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Transition matrix models are one of the most widely used tools for assessing

population viability. The technique allows inclusion of environmental variability,

thereby permitting estimation of probabilistic events, such as extinction. However, few

studies use the technique to compare the effects of management treatments on

population viability, and fewer still have evaluated the implications of using different

model assumptions. In this dissertation, I provide an example of the use of stochastic

matrix models to assess the effects of prescribed fire on Lomatium bradshawii

(Apiaceae), an endangered prairie plant. Using empirically derived data from 27

populations of five perennial plant species collected over a span of five to ten years, I

compare the effects of using different statistical distributions to model stochasticity, and

different methods of constraining stage-specific survival to 100% on population

viability estimates. Finally, the importance of correlation among transition elements is

tested, along with interactions between stochastic distributions and study species, on

population viability estimates.
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Fire significantly increased population viability of L. bradshawii, regardless of

stochastic method (matrix selection or element selection). Different processes of

incorporating stochasticity (i.e., matrix selection vs. these statistical distributions for

element selection: beta, truncated normal, truncated gamma, triangular, uniform, and

bootstrap) and constraining survival (resampling vs. rescaling procedures) yielded

divergent estimates of stochastic growth rate, and there was a significant interaction

between these methods. These effects were largely explained by the degree of bias the

different methods caused in transition elements. Incorporating correlation among

elements caused a significant, but small, reduction in estimated stochastic growth rate

in two of five species examined, yet there was no interaction with stochastic method in

this effect. Much of the variation in average response to correlation structure among

species was due to the relative balance between positive and negative associations

among the vital rates. Although alternative techniques may lead to very strong

differences in estimates of population viability, conclusions about the relative ranking

of populations or treatments are robust to differences in stochastic methods.
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Population Viability Analysis of Endangered Plant Species:
An Evaluation of Stochastic Methods and an Application to a Rare Prairie Plant

Chapter 1. Introduction

STOCHASTIC POPULATION MODELS IN ECOLOGY AND CONSERVATION

BIOLOGY

Rare organisms that inhabit variable environments appear to be at the greatest

risk of extinction. Computer simulations illustrate that increases in environmental

variation cause a corresponding increase in extinction probability (Menges 1992). In

the Origin of Species, Darwin (1859: 153) noted that "any form represented by few

individuals will, during fluctuations in the season or in the number of its enemies, run a

good chance of utter extinction." It is this chance of extinction and decline in viability

of populations that forms the focus of this dissertation.

A key goal of conservation biology is to maintain viable populations of rare

species (Soulé 1987). This dissertation utilizes knowledge of environmental variation

to estimate extinction risk or stochastic population growth rate for populations of rare

plant species. My approach centers on transition matrix modeling, using demographic

information from structured populations to project their growth or decline. Because

matrix models can incorporate observed levels of environmental stochasticity to

simulate population dynamics through time, they can be used to calculate the chance of

population loss under various conditions. Land stewards can use this information to

determine whether a management action should be taken to benefit a species of concern



(Schemske et al. 1994). This type of analysis, therefore, is directly applicable to

management and conservation of natural populations.

Transition matrix models are recommended widely as an effective method for

evaluating demographic data, especially for calculating population growth rate,

extinction probability, and sensitivities (e.g., Menges 1986, Burgman et al. 1993,

Schemske et al. 1994, Caswell 2001). Such matrices are based on the Leslie matrix

format (Leslie 1945), as modified by Lefkovitch to fit the more general form of a size

or stage-structured population (Lefkovitch 1965).

Transition matrices have been used extensively to evaluate population dynamics

of plants with various life histories, including trees (Hartshorn 1975, Namkoong and

Roberds 1974, Enright and Ogden 1979, Pinero et al. 1984, Burns and Ogden 1985),

herbaceous perennials (Sarukhan and Gadgil 1974, Bierzychudek 1982, Meagher 1982,

Fiedler 1987, de Kroon et al. 1987, Kaye 1992, Menges 1986 and 1990, Gregg 1991),

biennials (Caswell 2001), and annuals (Schmidt and Lawlor 1983). However,

significant theoretical and practical issues pertaining to matrix models have not been

resolved in the literature, thus limiting their application by managers and technicians.

First, environmental stochasticity can be incorporated into matrix models through

matrix selection (Menges 1990) or element selection (Ferson 1991; see also Burgman et

al. 1993), but these methods may yield substantially different results (Greenlee and

Kaye 1997). A formal comparison of stochastic methods is currently lacking in the

published literature. Second, little attention has been given to the problem of

constraining stage specific survival to 100%, a problem that arises in element selection
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for stage (but not age) structured models. Lastly, the effect of correlation among vital

rates under theoretical conditions has been discussed by a few authors (e.g.,

Tuljapurkar 1982, Orzack 1993 and 1997, Ferson in prep.), but formal tests of the

effect of correlation on multiple species are lacking.

A NOTE ON TRANSITION MATRIX METHODS

In this dissertation, transition matrix models will be constructed for each species

by calculating the proportion of individuals that make the transition from one stage to

another between years, and the fecundity of each stage (based on fruit production and

seedling recruitment measurements). Separate matrices will be built for each pair of

years available, e.g. 1992-93, 1993-94, etc. See Caswell (2001) for a complete

description of matrix population models and their implementation. Extinction

probabilities (calculated in Chapter 2) will be defined as the likelihood that a population

will drop below 10 individuals in a 100-yr period, and stochastic growth (Chapters 2-4)

rate will be approximated via long-run simulation (Caswell 2001).

Two methods of incorporating environmental stochasticity (and thus calculating

extinction probability and stochastic growth rate) will be utilized in this dissertation:

matrix selection and element selection. Burgman et al. (1993) review some matrix and

element selection procedures. Matrix selection involves randomly selecting a whole

matrix (from among a collection of matrices available from a series of years of

observation) at each time-step in the model simulation (Figure 1. 1) (e.g., Menges

1992). In contrast, element selection is implemented by building a new matrix at each



time step with each new element drawn from a distribution with a specified mean and

variance (calculated from the collection of individual matrices) (Figure 1 1). This

procedure can employ various statistical distributions.

S
Multiple years of observation
allow incorporation of

Fl 1

stochasticity through:
G2 1. Matrix selection, or

R V 2. Element selection
G3

\/
S2 Si

year I matrix year 2 matrix year 3 matrix average matrix
o 0 Fl1 0 0 Fl2 0 0 F130 0 Fl.
GI Si G2 Gi, Si? G2, G13 Si3 G23 G1 S1 G2 2.
o G3 S2 0 G32 S22 0 G33 S23 0 G3 Elem-

entvariances
o 0 F1 tion1. Matrix selection

G17 Si\, G2\
o G3 S2

Figure 1. 1. A transition matrix model. Matrix selection involves randomly selecting
whole matrices (e.g., year 1, 2 or 3) at each time step of the simulation, while element
selection generally involves building a new matrix from the mean and variances of each
element.

DISSERTATION SCOPE

In Chapter 2 of this dissertation, I present an in-depth evaluation of the effects

of prairie burning on an endangered plant of Willamette Valley wetlands, Lomatium

bradshawii, a near-endemic that appears to be declining due, in part, to fire

suppression. Specifically, the impact of fire is evaluated in terms of its effect on



extinction probability and stochastic growth rate of wild populations subjected to

different fire frequencies. This chapter demonstrates the utility of the matrix model

approach for assessing the impact of alternative management practices on population

viability, and compares two methods of stochastic modeling.

Chapter 3 broadens the scope of the dissertation to a consideration of

methodological issues, utilizing empirical data from 27 populations of five perennial

plant species collected over periods ranging from 5 to 10 years. The effects of different

methods of incorporating stochasticity are evaluated with stochastic growth rate as the

response variable. These methods include matrix selection (also known as whole-

matrix bootstrapping) and six statistical distributions for element selection (beta,

truncated gamma, truncated normal, triangular, uniform, and observed/discontinuous).

This evaluation also considers the effects of two different methods of constraining

stage-specific survival to 100%, and tests for interactions between stochastic and

survival constraint methods.

The issue of correlation among vital rates is considered in Chapter 4, along with

an examination of interactions with species and stochastic methods. Correlation among

matrix elements is a significant issue because it can increase or decrease estimates of

population viability, such as stochastic growth rate, depending on whether the

correlations are positive or negative (Orzack 1997). This creates some uncertainty in

viability estimates and the need for including correlation structure, which can be an

analytically cumbersome process. Even so, correlation structure has rarely been

included in stochastic matrix models (Table 4.2). I use a method of generating



correlated random numbers that employs a normal copula, a technique of specifying

dependencies of variables that has been overlooked in the ecological literature.

Each successive component of this dissertation seeks to build on the last. A

pervading goal among the chapters is to explore applications of ecological theory to

some of the practical needs in conservation biology. These needs include

improvements in management of endangered species and refinement of tools available

to the practitioner of population viability analysis. By exploring both a specific case

study and general methodological issues, I hope to contribute in some form to the

advancement of the fields of ecology and conservation biology.
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Chapter 2

The Effect of Fire on the Population Viability of an Endangered Prairie Plant

Thomas N. Kaye, Kathy L. Pendergrass, Karen Finley, and J. Boone Kauffman
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INTRODUCTION

Fire is a disturbance that influences plant population dynamics and can change

plant community structure (Bond and van Wilgen 1996). Many rare plant species occur

in fire-dependent communities (Myers 1989, Johnson and Abrahamson 1990, Campbell

etal. 1991, Jacobson et al. 1991, Hardin and White 1992, Carlson et al. 1993, Menges

and Kimmich 1996), and fire suppression is the principal threat to 4.1 % of the

endangered flora in the U.S. (Schemske et al. 1994). Conversely, some rare species

are threatened by burning of their habitat, especially in tropical regions (e.g., Stone and

Scott 1985). Therefore, managers can improve conditions for rare plants if they have

specific knowledge of how populations of such species respond to fire (Hessl and

Spackman 1995).

The effect of fire on life history processes has been explored for several rare

plants. Burning can increase flowering and fruiting (Johnson and Blyth 1988, Hartnett

and Richardson 1989, MacRoberts and MacRoberts 1990), seed germination (Borchert

1989, Boyd and Serafini 1992, Jacobs 1993), seedling establishment (Gankin and Major

1964, Barker and Williamson 1988), growth (Barker and Williamson 1988), or

combinations of these processes (Lesica 1999, Menges 1995). In some rare plant

species, burning has both positive and negative effects, such as increasing seedling

recruitment while killing adults (e.g., Dunwiddie 1990, Menges 1992a). In others, fire

has no clear effect on adult survival (Warren et al. 1992) or flowering (McClaran and

Sundt 1992). Although prescribed burning is a recommended tool for rare plant



conservation in various habitats (Folkerts 1977, Currier 1984, Jacobson et al. 1991,

Kaye 1992, Phillips et al. 1992, Hawkes and Menges 1995), decisions to manage

habitat with fire should be informed by careful experimentation, monitoring, and

interpretation of results (Owen and Rosentreter 1992).

The overall impact of a disturbance on a population is a summation of its effects

on various vital attributes (Noble and Slatyer 1980), and should not be inferred from a

response at one or two points in a life cycle. Transition matrix models are an

appropriate tool for assessing the impact of a management strategy on endangered

species because they synthesize population dynamics at many life history stages

(Schemske et al. 1994, Silvertown et al. 1996). They can be used to generate several

useful statistics, such as population growth rate, extinction probability, and elasticities.

However, only a few matrix-based evaluations of the effect of controlled burning on

rare plants have been published to date (but see Manders 1987, Lesica 1997, Menges

and Dolan 1998, Gross et al. 1998). In this paper, we use matrix models to evaluate

burning as a management tool for an endangered plant. This approach integrates the

influence of fire on plant growth, survival, fecundity, and mortality so that effects are

measured at the level of population dynamics. We focus primarily on stochastic

measures of population viability without burning and with two different fire frequencies

to test the hypothesis that fire improves conditions for this species. In addition, we

compare results derived from two widely-used methods of stochastic projection. We

use elasticities to evaluate which demographic processes are most important to changes

in growth rate caused by fire.



Lomatium bradshawii (Rose) Math. & Const. (Bradshaw's lomatium, Apiaceae)

is listed by the U.S. Fish and Wildlife Service and the Oregon Department of

Agriculture as an endangered species (Oregon Natural Heritage Program 2001). It is

an herbaceous plant from a perennial taproot, reproducing only by seed. The seeds

generally mature in June and passively disperse in July, then germinate by the

following April. Its flowers are pollinated by a diverse assemblage of insects,

especially solitary bees and flies (Kaye 1992). Most known populations of L.

bradshawii occur in fragmented habitats in southwestern Washington and the

Willamette Valley of western Oregon. Approximately sixteen populations are known,

varying in size from less than fifty to 25,000 individuals, and less than one to about 40

ha (Parenti et al. 1993). The largest concentration of reported sites is in the

southwestern Willamette Valley, west of Eugene, Oregon. A recovery plan for L.

bradshawii (Parenti et al. 1993) identifies population enhancement as needed for the

species' recovery.

Lomatium bradshawii occurs in remnants of two types of formerly widespread

prairies. Seasonally saturated wetlands in shallow soil over basalt in Marion and Linn

counties, Oregon, support a small number of populations (Alverson 1990). Most

populations, however, occupy valley-bottom prairie dominated by Deschampsia

cespitosa (tufted hairgrass) and characterized by deep pluvial clays and a perched water

table. The latter habitat type has been described in some detail (e.g., Moir and Mika

1976, Kagan 1980, Alverson 1989, and Finley 1994), and typifies the sites included in

our study. Both habitat types are part of the prairie-oak savannah ecosystem of western
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Oregon interior valleys that was widespread before regional fire suppression and

settlement in the mid- to late 1800's (Habeck 1961, Johannessen et al. 1977). Prior to

Euro-American settlement, these prairies were maintained by frequent fall fires set by

Native Americans to promote food plants, such as camas (Camassia quainash and C.

leichtlinii), and to herd game for improving hunting success (Johannessen et al. 1977).

Today, less than one percent of presettlement-composition prairies remain, and tools

for managing this habitat for native and endangered species are urgently needed

(Wilson et al. 1995).

METHODS

Study sites, burning treatments and plots

We used information from two populations to evaluate the effect of fire on the

demography of Lomatium bradshawii. Both were within the southwest part of the

species' range, in an area west and north of Eugene, Oregon, in valley-bottom prairie

habitat that had not burned in several decades. These populations occurred within the

Fern Ridge Research Natural Area at two sites: Fisher Butte (44°3' N, 123° 15' W) and

Rose Prairie (44°5' N, 123° 15' W). The land is managed by the Army Corps of

Engineers. Two additional populations were included for seed bank evaluation, Buford

County Park (43°60' N, 122°56' W), east of Eugene, and the Long Tom Area of

Critical Environmental Concern (ACEC, 44°9' N, 123° 18' W), which is managed by
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the Bureau of Land Management. Throughout this report, these sites are referred to as

Fisher Butte, Rose Prairie, Buford Park, and Long Tom, respectively.

Three burning treatments were conducted at Fisher Butte and Rose Prairie from

1988 through 1993 to determine the effects of fire on Lomatium bradshawii population

dynamics. All burns were conducted in October. These treatments were control (no

burning), burned twice in six years (1988 and 1991), and burned three times in six

years (1988, 1989, and 1991), The population areas were divided into more or less

equal strips, roughly four ha each at Fisher Butte and two ha each at Rose Prairie, and

randomly assigned one of the three treatments prior to burning (see Pendergrass et al.

1998; and Pendergrass et ad. 1999 for more details). Burn characteristics at each site,

including flame length, height, depth and heat per unit area were recorded in 1988-1989

and are reported elsewhere (Pendergrass et al. 1998). Permanent monitoring plots were

sampled annually in areas exposed to the three treatments. To establish these plots,

mature Lomatium bradshawii plants (reproductive or large vegetative) were randomly

chosen from throughout the population areas and tagged in 1988. These individuals

were numbered, and a subset, ten at Fisher Butte and six at Rose Prairie, were

randomly selected from each treatment type to serve as center points for permanent

circular plots (2-m radius). All L. bradshawii individuals were mapped in each circular

plot in May or June of each year (prior to burning) from 1988 through 1993. Seed

production and umbel number were recorded annually for all tagged plants, including

those at the center of each circular plot and outside the plots.
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Transition elements and matrices

Two general approaches, analytical methods and biological classifications, have

been used to define categories for stage-based models (Horvitz and Schemske 1995).

Analytical methods maximize within-class sample sizes and minimize error of estimates

(Vandermeer 1978, Moloney 1986, Fiedler 1987), and biological classifications rely on

size, age, gender, reproductive states, development, or some combination of these

(e.g., Lefkovitch 1965, Usher 1976, Bierzychudek 1982, Aplet et al. 1994, Maschinski

et al. 1997). We used a biological classification that combined plant size and

reproductive state to classify each Lomatium bradshawii individual into one of six

stages: seedling (S), vegetative plant with one or two leaves (V2), vegetative plant with

three or more leaves (V3), and reproductive plant with one (Ri), two (R2), or three or

more (R3) umbels. Reproductive plants were segregated by umbel number because

one-umbel plants rarely produce seed (most of their flowers are male-only), while two-

umbel plants produce seeds on the second umbel, and plants with three or more umbels

may produce many seeds (T.N. Kaye, unpublished data). Thus differences in the size

of reproductive plants affect their sexual function and fecundity rates, a pattern found in

several members of the Apiaceae (Schlessman 1978, Lindsey 1982, Lindsey and Bell

1985). We combined vegetative plants with one or two leaves into a single stage

because field observations indicated that plants with one leaf often produced a second

leaf later in the year, and therefore leaf number of small plants may be a function of

sampling date and/or variation in seasonal phenology, not plant vigor. Seedlings were
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defined as first year plants, often with cotyledons. All vegetative plants with one leaf

were considered seedlings in 1988.

To construct transition matrices, we calculated the proportion of individuals in

each stage that remained the same or changed to a different stage from one year to the

next. To estimate the number of seedlings produced by individuals in each

reproductive stage, we first determined the mean number of seeds produced by each

stage (with data recorded for tagged plants) and the number of reproductive individuals

within each plot to estimate the number of seeds produced in each plot in year t.

Seedlings observed in year t + 1 were then apportioned among the reproductive stages

based on seed production and density of each stage in year t. These proportions and

fertilities were organized as transition elements in a matrix following standard methods

(Lefkovitch 1965, Menges 1986, Caswell 2001) and according to our conceptual model

of population dynamics for this species (Figure 1). Annual transition matrices,

hereafter referred to as detailed matrices, were constructed for each of five growing

seasons from 1988-89 to 1992-93, and for each treatment at Fisher Butte and Rose

Prairie. These detailed matrices can be found in Caswell and Kaye (in review). A

mean matrix for each site and treatment combination was produced from each set of

detailed matrices with a corresponding set of variances, one variance (representing

environmental stochasticity) for each mean matrix element. Sample sizes for large

reproductive plants (R3) were small because plants in this stage were uncommon in our

study populations. In some cases (unburned plots at Rose Prairie in 1989 and 1992,

and burned plots at that site in 1991), no R3 plants were observed, making it impossible
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Figure 2.1. Conceptual model of the life cycle pathways of Lomatium bradshawii.
Each arrow represents possible transitions plants can make from one year to the next.
Dashed lines pointing to the seedling stage indicate reproduction. Double-headed
arrows indicate regression to a smaller stage or growth to a larger stage. Stages
identified in this model are first year seedling (S), one to two-leaved vegetative plants
(V2), vegetative plants with three or more leaves (V3), and reproductive plants with
one (Ri), two (R2), or three or more (R3) umbels.
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to estimate transitions for this stage. To resolve this problem, we replaced the R3-

colunm of each of these detailed matrices with the average values from that stage for

the appropriate site and treatment.

We used loglinear analysis to test for treatment and site effects on stage-specific

survival and transitions. Count data (Table 2.1) for each transition were summed

across all years. These data formed a 4-way transition frequency table with three

explanatory variables: treatment (T, unburned, 2 burns, or 3 burns), location (L, Fisher

Butte or Rose Prairie), and initial class (C, stages S through R3). The response

variable was individual fate (F, stages V2 through R3 and death). A constant 0.5 was

added to all cells prior to analysis (as recommended by Fingleton [1984]). In this

analysis, the transition frequency table was modeled as a linear function of the

logarithm of the cell frequencies (see Silva et al. [1990] for a detailed application of this

analysis to demographic data). The presence of an interaction in these hierarchical

models implies the presence of all lower order interactions involving those variables.

Tests were performed by determining the reduction in the log-likelihood ratio, G2,

when a term was added to a model that excluded that term. For example, comparing a

null model (Cm, CF for the null hypothesis that the fate of an individual is independent

of treatment or location, conditional on its initial state) with a model that includes a

location effect (Cm, CFL) can be used to calculate LG2, which is compared to a chi-

square distribution. This comparison tests for a location effect (see Table 2.2).

Degrees of freedom for this test are equal to the difference in the degrees of freedom in
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Table 2.1. Four-way transition frequency table used in the loglinear analysis (Table
2.2). Counts of individuals summed across the five years of the study are shown for
each combination of six initial classes, six fates, two locations, and three burning
treatments.

Rose Prairie Fisher Butte

initial state fate no burn two three no burn two three
burns burns burns burns

S V2 42 42 51 15 68 56

S V3 15 22 24 5 16 8

S Ri 3 1 2 2 5 3

S R2 0 0 0 0 0 1

S R3 0 0 1 0 0 0

S dead 185 86 96 91 411 226
V2 V2 37 58 26 18 44 22
V2 V3 34 50 45 5 23 9

V2 Ri 7 12 10 0 4 5

V2 R2 3 3 6 0 4 1

V2 R3 0 0 0 0 1 1

V2 dead 98 76 57 28 83 51

V3 V2 17 22 27 6 9 2

V3 V3 150 72 126 24 27 26

V3 Ri 49 38 52 16 26 17

V3 R2 18 26 21 2 23 10

V3 R3 1 1 4 0 0 0
V3 dead 162 135 131 21 64 38

Ri V2 6 5 3 0 6 0

Ri \13 33 18 16 12 9 9

Ri Ri 53 28 33 24 20 12

Ri R2 26 33 29 10 21 14

Ri R3 2 3 6 0 1 0

Ri dead 72 47 49 21 37 29

R2 V2 2 3 1 0 2 1

R2 V3 ii 9 6 2 12 3

R2 RI 23 23 20 13 15 16

R2 R2 18 33 45 5 40 20
R2 R3 4 7 13 1 4 1

R2 dead 32 54 57 7 38 21

R3 V2 0 0 0 0 1 0

R3 V3 2 0 1 0 1 1

R3 Ri 1 1 4 0 2 0
R3 R2 3 5 8 2 4 1

R3 R3 7 17 24 1 3 2

R3 dead 2 10 20 0 4 2



Table 2.2. Loglinear analysis of the effects of burning treatment and location on stage-
specific plant fates. The explanatory variables are initial class (C), treatment (T) and
location (L), and the response variable is fate (F). Relevant comparisons for each test
are shown as differences between two models, and their corresponding P-values are
shown in bold type.

Effect Model Comparison df G2 LG2 P
(1)CTL,CF(null) 150 252.5 <0.0001

(2) CTL, CFL 120 167.6 0.0027
location (1)-(2) 30 84.9 <0.0001

(3) CTL, CFT 90 131.1 0.0031
treatment (1)-(3) 60 121.4 <0.0001

(4) CTL, CFL, CFT 60 41.18 0.9698
location (3)-(4) 30 89.92 <0.0001
treatment (2)-(4) 60 126.42 <0.0001

(5) FCTL 0 0 1.0000
location x
treatment (4)-(5) 60 41.18 0.9698

interaction
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the two models. The effect of a factor is always estimated relative to a specified model,

so there may be more than one way to measure the effect of any factor. Two different

tests for each factor were, therefore, included in our analyses.

Stochastic measures of population viability

We explored two measures of population viability, stochastic population growth

rate and extinction probability, using two methods of incorporating environmental

variability. Stochastic growth rate (?) was chosen over the more conventional

deterministic growth rate, lambda ), because it incorporates environmental variability

and does not assume a stable (equilibrium) population structure (Tuljapurkar 1990).

The sampled Lomatium bradshawii populations may not be at equilibrium, especially

when burned after several decades without fire. Further, X is always less than ?

(Caswell 2001), which makes it a more conservative estimate of population viability.

Populations with ? greater than 1.0 are projected to grow, while those with less

than 1.0 are projected to decline.

Environmental stochasticity was modeled in two ways, through element

selection (e.g. Maschinski et al. 1997) and matrix selection (e.g., Bierzychudek 1982).

Element selection used the average matrices and, at each time step of the simulation,

varied each matrix element at random within its observed variance. Element selection

allows population trajectories in time to follow an infinite number of pathways bounded

only by observed variances, but our use of the method did not account for any inter-

correlation of matrix elements. That is, "bad" years for one type of transition were not
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correlated with "bad" years for others, even though environmental correlation among

demographic parameters occurs in some species (Horvitz and Schemske 1995,

Oostermeijer et al. 1996, Horvitz et al. 1997, Caswell 2000). Matrix selection, on the

other hand, preserves the observed correlation structure among transition elements by

varying whole matrices, drawn at random from the set of five detailed matrices for each

treatment/site combination, at each time step. This limits the number of possible

trajectories a simulated population can follow (Burgman et al. 1993). We used

RAMAS/stage software (Ferson 1991) to perform element selection simulations and

POPPROJ2 (Menges 1986, 1990, 1992b) to implement matrix selection. For both

methods, we used an initial population size of 800 plants distributed in the average

observed structure for each treatment and site.

We calculated stochastic lambdas and 95 % confidence intervals (following

Caswell 2001:396) from simulations using both the element and matrix selection

procedures. When the log of population growth is averaged over a very large number

of time steps, it converges to a fixed value determined by vital rates and environmental

processes (Caswell 2001, Tuijapurkar 1990). For each type of simulation, we ran the

models for 2000 time steps to calculate the stochastic growth rate.

To calculate extinction probability, we ran 1000 simulations with 100 1-yr time

steps. Extinction was defined as falling below ten individuals. For element selection,

distributions were assumed to be normal and truncated to 0 and 1. If transition rates

for a given stage summed to greater than 1.0 (suggesting greater than 100% survival)

during element selection, the values were rescaled to sum to 1.0. In the matrix
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selection procedure, each detailed matrix had an equal probability at each time step.

Extinction probability was calculated from the frequency of extinction events in the

simulations. Confidence intervals were based on a normal approximation of a binomial

distribution (Steel et al. 1997).

Our use of the transition matrix model assumed that fertility and transition rates

are independent of intra-specific plant density. This is an acceptable assumption for

populations below a density-dependent threshold (e.g., Shaw 1987), but only while they

remain at low densities. Density dependence will eventually limit growth of

populations with lambda greater than one. Therefore, we tested the effects of imposing

a population ceiling on extinction probability and found that there was no effect on

extinction probability of limiting population size to twice the initial size. We concluded

that omitting density dependence from our models did not substantially alter our results.

Demographic stochasticity was also ignored by our models, but it usually contributes

much less to extinction probability than environmental stochasticity, except in declining

populations with small (e.g., 50 individuals) initial size (Menges 1992b). In addition,

these matrix models assume that population growth is a first-order Markov process, in

which transition probabilities depend only on a plant's condition in the current year, not

on its state in previous years (Lefkovitch 1965).

Elasticities

Elasticities are a proportional measure of the sensitivity of lambda to small

perturbations in each transition element (de Kroon et al. 1986). One useful property of
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elasticities is that for a given matrix, they can be summed for each stage to provide a

proportional measure of the importance of each stage for population growth (e.g.,

Caswell 2001). We calculated elasticities for each of the populations and treatments

using weighted mean matrices and a parametric bootstrap process detailed in Caswell

and Kaye (in review). This bootstrap procedure resamples matrices from a multinomial

distribution for transition rates and a Poisson distribution for fertilities to generate 95 %

confidence intervals.

Seed bank analysis

Our models assume that seeds do not remain in the soil for more than 1 yr

without germinating or dying. To test this assumption, we sampled soils from four

Lomatium bradshawii populations to determine if the species maintains a persistent soil

seed bank. Populations examined included Fisher Butte, Rose Prairie, Long Tom, and

Buford Park. All soil samples were taken in 1993 after seedling emergence and prior

to seed dispersal of the current season. At the first three sites, 20 x 20-cm by 3-cm

deep samples were collected adjacent to randomly selected reproductive L. bradshawii

plants, excluding plants that were included in monitoring plots. At each plant, a

random direction and distance (up to 2 m) were selected for locating the sample. At

Buford Park, 20 x 20-cm by 3-cm deep samples were taken at regular intervals along

previously established monitoring transects in areas of high Lomatium bradshawii

density (50 plants m2). Sample sizes ranged from 15 to 20 per site.
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Soil samples were examined for Lomatium bradshawii fruits (single seeded

mericarps) within two days of collection. Each sample was loosened into smaller

fragments, then passed through a series of sieves to separate the size fragment

appropriate for L. bradshawii fruits. The accuracy of this technique was evaluated by

placing marked L. bradshawii fruits into the first three soil samples to determine if they

could be found. All marked fruits were recovered quickly and without confusion.

When L. bradshawii fruits were encountered, they were evaluated for overall condition

and presence of endosperm or embryo. We tested for viability of embryos with

tetrazolium chloride (following Heydecker [1973]).

RESULTS

Transition rates

Between 1988 and 1993, a total of 1,151 individual plants were recorded in

sample plots at Rose Prairie and 1,273 were observed at Fisher Butte. Many kinds of

transitions were observed among the stages of Lomatium bradshawii. From one year to

the next, plants increased or decreased in size, or remained the same (Table 2.3). In a

single year, some plants grew or shrank two or more stages. For example, at both sites

and in all fire treatments, V3 plants grew to Ri or R2 or regressed to V2 stages in one

year (Table 2.3). Some transitions were never or seldom observed, such as plants from
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Table 2.3. Mean transition matrices and variances for each site, treatment, and year
(1988-93, n=z5). Fertilities are found on the top row of each matrix. Probabilities for
stasis are along the main diagonals, regression to smaller stages are above the diagonals
(excluding the top row), and growth probabilities are below the diagonals in each
column. Stages are defined in Methods.

Stage at

time t+1 S V2 V3 Ri R2
Stage at time t

R3 S V2 V3 Ri R2 R3
Mean 1988-93 Variance 1988-93

Rose Prairie, no burns
S 0 0 0 0.362 3.462 4.035 0 0 0 0.031113.3046.889
V2 0.068 0.244 0.108 0 0 0 0.00760.10790.01450 0 0
V3 0.094 0.130 0.390 0.228 0.044 0 0.01170.02980.03800.01140.00770
Ri 0.018 0 0.278 0.432 0.584 0 0.00070 0.02620.02370.11120
R2 0 0 0.044 0.186 0.272 0.667 0 0 0.00770.01110.14090.2222
R3 0 0 0 0 0.100 0.333 0 0 0 0 0.04000.2222

Rose Prairie, two burns (88 and 91)
S 0 0 0 0.764 4.138 10.178 0 0 0 0.30907.535 76.093
V2 0.318 0.408 0.108 0.078 0.022 0.125 0.01040.00950.00420.00550.00100.0469
V3 0.058 0.216 0.246 0.146 0.160 0.083 0.00270.01950.02900.00510.01540.0204
Ri 0.012 0.016 0.254 0.348 0.150 0.100 0.00010.00040.00710.01910.00600.0300
R2 0 0.014 0.184 0.310 0.524 0.343 0 0.00080.01940.02670.01770.0674
R3 0 0.006 0 0.014 0.058 0.350 0 0.00010 0.00080.00390.1675

Rose Prairie, three burns (88, 89 and 91)
S 0 0 0 0.692 4.800 10.540 0 0 0 0.28136.002 27.147
V2 0.336 0.316 0.028 0 0.014 0 0.02030.08520.00130 0.00080
V3 0.062 0.184 0.370 0.278 0.080 0.125 0.00290.03440.02230.02690.00840.0469
RI 0.020 0.156 0.228 0.278 0.240 0 0.00100.03290.01190.02620.05550
R2 0.012 0.034 0.124 0.342 0.488 0.250 0 0.00460.00550.04580.04690.1875
R3 0 0.006 0 0 0.050 0.375 0 0.00010 0 0.01000.1719

Fisher Butte, no burns
S 0 0 0 0.322 1.718 5.984 0 0 0 0.18602.776 17.573
V2 0.236 0.242 0.054 0.030 0.016 0 0.02450.01560.00160.00140.00100
V3 0.102 0.220 0.496 0.206 0.140 0.240 0.00570.01300.00730.00580.00750.1504
Ri 0.014 0.056 0.174 0.392 0.342 0.066 0.00020.00210.00400.01470.00890.0174
R2 0 0.042 0.062 0.180 0.326 0.174 0 0.00310.00140.01980.03040.0675
R3 0 0 0.002 0.014 0.048 0.414 0 0 0 0.00040.00220.1504

Fisher Butte, two burns (88 and 91)
S 0 0 0 0.078 0.892 3.356 0 0 0 0.00450.34245.390
V2 0.286 0.328 0.106 0.060 0.018 0 0.01650.00630.00400.00130.00130
V3 0.170 0.262 0.362 0.168 0.090 0 0.00860.01450.01590.01690.00260
Ri 0.006 0.070 0.180 0.278 0.220 0.040 0.00010.00320.00820.00640.01760,0064
R2 0 0.018 0.120 0.298 0.394 0.146 0 0.00050.00510.07230.01020.0325
R3 0 0 0.004 0.022 0.102 0.680 0 0 0.00010.00100.01350.0812

Fisher Butte, three burns (88, 89, 91)
S 0 0 0 0.086 0.720 2.538 0 0 0 0.00200.22914.167
V2 0.334 0.196 0.084 0.046 0.012 0 0.01270.00770.00490.00270.00060
V3 0.146 0.326 0.496 0.106 0.056 0,028 0.00750.02290.03470.01780.00250.0031
Ri 0.014 0.074 0.166 0.354 0.166 0.060 0.00030.00180.00270.00910.01470.0064
R2 0 0.050 0.070 0.316 0.458 0.192 0 0.00140.00290.03080.01660.0013
R3 0 0 0.018 0.046 0.142 0.632 0 0 0.00030.00440.01380.0279
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S or V2 growing to R2 or R3 stages. The loglinear analyses (Table 2.2) suggest that

fates of individuals in each of the six stages were affected by the burning treatments

(P<0.0001) and the locations of the populations (P<0.0001). There was no evidence

of an interaction between treatment and location (P 0.9697).

In unburned environments at both sites, the most likely transition for all stages

was survival in the same stage-class (matrix diagonals, Table 2.3) or decline in size.

At Rose Prairie, stasis was most likely for V2 through Ri plants, while shrinkage to the

next smaller stage class was most probable for R2 and R3 reproductive plants.

Similarly, at Fisher Butte stasis was most likely for all stages except R2, which most

frequently regressed one stage. Plants in burned environments most often remained the

same or grew one stage. For example, plants remained the same size more often than

any other transition in both fire treatments at Rose Prairie, except for V3 and Ri plants,

which were most likely to grow one stage in the two-burn and three-burn treatments,

respectively. Average matrices for the burn treatments at Fisher Butte also showed that

stasis was the single most likely transition, except for one-step growth of Ri and V2

plants in the two-burn and three-burn treatments, respectively.

The effect of fire on individual plant fecundity (top row of the matrices, Table

2.3) was less clear, and appeared to differ between the two sites. Mean matrices for

burned environments at Rose Prairie had higher fecundity values in most cases than

those for unburned conditions, especially for R3 plants, but plants in the two burn

treatments had very similar fecundities. At Fisher Butte, however, fecundity of R2 and

R3 plants consistently declined with increasing fire frequency.
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Population growth rates

Both estimates of stochastic population growth rate increased with burning

frequency at Rose Prairie and Fisher Butte, but the magnitude of the fire effect differed

from site to site, and, to a lesser degree, with the method of calculating At Rose

Prairie, for example, plant abundance was projected to decline in the absence of fire,

but burning twice in six years resulted in growth rates well over 1.0. This increase

continued in the three-burn treatment, especially for estimates from element selection

(Figure 2), indicating that burned populations were projected to increase in size. Fire

also had a positive effect on population growth rate at Fisher Butte, but its effect was

less dramatic and a higher burning frequency was required to raise ) to 1.0.

Population growth rate in the two-burn treatment at Fisher Butte increased over the

unburned area, but remained less than 1.0 (Figure 2), with three burns in six years

required to raise X to 1.0. For either method of calculating we rejected the null

hypothesis that fire had no effect on at P=0.028 (i.e., the probability that we would

observe a progressively positive effect of burning in three treatments at two sites if the

effects of fire were random was [116]2=0.028). Both measures of stochastic projection

yielded roughly equivalent estimates of except for computations for burn treatments

at Rose Prairie. Growth rates were higher when calculated by element selection in the

two- and three-burn treatments (95% confidence intervals: 1.13-1.17 and 1.18-1.20,

respectively) than matrix selection (1.03-1.08 and 1.07-1.13, respectively) at that

location.
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Figure 2.2. Stochastic population growth rate ) within each site and burning
treatment for a) element selection (calculated with RAMAS/stage) and b) matrix
selection (POPPROJ2). Each value is a median of 2,000 iterations with 95%
confidence intervals.



a)
1

>

0.8

2 0.6

0.4
C.)

0.2
x
a,

b)

U

>.
0.8

0.6

o 0.4

0.2

0 2 3

number of burns

0 2 3

num ber of burns

--___Rose Prairie Fisher Butte

Figure 2.3. Extinction probability in burned and unburned stochastic environments
calculated through a) element selection (calculated with RAMAS/stage) and b) matrix
selection (POPPROJ2). All runs were 100-yr simulations iterated 1,000 times. Initial
population sizes were 800 plants, and extinction was defined as falling below 10
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Extinction probability

In the absence of fire, both populations were projected to become extinct in

nearly all of the 100 year projections, regardless of our method of modeling

environmental stochasticity. At Rose Prairie, burning twice or three times in six years

lowered extinction probability nearly to 0 (Figure 3). Extinction probability at Fisher

Butte also declined from near certainty without fire to near 0 in prairies burned three

times. In the two-burn treatment at Fisher Butte extinction probability was 57 % under

element selection and 53% by matrix selection (Figure 3).

Elasticities

The effect of fire on elasticities differed between sites. At Rose Prairie, the

most important transition in the unburned environment was one-umbel plants staying

the same size (elasticity =0.202), while stasis of two-umbel plants had the greatest

effect on lambda in habitats burned twice and three times (0.141 and 0.120,

respectively) (Table 2.4). Elasticity at Fisher Butte shifted in importance from

constancy of three-leaved vegetative plants (0. 170) in the unburned treatment to stasis

of three-umbel plants in burned areas (0.129 and 0.123). For elasticities summed by

stage, most confidence intervals overlapped within a site and treatment combination,

but burning appeared to decrease the importance of mid-sized plants and increase the

elasticity of small plants (Figure 4). These effects differed from site to site, however.

The elasticity of one-umbel plants, for example, decreased in burned environments at

Rose Prairie, while seedlings and small vegetative plants increased in importance. At
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Table 2.4. Elasticities for weighted mean matrices (1988-93) for each site and burning
treatment. Values for fertility are displayed on top rows. Stasis values are found on
the diagonals, growth below the diagonals, and regression above (excluding fertilities).
The transition with the highest elasticity is shown in bold for each matrix, and the
bottom row is the sum () of the upper rows for each column.

Stage at Stage at time t
time t+l S V2 V3 Rl R2 R3 S V2 V3 Ri R2 R3

Rose Prairie
no burns
S 0 0 0 0.0130.0410.004

V2 0.0150.0120.0050 0 0

V3 0.0280.0190.1080.0710.0110

Ri 0.016 0 0.103 0.202 0.098 0

R2 0 0 0.0200.1340.0600.014

R3 0 0 0 0 0.0180.011

total 0.058 0.032 0.236 0.418 0.228 0.029

two burns (1988 & 91)

S 0 0 0 0.0160.1040.024

V2 0.083 0.047 0.006 0.005 0.002 0.00 1

V3 0.043 0.054 0.041 0.016 0.020 0.001

Ri 0.018 0.013 0.053 0.046 0.033 0.003

R2 0 0.020 0.075 0.077 0.141 0.010

R3 0 0.009 0 0.006 0.024 0.0 13

total 0.143 0.142 0.175 0.166 0.323 0.051

threeburns (1988, 89,&91)

S 0 0 0 0.0180.1060.020

V2 0.092 0.044 0.002 0 0.00 1 0

V3 0.027 0.03 6 0.049 0.029 0.007 0.002

Ri 0.0160.0320.0510.0620.0610.000

R2 0.008 0.0 10 0.048 0.114 0.120 0.005

R3 0 0.0160 0 0.0100.015

total 0.143 0.139 0.150 0.222 0.305 0.041

Fisher Butte

0 0 0 0.015 0.040 0.032

0.043 0.0 19 0.009 0.004 0.001 0

0.034 0.039 0.171 0.044 0.0 16 0.003

0.009 0.011 0.078 0.098 0.048 0.002

0 0.007 0.043 0.073 0.056 0.010

0 0 0.005 0.013 0.028 0.05 1

0.086 0.076 0.306 0.246 0.189 0.097

0 0 0 0.004 0.042 0.052

0.05 1 0.033 0.013 0.004 0.002 0

0.044 0.047 0.068 0.02 1 0.0 12 0

0.003 0.0 17 0.055 0.049 0.046 0.002

0 0.0060.051 0.0770.0890.015

0 0 0.005 0.018 0.047 0.129

0.098 0.103 0.191 0.171 0.238 0.199

0 0 0 0.004 0.034 0.060

0.055 0.018 0.013 0.002 0.001 0

0.038 0.044 0.087 0.018 0.007 0.001

0.005 0.0 15 0.055 0.057 0.034 0.008

0 0.0 12 0.029 0.067 0.100 0.022

0 0 0.011 0.026 0.055 0.123

0.098 0.089 0.194 0.174 0.230 0.214
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Figure 2.4. Stage-summed elasticities for populations in burned and unburned
environments at a) Rose Prairie and b) Fisher Butte based on weighted mean matrices
from six years of observations. Error bars represent bootstrapped 95 % confidence
intervals.
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Fisher Butte, the elasticity of large vegetative (V3) plants decreased in burned

environments, but the impact of seedlings and small vegetatives (V2) on population

growth rate was unaffected by fire.

Seed bank analysis

No viable seeds were encountered in sieved-soil samples from four Lomatium

bradshawii populations. Fewer than one fruit per sample was detected at all sites, and

no fruits were encountered at Fisher Butte (Table 2.5). Some fruits were discovered

intact, but these either contained no embryo or the embryo was not viable. The

remaining fruits (0-67%) were decayed and/or broken and contained incomplete

embryo tissue, if any.

DISCUSSION

In the absence of fire, Lomatium bradshawii did not maintain populations with

projected long-term viability. Unburned populations of L. bradshawii at two locations

had individual vital rates dominated by stasis and regression to smaller stages.

Stochastic projections estimated growth rates below 1.0 and very high probabilities of

extinction (97% -100%). Fall burning, in contrast, had several positive effects despite

considerable environmental stochasticity. For example, stasis and growth to larger

stage classes dominated vital rates in burned populations, and seedling survival
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Table 2.5. Fruits encountered in soil samples from four Lomatium bradshawii
populations. Samples (N) were taken after seedling emergence and before fruit
dispersal to detect a persistent soil seed bank.

Mean(1 SE) number fruits Intact Decayed Viable
Site N per sample per m2 (%) (%) (%)
Fisher Butte 20 0.00 (0.00) 0.00 (0.00) 0 0 0
Rose Prairie 18 0.06 (0.05) 1.50 (1.25) 100 0 0
Long Tom 15 0.13 (0.09) 3.25 (2.25) 100 0 0
Buford Park 20 0.60 (0.22) 15.0(5.5) 33 67 0

increased relative to unburned plots. Stochastic population growth rates increased,

especially in the treatment with highest fire frequency (three burns in six years).

Burning twice in six years was sufficient to raise growth rates over 1.0 at Rose Prairie

but not Fisher Butte. At the latter site, stable to positive growth rates were observed

only in plots with three-burns in six years. Extinction probability declined in burned

plots, dropping to near 0 at Rose Prairie in both burn treatments. At Fisher Butte, the

population burned twice in six years had a 53 % -57 % chance of extinction (depending

on our method of modeling environmental stochasticity), while the population that was

burned three times had almost zero extinction risk in 100-yr simulations.

Regardless of which method was used to incorporate stochasticity, population

growth rates consistently increased in burned vs. unburned habitats (Figure 2) and

extinction risk declined in these treatments (Figure 3), with the estimates of these

values becoming nearly identical between methods in most cases. Apparently, any

within-population correlation structure between matrix elements that these populations
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had was not sufficient to alter results relative to models that allowed the elements to

vary independently. This may not always be the case, and an earlier comparison of the

two methods using RAMAS/stage and POPPROJ with data from another rare plant

species showed substantial differences in extinction estimates with 25-yr projections

(Greenlee and Kaye 1997). Additional comparisons of these techniques and

assessments of matrix element correlation are needed to evaluate the widely held

concerns of population modelers that such correlation structure is common and affects

the results of stochastic matrix model simulations (Caswell 2000, Menges 2000).

The risks of extinction determined here for Lomatium bradshawii are

comparable to results obtained for other plant species with similar population growth

rates and environmental stochasticities. Menges (1992b) applied various levels of

environmental stochasticity to published transition matrices for eight plant species, and

concluded that a 'moderate' level of environmental stochasticity (mean to variance

ratio 0.01) was sufficient to limit growth of populations with A < 1.05, but populations

with A> 1.12 were not restrained by even "extreme" levels of stochasticity (ratio0.3).

The observed environmental stochasticities for L. bradshawii are in the range that

Menges considered "moderate" to "strong." Our estimates of extinction probability

were high (53%-100%) for populations with A< 1.05, and low (0%-1%) for those with

A> 1.12, as might be expected from Menges' results, suggesting that lambda and

environmental stochasticity interact to control extinction probability in predictable ways

(Tuljapurkar and Orzack 1980, Lande and Orzack 1988, Lande 1993).
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Density dependence was not incorporated into our models of Loinatium

bradshawii population dynamics. It is possible that our low estimates of extinction

probability for burned populations with positive growth rates were overly optimistic

because high densities would eventually reduce plant survival and fecundity and thus

limit population growth. Under this scenario populations would be kept relatively

small and vulnerable to stochastic declines. Our pilot tests with population ceilings,

however, suggested that limiting population size did not increase extinction risk. On

the other hand, declining populations could experience both positive and negative

effects of density dependence. For example, as densities declined survival could have

increased, but fecundity could have either increased due to lowered intraspecific

competition or decreased due to Alee effects. Since the relative strengths of these

forces are unknown for L. bradshawii, their effects on extinction probability are also

uncertain. However, our observations of this species suggest that as density declines

the gaps created by missing plants are filled by aggressive interspecific competitors,

thus lessening benefits of lowered intraspecific density. Reduced fecundity and

progeny fitness at low densities could occur in this species, and this would tend to

increase extinction risk over the estimates presented here.

Attempts to validate transition matrix models of plant population dynamics are

few and have yielded mixed results. A stochastic model based on random selection

between two matrices failed to predict population size fifteen years later (Bierzychudek

1999), but an element selection model from four years of observation estimated

population size very well after seven years (Kephart and Paladino 1997). No
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validations of long term (e.g., 100-yr) projections from matrix models have been

attempted, for obvious reasons. Beissinger and Westphal (1998) suggest that qualitative

conclusions should be emphasized over the quantitative results of population viability

analyses, and we concur. Without validation and inclusion of population processes like

density dependence and demographic stochasticity, the relative predictions of our

models, i.e., burning improves population growth rate and lowers extinction risk,

should be emphasized over the absolute estimates of these parameters.

Elasticities

Fire appeared to shift stage-specific contributions to population growth rate, but

these effects differed from site to site. At Rose Prairie, fire appeared to decrease the

importance of seedlings and small vegetative plants and increase the contribution of

one-umbel reproductive plants (Table 2.4 and Figure 2.4). Burning at Fisher Butte, on

the other hand, decreased the importance of large vegetative plants. In terms of

demographic functions, burning at Rose Prairie increased the importance of fertility and

growth, and lowered the elasticities for regression and stasis, but had little effect on

these processes at Fisher Butte. The observed site-differences in response to burning

shown by Lomatium bradshawii are not surprising, given the spatial variability in

demographic processes observed in many other herbaceous species that have been

modeled with transition matrices (e.g., Sarukhan and Gadgil 1974, Bierzychudek 1982,

Meagher 1982, de Kroon et al. 1987, van Groenendael and Slim 1988, Menges 1990,

Gregg 1991, Horvitz and Schemske 1995, Silvertown et al. 1996, Oostermeijer et al.
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1996, Kephart and Paladino 1997). What is noteworthy in this case, however, is that

the effect of fire on individual stages and demographic processes differed somewhat

among locations, but the trend toward improved population viability did not.

Silvertown et al. (1993) analyzed elasticities from 45 herbaceous species and 21

woody plants, and concluded that these two life-history strategies are significantly

different in terms of the importance of growth, survival, and fecundity to population

growth. The elasticities of Lomatium bradshawii for these processes are well within the

ranges observed for herbaceous species, and are typical of herbaceous plants of open

habitats (Silvertown et al. 1993). In addition, the relative importance of growth and

survival may be typical of species with life-spans similar to Lomatium bradshawii. In a

review of five tree species, Caswell (1986) suggested that survival may be most

important for long-lived, slow-growing species in general, and Silva et al. (1991)

argued that growth may be most important in short-lived, fast-growing species, such as

annuals, biemiials, and short-lived perennials. Indeed, the relative importance of

growth and survival appear to be related to individual longevity (Enright et al. 1995).

For L. bradshawii, survival and growth had nearly equal elasticities at Fisher Butte,

while at Rose Prairie, growth was more important than stasis (but only in burned plots);

fire had no consistent effect on these parameters. Therefore, we suggest that for

intermediate life-spans and growth rates (such as many iteroperous herbs), neither

growth nor survival are consistently more significant to population growth. This

concurs with the observation of Silvertown et al. (1993) that, on average, elasticities for

growth (0.439±0.183) and survival (0.398±0.256) are nearly equal for herbs.



Elasticities identify individual transitions and stages where small errors in

transition rate estimates will cause relatively large changes in projected population

growth. In some of our matrices, large reproductive (R3) plants had high elasticities,

and their transition rates were calculated from observations of relatively few plants

(resulting in large bootstrapped confidence intervals for that stage; see Figure 4).

Therefore, larger sample sizes for this stage could lower measurement error and might

alter our results.

Elasticities also have important implications for conservation and management

because they identify crucial life-history stages where scarce management resources

may be targeted for maximum benefit. For example, if fire could not be applied to a

particular population because of the risk of burning adjacent property, elasticities from

unburned sites suggest that focusing on large vegetative (V3) or small reproductive (Ri)

plants to improve conditions for those stages (e.g., removing interspecific competitors)

would yield a faster growing population than equal improvements to other stages.

Recent studies suggest that this type of assessment from a mean transition matrix should

be treated with caution, however (Benton and Grant 2000; Heppell et al. 2000). For

example, Wisdom et al. (2000) showed that the relative rank of individual elasticities

may be unstable when demographic uncertainty, variation, and covariation are

incorporated into matrix simulations. Our elasticities are bounded by boot-strapped

confidence intervals (Figure 4), which provide a measure of uncertainty for their

estimate, but they do not account for factors like covariation among vital rates.



Seed bank

Our data indicate that Lomatium bradshawii does not maintain a persistent soil

seed bank. Even though some fruits survived at least one year in the soil, the seeds

within them were not viable (Table 2.5). Absence of a soil seed bank may be typical

for other Lomatium species, as well. For example, 98.5% of all L. dissectum seeds

distributed in artificial piles were either removed by postdispersal seed predators, died

of other causes, or germinated within 43 weeks of dispersal (Thompson 1985). Similar

seed losses were observed for L. triternatum in a different component of the same

study, and the author concluded that seed survival for more than one year was unlikely

for these species. Although it is possible that larger sample sizes in our study might

have detected some viable L. bradshawii seeds, our sample strategy maximized the

likelihood of detecting seeds by sampling in close proximity to reproductive plants

following a year of relatively high seed production (T.N. Kaye, unpublished data).

Even if some viable seeds persist for more than one year, they apparently do so in such

low numbers as to be of little significance to the population. Therefore, modeling L.

bradshawii population dynamics without a soil seed bank seems reasonable.

Ecological and conservation implications

Prior to Euro-American settlement, Willamette Valley prairies were probably

burnt annually in the fall by Kalapuya Indians to promote food plants and game (Boyd

1986, 1999). Very little information is available to document the extent or patchiness

of individual past fires, but these burns were apparently very large, covering several
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hundred ha (Douglas, 1914). Open dry prairies may have burned almost every year,

and wetland prairies and canyons on north slopes were probably exposed to somewhat

less frequent blazes. In the absence of fire, native prairies in western Oregon are

invaded by shrubs and forest vegetation dominated by Quercus gartyana, Pseudotsuga

menziesii, Pinus ponderosa, Abies grandis, or Fraxinus latifolia (Franklin and Dyrness

1988, Streatfield and Frenkel 1997). The historic dependence of prairie habitat on

burning suggests that the distribution and evolution of Lomatium bradshawii is related,

at least in part, to long-term Native American cultural practices, and the decline of this

species has been aggravated by habitat loss and fire suppression by post-settlement

residents. Therefore, even populations that occur in protected areas, such as wildlife

refuges and habitat preserves, are vulnerable unless woody vegetation is controlled and

fire or some other management technique is used to enhance population growth. In

some cases, more aggressive methods than fire may be required to remove woody

vegetation, such as at Long Tom ACEC, where hardwood trees (Fraxinus latifolia)

shade the herbaceous vegetation and L. bradshawii is projected to decline despite

frequent burning (Kaye et al. 1994).

Burning may have several effects on prairie communities, any of which could

contribute to the positive changes observed for Lomatium bradshawii. Burning is

widely believed to deliver a pulse of nutrients to soil and plants (Bond and van Wilgen

1996), at least in the first 1-2 years after a fire (Kucera and Ehrenrich 1962, Old 1969,

Ojima et al. 1994). Pendergrass et al. (1998) suggest that burning Willamette Valley

prairies consumes thatch and standing biomass, creating bare areas suitable for plant



41

growth and establishment. Voles, which can be significant herbivores of Lomatium

bradshawii (Kaye, personal observation; A. Drew, Oregon State University,

unpublished data), are negatively affected by prairie fires through short-term reduction

in food-plants and hiding-cover making them vulnerable to predators (e.g., Vacanti and

Geluso 1985). In addition, heat and smoke from burns can stimulate seed germination

in many fire-adapted species (Keeley and Fotheringham 1997), although the effect of

fire on L. bradshawii seeds is unknown. These factors and others, either alone or more

likely in combination, may drive the positive effects of fire observed in this study.

The value of controlled burns as a management tool for native vegetation and

individual plant species in Willamette Valley prairies has already been described

(Pendergrass 1995, Pendergrass et al. 1998, Streatfield and Frenkel 1997, Maret and

Wilson 2000). Crown-size, umbel number, and seed production of L. bradshawii

plants increases significantly in areas subjected to fire compared to plants in unburned

areas (Pendergrass et al. 1999, Finley and Kauffman 1992). Our analyses with matrix

models drawn from six years of population observations demonstrate that controlled

fires may enhance the population viability of this species, not just individual plant size

characteristics.

These results were qualitatively consistent among two locations with similar

hydrology and soils, but the applicability of these results to other populations of

Lomatium bradshawii is unknown, and our models have not been validated for them.

Differences in the relative abundance of each stage, plant community composition, past

management, seasonal precipitation, soil depth, hydrology, and fire behavior could
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affect the response of specific populations to controlled burns Pendergrass et al.

(1998) reported that the 1988 burns produced greater heat per unit area and consumed

more total biomass at Fisher Butte than Rose Prairie, while the 1989 burns were similar

at the two locations but were more spotty than the year before. Also, although a

Deschampsia cespitosa community-type was widespread at both sites, a Vaccinium

cespitosum type was present only at Rose Prairie and a Rosa nutkana/Juncus nevadensis

community occurred only at Fisher Butte (Pendergrass 1995). These patterns and other

site dissimilarities may account for some of the quantitative differences in fire response

between the study populations, such as higher X at Rose Prairie after burns, differences

in fecundities and elasticities, and opposite changes in some transition rates between the

two sites (e.g., the R2 to R3 transition probability decreased with burning at Rose

Prairie but increased after fires at Fisher Butte [Table 2.3]). It is likely that other

populations of L. bradshawii would also exhibit variations in population-level responses

due to variation in fire behavior and other site differences.

Fire may not be the only disturbance with positive effects on this species. The

presence of populations in areas like Rose Prairie and Fisher Butte, where fires have

been suppressed for many years yet the populations are still extant, suggests that other

disturbances may have occurred in these areas to keep the habitat suitable for Lomatium

bradshawii. Mowing, livestock grazing, floods, and other actions could conceivably

benefit the species' population growth and should be explored as alternatives to

controlled burning for managing western Oregon prairie remnants, especially in areas

with fire-adapted weeds.



43

Conclusion

Fire and location had significant effects on stage-specific transitions, and

stochastic projection models indicated that burning had a positive effect on the

population viability of Lomatium bradshawii. Transition matrix models derived from

field experiments with fire in L. bradshawii habitat indicated that populations of this

species will decline in the absence of burning, and may grow if burnt two or three times

in six years, depending on the location. Further, extinction probability in 100-yr

simulations declined from near certainty without fire to very low odds under these

burning frequencies. These results contribute to our ability to manage western Oregon

prairies, their constituent species, and L. bradshawii in particular. They serve as one

of a few available examples of stochastic matrix modeling used to compare management

treatments for promoting rare plant populations (Oostermeijer 1996, Lesica 1997,

Gross et al. 1998, Menges and Dolan 1998). This approach has widespread

applicability for assessing management actions for rare species, especially when

proposed habitat alterations can be tested for two to several years prior to large-scale

implementation.
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INTRODUCTION

Population models are important tools for conservationists and represent

applications of population biology theory. As key components of population viability

analyses (PVA), they are widely applied to rare and endangered species.

Conservationists and managers use population models to assess population health and

trends, set priorities, and evaluate management options (Burgman et al. 1993).

Different approaches to PVA, however, can lead to different conclusions, even with the

same original data (Lindenmeyer et al. 1995, Mills et al. 1996, Pascual et al. 1997,

Brook et al. 1999), and these differences can contribute to controversy and unstable

priorities for management of imperiled species and the public lands on which they exist

(Noon and McKelvey 1996). One common approach to PVA is to assemble field

observations of survival and recruitment into a stage- or age-based transition matrix.

Schemske et al. (1994) suggested that matrix models could be widely effective in setting

recovery objectives and evaluating management proposals for endangered plants.

Partly because of its flexibility, the technique has been widely applied to rare and

common species with diverse life-histories. Even among matrix models, however,

differences in implementation may produce divergent results.

Transition matrices can generate estimates of deterministic parameters such as

population growth rate, sensitivities and elasticities, equilibrium population structure,

and reproductive values. Often of greater concern to the conservationist are

probabilistic measures of population health, such as extinction risk, time to extinction,
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and stochastic growth rate. These measures of population viability can be estimated

when demographic and/or environmental stochasticity are incorporated into the model

(Menges 2000, Caswell 2001). Inclusion of environmental stochasticity into matrix

models has generally been accomplished through one of two mechanisms, matrix or

element selection. For both methods of modeling environmental stochasticity, repeated

estimates of annual recruitment, growth and survival must be available or temporal

variability must be somehow assumed. Matrix selection involves shuffling whole

observed matrices at random at each time step of a simulation, while element selection

requires drawing each component of the matrix at random from some statistical

distribution. However, the two methods do not always give the same results (Greenlee

and Kaye 1997, Kaye et al. 2001). In addition, for implementation of the element

selection method, too few data are usually available for a formal assessment of

goodness of fit, so a statistical distribution is often assumed and the distribution is fit to

the data at hand. In some cases, even if a reliable test of fit is possible, the statistically

best distribution may be rejected on the basis of biological or theoretical reasons, or

because of modeling convenience. Unfortunately, different statistical distributions of

such input variables may change assessments of population viability (Nakoaka 1997),

and information on actual temporal variation in demographic parameters is sparse

(Menges 1992). The overall implications of which stochastic method is chosen remain

unclear.

Another issue that must be addressed when stochastic stage-based models are

implemented with the element selection method is that overall survival per stage should
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be limited to 100%. When individual transitions (elements) are selected at random,

the cumulative survival (the sum of all transitions in a matrix column) for a given stage

can (but should not) exceed 100%. It is important to constrain survival so that it is

never greater than 100%, or the model will create individuals from nothing (Caswell

2001) and produce an overly optimistic estimate of population viability. Some authors

of PVAs using stochastic matrix models have either ignored this issue or not mentioned

it in their papers, and those that acknowledge the problem have used a variety of

techniques to resolve it (e.g., Menges 1992, Gross et al. 1998, Kaye et al. 2001). To

date, no empirical comparisons of survival constraint methods have been conducted.

This problem does not exist for age-based models since only one transition (survival to

the next age) is selected at random for each age-class, nor for matrix selection methods

because survival never exceeds 100% in an observed matrix.

No comparisons of different methods of limiting survival to 100% are available,

only a few papers compare techniques of incorporating stochasticity, and those that do

explore the results from a single species (Greenlee and Kaye 1997, Nakoaka 1997,

Kaye et al. 2001). In this paper, we compare seven methods of stochastic matrix

simulation (matrix selection and six statistical distributions of element selection) and

two methods of constraining survival to 100%. We evaluate the results with a

measure of population viability (stochastic growth rate) derived from multiple species

and several populations. Our primary objectives are to 1) test for an effect of stochastic

method on population viability estimate, 2) test for an effect of survival constraint
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method, 3) investigate why different methods yield divergent results, and 4) measure

the correlation between estimates.

METHODS

Study species and data sets

Data from five plant species were included in this analysis: Astragalus tyghensis

Peck (Fabaceae), Cimiciftiga elata Nutt. (Ranunculaceae), Haplopappus radiatus Nutt.

(Cronq.) (Asteraceae), Lomatium bradshawii Rose (Math. & Const.) (Apiaceae), and L.

cookii Kagan (Apiaceae). All of these taxa are herb aceous perennials and rare or

endangered in the western United States (Oregon Natural Heritage Program 2001).

Data were collected from multiple populations of each species over a period of five to

ten years (Table 3. 1); the number of observed transition matrices for each population

was one less than the number of years of observation, except for L. bradshawii because

one year of sampling was skipped resulting in only seven matrices from nine years of

observation. In total, multi-year data from 27 populations were used. We included

species from a variety of habitats and ecoregions in Oregon. In all cases, individual

plants were followed through time as mapped and/or tagged individuals, and

recruitment of seedlings (first year plants) was monitored annually. Stage-specific

fecundity was estimated based on per capita seed production in year t and seedling

recruitment in year t+ 1 (as in Kaye et al. 2001; "anonymous reproduction" of Caswell

[2001:173-174]), or, if only one reproductive stage was recognized, based on seedlings



Table 3. 1. Study species included in this analysis, number of populations and years observed, number of observed matrices and

stage categories, habitat, and ecoregion. All species are herbaceous perennial plants.

species number of
populations

years of
observation

number of
observed
matrices

number of stages habitat ecoregiont

Astragalus lyghensis 5 10 9 5 (seedling plus small, arid Columbia Basin
(1991-2000) medium, large and very rangeland

large size classes)

Cimiczjlga elata 3 5 (1992-96), or 4-5 5 (seedling, small and mesic Western

6 (1992-97) large vegetative, forest Cascade Range
reproductive, dormant)

Haplopappus radiatus 10 10 9 4 (seedling, small and arid Blue Mountains!
(1991-2000) large vegetative, rangeland Owyhee Upland

reproductive)

Lomatium bradshawii 7 9 7 5 (seedling, small and wetland Willamette
(1988-94, large vegetative, small prairie Valley
1996-97) and large reproductive)

L. cookii 2 6 5 6 (seedling; small and serpentine Klamath
(1994-99) large vegetative; small, wetland Mountains

medium and large
reproductive)

Based on map in Oregon Natural Heritage Program (2001).

(I,



observed in year t+ 1 per reproductive plant in year t. No seed bank stage was

included in our models because biological evidence from studies of these species

suggests that their seeds may not persist in the soil or have delayed germination. For

example, no viable seeds more than one-year-old have been detected in field studies of

Lomatium species (Thompson 1985), including L. bradshawii (Kaye et al. 2001), or H.

radiatus (Kaye unpublished data). Seeds of C. elata stored under dry, room-

temperature conditions do not remain viable for greater than one year, and field sown

seeds of A. lyghensis emerge in the following spring only (Kaye unpublished data).

Information on each species, including field sampling techniques, individual matrix

construction methods, and the annual matrices, is available in the Appendix.

Stochastic population growth rate

We focused on stochastic population growth rate ) as a measure of population

viability for this analysis. Stochastic growth rate was chosen over the more

conventional extinction probability because it is not tied to a particular time horizon.

Most estimates of extinction probability are based on simulations for a particular period

of time, such as 100 years, and this time period may be selected to resolve differences

between populations or treatments (i.e., if all populations go extinct after 100 year

projections, the time window may be shortened until at least some populations have a

chance of persisting). However, this variability in time span makes it difficult to

compare results across studies (Menges 2000), and we found it difficult to identify a

single time horizon appropriate to all 27 data sets included in this study. Any one
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period of simulation resulted in several populations with extinction probabilities of

either 0 or 1. This resulted in an inability to resolve differences in these populations,

and created many constant values inappropriate for evaluation with analysis of variance

(ANOVA). Unlike the deterministic growth rate (A), A, incorporates environmental

variability and does not assume a stable (equilibrium) population structure (Tuijapurkar

1990). Further, as stochasticity increases, declines, and is always less than the

average growth rate (which estimates A) (Caswell 2001). Populations with A greater

than 1.0 are projected to grow, while those with less than 1.0 are projected to

decline, making a convenient measure of population viability in stochastic

environments.

To calculate A, we followed the numerical simulation method outlined in

Caswell (2001:396). When the log of population growth is averaged over a very large

number of time steps, it converges to a fixed value determined by vital rates and

environmental processes (Caswell 2001, Tuljapurkar 1990). For each type of

simulation, we ran the models described below for 10,000 time steps (discarding the

first 500 to omit transient effects) to calculate the stochastic growth rate. All stochastic

modeling described in this paper was implemented in MATLAB 5 (The Mathworks

1998).

Modeling environmental stochasticity

Environmental stochasticity was modeled in two main ways, through matrix

selection and element selection. To incorporate stochasticity via matrix selection, the
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observed matrices were assumed to be independently and identically distributed (iid).

At each time step of a simulation, one matrix was selected at random and post-

multiplied by the vector of individual abundances (e.g., Bierzychudek 1982,

Lennartsson 2000). The initial stage distribution was the average observed distribution

for each population. In element selection, a statistical distribution was first fit to the

observed data for each transition matrix element, then random values were drawn from

the distribution to create a new matrix at each time step. This matrix was then post-

multiplied by the abundance vector to iterate the model, as above.

We used six different statistical distributions to compare the effect of input

distribution shape on Each of these distributions has been used in prior stochastic

modeling studies (Table 3.2) or has been recommended for examination. They

included the beta, truncated normal, truncated gamma, triangular, uniform, and

observed/discontinuous (see Figure 3.1 for examples). Transition probabilities must be

bounded by 0 and 1. Therefore, the fitted distributions must also be constrained to

prevent transition probabilities less than zero or greater than 100% from being selected

at random, a modeling error that is biologically unsound. Therefore, the beta

distribution is a good candidate, since it is bounded by 0 and 1 by definition. The beta

is also very flexible, capable of fitting to an extremely wide variety of distribution

shapes (Evans et al. 2000). The normal distribution, on the other hand, must be

truncated to 0 and 1, and in our implementation this was accomplished by omitting

values outside <0 and > 1 and resampling until an appropriate value was obtained.

The gamma distribution is bounded by 0 on the left tail, but was truncated to 1 on the
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Table 3.2. Examples of stochastic models, their use of statistical distributions for
varying transition elements, and methods of constraining survivals to 100%.

distribution species or study survival constraint citation

beta Hudsonia montana transitions
contingent on
survival

beta Desert tortoise none required

normal comparative study none

truncated normal Totoaba macdonaldi none required

truncated normal various,
comparative

truncated normal Lomatium
bradshawii

truncated normal Yoldia notabilis
and lognormal

truncated giant kelp
lognormal

resampled

Gross et al. 1998

Doak et al. 1994

Guerrant 1996

Cisneros-Mata et al.
1997.

Menges 1992

if survival > 100%, Kaye et al. 2001
rescaled to 100%

none required Nakoaka 1997

not indicated
(none?)

perfect positive lognormal northern spotted
correlation (truncated for owl

survivals)

gamma Chinook salmon none required

uniform Pediocactus not indicated
paradinei (none?)

uniform Astragalus not indicated
cremnophylcix (none?)

uniform Euphorbia clivicola not indicated
(none?)

observed! red-cockaded none required
discontinuous woodpecker

Burgman and
Gerard 1990

Akcakaya and
Raphael 1998

Ratner et al. 1997.

Frye 1998

Maschinski et al.
1997.

Pfab and Witkowski
2000

Maguire et al. 1995
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Figure 3.1. Probability densities of some statistical distributions fit to examples of
observed values of transition rates recorded over several years of observation. Each
column illustrates a different distribution (beta, truncated gamma, truncated normal,
triangular, and uniform) and each row represents the fit of these distributions to the
data listed at the right, which are selections from among the data sets used in this paper.
These data represent the observed values for a particular transition, as indicated in the
notes at the far right. Note that the truncated normal distribution is truncated at both
tails and the truncated gamma is truncated only on the right, and the degree of
truncation differs substantially among observed data sets.
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right by omitting values > 1 and resampling. The triangular distribution may be

appropriate when only minimum and maximum values are known (Caswell 2001),

although a most likely value must be specified. We fit this model to our observed data

by finding the minimum and maximum values, and using the mean as the most likely

value. For the uniform distribution (also known as the rectangular distribution), we

determined only the minimum and maximum values from our data sets. Finally, the

observed/discontinuous distribution was defined here as the set of observed values for

each transition, and these were drawn at random with equal probability (iid).

The method of matching moments was used to fit the beta and gamma

distributions to our data because the observed values contained zeros and ones in some

cases. An alternative would have been to use maximum likelihood estimation

techniques, but this would have forced us to drop observed values equal to 0 or 1.

However, dropping values would necessitate dropping whole matrices if we were to

compare element selection with matrix selection methods, and we wanted to emphasize

the empirical basis of our data sets while maximizing the available sample sizes. Frey

and Burmaster (1999) have shown that, for the beta distribution at least, although the

method of matching moments produces less efficient statistical parameter estimates than

maximum likelihood methods, matching moment estimates are less sensitive to extreme

values. Therefore, we used matching moment estimators because they appear to be

adequately robust and because they tolerated the occasional zeros and ones among our

observed values. For all our simulations, stochasticity was applied only to the

transition elements; recruitment parameters were held constant.



Constraining survival

We examined two methods of constraining overall survival to 100%. In the first

method, if the sum of transition probabilities for a given stage exceeded 100%, the

entire set for that stage was resampled until it did not exceed 100% (a method employed

by Menges 1992). We refer to this method as resampling. Our second method was to

temporarily include mortality in our observed fates, draw a set of transition

probabilities (including mortality) for each stage, rescale all probabilities to sum to

100%, then omit the mortality values in the final matrix. In this process, rescaling was

applied at every time step to every stage, forcing the sum of all fates (including

mortality) to equal 100% (which they always do in the real world). We refer to this

method as rescaling and believe it has not been employed previously.

Analysis

Testing for effects of input distributions, survival constraint, and study species. We

tested for effects of input distribution, survival constraint method, species, and

interactions among these factors using SAS proc mixed (SAS Institute, Inc. 1990). Use

of raw estimates of as a response variable posed a difficulty because survival

constraint methods were applied only to the element selection procedures, not the

matrix selection procedure, making our design unbalanced. Therefore, we chose a

response variable that compared the relative response of each element selection

procedure to matrix selection estimates of X. Specifically, for each population, we

calculated the proportional difference in A between the matrix selection procedure and
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the procedures using various element selection distributions and survival constraint

methods (i.e., [X element matrix1/X matrix). This step was appropriate given that

we are interested in the relative effects of these methods more than their actual

estimates of mean stochastic growth rate. We considered this response variable to be

structured in a split plot design, with species as the whole plot. Species was included

as a fixed effect to test for differences among taxa in their PVA sensitivity to model

assumptions, and for interactions with the other factors.

Detecting bias in mean and variability. To explore the fit of each simulation technique

to the observed data, we compared the mean and variability of each transition element

from the observed data sets with results from each of the element selection and survival

constraint techniques. First, we used each of the element selection methods to generate

1000 random matrices from each population using each of the survival constraint

methods. Second, we calculated the mean and standard deviation (STD) for each

transition element (excluding recruitment) from these simulated data sets. Third, we

calculated the relative difference in mean and STD between those estimated from the

observed values and those calculated from the simulated matrices. We defined bias

broadly to include the combined differences between observed and simulated means and

STDs due to survival constraint method and distribution shape. We then tested for

correlations between mean estimates of relative bias and mean relative differences in A,

using multiple regression, to determine how much of the simulation technique effects

were due to these biases.



This process was repeated using estimates of mean relative bias weighted by the

elasticity of each element, so that bias in elements of relatively low importance to

growth rate were down-weighted and those with high influence were weighted more

strongly. Although stochastic elasticities may be estimated as measures of the

importance of individual transitions on ) (Tuijapurkar 1990a, Caswell 2001:402-408),

we used elasticities calculated from mean observed matrices because they are easier to

calculate and they are excellent predictors of stochastic elasticities, even though the

deterministic and stochastic growth rates may be quite different (Casweli 2001, Caswell

and Kaye in press).

Correlation among techniques. Even if the various techniques for incorporating

stochasticity resuft in different estimates of X, we would like to know if they yield

similar results on a relative basis. That is, if one population has a higher than

another as measured by one stochastic method, is it also higher as measured by a

different method? To measure their degree of association, we tested for correlations

between estimates of A from each method of including temporal variability using the

Pearson product moment (R), and this procedure was repeated for each method of

constraining survival.



RESULTS

Effects of input distributions, survival constraint, and study species

Model procedures had substantial effects on estimates of stochastic population

growth rates. The choice of input distributions and survival constraint methods both

had significant effects on mean proportional differences in X relative to the matrix

selection method (Table 3.3), and there was a significant two-way interaction between

these factors (P0.0001). That is, the resampling method of constraining stage-specific

survival to 100% yielded mean estimates of consistently lower than the rescaling

procedure, but the magnitude of this reduction differed among stochastic element

selection methods (Figure 3.2). Study species did not affect these results (P= 0.804),

and there were no two- or three-way interactions with taxon (P0.333). Estimates of

) spanned from 0.658 to 1.173, making the results applicable to a wide range of

population behavior.

When the resampling survival-constraint method was applied, most element-

selection distributions yielded estimates of ) equal or lower than estimates derived by

matrix selection. The beta distribution yielded the lowest relative estimate of A, (14%

lower than the matrix shuffle method), while the truncated gamma and

observed/discontinuous distributions were only slightly (but significantly) closer to the

matrix shuffle estimates (Figure 3.2). Both the truncated normal and uniform

distributions produced mean A, estimates indistinguishable from matrix selection. The

mean estimate from the triangular distribution was intermediate between these two
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Table 3.3. Split-plot ANOVA for the effects of species, statistical distribution of input
variables, and survival constraint method on the proportional change in relative to
the matrix selection procedure (NDF and DDF are numerator and denominator degrees
of freedom).

Source NDF DDF Type III F Pr > F

whole plot effects

species 4 22 0.4 0.8044

subplot effects

survival constraint method 1 242 686.17 0.0001

stochastic method 5 242 53.79 0.0001

interactions

stochastic method X constraint
5 242 24.91 0.0001

method

species x constraint method 4 242 0.94 0.4434

species xstochastic method 20 242 1.12 0.3326

species x stochastic
20 242 0.46 0.9788

method x constraint method
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Figure 3.2. Mean proportional difference (± 1 SE) in stochastic population growth rate
(2) between matrix selection and the element selection procedures. Six statistical
distributions were used for the element selection method: beta, observed/discontinuous
(disc), truncated gamma (gam), truncated normal (norm), triangular (tn), and uniform
(unit). Two survival constraint methods, resample and rescale, were also compared.
Bars with the same letter did not differ at the 0.05 level (Fisher's protected LSD).
Asterisks (*) indicate a significant difference (0.05 level) between the stochastic growth
rate calculated via matrix selection and each element selection method.
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groups of procedures. In contrast, under the resampling procedure, most estimates

were higher than those from matrix selection. Estimates from the uniform distribution

were highest (about 4 % higher than estimates from matrix selection) and those from the

beta, truncated gamma, and observed/discontinuous were lowest (Figure 3.2). Those

from the truncated normal and triangular distributions were intermediate. Estimates

from the observed/discontinuous distribution did not differ significantly from the matrix

selection method (Figure 3.2).

Evaluation of bias in mean and variability

Unweig/ited mean and STD. Bias was detected in the unweighted mean and STD of

several element selection methods and both survival constraint techniques. Compared

to the observed values, mean transition element values were reduced by 12-15% by the

beta, truncated gamma, and observed discontinuous distributions when the resample

constraint method was used. When the rescale technique was employed, however,

these distributions had no detectable bias on transition means (Figure 3.3, top left). In

contrast, the truncated normal, triangular, and uniform distributions consistently

increased the mean over the observed values by 6-31%, regardless of survival

constraint method. Standard deviations were also altered by the different methods. In

all cases, STDs were depressed relative to the observed values. Values derived from

the beta, truncated gamma, and observed/discontinuous showed the least bias (6-21 %

lower than observed), while those from the triangular had the greatest reduction (64-

83%), depending on the method of constraining survival (Figure 3.3, middle left).
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significant in the multiple regressions (P = 0.10-0.66). Left panels use unweighted
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There were no consistent differences in bias to the standard deviation caused by the two

survival constraint procedures. Multiple linear regression indicated that bias in the

mean had a significant effect on proportional difference in ?L (P=0.0017), while

reductions in STD did not (P=0.6603). Bias in the mean explained 60.7% of the

variability in estimates (Figure 3.3, bottom left).

Weighted mean and STD. When bias in mean transition elements was weighted by

elasticity, a somewhat different picture emerged. The resampling procedure resulted in

varying degrees of negative bias, depending on the statistical distribution used to

incorporate stochasticity. For example, the beta, truncated gamma, and

observed/discontinuous distributions resulted in reductions in the weighted means of

12-16% (similar to the unweighted case), but the truncated normal and triangular biased

the weighted mean downward by 3 and 6%, respectively (Figure 3.3, top right). The

uniform distribution had no effect on the weighted means. The rescaling procedure

resulted in no detectable bias on the weighted mean transition rates for all stochastic

methods except the uniform, which increased the mean by about 2% (Figure 3.3, top

right). Overall, weighted STD biases differed little from the non-weighted cases

(Figure 3.3, middle right).

As in the unweighted case, multiple regression indicated a significant linear

correlation between differences in and bias in the weighted mean (P<0.0001), but

not STD (P=0. 1038). Bias in the weighted mean explained 98.3% of the variability in

proportional differences in lambda between element selection techniques and matrix



75

selection. The slope of this relationship was indistinguishable from 1 (95% CI 0.93-

1.1), and the intercept was close to, but slightly higher than, 0(95% CI 0.018-0.03 1).

Thus, variation in A estimates derived through element selection relative to matrix

selection were due almost entirely to biases in the weighted mean transition rates.

Correlation among techniques

Most methods of incorporating stochasticity into matrix models produced

estimates of ) that were highly correlated. For both methods of survival-constraint,

resampling and rescaling, the lowest correlation was between estimates via the beta and

observed/discontinuous distributions (R=0.862 and 0.849, respectively) and the highest

was between the truncated gamma and uniform (R=0.992 and 0.992, respectively)

(Table 3.4). Regardless of which survival-constraint technique was used, at least 16 of

the 21 possible correlations were 0.9.

DISCUSSION

Effects of stochastic methods and survival constraints

Different methods of incorporating stochasticity into matrix models resulted in

substantial variation in estimates of population viability. The species from which the

observed data were collected, however, had no effect, and estimates of ?, spanned a

wide range, suggesting that these results may be broadly applicable. In element

selection, the distribution shape for sampling transition probabilities had significant



Table 3.4. Pearson correlation coefficients (R) for each of seven methods of incorporating environmental variability to
calculate stochastic population growth rate O). Correlations with calculated using the resample survival constraint
method are above the diagonal, while those derived via the rescale method are below (P0.0001 in each case).

matrix observed! . truncated truncated
Stochastic method . . . uniform triangular beta

selection discontinuou normal gamma

matrix selection 0.869 0.928 0.877 0.926 0.915 0.905

observed! discontinuous 0.916 0.877 0.970 0.913 0.977 0.862

uniform 0.976 0.893 0.920 0.991 0.930 0.986

truncated normal 0.955 0.975 0.945 0.943 0.959 0.895

truncated gamma 0.962 0.900 0.992 0.954 0.949 0.988

triangular 0.951 0.989 0.942 0.991 0.948 0.908

beta 0.947 0.849 0.984 0.906 0.973 0.903
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effects on estimates of stochastic lambda, but the magnitude and direction of this effect

depended on which method was used to constrain stage-specific survival to 100%

(Figure 3.2). For example, when resampling was used to constrain survivals, the beta,

observed/discontinuous, truncated gamma, and triangular distributions resulted in .

estimates significantly lower than those derived from matrix selection. But when

survivals were constrained through rescaling, all distributions, except the

observed/discontinuous, exceeded matrix selection estimates of X. Overall, combining

the resampling method with the beta distribution resulted in the lowest mean estimates

of A (13.8% below the average matrix selection estimates), while rescaling with the

uniform distribution produced the highest (4.3 % greater than matrix selection

estimates). Despite variation in estimates of ?, the different stochastic methods

produced highly correlated results (R=0.849-0.992, Table 3.4), suggesting that

although their quantitative estimates of population viability may have differed, their

relative ranking of populations did not.

Concerns that choice of a stochastic method and distribution shape might

influence the results of risk assessment models are not new (Bukowski et al. 1995,

Nakoaka 1996, Hamed and Bedient 1997, Menges 2000, Caswell 2001). Past

comparisons of matrix and element selection procedures have found both large and

small differences in estimates of population viability. For example, a comparison from

H. radiatus found that element selection from a truncated normal distribution resulted

in much lower estimates of extinction risk than matrix selection (Greenlee and Kaye

1997). Kaye et al. (2001) found estimates of ? derived for L. bradshawii from
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element selection (truncated normal distribution) to be identical to, or moderately

higher than, estimates from matrix selection. Extinction probability estimates were

either identical or slightly lower than from matrix selection. These patterns are

consistent with those reported here, which should be expected because both examples

used earlier portions of the same data sets used in this analysis. Even so, Greenlee and

Kaye (1997) incorporated only four years of data and Kaye et al. (2001) used six, and

both studies used a different approach to survival constraint than those conducted here

(see below). Although stochastic growth rate has been recommended as a measure of

population viability suitable for comparisons across studies (Menges 2000), differences

among stochastic methods make many comparisons dangerous. This problem can be

avoided, however, if the same methods are used among studies (which seldom may be

the case; see Table 3.2), or if the estimates of stochastic growth rate are first adjusted

by the cumulative bias of the specific survival constraint methods and probability

distributions. In general, comparisons across viability studies should strive to

standardize as many model assumptions as possible, a practice that may find much

agreement among techniques (Brook et al. 2000a and 2000b).

Among element selection methods, skewness has been identified as an important

aspect of a distribution with potential effects on estimates of population growth rate

(Slade and Levinson 1984), and the selection of a statistical distribution can, in theory,

substantially affect the results of a risk assessment (Bukowski 1995). The effects of

different distributions have been much more thoroughly reviewed for randomly varying

recruitment (Tallie et al. 1995) than transition probabilities. Nakoaka (1997), for
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example, estimated ? for two populations of a marine clam by allowing recruitment to

vary according to both lognormal and truncated normal distributions (one-tailed

truncation was necessary because recruitment must be bounded by zero on the left).

Relative to the truncated normal, the lognormal decreased ? at one site but increased it

at the second. In our analyses, recruitment was held invariant and stochasticity was

applied only to the transition probabilities. If we had allowed recruitment to vary as

well, our results may have differed and/or there may have been an interaction between

choice of recruitment and transition distributions. Since both types of vital rates are

often varied in stochastic matrix models, this area deserves further research.

Resampling to constrain survival to 100% always reduced relative to

rescaling by introducing negative bias into weighted mean vital rates (Figure 3.3). The

rescaling method, on the other hand, did not introduce measurable bias (except for the

uniform distribution, which was slightly positively biased). Although researchers have

used various techniques to constrain stage-specific survivals to <100%, or ignored the

problem (Table 3.2), we found the choice of survival constraint technique to have a

strong effect on our results. Results from the rescaling technique were fairly consistent

among element selection distributions, with the only significant differences being

between the uniform distribution and the beta, discontinuous/observed, and truncated

gamma (which were indistinguishable from each other, Figure 3.2). Relative to

estimates from matrix selection, were higher by only 1.7%

(discontinuous/observed) to 4.3 % (uniform). Other methods used by previous authors

of stage-based stochastic matrix models include a different form of rescaling used when
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survivals sum to greater than 100% (without regard to mortality, e.g., Kaye et al. [

2001]) and making transitions contingent on underlying vital processes (e.g., Gross et

al. 1998).

One reason for the similarity in results among the element selection methods

compared here with rescaling (in the relative absence of bias) may be that some of their

important differences are in their tails their chance of extreme events and these

tails were either bounded to fall between zero and one, or were truncated to do so. In

an examination of the tail behavior of the lognormal, Weibull, gamma, and inverse

gaussian distributions in Monte Carlo simulations, Haas (1997) found that even at

relatively high standard deviations, the important differences among them were in the

extreme (upper) tails. Since the distributions with long tails included in our

implementations (i.e., normal and gamma) were truncated, these differences were, at

least in part, reduced. For example, the triangular and truncated normal distributions

have identical peak values, but substantial portions of both tails of the normal may be

cut off (Figure 3. 1), thus increasing the similarity of the two distributions. Haas (1997)

further showed that identifying the correct distribution from small data sets may be

difficult or impossible (our samples numbered only 4-9, depending on the species), but

the differences will be primarily in the tails. Again, if the tails are truncated, these

differences may be partly mitigated.

Although truncation may help explain some of the similarities among the

element selection methods evaluated here, it is not necessarily a recommended practice.

Especially in cases where only one tail is truncated, omitting chance events in this way
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from a distribution will change the mean and reduce variance, as illustrated here by

negative bias in STD estimates (Figure 3.3). Truncation of transition probabilities

drawn from a normal distribution, especially those near 1, lowered the mean and

increased extinction probability in viability models of the fish, Totoaba macdonaldi

(Cisneros-Mata et al. 1997). In the case of Nakoaka's (1997) marine clam, truncation

of the lower tail in the normal distribution was required to generate random numbers

for modeling variation in recruitment. This one-tailed truncation increased the mean by

about 25% and decreased the variance by 35 % at one site (as discussed in Caswell

2001:412), destroying the fit of the distribution to the data. It may be that in many of

our cases with observed data, substantial portions of the normal and gamma probability

density functions were within 0-1, which would explain why truncating them produced

little or no effect on the weighted mean and only "typical" reductions (Figure 3.3) in

standard deviation. Of course, the effect of truncation will be stronger as the mean

approaches 0 or 1 (depending on the distribution), because a larger proportion of the

probability density function will be truncated. For example, if a gamma distribution is

fitted to a group of observed transition probabilities close to 1, the upper tail will

extend substantially past 1 and truncation will remove a significant portion of the

probability density function. If this is a concern, a clever procedure (Burgnian and

Gerard 1990) that will reduce its effect is to transform the observed probabilities (p) to

q l-p, fit the distribution, draw a random sample, then back transform the value to 1-

q, thus avoiding most truncations.
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Selecting a distribution that does not require truncation may be preferred. The

endpoints of the uniform and triangular distribution were defined by the observed data,

so they never fell beyond 0-1 in our samples. However, their shapes are simplistic and

they did not capture variance well, resulting in relatively low STDs (28-83% below

observed values). Even so, they may be appropriate in cases where few data are

available. For example, the triangular distribution may be an efficient substitute for the

beta in some cases (McCrimmon and Ryavec 1964). The beta distribution, in contrast,

is bounded by 0 and 1 and has a flexible shape within those bounds, traits that make it

useful for modeling transition probabilities. It is perhaps the first distribution that

should be explored when developing a stochastic matrix model with element selection.

The observed/discontinuous distribution did not allow transition elements to vary

outside the observed limits, and it did not allow selection of values other than those

observed. Depending on the model, this may or may not be a desirable trait. When

combined with the rescale survival constraint method, it produced results

indistinguishable from those derived with the beta distribution or matrix selection.

Other distributions that have received little attention but that stochastic matrix modelers

should explore include the S-distribution, which is based on differential equations and is

well suited to probabilities (Voit and Schwake 2000), and the beta-binomial, which is

appropriate for distributions based on probabilities derived from counts (Griffiths 1973,

Tamura and Young 1987, Kahn and Raftery 1996). The beta-binomial may be

especially useful and appropriate for stochastic matrix models because it can separate

demographic variability from estimates of environmental stochasticity (Kendall 1998).
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Matrix vs. element selection

Both approaches for incorporating stochasticity, element selection and matrix

selection, have advantages and disadvantages as modeling techniques. For example,

because element selection can sample from parametric distributions of transition

probabilities, the possible trajectories that a population size can follow are limited only

by the distribution shape. In contrast, matrix selection limits the number of pathways a

population can follow in a stochastic simulation because, at each time step, one of a

finite number of matrices must be selected. Through parametric element selection, a

greater number of possible paths can be explored, especially those that occur with

lower frequency (the tails in a distribution). These rare events may be important for

assessing chance events like extinction (Burgman et al. 1993). Element selection may

also accommodate missing data more efficiently than matrix selection by fitting a

distribution to the vital rates for which data are available. In matrix selection,

individual missing vital rates must be estimated or replaced with pooled data from the

other individual matrices. However, matrix selection is not confronted with the

problem of constraining stage-specific survivals to 100%, while element selection in

most stage-structured models is. Finally, element selection may be a better choice

when stochasticity must be applied to individual vital rates through a functional

relationship with an environmental factor, such as precipitation (e.g., Gross et al.

1998).

One weakness of standard element selection methods is that transition

probabilities may not be explicitly correlated with one another, even though a "good"



year for one vital rate, such as survival of reproductive plants, is often a good year for

another, such as fecundity. Therefore, a matrix could be constructed from random

elements that has a mixture of "good" and "bad' vital rates - a condition that may not

occur in nature. Matrix selection is not usually faced with this problem since all of the

elements in an individual matrix usually come from the same year and represent

observed vital rates. Correlation among vital rates is believed to be widespread

(Horvitz and Schemske 1995, Oostermeijer et al. 1996, Horvitz et al. 1997, Gross et

al. 1998, Caswell 2000, Menges 2000, Caswell 2001) and may tend to reduce

population viability (Ferson and Burgman 1995, Cisneros-Mata et al. 1997, Pfab and

Witkowski 2000). In the current study, differences in estimates of ) were largely

explained (R2= 98.4%) by degree of bias in mean transition rates (after weighting with

elasticities), and the slope of the regression line for this linear correlation did not differ

from 1.0 (Figure 3.3). The intercept of this line was slightly higher (2.4%) than

expected, however, and this may be due, in part, to increases in (relative to matrix

selection) through omission of correlation structure during element selection.

Unfortunately, tools for multivariate random number generation are not widely

available (Caswell 2001) for distributions other than the normal, but recent advances in

statistical methods (e.g., Ferson and Burgman 1995, Haas 1999, Fackler 1999) may

make their application more accessible for stochastic matrix models (see Chapter 4).



Conclusion

For many observed data sets, it may be difficult to test the fit of a particular

distribution, partly because of limited samples (Karian and Dudewicz 2000: 90-96).

Sorribas et al. (2000) demonstrated that even with 160 random samples from known

distributions, a best-fit screening algorithm failed to identify the source distribution in a

majority of cases. Despite this uncertainty, most stochastic modelers select a

distribution that seems reasonable, fit it to their available data, and execute the model.

We have shown that distribution choice for transition probabilities may have a strong

influence on stage-structured matrix model outcomes, and this effect is consistent across

a variety of plant species. Although the effect can cause differences in viability

estimates, it was largely explained by degree of bias induced by the different survival

constraint methods we employed. Little previous attention has been given to the

survival constraint problem, which applies only to stage-structured models in which

individuals can make more than one transition, but choice of this procedure can be at

least as important as element selection technique. To avoid bias in influential

transitions, we recommend use of the rescaling procedure used here. Also, our

estimates of were strongly correlated among the various stochastic methods,

indicating that the relative values of ) estimates were generally consistent.

The wide range of population viability estimates possible from a single data set

analyzed by slightly different methods is cause for concern; one technique might

indicate a robust population while another could project a rapid decline. We agree with

Beissinger and Westphal (1998) and Menges (2000) that the strength of viability
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analysis rests in its use as a comparative tool rather than a means of assessing the health

of individual populations. Especially in the face of uncertainty due to measurement

error, which can create very wide confidence intervals on estimates of extinction

probability (Ludwig 1999, Fieberg and Elmer 2000), the use of viability analyses to

assess the relative vigor of a group of populations or the impact of a habitat alteration

should be emphasized over quantitative estimates of viability. Fortunately, the relative

ranking of populations appears to be fairly robust to differences in stochastic methods.

It may also be sound practice to compare several methods when making management

recommendations for endangered species (e.g., Pascual et al. 1997 and Fisher et al.

2000).

Although stochastic growth rate has been recommended as a measure of

population viability suitable for comparisons across studies (Menges 2000), differences

among stochastic methods make such comparisons dangerous. This problem can be

avoided, however, if the same methods are used among studies (which is seldom the

case, see Table 3.2), or if the estimates of stochastic growth rate are first adjusted by

the cumulative bias of the specific survival constraint methods and probability

distributions.
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INTRODUCTION

Population viability analysis (PVA) is a central tool in conservation biology

(Soulé 1987). The use of population models in this context represents an application of

ecological theory to real world problems, often in an attempt to develop management

practices that minimize the risk of extinction of protected species (Burgman et al.

1993). Transition matrix models are a widely used method for PVA (Menges 1990,

2000). The technique involves pooling information on many aspects of a species' life-

cycle, including recruitment, survival, and growth, into a single structured model

(Caswell 2001). The method has been promoted as a powerful tool for PVA and for

understanding the basic life-history of species targeted for conservation, partly because

of its flexibility in accommodating different species and the variety of useful

demographic parameters it can estimate (Schemske et al. 1994). However, differences

in implementation of PVA models can lead to alternative, even conflicting, conclusions,

even when the same source data are used (Lindenmeyer et al. 1995, Mills et al. 1996,

Pascual et al. 1997, Brook et al. 1999), and this is true for matrix models as well

(Nakoaka 1996, Chapter 3).

Correlation among vital rates may affect the outcome of risk assessments in

general (Bukowski et al. 1995) and stochastic matrix models in particular (Tuljapurkar

1982, Caswell 2001). Positive correlations are possible when different stages respond

in similar ways to their environment. For example, if rainfall in a given year promotes

growth of both small and large individuals to the next higher size class, these growth
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probabilities will likely be correlated over time. Positive correlations among vital rates

have been shown to increase variability in estimates of average growth rate and

extinction risk (Doak et al. 1994). There is ample evidence that demographic

parameters are correlated across years and environments (Horvitz and Schemske 1995,

Horvitz et al. 1997, Caswell 2000, Oostermeijer et al. 1996), and inclusion of this

correlation structure in stochastic models may be necessary to avoid overly optimistic

estimates of population viability (Nakoaka 1996). However, negative correlations

among vital rates are also possible (Oostermeijer et al. 1996), and these tend to

counteract the effects of positive correlations (Tuijapurkar 1982, Ferson and Burgman

1995, Orzack 1997). Therefore, the effect of correlation structure on population

viability estimates may depend on the nature of the correlations among vital rates,

which, in turn, may differ among species and environments.

Transition matrices can generate estimates of deterministic parameters such as

population growth rate, sensitivities and elasticities, equilibrium population structure,

and reproductive values. Often of greater concern to the conservationist are

probabilistic measures of population health, such as extinction risk, time to extinction,

and stochastic growth rate. These measures of population viability can be estimated

when demographic and/or environmental stochasticity are incorporated into a model

(Menges 2000, Caswell 2001). Inclusion of environmental stochasticity into matrix

models has generally been accomplished through one of two mechanisms, matrix or

element selection. For both methods, repeated estimates of annual recruitment, growth

and survival must be available (e.g., Bierzychudeck 1982) or temporal variability must



be somehow assumed (e.g., Menges 1992). Matrix selection involves shuffling whole

observed matrices at random at each time step of a simulation, while element selection

requires drawing each component of the matrix at random from some statistical

distribution. However, the two methods do not always give the same results (Greenlee

and Kaye 1997, Kaye et al. 2001, see also Chapter 3). In addition, for implementation

of the element selection method, too few data are usually available for a formal

assessment of goodness of fit, so a statistical distribution is often assumed and the

distribution is fit to the data at hand. In some cases, even if a reliable test of fit is

possible, the statistically best distribution may be rejected on the basis of biological or

theoretical reasons, or because of modeling convenience. Unfortunately, different

statistical distributions of such input variables may change assessments of population

viability (Nakoaka 1997), and information on temporal variation in demographic

parameters is sparse (Menges 1992). The overall implications of which stochastic

method is chosen remain unclear.

Few examples of incorporating correlation structure into stochastic matrix

models are available, and these tend to emphasize positive correlations and single

species. Comparisons of different methods of incorporating stochasticity are also

infrequent, especially those that examine the effects of various statistical distributions

for element selection (Chapter 3). One reason correlation structure is seldom included

is that multivariate random number generators are not widely available (Caswell 2001)

and implementation is generally complex. In this paper, we compare the effects of

correlation among vital rates on population viability using five methods of stochastic



97

matrix simulation (bootstrap, beta, truncated normal, truncated gamma, and uniform

distributions). We evaluate the results with a measure of population viability

(stochastic growth rate) derived from observed data for multiple species and several

populations. Our primary objectives are to 1) assess the effects of correlations among

vital rates on population viability estimates and determine if these effects differ among

species and stochastic methods, 2) explore factors that influence the effects of these

correlations, and 3) measure the correlation of viability estimates derived through

different methods.

METHODS

Study species and data sets

Data from five plant species were included in this analysis: Astragalus lyghensis

Peck (Fabaceae), Cimiciftiga elata Nutt. (Ranunculaceae), Haplopappus radiatus Nutt.

(Cronq.) (Asteraceae), Lomatium bradshawii Rose (Math. & Const.) (Apiaceae), and L.

cookiE Kagan (Apiaceae). All of these taxa are herbaceous perennials and rare or

endangered in the western United States (Oregon Natural Heritage Program 2001).

Data were collected from multiple populations of each species over a period of five to

ten years (Table 4.1); the number of observed transition matrices for each population

was one less than the number of years of observation, except for L. bradshawii because

one year of sampling was skipped resulting in only seven matrices from nine years of



Table 4.1. Study species included in this analysis, number of populations and years observed, number of observed matrices and
stage categories, habitat, and ecoregion. All species are herbaceous perennial plants.

species number of
populations

years of
observation

number of
observed
matrices

number of stages habitat ecoregiont

Astragalus lyghensis 5 10 9 5 (seedling plus small, arid Columbia Basin
(1991-2000) medium, large and very rangeland

large size classes)

Cimicifuga elata 3 5-6 4-5 5 (seedling, small and mesic forest Western
(1992-96) large vegetative, Cascade Range

reproductive, dormant)

Haplopappus radiatus 10 10 9 4 (seedling, small and arid Blue Mountains!
(1991-2000) large vegetative, rangeland Owyhee Upland

reproductive)

Lomatium bradshawii 7 9 7 5 (seedling, small and wetland Willamette
(1988-94, large vegetative, small prairie Valley
1996-97) and large reproductive)

L. cookii 2 6 5 6 (seedling; small and serpentine Klamath
(1994-99) large vegetative; small, wetland Mountains

medium and large
reproductive)

Based on map in Oregon Natural Heritage Program (2001).



observation. In total, multi-year data from 27 populations were used. We included

species from a variety of habitats and ecoregions in Oregon. In all cases, individual

plants were followed through time as mapped and/or tagged individuals, and

recruitment of seedlings (first year plants) was monitored annually. Stage-specific

fecundity was estimated based on per capita seed production in year t and seedling

recruitment in year t+ 1 (as in Kaye et al. 2001; "anonymous reproduction" of Caswell

[2001:173-174]), or, if only one reproductive stage was recognized, based on seedlings

observed in year t + 1 per reproductive plant in year t. No seed bank stage was

included in our models because biological evidence from studies of these species

suggests that their seeds may not persist in the soil or have delayed germination. For

example, no viable seeds more than one year old have been detected in field studies of

Lomatium species (Thompson 1985), including L. bradshawii (Kaye et al. 2001), or H.

radiatus (Kaye unpublished data). Seeds of C. elata stored under dry, room-

temperature conditions do not remain viable for greater than one year, and field sown

seeds of A. tyghensis emerge in the following spring only (Kaye unpublished data).

Information on each species, including field sampling techniques, individual matrix

construction methods, and the annual matrices, is available in the Appendix.

Stochastic population growth rate

We focused on stochastic population growth rate ) as a measure of population

viability for this analysis. Stochastic growth rate was chosen over the more

conventional extinction probability because it is not tied to a particular time horizon.
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Most estimates of extinction probability are based on simulations for a particular period

of time, such as 100 years, and this time period may be selected to resolve differences

between populations or treatments (i.e., if all populations go extinct after 100 year

projections, the time window may be shortened until at least some populations have a

chance of persisting). However, this variability in time span makes it difficult to

compare results across studies (Menges 2000), and we found it difficult to identify a

single time horizon appropriate to all 27 data sets included in this study. Any one

period of simulation either resulted in several populations with extinction probabilities

of 0 or 1. This resulted in an inability to resolve differences in these populations, and

created many constant values inappropriate for evaluation with analysis of variance

(ANOVA). Unlike the deterministic growth rate ) incorporates environmental

variability and does not assume a stable (equilibrium) population structure (Tuijapurkar

1990). Further, as stochasticity increases, ? declines, and is always less than the

average growth rate (which estimates X) (Caswell 2001). Populations with greater

than 1.0 are projected to grow, while those with ) less than 1.0 are projected to

decline, making ? a convenient measure of population viability in stochastic

environments.

To calculate A, we followed the numerical simulation method outlined in

Caswell (2001:396). When the log of population growth is averaged over a very large

number of time steps, it converges to a fixed value determined by vital rates and

environmental processes (Caswell 2001, Tuljapurkar 1990). For each type of

simulation, we ran the models for 10,000 time steps (discarding the first 500 to omit
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transient effects) to calculate A. All stochastic modeling described in this paper was

implemented in MATLAB 5 (The Mathworks 1998).

Modeling environmental stochasticity

Environmental stochasticity was modeled by randomly selecting transition

matrix elements from either observed values (a bootstrap approach) or parametric

distributions fit to the observed values. We compared these approaches to evaluate the

effect of distribution shape on the importance of correlation to estimates of The

observed values represented the temporal variability known for each population of each

species. At each time step of a simulation, a matrix was constructed at random and

post-multiplied by the vector of individual abundances to obtain a new vector of

individual stage abundances. The initial stage distribution was the average observed

distribution over all years of observation for each population. For the bootstrap

method, stage specific recruitment (the top row of the transition matrices) was allowed

to vary through time by randomly selecting from among the observed recruitment rates.

For each of the parametric methods described below, recruitment varied according to a

gamma distribution, which has been shown to work well for fecundities (Tallie et al.

1995). When individual transitions (elements) are selected at random, the cumulative

survival (the sum of all transitions in a matrix column excluding recruitment) for a

given stage can, but should not, exceed 100%. It is important to constrain stage-

specific survival so that it is never greater than 100%, or the model will create

individuals from nothing (Caswell 2001) and produce an overly optimistic estimate of
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population viability. We constrained survival with the rescaling method of Chapter 3,

which rescales each transition rate (including mortality) so that the sum of all rates of a

given stage always sums to 100% while minimizing bias to the element means.

Distributions of vital rates. We compared five methods of randomly varying transition

elements. These were the bootstrap and four parametric distributions: beta, truncated

gamma, truncated normal, and uniform. To incorporate stochasticity via the bootstrap,

the observed values were assumed to be independently and identically distributed (iid)

(the observed/discontinuous distribution of Chapter 3). For the parametric approaches,

a statistical distribution was first fit to the observed data for each transition element,

then random values were drawn from the distribution to create a new matrix at each

time step. Each of these distributions has been used in previous stochastic modeling

studies (Table 4.2). Because transition probabilities must be bounded by 0 and 1, the

fitted distributions must also be constrained or transition probabilities less than zero or

greater than 1 might be selected at random, a modeling error that is biologically

unsound. Therefore, the beta distribution is a good candidate, since it is bounded by 0

and 1 by definition. The beta is also very flexible, capable of fitting to an extremely

wide variety of distribution shapes (Evans et al. 2000). The normal distribution, on the

other hand, must be truncated to 0 and 1. The gamma distribution is bounded by 0 on

the left tail, but was truncated to 1 on the right in our simulations. For the uniform

distribution (also known as the rectangular distribution), we determined only the

minimum and maximum values from our data sets.
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Table 4.2. Examples of stochastic models, their inclusion of correlation structure, and
use of statistical distributions for varying transition elements.

correlation among distribution species or study citation
vital rates

none normal

none truncated
lognormal

none truncated normal

none truncated normal

none truncated normal
and lognormal

none gamma

none uniform

none uniform

none

perfect positive
correlation

perfect positive
correlation

perfect positive
correlation

as observed

as observed

retained within
whole matrices

retained within
whole matrices

observed!
discontinuous

lognormal
(truncated for
survivals)

truncated normal

uniform

beta

beta

bootstrap (matrix
selection)

bootstrap (matrix
selection)

comparative study

giant kelp

various, comparative

Lomatium bradshawii

Yoldia notabilis

Chinook salmon

Pediocactus paradinei

Astragalus
creinnophylax

red-cockaded
woodpecker

spotted owl

Totoaba macdonaldi

Euphorbia dlvicola

Desert tortoise

Hudsonia montana

jack-in-the-pulpit

Guerrant 1996

Burgman and Gerard
1990

Menges 1992

Kaye et al. 2001

Nakoaka 1997

Ratner et al. 1997.

Frye 1998

Maschinski et al.
1997.

Maguire et al. 1995

Akcakaya and Raphael
1998

Cisneros-Mata et al.
1997.

Pfab and Witkowski
2000

Doaketal. 1994

Gross et al. 1998

Bierzychudeck 1982

Gentianella campestris Lennartsson 2000
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The method of matching moments was used to fit the beta and gamma distributions to

our data because observed values contained zeros and ones in for some transitions. An

alternative would have been to use maximum likelihood estimation techniques, but this

would have forced us to drop observed values equal to 0 or 1. However, dropping

these values would necessitate dropping entire matrices if we were to compare element

selection with bootstrapping of observed whole matrices, and we wanted to emphasize

the empirical basis of our data sets while maximizing the available sample sizes. Frey

and Burmaster (1999) have shown that, for the beta distribution at least, although the

method of matching moments produces less efficient statistical parameter estimates than

maximum likelihood methods, matching moment estimates are less sensitive to extreme

values. Therefore, we used matching moment estimators because they appear to be

adequately robust and because they tolerated the occasional zeros and ones among our

observed values.

Correlation among vital rates. For all distributions except the bootstrap, we used the

method of Fackler (1999) to generate dependent random variables (e.g., matrix

elements such as recruitment, vegetative plant growth, stasis of reproductive

individuals, etc.) with the marginal distributions we selected. The pairwise dependence

of the variables was specified by an observed correlation matrix for each population.

Even though our sample sizes were relatively low (4-9) for estimating correlations, they

were typical (if not large) for demographic studies of rare species. The key to this

technique is to specify the correlation matrix using a non-parametric correlation
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measure that is not sensitive to monotonic transformations of the variables (Fackler

1999). This method is equivalent to the normal copula (Fackler, personal

communication), and appears to be similar to that proposed by Iman and Conover

(1982) and reviewed in Haas (1999). It does not seem to have been implemented

previously in the context of stochastic matrix models. Copulas are functions that

describe the relationship between variables based on their joint dependencies and

marginal distributions (the reader is referred to Genest and MacKay 1986 and Nelson

1999 for introductions to copulas). We used Spearman rank correlation coefficients

(R) (which, for the joint normal distribution, are associated with the Pearson fractile

correlations [C] by C=2xsin [it!6xRj), because they are not sensitive to non-linear

transformations of the variables, while Pearson product moment correlations are. This

method involves generating a set of correlated normal variates, through use of the

Cholesky decomposition of C, which are then transformed to have uniform marginals.

The desired inverse probability transform is then applied to each variate individually,

thus retaining the fractile correlation structure. One convenient feature of this approach

is that individual variates may be transformed to different marginal distributions and

still maintain the specified correlation structure, which accommodates our use of the

gamma distribution for recruitment and the same or other distributions for transition

probabilities. Use of the Cholesky function requires that the correlation matrix be

positive semidefinite, which was not always the case in our data sets (possibly because

some correlations could be derived from linear combinations of others). Therefore, we

applied a ridge correction to the correlation matrices prior to their use by adding a



106

value equal to the minimum eigenvalue of each matrix. In all cases, this value was

extremely small ( 1016), and resulted in no detectable corruption of the realized

marginals or correlations.

Maintaining correlation structure for the bootstrap method was treated as a

special case. Instead of selecting correlated variates using Fackler's (1999) method, we

selected whole observed matrices from among the observed data sets. This technique

of incorporating environmental stochasticity is also known as matrix selection (Chapters

2 and 3), and preserves the observed association of matrix elements (Greenlee and Kaye

1997, Menges 2000, Kaye et al. 2001).

Analysis

Tests for effects of correlation, input distributions, and study species. We tested for

effects of correlation among vital rates, input distributions, species, and interactions

among these factors using SAS proc mixed (SAS Institute, Inc. 1990). Use of raw

estimates of X as a response variable posed a difficulty because we were likely to

detect species effects simply because some species may have had stronger or weaker

population growth rates. Further, we were interested in the relative effects of these

methods more than their actual estimates of mean Therefore, we chose as a

response variable the proportional change in ) when correlation among elements was

included. We considered this response variable to be structured in a split plot design,

with species as the whole plot.



107

Detecting bias in mean R5. Our procedure of constraining survival to 100% was

applied to each column of a matrix independent of the other columns after random

values were drawn. This procedure introduced the possibility of altering the correlation

among the transition elements in unpredicted ways. To test for bias to the Spearman

rank correlation coefficients, we compared the mean R of each transition element in the

observed data sets with simulated results for each species. First, we used the

distributions and correlation method described above to generate 1000 random matrices

from each population. Second, we calculated the mean R for each of these sets.

Third, we calculated the difference between the mean observed R and the simulated R,

as an estimate of bias. Mean estimates of bias for each species were then evaluated for

significant difference from zero and from one another using ANOVA.

Explaining variation in effects of correlation. The magnitude and direction of

correlations are both important aspects of the overall correlation structure among the

vital rates in a transition matrix. In theory, as the correlation among elements

increases, so to will its effect on population dynamics. This effect, however, will be

controlled, at least in part, by the sign of the correlations, with positive and negative

correlations cancelling each other out. From the observed correlation matrices for each

of our study populations, we calculated 1) the mean absolute value of R (J R ) 2) the

difference between the absolute value of the mean positive and negative Rs

(posRs >'negRs ) and 3) the ratio of the number of positive to negative correlations.

The first is a measure of overall correlation strength, such that as the magnitude of
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correlations increase, average R increases as well, regardless of correlation sign.

The other two are indices of the balance between positive and negative correlations.

For example, if the strength of positive correlations is exactly matched by negative

correlations, their difference will be zero. But if negative correlations are stronger than

the positives, the difference will be less than zero (and vice versa). Similarly, if

negative R outnumber positive R, their ratio will be less than one (and vice versa)

We performed a stepwise multiple regression with mean proportional change in ? due

to correlation for each species as the dependent variable, and mean R , difference

between mean positive and negative R, and ratio of positive to negative R as the

potential explanatory variables.

Correlation between techniques. Even if combining dependencies among transition

elements with the various techniques for incorporating stochasticity results in different

estimates of we would like to know if the various methods yield relatively similar

results. That is, if one population has a higher estimated ) than another as measured

by one stochastic method in combination with correlation among vital rates, is it also

higher as measured by a different method? Does this relationship change if correlation

structured is omitted? To measure their degree of association, we correlated estimates

of X, from each method of including temporal variability using the Pearson product

moment (R), and this procedure was repeated for estimates with and without correlation

among vital rates.



109

RESULTS

Effects of correlation, input distributions, and study species

The effect of including correlation among vital rates on estimates of ), differed

between study species (P=0.0101) but not among the various statistical distributions

and methods used to incorporate stochasticity (P=0. 1209), and there was no interaction

between these terms (P=0. 1147) in a split-plot ANOVA (Table 4.3). The significant

effect of species in this model can be interpreted as an interaction between species and

correlation effects on estimated X. Estimates of A were significantly lower when

correlation was included than when it was omitted from the stochastic models for two

of the five species examined here (Figure 4. 1, note asterisks). Including observed

correlation among transition elements reduced estimates of ? by 1 .7 % on average for

A. lyghensis and 3.0% for L. bradshawii, but there was no detectable effect in three

other species. The magnitude of this effect was greatest in L. bradshawii and least in

C. elata and H. radiatus, and intermediate in A. lyghensis and L. cookii.

Bias in R

A small, but significant, positive bias was detected among the correlation

coefficients in our simulated matrices relative to the observed R. The strength of this

bias differed among species, ranging from an average of 0.0 12 in H. radiatus to 0.047

in C. elata, and was significantly different from zero (P0.0001) in each case (Figure

4.2).
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Table 4.3. Split-plot ANOVA for the effects of statistical distribution of input variables
and species on the proportional change in when correlations among vital rates are
included (NDF and DDF are numerator and denominator degrees of freedom).

source NDF DDF Type III F P

whole plot

species 4 22 4.3 0.0101

subplot

distribution 4 88 1.88 0.1209

interaction

speciesxdistribution 16 88 1.51 0.1147
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Figure 4.1. Mean (± 1 SE) proportional effect of correlation on stochastic growth rate
(?) for five plant species. Bars with the same letter do not differ at the 0.05 level of
probability (Fisher's protected LSD) and asterisks indicate significant difference from
zero (*0.05>P0.01, **p0.0001).
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Figure 4.2. Mean (± 1 SE) bias in Spearman rank correlation coefficients (R) for each
of five plant species examined. Bias was defined here as the average difference
between mean observed and simulated R.
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Effects of correlation strength and sign on stochastic growth rate

The average absolute value of R ranged from 0.35 in H. radiatus to 0.51 in L.

cookii (Figure 4.3, top), while the average difference between mean positive and

negative R, was closest to zero in L. bradshawii (0.00 1) and most negative in H.

radiatus (-0.044) (Figure 4.3, center). Negative R outnumbered positive R by a ratio

of 0.930 in L. bradshawii to 0.858 in H. radiatus (Figure 4.3, bottom). In stepwise

multiple regression with proportional effect of correlation on A, as the dependent

variable, the only factor in the final model was the ratio of the number of positive to

negative R, (Figure 4.4). The final model explained 95.6 % of the variability in

correlation effect (P = 0.0026), and took the form:

proportional effect of correlation on A=0.392 x [no. positive:negative Rj- 0.335

In separate regressions, the proportional effect of vital rate correlations on

was also associated with the difference between mean positive and negative R, at

(R=0.84, P=0.075), but the linear association of this factor with the ratio of positive

to negative R (R=0.89, P=0.044) prevented it from entering the stepwise regression

model. There was no significant association between effect of correlation on ) and

mean IR either alone (R=0.22, P=0.73), or as part of a larger regression model.
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Figure 4.3. Mean (± 1 SE) absolute value of observed correlation coefficients
top), difference between mean positive and negative R values (middle) and ratio of
number of positive to negative R (bottom) for each of five species included in this
study. For the ratios, when negative correlations outnumber positives, the value is less
than 1.



0.005

C. elata
0

rc

0. 5 0.87 0.89 0.91 0.93 0.95
-0.005

o
H. radiatus

a) -

o

-0.015
.L.cookii

I

'. A. tyghensis
W -0.02-1

adj. R2=95.6%
f -0.025 P=0.0026
a slope=-0.392 (-0.525 -0.259)

-0.03 intercept=0.335 (0.217 0.453) L. bradshawii

-0.035

mean ratio of positive : negative R

115

Figure 4.4. Mean ratio of positive to negative R values vs. proportional effect of
including correlation structure on estimates of stochastic growth rate (As). Ratios less
than 1.0 indicate that negative correlations outnumber positive values. The fitted linear
regression line (dashed) and model parameters are also shown.
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Correlation among techniques

Most estimates of ) were highly and significantly correlated. When correlation

among vital rates was included in the models, the various statistical distributions

yielded estimates of ) that were correlated between R=0.847 (uniform vs. beta) and

R=0.993 (bootstrap vs. truncated gamma) (Table 4.4, above diagonal, all P0.0001).

When correlation among elements was excluded (Table 4.4, below diagonal),

association among estimates of from the various techniques ranged from R= 0.843

to R=0.980 (P0.0001), except for correlations involving the bootstrap method, which

were much lower (R=0.579 to 0.703, PO.0016). Within each statistical distribution,

estimates of derived with and without correlation structure were also highly

correlated (R = 0.973-0.988) (Table 4.4, diagonal).

DISCUSSION

Correlations among vital rates

Including correlation among vital rates in stochastic matrix models significantly

reduced estimates of population viability in two plant species, but no effect was

detected in three others examined here. Adding correlation to the models resulted in an

average 1.7% decline in estimated ? in A. tyghensis and a 3% reduction in L.

hradshawii (Figure 4.1). Effects of correlation were not significant in C. elata, L.

cookii, or H. radiatus. Our modeling correlation structure resulted in very little bias to

the correlations (Figure 4.2). Although published comparisons of stochastic models
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Table 4.4. Pearson correlation coefficients (R) for estimates of stochastic population
growth rate (?) derived from five methods of incorporating environmental
stochasticity. Correlations with A calculated by including correlation structure are
above the diagonal (PO.0001), while those estimated without correlation structure are
below (P0.0016). Values on the diagonal (in bold) are correlations between X
estimates with and without correlation structure (P0.0001 in all cases).

Stochastic truncated truncated
method

bootstrap uniform
normal gamma

beta

bootstrap 0.973 0.884 0.991 0.993 0.975

uniform 0.579

truncated normal 0.626

truncated gamma 0.703

beta 0.638

0.985 0.920 0.874 0.847

0.974 0.986 0.990 0.964

0.884 0.944 0.988 0.978

0.843 0.904 0.980 0.980
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with and without cross-correlations among transition elements are few, their

conclusions are in general agreement with ours. For example, population simulations

with Totoaba macdonaldi using both a diffusion approximation approach and Monte

Carlo methods found that inclusion of correlations among vital rates tended to increase

extinction risk (Cisneros-Mata et al. 1997). In that study, the authors assumed perfect

positive correlations in their comparisons. For most species in natural stochastic

environments, however, correlations among matrix elements may include many

negative values and are rarely, if ever, perfect, as in herbaceous plants such as

Calathea ovandensis of Mexican rainforests (Horvitz and Schemske 1995) and Gentiana

pneumonanthe of Scandinavian heathiands (Oostermeijer et al. 1996). Doak et al.

(1994) found that adding observed correlations (which included both positive and

negative values) to their desert tortoise model increased variability in mean growth rate

and population size estimates after 25-50 years. Presumably this increase in variability

would translate into a reduction in estimates of population viability, although they did

not test this explicitly.

Our analysis suggests that the effect of correlations among vital rates on

stochastic matrix model outcomes depends on the nature and type of correlations

present, and this differs among species. The average ratio of the number of positive to

negative correlations among vital rates was an excellent predictor (adj. R2 = 95.6%) of

the proportional change in stochastic growth rate among species due to inclusion of

these correlations (Figure 4.4). This measure of correlation structure is simple to

calculate and represents the relative distribution of positive and negative correlations
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across all vital processes. There was an indication that the relative strength of positive

vs. negative correlations (posRs ><negRs ) was also important in explaining this

variation, but its function was weaker (adj. R2=60.1%, PO.075) and it was not

included in the regression model after a stepwise procedure. We were surprised that

the average strength of correlations was not a significant factor in explaining variation

among species in mean because stronger correlations should, in theory, result in a

greater effect (Tuijapurkar 1982). It may be that inclusion of a greater number of

species could elucidate these relationships by encompassing life histories with a greater

range in absolute and relative correlation strengths. Even so, it is clear that the relative

mix of positive and negative correlations among model parameters is an important

aspect of correlation structure. Ferson and Burgman (1995), using various hypothetical

correlation structures in a stochastic model for Leadbeater's possum, found that

estimates of extinction probability increased or decreased depending on whether

correlations were positive, negative, or mixed, and whether dependencies were linear

or non-linear. The simplistic assumption of complete positive correlation used in some

models (e.g., Table 4.2) may yield overly pessimistic estimates of population viability.

We suggest that if inclusion of correlation structure is desired, empirically derived

correlations should be incorporated over hypothetical structures.

Correlation structure is clearly a complex factor in population models

(Tuijapurkar 1982), and its effect on model results will differ among species and life

histories (Orzack 1993, 1997). Although omitting correlation structure, as many

authors of population viability models have done (e.g., Table 4.2), may appear to be a
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hazardous assumption, it may have little effect on results of PVAs in some species due

to the balancing effect of positive and negative correlations. Even in our most extreme

case, L. bradshawii, in which the average 3% decline was statistically significant, its

biological significance was less obvious, and conservationists will have to decide for

themselves what magnitude of effect on viability is important. Within a given

technique for incorporating environmental stochasticity, estimates of )., derived with

and without cross-correlation among elements were strongly correlated (R0.973),

suggesting that for purposes of assessing the relative differences among populations or

management actions, inclusion of correlation structure may be of little significance.

Input distributions

The effects of correlation structure did not depend on which method we used to

incorporate stochasticity into the transition matrix models (Table 4.3). Including

correlation structure had the same effect on estimates of for each species regardless

of whether stochasticity was driven by a bootstrap method, or parametric distributions

such as the beta, truncated gamma, truncated normal, or uniform. Some authors (e.g.,

Menges 2000) have noted that the bootstrap method of shuffling whole observed

matrices (matrix selection) could exaggerate correlations among vital rates, but we

found no evidence that stochastic method altered the effects of correlation.

Even though stochastic method did not alter the effects of correlation structure,

different input distributions can have significant effects on estimates of population

viability. For example, we found (in Chapter 3) significant differences in estimates of
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among bootstrap, beta, truncated gamma, truncated normal, uniform and triangular

distributions of transition rates for incorporating stochasticity. In the present study, we

found a close association (R=O.847-O.993) in estimates of among various input

distributions when correlation among vital rates was included. However, in the

absence of correlation structure, associations between the bootstrap method and each

parametric method were weaker (R=O.579-O.703). These correlations are lower than

those observed in Chapter 3 (R=O.849-O.990) with the same data sets and similar

modeling procedures. The primary difference between methods in these two studies

was that, in the current case, we allowed recruitment to vary (via the bootstrap or

gamma distribution) while it was held constant in the previous study. Apparently,

stochasticity in recruitment can have a substantial effect on estimates of possibly

interacting with the choice of distribution shape used to model transition probabilities.

Nakoaka (1997), for example, found that lognormal and truncated normal distributions

for varying recruitment in clam population models yielded estimates of A that differed

significantly. Our results suggest that if correlation is included among all vital rates,

and transitions and recruitment vary stochastically, then estimates of population

viability may differ among stochastic methods but their relative rankings will not.

This is relevant because conservationists have expressed concern that viability

analyses yield results so sensitive to model parameters that any conclusions are

uncertain, if not misleading. We agree with Beissinger and Westphal (1998) and

Menges (2000) that the strength of viability analysis lies in its use as comparative tool

rather than a means of precisely assessing the health of individual populations.
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Especially in the face of uncertainty due to measurement error, which can create very

wide confidence intervals on estimates of extinction probability (Ludwig 1999, Fieberg

and Elmer 2000), the use of viability analysis to assess the relative vigor of a group of

populations or the impact of a habitat alteration should be emphasized over quantitative

estimates of viability. Fortunately, the relative ranking of populations appears to be

fairly robust to differences in stochastic methods, especially when correlation structure

is included.

Conclusion

Temporal correlation among vital rates in our stochastic matrix models altered

estimates of population viability, but this effect differed among species and was

generally weak. The magnitude of change in estimated A for each species examined

here was largely explained by the ratio of positive to negative cross-correlations of

transition matrix elements; as the relative number of negative correlations decreased,

the impact of correlation structure increased. When deciding whether or not to include

such correlation structure in viability models, conservationists may want to examine the

correlations in their species as a means of assessing their anticipated effect, and we

have provided a tentative linear regression model for doing so. Examples of stochastic

matrix approaches that incorporate correlations are few, but we hope our illustration of

a straightforward method based on rank correlations will encourage others to include

this aspect of stochastic population dynamics in future models where correlation is

deemed important. Our implementation, which was based on an approach described by
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Fackler (1999), is only one of a variety of methods that may be useful for this purpose,

and the extent to which correlation technique affects model results deserves further

attention. The use of copulas in functions for generating multivariate random numbers

may be particularly fruitful (Haas 1999, Frees and Valdez 1998), especially because of

their ability to accommodate non-linear dependencies (Embrechts et al, 1999 and in

press) and a mixture of statistical distributions for different vital rates.

We found no interaction between inclusion of correlation structure and various

distribution shapes for incorporating stochasticity. Stochastic method may, however,

have significant effects on estimates of which can lead to differing conclusions

regarding the health of a given population. When correlation structure is maintained in

stochastic models, the estimates of ? are generally highly correlated, suggesting that

PVA should stress comparisons between populations over quantitative estimates of

population health. Incorporating stochasticity into matrix models through bootstrapping

whole observed matrices (matrix selection) may be preferable in many cases because

the method appears to be relatively conservative and does not bias transition elements

(Chapter 3). In addition, it does not bias correlation structure and its results do not

appear to differ substantially from other methods of including correlation.
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Chapter 5. Conclusion

A BRIEF REVIEW OF MATRIX MODEL APPLICATIONS

Transition matrix models have proven to be an enormously versatile application

of population biology theory to the study of ecological dynamics. They have been used

primarily to describe and forecast the population processes of individual species,

including animals and plants. Some notable applications illustrating the diversity of

species and life histories the models have been applied to are plants, such as Pedicularis

fIirbishae (Menges 1990), giant kelp (Burgman and Gerard 1990), clams (Nakoaka

1997), red cockaded woodpeckers (Maguire et al. 1995), salmon (Ratner et al. 1997),

and possums (Ferson and Burgman 1995), including both stage- and age-classified

population structures, and even density dependence (Jensen 1995, Ginzburg et al.

1990).

But ecologists have recently taken these structured models beyond description of

species dynamics to a wide range of applications, such as theoretical (Chau 2000) and

applied harvest scenarios for wildlife (Kokko and Lindstrom 1998), medicinal plants

(Nantel et al. 1996), and economically useful palms (Olmsted and Alvarez-Buylla

1995); effects of disturbance on plant species (Giho and Seno 1997, Seno and Nakamijo

1999, Chapter 2); invasion dynamics of exotic species (Parker 2000) and impacts of

biocontrol agents (Shea and Kelly 1998, McEvoy and Coombs 1999); metapopulation

dynamics (e.g., Akcakaya and Raphael 1998); and description of host-pathogen (Yang
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et al. 1997) and predator-prey systems (Kittlein 1997). The scale of applications has

ranged from the dynamics of individual plant parts, such as demography of buds on

birch trees (Maillette 1982), to dynamics of moss communities on decaying wood

(Kimmerer 1993), forest tree succession (Osho 1996, Lin and Buongiorno 1997, Kolbe

et al. 1999, Logofet 2000), and vegetation dynamics in general (Balzter 2000). Recent

novel uses of matrix models in conservation biology have included developing recovery

(Aplet et al. 1994) and reintroduction (Guerrant and Pavlik 1998) strategies for rare

plants and animals (Heppell et al. 1996) and inclusion of genetic factors such as

inbreeding depression (Oostermeijer 2000, Menges and Dolan 1998). Elasticity

analysis, a type of sensitivity analysis possible with matrix models, has been of great

value in population management and studies of life history evolution (e.g., Heppell et

al. 2000).

GOALS AND CONCLUSIONS OF THIS DISSERTATION

The addition of stochasticity to matrix models makes possible the assessment of

probabilistic events, such as extinction, and this has made transition matrices one of the

most important tools available for population viability analysis. Even so, many

unanswered questions about the application of matrix models to field-collected

demographicdata have remained. For example, do different methods of including

stochasticity in matrix models affect estimates of extinction probability and stochastic

population growth rate? Do different methods of constraining stage-specific survival to
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100%, a seemingly trivial but surprisingly important problem, affect these results?

Does the inclusion of correlation among vital rates, such as recruitment, stasis, and

growth, affect estimates of population viability? If so, what aspects of correlation

structure are important? And finally, if these methods yield divergent estimates of

population viability, do they at least result in similar rankings of populations or

treatments?

In this dissertation, I have attempted to demonstrate the usefulness of the matrix

model technique and answer these questions through a case study and comparative

analyses of stochastic methods. These analyses have emphasized the use of empirical

observations at every step, so that the results will have the greatest utility to those

interested in applied population and ecological models. I have also intentionally

avoided extensive use of mathematical notation in hopes that the material presented will

be as accessible as possible to ecologists with little formal mathematical training, but

who desire to organize their field observations into a synthetic ecological model.

Use of a stochastic modeling approach showed that the effect of fire on the

population viability of Lomatium bradshawii was clearly positive, and this effect was

consistent across two study sites, two response variables, and through two different

stochastic methods (Chapter 2). Increasing fire frequency reduced extinction risk and

increased stochastic population growth rate, both measures of population viability, at

both Rose Prairie and Fisher Butte. Precise estimates of these response variables

differed slightly in some cases, but their relative ranking among fire treatments

remained the same.
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These conclusions set the stage for in-depth evaluations of the effects of

stochastic techniques on estimates of population viability. Using field observations

from 27 populations of five species, Astragalus tyghensis, Cimiciftiga elata,

Haplopappus radiatus, L. bradshawii, and L. cookii, collected over a period of five to

ten years, I performed a series of comparisons of methods used to incorporate

stochasticity into stage-based models for population viability analysis. Different

methods of incorporating stochasticity (i.e., matrix selection vs. various statistical

distributions for varying transition elements) and constraining stage-specific survival to

100% (resample vs. rescaling procedures) yielded substantially divergent estimates of

stochastic growth rate, and there was a significant interaction between these methods

(Chapter 3). Most of the variation in growth rate estimates was explained by bias in

mean transition element values (weighted by their elasticities), such that methods that

caused a reduction in average transition rates also reduced estimates of stochastic

growth rate. There was no effect of study species on these results, suggesting that the

conclusions are widely applicable, at least among perennial plants and possibly across a

variety of organisms.

Incorporating correlation among transition elements caused a significant

reduction in estimated stochastic growth rate in only two of five species examined

(Chapter 4), and the maximum mean reduction (L. bradshawii) was only 3 %. There

was no interaction with stochastic method in this effect. Much of the variation in

average response to correlation structure among species was due the relative balance

between positive and negative associations among the vital rates. For example, as the
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number and strength of negative correlations increased, they tended to overwhelm the

effects of positive correlations. Positive correlations are known to increase

stochasticity and therefore reduce stochastic growth (Tuijapurkar 1982, Orzack 1997),

so the presence of so many negative correlations buffer populations from the stochastic

effects of positive correlations. Therefore, it may be possible for population modelers

to assess the importance of correlation structure in their target species prior to making

the substantial effort to include it by evaluating the relative strength and number of

positive and negative associations among their observed matrix elements.

In Chapter 2, no correlation structured was modeled in the element selection

technique, despite the fact that I later learned correlation may be important in that

species. Even so, the relative results of the matrix and element selection methods for

estimating extinction probability and stochastic growth rate were qualitatively similar,

an important point stressed in each of the chapters of this dissertation.

One question that may be worth pursuing with regard to correlation structure is,

do species with different relative amounts of positive and negative correlations differ in

their success or vulnerability to stochastic environments? For example, do invasive

species have correlation structures with a higher rate of negative associations among

vital rates that could buffer them against stochasticity or even give them an advantage

over non-invasive species? Similarly, do rare species have more positive correlations

among vital rates than their common congeners, and could this help explain their rarity?

Could environmental stochasticity interact with the correlation structure of a species to

determine its relative success over different portions of its range? To what extent do
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the correlation structures of species influence the composition of plant communities in

habitats of differing degrees of environmental stochasticity? These and questions

related to the evolution of correlation among vital processes may deserve further

attention.

Perhaps the most important and consistent result of this dissertation is that,

although alternative techniques may lead to very strong differences in estimates of

population viability (differing by up to 18 %), conclusions about the relative ranking of

populations or treatments are robust to differences in stochastic methods (Chapters 2, 3

and 4). I observed very high correlations between most stochastic methods and their

estimates of stochastic population growth rate. This adds considerable strength to the

argument that viability analysis should be used as a comparative tool (as in Chapter 2)

rather than a means of assessing the health of individual populations (Beisinger and

Westphal 1998, Menges 2000). Quantitative estimates of extinction probability, for

example, may be subject to wide margins of error (Ludwig 1999, Fieberg and Ellner

2000), but the qualitative ordering of populations in terms of viability estimates may

not.

CONSIDERATIONS FOR STOCHASTIC MATRIX MODELERS

In the future, practitioners of population viability analysis that use transition matrix

models should consider the issues raised by this dissertation. In general, if sufficient

data are available to implement a stochastic analysis with matrix selection, this
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technique may be preferred. It has the advantage of requiring no survival constraint

correction, no assumptions about the distribution of the matrix elements (aside from the

weighting of each matrix, which is generally assumed to be equal), and it includes

correlation structure implicitly, as long as each matrix represents observed data from a

single population in a single year.

If element selection is necessary, and it may be if there are areas of missing data

or observations of various vital processes are pooled from a variety of sources or

studies, then more assumptions will be required. For example, survivals will have to

be constrained to 100% (unless the model is age-based), and I recommend the

rescaling procedure described in Chapter 3. Other techniques may either cause

substantial bias (such as resampling, Chapter 3) or be excessively cumbersome (as in

Gross et al. 1998). Because available data are typically insufficient to test for a fit to a

statistical distribution, one must be assumed. If a survival constraint method with low

bias is used, the beta and truncated gamma distributions may be good choices of

parametric distributions, as might the bootstrap (or observed/discontinuous), because

results using these distributions are generally in close agreement with each other and

with matrix selection. Finally, including correlations among vital rates may be

desirable, but this will depend on the study system. Fortunately, new tools are now

available for modeling correlation structure, and modelers can evaluate the likely

importance of correlations for their data set simply by counting the number of positive

and negative correlations and applying the linear regression model presented in Chapter

4. Careful consideration of these issues and selection of appropriate modeling
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techniques will improve the quality of population models and their results. Despite

these warnings and words of advice, even if the quantitative predictions of stochastic

matrix models differ substantially due to differing model assumptions, the qualitative

results are very robust to differences in model implementation. Population models are

most useful as comparative tools rather than predictors of future conditions.
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Appendix

Field Sampling Techniques and Matrix Construction Notes for Each Species

ASTRA GAL US TYGHENSIS

A total of 15 permanent monitoring plots at five sites were sampled to obtain

demographic data from five populations of Astragalus tyghensis. Monitored

populations were at sites 4, 10, 13, 25, and 41 (Kaye and Brady 1991). Plot locations

were selected by visually partitioning each population into homogeneous areas, then

randomly placing plot locations. All permanent plots were 5 x 5 m square, marked in

each corner with a 1 m piece of iron rebar protruding at least 30 cm from the soil. The

upper left corner-rebar of each plot (facing up-slope) was labeled with an aluminum tag

noting plot number. To sample, each side of the plot was marked temporarily at 1 m

intervals with nails, and string was tossed back and forth over the plot (looped each

time around a nail) to create a grid of 1 x 1 m subplots within the 5 x 5 m macroplot.

The location of each Astragalus tyghensis individual in every subplot was mapped and

numbered on map sheets. A dot and a corresponding plant number were placed on the

map sheets to mark the position of each plant. In some cases, it was difficult to

determine whether tufts of plants were clusters of individuals or merely a single plant

that had branched below the soil surface, or a combination of these. In these cases, the

loose soil was gently excavated and probed with fingers to check for root connections.

On a separate data sheet, we noted diameter (cm), length of longest stem (cm), number
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of inflorescences, and evidence of grazing (yes or no) of each mapped and numbered

plant.

To assess seed production, we sampled between 25 and 80 plants at each monitoring

site. Plants were sampled at random for number of inflorescences and fruits adjacent to

and outside of the permanent macroplots. In addition, whole infructescences were

collected at random and inspected for seed set per fruit and insect seed predation. At

sites 4 and 41, the number of fruits per plant was measured for all plants in the plots,

instead of subsampling outside the plots, because of the relatively low number of

flowering plants at those sites. The samples were collected each season when fruits

were mature. For each site, we performed linear regressions to determine the number

of fruits expected from a plant given the number of inflorescences (for these tests, P <

0.05) (except at sites 4 and 41 in 1992-98, and 4, 10, 25, and 41 in 1999 where fruit

production was measured directly). These data were multiplied by the average number

of seeds per fruit at each site to give an estimate of the number of seeds produced by

each monitored plant. The following formulae were used to calculate the number of

seeds produced per plant given the number of inflorescences or fruits

[(#inflorescences x regression coefficient for fruits/inflorescences) x average number of

seeds per fruit.

For the purposes of the model, the individuals in a population were assigned to

categories (stages) based on age (for seedlings only) and size. The number of seedlings
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produced per plant in each category was determined, and the probability of individual

stasis in the same stage or transition to another was be calculated. The transition

probabilities were the proportion of individuals in each stage that made the transition to

another stage (e.g., become smaller or larger) from one year to the next. We

recognized five stages for this species based primarily on stem length: seedling,

longest stem <10 cm, 10-20 cm, 20-30 cm, and >30 cm. These stages were defined

subjectively after displaying the size data graphically in several different ways. In a

few cases, data for a particular stage were lacking for a given year due to absence of

that category from the population samples. When this occurred, the column for that

stage was replaced by the mean transition elements from all other years (Table A. 1).

CIM1CIFUGA ELATA

We used data from three C. elata populations to derive transition matrices:

EUGRASS, EUNORR and W1L032 (Kaye and Kirkland 1994). At each population, we

measured all the following characteristics of each plant: number of leaves, number of

reproductive stems, and number of racemes. In addition, we mapped and tagged

individuals within 40-rn on either side of a reference transect. Plants were mapped

according to a coordinate system in which the first (x) coordinate is the distance along

the reference transect to a plant, and the second (y) is the lateral (perpendicular)

distance from the transect to the plant. Because plants usually were found on both sides

of the transect center-line, plants to the right of the transect (facing in the direction of

the transect) were given positive y-axis ordinates, and those to the left were assigned
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negative y-axis ordinates. Distances were measured to the nearest decimeter to the

base of the plant where it rooted into the soil. Plants were permanently tagged by

inserting a stiff wire (12 gauge) into the soil 15-cm away from the plant perpendicular

to the transect center-line. The wire was looped at the top and a machine-numbered

aluminum tag was fixed in the loop. In this way, each individual was tagged with a

permanent and unique number and set of coordinates. Data from tagged plants were

used to classify each individual into five stages, including seedling, vegetative with 1 or

2 leaves, vegetative with 3 or more leaves, reproductive (having at least one flower

stalk), or dormant (for plants that skipped one or more years then reappeared). As in

matrices for A. lyghensis, when too little data were available to calculate transitions for

a particular stage, the matrix column for that stage was replaced by the mean. This

occurred for the EUGRASS population in which the large vegetative stage was replaced

by means in year 2, for EUNORR where seedlings, recuitment, and dormany were

replaced by means only in year 4, and W1L032 where seedling and large vegetative

transitions were replaced by means in year 1 (Table A. 1).

HAPLOPAPPUS RADIA TUS

Ten plots were established at five sites within the Oregon portion of the range of

Haplopappus radiatus (Kaye and Meinke 1992). Plots were assigned to a fenced or

unfenced treatment by a toss of a coin. All plots, whether inside or outside of an

exciosure, were 10 x 10 m square and followed the same basic form. It was necessary

to incorporate walk-ways into the plot set-up in order to reach the individual subplots
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for close inspection. Therefore, each plot was composed of five 1-m wide belt

transects alternating with 1-rn wide walk-ways. The belt transects were marked

permanently with rebar posts anchored at each end. Each transect was broken into 10

contiguous 1 x 1 m subplots in which plants were mapped and measured. Thus, there

were five transects of ten subplots each, for a total of fifty subplots per plot (plot 1-out

was an exception, with only 25 subplots). To locate the plots for sampling, a meter

tape was run from the left post to the right post (left and right as if facing up-hill), and

each 1-rn segment of meter tape formed the lower edge of each subplot. A 1 x I m

frame was then placed on the ground (with one edge along the meter tape) to delineate

the subplot.

In 1991 the plots were sampled twice, on April 15-18 and July 19-23; 1992 sampling

occurred on May 7-10 and July 20-24; 1993 sampling occurred on May 11-12 and July

13-14; 1994 sampling occurred on May 17-19 and August 2-4; 1995 sampling was

conducted on May 22-26 and August 7-11; 1996 sampling occurred August 12-16;

1997 sampling was on May 28-29 and August 5-7; 1998 sampling was done on May

19-20 and July 28-30, and sampling in 1999 was conducted on May 18-19 and July 26-

29. The early spring samples were conducted primarily to maintain the plots and locate

seedlings. All plants were measured and remapped during the summer sample. In

every subplot, all Haplopappus radiatus individuals were mapped onto special map

forms and numbered consecutively on the map. Data on plant height (cm), length of

longest leaf (cm), number of leaves, number of healthy and aborted flower heads
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(capitula), number of grazed stems, and percentage berbivory by grasshoppers, were

recorded onto a second data sheet. In 1991, the density of Haplopappus radiatus was

so high at the Lime sites (1 & 2) that we reduced the area of the subplots where non-

reproductive plants are mapped and measured to the lower left-hand quarter of the

subplots. All reproductive individuals in the entire subplot were mapped and measured

in the Lime plots (1 & 2). In addition, only even numbered subplots were sampled at

Upper Lime plot 1-out. All portions of all subplots were sampled at the Lookout

Mountain Road sites (plots 3, 4 & 5). In 1996, protocol was changed at the Lime sites

so that mapping and measuring included all plants in all plots. Each individual was

assinged to ne of four stages based primarily on number of leaves and reproductive

status: seedling, juvenile(four leaves), vegetative (>4 leaves and non-reproductive),

and reproductive (producing at least one flowering capitulum). These stages were

defined subjectively after displaying the size data graphically. Occasionally, no

seedlings survived at all in a given population and year, and in others, all seedlings

survived. Also, in some plots, no reproductive plants were observed in some years, so

no data were available to estimate transition probabilities of this stage class. As above,

where data were lacking, we used the average of transition probabilities from the years

when these data were available (Table A.1).

LOMA TJUM BRADSHA Wil

We used information from three populations that were part of a prairie burning

experiment (Kaye et al. 2001) to collect demographic data on Lomatium bradshawii.
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All three, Fisher Butte, Rose Prairie, and Long Tom, were within the southwest part of

the species' range, in an area west and north of Eugene, Oregon. Three burning

treatments were conducted at two of the locations, making a total of seven independent

demographic data sets for this species. Permanent monitoring plots were sampled

annually. To establish these plots, mature Lomatium bradshawii plants (reproductive or

large vegetative) were randomly chosen from throughout the population areas and

tagged in 1988. These individuals were numbered, and a subset, ten at Fisher Butte,

six at Rose Prairie, and ten at Long Tom, were randomly selected from each treatment

area to serve as center points for permanent circular plots (2-rn radius). All L.

bradshawii individuals were mapped in each circular plot in May or June of each year

(prior to burning) from 1988 through 1993. Leaf number, seed production, and umbel

number were recorded annually for all tagged plants, including those at the center of

each circular plot and outside the plots, and seed production per reproductive plant

category was used to estimate per capita seedling recruitment for each reproductive

stage. We used a biological classification that combined plant size and reproductive

state to classify each Lomatiuin bradshawii individual into one of five stages: seedling,

vegetative plant with one or two leaves, vegetative plant with three or more leaves, and

reproductive plant with one, or two or more umbels. Reproductive plants were

segregated by umbel number because one-umbel plants rarely produce seed, while two-

umbel plants produce seeds on the second umbel, and plants with three or more umbels

may produce many seeds (T.N. Kaye, unpublished data). We combined vegetative

plants with one or two leaves into a single stage because field observations indicated
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that plants with one leaf often produced a second leaf later in the year, and therefore

leaf number of small plants may be a function of sampling date and/or variation in

seasonal phenology, not plant vigor. Seedlings were defined as first year plants, often

with cotyledons. All vegetative plants with one leaf were considered seedlings in 1988

(Table A.1).

LOMATIUM COOKJI

Long-term monitoring plots were established at two populations in near Cave

Junction, Oregon (Kaye 2000). At each population (Middle and South), 20 plots were

randomly placed. These plots were 0.5 x 0.5-m, and all individual Lomatium cookii

plants were mapped to their approximate location, given unique numbers, and assigned

to the categories defined below. To sample, a 0.5 x 0.5-rn frame was placed over the

plot and all plant rositions were mapped to scale on a map form. Plant categories were

seedling, vegetative with 1 or 2 leaves, vegetative with 3 or more leaves, reproductive

with 1 umbel, reproductive with 2 umbels, and reproductive with 3 or more umbels.

As above, where data were lacking, we used the average of transition probabilities from

the years when these data were available (Table A. 1).
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Table A.1. Annual transition matrices. The transition matrices reported below are in a
condensed format. Each column represents a transition matrix for a single year of
observation. The entries in a column of the table are the entries in each colunm of the
matrix, stacked one above the other, beginning with seedling transitions at the top. To
reconstruct a square matrix, each column must be reshaped so that the first five entries
(or four for Hap lopappus radiatus and six for Lomatium cookii) form the first (left
hand) colunm of the matrix, the next five (or four or six, as above) the next column,
and so on. See the details for each species above for stage definitions.

Astragalus lyghensis, site 4
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.407 0.220 0.479 0.120 0.632 0.556 0.681 0.345 0.514

0.019 0.017 0.010 0.160 0.035 0.037 0.000 0.034 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.515 0.254 0.444 0.151 0.261 0.423 0.350 0.455 0.216
0.182 0.222 0.083 0.093 0.130 0.231 0.300 0.127 0.255
0.015 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.020
0.000 0.000 0.000 0.012 0.000 0.000 0.000 0.000 0.000
0.176 0.228 0.062 0.247 0.046 0.529 0.316 0.054 0.207
0.163 0.121 0.195 0.133 0.280 0.033 0.184 0.241 0.125

0.372 0.576 0.463 0.367 0.560 0.733 0.368 0.552 0.344
0,256 0.152 0.000 0.300 0.000 0.133 0.237 0.000 0.188
0.047 0.000 0.000 0.000 0.000 0.000 0.026 0.000 0.000
2.176 2.815 0.619 3.081 0.790 2.710 1.543 1.737 1.934

0.000 0.037 0.160 0.000 0.154 0.000 0.000 0.083 0.000
0.188 0.185 0.240 0.071 0.615 0.333 0.375 0.500 0.000
0.812 0.630 0.520 0.214 0.231 0.444 0.250 0.083 1.000
0.000 0.111 0.000 0.643 0.000 0.222 0.250 0.000 0.000
3.332 3.116 2.321 6.468 1.556 0.736 2.314 3.648 2.936
0.000 0.000 0.333 0.000 0.000 1.000 0.000 0.250 0.198
0.200 0.250 0.000 0.000 0.100 0.000 0.000 0.500 0.131

0.400 0.750 0.333 1.000 0.600 0.000 0.500 0.000 0.448
0.400 0.000 0.333 0.000 0.100 0.000 0.500 0.000 0.167



Table A. 1, Continued.

Astragalus tyghensis, site 10
0.000 0.000 0.000 0.000

0.278 0.062 0.319 0.217

0.111 0.021 0.017 0.029

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

0.021 0.000 0.000 0.005

0.286 0.217 0.478 0.161

0.171 0.130 0.217 0.274

0.171 0.043 0.000 0.048

0.000 0.000 0.000 0.0 16

0.557 0.191 0.208 0.564

0.020 0.033 0.170 0.029

0.320 0.533 0.638 0.186

0.560 0.200 0.128 0.414

0.060 0.033 0.000 0.257

2.677 1.018 0.992 2.691

0.000 0.065 0.023 0.000

0.125 0.339 0.568 0.040

0.550 0.387 0.364 0.240

0.275 0.097 0.023 0.640

4.857 2.358 1.216 3.179

0.083 0.000 0.000 0.000

0.000 0.150 0.583 0.000

0.330 0.500 0.250 0.000

0.500 0.250 0.167 1.000

0.000 0.000 0.000 0.000 0.000

0.530 0.512 0.363 0.202 0.113

0.034 0.047 0.022 0.024 0.005

0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000

0.000 0.010 0.000 0.008 0.005

0.300 0.459 0.455 0.326 0.233

0.300 0.235 0.247 0.157 0.407

0.000 0.000 0.026 0.000 0.058

0.000 0.000 0.000 0.000 0.012

0.054 0.441 0.311 1.018 0.418

0.235 0.156 0.055 0.247 0.014

0.500 0.531 0.616 0.438 0.507

0.176 0.188 0.192 0.067 0.333

0.029 0.016 0.014 0.014 0.029

0.325 2.154 1.780 3.593 1.904

0.05 1 0.05 1 0.000 0.207 0.000

0.615 0.308 0.621 0.448 0.083

0.308 0.410 0.379 0.138 0.500

0.000 0.103 0.000 0.000 0.417

0.749 4.376 1.384 3.75 2.588

0.026 0.000 0.000 0.000 0.014

0.211 0.600 0.429 0.500 0.309

0.553 0.000 0.286 0.500 0.302

0.105 0.400 0.143 0.000 0.321
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Table A. 1, Continued.

Astragalus tyghensis, site 13
0.000 0.000 0.000 0.000

0.373 0.147 0.288 0.358

0.026 0.058 0.006 0.039

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

0.094 0.004 0.000 0.105

0.417 0.188 0.438 0.271

0.188 0.188 0.062 0.161

0.076 0.031 0.000 0.060

0.014 0.000 0.000 0.021

1.435 0.424 0.066 6.667

0.074 0.061 0.538 0.116

0.278 0.318 0.290 0.231

0.4 17 0.364 0.000 0.273

0.157 0.121 0.000 0.240

5.550 4.182 0.729 2.836

0.062 0.014 0.379 0.096

0.062 0.162 0.515 0.205

0.438 0.378 0.000 0.361

0.375 0.432 0.000 0.242

14.566 11.301 1.835 6.819

0.000 0.000 0.221 0.041

0.143 0.050 0.691 0.174

0.143 0.250 0.000 0.216

0.643 0.700 0.000 0.495

0.000 0.000 0.000 0.000 0.000

0.281 0.297 0.384 0.377 0.192

0.045 0.059 0.088 0.038 0.026

0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000

0.005 0.004 0.005 0.002 0.002

0.362 0.215 0.335 0.437 0.256

0.179 0.192 0.335 0.121 0.171

0.015 0.024 0.023 0.004 0.014

0.000 0.006 0.000 0.000 0.000

0.235 0.296 0.090 0.065 0.109

0.175 0.105 0.058 0.249 0.124

0.320 0.363 0.562 0.472 0.355

0.117 0.121 0.190 0.036 0.204

0.039 0.048 0.036 0.000 0.000

1.247 3.512 1.929 0.879 1.232

0.067 0.040 0.016 0.157 0.028

0.167 0.100 0.222 0.486 0.139

0.350 0.540 0.460 0.229 0.361

0.233 0.140 0.270 0.029 0.278

2.998 5.478 5.093 2.691 2.541

0.000 0.026 0.000 0.068 0.000

0.075 0.026 0.057 0.386 0.111

0.350 0.237 0.3 14 0.250 0.333

0.500 0.500 0.629 0.159 0.556
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Table A.1, Continued.

Astragalus lyghensis, Site 25
0.000 0.000 0.000 0.000

0.381 0.176 0.338 0.238

0.044 0.072 0.032 0.270

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

0.023 0.000 0.000 0.000

0.133 0.115 0.549 0.126

0.382 0.230 0.127 0.347

0.325 0.000 0.000 0.085

0.049 0.000 0.000 0.045

0.932 0.261 0.045 0.162

0.000 0.016 0.204 0.017

0.086 0.590 0.611 0.046

0.617 0.279 0.080 0.197

0.259 0.016 0.018 0.665

6.864 1.691 0.290 2.207

0.000 0.0 19 0.069 0.000

0.061 0.292 0.678 0.026

0.303 0.453 0.195 0.053

0.636 0.179 0.000 0.868

6.040 3.403 0.727 5.577

0.000 0.000 0.022 0.000

0.000 0.111 0.467 0.000

0.200 0.407 0.267 0.000

0.800 0.463 0.222 1.000

0.000 0.000 0.000 0.000 0.000

0.402 0.240 0,375 0.423 0.136

0.073 0.020 0,087 0.064 0.034

0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.003

0.748 0.310 0.391 0.370 0.274

0.087 0.267 0.141 0.050 0.178

0.065 0.017 0.016 0.000 0.041

0.000 0.009 0.000 0.000 0.000

0.002 0.029 0.019 0.074 0.191

0.111 0.085 0.199 0.318 0.054

0.606 0.529 0.581 0.307 0.380

0.071 0.196 0,059 0.006 0.293

0.020 0.078 0.000 0.000 0.065

0.052 0.342 0.297 0.704 1.556

0.121 0.022 0.161 0.235 0.000

0.517 0.169 0.495 0.333 0.000

0.207 0.483 0.237 0.059 0.400

0.069 0.270 0.011 0.000 0.600

0.264 0.716 0.655 1.394 2.483

0.012 0.000 0.027 0.143 0.026

0.231 0.095 0.493 0.571 0.246

0.376 0.254 0.260 0.000 0.221

0.318 0.540 0.082 0.000 0.428
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Table A. 1, Continued.

Astragalus tyghensis, site 41
0.000 0.000 0.000 0.000

0.588 0.406 0.461 0.167

0.059 0.203 0.026 0.083

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

0.000 0.049 0.003 0.000

0.686 0.082 0.625 0.114

0.229 0.344 0.031 0.190

0,014 0.344 0.000 0.219

0.000 0.131 0.000 0.171

0.000 2.386 0.083 0.000

0.231 0.037 0.561 0.000

0.769 0.222 0.195 0.111

0.000 0.407 0.000 0.111

0.000 0.333 0.000 0.556

1.885 1.885 0.326 1.885

0.097 0.097 0.424 0.097

0.199 0.199 0.303 0.199

0.293 0.293 0.000 0.293

0.320 0.320 0.000 0.320

0,683 0.683 0.542 0.683

0.125 0.125 0.500 0.125

0.138 0.138 0.330 0.138

0.192 0.192 0.000 0.192

0.466 0.466 0.000 0.466

0.000 0.000 0.000 0.000 0.000

0.370 0.292 0.333 0.3 12 0.000

0.167 0.250 0.083 0.031 0.000

0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000

0.005 0,000 0.000 0.000 0.007

0.368 0.281 0.389 0.321 0.050

0.053 0.375 0.278 0.036 0.300

0.105 0.062 0.056 0.000 0.125

0.000 0.000 0.000 0.000 0.000

0.037 0.028 0.008 0.005 0.023

0.000 0.031 0.171 0.147 0.048

0.556 0.375 0.341 0.500 0.262

0.222 0.250 0.220 0.000 0.405

0.148 0.031 0.000 0.000 0.048

0.151 0.219 0.176 0.035 0.151

0.000 0.000 0.059 0.176 0.000

0.250 0.207 0.235 0.412 0.000

0.536 0.517 0.412 0.029 0.500

0.214 0.241 0.147 0.000 0.500

0.566 0.821 0.917 0.181 0.712

0.000 0.000 0.000 0.300 0.160

0.000 0.114 0.107 0.400 0,190

0.182 0.229 0.357 0.050 0.164

0.758 0.571 0.536 0.000 0.373
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Table A. 1, Continued.

Cimicifuga elata, EUNORR
0.000 0.000 0.000 0.000

0.279 0.250 0.600 0.400

0.000 0.000 0.000 0.000

0.000 0.000 0.200 0.000

0.302 0.250 0.200 0.200

0.000 0.000 0.000 0.000

0.520 0.539 0.480 0.424

0.000 0.000 0.000 0.000

0.000 0.039 0.000 0.030

0.280 0.231 0.280 0.182

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

0.250 0.000 0.000 0.063

0.000 0.000 1.000 0.500

0.750 1.000 0.000 0.438

4.000 5.000 5.000 2.500

0.000 0.000 0.000 0.000

0.000 1.000 0.000 0.500

1.000 0.000 0.000 0.000

0.000 0.000 1.000 0.000

0.000 0.000 0.000 0.000

1.000 0.435 0.810 0.769

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

0.000 0.565 0.191 0.231
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Table A. 1, Continued.

Cimicifuga elata, EUGRASS
0.000 0.000 0.000 0.000
0.615 1.000 0.875 0.667
0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000
0.154 0.000 0.000 0.000
0.000 0.000 0.000 0.000
0.529 0.621 0.677 0.738
0.000 0.000 0.029 0.000
0.000 0.138 0.029 0.048

0.382 0.138 0.088 0.071

0.000 0.000 0.000 0.000

0.500 0.833 1.000 1.000

0.000 0.000 0.000 0.000
0.500 0.167 0.000 0.000

0.000 0.000 0.000 0.000
5.000 8.000 0.600 4.000
0.000 0.000 0.600 0.000
0.000 0.000 0.000 0.000
0.000 1.000 0.200 1.000

1.000 0.000 0.200 0.000

0.000 0.000 0.000 0.000
1.000 0.688 0.750 1.000

0.000 0.063 0.000 0.000
0.000 0.000 0.125 0.000

0.000 0.250 0.125 0.000
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Table A. 1, Continued.

Cimicifuga elata, W1L032
0.000 0.000 0.000 0.000 0.000

0.588 0.600 0.833 0.250 0.667

0.050 0.200 0.000 0.000 0.000

0.063 0.000 0.000 0.250 0.000

0.042 0.000 0.167 0.000 0.000

0.000 0.000 0.000 0.000 0.000

0.561 0.579 0.588 0.476 0.611

0.078 0.000 0.118 0.238 0.000

0.145 0.368 0.118 0.048 0.056

0.043 0.053 0.059 0.000 0.000

0.000 0.000 0.000 0.000 0.000

0.256 0.333 0.667 0.000 0.111

0.111 0.333 0.000 0.000 0.222

0.289 0.000 0.333 0.500 0.111

0.150 0.333 0.000 0.250 0.000

0.251 0.273 0.129 0.231 0.423

0.075 0.000 0.065 0.154 0.077

0.075 0.000 0.065 0.154 0.077

0.721 0.909 0.710 0.615 0.769

0.067 0.046 0.129 0.039 0.000

0.000 0.000 0.000 0.000 0.000

0.393 0.286 0.500 0.286 0.500

0.098 0.143 0.000 0.000 0.250

0.339 0.429 0.250 0.429 0.250

0.170 0.143 0.250 0.286 0.000



Table A. 1, Continued.

Haplopappus radiatus, 1-in
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.222 0.125 0.075 0.020 0.138 0.229 0.370 0.172 0.047
0.000 0.000 0.075 0.002 0.034 0.000 0.000 0.035 0.007
0.000 0.104 0.050 0.011 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.609 0.340 0.381 0.244 0.500 0.545 0.689 0.532 0.686
0.185 0.107 0.127 0.232 0.152 0.287 0.126 0.177 0.144
0.000 0.369 0.079 0.244 0.130 0.069 0.126 0.044 0.052
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.247 0.095 0.233 0.040 0.210 0.109 0.103 0.150 0.151
0.584 0.121 0.233 0.475 0.400 0.709 0.451 0.591 0.454
0.045 0.724 0.100 0.337 0.250 0.136 0.422 0.181 0.319
2.342 7.765 11.270 2.074 0.719 1.174 0.387 3.570 0.000
0.195 0.000 0.170 0.000 0.172 0.148 0.040 0.064 0.070
0.537 0.000 0.390 0.315 0.266 0.426 0.133 0.419 0.298
0.159 0.882 0.189 0.630 0.484 0.391 0.813 0.454 0.570

Haplopappus radiatus, 1-out
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.353 0.667 0.013 0.105 0.577 0.167 0.105 0.041
0.000 0.059 0.000 0.095 0.000 0.000 0.008 0.035 0.016
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.585 0.405 0.316 0.158 0.500 0.512 0.612 0.483 0.390
0.098 0.054 0.184 0.246 0.286 0.279 0.149 0.172 0.169
0.024 0.378 0.079 0.316 0.143 0.116 0.134 0.081 0.104
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.063 0.087 0.111 0.019 0.164 0.214 0.240 0.154 0.215
0.688 0.065 0.333 0.321 0.345 0.543 0.347 0.673 0.456
0.063 0.783 0.222 0.566 0.164 0.157 0.360 0.096 0.229
1.514 0.800 9.723 2.345 0.506 2.400 1.357 4.033 0.000
0.243 0.100 0.215 0.000 0.152 0.182 0.071 0.167 0.088
0.5 14 0.000 0.477 0.207 0.342 0.364 0.333 0.400 0.441
0.189 0.900 0.215 0.621 0.367 0.436 0.548 0.350 0.294

S
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Table A. 1, Continued.

Haplopappus radiatus, 2-in
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.256 0.039 0.000 0.133 0.125 0.273 0.055 0.039

0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.039 0.000

0.000 0.047 0.007 0.016 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.330 0.270 0.283 0.018 0.167 0.307 0.267 0.333 0.130

0.049 0.067 0.067 0.158 0.333 0.154 0.200 0.000 0.087

0.035 0.281 0.100 0.298 0.000 0.077 0.133 0.222 0.130

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.263 0.093 0.231 0.091 0.077 0.114 0.026 0.156 0.033

0.158 0.047 0.154 0.136 0.154 0.364 0.385 0.375 0.167

0.211 0.628 0.077 0.409 0.115 0.341 0.461 0.281 0.633

1.745 5.920 2.250 0.536 0.295 0.183 4.379 0.785 0.000

0.106 0.060 0.143 0.000 0.053 0.067 0.017 0.015 0.070

0.298 0.040 0.107 0.134 0.295 0.217 0.207 0.246 0.123

0.394 0.860 0.643 0.619 0.537 0.617 0.724 0.692 0.719

Haplopappus radiatus, 2-out
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.250 0.368 0.385 0.000 0.750 0.000 0.286 0.053 0.226

0.000 0.132 0.000 0.000 0.125 0.000 0.286 0.007 0.007

0.000 0.000 0.000 0.000 0.000 0.333 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.443 0.167 0.195 0.158 0.154 0.316 0.154 0.200 0.200

0.043 0.139 0.024 0.193 0.154 0.105 0.308 0.000 0.000

0.000 0.292 0.073 0.140 0.154 0.053 0.231 0.200 0.200

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.333 0.091 0.200 0.067 0.138 0.095 0.000 0.077 0.077

0.083 0.227 0.200 0.467 0.241 0.286 0.615 0.539 0.539

0.000 0.409 0.160 0.267 0.172 0.381 0.231 0.039 0.039

1.707 36.000 0.735 0.552 0.097 0.368 13.591 1.667 1.667

0.387 0.000 0.449 0.035 0.097 0.158 0.045 0.133 0.133

0.200 0.000 0.143 0.207 0.258 0.263 0.454 0.800 0.800

0.013 1.000 0.265 0.414 0.323 0.421 0.409 0.067 0.067
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Table A. 1, Continued.

Haplopappus radiatus, 3-in
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.111 0.000 0.444 0.000 0.305 0.187 0.154 0.130 0.163

0.022 0.000 0.111 0.000 0.017 0.031 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.430 0.188 0.581 0.344 0.450 0.482 0.471 0,500 0.486

0.056 0.200 0.065 0.203 0.275 0.071 0.157 0.075 0.114

0.028 0.400 0.129 0.219 0.025 0.054 0.098 0.000 0.029

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.230 0.068 0.353 0.029 0.143 0.175 0.105 0.207 0.059

0.333 0.182 0.294 0.529 0.738 0.550 0.263 0.379 0.265

0.035 0.591 0.353 0.265 0.071 0.162 0.526 0.069 0.500

0.235 1.800 0.963 1.035 0.517 2.294 0.958 0.745 0.000

0.177 0.000 0.256 0.193 0.133 0.059 0.042 0.098 0.000

0.353 0.100 0.232 0.175 0.617 0.412 0.208 0.392 0.000

0.177 0.800 0.488 0.632 0.200 0,412 0.625 0.255 0.933

Haplopappus radiatus, 3-out
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0,364 0.000 0.095 1.000 0.026 0,040 0.093 0.033

0.091 0.000 0.000 0.000 0.000 0.000 0.000 0.013 0.008

0.000 0.182 0.000 0.000 0.000 0.000 0,000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.385 0.148 0.652 0.267 0.478 0.542 0.333 0.600 0.250

0.096 0.284 0.217 0.333 0.348 0.292 0,292 0.267 0.375

0.010 0.444 0.000 0.222 0.087 0.083 0.250 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.271 0.015 0.263 0.039 0.050 0.094 0.048 0.064 0.034

0.448 0,194 0.447 0.416 0.767 0.469 0.524 0.830 0.534

0.063 0.746 0.237 0.429 0.133 0.417 0.397 0.043 0.375

0.478 0.250 0.198 0.022 0.520 0.833 1.271 1.627 0.000

0.130 0.000 0.132 0.067 0.107 0.033 0.051 0,053 0.000

0.478 0.000 0.491 0.178 0.600 0.333 0.119 0.573 0.280

0.304 0.938 0.293 0.689 0.293 0.567 0.746 0.307 0.680
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Table A. 1, Continued.

Haplopappus radiatus, 4-in
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.333 0.000 0.000 0.083 0.038 0.200 0.333 0.071

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.071

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.506 0.414 0.600 0.436 0.682 0.458 0.591 0.500 0.650

0.006 0.115 0.089 0.103 0.045 0.208 0.091 0.273 0.050

0.000 0.069 0.156 0.205 0.045 0.042 0.091 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.400 0.000 0.308 0.444 0.083 0.241 0.107 0.300 0.500

0.400 0.143 0.231 0.222 0.667 0.586 0.250 0.300 0.065

0.100 0.429 0.385 0.222 0.250 0.069 0.536 0.300 0.375

2.400 0.333 1.917 0.667 1.130 1.250 2.250 0.722 0.000

0.200 0.000 0.417 0.000 0.217 0.125 0.500 0.167 0.222

0.400 0.333 0.083 0.278 0.609 0.750 0.250 0.389 0.556

0.400 0.333 0.417 0.556 0.130 0.125 0.250 0.333 0.111

Haplopappus radiatus, 4-out
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.455 0.600 0.000 0.125 0.200 0.217 0.235 0.048

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.575 0.391 0.796 0.455 0.707 0.500 0.513 0.588 0.548

0.035 0.065 0.020 0.152 0.098 0.148 0.282 0.177 0.065

0.009 0.217 0.082 0.091 0.049 0.074 0.000 0.000 0.032

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.385 0.077 0.500 0.300 0.364 0.444 0.600 0.250 0.263

0.385 0.154 0.100 0.400 0.364 0.278 0.133 0.550 0.263

0.000 0.462 0.400 0.200 0.091 0.167 0.200 0.000 0.053

1.571 2.500 0.393 1.067 0.833 5.750 2.125 4.000 0.000

0.429 0.000 0.429 0.200 0.500 0.250 0.000 0.200 0.000

0.286 0.500 0.250 0.400 0.417 0.250 0.750 0.400 0.500

0.000 0.500 0.250 0.200 0.000 0.250 0.250 0.400 0.500
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Table A. 1, Continued.

Haplopappus radiatus, 5-in
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.306 0.000 0.306 0.000 1.000 0.000 0.188 0.286 0.667

0.009 0.000 0.009 0.000 0.000 0.000 0.062 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.440 0.556 0.857 0.619 0.500 0.182 0.250 0.800 0.846

0.020 0.000 0.000 0.143 0.357 0.182 0.250 0.200 0.000

0.000 0.111 0.095 0.095 0.143 0.000 0.000 0.000 0.077

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.222 0.000 0.076 0.000 0.200 0.000 0.000 0.333 0.000

0.000 0.000 0.342 0.000 0.400 0.571 0,375 0.333 0.714

0.000 0.333 0.392 1.000 0.400 0.000 0.500 0.222 0.286

0.250 0.000 0.500 0.250 0.200 2.286 7.000 0.750 0.000

0.000 0.000 0.500 0.000 0.400 0.143 0.000 0.000 0.000

0.500 0.000 0.250 0.500 0.000 0.286 1.000 0.750 0.250

0.250 0.000 0.250 0.500 0.600 0.143 0.000 0.250 0.500

Haplopappus radiatus, 5-out
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.400 1.000 0.395 0.000 0.395 0,538 0.333 0.097

0.000 0.000 0.000 0.008 0.000 0,008 0.000 0.048 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0,000 0.000 0,000

0.000 0.000 0.000 0.000 0.000 0.000 0,000 0.000 0.000

0.500 0.474 0.786 0.400 0.500 0.333 0.250 0.417 0.727

0.000 0.105 0.000 0.267 0,200 0.000 0.500 0.042 0,045

0.000 0.158 0,071 0.133 0.100 0.167 0.250 0.042 0.000

0.000 0.000 0.000 0.000 0,000 0.000 0.000 0.000 0.000

0.333 0.000 0.500 0.156 0.000 0.200 0.000 0.000 0.250

0.333 0.000 0.000 0.239 0.167 0.000 0.500 1.000 0.375

0.000 0.000 0.500 0.288 0.667 0.600 0.250 0.000 0.188

5.000 1.903 0.000 1.000 0.000 5.571 3,000 3.750 0.000

0.000 0.048 0.333 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.393 0,000 0.500 0.500 0,571 0.429 0.750 0.000

0.000 0.512 0.667 0.500 0.500 0.429 0.571 0.250 0.667
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Table A. 1, Continued.

Lomatium bradshawii, Rose Prairie 0

0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.203 0.133 0.000 0.000 0.091 0.500 0.155

0.017 0.200 0.000 0.250 0.000 0.000 0.078

0.017 0.000 0.000 0.000 0.091 0.000 0.018

0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.250 0.867 0.133 0.000 0.000 0.000 0.000

0.250 0.000 0.000 0.000 0.600 0.000 0.222

0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.100 0.111 0.000 0.429 0.000 0.182 0.000

0.600 0.444 0.700 0.143 0.222 0.818 0.304

0.200 0.333 0.100 0.286 0.556 0.000 0.304

0.000 0.000 0.000 0.000 0.222 0.000 0.000

0.091 1.572 0.032 0.416 0.128 0.162 0.000

0.000 0.000 0.000 0.000 0.000 0.071 0.000

0.400 0.125 0.250 0.250 0.125 0.500 0.000

0.600 0.563 0.250 0.375 0.625 0.286 0.750

0.000 0.250 0.167 0.250 0.250 0.071 0.000

1.780 4.123 1.118 0.957 3.941 1.639 0.000

0.000 0.000 0.000 0.000 0.000 0.167 0.000

0.200 0.000 0.000 0.000 0.000 0.333 0.000

0.600 0.500 0.667 0.750 0.333 0.333 0.000

0.200 0.500 0.333 0.250 0.667 0.000 0.000
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Table A. 1, Continued.

Lomatium bradshawii, Rose Prairie 1
0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.333 0.500 0.301 0.286 0.379 0.632 0.444

0.000 0.125 0.012 0.036 0.116 0.055 0.000

0.000 0.000 0.012 0.018 0.021 0.000 0.000

0.000 0.000 0.000 0.000 0.011 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.500 0.500 0.250 0.472 0.429 0.567 0.279

0.333 0.400 0.000 0.167 0.214 0.105 0.114

0.000 0.000 0.000 0.056 0.054 0.000 0.000

0.000 0.000 0.000 0.028 0.054 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.118 0.000 0.188 0.154 0.182 0.136 0.074

0.529 0.281 0.188 0.000 0.182 0.636 0.324

0.294 0.250 0.125 0.385 0.409 0.023 0.029

0.059 0.406 0.000 0.231 0.227 0.000 0.044

0.010 0.100 0.014 0.066 0.094 0.006 0.000

0.000 0.063 0.188 0.143 0.071 0.148 0.000

0.200 0.063 0.250 0.071 0.143 0.482 0.077

0.600 0.313 0.250 0.214 0.357 0.222 0.154

0.200 0.563 0.063 0.500 0.357 0.000 0.077

1.995 2.653 0.363 0.785 0.957 0.496 0.000

0.000 0.000 0.067 0.091 0.000 0.031 0.000

0.364 0.133 0.167 0.000 0.083 0.500 0.000

0.091 0.067 0.267 0.091 0.250 0.313 0.333

0.546 0.800 0.333 0.818 0.583 0.063 0.000
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Table A. 1, Continued.

Lomatium bradshawii, Rose Prairie 2
0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.313 0.542 0.141 0.447 0.244 0.469 0.000

0.125 0.125 0.000 0.000 0.089 0.021 0.000

0.000 0.083 0.000 0.000 0.022 0.000 0.000

0.063 0.000 0.000 0.000 0.022 0.010 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.833 0.154 0.154 0.448 0.320 0.217

0.500 0.000 0.000 0.231 0.172 0.120 0.022

0.500 0.000 0.077 0.154 0.035 0.040 0.000

0.000 0.167 0.000 0.000 0.035 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.091 0.000 0.000 0.000 0.136 0.200 0.175

0.636 0.421 0.273 0.286 0.273 0.600 0.175

0.182 0.105 0.182 0.286 0.364 0.000 0.048

0.091 0.211 0.000 0.143 0.182 0.050 0.032

0.061 0.060 0.000 0.175 0.032 0.014 0.000

0.000 0.000 0.000 0.000 0.100 0.044 0.000

0.333 0.333 0.500 0.231 0.000 0.391 0.286

0.333 0.000 0.250 0.308 0.500 0.391 0.000

0.333 0.667 0.000 0.308 0.400 0.000 0.143

2.529 1.293 0.283 0.914 0.767 0.576 0.000

0.000 0.000 0.071 0.000 0.000 0.125 0.250

0.200 0.071 0.071 0.000 0.07! 0.438 0.000

0.000 0.143 0.571 0.000 0.571 0.188 0.250

0.800 0.714 0.214 0.667 0.357 0.125 0.000



Table A. 1, Continued.

Lomatium bradshawii, Fisher Butte 0
0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.214 0.531 0.219 0.071 0.214 0.500 0.250

0.071 0.219 0.000 0.179 0.071 0.289 0.000

0.000 0.031 0.016 0.000 0.036 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.111 0.375 0.264 0.350 0.120 0.417 0.297

0.222 0.250 0.113 0.225 0.480 0.583 0.243

0.037 0.125 0.057 0.050 0.000 0.000 0.000

0.000 0.125 0.000 0.000 0.080 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.029 0.083 0.137 0.036 0.012 0.023 0.158

0.400 0.556 0.480 0.679 0.494 0.864 0.586

0.229 0.250 0.137 0.089 0.193 0.023 0.040

0.029 0.111 0.027 0.071 0.084 0.011 0.000

0.168 0.536 0.096 0.226 0.145 1.576 0.154

0.000 0.000 0.081 0.107 0.000 0.000 0.095

0.158 0.143 0.324 0.393 0.136 0.804 0.524

0.526 0.429 0.297 0.321 0.546 0.196 0.191

0.105 0.429 0.189 0.071 0.182 0.000 0.095

1.332 4.212 0.492 3.104 10.946 8.013 0.383

0.000 0.000 0.080 0.000 0.000 0.000 0.056

0.235 0.000 0.160 0.250 0.077 0.526 0.278

0.471 0.250 0.320 0.188 0.231 0.263 0.222

0.235 0.750 0.320 0.438 0.539 0.158 0.389
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Table A. 1, Continued.

Lomatium bradshawii, Fisher Butte 1
0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.737 0.296 0.471 0.357 0.100 0.539 0.000

0.105 0.370 0.059 0.143 0.600 0.192 0.000

0.000 0.037 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.029 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.410 0.647 0.571 0.539 0.200 0.467 0.341

0.333 0.147 0.179 0.256 0.525 0.533 0.159

0.051 0.118 0.000 0.077 0.050 0.000 0.023

0.000 0.029 0.000 0.000 0.025 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.179 0.106 0.225 0.129 0.023 0.054 0.100

0.643 0.277 0.275 0.323 0.442 0.794 0.536

0.071 0.255 0.125 0.323 0.256 0.054 0.064

0.107 0.277 0.100 0.097 0.116 0.033 0.073

0.057 0.697 0.183 0.982 1.088 0.178 0.183

0.125 0.091 0.042 0.136 0.000 0.000 0.042

0.375 0.000 0.417 0.273 0.103 0.677 0.167

0.250 0.364 0.333 0.273 0.172 0.226 0.333

0.125 0.546 0.083 0.182 0.724 0.000 0.375

0.873 5.770 1.435 7.190 9.199 3.589 1.542

0.000 0.000 0.111 0.000 0.000 0.000 0.000

0.158 0.000 0.083 0.111 0.111 0.522 0.194

0.211 0.000 0.333 0.111 0.222 0.217 0.161

0.632 0.941 0.361 0.500 0.611 0.217 0.290
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Table A. 1, Continued.

Lomatium bradshawii, Fisher Butte 2
0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.444 0.360 0.520 0.500 0.111 0.136 0.000

0.074 0.220 0.040 0.100 0.333 0.455 0.000

0.037 0.000 0.040 0.000 0.000 0.000 0.000

0.000 0.020 0.000 0.000 0.037 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.360 0.148 0.217 0.212 0.133 0.091 0.115

0.360 0.444 0.087 0.546 0.267 0.636 0.481

0.040 0.037 0.174 0.091 0.000 0.000 0.019

0.000 0.074 0.044 0.030 0.200 0.000 0.019

0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.091 0.074 0.234 0.000 0.060 0.015 0.044

0.546 0.426 0.297 0.852 0.434 0.687 0.483

0.182 0.185 0.188 0.074 0.253 0.060 0.044

0.091 0.204 0.047 0.037 0.060 0.000 0.105

0.037 0.178 0.112 1.115 0.654 0.029 0.000

0.143 0.000 0.083 0.030 0.000 0.028 0.000

0.000 0.063 0.167 0.394 0.000 0.694 0.063

0.429 0.500 0.417 0.333 0.333 0.167 0.250

0.429 0.375 0.083 0.242 0.583 0.000 0.313

4.755 5.210 1.825 10.132 6.819 3.486 0.000

0.050 0.000 0.000 0.000 0.000 0.023 0.000

0.100 0.000 0.051 0.120 0.000 0.318 0.250

0.100 0.000 0.359 0.200 0.179 0.364 0.083

0.750 0.909 0.462 0.600 0.714 0.136 0.250



Table A. 1, Continued.

Lomatium bradshawii, Long Tom
0.000 0.000 0.000

0.750 0.000 0.231

0.250 0.143 0.128

0.000 0.000 0.103

0.000 0.000 0.000

0.000 0.000 0.000

0.214 0.294 0.100

0.071 0.294 0.500

0.071 0.235 0.300

0.000 0.118 0.000

0.000 0.000 0.000

0.163 0.039 0.056

0.286 0.269 0.278

0.163 0.269 0.306

0.122 0.231 0.222

0.009 0.194 0.254

0.033 0.000 0.000

0.200 0.07 1 0.026

0.433 0.464 0.342

0.233 0.464 0.553

0.256 2.019 1.633

0.063 0.000 0.000

0.250 0.056 0.05 1

0.375 0.167 0.180

0.313 0.722 0.744

0.000 0.000 0.000 0.000

0.474 0.232 0.486 0.082

0.158 0.048 0.029 0.197

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

0.375 0.395 0.314 0.286

0.375 0.116 0.198 0.071

0.000 0.023 0.012 0.000

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

0.054 0.257 0.130 0.051

0.378 0.270 0.348 0.254

0.135 0.122 0.116 0.119

0.000 0.054 0.000 0.085

0.088 0.257 0.144 0.452

0.073 0.091 0.167 0.065

0.342 0.09 1 0.000 0.097

0.293 0.273 0.4 17 0.097

0.146 0.205 0.042 0.161

1.677 1.146 2.557 2.442

0.046 0.177 0.000 0.111

0.292 0.118 0.143 0.111

0.369 0.118 0.333 0.111

0.169 0.471 0.333 0.111

183
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Table A. 1, Continued.

Lomatium cookii, Middle
0.000 0.000 0.000 0.000 0.000

0.312 0.540 0.644 0.650 0.866

0.250 0.238 0.092 0.200 0.036

0.031 0.000 0.000 0.000 0.000

0.000 0.016 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000

0.200 0.217 0.581 0.453 0.581

0.280 0.478 0.326 0.442 0.156

0.040 0.000 0.023 0.000 0.000

0.040 0.000 0.000 0.000 0.000

0.000 0.043 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000

0.066 0.064 0.033 0.066 0.228

0.311 0.532 0.633 0.566 0.551

0.164 0.106 0.167 0.250 0.125

0.098 0.043 0.117 0.092 0.015

0.066 0.021 0.017 0.013 0.000

0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.03 125 0.026

0.062 0.080 0.235 0.063 0.211

0.219 0.280 0.765 0.313 0.553

0.375 0.320 0.000 0.438 0.158

0.125 0.200 0.000 0.063 0.026

1.000 2.900 0.244 0.301 0.196

0.000 0.000 0.000 0.000 0.095

0.000 0.000 0.067 0.029 0.143

0.294 0.083 0.200 0.171 0.310

0.235 0.250 0.500 0.514 0.357

0.235 0.375 0.167 0.229 0.024

2.900 8.400 0.722 0.888 0.577

0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.043

0.000 0.000 0.07 1 0.059 0.174

0.000 0.154 0.464 0.176 0.435

0.990 0.769 0.393 0,706 0.304
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Table A. 1, Continued.

Lomatium cookii, South

0.000 0.000 0.000 0.000 0.000

0.382 0.750 0.426 0294 0.603

0.182 0.125 0.115 0.157 0.032

0.000 0.000 0.000 0.000 0.016

0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000

0.160 0.185 0.405 0.464 0.321

0.400 0.481 0.230 0.232 0.262

0.000 0.000 0.014 0.043 0.024

0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000

0.038 0.025 0.200 0.288 0.057

0.212 0.550 0.540 0.356 0.434

0.192 0.175 0.040 0.034 0.132

0.135 0.100 0.040 0.034 0.000

0.000 0.000 0.020 0.034 0.000

0.000 0.00 0.000 0.000 0.000

0.000 0.000 0.000 0.167 0.311

0.000 0.154 0.154 0.167 0.333

0.222 0.231 0.000 0.000 0.111

0.333 0.308 0.385 0.500 0.000

0.000 0.154 0.000 0.000 0.000

1.40 1.90 0.252 0.344 0.445

0.000 0.000 0.000 0.000 0.333

0.000 0.000 0.233 0.167 0.000

0.000 0.231 0.077 0.167 0.111

0.250 0.231 0.231 0.250 0.111

0.125 0.462 0.154 0.167 0.111

8.80 12.00 1.567 2.139 2.765

0.000 0.000 0.000 0.143 0.000

0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.083 0.143 0.400

0.000 0.000 0.167 0.000 0.000

0.990 0.990 0.333 0.143 0.200




