the same frequency. So if µ is a probability

measure on X, then hµ is a maximum when each every word w of length n occurs with

the same frequency 1
p(n) for all n. Let µ be the σ-invariant probability measure on X

given by µ [w] = 1
p(n) for all length n cylinder sets [w] . Then µ is a measure of maximal

entropy. Since the time-zero sets P = {[0]0 , [1]0 , . . . [s− 1]0} generate and
n−1∨
i=0

T−i (P) is
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the set of all length-n cylinder sets Cn, by the Kolmogorov-Sinai Theorem 4.2.1 we have

hµ = lim
n→∞

1

n
H

(
n−1∨
i=0

T−i (P)

)

= lim
n→∞

1

n

[
−
∑
C∈Cn

µ (C) logµ (C)

]

= lim
n→∞

1

n
p (n)

[
1

p (n)
log p (n)

]
= htop.

We note that the entropy calculations in Section 4.2 reduced to calculating htop. This

is because of the assumption that p = q = 1
2 in all the random substitution examples, which

gave a uniform distribution to a the random variable in question. A uniform distribution

is essentially how the entropy was maximized in the preceding Theorem 4.3.1.

Sturmian Sequences

It is well known that the Fibonacci sequence that arises from the Fibonacci sub-

stitution has complexity function p(n) = n + 1 for all n (see, for example, [4]). We now

digress to mention certain interesting aperiodic sequences that exhibit a minimal com-

plexity. In [9], Hedlund and Morse initiated a study of these sequences, called Sturmian

sequences. These sequences have been greatly studied and many properties and equivalent

representations are now known (see [3] and [4] for recent surveys). The most basic of

these involves the complexity function p(n). We saw in Proposition 2.0.1 that any ape-

riodic sequence satisfies p (n) ≥ n + 1 for all n. The aperiodic sequences with minimal

complexity are called Sturmian.

Definition 4.3.4 A Sturmian sequence u is a sequence such that pu (n) = n + 1 for

all n.

This was not the original definition Hedlund and Morse gave in [9], which was more

of a “balancing” nature. The (equivalent) definition we give here was given 30 years later
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by Coven and Hedlund in [5]. A few basic properties of Sturmian sequences are:

Proposition 4.3.4 Let u be a Sturmian sequence on an alphabet A. Then

(a) A = {0, 1};

(b) any admissible word is recurrent (occurs an infinite number of times) in u; and

(c) either 00 or 11 is forbidden, but not both.

Proof. For (a), simply note that p (1) = 2.

For (b), suppose there is a word w that occurs a finite number of times in u. Then there

is an N such that w occurs in u0u1 . . . uN but does not occur in v = uN+1uN+2 . . . . Now,

the set Ωv of all admissible words of v is contained in the set Ωu of all admissible words of

u and w /∈ Ωv so that pv (n) ≤ n (since pu (n) = n+ 1 for all n). But this implies that v,

hence u, is eventually periodic, by Proposition 2.0.1. Therefore, every word in u occurs

an infinite number of times.

For (c), we know that exactly one of 00, 01, 10, or 11 is forbidden since p (2) = 3. By (a),

both 0 and 1 occur in u and so by (b), they both occur an infinite number of times in u.

So 01 and 10 are both admissible.

Proposition 4.3.5 ([4], Prop. 2.1.2) If u ∈ {0, 1}Z+ is balanced, then p (n) ≤ n+ 1.

Proof. Since u is balanced, 00 and 11 cannot both be in u. So the claim is true for

n = 2. By way of contradiction, suppose there is some n0 ≥ 3 such that p (n0) ≥ n0 + 2

and assume n0 is the smallest such. Then p (n0 − 1) ≤ n0. Since there are at least n0 + 2

words of length n0 and at most n0 words of length n0 − 1, there are at least two distinct

words w, w′ of length n0 − 1 that can be extended on the left in more than one way. So

0w, 1w, 0w′, and 1w′ are all distinct words of length n0 in u. Let K be the smallest such

that x = w0w1 . . . wK = w′0w
′
1 . . . w

′
K but wK+1 6= w′K+1, say wK+1 = 0 and w′K+1 = 1.

Then 0x0 and 1x1 are both words in u, contradicting that u is balanced.
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Since aperiodic sequences satisfy p (n) ≥ n+1 (see 2.0.1), this leads to an interesting

characterization of Sturmian sequences is the following (see, for example, [4] for a proof):

Theorem 4.3.2 A sequence u on {0, 1} is Sturmian if and only if it is aperiodic and

balanced.

So Sturmian sequences are exactly the aperiodic sequences with minimal complex-

ity. For example, if (X,σ) is the symbolic dynamical system arising from any Sturmian

sequence, then htop (X,σ) = 0.

Two interesting geometrical interpretations of Sturmian sequences in the they arise

from irrational rotations and from irrational slopes of lines it 2-space (see, for example [4]

and [14]):

Proposition 4.3.6 (Hedlund and Morse [9]) A sequence u is Sturmian if and only if

u is the coding of an irrational rotation of the circle S1 = R/Z.

Proposition 4.3.7 A sequence u is Sturmian if and only if u is the “cutting” sequence

of a line y = αx+ b with irrational slope α.

There are many other interesting (and sometimes surprising) properties of Sturmian

sequences and the reader is encouraged to read the aforementioned references.

4.4 Topological Entropy of Substitutions

If an infinite string is generated by a (non-random) substitution, then heuristically

it would seem that this string is deterministic in the sense that we know (theoretically)

exactly what symbol will occur and where. That is, there is no information gained in
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reading a symbol in the string. Thus, the entropy of a substitution dynamical system

should be zero. This is a Corollary of the following Proposition.

Proposition 4.4.1 Let ω be an irreducible substitution on a finite alphabet A = {0, . . . , s−

1}. Then there is a constant C such that p (n) ≤ Cn for all n.

We first provide a proof for the constant length case to illustrate the ideas. So let

ω be a substitution of constant length `. Let u be a string generated by ω. That is, u

is a fixed point of ω∞. If w is an admissible word of length `k, then w ∈ u = ωm (u)

for every m ≥ k. Then, since ω is irreducible, either w is contained in some ωm (a) or

ωm (ab), where a, b ∈ A. Since there are p (2) words ab and at most `k words of length

`k, we therefore have that

p
(
`k
)
≤ p (2) `k (4.4.1)

≤ s2`k.

where s = |A| . Now suppose that n ≥ 1. Then there is some n such that

`k−1 ≤ n ≤ `k.

Then

p (n) ≤ p
(
`k
)

≤ s2`k

≤ s2`n

so that p (n) ≤ Cn where C = s2` (note we could also let C = p (2) `).

For the non-constant length case, the Perron-Frobenius Theorem 3.2 essentially

provides an “average length” to the substitution so as to allow it to be treated as a

constant-length substitution. We now follow the general proof in [21] (Proposition 5.19)

to prove Proposition 4.4.1.
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Proof. Since the sequence
{

mina∈A
∣∣ζj (a)

∣∣}∞
j=1

is nondecreasing, for every n ≥ 1

we can find a jn ≥ 1 such that

min
a∈A

∣∣ζjn−1 (a)
∣∣ ≤ n ≤ min

a∈A

∣∣ζjn (a)
∣∣ .

So every word w of length n is contained either in ζjn (a) or ζjn (ab) for some a, b ∈ A.

Now by the limit 3.2.1, limj→∞
|ζj(a)|
λjPF

= ca > 0 and so for j large enough, there are

constants α1, α2 > 0 such that

α1λ
j
PF ≤ min

a∈A

∣∣ζj (a)
∣∣ ≤ max

a∈A

∣∣ζj (a)
∣∣ ≤ α2λ

j
PF .

Now, fix n and j large enough so as to satisfy these last two inequalities. Then λj−1 ≤ n
α1
.

There are at most s2 words of length 2 in u = ζ∞ (0) and at most maxa∈A
∣∣ζj (a)

∣∣ words of

length n (that starts in some ζj (a) and is therefore contained in some ζj (ab)). Therefore,

p (n) ≤ s2 ·max
a∈A

∣∣ζj (a)
∣∣

≤ s2 · α2λ
j
PF

≤ s2 · α2λPF
n

α1
.

So let C = s2α2λPF
α1

.

Corollary 4.4.1 The dynamical system arising from an irreducible substitution on a finite

alphabet is deterministic.

Proof. By the Proposition, we have that

htop (X,σ) = lim
n−→∞

log|A| p (n)

n

≤ lim
n−→∞

log|A|Cn

n

= lim
n−→∞

(
log|A|C

n
+

log|A| n

n

)
= 0

by L’Hôpital’s Rule.
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Example 4.4.1 Recall the “Recoverable” constant length FibMorse substitution in Exam-

ple 4.2.8. In that example, we approximated the entropy to be hζ ≈ 0.3548 log 2. In doing

so, we have also approximated values of the complexity function at 2n. For large n,

hζ ≈
log an

2n

so that

p (2n) = an

= 2hζ ·2
n

≈ 1. 278 82n .

We note that although in the original Example 4.2.8 we could have approximated hζ from

the start via the sequence log2 an
2n , the calculations above give formulas for hζ and p (2n) .

Recall from examples in section 4.2 that the entropy of random substitutions can

easily be positive, meaning that the complexity function is exponential. Empirically, we

find that the complexity function for the FibMorse substitution is

p (n) = 2, 4, 7, 12, 20, 33, 52, 82, 128, 197, 302, . . . ,

which does not seem linear (it is interesting to note that the differences are the Fibonacci

numbers for the first 5 differences). One might wonder why the above Proposition does

not apply to random substitutions. The problem arises in the fact that for a random

substitution ζ, there may be more than maxα
∣∣ζk (α)

∣∣ words of length n. That is, we

cannot control the upper bound on p (n). For example, if ζ is the FibMorse substitution,

then we can take, say, n = 4 and k = 3 in the proof of Proposition 4.4.1. But p (4) = 12 >

maxα
∣∣ζ3 (α)

∣∣.
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5 ENTROPY, BALANCEDNESS, AND RECOVERABILITY

5.1 Balancedness

In this chapter, we explore another way to view how complicated a space of sequences

is. This notion extends the previously known concept of balancedness.

In Theorem 4.3.2, we saw that an aperiodic balanced sequence was Sturmian, hence

has entropy zero and is deterministic. We generalize the concept of balancedness to obtain

dynamical systems with positive entropy. Define the height h (w) of a word w ∈ {0, 1}∗

to be the number of 1’s that occur in w and define the height distance between two

words x and y of the same length to be δ (x, y) = |h (x)− h (y)| .

Definition 5.1.1 Let k ≥ 1 be an integer. A sequence u ∈ {0, 1}Z+ is k-balanced if for

any integer n ≥ 1 and any two words x and y of length n, we have δ (x, y) ≤ k. If k = 1,

then u is also called balanced. A random substitution ρ is k-balanced is any sequence

arising from ρ is k-balanced. If a sequence or random substitution is not k-balanced for

any k, then it is unbalanced.

In the literature, “k-balancedness” refers to balancedness for sequences on alpha-

bets having k symbols. At the time of this paper, the author knows of no notion of

k-balancedness as presented here.

Example 5.1.1 The Fibonacci sequence u = 0100101001 · · · is balanced (see [4]).

Example 5.1.2 Let ρ be the random substitution

ρ :


0 7−→ 0011

1 7−→

 1001 p

0101 q

.



66

We show that ρ is 2-balanced. First note that we may write any ρ-admissible w in the

form

w = a1a2a3ρ (x) b1b2b3

for some ρ-admissible word x (possibly empty) and ai, bi ∈ {ε, 0, 1} (where ε is the empty

word). Indeed, suppose w = a1a2a3a
′ρ (x) b1b2b3 with each ai 6= ε. Then a1a2a3a

′ =

ρ (j) for some j ∈ {0, 1} so that w = ρ (x′) b1b2b3 with x′ = jx. Similarly if w =

a1a2a3ρ (x) b1b2b3b
′. Since ρ (0) and ρ (1) both end in 1, a3 = 1. Also, both a1a2a3 and

b1b2b3 end and start a substituted symbol, respectively. Because of this, h (a1a2) ∈ {0, 1}

and h (b1b2b3) ∈ {0, 1}. Finally, note that h (ρ (j)) = 2 for j ∈ {0, 1} so that h (x) = 2 |x| .

Thus, if v = c1c2c3ρ (y) d1d2d3 is ρ-admissible where |y| = |x|, then

δ (w, v) = |h (a1a2a3ρ (x) b1b2b3)− h (c1c2c3ρ (y) d1d2d3)|

≤ |h (a1a2)− h (c1c2)|+ |h (x)− h (y)|+ |h (b1b2b3)− h (d1d2d3)|

= 2.

This example is a specific case of the more general:

Proposition 5.1.1 Let ρ be a random substitution

ρ :


0 7−→ z

1 7−→

 s1 p

s2 q

of constant length `. Suppose that g = h (z) = h (s1) = h (s2) . Then ρ is 2 (`− g)-

balanced (this may not be a minimal upper bound).

Proof. Arguing as in Example 5.1.2, any ρ-admissible word w can be written

w = a1 . . . a`−1ρ (x) b1 . . . b`−1

where ai, bi ∈ {ε, 0, 1} and x is a (possibly empty) ρ-admissible word. Since a1 . . . a`−1 and

b1 . . . b`−1 end and start a substituted symbol, respectively, h (a1 . . . a`−1) , h (b1 . . . b`−1) ∈
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{g, g − 1} . If v = c1 . . . c`ρ (y) d1 . . . d` is ρ-admissible with |v| = |w| , then |y| = |x| and

h (ρ (x)) = h (ρ (y)) = g |x|. Since g = h (z) = h (s1) = h (s2),

δ (w, v) ≤ |h (a1 . . . a`−1)− h (c1 . . . c`−1)|+ |h (ρ (x))− h (ρ (y))|+ |h (b1 . . . b`−1)− h (d1 . . . d`−1)|

≤ 2 (`− g) .

Example 5.1.3 Let τ be the substitution on {0, 1} given by

τ :

 0 7−→ 0100

1 7−→ 11

τ has entropy zero by Corollary 4.4.1. We show that τ is unbalanced by showing that δ

grows without bound. The incidence matrix of τ is

M = M (τ) =

 3 0

1 2


and so by diagonalization,

Mn =

 3n 0

3n − 2n 2n

 .
So h (τn (0)) = 3n − 2n and h (τn (1)) = 2n. Thus,

δ
(
τ (n) (0) , τn (1)

)
= 3n − 2n+1,

which tends to infinity with n. So given N, there are words w = τ (n) (0) and v = τn (1)

so that δ (w, v) > N.

Not surprisingly, randomness can also allow for unbalancedness, as in the following

Example.

Example 5.1.4 Let ζ be the random substitution

ζ :


0 7−→ 01

1 7−→

 10 (p)

00 (q)
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We show that ζ is unbalanced. The idea is that we can find admissible words vτ

and vθ so that δ (vτ , vθ) grows without bound with the lengths of vτ and vθ. Let w be ζ-

admissible of length n and denote by |w|0 the number of 0’s in w. Define the substitutions

τ and θ by

τ :

 0 7−→ 01

1 7−→ 10

and

θ :

 0 7−→ 01

1 7−→ 00
.

Let vτ = τ (w) and vθ = θ (w). Then |vτ | = |vτ | , h (vτ ) = |w|0 + |w|1 = n, and

h (vθ) = |w|0. So δ (vτ , vθ) = n − |w|0 = |w|1 . Since 0 always produces a 1 in both τ

and θ, |w|1 →∞ as n→∞. So given k, there is some n such that δ (vτ , vθ) > k. This

shows that ζ is unbalanced.

The ideas in the previous example yield a condition for unbalancedness:

Theorem 5.1.1 Let τ and θ be irreducible substitutions on {0, 1} such that τ (0) = θ (0)

and |τ (1)| = |θ (1)|. Let ρ be a random substitution on {0, 1} such that

ρ (1) =

 τ (1) with probability p

θ (1) with probability 1− p
,

where 0 < p < 1. If h (τ (1)) > h (θ (1)) , then ρ is unbalanced.

Proof. ρ is the random substitution

ρ :


0 7−→ τ (0) = θ (0)

1 7−→

 τ (1)

θ (1)

.

Let w be ρ-admissible, vτ = τ (w) and vθ = θ (w) . Note that vτ and vθ are ρ-admissible

since 0 < p < 1. Since |τ (1)| = |θ (1)|, |vτ | = |vθ|. We will show that δ (vτ , vθ) grows
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without bound as |w| → ∞. Let |x|i denote the number of i’s in the word x (for i = 0, 1).

We have that

h (vτ ) = h (τ (w))

= |w|0 · |τ (0)|1 + |w|1 · |τ (1)|1

and

h (vθ) = h (θ (w))

= |w|0 · |θ (0)|1 + |w|1 · |θ (1)|1 .

So, since τ (0) = θ (0) ,

δ (vτ , vθ) = |w|0 · (|τ (0)|1 − |θ (0)|1) + |w|1 · (|τ (1)|1 − |θ (1)|1)

= |w|1 · (|τ (1)|1 − |θ (1)|1) .

Since h (τ (1)) > h (θ (1)) , h (τ (1)) − h (θ (1)) ≥ 1 so that δ (vτ , vθ) ≥ |w|1 . Since τ and

θ are irreducible and 0 < p < 1, given k there is some Nk such that |w|1 > k. Thus,

δ (vτ , vθ) grows without bound, as was to be shown.

We would like to apply ideas in Example 5.1.4 and Theorem 5.1.1 to non-constant

length substitutions. A problem that arises is in choosing words vτ and vθ of the same

length. We consider the case of FibMorse:

Example 5.1.5 Let ζ be the (p, q)-FibMorse substitution

ζ :


0 7−→ 01

1 7−→

 0 with probability p

10 with probability q

(where q = 1 − p and 0 < p < 1). We will show that ζ is unbalanced. Let u be any

sequence arising from ζ, and let

ζf :

 0 −→ 01

1 −→ 0
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and

ζm :

 0 −→ 01

1 −→ 10

be the Fibonacci and Morse substitutions, respectively. The idea is that we can find words

vf and vm from u so that δ (vf , vm) grows without bound. Denote by |w|0 the number

of 0’s in w. Let w be ζ-admissible (so w ∈ u) and let w′ be any ζ-admissible word of

length |w′| = |w| − 1
2h (w) . Let vf = ζf (w) and vm = ζm (w′) . Note that vf and vm are

ζ-admissible since 0 < p < 1. Since every symbol in w′ produces two symbols via ζm, we

have that

|vm| = 2
∣∣w′∣∣

= 2 |w| − h (w)

= |w|+ |w|0

and similarly

|vf | = 2 |w|0 + h (w)

= |w|0 + |w|

so that |vm| = |vf | . Now, since only the symbol 0 produces the symbol 1 via ζf , h (vf ) =

|w|0 . Similarly, h (vm) = |w′|0 + h (w′) = |w′|. We then have

δ (vm, vf ) =
∣∣∣∣w′∣∣− |w|0∣∣

=

∣∣∣∣|w| − 1

2
h (w)− |w|0

∣∣∣∣
=

∣∣∣∣h (w)− 1

2
h (w)

∣∣∣∣
=

1

2
h (w) .

Since w was arbitrary, we can pick w so that δ (vm, vf ) tends to infinity. This shows

that for any given integer k, we can find two ζ-admissible words vf and vm whose height

distance is greater than k. Therefore, ζ is unbalanced.

Having a few examples at our disposal, we now present some properties of k-balanced

sequences.
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Proposition 5.1.2 If the sequence u ∈ {0, 1}N is k0-balanced, then the limit µ [1] exists.

Proof. Let

an =
1

p (n)

∑
w∈Ωn

h (w)

be the “average height” of a word of length n. Enumerate Ωn =
{
w1, w2, . . . , wp(n)

}
.

Since u us k0-balanced, for any word w of length n,

|h (w)− an| =

∣∣∣∣∣∣ 1

p (n)

p (n)h (w)−
p(n)∑
j=1

h (wj)

∣∣∣∣∣∣
=

1

p (n)

∣∣∣∣∣∣p (n)h (w)

p(n)∑
j=1

1

p (n)
−
p(n)∑
j=1

h (wj)

∣∣∣∣∣∣
≤ 1

p (n)

p(n)∑
j=1

|h (w)− h (wj)|

≤ k0.

We now show that limn→∞
an
n exists. Fix m and write n = dm + r for some d ≥ 0 and

0 ≤ r < m. Write any word of length n as the concatenation of d words of length m

and a word of length r < d. Then since h (w) ≤ am + k0 for any word w of length m,

an ≤ (d+ 1) (am + k0) . Now, as n→∞, d→∞ so that d+1
dm+r →

1
m . So

lim sup
n→∞

an
n
≤ lim sup

n→∞

(
(d+ 1) am

n
+
k0 (d+ 1)

n

)
= lim sup

n→∞

(d+ 1) am
dm+ r

=
am
m
.

Since m was arbitrary, we have

lim inf
n→∞

an
n
≤ lim sup

n→∞

an
n
.

≤ inf
m

am
m

≤ lim inf
n→∞

an
n
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Therefore, lim infn→∞
an
n = lim supn→∞

an
n so that limn→∞

an
n exists. Now, since k0−an ≤

h (u0 . . . un−1) ≤ k0 + an for all n,

lim
n→∞

an
n
≤ lim

n→∞

h (u0 . . . un−1)

n
≤ lim

n→∞

an
n

so that the slope µ [1] = limn→∞
h(u0...un−1)

n exists.

Note that this shows that unbalancedness does not necessarily imply the nonexis-

tence of slope. For example, the FibMorse substitution is unbalanced and has positive

slope (Examples 5.1.5 and 3.2.3) and the random substitution in 5.1.4 was seen to be

unbalanced but has slope 2
5 for p = q = 1

2 (by Theorem 3.2.2).

Corollary 5.1.1 If u is k0-balanced, then for all n there is some an such that h (w) ≤

an ± k0 for all admissible words w of length n.

As a partial converse to this Corollary, we have that if h (w) ≤ an ± k0 for all

admissible w in u of length n, then the triangle inequality immediately shows that u is

2k-balanced, where k ≤ k0.

Corollary 5.1.2 If u is k0-balanced and eventually periodic, then the slope µ [1] of u is

rational.

Proof. Since u is k0-balanced, µ [1] exists. Since u is eventually periodic,

u = xy∞ = lim
n→∞

xyn

for some admissible words x, y. Then

µ [1] = lim
n→∞

h (xyn)

|xyn|

= lim
n→∞

h (x) + nh (y)

|x|+ n |y|

=
h (y)

|y|
∈ Q.
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It can be useful to know that we don’t have to “start with zero”.

Proposition 5.1.3 Suppose u ∈ {0, 1}Z+ is a k-balanced sequence with slope α. Then

for any positive integer M, we have that

α = lim
n→∞

h (uMuM+1 . . . uM+n−1)

n
.

Proof. Let ε > 0. Then there are N1 and N2 such that∣∣∣∣h (u0 . . . un−1)

n
− α

∣∣∣∣ < ε

2

whenever n ≥ N1 and k
n <

ε
2 whenever n ≥ N2. Let N = max {N1, N2} . Then for any

n ≥ N,∣∣∣∣h (uM . . . uM+n−1)

n
− α

∣∣∣∣ ≤ ∣∣∣∣h (uM . . . uM+n−1)

n
− h (u0 . . . un−1)

n

∣∣∣∣+

∣∣∣∣h (u0 . . . un−1)

n
− α

∣∣∣∣
≤ k

n
+

∣∣∣∣h (u0 . . . un−1)

n
− α

∣∣∣∣
<

ε

2
+
ε

2

= ε.

Let Mj = max {n : jn is admissible} for j = 1, 2.

Proposition 5.1.4 If u ∈ {0, 1}Z+ is not eventually constant and is k0-balanced, then

M0 exists and is finite. Furthermore, min {M0,M1} ≤ k0 and M1 exists and is finite if

M0 ≥ k0 + 1.

Proof. Suppose M0 is not finite and take n large enough so that there is a word w

of length n with h (w) = k0 + 1. Then 0n is admissible so that

|h (w)− h (0n)| = k0 + 1,
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contradicting k0-balancedness. So M0 <∞. This means that also M1 <∞ if M0 ≥ k0 +1.

If M1 ≥ M0, then 1M0 is admissible so that M0 =
∣∣h (1M0

)
− h

(
0M0

)∣∣ ≤ k. Simi-

larly, if M0 ≤M1 then M1 ≤ k. So min {M0,M1} ≤ k.

Let Bk be the set of all k-balanced sequences that are not eventually periodic. Let m

be the minimum number of consecutive 1’s in any element of B1. Then 01m0 is admissible.

By balanced, 1m+2 is therefore forbidden. Hence, the number of consecutive 1′s in B1 is

either m or m+1. If m ≥ 2, then 00 is forbidden so that 0 is isolated. Similarly, if m = 1,

then there is a smallest m′ such that 10m
′
1 is admissible. Then 0m

′+2 is forbidden. We

have thus shown that:

Lemma 5.1.1 Either 0 or 1 is isolated for any element of B1.

Since
∣∣h (0k+1

)
− h

(
1k+1

)∣∣ = k + 1 > k, we can generalize this a bit to:

Lemma 5.1.2 If u is k-balanced (with k the minimal such) and not eventually constant,

then either 0k+1 or 1k+1 is forbidden.

Let u ∈ {0, 1}Z+ be balanced (and aperiodic) and let M0 be the maximal length of

a string of 0’s in u. Let w be a finite word in u. If |w| ≤ M0, then by maximality of

M0 there is a word z0 = 0|w| that occurs in u with h (z0) = 0 and |z0| = |w| . Then by

balanced,

h (w) = h (w)− h (z0) ≤ 1.

Now suppose that |w| > M0. Then we can write w as the concatenation of N =
⌊
|w|
M0

⌋
words in u of length M0 and a “left-over” piece of length < M0. That is,

w = w1w2w3 . . . wNwL

where |wj | = M0 for all j ≤ N and |wL| < M0. Then h (w) =
∑N

j=1 h (wj) + h (wL) ≤

N + 1 =
⌊
|w|
M0

⌋
+ 1. So the heights of words in a balanced infinite string are bounded by

a constant (depending on the length of the word).
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Proposition 5.1.5 If u has slope 1
q , then 0q−1 is admissible (i.e. 0q−1 ∈ u).

Proof. If 0q−1 is forbidden, then the minimum number of 1’s in any word w of

length (q − 1) c is c. That is, h (w) ≥ c. Since u has slope 1
q , for ε = 1

q2
, there is some

N so that ∣∣∣∣h (u0 . . . un−1)

n
− 1

q

∣∣∣∣ < 1

q2

whenever n ≥ N. Then, in particular,

h
(
u0 . . . u(q−1)N−1

)
(q − 1)N

<
1

q
+

1

q2
.

But h
(
u0 . . . u(q−1)N−1

)
≥ N so that

1

q − 1
=

N

(q − 1)N
≤
h
(
u0 . . . u(q−1)N−1

)
(q − 1)N

<
1

q
+

1

q2
,

a contradiction since q2 − 1 < q2 implies

1

q2 − 1
>

1

q2

1

q − 1
>

q + 1

q2

=
1

q
+

1

q2
.

For example, if u is 2-balanced and has slope 1
4 , then 111 is forbidden by the preced-

ing Proposition and Lemma 5.1.2. If u is aperiodic, then 010 is admissible since otherwise,

u = w (011)∞ for some finite word w, contradicting aperiodicity.

The following Proposition illustrates the useful tool involved in analyzing k-balanced

sequences. This is the tool of “breaking up” words into smaller words and using balanced-

ness to approximate properties of words. As before, let M0 be the length of the “longest

string” of zeros.

Proposition 5.1.6 Let M0 = max {n : 0n ∈ u}. Suppose u is k-balanced and has slope

α > 0. Then M0 is finite. Furthermore, M0 ≤
⌊
k
α

⌋
.
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Proof. Suppose that 0b
k
αc+1 is admissible. Then, since u is k-balanced, h (w) ≤ k

for any word w of length
⌊
k
α

⌋
+1. We may then “break up” any word into a concatenation

of words of lengths less than or equal to
⌊
k
α

⌋
+ 1 so that, for any n,

h (u0u1 . . . un−1) ≤ k

(
n⌊

k
α

⌋
+ 1

+ 1

)
.

Then

lim
n→∞

h (u0 . . . un−1)

n
≤ lim

n→∞

k

n

(
n⌊

k
α

⌋
+ 1

+ 1

)

=
k⌊

k
α

⌋
+ 1

< α

since k
α <

⌊
k
α

⌋
+1. But this contradicts that u has slope α. Therefore, 0b

k
αc+1 is forbidden

so that M0 <
⌊
k
α

⌋
is finite.

Corollary 5.1.3 If u is k-balanced and has slope 1
q , then q − 1 ≤ M0 ≤ kq so that

h (w) ≤ k for any word w of length q − 1.

Example 5.1.6 The Fibonacci sequence (which arises from the Fibonacci substitution) is

1-balanced with slope 3−
√

5
2 ≈ 0.382 and M0 = 2.

Corollary 5.1.4 Suppose u is k-balanced and has slope α > 0. If 1M0 is admissible, then

M0 ≤ k.

Proof. By the Proposition, M0 is finite. Since u is k-balanced,

M0 =
∣∣h (1M0

)
− h

(
0M0

)∣∣ ≤ k.

Let M1 be maximal such that 1M1 is admissible. Then we can show similarly that

M1 is finite (especially if α ≤ 1
2).
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Proposition 5.1.7 Let M0 and M1 be minimal such that 0M0 and 1M1 are admissible,

respectively. If u is k-balanced with slope α then

|h (u0 . . . un−1)− h (u0 . . . um−1)| ≤M1

for all n,m and

h (u0 . . . un−1) = h (u0 . . . um−1) =⇒ |n−m| ≤M0.

Proof. M0 and M1 are finite by the preceding Proposition. Suppose n > m. Then

h (u0 . . . un−1)− h (u0 . . . um−1) = h (um . . . un−1) ≤M1

and similarly if n < m. If n > m, then h (u0 . . . un−1) = h (u0 . . . um−1) implies that

h (um . . . un−1) = 0 so that (n− 1)−m+ 1 = n−m ≤M0.

Remark 5.1.1 Note that if M1 ≤ M0, then 0M1 is admissible so that M1 = h
(
1M1

)
−

h
(
0M1

)
≤ k. Similarly, if M0 ≤M1, then M0 ≤ k. So either M0 ≤ k or M1 ≤ k.

Theorem 5.1.2 Let u be k-balanced with slope α and let M0 and M1 be maximal such

that 0M0 and 1M1 are admissible. Then

max

{
1

M0 + 1
, 1− k

M1

}
≤ α ≤ min

{
M1

M1 + 1
,
k

M0

}
.

Proof. Since 0M0 is admissible and u is k-balanced, h (w) =
∣∣h (w)− h

(
0M0

)∣∣ ≤ k
for any word w of length M0 so that h (w) ≤ kn for any word of length M0n. Then

α = lim
n→∞

h (u0 . . . uM0n−1)

M0n

≤ lim
n→∞

kn

M0

=
k

M0
.



78

Since M0 is maximal, 0M0+1 is forbidden so that h (w) ≥ 1 for any word of length M0 + 1.

Therefore

α = lim
n→∞

h
(
u0 . . . u(M0+1)n−1

)
(M0 + 1)n

≥ n

(M0 + 1)n

=
1

M0 + 1
.

Similarly, h (w) ≤ M1 for all words w of length M1 + 1 so that α ≤ M1
M1+1 . Since 1M1 is

admissible, |M1 − h (w)| ≤ k for all words w of length M1 so that h (w) ≥M1 − k. Then

α = lim
n→∞

h (u0 . . . uM1n−1)

M1n

≥ lim
n→∞

(M1 − k)n

M1n

= 1− k

M1
.

Example 5.1.7 If u is k-balanced, 02k admissible, and 02k+1 forbidden, then α ≤ 1
2 .

Since either M0 ≤ k or M1 ≤ k (by the above remark), we might actually have

weaker bounds. For example, if u is 2-balanced, then 05 is forbidden (by the above

Proposition). If M0 = 4, then M1 ≤ 2. Then h (w) ≤ 2 for all words w of length 3 and

h (w) ≥ 1 for all words w of length 5. Then 1
5 ≤ α ≤

2
3 .

Corollary 5.1.5 If k ≥ 2, then

max

{
n

M0 + 1
, n− kn

M1

}
≤ h (u0 . . . un−1) ≤ min

{
nM1

M1 + 1
,
nk

M0

}
.

for all n.

Proof. h (u0 . . . un) ≤ h (u0 . . . um) for all m ≥ n.
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Proposition 5.1.8 If u has slope 1
q , then 0q−1 is admissible (i.e. 0q−1 ∈ u).

Proof. If 0q−1 is forbidden, then the minimum number of 1’s in any word w of

length (q − 1) c is c. That is, h (w) ≥ c. Since u has slope 1
q , for ε = 1

q2
, there is some

N so that ∣∣∣∣h (u0 . . . un−1)

n
− 1

q

∣∣∣∣ < 1

q2

whenever n ≥ N. Then, in particular,

h
(
u0 . . . u(q−1)N−1

)
(q − 1)N

<
1

q
+

1

q2
.

But h
(
u0 . . . u(q−1)N−1

)
≥ N so that

1

q − 1
=

N

(q − 1)N
≤
h
(
u0 . . . u(q−1)N−1

)
(q − 1)N

<
1

q
+

1

q2
,

a contradiction since q2 − 1 < q2 implies

1

q2 − 1
>

1

q2

1

q − 1
>

q + 1

q2

=
1

q
+

1

q2
.

Corollary 5.1.6 Suppose q ≥ k + 2. If u is k-balanced and has slope 1
q , then 1q−1 is

forbidden.

Proof. If 1q−1 were admissible, then
∣∣h (1q−1

)
− h

(
0q−1

)∣∣ ≤ k. But then q ≤ k+1,

a contradiction.

5.2 Recoverability

The idea of recoverability is not a new one (for example, see [21], Definition 5.6). It

is, however, interesting to explore the idea in regards to random substitutions.
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Definition 5.2.1 Let ζ be a (possibly random) substitution on A = {0, 1, . . . , s− 1} . An

infinite string u ∈ AZ+ is ζ-recoverable if for every i ≤ j, ui, . . . , uj = ζ (wi) for some

unique ζ-admissible wi and w0w1w2 . . . ∈ AZ+ is ζ-admissible. u is weakly ζ-recoverable

if for every i ≤ j there is some ni ≥ 1 such that ui, . . . , uj = ζni (wi) for some unique

ζ-admissible wi. ζ is (weakly) recoverable if every sequence u generated by ζ is (weakly)

ζ-recoverable.

Example 5.2.1 Recall the 2-balanced random substitution ρ from Example 5.1.2:

ρ :


0 7−→ 0011

1 7−→

 1001 p

0101 q

We will show that ρ is recoverable. Let u be an infinite string arising from ρ. The

word 111 is admissible and 01 is the unique word such that 111 = ρ (01) . So

u = · · · 111 · · ·

= · · · ρ (01) · · ·

= · · ·unun+1un+200111001umum+1 · · · .

Furthermore, unun+1un+2 and umum+1 end and start a substituted symbol, respectively

and these substituted words is uniquely determined by unun+1un+2 and umum+1. This

unicity then also completely determines the rest of u. Therefore, ρ is recoverable.

We may “mimic” the FibMorse substitution so as to be recoverable. Recall Example

3.2.4:
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Example 5.2.2 We have that

α :



0 7−→

 10 1
2

02 1
2

1 7−→ 03

2 7−→ 04

3 7−→ 3

4 7−→ 4

Let u be an infinite string generated by α. By the definition of α, the word a3 is forbidden

for a = 1, 2, 3, 4. Any 1 or 2 in u is uniquely the image of 0. The word 103 is uniquely

the image of 03 and so any other occurrence of 03 in u is uniquely the image of 1. A

similar analysis of words of the form a4 yield unicity of images. We conclude that α is

recoverable.

5.3 Recoverability and Entropy

Is there a relationship between a deterministic (entropy zero) process and a recov-

erable substitution? It seems that being recoverable determines exactly what a sequence

generated by a substitution looks like. However, this is not the case. For example, it is

known that the Fibonacci substitution ω is recoverable (see for instance [14], Chapter 1)

but the substitution

ω′ :

 0 7→ 010

1 7→ 101

is not recoverable as it generates the periodic sequence u = 0101010 . . .. Both these

substitutions are deterministic by Corollary 4.4.1. Then what is the real difference between

being deterministic and recoverable? Recall that heuristically, to have entropy 0 means

that there is no “surprise” or information gained in reading a symbol in an infinite string.

However, to be recoverable just means that preimages of words are unique.



82

5.4 Entropy, Balancedness, and Recoverability - the Possibilities

Below is a table of the possibilities that can occur. Entropy zero is because of

Corollary 4.4.1.

Example Entropy k-Balanced Recoverable 0 7−→ 01

1 7−→ 0
0

k = 1

Ex. 5.1.1
yes 0 7−→ 0100

1 7−→ 11
0

k =∞

Ex. 5.1.3
yes

0 7−→ 0011

1 7−→

 0101 1
2

1001 1
2

1
6 log 2

Ex. 4.2.4

k = 2

Ex. 5.1.2

yes

Ex. 5.2.1
0 7−→ 01

1 7−→

 0 1
2

10 1
2

positive

Thm. 4.2.2

k =∞

Ex. 5.1.5
no

 0 7−→ 010

1 7−→ 101
0 k = 1 no

(
1
2 ,

1
2

)
-Bridge substitution

1
2 log 2

Ex. 4.2.3
NA no

0 7−→ 01

1 7−→

 01 1
2

10 1
2

positive k = 2 no
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6 A GEOMETRIC PICTURE OF SEQUENCES

We will view binary sequences as subsets of Z2 as follows. Given u ∈ {0, 1}Z+ ,

define the sequence {(nk,mk)}∞k=0 ⊆ Z2
+ by letting (n0,m0) = (0, 0) and (nk,mk) =

(k, h (u0u1 . . . uk−1)) for k ≥ 1 (where h (w) is the number of 1’s in w). Note that

{(nk,mk)}∞k=0 is nondecreasing and has slope at most 1. Conversely, given any nonde-

creasing sequence {(nk,mk)}∞k=0 in Z2
+ with slope at most 1, define a sequence u ∈ {0, 1}Z+

by letting uk = mk+1 − mk. In this way, we have a bijection ϕ : {0, 1}Z+ −→ Z2
1/8 :={

(n,m) ∈ Z2 : 0 ≤ m ≤ n
}

and to say that u is in a subset S of Z2
1/8 is to consider the

sequence ϕ (u) , and we write u ∈ S. We can use this geometric description to calculate

the complexity and analyze the structure of certain spaces of sequences. This is therefore

a new prospect that would be interesting to compare and combine with previous theory.

A line-approximating path (LA-path) in Z2 is a sequence {(xn, yn)}n ⊆ Z2 such

that (xn, yn) ∈ {(xn−1 + 1, yn−1) , (xn−1 + 1, yn−1 + 1)} for all n ∈ Z. Let LA be the set

of all line-approximating paths. Call an LA-path finite if it is a finite subsequence of

an LA-path. Let k ≥ 2 be an integer, 0 < α ≤ 1
2 , M0 =

⌊
k
α

⌋
, and M1 =

⌊
1
α

⌋
. Define

the lower envelope e`k,α : Z2
+ → Z2

+ and upper envelope euk,α : Z2
+ → Z2

+ functions as

follows (see Figure 6.1):

e`k,α (n) =

 0 if n ≤M0

dαne − k if n ≥M0 + 1

and

euk,α (n) =

 n if n ≤M1

bαnc+ k if n ≥M1 + 1
.

Note that the upper and lower envelopes are the best lattice approximations below the

line y = αx + k and above the line y = αx − k, respectively. Let M0 = max{n :

0n is admissible}. If y = αx, then the lower envelope “hugs” the line y = αx − k, which

has x-intercept x = k
α . So it makes sense that we have M0 ≤ k

α , as in Proposition 5.1.6.
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FIGURE 6.1: e`k,α and euk,α for k = 2, α = 1
3

Theorem 6.0.1 Let M0 =
⌊
k
α

⌋
, e`k,α and euk,α be the lower and upper envelope functions

as defined above. Let Ek,α =
{

(n,m) ∈ Z2 : n ≥ 0, e`k,α (n) ≤ m ≤ euk,α (n)
}
. If u ∈ Ek,α,

then u has slope α. Conversely, any k-balanced u ∈ {0, 1}Z+ with slope α is in Ek,α (that

is, ϕ (u) ∈ Ek,α, where ϕ is the bijection described above).

Proof. If u ∈ Ek,α, then

αn− k ≤ dαne − k ≤ h (u0 . . . un−1) ≤ bαnc+ k ≤ αn+ k

so that by dividing by n and taking limits gives

α ≤ lim
n→∞

h (u0 . . . un−1)

n
≤ α.

Therefore, u has slope α.

Now suppose that u is k-balanced with slope α. We first show by way of contra-

diction that any such u satisfies h (u0 . . . un−1) ≥ e`k,α (n) for all n. Indeed, suppose there

is some n0 such that h (u0 . . . un0−1) < e`k,α (n0) and that n0 is the smallest such. Then

n0 > M0 and so h (u0 . . . un0−1) < αn0 − k since h (u0 . . . un0−1) is an integer. Since u is

k-balanced, this means that |h (w)− h (u0 . . . un0−1)| ≤ k for any word w of length n0 so
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that h (w) < αn0. Thus,

α = lim
m→∞

h (u0 . . . umn0−1)

mn0

< lim
m→∞

m (αn0)

mn0

= α,

a contradiction. Thus, h (u0 . . . un−1) ≥ e`k,α (n) for all n.

We now show similarly that h (u0 . . . un−1) ≤ euk,α (n) for all n. Suppose there is

some n0 such that h (u0 . . . un0−1) > euk,α (n0) and n0 is the smallest such. Then n0 > M1

and so h (u0 . . . un0−1) > αn0+k since h (u0 . . . un0−1) is an integer. Since u is k-balanced,

|h (u0 . . . un0−1)− h (w)| ≤ k for any word w of length n0 so that h (w) > αn0. Thus,

α = lim
m→∞

h (u0 . . . umn0−1)

mn0

> lim
m→∞

m (αn0)

mn0

= α,

a contradiction. Thus, h (u0 . . . un−1) ≤ euk,α (n) for all n.

So we have a nice geometric description of a set Sk,α containing k-balanced binary

sequences with slope α. Note that this is not an exact description as there are se-

quences in Sk,α that are not necessarily k-balanced. For example, u = 011102120313 · · · =

010011000111 · · · has slope 1
2 , hence is in Ek,1/2 but is not k-balanced for any k. Another

example of slope 1
2 but not 2-balanced is u = (110110110110110001000100)∞ (period =

24). Note that
∣∣1

2n− h (u0 · · ·un−1)
∣∣ = 3 > 2 when n = 14. u is not 2-balanced since

|h (u0 · · ·u5)− h (u14 · · ·u19)| = 3.

This geometric description of Sk,α can help us detect properties of sequences. For

example:
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Corollary 6.0.1 If u, v are k-balanced with slope α, then for all n,

|h (u0 . . . un−1)− h (v0 . . . vn−1)| ≤

 2k if αn ∈ Z

2k − 1 if αn /∈ Z
.

Thus,

|h (uj . . . un−1)− h (vj . . . vn−1)| ≤

 4k if αn ∈ Z

4k − 2 if αn /∈ Z

for all j and n.

Proof. u, v ∈ Ek,α and h (uj . . . un−1) = h (u0 . . . un−1)− h (u0 . . . uj−1) .

Corollary 6.0.2 Let u be k-balanced with slope α. Then h (u0 . . . un−1) can take at most

2k + 1 values if αn ∈ Z and at most 2k values otherwise.

Proof. By Theorem 6.0.1, u ∈ Ek,α. The least number of 1’s occurs if ϕ (u) = e`

so that dαne − k ≤ h (u0 . . . un−1) . The greatest number of 1’s occurs when ϕ (u) = eu

so that h (u0 . . . un−1) ≤ bαnc+ k. Then

(bαnc+ k)− (dαne − k) + 1 = bαnc − dαne+ 2k + 1

=

 2k + 1 if αn ∈ Z

2k if αn /∈ Z
.

6.1 Complexity via Geometry

Let Pα|(a,b)→(c,d) denote the set of finite sub-paths of elements of Ek,α that start at

(a, b) and end at (c, d) . Let SPC be the infinite matrix whose ijth entry is 1 if i = j or if

i = j + 1 and 0 otherwise (“S” is for “Step”). Let FPC be the infinite matrix whose ijth



87

entry is 1 if i = j or if i = j − 1 and 0 otherwise (“F” is for “Flat”). So

SPC =



1 0 0 0 · · ·

1 1 0 0 · · ·

0 1 1 0 · · ·

0 0 1 1 · · ·
...

...
...

...
. . .


and

FPC =



1 1 0 0 · · ·

0 1 1 0 · · ·

0 0 1 1 · · ·

0 0 0 1 · · ·
...

...
...

...
. . .


.

By a standard n × m submatrix of an infinite matrix M, we mean an n × m

matrix A such that Aij = Mij for all 0 ≤ i ≤ n and 0 ≤ j ≤ m. Let eu and e` be the

upper and lower envelope functions as above:

e`k,α (n) =

 0 if n ≤M0

dαne − k if n ≥M0 + 1

and

euk,α (n) =

 n if n ≤M1

bαnc+ k if n ≥M1 + 1
.

Note that

euk,α (n)− e`k,α (n) =

 2k if αn ∈ Z

2k − 1 if αn /∈ Z
.

Let SPC,k (n) be the standard
(
euk,α (n)− e`k,α (n)

)
×
(
euk,α (n+ 1)− e`k,α (n+ 1)

)
subma-

trix of SPC and let FPC,k (n) be the standard
(
euk,α (n)− e`k,α (n)

)
×
(
euk,α (n+ 1)− e`k,α (n+ 1)

)
submatrix of FPC . We call both SPC,k (n) and FPC,k (n) the path-connecting matrices

at n. What does a path-connecting matrix M = [mij ] represent? For each n ∈ Z+,

denote by vn,i the point

vn,i =
(
n, e`k,α (n) + i− 1

)
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for i = 1, . . . , euk,α (n) . Note that mij = 1 if

e`k,α (n+ 1)− e`k,α (n) + i− j =
(
e`k,α (n+ 1) + i− 1

)
−
(
e`k,α (n) + j − 1

)
∈ {0, 1}

and mij = 0 otherwise. So mij is the number of finite LA-paths of length 1 from vn,i

to vn+1,j . If M = [mij ] and M ′ =
[
m
′
ij

]
are path-connecting matrices at n and n + 1,

respectively, then the ij entry of MM ′ is

euk,α(n+1)−e`k,α(n+1)∑
k=1

mikm
′
kj ,

the number of finite LA-paths of length 2 from vn,i to vn+2, j. By induction, the entries

of the product of N path-connecting matrices Mn at n give the number of finite LA-paths

of length N that start at vn,e`k,α(n). We have therefore established the following Theorem.

Theorem 6.1.1 Let α ∈ (0, 1) and P =
N∏
n=1

Pn where

Pn =

 SPC,k (n) if e`PC,k (n+ 1)− e`PC,k (n) = 1

FPC,k (n) if e`PC,k (n+ 1)− e`PC,k (n) = 0

(so Pn = SPC,k (n) if the lower envelope “takes a step” and Pn = FPC,k (n) if the lower

envelope “stays flat”). Then the sum of the entries in P is the total number of finite

LA-paths of length N in Ek,α that start at (0, 0) .

Corollary 6.1.1 Let Bk,α be the space of k-balanced sequences having slope α. Then

p (n) ≤
[

1 1 · · · 1
]
Pn


1

1
...

1

 ,

where P is as in the Theorem. Thus,

htop (Bk,α) ≤ lim
n→∞

log p (n)

n
.
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If α = p
q > 0 is in lowest terms, then

p (n) ≥
[

1 1
] p∏

j=1

 Cj − Cj−1 Cj − Cj−1 − 1

1 1

 1

1


where C0 = 1 and Cj = min

{
n : e`min (n) = j

}
for j = 1, . . . , p.

Proof. We have the upper bound since Bk,α ⊆ Ek,α (under the bijection ϕ). For

the lower bound, redefine the upper and lower envelopes eumin and e`min by

eumin (n) = dαne

and

e`min (n) = bαnc .

Let Emin = LA ∩
{

(n,m) ∈ Z2 : n ≥ 0, e`min (n) ≤ m ≤ eumin (n)
}

(where LA is the set of

all LA-paths). Then Emin ⊆ Bk,α. Let C0 = 1 and Cj = min
{
n : e`min (n) = j

}
for

j = 1, . . . , p. Then there are Cj − Cj−1 − 1 integers in the interval [Cj−1, Cj) so that the

sum of the entries of

[FPC,k (n)]Cj−Cj−1−1 SPC,k (n) =

 Cj − Cj−1 Cj − Cj−1 − 1

1 1


is the number of finite LA-paths in Ek,p/q that start at a point having x-coordinate Cj−1

and end at a point having x-coordinate Cj . This gives the result.

Example 6.1.1 We will show that the space B2,1/q of 2-balanced binary sequences with

slope 1
q (q ≥ 2) satisfies

1

q
log q ≤ htop

(
B2,1/q

)
≤ 1

q
log

q + 2 +
√

(q + 2)2 − 12

2

 .

By Theorem 6.0.1, any 2-balanced sequence with slope 1
q is in E2,1/q. The path-connecting

matrix at cq + 1 is


1 0

1 1

0 1

 , at c (q + 1) is

 1 1 0

0 1 1

 , and at cq + j is

 1 1

0 1

 for
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2 ≤ j ≤ q − 1 (for q ≥ 3). Let

P =


1 0

1 1

0 1


 1 1

0 1

q−2  1 1 0

0 1 1


for q ≥ 3 and

P =


1 0

1 1

0 1


 1 1 0

0 1 1


for q = 2. There are

[
1 1 1

]
P


1

1

1


finite LA-paths of length q between cq+1 and c (q + 1)+1 for any integer c ≥ 2 and hence

[
1 1 1

]
Pn


1

1

1


paths of length qn between cq + 1 and c (q + n) + 1. Now,

P =


1 q − 1 q − 2

1 q q − 1

0 1 1


and by diagonalization of P we have that

[
1 1 1

]
Pn


1

1

1

 =
1

3r

((
1

2
q +

1

2
r + 1

)n
(8q + 4r − 8) +

(
1

2
q − 1

2
r + 1

)n
(4r − 8q + 8)

)
,
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where r =
√

(q + 2)2 − 12. Therefore,

htop
(
B2,1/q

)
= lim

n→∞

log p (qn)

qn

≤ 1

q
lim
n→∞

1

n
log

[(
1

2
q +

1

2
r + 1

)n(
(8q + 4r − 8) +

(
1
2q −

1
2r + 1

)n(
1
2q + 1

2r + 1
)n (4r − 8q + 8)

)]

=
1

q
lim
n→∞

1

n
log

(
1

2
q +

1

2
r + 1

)n
=

1

q

(
1

2
q +

1

2
r + 1

)
.

As for the lower bound, define the lower and upper envelopes e`min and eumin by

e`min (n) =

⌊
n

q

⌋
and

eumin (n) =

⌈
n

q

⌉
.

Let Emin = LA ∩
{

(n,m) ∈ Z2 : n ≥ 0, e`min (n) ≤ m ≤ eumin (n)
}

(where LA is the set of

all LA-paths). Then Emin ⊆ B2,1/q. There are q paths of length q in Emin between cq and

c (q + 1) for any integer c ≥ 2 and hence qn paths of length qn between cq and c (q + n) .

Thus,

htop
(
B2,1/q

)
= lim

n→∞

log p (qn)

qn

≥ lim
n→∞

log qn

qn

=
1

q
log q.

Corollary 6.1.2 The upper bound on htop
(
B2,1/q

)
is maximal when q = 2.

Proof. The maximum of the function

f (x) =
1

x
log

x+ 2 +
√

(q + 2)2 − 12

2

 .

occurs at x = 2. This proves the Corollary since f (q) is the upper bound in the Theorem.
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7 A BEGINNING TO SYMBOLICS IN Z2

We would like to generalize the results in Section 5.1 to higher dimensions. This

turns out to be a more difficult subject because adding dimensions significantly add to

the complexity (both in terms of balancedness and the complexity function p (n)) of the

symbolic system. This is a subject for further study, but we would like to suggest a

speculative notion of balancedness for Z2.

7.1 Balancedness in Z2

For a word w ∈ {0, 1}n , let the height h (w) =
∑n−1

i=0 wi of w be the number of

1’s in w (as before). For a finite rectangle R = {rij} ∈ {0, 1}n×m , let the box-height

hbox (R) =
∑n−1

i=0

∑m−1
j=0 rij of R be the number of 1’s in the rectangle R.

Definition 7.1.1 An array {uij} ∈ {0, 1}Z
2
+ is balanced if the difference of the box-

heights of any two rectangles of the same size have sum less than or equal to 1. That is,

if R,S are n×m submatrices of {uij}, then |hbox (R)− hbox (S)| ≤ 1.

Proposition 7.1.1 Let u ∈ {0, 1}Z+ be a balanced sequence and let σ be the left-shift

map. Then the infinite array A = {aij} whose ith row is σi (u) is balanced.

Proof. Note that the jth column of A is σj (u) = ujuj+1uj+2 · · · . Let R =

{aij}i=n1...m1
j=n2...m2

and R′ = {aij}i=n′1...m′1
j=n′2...m

′
2

be n×m submatrices of A. Since σi (u) is balanced
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for all i ≥ 0, we have that

∣∣hbox (R)− hbox
(
R′
)∣∣ =

∣∣∣∣∣∣
m1∑
i=n1

m2∑
j=n2

aij −
m′1∑
i=n1′

m′2∑
j=n′2

aij

∣∣∣∣∣∣
=

∣∣∣∣∣∣
m1∑
i=n1

h
(
σj (u)

)
−

m′1∑
i=n′1

h
(
σj (u)

)∣∣∣∣∣∣
≤ 1

since u is balanced.

From here, one can ask all the questions as in the one-dimensional case, and even

more. For example, the theory of “Hankel” matrices (see, for example, [11]) might be very

useful for this study.
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8 CONCLUSION AND FUTURE DIRECTIONS

There are currently many unanswered questions about symbolic dynamical systems

in general. Most noteworthy is the exploration of the complexity function p (n) (a nice

survey can be found in [8]). In this paper, we have explored methods of computing the

topological entropy of certain sequences, which can give information about p (n). We

have also explored a general balancedness of sequences and recoverability of substitutions.

These various notions of complexity in a symbolic dynamical system all help to understand

how complex and interesting a space is. We have looked at sequences as paths in the plane,

which give a nice geometric description of what a geometry of these symbolic dynamical

systems may look like.

Recall from Theorem 4.2.2 that we could only obtain the result that the FibMorse

substitution had positive entropy. The difficulty in computing the exact entropy lies

both in the fact that it is not a constant-length substitution and in solving a non-linear

recurrence relation. A general study in this regard of non-constant length substitutions

could prove beneficial, as well as understanding the separate study of non-linear recurrence

relations.

We would actually like to fully generalize this concept. For example, in the FibMorse

substitution, there is a deterministic part (0→ 01, no uncertainty) and a non-deterministic

part (1 maps to two different words with nonzero probabilities). It’s possible, for example,

that the dynamical system arising from the FibMorse substitution is isomorphic to some

other dynamical system. This would mean that the other dynamical system is, in some

sense, the “sum” of deterministic (ie, zero entropy) and non-deterministic (ie, positive

entropy) factors. Could it be that this positive-entropy part is a Bernoulli shift as in

Example 4.2.2? Since Bernoulli shifts have positive entropy, this would yield an entropic

characterization of dynamical systems (we note that these are not new questions, but we

would like to study them from the specific viewpoint of random substitutions). In a similar
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vein, there seems to be a mathematical connection between the frequency of symbols and

entropy (as illustrated in Examples 3.2.3 and 5.1.4, by Theorem 3.2.2). In another, but

similar, direction, is entropy a complete invariant among random substitutions? This

could be a very interesting study indeed!

Balancedness is a concept that can analytically lead to results about the structure

of words, as the results in Section 5.1. Does balancedness imply a more general condition

on the structure of words? Or does k-balancedness for k ≥ 2 imply positive entropy/

That is, does this ensure exponential word growth? Is there a general connection between

balancedness and the complexity function p (n)? We only gave a very brief introduction to

what balancedness means in 2-dimensions (Section 7.1). A general study of balancedness

in Zd, for d ≥ 2 could be very interesting and enlightening. Also, we would like to explore

the entropy of spaces of lattice paths defined by balancedness and slope, as in Section 6.1,

in more detail.

There are many interesting questions and concepts involved with these notions of

complexity and the different ways to view them. It is the author’s hope that answers to

these questions could lead to a better understanding and description of symbolic dynamical

systems.
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