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Second, those cells that are identified as labels are analyzed to determine dimension

information. Once this is completed the system, will look at formulas and, using specific

rules, will determine if the dimensions and labels are correct. An important aspect of the

rule system defining dimension inference is that it works bi-directionally, that is, not only
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reverse direction. This flexibility makes the system robust and turns out to be particularly

useful in cases when the initial dimension information that can be inferred from headers
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Chapter 1 – Introduction

Each year hundreds of millions of spreadsheets are created for a variety of tasks, includ-

ing grades and finances. Spreadsheets allow users to easily store and manipulate data.

However, there is nothing in place to ensure that these manipulations are valid. An invalid

manipulation can diminish the correctness of a spreadsheet and cause errors.

Several studies have shown that existing spreadsheets contain an alarming number of

errors [33, 30, 12]. Some studies even report that 90% or more of real-world spreadsheets

contain errors [40]. These errors can often cause severe problems for corporations, and

there have been many examples where companies have lost thousands or even millions

of dollars just because of a simple error in a spreadsheet. One recent example of this is

Kodak. An error in a spreadsheet led to $11 million in losses, caused them to have to

restate their earnings, and damaged their reputation and their employees trust [28].

There are several approaches that can be used to improve the quality of spreadsheets.

These approaches are generally focused in three main areas: prevention, detection, and

removal of errors from spreadsheets.

Prevention approaches are varied and involve everything from guidelines to spread-

sheet design, spreadsheet template creation, and the automatic generation of spreadsheets.

Often these preventive approaches require a new application and can be disruptive to the

common spreadsheet creation process. For example, while the spreadsheet generator Gen-

cel can be useful as a way to apply templates to spreadsheets and thereby reducing errors,

it requires an additional program in a new language that must be learned by the user. This

can be very time consuming.

Because of this, much research has focused on the detection and removal of errors.

Due to the varied nature of spreadsheets, there are many different types of errors that can

occur, including formula errors, format errors, and data entry errors. Errors such as those
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that occur in formulas can sometimes be a basic check to determine if the correct cells are

being used. However, there are also ways that the structure and design of the spreadsheet

can be taken advantage of.

A primary example is label based reasoning, and there are several systems that are

designed to directly take advantage of the labels and the structure of spreadsheets. These

systems, such as UCheck [4] or the system described in [9], are designed to find formula

errors caused by inconsistent label usage and typically operate in two distinct phases. The

first phase will identify label information for the entire spreadsheet. Some systems require

users to annotate the labels for every cells, while some are able to infer the correct labels.

In the second phase this information is analyzed to find errors, such as inconsistent labels

in addition formulas.

Another type of error that can be detected in spreadsheets is dimension errors, which

occur when units of measurement are used incorrectly in formulas. Units of measurements

are well known among end users [10] and are used to characterize different kinds of val-

ues, much like the type systems used in general-purpose programming languages. How-

ever, there is an important difference between this and traditional type systems, namely

that objects, such as integers, which have just one type, are able to represent different

kinds of quantities, such as length or time values.

Several systems [10, 14, 17] have been developed in order to deal with unit of mea-

surement errors. Dimension inference [14], a method presented later in this thesis, can

be used to automatically find dimension errors in spreadsheets. This approach has been

shown to work reliably and effectively in many cases, and can detect many cases of di-

mension errors in spreadsheets.

While systems for label-based reasoning and unit-of-measurement errors have been

shown to work effectively on spreadsheets, they are rather specific and focus on simply

one type of error. However, in most cases users would like to check for multiple types of

errors. To more effectively bring type systems to spreadsheets, these methods could be

combined to take full advantage of the information provided in the spreadsheet and allow
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it to check for both types of mistakes.

Both label analysis and dimension analysis systems rely on header and label infor-

mation. However, dimension analysis does not take advantage of the structure, it simply

checks to make sure that formulas are dimension correct. By combining dimension anal-

ysis with the purely label-based approaches the structure of the spreadsheet could be used

to help strengthen the reasoning of the system.

This thesis is divided into three sections, each containing a published paper that de-

scribes a method to check spreadsheets for errors. These papers are all related, and, start-

ing with the description of the original Dimension Inference, show the natural progression

of the system to its current state.

The first paper [14] presents the Dimension Inference system that will check a spread-

sheet for unit-of-measurement errors. This system can be used to check the consistency

of formulas and detect dimension errors in spreadsheets as well as infer dimensions. This

system was developed as a prototype add-in to Excel which allowed us to test the system

to determine how well it detected these errors. To analyze Dimension Inference, this pa-

per presents a study which involved running the system on 40 spreadsheets to determine

how many errors were detected and how many were missed.

The second paper contained in this thesis [15] is an expansion upon and an update

of the previous paper. It contains an updated set of rules as well as an expanded results

section. In addition it contains an in-depth example of a rule instantiation which shows in

more detail how the system works and how errors are detected.

The final paper [16] describes a way to combine label-based reasoning with dimension

inference. In many cases a spreadsheet contains dimensions on only one axis, either row

or column, while the other axis typically contains labels that do not map to any dimension.

These labels, which go unused in dimension inference, can be used to provide structural

information that can be exploited by the reasoning system behind UCheck. This paper

presents a system that combines these two reasoning systems and a comparison of this

method and Dimension Inference when run on the EUSES spreadsheet repository.
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These papers show the evolution of a type system for spreadsheets. This system in-

tegrates the benefits of label checking with the increased effectiveness of detecting unit

errors.
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Chapter 2 – Dimension Inference in Spreadsheets

2.1 Introduction

Spreadsheets are widely used [44] end-user programs that contain many errors [38] with

a substantial negative impact on society [23]. To improve the quality of spreadsheets a

variety of approaches to prevent, detect, and remove errors from spreadsheet have been

investigated. Since preventive approaches, in principle, have to interfere with the spread-

sheet creation process that makes spreadsheets so attractive to end users, much research

has focused rather on the detection and removal of errors.

The two major approaches to detect errors are testing/auditing and static (type) check-

ing. For example, the “What You See Is What You Test” approach [42] that uses data-flow

adequacy and coverage criteria to give the user feedback on how well tested the spread-

sheet is. Test-case generation systems [25, 2] can support users in their testing efforts.

However, a problem with testing is that is suffers from oracle mistakes (that is, incor-

rect decisions made by users during testing) [34]. Even though some of these problems

can be alleviated by automating parts of the testing/debugging process [3], testing is also

problematic because it requires substantial effort on part of the user, which poses a seri-

ous challenge since many of the spreadsheet users are end users who mainly want to get

their job done and are much less motivated than professional software developers to spend

additional time on their spreadsheets for testing purposes.

This latter aspect makes type checking approaches attractive since they promise mostly

automatic error detection. Two immediate problems with type checking are that they are

limited in the kinds of errors they find and that abstract typing concepts may be difficult

to communicate to end users. The limited scope of type checking simply means that type

systems should not intend to replace testing, but to complement it. That this can work

very well has been demonstrated, for example, in [29]. The usability concern has been
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addressed in two different (although related) ways. First, based on the observation that

spreadsheet users often place labels as comments into spreadsheets close to the relevant

data, we can reason about the combination of these labels in formulas that refer to labeled

data and thus detect inconsistencies [22, 9]. In a recent study on the usability of a type

system in spreadsheets we discovered that end users can effectively use such label-based

type systems to debug a variety of errors in their spreadsheets [7]. Second, we can employ

units of measurements, or dimensions, as a concrete notion of types that is well known

among end users [10]. Dimensions are used to characterize different kinds of values,

much like traditional, more abstract, type systems used in general-purpose programming

languages, but on a more fine-grained level. For example, a floating point number, which

has just one type, can nevertheless represent different kinds of quantities, such as length

or time values.

In this paper we describe dimension inference, a method to automatically find dimen-

sion errors in spreadsheets. Our work builds on previous approaches and extends them in

several important ways. First, through incorporating header inference [1], the presented

system does not have to rely on additional user annotations and provides therefore a high

degree of automation (“one-click checking”). Second, in addition to checking whether

dimensions of values are correctly dealt with in formulas, our approach can infer dimen-

sions based on context provided by formulas. This feature is particularly helpful in cases

when header inference does not provide a detailed enough account of all the dimensions

for all values in the spreadsheet. Dimension inference can then in many cases close the

gap. Finally, the presented system can automatically infer conversion factors between

different units of measurement (such as meters and feet) and can enforce the correct use

of conversions in formulas. In addition to the formal model of dimension inference, we

describe a practical tool that has been implemented as an extension to Microsoft Excel.

We also present an empirical analysis of how dimension inference works in practice.

The rest of this paper is structured as follows. In Section 2.2 we illustrate the issues

involved in dimension checking and inference with a small example. In Section 2.3 we
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formalize spreadsheets and a model of dimensions. We introduce in Section 2.4 a char-

acterization of valid dimensions that is expected to be useful in practice to detect more

errors. The process of dimension inference is then described in Section 2.5. In Section

2.6 we report on an evaluation of a prototypical implementation of a tool for dimension

analysis. We discuss related work in Section 2.7 and give conclusions and ideas for future

work in Section 2.8.

2.2 An Example

Figure 2.1 shows a spreadsheet for computing costs of different phone plans for different

companies and different usage profiles. The monthly totals for each plan and a particular

hours-of-use value is computed by adding the base fee and the cost for the minutes ex-

ceeding the free minutes. For example, for the plan in row 5 and for the use of 25 hours,

the formula in cell F5 is as follows.

B5+MAX(F2*60-C5,0)*D5

Figure 2.1: Example spreadsheet

By inspecting the labels in the spreadsheet we can see that the value in cell B5, 39,

represents a money amount, which could be without further information given in any

currency. It makes sense for a system to assume whatever currency is set to be the default,

which we assume here to be $. Similarly, we can conclude that C5 is a time value. In this
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case there is no doubt about the unit, which is minutes. The same applies to F2, which

contains an hour value. However, it is not clear at all what dimension the value in D5 has.

Given (partial) information about the dimensions of values we can reason about for-

mulas to find out the dimension of the computed value, or identify an error in case the

formula combines dimensions incorrectly. In the course of determining the dimension

of a formula we can also infer dimensions for values whose dimension could not be de-

termined from a label/header and is so far unknown. In the example, we see that C5 is

subtracted from F2*60. Since all additive operations require that the arguments have the

same dimension, we can conclude that F2*60 must be minutes, which is possible if the

constant 60 has the dimension minutes/hour. In fact, only the value 60 has this dimen-

sion.1 In other words, any other factor (or no factor at all) would have caused a mistake

in this formula.

Since the dimension behavior of MAX is the same as that of other addition operators,

we can infer that 0 and the whole expression MAX(F2*60-C5,0) also have the dimension

minutes. Here we can observe that the ability to infer dimensions in arbitrary directions,

that is, for arguments from results (instead of only being able to reason from arguments

to results) is crucial for obtaining a flexible and user-friendly reasoning system, because

requiring the user to annotate 0 with minutes and 60 with minutes/hour would mean a big

impact on usability.

The final two steps are to figure out the correct dimension for D5 so that the sum with

B5 is dimension correct. Since B5 is in $, the product MAX(F2*60-C5,0)*D5 must have

the same dimension. Since the MAX expression is in minutes, we can therefore conclude

that D5 must have the dimension $/minute.
1Constants can have multiple dimensions, for example, 60 also has the dimension seconds/minute.
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2.3 Spreadsheets and Dimensions

We work with the following simple model of spreadsheets. A spreadsheet (S) is a mapping

from addresses (a∈A) to expressions (e). We write S(a) to refer to the expression stored at

address a in the spreadsheet S. Expressions can be values (v) or references to other cells

(↑a), or are constructed using arithmetic (+ or ∗), aggregating (count), or conditional

operators.

e ::= v | ↑a | e+ e | e∗ e | count(e, . . . ,e) | if(e,e,e)

Here + and ∗ represent, respectively, a whole class of additive operators (including− and

MAX) and multiplicative operators (including /).

A dimension (d) is given by a set of dimension components (c). Each component is

given by a base (b), a conversion factor ( f ), and an integer exponent (n). (We can view

a dimension as a partial mapping from base dimensions to pairs (n, f ).) For the purpose

of dimension inference, a dimension component can also be a dimension variable (δ ). If

a dimension contains only one component, it is called a singleton dimension, whereas a

dimension that contains more than one component is called a composite dimension. The

identity dimension {} is used for dimensionless values.

d ::= {c, . . . ,c}

c ::= bn
f | δ

For each base dimension we identify a default unit with factor 1. For example, the default

for length is meter (m), that is, m = length1
1, which also means that cm = length1

0.01 and

ft = length1
0.3. In general, the following relationship holds (where x is a dimensionless

number and b is an arbitrary base).

xbn
f = x f bn

1

We may also omit conversion factors and exponents of 1 for brevity, that is, we write more
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shortly bn for bn
1, b f for b1

f , and simply b for b1
1.

In general, the choice of dimensions is arbitrary and depends on the application. For

the task of analyzing dimensions in arbitrary spreadsheets, we have chosen the seven SI

units and some further units that we have found in the EUSES spreadsheet corpus [24].

The quantities and their default units are shown in Table 2.1.

Table 2.1: Base dimensions with default units

Quantity Default Unit
length meter (m)
mass kilogram (kg)
time second (s)

electric current ampere (A)
temperature kelvin (K)

amount of substance mole (mol)
luminous intensity candela (cd)

money dollar ($)
angle degree (deg)

Examples of composite dimensions are speed, measured in m/s, which is {length, time−1},

or force, measured in kgm/s2, which is {mass, length, time−2}.

A conversion factor can be either a real number (r) or a conversion variable (φ ), which

serves as a placeholder to be used during dimension inference.

f ::= r | φ

We have seen examples of conversion factors in Figure 2.1, namely min = time60 and

hr = time3600. We can also illustrate the effect of conversion variables using that example.

The label “Base Fee” in cell B4 can be mapped to a dimension money
φ

, but it is not

clear in which currency. If B4 were added in some formula to a value that is known to

be of dimension $ = money1 or cent = money0.01, the requirement of both arguments

of addition to be of the same dimension would cause the unification of both dimensions

and create the substitution {φ 7→ 1} or {φ 7→ 0.01}, respectively, and thus B4 would also

receive the dimension $ or cent, respectively.

Representing conversion by just a factor is not general enough to cover some con-
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versions, such as degrees Fahrenheit to degrees Celsius. Nevertheless, we have chosen

this simple model because it keeps the unification of dimensions feasible and works in

most cases. This restriction is not too severe since in the spreadsheet repository that we

have tested our prototype implementation on only 2 out of 487 spreadsheets contained

dimensions that could not be converted using the presented model.

The use of dimensions in computations effectively restricts the allowed computations

in the sense of typing annotations. Consider the following definition of the semantics for

addition.

e1 −→ v1 e2 −→ v2

e1 + e2 −→ v1 + v2

When the semantics is based on values that are annotated with dimensions, the rule be-

comes the following.

e1 −→ v1 : d e2 −→ v2 : d

e1 + e2 −→ v1 + v2 : d

This definition leaves the addition of expressions that evaluate to values with different

dimensions undefined.

Multiplication transforms the dimensions of values according to the function ./, which

is defined as follows. First, d ./ d′ is undefined if d and d′ contain two dimension compo-

nents with the same base b but different conversion factors, that is, bn
f ∈ d∧bm

f ′ ∈ d′∧ f 6=

f ′. Otherwise, we have

d ./ d′ = {bn+m
f | bn

f ∈ d∧bm
f ∈ d′}∪d4d′

where the symmetric difference, d4d′, is defined as all the dimension components that

are a variable or have a base that is in either d or d′, but not in both.

The dimension-aware semantics for multiplication is then given by the following rule,
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which enforces the use of proper conversion factors in multiplications. For example,

to calculate the distance a plane travels in 5 seconds when its speed is 950 km/hr, one

has to use a conversion factor with dimension hr/s in the multiplication, otherwise ./ is

undefined, and the rule cannot be applied.

e1 −→ v1 : d1 e2 −→ v2 : d1 d1 ./ d2 = d

e1 ∗ e2 −→ v1 ∗ v2 : d

The shown rules are a bit over-simplified because they ignore the notion of dimension

validity discussed in the next section. The purpose of the rules was to show that incor-

porating a dimension concept into the semantics yields a more precise notion of what

correct computations are, which forms the basis for an approach to identify errors based

on dimension analysis.

2.4 Dimension Validity

Dimensions span a space, and values having a certain dimension can be regarded as points

in this space. The traditional handling of dimensional values requires arguments of addi-

tion to have the same dimension, but places no constraints on the argument (or the result)

dimension for multiplication. However, in practice dimensions cannot be multiplied arbi-

trarily. For example, no reasonable value can have the dimension kg3. Ruling out such

unreasonable dimensions can strengthen dimensional analysis by effectively placing a va-

lidity constraint on the multiplication of dimensional values, that is, the result dimension

of a multiplication must be a valid dimension.

It is an interesting scientific (or even philosophical) question what, in principle, is a

valid dimension. Since we are not aware of any general rules that could be used to deter-

mine the validity of dimensions, we have taken a pragmatic approach and have gathered

dimensions that have been reported and documented [37]. The set of the thus obtained

dimensions is taken as a definition of the predicate V (d) that yields true if and only if
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d is a valid dimension. This predicate can be defined as a test of the exponents of all

base dimensions occurring in d with three exceptions. The allowed exponent ranges are

defined by the table below.

Table 2.2: Dimension Validy
b R(b)

length -3 .. 3
electric current -2 .. 1

time -3 .. 2
all others -1 .. 1

The exceptions to this table are the valid dimensions (1) farads and (2) Siemens, cap-

tured by the following predicate.

E (d) = d = kg−1m−2s4A2 ∨ (2.1)

d = kg−1m−2s3A2 (2.2)

With the definitions for R and E we can define the dimension validity predicate as fol-

lows.

V (d) = (∀bn
f ∈ d.n ∈R(b))∨E (d)

This predicate is still only a crude approximation since it considers quite a few non-

existing dimensions as valid, for example, kg m. Ultimately, the best approach to realize

V might be to simply store a table of all valid dimensions.

2.5 Dimension Analysis

The dimension analysis of a spreadsheet goes through the following four distinct steps.

The last step applies only in those cases when the third step produces underspecified di-

mensions, that is, when it results in inferred dimensions that contain dimension variables.

1. Header inference

2. Label analysis
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3. Dimension inference

4. Dimension instantiation

In the following we will describe these four steps in some detail.

2.5.1 Header Inference

Header inference analyzes the structure of a spreadsheet and returns a set of headers for

each cell. A header is simply the address of another cell. Therefore, header inference

produces a binary relation H ⊆ A×A such that (a,a′) ∈ H says that a′ is a header of

a. In general, one cell can be a header for many cells, and any particular cell can have

zero, one, or more headers. For example, in Figure 2.1 B4 is a header for B5, B6, B7,

and B8, that is, H−1(B4) = {B5,B6,B7,B8}, and A5 and B4 are headers of B5, that is,

H(B5) = {A5,B4}. Header inference essentially works by analyzing the spatial relation-

ships between different kinds of formulas. It can also take into account layout informa-

tion. Techniques for header inference have been described in detail elsewhere [1, 4]. In

the context of this paper we simply reuse those techniques.

2.5.2 Label Analysis

In the second phase of dimension analysis we try to derive a dimension for each label

contained in a cell that has been identified as a header by header inference. This process

works by (a) splitting labels into separate words, (b) removing word inflections, (c) map-

ping word stems to dimensions, and (d) combining dimensions into one dimension. For

example, cell C4 in Figure 2.1 is a header cell and therefore subject to label analysis. Its

value can be split into the two words “Free” and “Minutes”, and the plural of “Minutes”

can be removed. The resulting “Minute” can then be mapped to the dimension min. In

contrast, “Free” cannot be mapped into any dimension and will thus be mapped to {}.

Finally, the combination of both dimensions yields min. If no part of a header label can
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be mapped to a dimension other than {}, the label is mapped to a dimension variable δ ,

which indicates that the dimension is at this time unknown.

2.5.3 Dimension Inference

ADDR
H(a) = {a1,a2} S(a1)⇒ d1 S(a2)⇒ d2 d ∈ d1⊗d2 V (d)

S,H ` a : d

H(a) = {a} S(a)⇒ d

S,H ` a : d

H(a) = ∅
S,H ` a : δ

VAL
S,H ` a : d

S,H ` (a,v) : d
REF
S,H ` (a,S(a′)) : d S,H ` a : d

S,H ` (a,↑a′) : d
ADD

S,H ` (a,e1) : {bn
f1
}∪d

S,H ` (a,e2) : {bn
f2
}∪d c1 = f1/ f c2 = f2/ f S,H ` a : {bn

f }∪d

S,H ` (a,c1 ∗ e1 + c2 ∗ e2) : {bn
f }∪d

MULT
S,H ` (a,e1) : d1 S,H ` (a,e2) : d2 d = d1 ./ d2 V (d) S,H ` a : d

S,H ` (a,e1 ∗ e2) : d
COUNT
S,H ` (a,ei) : d S,H ` a : {}
S,H ` (a,count(e1, . . . ,en)) : {}

IF
S,H ` (a,e2) : d S,H ` (a,e3) : d S,H ` a : d

S,H ` (a, if(e1,e2,e3)) : d

Figure 2.2: Dimension inference rules

The third step of dimension analysis is dimension inference, which inspects each cell

containing a formula and derives for it a dimension using a system of rules given in Fig-

ure 2.2. Whenever the rule application fails, the formula for which no dimension could

be inferred has been identified as erroneous. Moreover, derived dimensions that are not

valid also indicate formula errors. Since the derived dimension can be the identity di-

mension {}, the system simply ignores (areas of) spreadsheets that do not involve any

headers or identified dimensions, that is, dimension analysis works smoothly on any kind

of spreadsheet and is not disruptive in cases it does not apply.

Dimension inference is defined through the following three judgments that tie together

dimensions inferred from headers/labels, known dimensions for conversion factors, and



17

dimension transformations in expressions.

Value dimensions. The judgment v⇒ d says the value v, if used as a label or factor,

describes the dimension d. This judgment combines the result of the label analysis process

and prior knowledge of conversion factors, such as 60⇒min/hr, 60⇒ s/min, or 100⇒

cm/m. Note that the judgment v⇒ d is not a function, that is, one value can generally

indicate different dimensions. This flexibility allows dimension inference to select the

correct interpretation based on the context, that is, based on usage in formulas.

Location dimensions. The judgment S,H ` a : d says the location given by address a

has dimension d. This judgment combines the result of label analysis and header analysis

into a judgment about the expected dimensions for cell locations. For example, in Figure

2.1 we have S,H ` C5 : min.

Cell dimensions. The judgment S,H ` (a,e) : d says the cell (a,e) in the spreadsheet

S has the dimension d under the given header relationship H. For example, if S represents

the spreadsheet shown in Figure 2.1 and H is the corresponding header relationship, then

we obtain S,H ` (F5,B5+MAX(F2*60-C5,0)*D5) : $. How this result is obtained was

explained informally in Section 2.2. The rules given in Figure 2.2 formalize this process.

Since a cell can have more than one header2 we have to define how to deal with the

cases when both headers are identified as dimensions. Do we just take one dimension? If

so, which one do we choose? Or shall we combine the dimensions somehow? As with

the mapping of values to dimensions, the correct interpretation depends in many cases

on the context, so that for the purpose of dimension inference it is best to principally

allow all possibilities. We can realize this approach through the definition of a function

that generates all possible dimensions that can be obtained from the combination of two3

dimensions.

d⊗d′ = {d,d′,d ./ d′,d ./ d̄′, d̄ ./ d′}
2In practice, a cell has almost always at most two headers (row and column). This fact depends, however,

on the method that is used for header inference.
3Since we are working with a header inference that produces at most two headers for any cell, the re-

striction to considering only two dimensions is appropriate. It would not be difficult to extend the definition
to an arbitrary number of headers.
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Here the operation d̄ computes the inverse of a dimension, which is obtained by negating

all exponents in all components.

d̄ = {b−n
f | b

n
f ∈ d}

Now we can provide the rules that define the dimension inference. Figure 2.2 shows the

three rules for the location judgment covering the cases when a cell has two, one, or zero

headers, and a rule for each possible expression to define the cell judgment. Note that a

rule like ADD actually represents a whole class of rules covering the dimension inference

for all “additive” operations (including -, MAX, SUM, etc.). Moreover, combinations of

rules like ADD and COUNT yield rules for correspondingly derived operations like AVG.

We can observe the following four principal kinds of dimension rules.

1. Dimension generators (VAL and ADD)

2. Dimension preservers (ADD, REF, and IF)

3. Dimension composers (MULT)

4. Dimension consumers (COUNT)

Consistency checks are contained in some form or another in all rules but REF. The

most restrictive rules are IF and COUNT since they require arguments to have the same

dimensions. A little less restrictive is the rule ADD that requires its arguments to have the

same base, but allows for differences in the conversion factors as long as the arguments

are scaled accordingly. Effectively, all conversions between dimensions happen within

the rule ADD. Rule MULT is least restrictive since it allows the multiplication of any

quantities as long as the result is a valid dimension.

2.5.4 Dimension Instantiation

An inferred dimension might contain dimension variables and/or conversion-factor vari-

ables. The occurrence of variables happens whenever the spreadsheet doesn’t provide
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enough information to precisely narrow down the dimensions. In these cases we have

to find substitutions for the variables to obtain proper dimensions. In fact, a dimension

involving variables describes a whole class of possible dimensions. For example, lengthφ

can be m, cm, or any other length dimension that can be obtained by substituting values

for φ . Similarly, the dimension {m,δ} can be instantiated to velocity or acceleration using

the substitution {δ 7→ s−1} or {δ 7→ s−2}, respectively.

The instantiation of dimensions can be realized by generating substitutions for conversion-

factor variables so that default dimensions are obtained and by generating substitutions for

dimension variables that produce valid dimensions (as defined in Section 2.4). Of those

valid dimensions we can then select the one that is most common (as indicated by the

numbers to be reported in Section 2.6).

2.6 Evaluation

We have implemented a tool for performing automatic dimension analysis as an add-in to

Microsoft Excel. This tool reuses the header analysis implementation [1] of the UCheck

tool [4]. In this section we describe an evaluation of this dimension analysis system to

answer the following research questions.

RQ1: How wide-spread is the use/occurrence of dimensions in spreadsheets?

Dimension inference can be an effective tool to check formulas and spot errors in spread-

sheet computations, but only if those computations involve dimensions, or, to be more

precise, if the tool can identify the dimensions involved in the computations. We expect a

considerable number of spreadsheets to contain dimensions.

RQ2: Does dimension inference run effectively on spreadsheets involving dimen-

sions?

For those spreadsheets that contain dimensions, we would like to know whether or not

dimension inference runs correctly, that is, whether it can infer the proper dimensions for

values and formulas and whether it can find errors based on inconsistent dimension use in
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formulas.

RQ3: To what degree is dimension analysis dependent on the underlying header in-

ference and label analysis?

Header inference is the first step in dimension analysis. If this step fails to work properly,

dimension analysis cannot take off. Following header inference, label inference is the cru-

cial link that ties header information to dimension information. In general, label analysis

is complicated by the fact that the process in inherently ambiguous. Anything that can

improve header or label analysis has potentially a great impact on the applicability and

accuracy of dimension analysis.

RQ4: Does dimension validity matter?

The concept of dimension validity was introduced to make the inference rule MULT

stronger so that more dimension errors can be detected. If this additional test helps in

practice to detect dimension errors, we can refine the definition of V to make it even

stronger.

2.6.1 Experiments

To answer RQ1 we have employed the EUSES spreadsheet corpus [24], which currently

contains 4498 spreadsheets collected from various sources. Dimension analysis is relevant

only for those 1977 spreadsheets containing formulas. We ran label analysis on those

spreadsheets to find which dimensions occur how often.

To investigate RQ2 and RQ3 we ran our tool on a subset of 40 spreadsheets randomly

selected from the 1977 spreadsheets that contain formulas. We inspected all results, and in

cases the header inference or label analysis was not working, we adjusted that information

“by hand” and ran only the dimension inference part of the tool.

To investigate RQ4 we have categorized the dimension errors that were reported ac-

cording to which decision in the inference process led to their discovery.
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2.6.2 Results

The occurrence of dimensions in the spreadsheets from the EUSES corpus containing

formulas is detailed in Table 2.3, which shows the number of occurrences of dimensions in

total and in different spreadsheets. Altogether dimensions were found in 487 spreadsheets,

that is, in only 1/4th of the spreadsheets with formulas. This number is smaller than the

total of 603 from Table 2.3 since several spreadsheets contain more than one type of

dimension.

Table 2.3: Occurrences of dimensions

Quantity/ Occurrences
Dimension Total In Spreadsheets

Money 390 279
Time 351 237

Length 35 26
Mass 27 20
$/hr 20 15
Area 12 8

Velocity 10 5
Temperature 10 5

kW 3 3
Mole 3 3

Luminous Intensity 3 2
Total 864 603

We found that certain headers were more prevalent than others and had a greater im-

pact. For example, for the quantity money, the two most common results were “Dollars”

and “Money”, with 201 and 159 occurrences, respectively. For the quantity time, the re-

sults were distributed more evenly, with the most common, “Year”, occurring 91 times

and the least common, “Month”, occurring 28 times.

Header inference was able to infer the correct header information in 30 of the 40

cases. In the 10 other cases headers were placed too distant of the data they were labeling,

in some cases having other unrelated data in between the headers and the data. Label

analysis worked correctly in all cases. To take the limitations of header inference out

of the analysis of dimension inference, we have altered those 10 spreadsheets so that
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dimension inference could start with proper header information.

Dimension inference was then successfully run on all spreadsheets and was able to

map 222 headers into 188 singleton and 34 composite dimensions. The tool detected 21

dimension errors in 17 of the 40 spreadsheets. To verify these errors, the spreadsheets

were manually inspected, leading to the discovery of three false positives (caused by the

label analysis) and zero false negatives. Of the 18 correctly identified dimension errors, 2

were invalid dimensions ($2 in both cases), and 1 error was detected in an if formula, and

the remaining 15 errors were all due to violations of the rule ADD. The found 18 different

errors had, due to copies in several rows/columns, altogether 105 error instances.

2.6.3 Discussion

We were initially surprised by the overall low occurrence rate of dimensions in spread-

sheets, but we later found by inspecting spreadsheets containing formulas that had no

dimension that this result is largely due to the kind of spreadsheets that are collected in

the repository. For example, among the 1977 spreadsheets with formulas are over 700

grading spreadsheets, which have no dimensions at all.

Label analysis and dimension inference worked very reliably. The weakest link in the

chain of steps for dimension analysis was clearly the header inference, which is not too

surprising since labeling practices vary widely across spreadsheets.

The fact that dimension errors were found in almost half of the selected spreadsheets

shows that dimension analysis is an effective tool for uncovering errors in spreadsheets.

Even though we found two instances of an error that was due to the concept of invalid

dimensions, the number of spreadsheets studied was too small to draw conclusions about

the importance of this concept/feature.



23

2.7 Related Work

Most closely related to our work is the Xelda system [10] that is designed to check a

spreadsheet for units of measurement, such as meters, grams, and seconds. Xelda requires

the user to annotate the units for all of the cells in a spreadsheet. Note that this does

not only include data cells, but also all formula cells. While analyzing a spreadsheet

Xelda checks the annotated units against the results of formulas to insure correctness. The

advantage of the Xelda approach is that it works well independently of the spreadsheet

layout, whereas our approach depends on header and label analysis. On the other hand,

Xelda’s disadvantage is the huge amount of extra work required by the user whereas our

approach is fully automatic. Moreover, Xelda cannot infer conversion factors.

UCheck [4] was designed to check for units in a spreadsheet, and as such it does not

handle dimensions. UCheck works by inferring headers for all the cells in a spreadsheet,

based on the structure and content of the spreadsheet. Once these headers are inferred, the

system derives units for the cells and checks for unit errors.

While UCheck works completely automatically, some other related approaches re-

quire the user to annotate the spreadsheet with label information [22, 9]. The same advan-

tages and disadvantages that we have mentioned for Xelda apply here as well.

SLATE [17] separates the unit from the object of measurement and defines semantics

for spreadsheets so that the unit and the object of measurement are considered. In SLATE,

every expression has three attributes: a value, a unit, and a label. The value is what is con-

tained in a cell. Units, such as meters, kilograms, and seconds, capture information about

the scale at which the measurement was taken and the dimensions of the measurement.

The final attribute, labels, defines characteristics of the objects of measurement. For ex-

ample, a cell referring to 25 pounds of apples might read “25 lbs. (apples)”. Like Xelda,

this system requires the user to annotate the spreadsheet before the analysis can begin.

This annotation involves adding the units and labels to all cells containing no references

to other cells. The system then analyzes the cells with formulas containing references and
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determines the unit and label for these cells.

2.8 Conclusions and Future Work

We have introduced a system for inferring and checking dimensions in spreadsheets. By

interpreting headers as dimensions and relating those to formulas, the system can identify

errors in formulas. This system differs from previous approaches in the following ways.

• No user annotation required. The system can infer labels for cells automatically

and use them to determine what the dimension is.

• Dimension inference. The system even works well in situations when only par-

tial label/dimension information is given since constraints can also be propagated

upstream of computations. This aspect contributes to flexibility and robustness.

• Conversion factors allow different units of measurement. Some formulas in a spread-

sheet require conversion of quantities whenever non-compatible dimensions, such

as meters and feet, are involved in additive operations. The described rule system

handles such conversions smoothly.

• Dimension instantiation. As a consequence of dimension inference there are sit-

uations in which dimension variables remain unsolved at the end of the analysis.

These “dimension templates” can be instantiated to the most likely dimensions ex-

pected.

The evaluation has demonstrated that the system works well in practice and can detect

errors in many cases. The evaluation has also revealed two promising directions for future

research. First, we could improve the system with a more accurate header inference.

Second, a combination of dimension inference with the purely label-based approaches as

pursued by UCheck [4] or the system described in [9] could strengthen the reasoning of

the system. To some degree this was already tried in the SLATE approach [17]. However,

SLATE only transforms labels and dimensions and does not identify errors. Moreover, the
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fact that SLATE is a stand-alone spreadsheet system and cannot be integrated into Excel

renders the approach currently impractical.
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Chapter 3 – Automatic Detection of Dimension Errors in Spreadsheets

3.1 Introduction

End users engage in a variety of programming activities, including the creation and main-

tenance of spreadsheets [44]. However, it has been shown that spreadsheets contain many

errors [38, 18], and that these errors are often the cause of substantial negative impacts on

society [23].

A variety of approaches have been investigated to prevent, detect, and remove errors

from spreadsheets. Preventive approaches to improve the quality of spreadsheets include

a variety of guidelines for spreadsheet design [41, 47, 26, 36, 38] and techniques for the

automatic generation of spreadsheets [20, 21] from visual [8] or object-oriented specifi-

cation [19, 11]. However, since preventive approaches, in principle, have to interfere with

the spreadsheet creation process that makes spreadsheets so attractive to end users, much

research has focused rather on the detection and removal of errors.

The detection of spreadsheet errors has been mainly approached from two different

angles, auditing/testing and automatic checking.

Although a variety of effective strategies and principles for spreadsheet auditing have

been proposed [32, 43, 31], a major limitation of these approaches is that they cannot

provide guarantees or even measures for the (likelihood of) spreadsheet correctness. The

situation is different in the case of testing where test-adequacy criteria can inform the

testing strategies [46]. The only systematic testing approach for spreadsheets is the “What

You See Is What You Test” approach [42, 13] that uses data-flow adequacy and coverage

criteria to give the user feedback on how well tested the spreadsheet is.

A principal problem of the testing approach is for users to find test cases that cover

enough computations and data flows. To support users in this effort, test-case generation

systems [25, 2, 6] can generate test cases that improve the test coverage.
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Another problem with testing approaches is that they suffer from oracle mistakes,

that is, incorrect decisions made by users during testing [34] might introduce more errors

into spreadsheets. Some of these problems can be alleviated by automating parts of the

testing/debugging process [3, 5].

Finally, testing approaches also present a serious motivational challenge, because they

require substantial effort on part of the user. This aspect is particularly relevant in the

case of spreadsheet users since many of them are end users who mainly want to get their

job done; they are much less motivated than professional software developers to spend

additional time on their spreadsheets for testing purposes.

This latter aspect makes automatic checking approaches very attractive since they

promise error detection with minimal user input. Two obvious problems with traditional

type checking systems are (1) that they are limited in the kinds of errors they find and

(2) that abstract typing concepts may be difficult to communicate to end users. The lim-

ited scope of type checking simply means that type systems should not intend to replace

testing, but to complement it. That this can work very well has been demonstrated, for

example, in [29]. The usability concern has been addressed in two different (although

related) ways.

First, based on the observation that spreadsheet users often place labels as comments

into spreadsheets close to the relevant data, we can reason about the combination of these

labels in formulas that refer to labeled data and thus detect inconsistencies [22, 9]. In

a recent study on the usability of a type system in spreadsheets we discovered that end

users can effectively use such label-based type systems to debug a variety of errors in their

spreadsheets [7].

Second, we can employ units of measurements as a concrete notion of types that is

well known among end users [10]. Dimensions are used to characterize different kinds

of values, much like traditional, more abstract, type systems used in general-purpose pro-

gramming languages, but on a more fine-grained level. For example, a floating point

number, which has just one type, can nevertheless represent different kinds of quantities,
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such as length or time values, which is captured through the concept of dimensions. For

each dimension, such as length, there are several different units of measurements, such as

cm, ft, m, or km, that describe values of that dimension at an even finer-grained level.

The incorrect combination of values of different dimensions has been a cause of major

problems. One of the most famous dimension errors is a lacking value conversion in the

$320 Million Mars Climate Orbiter where one software component sent thruster data in

pounds, an English unit of measurement, whereas the Orbiter was expecting the metric

unit Newtons [27]. Since one pound is equal to 4.48 Newtons, the craft slowly drifted

off course. Over time the orbiter dropped 60 miles closer to the surface of Mars and was

destroyed.

As we will demonstrate in this paper, dimension errors occur frequently in spread-

sheets. Therefore, an approach to detect such errors can be an important part of a tool

suite to improve the quality of spreadsheets. In this paper we describe dimension infer-

ence, a method to automatically find dimension errors in spreadsheets. Our work builds on

previous approaches and extends them in several important ways. First, through incorpo-

rating header inference [1], the presented system does not have to rely on additional user

annotations and provides therefore a high degree of automation (“one-click checking”).

Second, in addition to checking whether dimensions of values are correctly dealt with in

formulas, our approach can infer dimensions based on context provided by formulas. This

feature is particularly helpful in cases when header inference does not provide a detailed

enough account of the dimensions for all values in the spreadsheet. Dimension inference

can then in many cases close the gap. Finally, the presented system can automatically

infer conversion factors between different units of measurement (such as meters and feet)

and can enforce the correct use of conversions in formulas.

In addition to the formal model of dimension inference, we describe a practical tool

that has been implemented as an extension to Microsoft Excel. We also present an em-

pirical analysis of how dimension inference works in practice. This paper is an extended

version of [14] and contains a revised and refactored rule system, a comparison of differ-
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ent dimension checking systems, and an expanded discussion of results.

The rest of this paper is structured as follows. In Section 3.2 we illustrate the issues

involved in dimension checking and inference with a small example. In Section 3.3 we

formalize spreadsheets and a model of dimensions. The process of dimension inference is

then described in Section 3.4. In Section 3.5 we report on an evaluation of a prototypical

implementation of a tool for dimension analysis. We discuss related work in Section 3.6

and give conclusions and ideas for future work in Section 3.7.

3.2 Determining Dimensions of Spreadsheet Formulas

Consider the spreadsheet shown in Figure 3.1 that shows the details of different phone

plans and that computes the costs for different usage profiles. The monthly totals for each

plan and a particular hours-of-use value is computed by adding the base fee and the cost

for the minutes exceeding the free minutes. For example, for the plan in row 5 and for the

use of 25 hours, the formula in cell F5 is as follows.

Figure 3.1: A spreadsheet for computing the costs of phone plans under different usage
scenarios.

B5+MAX(F2*60-C5,0)*D5

What unit of measurement, or unit for short, does the value computed by this formula

have? First, by inspecting the labels in the spreadsheet we can try to infer what the di-

mensions of the stored data values are. For example, the value 39 in cell B5 represents
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a money amount, which could be without further information given in any currency. It

makes sense for a system to assume whatever currency is set to be the default, which we

assume here to be $. Similarly, we can conclude that C5 is a time value. In this case there

is no doubt about the unit, which is minutes. The same applies to F2, which contains an

hour value. However, it is not clear what dimension the value in D5 has, because “charge”

could indicate a money amount or an electrical charge.

Second, given the potentially incomplete information about the dimensions of values,

we can reason about the structure of formulas to find out the dimension of the computed

value, or identify an error in case the formula combines dimensions incorrectly. In the

course of determining the dimension of a formula we can also infer dimensions for values

whose dimension could not be determined from a label and is so far unknown, as for the

value in cell D5 for instance.

In the example, we see that C5 is subtracted from F2*60. Since all additive operations

require that the arguments have the same unit of measurement, we can conclude that

F2*60 must be minutes, which is possible if the constant 60 has the unit minutes/hour. In

fact, only the value 60 has this unit.1 In other words, the use of any other factor or the

omission of a factor would have meant a fault in this formula.

The dimension behavior of MAX is the same as that of other addition operators.

Therefore, we can infer that 0 and the whole expression MAX(F2*60-C5,0) also have

the unit minutes. Here we can observe that the ability to infer dimensions/units in arbi-

trary directions, that is, for arguments from results (instead of only being able to reason

from arguments to results) is crucial for obtaining a flexible and user-friendly reasoning

system, because requiring the user to annotate 0 with minutes and 60 with minutes/hour

would mean a big impact on usability.

The next step is to determine the unit for D5 so that the sum with B5 is dimension

correct. Since B5 is in $, the product MAX(F2*60-C5,0)*D5 must have the same unit.

Since the MAX expression is in minutes, we can therefore conclude that D5 must have

1Constants can have multiple dimensions or units, for example, 60 also has the unit seconds/minute.
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the unit $/minute. Finally, since B5 and the product expression have the same unit, we

can conclude that the formula is dimension correct and has the unit of minutes.

3.3 A Formal Model of Spreadsheets and Dimensions

3.3.1 Abstract Syntax of Spreadsheets

We work with the following simple model of spreadsheets. A spreadsheet (S) is a mapping

from addresses (a ∈ A) to expressions (e). We write S(a) to refer to the expression stored

at address a in the spreadsheet S. Expressions can be values (v), references to other cells

(↑a), or are constructed using operators. Each arithmetic operators, such as, +, represents

a whole class of binary operations (here additive operations, such as − or MAX) as well

as corresponding aggregation operations (here: SUM). In addition, we have a dimension-

consuming aggregation (count) and a conditional operator.

e ::= v | ↑a | e+ e | e∗ e | count(e, . . . ,e) | if(e,e,e)

3.3.2 Representation of Dimensions

A dimension (d) is given by a set of dimension components (c). Each component is

given by a base (b), a conversion factor ( f ), and an integer exponent (n). Essentially, a

dimension is a partial mapping from base dimensions to pairs (n, f ). For the purpose of

dimension inference, a dimension component can also be a dimension variable (δ ). If

a dimension contains only one component, it is called a singleton dimension, whereas a

dimension that contains two or more components is called a composite dimension. The

identity dimension {} is used for dimensionless values.

d ::= {c, . . . ,c}

c ::= bn
f | δ
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Dimensions that only differ in conversion factors describe a similar quantity, and for dif-

ferent factors there often exist different names, which are called units of measurement.

For each base dimension we identify a default unit with factor 1. For example, the de-

fault for length is meter (m), that is, m = length1
1, which also means that cm = length1

0.01

and ft = length1
0.3048. In general, the following relationship holds (where x is a dimen-

sionless number and b is an arbitrary base).

xbn
f = x f bn

1

We may also omit conversion factors and exponents of 1 for brevity, that is, we write more

shortly bn for bn
1, b f for b1

f , and simply b for b1
1.

In general, the choice of dimensions is arbitrary and depends on the application. For

the task of analyzing dimensions in arbitrary spreadsheets, we have chosen the seven SI

units and some further units that we have found in the EUSES spreadsheet corpus [24].

The quantities and their default units are shown in Table 3.1.

Table 3.1: Base dimensions with default units

Quantity Default Unit
length meter (m)
mass kilogram (kg)
time second (s)

electric current ampere (A)
temperature kelvin (K)

amount of substance mole (mol)
luminous intensity candela (cd)

money dollar ($)
angle degree (deg)

Examples of composite dimensions are speed, measured in m/s, that is {length, time−1},

or force, measured in kgm/s2, which is {mass, length, time−2}.

The relationship between basic and derived dimensions and units is illustrated with

several examples in Table 3.2. Default units are boxed.

A conversion factor can be either a real number (r) or a conversion variable (φ ), which
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Table 3.2: Basic and derived dimensions and corresponding units

Dimension Units
basic length m , cm, km, ft, ...

time s , min, hr, ...
mass kg , pounds, ...
. . . . . .

derived speed m
s , km

hr , ...
force kgm

s2 = Newton, dyne, ...
pressure kg

ms2 = Pascal, psi, atm, ...
. . . . . .

serves as a placeholder to be used during dimension inference.

f ::= r | φ

Examples of conversion factors can be found in the spreadsheet shown in Figure 3.1,

namely min = time60 and hr = time3600. We can also illustrate the effect of conversion

variables using that example. The label “Base Fee” in cell B4 can be mapped to a dimen-

sion money
φ

, but it is not clear in which currency. If B4 were added in some formula to a

value that is known to be of unit $ = money1 or cent = money0.01, the requirement of both

arguments of addition to be of the same dimension would cause the unification of both

dimensions and create the substitution {φ 7→ 1} or {φ 7→ 0.01}, respectively, and thus B4

would also receive the unit $ or cent, respectively.

Our approach to represent conversions between different units within a dimension

by a simple factor is not general enough to cover some conversions, such as degrees

Fahrenheit to degrees Celsius. Nevertheless, we have chosen this simple model because

it keeps the unification of dimensions feasible and works in most cases. This restriction

is not too severe since in the spreadsheet repository that we have tested our prototype

implementation on only 2 out of 487 spreadsheets contained dimensions that could not be

converted using the presented model.
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3.3.3 Dimension-Aware Semantics

The rationale for introducing dimensions into computations is that they effectively restrict

the meaningful computations in the sense of typing annotations. Consider, for example,

the following operational semantics definition for the addition operation [35].

e1 −→ v1 e2 −→ v2

e1 + e2 −→ v1 + v2

We can refine the semantics definition by considering values that are annotated with di-

mensions. In that case, the rule becomes the following.

e1 −→ v1 : d e2 −→ v2 : d

e1 + e2 −→ v1 + v2 : d

The effect of the dimension annotation is that values that are are annotated with differ-

ent dimensions are considered to be incompatible. By requiring that both arguments of

the addition operation evaluate to values that are annotated by the same dimensions d,

this definition effectively leaves the addition of expressions that evaluate to values with

different dimensions undefined.

Multiplication transforms the dimensions of values according to the function ./, which

is defined as follows. First, d ./ d′ is undefined if d and d′ contain two dimension com-

ponents with the same base b but different conversion factors, that is, if bn
f ∈ d ∧ bm

f ′ ∈

d′∧ f 6= f ′. Otherwise, we have the following definition.

d ./ d′ = {bn+m
f | bn

f ∈ d∧bm
f ∈ d′}∪d4d′

We use the symmetric difference of sets, d4d′, which is defined as all the dimension

components that are a variable or have a base that is in either d or d′, but not in both.

The dimension-aware semantics for multiplication is then given by the following rule,
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which enforces the use of proper conversion factors in multiplications. For example,

to calculate the distance a plane travels in 5 seconds when its speed is 950 km/hr, one

has to use a conversion factor with dimension hr/s in the multiplication, otherwise ./ is

undefined, and the rule cannot be applied.

e1 −→ v1 : d1 e2 −→ v2 : d1 d1 ./ d2 = d

e1 ∗ e2 −→ v1 ∗ v2 : d

This definition prevents the multiplication of two values that have dimensions with the

same base dimension but different factors. For example, when determining the area of

a square it doesn’t make sense to multiply one side length, denoted by meters, with the

other side length denoted by centimeters. What is the meaning of 5 m * 7 cm = 35 cm∗m

? While this technically is not an illegal operation, it seems more reasonable and practical

to try and catch these situations. Therefore, a conversion factor has to be applied to one

of the two dimensions being multiplied.

In the example above we have 5 seconds multiplied with 950 km/hr. With no con-

version factors the result would be: 4750 s ∗ km/hr, which doesn’t provide the desired

information. Since dimension inference requires the resulting dimension to have only one

dimension of each base type, this would be an error. However if the conversion factor

1/3600 hr/s is included in the multiplication, the resulting value and dimension is 1.3194

km, which is certainly a valid dimension and provides a useful value. The one prob-

lem with requiring a conversion factor is that it can reduce flexibility in certain instances.

For example, the conversion factor hr/s could be applied in a later formula. In general,

though, it makes more sense to try and catch this where it occurs.

The shown rules are a bit over-simplified because they ignore the notion of dimension

validity discussed in the next section. The purpose of the rules was to show that incor-

porating a dimension concept into the semantics yields a more precise notion of what

correct computations are, which forms the basis for an approach to identify errors based

on dimension analysis.
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3.3.4 Dimension Validity

The dimension system defines an n-dimensional space, and values having a certain di-

mension can be regarded as points in this space. The traditional handling of dimensional

values requires arguments of addition to have the same dimension, but places no con-

straints on the argument (or the result) dimension for multiplication. However, in practice

dimensions cannot be multiplied arbitrarily. For example, no reasonable value can have

the dimension kg3. Ruling out such unreasonable dimensions can strengthen dimensional

analysis by effectively placing a validity constraint on the multiplication of dimensional

values, that is, the result dimension of a multiplication must be a valid dimension.

An interesting scientific (or even philosophical) question is this. What, in principle,

is a valid dimension? Since we are not aware of any general rules that could be used

to determine the validity of dimensions, we have taken a pragmatic approach and have

gathered dimensions that have been reported and documented [37]. The set of the thus

obtained dimensions is taken as a definition of the predicate V (d) that yields true if and

only if d is a valid dimension. This predicate can be defined as a test of the exponents of

all base dimensions occurring in d with two exceptions. The allowed exponent ranges are

defined by function R shown in Table 3.3.

Table 3.3: Valid dimension exponent ranges

b R(b)
length -3 .. 3

electric current -2 .. 1
time -3 .. 2

all others -1 .. 1

The exceptions to this table are the valid dimensions (1) farads and (2) Siemens, cap-
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tured by the following predicate.

E (d) = d = kg−1m−2s4A2 ∨ (3.1)

d = kg−1m−2s3A2 (3.2)

With the definitions for R and E we can define the dimension validity predicate as fol-

lows.

V (d) = (∀bn
f ∈ d : n ∈R(b))∨E (d)

This predicate is still only a crude approximation since it considers quite a few non-

existing dimensions as valid, for example, kg m. Ultimately, the best approach to realize

V might be to simply store a table of all valid dimensions.

3.4 Dimension Analysis

Dimension analysis of a spreadsheet happens in four phases that exploit different aspects

of the information presented in the spreadsheet.

1. Header inference

2. Label analysis

3. Dimension inference

4. Dimension instantiation

Header inference identifies spatial relationships between labels and values/formulas in

the spreadsheet. Label analysis derives basic information about units and dimensions

from the textual content of labels employed in the spreadsheet. Dimension inference

derives the dimensions for formulas using a formal rule system that encodes the laws of

proper dimension handling by operations. Dimension inference has two main purposes:

(1) It propagates dimension inference across the spreadsheet, and (2) it identifies cases

of computations that are dimension incorrect. Finally, dimension instantiation substitutes
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concrete units for dimension variables. This step applies only in those cases when the third

step produces underspecified units that contain dimension variables. In the following we

will describe these four steps in some detail.

3.4.1 Header Inference

Header inference analyzes the structure of a spreadsheet and returns a set of headers for

each cell. A header is simply the address of another cell. Therefore, header inference

produces a binary relation H ⊆ A×A such that (a,a′) ∈ H says that a′ is a header of

a. In general, one cell can be a header for many cells, and any particular cell can have

zero, one, or more headers. For example, in Figure 3.1, B4 is a header for B5, B6,

B7, and B8, that is, H−1(B4) = {B5,B6,B7,B8}, and A5 and B4 are headers of B5,

that is, H(B5) = {A5,B4}. Header inference essentially works by analyzing the spatial

relationships between different kinds of formulas, and it can also take into account layout

information. Techniques for header inference have been described in detail elsewhere

[1, 4]. In the context of this paper we simply reuse those techniques.

3.4.2 Label Analysis

In the second phase of dimension analysis we try to derive a dimension for each label

contained in a cell that has been identified as a header by header inference. This process

works by (a) splitting labels into separate words, (b) removing word inflections, (c) map-

ping word stems to dimensions, and (d) combining dimensions into one dimension. For

example, cell C4 in Figure 3.1 is a header cell and therefore subject to label analysis. Its

value can be split into the two words “Free” and “Minutes”, and the plural of “Minutes”

can be removed. The resulting “Minute” can then be mapped to the dimension min. In

contrast, “Free” cannot be mapped into any dimension and will thus be mapped to {}.

Finally, the combination of both dimensions yields min.

An example of a label that produces a complex dimension is “Miles per Gallon” or
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“MPG” or “Miles / Gallon”. Label analysis uses the divide symbol to infer that gallons

will have an exponent of -1. Another example is “Hourly Pay Rate” or “Dollars per Hour”,

which will be deconstructed into parts and reassembled into the unit $/hr. Names for

derived units are dealt with in principally the same way. For example, the label “Newton”

would be identified as a unit and mapped to the dimension kgms−2.

If no part of a header label can be mapped to a dimension other than {}, the label

is mapped to a dimension variable δ , which indicates that the dimension is at this time

unknown.

3.4.3 Dimension Inference

The third step of dimension analysis is dimension inference, which inspects each cell

containing a formula and derives for it a dimension using the system of rules given in

Figure 3.2. Whenever the rule application fails, the formula for which no dimension could

be inferred has been identified as erroneous. Moreover, derived dimensions that are not

valid according to the predicate V defined in Section 3.3.4 also indicate formula errors.

Since the derived dimension can be the identity dimension {}, the system simply ignores

(areas of) spreadsheets that do not involve any headers or identified dimensions, that is,

dimension analysis works smoothly on any kind of spreadsheet and is not disruptive in

cases where it does not apply.

The relationship between formulas and dimensions is formalized through the follow-

ing four judgments that tie together dimensions derived from headers/labels, known di-

mensions for conversion factors, and dimension transformations in expressions.

Value dimensions. The judgment v⇒ d says the value v, if used as a label or factor,

describes the dimension d. This judgment combines the result of the label analysis pro-

cess, which provides judgments, such as Money⇒ $, and prior knowledge of conversion
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factors, such as the following.

60⇒min/hr

60⇒s/min

100⇒cm/m
...

Note that the judgment v⇒ d is not a function, that is, one value can generally indicate

different dimensions. This flexibility allows dimension inference to select the correct

interpretation based on the context, that is, based on usage in formulas.

S,H ` a : d

NOHDR
H(a) = ∅

S,H ` a : δ

SINGLEHDR
H(a) = {a′} S(a′)⇒ d

S,H ` a : d
DOUBLEHDR
H(a) = {a1,a2} S(a1)⇒ d1 S(a2)⇒ d2 d ∈ d1⊗d2 V (d)

S,H ` a : d

S,H ` e : d

VAL

S,H ` v : δ

REF
S,H ` (a,S(a)) : d

S,H ` ↑a : d

COUNT
S,H ` ei : d

S,H ` count(e1, . . . ,en) : {}
IF
S,H ` e2 : d S,H ` e3 : d

S,H ` if(e1,e2,e3) : d
ADD
S,H ` e1 : {bn

f1
}∪d S,H ` e2 : {bn

f2
}∪d c1 = f1/ f c2 = f2/ f

S,H ` c1 ∗ e1 + c2 ∗ e2 : {bn
f }∪d

MULT
S,H ` e1 : d1 S,H ` e2 : d2 d = d1 ./ d2 V (d)

S,H ` e1 ∗ e2 : d

S,H ` (a,e) : d

CELL
S,H ` e : d S,H ` a : d

S,H ` (a,e) : d

Figure 3.2: Dimension inference rules

Location dimensions. The judgment S,H ` a : d says that in the spreadsheet S and
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given the header structure H, the location given by address a has dimension d. This judg-

ment combines the result of label analysis and header analysis into a judgment about the

expected dimensions for cell locations. For example, in Figure 3.1 we have S,H ` C5 : min.

Expression dimensions. The judgment S,H ` e : d says that in the spreadsheet S and

given the header structure H, the expression e has dimension d. This judgment uses

specific rules for expressions to determine the expected dimension, and is based on the

standard rules for dimensions. For example, addition requires both expressions to have

the same base dimension.

Cell dimensions. The judgment S,H ` (a,e) : d says the cell (a,e) in the spreadsheet

S has the dimension d under the given header relationship H. For example, if S represents

the spreadsheet shown in Figure 3.1 and H is the corresponding header relationship, then

we obtain S,H ` (F5,B5+MAX(F2*60-C5,0)*D5) : $. How this result is obtained was

explained informally in Section 3.2. The rules given in Figure 3.2 formalize this process,

and we will illustrate the formal derivation of this result in Section 3.4.5.

Since a cell can have more than one header2 we have to define how to deal with the

cases when both headers are identified as dimensions. Do we just take one dimension? If

so, which one do we choose? Or shall we combine the dimensions somehow? As with

the mapping of values to dimensions, the correct interpretation depends in many cases

on the context, so that for the purpose of dimension inference it is best to principally

allow all possibilities. We can realize this approach through the definition of a function

that generates all possible dimensions that can be obtained from the combination of two3

dimensions.

d⊗d′ = {d,d′,d ./ d′,d ./ d̄′, d̄ ./ d′}

Here the operation d̄ computes the inverse of a dimension, which is obtained by negating

2In practice, a cell has almost always at most two headers (row and column). This fact depends, however,
on the method that is used for header inference.

3Since we are working with a header inference that produces at most two headers for any cell, the re-
striction to considering only two dimensions is appropriate. It would not be difficult to extend the definition
to an arbitrary number of headers.
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all exponents in all components.

d̄ = {b−n
f | b

n
f ∈ d}

Now we can provide the rules that define the dimension inference. Figure 3.2 shows the

three rules for the location judgment covering the cases when a cell has two, one, or zero

headers, and a rule for each possible expression to define the cell judgment. Note that a

rule like ADD actually represents a whole class of rules covering the dimension inference

for all “additive” operations (including -, MAX, SUM, etc.). Moreover, combinations of

rules like ADD and COUNT yield rules for correspondingly derived operations like AVG.

We can observe the following four principal kinds of dimension rules.

1. Dimension generators (VAL and ADD)

2. Dimension preservers (ADD, REF, and IF)

3. Dimension composers (MULT)

4. Dimension consumers (COUNT)

Consistency checks are contained in some form or another in all rules but REF. The

most restrictive rules are IF and COUNT since they require arguments to have the same

dimensions. A little less restrictive is the rule ADD that requires its arguments to have the

same base, but allows for differences in the conversion factors as long as the arguments

are scaled accordingly. Effectively, all conversions between dimensions happen within

the rule ADD. Rule MULT is least restrictive since it allows the multiplication of any

quantities as long as the result is a valid dimension.

3.4.4 Dimension Instantiation

An inferred dimension might contain dimension variables and/or conversion-factor vari-

ables. The occurrence of variables happens whenever the spreadsheet doesn’t provide

enough information to precisely narrow down the dimensions. In these cases we have
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to find substitutions for the variables to obtain proper dimensions. In fact, a dimension

involving variables describes a whole class of possible dimensions. For example, lengthφ

can be m, cm, or any other length dimension that can be obtained by substituting values

for φ . Similarly, the dimension {m,δ} can be instantiated to velocity or acceleration using

the substitution {δ 7→ s−1} or {δ 7→ s−2}, respectively.

The instantiation of dimensions can be realized by generating substitutions for conversion-

factor variables so that default dimensions are obtained and by generating substitutions for

dimension variables that produce valid dimensions (as defined in Section 3.3.4). Of those

valid dimensions we can then select the one that is most common (as indicated by the

numbers to be reported in Section 3.5).

3.4.5 Example Derivation

We now will illustrate how the rule system shown in Figure 3.2 works by showing an ex-

ample derivation for cell F5 taken from Figure 3.1, which contains the following formula.

B5+MAX(F2*60-C5,0)*D5

To determine the dimension of the cell, the rule CELL is employed, which requires the

inference of the dimension for both the address, F5, and the stored formula.

Regarding the dimension of F5, we observe that header inference yields H(F5) = E4,

and the value judgment maps the text “Total” to $. In general, “Total” is an ambiguous

label with respect to what dimension it denotes. However, our example is taken from the

financial field, where it makes sense to map Total to $. Therefore the application of the

header rule yields the following.

SINGLEHDR
H(F5) = E4 Total⇒ $

S,H ` F5 : $



45

The concluding judgment of the above rule instantiates the variable d to $ in the applica-

tion of the CELL rule, which therefore takes the following form.

CELL
S,H ` B5+MAX(F2*60-C5,0)*D5 : $ S,H ` F5 : $

S,H ` (F5,B5+MAX(F2*60-C5,0)*D5)) : $

So we know what dimension the cell will have to have, but we don’t know yet whether

the expression in F5 is dimension correct. Therefore, we have to apply expression rules

to establish that the formula produces indeed a $ value, and since the outermost operation

applied is +, we have to employ the ADD rule, which is instantiated as follows.

ADD

S,H ` B5 : {$}∪{}

S,H `MAX(F2*60-C5,0)*D5 : {$}∪{} c1 = f1/ f c2 = f2/ f

S,H ` c1 ∗B5+ c2 ∗MAX(F2*60-C5,0)*D5 : {$}∪{}

We can observe that all involved factors, f , f1, and f are simply 1, and therefore c1 and

c2 are also 1, which means that we can simplify the rule instance for a more convenient

future handling as follows.

ADD
S,H ` B5 : {$}∪{} S,H `MAX(F2*60-C5,0)*D5 : {$}∪{}

S,H ` B5+MAX(F2*60-C5,0)*D5 : {$}∪{}

The first premise can be derived using the REF rule. We have to notice that references

in formulas, such as B5, are represented in the abstract syntax of the formal spreadsheet

model as ↑B5. Therefore, the instantiated REF rule looks as follows.
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REF
S,H ` (B5,39) : $

S,H ` ↑B5 : $

The premise of the rule results from the lookup S(B5) = 39. Why is the premise of this

rule true? Because due to the VAL rule we can have S,H ` 39 : $, and we can derive

S,H ` B5 : $ using the SINGLEHDR rule.

CELL
S,H ` 39 : $

H(B5) = {B4} S(B4)⇒ $

S,H ` B5 : $
SINGLEHDR

S,H ` (B5,39) : $

To derive the second premise of the ADD rule we have to employ the MULT rule, which

is instantiated as follows.

MULT
S,H `MAX(F2*60-C5,0) : d1 S,H ` D5 : d2 {$}= d1 ./ d2 V ($)

S,H `MAX(F2*60-C5,0)*D5 : $

In this example, D5 was not assigned a dimension through label analysis. Therefore, the

dimension is left as a variable d2, to be possibly instantiated later. The first premise is

derived using the rule for the MAX operation, which is the same as the ADD rule.

MAX
S,H ` F2*60-C5 : d1 S,H ` 0 : d1

S,H `MAX(F2*60-C5,0) : d1
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The dimension of the constant 0 is left open for now, and the derivation of the dimension

for the subtraction expression requires another instance of the ADD (here called SUB to

match the − operation).

SUB
S,H ` F2*60 : d3 S,H ` C5 : min c3 = f1/ f c4 = f2/ f

S,H ` c1 ∗F2*60− c2 ∗C5 : min

Since the dimension of C5 will be minutes, which is derived in an analogous way to the

dimension of B5 (see above), F2*60 must have a dimension that can at least be converted

to minutes, using the conversion factors made available by the rule.

In fact, we can derive d3 = min for F2*60, as can be seen by invoking the MULT

rule again. The resulting rule instance is driven by the fact that F2*60 should have the

dimension min and that F2 can be shown to be in hours as follows.

REF

CELL
S,H ` 25 : hr

H(F2) = {D2} S(D2)⇒ hr

S,H ` F2 : hr
SINGLEHDR

S,H ` (F2,25) : hr

S,H ` ↑F2 : hr

These two constraints force the invocation of the value judgment 60⇒min/hr, which

then leads to the following instance of the MULT rule.

MULT
S,H ` F2 : hr S,H ` 60 : min/hr min = hr ./ min/hr V (min)

S,H ` F2*60 : min
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Having thus established the unit min for the expression F2*60-C5 (that is, d3 = min), we

can instantiate the dimension variable d1 also to min.

We are now back to the dimension of the formula MAX(F2*60-C5,0)*D5 for which

we had our first instance of the MULT rule. With d1 = min, we obtain the constraint

{$} = min ./ d2 as the third premise. This constraint can be resolved by letting d2 =

$/min, which finally resolves the dimension for the cell D5. This essentially completes

the derivation process for the formula.

A feature of the inference system that was not exhibited by the above example is

the suggestion of conversion factors through the ADD rule. We will describe this aspect

briefly in the following.

Consider the formula, A1 + A2, with A1 having unit meters and A2 with the unit

centimeters. What happens if we apply the ADD rule to derive the unit of the formula?

The first thing we can notice is that while the base dimension of both arguments is the

same, the dimension component of each cell contains a different factor. This prevents the

derivation of a unit for the formula—unless a conversion factor is added. In this case the

conversion factor c2 is instantiated to 0.01/1 = 0.01, which allows the unit of the formula

to be meters.

ADD

S,H ` A1 : {length1
1}∪{}

S,H ` A2 : {length0.01
1 }∪{} c1 = 1/1 c2 = 0.01/1

S,H ` c1 ∗A1+ c2 ∗A2 : {length1
1}∪{}

This rule instance says that the formula A1 + 0.01*A2 has the unit meters. The fact that

one of the conversion factors had to be instantiated to a value different from 1 indicates

a conversion error. Moreover it suggests a remedy for the error, that is, an error message

presented to the user can not only point out the omission of a conversion factor, but can

also immediately suggest a corrected formula.
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3.5 Evaluation

We have implemented a prototype system for performing automatic dimension analysis

as an add-in to Microsoft Excel. This tool reuses the header analysis implementation [1]

of the UCheck tool [4].

In this section we describe an evaluation of this dimension analysis system to answer

the following research questions.

RQ1: How wide-spread is the use/occurrence of dimensions in spreadsheets?

Dimension inference can be an effective tool to check formulas and spot errors in spread-

sheet computations, but only if those computations involve dimensions, or, to be more

precise, if the tool can identify the dimensions involved in the computations. We expect a

considerable number of spreadsheets to contain dimensions.

RQ2: Does dimension inference run effectively on spreadsheets involving dimen-

sions?

For those spreadsheets that contain dimensions, we would like to know whether or not

dimension inference runs correctly, that is, whether it can infer the proper dimensions for

values and formulas and whether it can find errors based on inconsistent dimension use in

formulas.

RQ3: To what degree is dimension analysis dependent on the underlying header in-

ference and label analysis?

Header inference is the first step in dimension analysis. If this step fails to work properly,

dimension analysis cannot take off. Following header inference, label inference is the cru-

cial link that ties header information to dimension information. In general, label analysis

is complicated by the fact that the process in inherently ambiguous. Anything that can

improve header or label analysis has potentially a great impact on the applicability and

accuracy of dimension analysis.

RQ4: Does dimension validity matter?

The concept of dimension validity was introduced to make the inference rule MULT
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stronger so that more dimension errors can be detected. If this additional test helps in

practice to detect dimension errors, we can refine the definition of V to make it even

stronger.

3.5.1 Experiments

To answer RQ1 we have employed the EUSES spreadsheet corpus [24], which currently

contains 4498 spreadsheets collected from various sources. Dimension analysis is relevant

only for those 1977 spreadsheets containing formulas. We ran label analysis on those

spreadsheets to find which dimensions occur how often and in how many sheets.

To investigate RQ2 and RQ3 we ran our tool on a subset of 40 spreadsheets randomly

selected from the 1977 spreadsheets that contain formulas. We inspected all results, and in

cases the header inference or label analysis was not working, we adjusted that information

“by hand” and ran only the dimension inference part of the tool.

To investigate RQ4 we have categorized the dimension errors that were reported ac-

cording to which decision in the inference process led to their discovery. To perform

the experiments we had to write some additional scripts and had to perform a few minor

instrumentations for the prototype.

3.5.2 Results

RQ1: How wide-spread is the use/occurrence of dimensions in spreadsheets?

The distribution of dimensions in the spreadsheets from the EUSES corpus containing

formulas is detailed in Table 3.4, which shows the number of occurrences of dimensions

in total and in different spreadsheets.

Altogether, dimensions were found in 487 spreadsheets, that is, in only 1/4th of the

spreadsheets with formulas. This number is smaller than the total of 603 from Table 3.4

since several spreadsheets contain more than one type of dimension.

We found that certain headers were more prevalent than others and had a greater im-
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Table 3.4: Occurrences of dimensions

Quantity/ Occurrences
Dimension Total In Spreadsheets

Money 390 279
Time 351 237

Length 35 26
Mass 27 20
$/hr 20 15
Area 12 8

Velocity 10 5
Temperature 10 5

kW 3 3
Mole 3 3

Luminous Intensity 3 2
Total 864 603

pact. For example, for the dimension money, the two most common results were “Dollars”

and “Money”, with 201 and 159 occurrences, respectively. For the dimension time, the

results were distributed more evenly, with the most common, “Year”, occurring 91 times

and the least common, “Month”, occurring 28 times.

RQ2: Does dimension inference run effectively on spreadsheets involving dimen-

sions?

The dimension inference component able to detected 21 dimension errors in 17 of the 40

randomly selected spreadsheets, that is, we were able to find dimension errors in 42.5%

of the spreadsheets that were selected for this study. Not only does this show the effec-

tiveness of the inference mechanism, it also demonstrates that dimension inference is an

effective approach to find errors in spreadsheets.

Due to the number of spreadsheets used in this study, we were able to inspect them

manually to verify errors. By looking at the dimensions involved in formulas we were able

to discover three false positives, caused by faulty label analysis, and zero false negatives,

which would have been any error that was in the spreadsheet but was not caught. Due to

the specificity of dimension errors it is possible, if time consuming, to verify that a formula

does not contain errors. The first step in this verification was to look at the headers and
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the dimensions assigned to cells. If the dimension did not match the label this would be a

case of faulty label analysis. Once the dimensions were verified, the formulas using these

cells were investigated. In the 40 spreadsheets selected for this study there were no cases

of dimension errors in formulas that were not caught by this approach.

The found 18 different errors had, due to copies in several rows/columns, altogether

105 error instances.

RQ3: To what degree is dimension analysis dependent on the underlying header in-

ference and label analysis?

Header inference was able to infer the correct header information in 30 of the 40 spread-

sheets that were randomly selected from the 487 candidates. In the 10 other cases headers

were placed too distant of the data they were labeling, in some cases having other un-

related data in between the headers and the data. Label analysis worked correctly in all

cases. To take the limitations of header inference out of the analysis of dimension infer-

ence, we have altered those 10 spreadsheets so that dimension inference could start with

proper header information.

In general header inference works very well on spreadsheets that contain a mostly

tabular format. The primary problem in most cases in header location as headers are often

placed in offsetting columns or rows to the relevant data. One common example occurred

in budget spreadsheets where certain labels took up several rows. The system only used

the last row as the relevant header, which in some cases caused the loss of dimension

information.

We then ran label analysis on all spreadsheets, which was able to map 222 headers

into 188 singleton and 34 composite dimensions.

RQ4: Does dimension validity matter?

Of the 18 correctly identified dimension errors, 2 were invalid dimensions ($2 in both

cases), 1 was detected in an if formula, and the remaining 15 errors were all due to vio-

lations of the rule ADD. Some examples of these include direct formula errors, such as

adding the dimensions $ and hr, and others involve conflicts with headers, such as the
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header expecting the result to be $ with the result containing the dimension m.

In general it is hard to determine if the values caused by these errors are incorrect

for two primary reasons. First, while the system treats headers as an absolute, one could

easily envision a user inputting a header containing a dimension, when in fact one should

not be applied. If the headers are assumed to be correct

3.5.3 Discussion

We were initially surprised by the overall low occurrence rate of dimensions in spread-

sheets, but we later found by inspecting spreadsheets containing formulas that had no

dimension that this result is largely due to the kind of spreadsheets that are collected in

the repository. For example, among the 1977 spreadsheets with formulas are over 700

grading spreadsheets, which have no dimensions at all.

Label analysis and dimension inference worked very reliably. The weakest link in the

chain of steps for dimension analysis was clearly the header inference, which is not too

surprising since labeling practices vary widely across spreadsheets.

On the other hand, label analysis can also fail. In fact, the false positives were all

caused by label analysis, which in some cases inferred dimension too aggressively. This

can happen whenever labels are used to distinguish between different kinds of numbers

and are not intended to define the dimension of the numbers. For example, in a table that

sums up the number of hourly and day passes, the addition formula would fail because

numbers of different units are added without the use of a conversion factor.

The fact that dimension errors were found in almost half of the selected spreadsheets

shows that dimension analysis is an effective tool for uncovering errors in spreadsheets.

Even though we found two instances of an error that was due to the concept of invalid

dimensions, the number of spreadsheets studied was too small to draw conclusions about

the importance of this concept/feature.
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3.6 Related Work

We have already discussed several approaches to reduce the occurrence of errors in spread-

sheets in Section 3.1. In this section we compare our approach in some more detail with

related work that is concerned with label- or annotation-based error checking in spread-

sheets. To compare how the different approaches work we use the spreadsheet shown in

Figure 3.3 that computes for different cars miles-per-gallon numbers and from that their

potential range.

Figure 3.3: System Comparison Example

There are four errors in this spreadsheet, two caused by incorrect formulas and two

caused through the propagation of erroneous dimensions. The first formula error can be

found in cell D4, where instead of dividing B4 by C4, the two cells are being added

together. Since B4 has the unit Miles and C4 has the unit Gallons, this addition is not

dimension correct. The second formula error is located in F3 where the cells E3, with the

unit Gallons, and the cell C3, also with the unit Gallons, are being multiplied. Normally,

this multiplication would not result in an error, however, the header for this cell, F2, has

the unit Miles, which requires all the cells in this column to result in the dimension Miles.

The two propagation errors are caused through the use of cells that have errors. The

first is located in cell F4 where D4, which contains an error, is multiplied with E4. The

second propagation error is located in F5, which is using the MAX function of column F.

MAX requires that all the cells have the same dimension, however, due to the incorrect

multiplication in cell F3, this is not the case.

Most closely related to our work is the XeLda system [10] that is designed to check

a spreadsheet for units of measurement, such as meters, grams, and seconds. XeLda
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requires the user to annotate the units for all of the cells in a spreadsheet. Note that

this not only includes data cells, but also all formula cells. For example, a user could

annotate Figure 3.3 by specifying that the cells B2, B3, and B4 are ((Miles, 1)), which

is the XeLda notation for a dimension that has one component, Miles, whose exponent

is 1. The cells C2, C3, and C4 would have to be annotated by the unit ((Gallons, 1)),

and the cells D2, D3, and D4 would be annotated with the unit ((Miles, 1) (Gallons, -1)),

representing Miles per Gallon, and so on. While analyzing a spreadsheet XeLda checks

the annotated units against the results of formulas to insure correctness. For example,

if the unit ((Meters,1)) is multiplied with another unit of ((Seconds,1)), the result will

be ((Meters,1) (Seconds,1)). The unit determined with the formula is then compared to

the annotated unit to determine any inconsistencies, which are shaded yellow and contain

error messages. Figure 3.4 shows the the feedback produced by XeLda when run on the

sheet in Figure 3.3 after it has been annotated.

Figure 3.4: XeLda Results

The advantage of the XeLda approach is that it works well independently of the

spreadsheet layout, whereas our approach depends on header and label analysis. On the

other hand, XeLda’s disadvantage is the huge amount of extra work required by the user

whereas our approach is fully automatic. Moreover, XeLda cannot infer conversion fac-

tors.

UCheck [4] was designed to check for units in a spreadsheet, and as such it does not

handle dimensions. UCheck works by inferring headers for all the cells in a spreadsheet,

based on the structure and content of the spreadsheet. Once these headers are inferred, the



56

system derives units for the cells and checks for unit errors. In the given example, UCheck

can find only the error in the aggregation formula in F5 that is caused by inconsistent units

derived for the argument cells. (The error message is also misleading in this case.) The

results for UCheck are shown in Figure 3.5.

Figure 3.5: UCheck Results

While UCheck works completely automatically, some other related approaches re-

quire the user to annotate the spreadsheet with label information [22, 9]. The same advan-

tages and disadvantages that we have mentioned for XeLda apply here as well.

SLATE [17] separates the unit from the object of measurement and defines semantics

for spreadsheets so that the unit and the object of measurement are considered. In SLATE,

every expression has three attributes: a value, a unit, and a label. The value is what is con-

tained in a cell. Units, such as meters, kilograms, and seconds, capture information about

the scale at which the measurement was taken and the dimensions of the measurement.

The final attribute, labels, defines characteristics of the objects of measurement. For ex-

ample, a cell referring to 25 pounds of apples might read “25 lbs. (apples)”. Like XeLda,

this system requires the user to annotate the spreadsheet before the analysis can begin.

This annotation involves adding the units and labels to all cells containing no references

to other cells. The system then analyzes the cells with formulas containing references and

determines the unit and label for these cells. The annotations and results from this system

are shown in Figure 3.6.

This system does not explicitly show errors, but by investigating the system-generated

labels the user can see which cells may have problems. For example, the system-generated
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Figure 3.6: SLATE Results

annotation for cell C4 is (Miles, Gallons, BMW). Compared to the rest of the cells in this

column, this annotation appears out of place. This annotation should cause the user to

inspect the formula and see that instead of doing a division, the cell is performing an

addition. The other errors in this spreadsheet have similar annotation problems.

As a comparison, Figure 3.7 shows the results of dimension inference on the spread-

sheet in Figure 3.3. Dimension Inference is able to highlight the errors in the spreadsheet

and does so without requiring any annotation of the spreadsheet.

Figure 3.7: Dimension Inference Results

The two most closely related systems with regard to dimension checking are probably

XeLda and the presented dimension inference. They both seem to do the best job of rec-

ognizing dimension errors. However, both of these systems handle dimensions differently

and because of this have different strengths and weaknesses.

XeLda requires that users annotate all the cells in a sheet before the analysis will work

properly. This can be time consuming for the user and represents the major weakness of

the system. It is hard to make sure that the user will correctly annotate the cells. If this is

not done, it is not possible for the system to check for errors.

On the other hand, if the annotation is done correctly, the system will know the units
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for all of the cells. This enables it to be confident of the results. The strength of XeLda also

shows one weakness of dimension inference. Automatically determining the dimensions

in a spreadsheet depends on proper header information and also on a mapping of the

header labels to dimensions, which can be ambiguous, as we have mentioned in Section

3.5.3.

One of the strengths of dimension inference is the fact that users do not have to specif-

ically enter the dimensions for any of the cells. As long as the headers are fairly clear and

contain dimensions, checking a spreadsheet is as easy as clicking a button. As our exper-

iments have shown dimension inference can find errors and does a good job of checking

spreadsheets when the headers are in order.

3.7 Conclusions and Future Work

We have introduced a system for inferring and checking dimensions in spreadsheets. By

interpreting headers as dimensions and relating those to formulas, the system can identify

errors in formulas, because dimensions place constraints on how operations can act on

values. Our system differs from previous approaches in the following ways.

• No user annotation required. The system can infer labels for cells automatically

and use them to determine what the expected dimension of a cell is. This aspect

greatly enhances the usability of the system since it minimizes the amount of work

a user has to do in order to use the system.

• Dimension inference. The system even works well in situations when only partial

dimension information is available since dimension constraints can also be prop-

agated upstream of computations through the defined dimension inference rules.

This aspect contributes to the flexibility and robustness of the presented system.

• Conversion factors allow different units of measurement. Some formulas in a spread-

sheet require conversion of quantities whenever non-compatible dimensions, such

as meters and feet, are involved in additive operations. The described rule system
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can identify required conversion factors.

• Dimension instantiation. As a consequence of dimension inference there are sit-

uations in which dimension variables remain unsolved at the end of the analysis.

These “dimension templates” can be instantiated to the most likely dimensions ex-

pected.

The presented evaluation has demonstrated that our system works well in practice and can

detect errors in many cases. The evaluation has also revealed three promising directions

for future research.

First, we could improve the system with a more accurate header inference. One way to

do this would be to use header patterns, which categorize the different ways that headers

are used in spreadsheets. This information can be used to increase the ability to recognize

headers. For example, if a spreadsheet can be identified as having a certain header pattern,

then the headers will be set up in a certain way. This may reduce the work it takes to

correctly identify headers and it also can be used to better resolve ambiguous cases.

Second, a combination of dimension inference with the purely label-based approaches

as pursued by UCheck [4] or the system described in [9] could strengthen the reasoning of

the system. To some degree this was already tried in the SLATE approach [17]. However,

SLATE only transforms labels and dimensions and does not identify errors. Moreover, the

fact that SLATE is a stand-alone spreadsheet system and cannot be integrated into Excel

renders the approach currently impractical.

One way to combine these two methods is to try and gather both label and dimen-

sion information about a cell. In many spreadsheets containing dimensions only one axis

contains any relevant dimension information. The other axis typically contains labels,

which provides structural information that can be exploited by the reasoning system be-

hind UCheck.

To explain this idea in more detail, we will again use the example from Figure 3.3.

This spreadsheet contains several dimensions on the horizontal axis (Row 1), but dimen-

sionless labels on the vertical axis (Column A). In this particular example, we will focus
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on the formula E2*D2, which is located in cell F2. Assume now that the formula is

changed to E3*D2, that is, mistakenly referencing E3 instead of E2. Dimension inference

would have no problem with this formula, because the result is still valid and matches the

rest of the dimensions in the column.

To try and catch this error we can assign the labels from Column A to specific rows.

For example, the cells in Row 2 would have the label “VW Bug”. With this information

assigned, the system can then check to ensure that formulas are also label correct. The

formula E3*D2 is multiplying a cell, E3, with the unit Gallons and the label “Camry”

with the cell D2, which has the unit Miles / Gallon and the label “VW Bug”. The system

would be able to catch this label inconsistency and report it to the user.

Thirdly, the system may be able to be combined with manual dimension checking

techniques, to get the best possible results. In many cases there is not enough dimension

information to determine if a function is actually correct. For example, any multiplication

resulting in a valid dimension is accepted. However, this doesn’t insure that the formula

is actually correct. If the header of the resulting formula does not contain any dimension

information, nothing can be done to validate the result. By pointing out these problem

areas the system could help the user determine where to add dimension information to

labels.
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Chapter 4 – Combining Spatial and Semantic Label Analysis

4.1 Introduction

Spreadsheets are widely used [45] end-user programs that contain many errors [39]. To

improve the quality of spreadsheets a variety of approaches to prevent, detect, and remove

errors from spreadsheets have been investigated. Since preventive approaches, in princi-

ple, have to interfere with the spreadsheet creation process that makes spreadsheets so

attractive to end users, much research has focused rather on the detection and removal of

errors.

One type of error that can be detected in spreadsheets is dimension errors, which occur

when units of measurement are used incorrectly in formulas. Units of measurements can

be employed as a concrete notion of types that is well known among end users [10], and

are used to characterize different kinds of values, much like traditional, more abstract, type

systems used in general-purpose programming languages. For example, a floating point

number, which has just one type, can nevertheless represent different kinds of quantities,

such as length or time values.

Several systems [14, 17, 10] have been developed in order to deal with unit of mea-

surement errors. Among these dimension inference [14] is a method that can be used

to automatically find dimension errors in spreadsheets. This approach has been shown

to work reliably and effectively in many cases, however it does not take full advantage

of the information provided in the spreadsheet as it does not utilize the structure of the

spreadsheet and focuses on ensuring that formulas are dimension correct.

In contrast, there are several systems that are designed to directly take advantage of

the labels and the structure of spreadsheets. These purely label-based approaches, such

as UCheck [4] or the system described in [9], are designed to find formula errors caused

by inconsistent label usage. This technique operates in two distinct analysis phases. The
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first phase defines header or label information for the entire spreadsheet. UCheck is able

to infer this while most others require users to annotate the labels for every cell. Once

the headers are determined for a sheet, labels are assigned to cells based on headers and

formulas. In the second phase this information is analyzed to find errors.

One thing to note when looking at label analysis and dimension analysis is that both

systems rely on header and label information, however, how this information is used is

quite different. By combining dimension analysis with the purely label-based approaches

the structure of the spreadsheet could be used to help strengthen the reasoning of the

system. To some degree this was already tried in the SLATE approach [17]. However,

SLATE only transforms labels and dimensions and does not identify errors. Moreover, the

fact that SLATE is a stand-alone spreadsheet system that cannot be integrated into Excel

and the time it takes for users to annotate a spreadsheet renders the approach currently

impractical.

In this paper we describe a way to combine label based reasoning with dimension

inference. This approach is achieved by gathering both label and dimension information

about a cell. In many cases a spreadsheet contains dimensions on only one axis, while the

other axis typically contains labels that do not map to any dimension. These labels, which

go unused in dimension inference can help to provide structural information that can be

exploited by the reasoning system behind UCheck.

The rest of this paper is structured as follows. In Section 2 we illustrate the issues in-

volved in adding label reasoning to dimension inference with a small example. In Section

3 we formalize spreadsheets and present models of dimensions and labels. The combined

analysis method is described in Section 4. In Section 5 we report on an evaluation of a

prototypical implementation of a tool for dimension analysis. We discuss related work in

Section 6 and give conclusions in Section 7.
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4.2 An Example

To explain how the integration of spatial and semantic label analysis works, we will show

how both dimension inference and the integrated system work on the spreadsheet in Figure

4.1. This spreadsheet is calculating how far specific cars can travel on a full tank of gas.

This data is correlated based on the result of a drive using only five gallons of gas.

Figure 4.1: Example spreadsheet

When the spreadsheet is checked with dimension inference, it would first identify the

headers for all cells. When the headers are analyzed for dimension information, B1, C1,

D1, E1, and F1 all map to a valid dimension. This would allow the system to check

all formulas in this spreadsheet for dimension correctness. In this case, the system would

detect that there is an error in cell D4 where the formula is trying to add miles and gallons.

Upon further inspection it could be noted that the spreadsheet contains another error.

In this particular example, the cell F2 has the formula E2*D3. The dimension for E2 is

Gallons, and the dimension for D3 is Miles per Gallon, which, when multiplied together

result in the dimension Miles. This result contains no dimension errors, but it does not

seem right. E3 is actually total Gallons for the Camry, while D2 is the MPG for the VW

Bug. Logically, the result does not make sense, however, plain dimension inference would

have no way to catch this.

By integrating label reasoning and checking that formulas are both dimension and

label correct, the system presented in this paper is able to identify a previously unnoticed

error. The first step is to determine which header axis (row or column) will be used as the

dimension axis. In this case there are several dimensions on the horizontal axis (row 1),

but dimensionless labels on the vertical axis (column A). The system then identifies labels
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and dimensions for each cell. For example, the cells in row 2 would have the label “VW

Bug”.

With this information assigned, the system can then check to ensure that formulas are

dimension and label correct. When the system checks the formula in F2 it can identify

that it is multiplying a cell, E2, with the unit Gallons and the label “VW Bug” with the

cell D2, which has the unit Miles / Gallon and the label “Camry”. While the dimensions

work out in this formula, the system will identify an inconsistency with the labels and be

able to report this to the user.

4.3 Syntactic Representation

In this section, we will formalize the notions of spreadsheets, dimensions, and labels as a

preparation for the formal rule system given in Section 4.3.4.

4.3.1 Spreadsheets

Spreadsheets (S) are functions that is a map addresses (a ∈ A) to expressions (e), in par-

ticular, S(a) yields the expression stored at address a in the spreadsheet S. Expressions

can be values (v) or references to other cells (↑a), or are constructed using arithmetic (+

or ∗), aggregating (count), or conditional operators.

e ::= v | ↑a | e+ e | e∗ e | count(e, . . . ,e) | if(e,e,e)

The operations + and ∗ represent, respectively, a whole class of additive operators (in-

cluding − and MAX) and multiplicative operators (including /).
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4.3.2 Dimensions

A dimension (d) is given by a set of dimension components (c). Each component is

given by a base (b), a conversion factor ( f ), and an integer exponent (n). A dimension

component can also be a dimension variable (δ ). The identity dimension {} is used for

dimensionless values.
d ::= {c, . . . ,c}

c ::= bn
f | δ

For each base dimension we identify a default unit with factor 1. For example, the default

for length is meter (m), that is, m = length1
1, which also means that cm = length1

0.01 and

ft = length1
0.3. In general, the following relationship holds (where x is a dimensionless

number and b is an arbitrary base): xbn
f = x f bn

1.

In general, the choice of dimensions is arbitrary and depends on the application. For

the task of analyzing dimensions in arbitrary spreadsheets, we have chosen the seven SI

units and some further units that we have found in the EUSES spreadsheet corpus [24].

A more detailed discussion of dimensions can be found in [14].

4.3.3 Labels

The labeling structure in this integrated system is a simplified version of the formal model

presented in [22]. In particular, since labels will be used only for one axis, we can omit

the concept of AND labels, which leads to much simplified rules for combining labels.

The syntax that we use for labels is shown below. (Note the difference between an

OR-label `1|`2 and the vertical bar | to separate grammar alternatives.)

` ::= v | `1[`2] | `1|`2 | 1

To show the different possible types of labels we will look at several cells in Figure 4.1. A

chain of labels, `1[`2], represents cells that may have a second level label. In this example,
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the cell B3 has the header A3, which contains the label Camry. Since A3 has as its header

the cell A1 with label Car, the label associated with B3 is Car[Camry].

An OR label is used when cells with labels are added together. In general, when

two cells are added together, their labels are ORed to produce a resulting label. The

cell B5 is a SUM, which adds the three value cells in column B. The three labels used

in this formula are Car[VW Bug], Car[Camry], and Car[BMW]. The resulting label is

Car[VW Bug]|Car[Camry]|Car[BMW]. Since OR distributes over label chains [22], we

can factor this expression to Car[VW Bug|Camry|BMW]. This label expression can be

generalized to Car [4].

The ADD rule requires a compatibility of labels expressed by the following label

simplification rule, ` o `→ `, defined as follows.

` o `→ `

` o `[`1]→ `

`[`1] o `→ `

This operation works only for specific arguments, and if it fails in the premise of an

inference rule, this corresponds to the identification of a label error.

4.3.4 On Semantic vs. Syntactic Label Analysis

Before we describe our integrated reasoning tool, we want to point out a principal differ-

ence of the two underlying approaches, because even though both UCheck and dimension

inference uses labels to determine errors, they use this information in quite different ways.

UCheck essentially exploits the relative position of labels, but it does not actually

interpret labels. This means that we can rename labels without changing the functionality

of the system (at least if the renaming is done systematically). For example, the labels

Camry or BMW have no meaning to the system and could be replaced by any other strings.

It is how these labels are combined with other labels in formulas that forms the basis of
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error detection.

Dimension inference, on the other hand, derives some meaning from labels. Instead of

treating labels as simple strings, labels in dimension inference actually are interpreted to

have some extrinsic semantics. This means that renaming a label could cause errors in a

spreadsheet. Using the sheet in Figure 4.1, if the label in cell B1 is renamed to “KM” the

formulas in column D will not be dimension correct as the label for that column is “Miles

/ Gallon”, but the resulting dimension is “KM / Gallons”. To keep the formula dimension

correct the labels in D1 and F1 would have to be renamed as well.

4.4 Integrated Label and Dimension Analysis

The combined label and dimension analysis of a spreadsheet goes through five distinct

steps. The last step applies only in those cases when the fourth step produces underspec-

ified dimensions, that is, when it results in inferred dimensions that contain dimension

variables.

1. Header inference

2. Label analysis

3. Identify dimension and label axes

4. Dimension inference

5. Dimension instantiation

Header inference, label analysis, and dimension instantiation are components that we

have adopted unchanged from our previous work [14], and they are therefore only briefly

described here. Steps 3 and 4 will be described in greater detail in the following.

4.4.1 Header Inference

Header inference analyzes the structure of a spreadsheet and returns a set of headers for

each cell. A header is simply the address of another cell. Therefore, header inference
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produces a binary relation H ⊆ A×A such that (a,a′) ∈H says that a′ is a header of a. In

general, one cell can be a header for many cells, and any particular cell can have zero, one,

or more headers. For example, cell B1 in Figure 4.1 is a header for B2, B3, and B4, that is,

H−1(B1) = {B2,B3,B4}, and A2 and B1 are headers of B2, that is, H(B2) = {A2,B1}.

Header inference essentially works by analyzing the spatial relationships between differ-

ent kinds of formulas. It can also take into account layout information. Techniques for

header inference have been described in detail elsewhere [1, 4]. In the context of this

paper we simply reuse those techniques.

4.4.2 Label Analysis

In the second phase of the integrated system we try to derive a dimension for each label

contained in a cell that has been identified as a header by header inference. This pro-

cess works by (a) splitting labels into separate words, (b) removing word inflections, (c)

mapping word stems to dimensions, and (d) combining dimensions into one dimension.

For example, cell E1 in Figure 4.1 is a header cell and is therefore subject to label

analysis. Its value can be split into the two words “Total” and “Gallons”, and the plural of

“Gallons” can be removed. The resulting “Gallon” can then be mapped to the dimension

gal. In contrast, “Total” cannot be mapped into any dimension and will thus be mapped to

{}. Finally, the combination of both dimensions yields “Gallons”. If no part of a header

label can be mapped to a dimension other than {}, the label is mapped to a dimension

variable δ , which indicates that the dimension is at this time unknown.

4.4.3 Identify Dimension and Label Axes

The goal of our system is to exploit one axis for dimension checking and the other for

label checking. In the formal rule system, this separation of analysis is reflected by two

new judgments, S,L ` a : ` and S,D ` a : d. These judgments specify how the integrated

system gets labels and dimensions for each cell. The header relationship H identified in
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the header inference phase has to be partitioned into two parts H = L∪D where:

• L is the set of headers that define labels

• D is the set of headers that define dimensions

If a cell has two headers, one of which defines dimensions and the other which defines

a plain label, both of these pieces of information are exploited to make the inference

stronger, as can be seen in the COMBOHDR rule in Figure 4.2.

To facilitate the partitioning of the header relationship, we have to identify table re-

gions in a spreadsheet and for each table its horizontal and vertical label axes. The infor-

mation provided by label analysis allows us to the identify the following three cases for

axes:

1. No Dimension Axis

2. One Dimension Axis

3. Two Dimension Axes

In the following we will describe each of the possibilities in some detail.

No Dimension Axis In the simplest case, that is a spreadsheet that has no units of mea-

surement, there will be no dimension axis. If this is the case, then there is no need to

run dimension inference at all. The previous system would not have been able to detect

any errors. However, with the integration of label-based reasoning we can run UCheck to

detect label errors. While this is not the goal of the system, it does give the tool a function

for spreadsheets without dimensions.

One Dimension Axis The situation where this system is most useful is when there is

one axis that contains dimensions in a spreadsheet. If this is the case, the system will

be able to combine label-based reasoning with dimension inference. The system will use

the identified dimension and label axes to assign labels and dimensions for each cell in a

spreadsheet. This information can then be used to detect errors.
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As an example, we again look at Figure 1. The two identified axes will be row 1 and

column A. In this case these share a cell, A1, which has been identified as a header for

A2, A3, and A4 (for details, see [1]). As it is a header for all of the cells in the vertical

axis, it is included with them and ignored in the horizontal axis. To correctly identify the

dimension axis, the headers are mapped to a dimension. In this example, every header in

row 1 and none of the headers in column A maps to a dimension. This makes the decision

easy, and the horizontal axis, row 1, is chosen as the dimension axis, with column A being

used for labels.

The labels for all headers in the dimension axis are defined as the one unit, 1, and the

dimensions for all headers in the label axis are defined as the unit dimension, {}. This will

give the system the flexibility to use both label-based reasoning and dimension inference.

Two Dimension Axes The final case occurs when dimensions exist in both axes. Should

this arise the system will not attempt to use label-based reasoning to assist dimension in-

ference. It will instead do a pure dimension analysis using the method described previ-

ously.

4.4.4 Combined Label and Dimension Inference

The fourth step of the integrated system is a “label-aware” dimension inference, which

inspects each cell containing a formula and derives for it a dimension and a label using

the system of rules given in Figure 4.2. In the previous incarnation of this system a rule

application could result only when a dimension could not be inferred. Now an additional

failure point has been added. If the labels cannot be combined as described in Section

4.3.3, then the formula is also declared erroneous.

The relationship between formulas and dimensions is formalized through the follow-

ing judgments that tie together the idea of dimension and label axes and the previous

judgments from dimension inference.



72

S,L ` a : ` S,D ` a : d

LABHDR
L(a) = {a1} S(a1) = `

S,L ` a : `

DIMHDR
D(a) = {a1} S(a1)⇒ d

S,D ` a : d

S,H ` a : `,d

NOHDR
H(a) = ∅

S,H ` a : 1,δ

COMBOHDR
S,L ` a : ` S,D ` a : d

S,H ` a : `,d

S,H ` e : `,d

VAL

S,H ` v : 1,δ

REF
S,H ` (a,S(a)) : `,d

S,H ` ↑a : `,d

COUNT
S,H ` ei : `,d

S,H ` count(e1, . . . ,en) : `,{}

IF
S,H ` e2 : `,d S,H ` e3 : `,d

S,H ` if(e1,e2,e3) : `,d

ADD
S,H ` e1 : `1,{bn

f1
}∪d

S,H ` e2 : `2,{bn
f2
}∪d `1 o `2→ ` c1 = f1/ f c2 = f2/ f

S,H ` c1 ∗ e1 + c2 ∗ e2 : `,{bn
f }∪d

MULT
S,H ` e1 : `,d1 S,H ` e2 : `,d2 d = d1 ./ d2 V (d)

S,H ` e1 ∗ e2 : `,d

S,H ` (a,e) : `,d

CELL
S,H ` e : `,d S,H ` a : `,d

S,H ` (a,e) : `,d

Figure 4.2: Combined System rules
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1. Value Judgment

v⇒ d says the value v, if used as a label or factor, describes the dimension d.

2. Header Judgments

S,L ` a : ` and S,D ` a : d transform the header information into dimension and

label assignments for addresses. These judgments rely on the separation of H into

L and D performed by the dimension/label axis identification step. Specifically,

S,L ` a : ` (S,D ` a : d) says that in the spreadsheet S and given label (dimension)

header L (D), the location given by address a has dimension d (label `).

3. Expression Judgment

S,H ` e : `,d says that in the spreadsheet S and given the header structure H, the

expression e has label ` and dimension d.

4. Cell Judgment

S,H ` (a,e) : `,d says the cell (a,e) in the spreadsheet S has the label ` and dimen-

sion d under the given header relationship H.

To show how these rules are applied to a spreadsheet, we will investigate how they are

used on the cells containing errors in Figure 4.1.

The first such cell is D4. This cell contains an addition and thus will be checked by

the ADD rule, which instantiates as follows for D4.

S,H ` B4 : Car[BMW],{Miles}∪{} S,H ` C4 : Car[BMW],{Gallons}∪{}

Car[BMW] o Car[BMW]→ Car[BMW] c1 = f1/ f c2 = f2/ f

S,H ` B4+C4 : BMW,?

Since the dimensions in this formula are not compatible, a result dimension cannot be

derived, and an error is produced.

The behavior of multiplication errors can be seen by looking at the cell F2, for which

the rule MULT is employed.
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S,H ` E2 : Car[VW Bug],Gallons

S,H ` D3 : Car[Camry],MPG d = Miles V (Miles)

S,H ` E2∗D3 :?,Miles

While the dimensions in this multiplication are fine, the labels Car[VW Bug] and Car[Camry]

are not compatible. Thus an error has been identified. For this formula to be correct D3

would have to be changed to D2, which also has the label Car[VW Bug].

4.4.5 Dimension Instantiation

An inferred dimension might contain dimension variables and/or conversion-factor vari-

ables. The occurrence of variables happens whenever the spreadsheet does not provide

enough information to precisely narrow down the dimensions. In these cases we have to

find substitutions for the variables to obtain proper dimensions.

The instantiation of dimensions can be realized by generating substitutions for conversion-

factor variables so that default dimensions are obtained and by generating substitutions

for dimension variables that produce valid dimensions. Of those valid dimensions we can

then select the one that is most common (as indicated by the numbers to be reported in

Section 4.5).

4.5 Evaluation

We have extended the dimension inference tool with the ability to perform automatic

dimension analysis with label-based reasoning. This tool reuses the header analysis im-

plementation [1] of the UCheck tool [4] and is based on the dimension inference tool in

[14]. In this section we describe an evaluation of this system to answer the following

research questions.
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RQ1: How does the combined system compare to pure dimension inference?

Dimension inference can be an effective tool to check formulas and spot errors in spread-

sheet computations, but it ignores much of the structure of spreadsheets. By integrating

label analysis we expect to see a considerable improvement in the detection of errors.

RQ2: Do we lose anything by adding label-based reasoning?

By integrating label-based reasoning with dimensions it is possible that the system could

lose the ability to detect dimension errors. Due to how dimension axes are treated this

seems unlikely, but is an important question to answer.

RQ3: By turning off labels on one axis do we lose errors?

Most label-based systems involve using labels from both axes in a spreadsheet. With one

axis being used to define dimensions, how many label errors are not caught by the system?

RQ4: How many tables map cleanly into two axes?

If the tables in a spreadsheet do not map cleanly into two axes, it will be difficult for the

integrated system to run successfully. Knowing how many tables do not map cleanly will

provide a negative estimate of how useful the system can be.

RQ5: How many tables contain dimensions on only one axis?

The primary case for this tool is when dimensions occur on only one axis of a table. We

will try to determine exactly how many spreadsheets in the EUSES corpus fall into the

category of having one dimension axis and one label axis. This will allow us to further

gauge the usefulness of this tool.

4.5.1 Experiments

To answer these research questions we have employed the EUSES spreadsheet corpus [9],

which currently contains 4498 spreadsheets collected from various sources. Of these 4498

spreadsheets only 487 contain both dimensions and formulas. Dimension inference, the

integrated version, and UCheck were run on all of these spreadsheets to determine how

well each system fared and how many errors each found.
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For RQ1 and RQ2, we compared the results of dimension inference and the integrated

system. Specifically, how many additional errors did the new system find that were not

able to be caught by the old system, and how many errors were not able to be caught when

label checking is introduced.

To investigate RQ3 we compared the results of the new system with those of UCheck.

By doing this comparison we were able to identify possible label errors that the integrated

system was not able to detect, but that were caught when both axes are used for a pure

label-based system.

Finally, for RQ4 and RQ5 the mapping of axes for all the 487 spreadsheets with di-

mensions was investigated to see how many mapped cleanly and to how many dimension

axes. Since spreadsheets can have multiple tables, this mapping is performed on all 567

tables in these spreadsheets.

4.5.2 Results

The main experiment was running the three systems on the subset of dimension sheets in

the EUSES corpus. This process gave us the necessary information to be able to determine

how well the new system operates.

Dimension inference was able to detect 47 spreadsheets with a total of 241 dimension

errors, the integrated system was able to detect 77 spreadsheets with errors and a total of

674 errors, and UCheck identified errors in 17 sheets with 151 total errors. The overlap

of errors is shown in Figure 4.3.

To determine false positives, the spreadsheets with errors were looked at more closely.

We found that the integrated system produced 11 false positive instances that resulted in

78 total errors, whereas dimension inference found 7 false positive instances that resulted

in 49 total errors. The 7 false positives of dimension inference were all inherited by the

integrated system. Of the 7 false positives, 6 were caused by label analysis, and one was

caused by incorrect header inference. Of the additional 4 false positives in the integrated
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Integrated System

47

0

UCheck Dimension
Inference

11

6 0

0

19

Integrated System

241

0

UCheck Dimension
Inference

52

99 0

0

415

Figure 4.3: System comparison: Identified erroneous spreadsheets (left) and total errors
(right)

system one was caused by label analysis and 3 by incorrect header inference.

To determine how many tables contain dimensions in both axes, the axes mapping was

logged for every relevant table. When this mapping was performed 128 out of a total of

567 tables contained dimensions in both axes.

There were also 22 tables that did not map well into axes. In general, these were

caused by a failure in header inference, in which the headers were not able to be deter-

mined.

4.5.3 Discussion

Due to how the new system handles the axes in a spreadsheet the new system did not

“lose” any dimension errors. All of the dimension errors are caught by both systems.

This is unsurprising as label integration in no way changes how dimensions are handled.

If both axes contain dimensions then the system will ignore label-based reasoning and

simply perform dimension inference. If dimensions only occur on one axis, then labels

will not reduce the number of errors that can be detected.

The final comparison brings up one shortcoming of the system. When we look at the

results from UCheck and the results from the new system, there are 6 spreadsheets and
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99 additional label errors that the new system was not able to catch. These errors all are

caused by a label error based on the dimension axis. Since that axis was being used to

define the dimensions in the spreadsheet, the labels were not used to catch label errors.

The numbers for the axes mappings are very encouraging. In only 22 tables or 3% of

the total spreadsheets, the headers were not able to be mapped to axes. This defect was

due one of two facts. Either labels were only present on one axis, or the header inference

was not able to determine proper headers for that sheet.

This number is encouraging as it means that most of the sheets will be able to be

used by the system. In general 128 tables mapped to two dimension axes, which means

that 22% of the tables with dimensions will not have different results when the integrated

system is run on them. This is another encouraging number since it means that a vast

majority of sheets will be able to gain more error checking capabilities with the integrated

system.

4.6 Related Work

The system that is most closely related to our work is SLATE [17], which separates the

unit from the object of measurement and defines semantics for spreadsheets so that the

unit and the object of measurement are considered.

SLATE is the only system that attempts to measure both labels and dimensions, and

it does this by assigning three attributes to every expression: a value, a unit, and a label.

The value is what is contained in a cell. Units, such as meters, kilograms, and seconds,

capture information about the scale at which the measurement was taken and the dimen-

sions of the measurement. The final attribute, labels, defines characteristics of the objects

of measurement. For example, a cell referring to 25 pounds of apples might read “25 lbs.

(apples)”.

For this system to work correctly it requires a user to annotate a spreadsheet, which

involves adding the units and labels to every non-formula cell. The system then analyzes
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the formula cells and determines the unit and label for these cells. This information is

then displayed in the cell. One of the primary problems with this approach is that is does

not actually detect errors, it simply displays labels and units for each cell.

Another related system is XeLda [10] which is designed to check a spreadsheet for

units of measurement, such as meters, grams, and seconds. Much like SLATE, XeLda

requires the user to annotate the units for all of the cells in a spreadsheet. Note that this

does not only include data cells, but also all formula cells. While analyzing a spreadsheet

XeLda checks the annotated units against the results of formulas to insure correctness.

The advantage of the XeLda approach is that it works well independently of the

spreadsheet layout, whereas our approach depends on header and label analysis. On the

other hand, XeLda’s disadvantage is the huge amount of extra work required by the user

whereas our approach is fully automatic. Moreover, XeLda cannot infer conversion fac-

tors.

With respect to the error discussed in the Section 4.2 that requires a combined label

and dimension analysis for its discovery, SLATE would infer a proper dimension together

with a label (VW Bug, Camry), which is meant to draw the attention of the user and

hopefully point out something that might be wrong with the formula, but it is not marked

as an error. XeLda would not be able to catch this error as it depends entirely on units of

measurement annotated by the user.

UCheck [4] was designed to check for labels in a spreadsheet, and as such it does not

handle dimensions. UCheck works by inferring headers for all the cells in a spreadsheet,

based on the structure and content of the spreadsheet. Once these headers are inferred, the

system derives labels for the cells and checks for label errors.

While UCheck works completely automatically, some other related approaches re-

quire the user to annotate the spreadsheet with label information [22, 9]. The same advan-

tages and disadvantages that we have mentioned for XeLda apply here as well.
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4.7 Conclusions and Future Work

We have introduced a system that integrates label-based reasoning with dimension analy-

sis. This integration has strengthened the system considerably with the evaluation show-

ing almost a twofold increase in the number of errors that the system is able to detect.

In future work, we will try to strengthen the integration of UCheck and dimension

inference further. We have seen that some label errors were missed because some of the

labels were exclusively used for dimension analysis. We could potentially catch more er-

rors by running the combined system and UCheck and taking the union of errors reported

by both systems. However, this might also increase the chance of hitting more false pos-

itives. To study different options for an integrated system, we can employ the system

architecture that we have developed in previous work [29].

Additionally, the manual and automatic approaches could be combined so that users

could easily view and correct errors, as well as provide additional annotation as needed.
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Chapter 5 – Conclusion

Throughout this thesis we have introduced a system for inferring and checking dimensions

in spreadsheets. Starting from pure dimension analysis and then adding the ability to

check for labels, the system can identify errors in formulas, because dimensions place

constraints on how operations can act on values. While the systems described in this

thesis have slightly different functionalities, the main goal of each is the same, to check a

spreadsheet for dimension errors. Despite the differences, they all share several traits in

common, which separates them from previous approaches in several ways.

• No user annotation required. While many systems require user input to define

dimensions or units for cells, our systems are able infer labels for cells automatically

and use this information to determine the expected dimension. This minimizes the

amount of work a user has to do in order to use the system as well as making it

easier to use.

• Dimension inference. There can be cases when a spreadsheet contains only partial

dimension information. For example, only a few columns have labels that can be

inferred as a dimension, while the other have ambiguous labels. These systems

can determine these undefined dimensions through the use of the defined dimen-

sion inference rules. This aspect contributes to the flexibility and robustness of the

presented system.

• Conversion factors allow different units of measurement. Some formulas in a spread-

sheet require conversion of quantities whenever non-compatible dimensions, such

as meters and feet, are involved in additive operations. The described rule system

can identify required conversion factors.
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• Dimension instantiation. As a consequence of dimension inference there are sit-

uations in which dimension variables remain unsolved at the end of the analysis.

These “dimension templates” can be instantiated to the most likely dimensions ex-

pected.

The fact that these systems differ from other, similar, systems, does no inherently

mean they are better or even that they are effective in finding dimension errors in spread-

sheets. To show these several evaluations were performed. These evaluations showed

these systems to be efficient in determining dimension errors. In addition the combined

system showed great improvement over the original and is a significant upgrade in terms

of functionality and the number of errors detected and could prove to be very valuable to

end users.

In addition to showing that the systems work efficiently the evaluations have also

revealed several promising directions for future research.

First, we could improve these systems with a more accurate header inference. One

of the biggest problems that these systems have is with incorrect or missing header infor-

mation. If this is the case, the systems can infer the wrong dimensions for specific cells.

This arises from the fact that the header inference can at times be rather heuristic. One

way around this would be to employ header patterns which categorize the different ways

that headers are used in spreadsheets. This information can be used to increase the ability

to recognize headers. For example, if a spreadsheet can be identified as having a certain

header pattern, then the headers will be set up in a certain way. This may reduce the work

it takes to correctly identify headers and it also can be used to better resolve ambiguous

cases.

Some preliminary work has been done to determine the different types of header pat-

terns. With this information in hand a system that looks at the spatial aspects of a spread-

sheet and matches it with one of the predetermined header patterns may be able to more

accurately map the headers of a spreadsheet leading to fewer header mismatches.
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Secondly, ways to combine manual and automatic dimension checking techniques

should be explored. This combination would allow users to change or supplement dimen-

sions that are determined by the system with dimensions that are either more correct or

add information. There can be cases where there is not enough information to determine if

a formula is actually correct. For example, if the header of the resulting formula does not

contain any dimension information, nothing can be done to validate the result. Once the

system has determined this it can be pointed out to the user, giving them an opportunity

to manual add a dimension for that header.

Thirdly, one could imagine ways to improve this in the eyes of users. These systems

could be tested with user systems to see if the information that they present makes sense

and if there are better ways to display these error messages that make them more man-

ageable or easier to understand. These user studies could also provide ideas that would

possibly lead to future research opportunities.

As the evaluations show the systems presented in this thesis can be effective in finding

dimension errors. It has been demonstrated that the majority of errors and can be found

with minimal false positives. The fact that these systems can operate automatically is

beneficial and one of the properties that make these systems unique.

The work of combining label and dimension analysis created a much stronger system

and demonstrates the power of integrated analysis. This system was able to find all label

and dimension errors caught by the independent systems as well as many errors that were

not caught by either label or dimension analysis. The strength of this system shows how

powerful and useful these tools can be to end users and that they provide a simple way to

check a spreadsheet for multiple types of errors.
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