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Disaggregative and individual-tree/distance-independent modeling methods are

compared and contrasted. Differences between the two are related to differences in functional

and apparent resolution and may be illustrated using aggregation theory. When considering

models of different levels of resolution describing a given phenomenon, invariance with respect

to the aggregation implied (symmetry) may be important to both the modeler and the user

alike. In the absence of invariance between stand and tree-level predictions, conflicting

predictions arise.

Some limitations of whole-stand models are also present in disaggregative models,

however one way to bridge the gap between traditional individual-tree/distance-independent

and whole stand models may be to use the individual-tree growth function in concert with the

whole stand projection model as a disaggregator of growth. While the use of individual-tree

models in this way is intuitively appealing, findings in this paper indicate that the more

traditional, unconstrained tree growth functions may better predict growth of individual-trees.

Five-year growth data from 105 Douglas-fir stands in western Oregon were used to

compare various individual-tree, disaggregative and whole stand models at both the stand



and tree level. Traditional approaches to disaggregation were unable to match the individual-

tree growth rate functions for predicting five-year growth rate of individual-trees. Both

suffered due to a lack of any index of tree position, lack of a crown ratio component, and

reliance on linearity between growth and tree dimension. The very simple proportional

allocation approach based on tree dimension was most unsatisfactory. It remains to be seen if

these trends will also hold for longer term projections of growth.

At the stand level, the symmetric disaggregative model reduces to a simple whole

stand approach to modeling. With respect to whole stand predictions, the individual-tree

gross basal area growth model resulted in lower mean squared error than the aggregate (whole

stand) model. There is a loss of information associated with the aggregation of tree data to

predict growth. This loss of information may be responsible for the differences in mean

squared error. Some of this difference may also be attributed to the inclusion of crown ratio

in individual-tree predictions of growth.
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Disaggregative and Individual-Tree Growth Models in Theory and Application

Chapter 1

Introduction

1.1. Existing Tree-Based Distance-Independent Architecture

Research in the field of growth and yield has provided two related methodologies for

modeling the dynamics of forest stands. These are individual-tree/distance-independent

models and disaggregative models. While the individual-tree/distance-independent models

have gained wide acceptance and application (Stage 1973, Beicher et al. 1982, Wensel et al.

1986, Hann et al. 1992), examples of disaggregative models are fewer, and less well known.

Some examples of the disaggregative models include Opie (1972), Dahms (1983), and

ilarrison and Daniels (1987).

Individual-tree/distance-independent models maintain functions for individual-tree

growth as a function of tree and stand variables. A sample tree list with measured diameters,

heights, and often crown ratio is required to operate such a model. The trees are "grown" by

functions which will predict each element of tree dimension used from the tree list. The

functions work together to simulate the development of stands over time. Stand dynamics

are inferred from aggregating the individual-tree predictions over the sample of trees for the

given stand. Competitive stress on any given tree is reflected in distance-independent

measures of tree position in the stand and or stand density measures. By distance-

independent is meant that tree coordinate locations in the stand are not employed.
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The disaggregative model works by first aggregating tree-level information to drive a

whole-stand model for growth of some feature(s) of the stand. This growth is then effectively

disaggregated, or divided up amongst trees in a sample tree list by means of some simple

allocation relating tree growth and tree size in such a way that larger trees are allocated

greater growth than small trees in the sample. The key feature of this methodology is that

the whole-stand component drives the model. The disaggregation function is subservient to

the stand-level prediction.

Either modeling method is capable of maintaining tree-level information in growth

projections. They are related because both are, to some extent, dependent on individual-tree

information and both have the capacity to provide output of similar resolution. Because of

the apparent interchangeability of these two modeling strategies from a standpoint of utility

and dimensionality, either may be considered as a viable option for any modeling application

where the within-stand variability reflected in a tree list is of interest, yet inter-tree distances

are not to be maintained or considered in the system.

Both are capable of incorporating some information from individual sampled trees

into any given projection of growth over time. While the development and application of

traditional individual-tree models is well documented and understood, the disaggregation

method is less so. In order for modelers and users to make informed decisions on the

applicability of both of these methodologies it is important to more fully understand the

advantages and disadvantages of each.

The modeling methods discussed here have a decidedly practical goal; they are

intended to predict, for actual sampled stands, growth and yield, over a period of interest to

forest managers. Often managers may need to predict growth to some rotation, or simply to

update inventory records for a more limited time horizon. Because of this, the key factor of

interest to both modeler and user alike, is the ability for a given modeling methodology to

match closely the actual growth to be achieved by the stand of interest.
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The purpose of this paper is to investigate the comparability of both methodologies

in two ways. The first area of discussion addresses the theoretical or philosophical differences.

The second phase of this discussion is based on an empirical evaluation, both at the stand-

and tree-level, of the differences between several applications of the general methodologies.



1.2. Theory

Chapter 2 presents a discussion of the differences, and similarities, between

disaggregative and individual-tree/distance-independent models. At first glance, it may

appear that the two "different" modeling approaches are really one and the same. Some

modelers may yet hold to that opinion. One difference, however, is that individual-

tree/distance-independent models make use of a passive aggregation scheme while

disaggregative models employ a dynamic aggregation scheme. A second difference is that

disaggregative models tend to be simpler. This simplicity is not a necessity, but rather by

tradition, reflecting a philosophical preference toward less complex structures.

It is important to note that, within any given general modeling construct, there are

any number of different specific expressions of that construct. Models such as Prognosis,

CACTOS, STEMS and ORGANON all differ to varying degrees in such things as

specification of model forms, selection of driving variables, as well as selection of primary and

secondary components of the dynamic representation. Since the early versions of Prognosis

(Stage 1973), the number of individual-tree models has increased, as have the number of

variations of this modeling theme. It is not the intent of this study however, to address

questions pertaining to which specific approach to individual-tree growth and yield modeling

is best.

Rather the emphasis of this study is to focus on the examples of disaggregative

models which have been published, and how they relate to passive aggregation. As with

individual-tree/distance-independent models, there are striking differences among the various

disaggregative modeling efforts which have been presented in the literature. The traditional

disaggregative model is very simple, often being dependent on only one tree dimension, such

as basal area, or diameter. The relative simplicity of the traditional disaggregative

simulators does allow for some generalizations to be made about the degree to which any

particular function may be appropriate.

4



1.3. Application

In Chapter 3 both individual-tree and disaggregative modeling techniques are

compared empirically for predicting basal area growth at breast height. The analysis is based

on 105 Douglas-fir stands in western Oregon. The methods presented include individual-

tree/distance-independent growth models, both constrained and unconstrained for predicted

stand growth. Disaggregation functions include both additive and proportional allocation

disaggregators. These are evaluated at both the stand and tree level.

The analysis does provide a first glimpse at the type of predictions one can expect to

generate for various modeling methodologies. The analysis is limited by the scope of the

data. These are generally even-aged single species stands. Furthermore, since these are

evaluated for one 5-year projection period, it is not possible with this analysis to determine,

with any certainty, the long term implications of the various modeling methods. Long term

analyses are complicated by additional model components necessary for completeness of a

model. The findings here may help direct further study of this topic and provide a basis for

decisions on model structure for future modeling efforts.

5



Chapter 2

Symmetry and Aggregation: Implications in Disaggregative and Individual-Tree Modeling

2.1 Abstract

Two fundamentally different, yet logically linked, simulator types are individual-

tree/distance-independent and the whole-stand/disaggregative. This paper addresses some of

the similarities and differences between these two methodologies. A discussion of assumptions

underlying various applications of these techniques for simulating stand dynamics is presented

in order to foster a better understanding of the proper application of these models.

The concepts of symmetry and aggregation are introduced as central themes in the

differences between these two approaches to modeling. The implications of the use of either

of these two types of simulators in predicting growth and yield need to be considered in

comparisons of these two philosophically different modeling approaches.

Disaggregative models may be lacking in the ability to predict growth of structurally

diverse stands or stands of advanced age. These models rely on an assumption that

individual-tree information is irrelevant to the prediction of stand growth. Typically these

models allocate predicted stand growth based on tree dimension, ignoring tree position

variables or crown ratio.

6



2.2 Introduction

Growth and yield research efforts have provided forest managers with an expanding

selection of tools for predicting stand dynamics and anticipating response to various

management alternatives. The emergence of personal computers has provided increased

access to computer based management tools such as growth and yield models. Existing

models used to simulate stand growth may employ any one of a number of accepted modeling

methodologies. Munro (1973) provided a classification scheme for some of these. In the years

since, others have been invented which do not readily fit into Munro's classification. While

Munro's system of classification may be, in retrospect, somewhat limited in application, it has

provided a basis for differentiating between models and understanding how they relate to one

another.

Two closely related methodologies are those used in individual-tree/distance-

independent models and disaggregative models, although some characteristics of

disaggregative models are borrowed from whole-stand models. Comparisons between the

individual-tree and disaggregative models are natural since they both work with tree-level

data. While some similarities are obvious, the characteristics which differentiate these two

paradigms and their implications are less so. The objective of this discussion is to establish a

basis for understanding these similarities and differences. This is necessary in order to

properly judge the applicability of different methodologies. Concepts of aggregation theory,

resolution, and symmetry are introduced in order to facilitate this discussion.

Aggregation theory provides a foundation for a discussion of modeling methods used

in many fields of study. The concepts of consistency or, more generally, symmetry are at the

heart of this discussion. Four types of symmetry (perfect symmetry, filtered symmetry,

constrained symmetry, and characteristic symmetry) are discussed here in the context of

growth and yield modeling.

7
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These concepts are useful in establishing a better understanding of the functioning of

forest growth and yield models, and the design effects on predictions both at the stand level

and the tree level. Resolution is a key element of simulator design. It is argued here that the

disaggregative approach is, in some respects, a whole-stand approach and functionally very

distinct from the traditional individual-tree methodology.

Evaluation of either of these models may take place at either the stand (aggregate)

level, or at the tree level. It may be argued that the proper modeling methodology depends

on level of detail needed of output. That is, the best approach may depend on the intended

use of the simulator in question. This reflects a utilitarian perspective of models which may

well be justified given their very practical objectives. Users generally are not interested in the

more theoretical aspects of model design, but rather the more practical aspects of anticipating

how any particular stand is likely to develop over time. It may also be true, however, that

the very nature of the process and the assumptions driving any particular methodology are

critical in determining model applicability.



2.3 Common Modeling Constructs

Three common model constructs for forest stands are individual-tree/distance-

independent, disaggregative and whole stand models. Whole stand models are relevant to

this discussion because disaggregative models are derived from these. The philosophy

reflected in any given model may be instructive in understanding applicability.

The factors or variables used in stand and tree growth models can generally be

categorized in one of several classes: tree dimension (w), tree rank (p), tree unit area

expansion factor (n), site quality (5), stand age (A), and stand density (D). Tree level

variables are represented here by lower-case letters, and stand-level or aggregate variables are

represented by upper-case letters. Tree-level variables may be aggregated to obtain stand-

level expressions for density. For example, individual-tree expansion factors may be

aggregated to obtain the number of individuals per unit of area.

We will consider various model constructs in terms of these types of variables. Tree

dimension, w, may include diameter, height, crown length, or all of these. Tree rank relates

the size of the subject tree to the size of the other trees in the stand. This relationship can be

relative, such as the height of the subject tree divided by the top height of the stand (Ritchie

and Hann 1986), or the diameter of the subject tree divided by the quadratic mean diameter

of the stand (Cole and Stage 1972), or the relationship may be expressed in absolute terms

such as the basal area per acre in trees with diameters larger than the subject tree's diameter

(Wykoff et al. 1982, Hann and Larsen 1981) or crown closure at some percentage of the

subject tree's height (Wensel et al. 1987, Hann and Ritchie 1988).

The unit area expansion factor determines the number of trees per unit area each

individual represents in the sample. Site quality can be expressed as site index (Wensel et al.

1987, Hann and Larsen 1991) or in terms of variables such as habitat classification , slope and

9
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aspect (Wykoff et al. 1982). Stand density may be expressed any number of ways, and many

of the more common density measures are closely related (Curtis 1970). In ORGANON,

density is expressed simply as stand basal area (Hann and Larsen 1991), in Prognosis, crown

competition factor (Krajicek et al. 1961) is employed as measure of stand density (Wykoff et

al. 1982) and both of these are based on an aggregated transformation of tree diameter.

Density in DFSIM (Curtis et al. 1981) is expressed by a relative density index,

RD stand basal area
(quadratic mean diameter )1I'2

For the purpose of illustration, the following discussion will consider a very simple

modeling objective, that of predicting gross basal area growth. In this context it is possible

to construct either an individual-tree model, a whole-stand model, or a disaggregative model.

2.3.1 Individual-Tree/Distance-Independent Models

Operationally, individual-tree models have been widely applied, particularly in the

western United States. Examples include Prognosis (Stage 1973, Wykoff et al. 1982) and it's

numerous variants, STEMS (Beicher et al. 1982), CRYPTOS (Krumland 1982), CACTOS

(Wensel et al. 1986), ORGANON (Hann et al. 1992). These simulators are representative of

a modeling technique as well as a philosophical view of the system in question. This is a

reductionist approach in which the heterogeneity inherent in the dynamics of any aggregation

of trees is accounted for by modeling trees individually and then aggregating these individual

projections to realize the dynamics of the aggregate (or stand). One primary justification for

this tactic is that the behavior of some aggregates of trees, particularly those representing

uneven-aged conditions and/or mixed species, may be too complex to have well defined

functional relationships at the aggregate level.

In some modeling constructs, the problem may be addressed by partial aggregation.

As with the individual-tree methods, partial aggregation is also a reductionist approach,
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differing primarily in the degree to which the reduction is taken. For example, Lynch and

Moser (1986) opted to use the species cohorts as the modeling unit. In theory, individual

species cohorts should behave in a more predictable fashion than would some aggregation of

the cohorts. In any reductionist approach, the opportunity for output at higher levels of

resolution is maintained.

Output may be fully aggregated or partially aggregated (to diameter class level or to

species cohorts for example). Since the dynamics of the aggregate are implied by the

aggregate of the individual predictions, this strategy results in a simulator which may better

characterize growth in a more diverse array of conditions than may be addressed with a lesser

degree of reductionism.

The precise means of aggregation is dependent on the sampling methodology

employed. The sampling methodology determines the expansion factor which quantifies the

number of other trees in the stand represented by any given sampled tree. Each tree in a list

of sample trees acts as a surrogate for some number of other trees in the stand for the purpose

of simulation of growth and yield over some unit of area. The greater the sampling intensity,

the more trees which are sampled and hence the fewer individuals that one must infer are

"like" the individual in the sample. One assumes that by knowing the status of some

number of individuals in the stand, and by being able to make predictions about their growth

and probability of mortality, that one may be able to make reliable predictions of the

aggregate.

The variables used in individual-tree models generally fall into one of four classes:

tree dimension, rank, site quality and stand density. For illustration, consider a very simple

individual-tree/distance-independent model based on a tree basal area increment function:

ba = i,b(w,p,S,D), [2.1]

where, for this particular illustration:

Lba = tree basal area increment,
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w = tree diameter,

p = diameter based rank variable (e.g., Stage 1973; Hann and Larsen 1991),

S = site index,

D = diameter based density variable, such as stand basal area.

In the absence of mortality, this will be sufficient to build a very simple tree-based model.

Tree growth predicted with such a model can be aggregated to the stand level by summing

the growth prediction times the expansion factor (n).

In many individual-tree models, additional tree-level variables, such as crown ratio,

are employed in growth functions. Addition of such variables precipitates a need for

additional equations to reflect their dynamics and, as a result, the system can become quite

complex. Each additional variable is dependent on a system of equations for prediction. This

complexity is one of the drawbacks of this particular type of model. It can be difficult to

anticipate the behavior of a whole suite of functions working together over a long projection

period, even if those functions seem reasonable when viewed alone.

2.3.2 Whole-Stand Models

In contrast to individual-tree models, whole stand models are fully aggregated

approaches to predicting stand growth and yield (e.g. Curtis et al. 1981; DeMars and Barrett

1987). Whole-stand models are conceptually simpler than individual-tree models. As with

any modeling endeavor, the whole-stand modeling method presupposes that the modeling unit

in question (in this case the stand), has a functionally definable relationship for the dynamics

of those quantities of interest to be modeled. It can therefore be argued that structurally

diverse stands, or those comprising a variety of species, are ill-suited to the stand level

approach. As was mentioned earlier, one means of dealing with this problem is to develop a

model based on some intermediate level of detail as in a diameter-class model (e.g., Hann
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1980) or a model based on species cohorts (e.g., Turnbull 1963; Lynch and Moser 1986); these

types of models are not truly whole stand models, nor are they individual-tree models, rather

they occupy an intermediate position with respect to the level of detail.

True whole-stand models are generally driven by aggregated variables, or those which

reflect an assumed homogeneity within the stand such as site index, and do not provide for

tree level predictions. While the input requirements are very simple, the output is restricted

to aggregate stand descriptions such as volume, number of trees, or basal area per unit area.

If additional parameters are quantified to more fully describe the distribution of some

variable, then more detailed output may be derived by means of idealized probability density

functions.

As a simple parallel to the individual tree illustration, consider a model for stand

gross basal area growth (ABA) for some growth interval t:

LBA = 'I'(S,D,A). [2.2]

This model can also be re-expressed for basal area at the end of a 1 year interval (BAA+t):

BAA+t = BAA + (S,D,A).

Age is frequently used in whole stand models, and therefore, age must be well defined for any

stand of interest. If a stand is uneven-aged, or multistoried, stand age will not be well

defined and an age-based model will be ill-suited. In this simple example, basal area can be

predicted at any given point in time, assuming no mortality and assuming that density is to

be expressed in terms of trees per unit area, or basal area per unit area, or both. While this

is a naive system, it will serve to illustrate application in disaggregative models.

2.3.3 Disaggregative Models

Yet another method of modeling stand dynamics, which has not been as well

documented or widely applied, is the disaggregative model (e.g., Opie 1972; Dahms 1983;
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Harrison and Daniels 1987; Zhang 1990), which is a logical counterpart to the individual-

tree/distance-independent type simulators. The resolution of both input and output can be

identical for disaggregative and individual-tree models, however there are fundamental

differences in philosophies and dynamics embodied by these two modeling approaches. The

disaggregative model ostensibly bridges the gap between individual-tree models and whole-

stand models. However, in some respects, the disaggregative approach is really a modified

whole-stand model. Functionally, the disaggregative and individual-tree models are very

different and these functional differences may carry with them some important implications

for applicability.

In Munro's classification, a whole-stand model is one for which the stand is the basic

modeling unit. In disaggregative simulators, individual-tree information is aggregated as

input to the whole stand growth functions, the predicted stand growth is then disaggregated

among trees in the sample tree list. The individual-tree data only affects predicted stand

growth through the aggregate states.

Up to the point where growth is disaggregated, this approach is indistinguishable

from the traditional whole-stand approach. The variables which drive the growth functions

are simple stand-level aggregates such as stand basal area and site index. Growth is allocated

among individual-trees via some assumptions about the current state of individuals as implied

by a disaggregation function. The disaggregation function only serves to express changes in

variability within a stand over time. The central tendency of a stand is an expression of the

whole stand component of the system.

Returning to the previous illustration of a simple whole stand growth equation, a

disaggregation function could employ equation [2.21 for stand growth prediction, and then

derive a prediction of tree basal area growth given this equation:

zba = i,b'(w,p,W(S,D,A)). [2.3]
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Here, stand basal area growth, a function ('p) of site, age, and density, is disaggregated by a

function (&) which is thus dependent on both tree-level data and the stand growth prediction.

Conventional disaggregation functions generally do not include a rank variable; growth is

allocated based on tree dimension, w, alone. It will be shown that the disaggregation

function, ,b', may have certain constraints placed upon it which will dictate important

elements of the model's behavior.



2.3.4 Modeling Distinctions

The individual-tree models mentioned above are distance-independent, that is, the

simulator does not require information on the exact relationship between any sampled tree

and its neighbors. It is assumed that, by knowing the current dimensions of the tree and how

that relates to the general conditions of the surrounding stand or plot, one may make some

inference about the likely growth of the tree. It is further assumed that the information lost

by ignoring the specific spatial arrangement of competitors will not inhibit predictions of that

cohort of individuals represented by any given individual.

The expression of growth for the given individual in the sample is representative of

the average growth expressed by all those individuals being characterized by the surrogate

tree in the tree list. In this sense, the individual-tree simulator has as a modeling unit, some

cohort or class of trees which are represented by the individual in a sample. The state of the

tree is usually described by variables such as diameter, height, crown ratio, and species.

These variables are not necessarily all required, nor are they all inclusive.

If the individual-tree growth predictions are perfect, or as they approach this state,

the aggregate simulation will also be perfect, unless mortality estimation is flawed. Thus the

emphasis is often on the development of individual-tree equations, with the hope that as these

functions perform well, so will the simulator as a whole.

As the individual tree predictions of tree growth and mortality suffer, the stand

predictions may or may not suffer proportionately. If the errors incurred in prediction among

any given sample of individuals somehow balance out, it is possible, in theory anyway, to

obtain reliable aggregate predictions. While the stand aggregate predictions may be

acceptable under such conditions, flaws in the individual-tree equations will, at the very least,

be reflected in the quantification of variability with the stand.

16

There are a number of advantages to the disaggregation approach to predicting
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growth of stands. Primary among them is that the considerable past knowledge of whole-

stand dynamics which can be brought to bear on the problem of simulating stand dynamics.

It can be argued that more is known about gross stand growth than tree growth, as evidenced

by the legacy of growth studies the United States dating back to the early part of this

century. However, much of this knowledge is tied to very simple stand structures; most

traditional yield studies were directed towards single-species, even-aged stands. If

management objectives depart from this ideal, the disaggregation model may be less well

suited.

In addition, there may be some emergent properties which are masked by modeling

at some higher levels of detail (Overton 1977). Aggregate models are generally simpler to

understand (Iwasa et al. 1987), and easier to develop, than more complex models functioning

at a higher levels of resolution.

Yet another advantage is the flexibility some disaggregative models display.

Flexibility in this context refers to the simulators ability to accept input in the form of a tree

list or as aggregated stand values. This may make the disaggregative model applicable for a

larger group of users than individual-tree models which require tree list input.

In a disaggregative model, stand growth predictions are dependent strictly on

aggregate values. However, at higher levels of resolution, growth is dependent on both the

stand growth component and tree level data through the disaggregation function. Therefore,

even if the disaggregation function is flawed or limited in application, stand growth

predictions should be unaffected if the function is properly constrained.



2.3.5 Model Performance

Growth models are imperfect abstractions of real world phenomena. It is intended

that the individual-tree/distance-independent model effectively predict not only the aggregate

(stand) dynamics, but also structural detail within the stand. This is true of disaggregative

models as well. A model should ideally predict well for less aggregated cohorts such as

species groups and diameter classes, so that stand structure may also be quantified.

The effectiveness of any model is determined, to some extent, by the data used in

parametrization and by the artistry of the modeler who invents the abstraction to be

parametrized. This is true of empirical models as well as so called process models which

differ primarily in the type of information and the amount of information brought to bear on

the prediction. The art of modeling involves the modeler's ability to exclude those functional

elements of a system in such a way as to not impair the veracity of the model.

Determination of what is irrelevant is left to the judgment of the modeler. The relevant

elements are those which will suffice to adequately describe some observed phenomena.

In order to establish the adequacy of a model it is important that the objectives be

stated. The objectives of any model are often given inadequate attention (Overton 1975, page

51), and this may result in misapplication. The idea of the adequacy of a model was

expressed by von Neumann (1963)

The sciences do not try to explain, they hardly even try to interpret, they mainly
make models. By a model is meant a mathematical construct which, w2th the
addition of certain verbal interpretations, describes observed phenomena. The
justification of such a mathematical construct is solely and precisely that it is

expected to work.

In the context of growth and yield modeling, the statement that a model "is expected to

work" generally refers to the ability to predict the growth of stands, or cohorts in stands, to

within a specified level of error over some range of conditions. The modeler and the user may

have different definitions of the acceptable level of error, but without a clear specification of

18
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the objectives of a given model, the user is left to make assumptions about the proper domain

of the given model. If the user has objectives which do not form a subset of the objectives of

the modeler, then the user is engaged in extrapolation.

Given that the application of some modeling constructs are to be made within the

domain of the intended application, often the user's decision to choose one methodology over

another is made on such grounds as data required or by the nature of stands being simulated.

Utilitarian concerns aside, questions remain about which approach will provide the "best"

results, where "best" is quantified in terms of the ability of a model to forecast the state of

interest in a system, with associated errors falling within some tolerance level. This dilemma

was phrased by (Ijiri 1971) as:

How should we reconcile the contradictory predictions on the same factor based on
two different theories, each of which, if taken individually, appears to be "correct?"

The ideal simulator would be one for which, given any stand, forecasts of any required trait

could be made with a high degree of precision for any time horizon (Curtis 1972). Obviously,

any model will fall short of this standard, to varying degrees, in at least three ways. These

are: (1) Applicability limited to only some subset of stands with a limited range of

characteristics which might be of interest, (2) Differing performance levels for certain

characteristics of interest, and (3), Simulator "fall-down" for certain time horizons. Ideally,

any discussion of model efficacy should deal with these three areas of concern.

The two methodologies being considered may differ in the applicability to ranges of

stand conditions. Given the propensity of users to extrapolate, the modeling philosophy

which is most flexible with respect to stand characteristics is to be preferred. Furthermore,

since both of the methodologies being considered herein may provide estimates at higher

levels of resolution, one aspect of the comparison of the two is the level of aggregation at

which such comparisons are made. If the comparison is made at the stand level, the ability

to predict states of some population of stands must be evaluated with an eye toward the time

horizon for which predictions will be reliable.



2.4 Resolution

At this juncture we will consider some of the broader implications and assumptions

embodied in these two divergent philosophies; one reductionist, the other holistic. There are

fundamental differences and implied assumptions associated with each of these approaches to

predicting growth and yield. One perspective of the differences between these two

methodologies may be explained in the context of symmetry and aggregation theory, which is

to be discussed later. First, it is important to understand any distinctions being made in

terms of the dimensionality (or resolution) of simulators in general.

Dimensionality and resolution, though related, are not exactly synonymous terms.

Resolution carries with it the concept of breaking an entity (disaggregating) into component

parts. For example, one may consider trees or species cohorts to be component parts of a

stand (aggregate). Resolution does not generally refer, therefore, to the number of

characteristics used to define any given modeling unit or it's dynamics. Dimensionality is a

fairly vague concept which incorporates both the degree to which the system is reduced to

component parts, and the number of states needed to describe any given component. In

matrix notation, dimension refers to the row and column size of any given matrix.

Resolution may be thought of as referring to the row dimension of any given stand

representation.

Therefore, for a stand represented by some matrix of values with rows representing

individual modeling units, the level of resolution of this representation generally increases as

the row dimension increases. For mean stand values, this dimension is one. For a tree list to

be provided to an individual-tree simulator, this dimension is the number of trees sampled.

In this sense a sample of one tree provides the same level of resolution as would a list of

corresponding stand averages.
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Decisions regarding resolution may have a great impact on simulator behavior.

Resolution will affect the detail of output as well as management options. There is no

widespread agreement on the appropriate means to establish the correct resolution. If use

alone is allowed to dictate model resolution, then the appropriate modeling technique is that

which provides the minimally acceptable resolution to the user. However if model

performance is also a concern, and if resolution affects simulator performance, then one might

logically consider the effect of varying the resolution of the system representation.

It may not be possible to fully comprehend, at the beginning of a modeling project,

some of the demands which will be put on any given simulator. Over the years, the

Prognosis model (Stage 1973) has been modified for a number of different regions in the

western United States, and various "modules" have been added. This has been possible, in

part, because of the structure of the simulator chosen when the project was initiated. In this

respect, the individual-tree approach provides a level of flexibility which may be absent in

more highly aggregated structures. Irrelevant information may be disposed of by aggregation,

but if a lower level of resolution is established, information lost to aggregation cannot be

recaptured.

The level of heterogeneity within a system may also influence model resolution. A

greater level of homogeneity may be obtained for the modeling unit by aggregating to some

species cohort (e.g. Vanclay 1991). Clearly, stand dynamics will depend heavily on the

particular species mix, which may be difficult to quantify in a true whole stand model.

Whole-stand models typically assume some fairly restrictive range of species compositions.

Curtis et al. (1981), for example, suggest stands be composed of at least 80% basal area in

Douglas-fir. Therefore, whole-stand models may be limited in application to a subset of those

stands which one might enumerate as forming some super-population of interest.

It has also been suggested that model dimensionality should be dictated by length of

projection (or time) because there is a reciprocal relationship between dimension and time
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horizon for any fixed level of accuracy (Kahne 1976). The longer the projection, the lower the

proper dimensionality. This would suggest that indeed one should choose a model with the

minimally acceptable resolution. However the potential for erratic behavior in models with a

high degree of dimensionality may be ameliorated by placing constraints on models. This

technique has been used effectively in the mortality component of the ORGANON simulator

(Hann et al. 1992) in which individual-tree estimation of the probability of mortality may be

constrained by an approach to a maximum size-density relation for the stand (Hann and

Wang 1990).

2.4.1 Functional and Apparent Resolution

Part of the difficulty in understanding model resolution is the ambiguity of the term.

There are at least two very distinct concepts with respect to the resolution of a simulator;

one may refer to these as functional resolution and apparent resolution. For many simulators

the functional and apparent resolution are the same, for some others they are not. In

situations where functional and apparent resolution are not the same the distinction becomes

critical.

Apparent resolution is the maximum required level of resolution readily seen or

perceived in operation of a model. Generally, it is the apparent resolution which influences

users of models. It is the perceived resolution either from input to (or perhaps output from)

the model. Apparent resolution is, in fact, what Munro (1973) spoke of when distinguishing

between individual-tree and whole-stand models based on the resolution of input. It should

be noted that, often a simulator may require input at several different levels of resolution.

Site quality, for example, is often quantified by site index, which is clearly a stand level input

and may be required for either whole-stand or individual-tree models. Users may choose a

given simulator based on apparent resolution, that of data being used as input, or on the



capacity for producing some desired level of resolution of output.

Given the example whole-stand equation [2.2], one can see that the apparent

resolution is at the stand level. However, for both the individual-tree [2.1] and disaggregative

[2.3] examples, the apparent resolution is at the tree level.

The modeler is often more concerned with the resolution of the dynamic component

of the model, that is the functional resolution. Functional resolution is the maximum

required level of resolution which dictates the behavioral characteristics of the model. For

example, if a given simulator is driven by stand level growth equations, then the functional

level of resolution is limited to the stand level. The simulator may make further

modifications of these projections (by disaggregating) which gives the appearance of a higher

level of functional resolution.

With respect to the previous examples, individual-tree models and whole stand

models have consistent functional and apparent levels of resolution. However the

disaggregation model is more complicated. When one considers stand level predictions, the

functional resolution is at the stand-level in equation [2.2], while tree predictions require tree-

level information to be maintained in the prediction. Hence the functional resolution in

disaggregative models depends on the prediction of interest. If the user is primarily interested

in aggregate predictions, the disaggregative model functions as a whole stand model.

When dealing with different types of models, one might reasonably ask: what level of

aggregation is most likely to provide the best predictions in situations where either will

provide the required resolution of output? One may attempt to answer this question

empirically, or by considering theoretical and practical strengths and weaknesses of each

approach, as we will attempt to do here. In order to do this we must first consider concepts

related to aggregation in order to foster a better understanding of the contrasts between

modeling philosophies.

23



2.5 Aggregation Theory

A substantial body of work exists in the field of aggregation theory. Much of the

early work was done by Theil (1954, 1957, 1959). Though Theil's work dealt with the

aggregation between macro- and micro- economic units, there is a close parallel with stand vs.

tree growth, and other aggregation schemes. An example of the macro- and associated micro-

relations in economics are functions operating at the level of individual households and their

aggregate at the regional, or national level. The general effects of aggregation on large-scale

systems was presented by Aoki (1968). An insightful presentation of the topic of aggregation

theory relating to economic applications was presented by Ijiri (1971). Aggregation theory as

it applies to ecological models has been discussed by O'Niel et al. (1979), Iwasa et al. (1987,

1989), Gard (1988) and Rastetter et al. (1992).

Aggregation theory involves the relationship between a micro-system and a

corresponding macro-system. Some systems may be viewed as a network of individual

components or parts which may be considered individually (micro-level) or in aggregate

(macro-level). These two components are linked by the function which aggregates from the

fine scale to a coarser scale of resolution. Consider the following general model for some

characteristics z and y, representative of individuals:

y = (x), [2.4]

where:

y is a forecast of some micro-level state,

x is the micro-level state description.

Then the function ib is the micro-relation for y. This may then be aggregated by a passive

aggregation represented by (y). Similarly, at a coarser level of resolution, there may be an

aggregate of interest: X = x). Then X is the macro-level state description resulting from the

specified aggregation g(x). For example, x) may be a transformation from the tree level to

24



Figure 2.1. Illustration of passive and active aggregation

schemes. The function y represents passive aggregation,

and gx) is an active aggregation function.

Generally, an aggregate is a group of distinct objects gathered together. Within the

context of this particular discussion, an aggregate is a group of individual living trees

logically aggregated by some scheme which we have represented mathematically by the
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the species cohort level for one or more stands. Furthermore, one may theorize, for a given

aggregate X, the macro-relation below:

Y = 'I(X).
[2.5]

Then clearly we have at least two readily identifiable estimators for the aggregate

characteristic Y. They are: 'I and a composite function, ía' where:

f( = k((x)).
[2.6]

This composite function comprises both the micro-transition function and the corresponding

aggregation function.

Conceptually, this system is illustrated in Figure 2.1, where represents the micro-

level transition relationship and W represents the corresponding macro-level transition. The

function gtx) aggregates states from the micro-relation to the macro system and the function,

, is the complementary aggregation of the micro-relation, y=i4i(x). These are referred to as

the micro-function, macro-function, active aggregation function and passive aggregation

function, respectively (Ijiri 1971). The necessary and sufficient condition for perfect

aggregation (Iwasa et al. 1987) to hold is that '(g(z)) = k(z)). That is, perfect aggregation

exists when both structures produce the same aggregate result.



26

function g(z). The active aggregation function, gz), is then the function which is used to

aggregate tree level predictors to the stand level. In many examples the passive and active

aggregation functions are the same, and may be as simple as a summation of individuals.

By no means is the individual tree the lowest level of resolution which might be

considered to define the state of the system. A tree is, itself, an aggregation and could be

modeled as such. The specification that the tree is the most detailed level of resolution is a

matter of convenience, or necessity, depending on one's point of view. It should also be noted

that the act of sampling a stand itself implies an aggregation because each individual sampled

has a unit area expansion factor which assumes the sampled tree is a surrogate for others in

the stand.

In discussions of models of different levels of resolution, it is generally assumed,

sometimes tacitly, that one level of modeling is correct and the other is, in some sense,

subservient to this. This is certainly the case for the discussions of aggregation of Theil

(1957, 1959) and Ijiri (1973) wherein it appears that the micro-relation is assumed to be

"correct" and the question is whether or not a macro-relation exists, or can be found, which is

in harmony with the micro-relation. Disaggregation models imply just the opposite. In a

disaggregation model, the individual-tree relationship is subservient to the stand-level

function.

In the example basal area prediction scheme introduced earlier, the macro-relation

[2.5] is gross stand basal area growth:

ZBAA = Ir(S,D,A).

The input variables into this equation are either assumed to be homogeneous, as are site and

age, or represent some aggregate of the micro-level expression of the state of the system. For

example, in DFSIM (Curtis et al. 1981) density is expressed as a function of stand basal area

and quadratic mean diameter (QMD), D
=

Essentially, this relative density index is

a function of the aggregate of tree basal area and number of trees.
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To continue with the example, individual-tree growth [2.11 is the micro-relation [2.4].

And the composite function [2.6) is simply the sum of these predictions multiplied by the

expansion factor: Ez,L(w2,p2,S,D). n. If there is no mortality, the passive and active

aggregation functions are the same and are dependent solely on the expansion factors.

At this point it is necessary to expand on the concept of an aggregation function.

There are two different ways of looking at the aggregation function. The first is that the

aggregation function is the sum of distinct tree elements, multiplied by an expansion factor to

obtain aggregate growth: b) = . n2. In this expression, any mortality is manifested in

the aggregation of tree predictions. Another view is that the aggregation is merely a

summation, and the micro-transition function is then necessarily redefined as = n for

any tree in the list. In this expression of the system, the model is no longer a tree model but

rather a model for which the modeling unit is some cohort of trees defined by n. This second

way of viewing an "individual-tree" model may be more advantageous. It can be used to

point out the fact that individual-tree models really vary in level of resolution, depending on

sampling intensity, and that as sampling intensity reduces, the model approaches the

functioning of a stand model. If taken to the extreme, where a sample of only one tree is

used, an individual-tree model functions no differently than a whole stand model. It is only

as sampling intensity increases that individual-tree models express variability within a stand,

and stand dynamics are represented by the aggregate behavior of some number of trees.
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The three types of models discussed here are summarized in Table 2.1. This

highlights the distinctions which may be made when comparing these models. It is

noteworthy that the functional resolution for disaggregative models depends on the particular

feature of the model being considered.

Table 2.1. Summary of characteristics of three modeling techniques.

Individual-Tree Models Whole-Stand Models Disaggregative Models

dependent on tree
parameters

complex, high
dimensionality

generally driven by
stand density, site
productivity, tree rank
and dimension

functional resolution:
tree-level

apparent resolution:
tree-level

passive aggregation

reductionist

dependent on stand
parameters

relatively simple,
low dimensionality

generally driven by
stand density, stand age
and site productivity

functional resolution:
stand-level

apparent resolution:
stand-level

active aggregation

holistic

dependent on both stand
and tree parameters

relatively simple,
low dimensionality

tree component based on
tree dimension, and stand
parameters

functional resolution:
stand-level, for aggregate
predictions, otherwise
functional resolution is
at the tree-level

apparent resolution:
tree-level

active aggregation

quasi-holistic



2.6 Symmetry

It might be reasonable to ask: Is there an equality between equations [2.5] and [2.6]?

That is, one might expect that W(X) = fa(X) The absence of this property will result in

ambiguity in the estimation of stand growth. In terms of the example predictions of basal

area increment, this may be stated as: Are there some individual_tree/distance_independent

and whole stand growth models for which identical predictions of stand or aggregate growth

may be maintained? As noted earlier, this is the necessary and sufficient condition for perfect

aggregation as described by Iwasa et al. (1987), or as it will be termed here, perfect

symmetry. Perfect symmetry is a desirable, but generally unattainable, characteristic for a

non-linear transition function '. Collapsing or aggregating i4'(x) may provide a logical

symmetry across different levels of a natural hierarchy, but generally will not provide exact

numerical equivalency with the macro-relation (Iwasa et al. 1987). This is generally only a

concern in disaggregative models. In individualtree/distance-indePendt models, 'I is

implied by aggregation and in whole stand models there is no micro-relation, .

There are a number of related concepts in aggregation theory and, in some cases,

there are terms employed which are easily confused. In fact, consistent aggregation (Ijiri

1971), perfect aggregation (Theil 1954) and numerical consistency (Daniels and Burkhart

1988) are, by all appearances, synonymous terms, giving rise to some degree of confusion.

But the relationship between the micro-system and the macro-system may be more precisely

defined in terms of the degree to which symmetry is implied by a given system of equations.

Symmetry is a term derived from the Greek word meaning "the same measure" or as

it is often applied today, symmetry is a pleasing sense of proportion and/or proper allocation.

A more specific definition of the term which has found application in a variety of fields is:

The siate of some system such that a measurable quantity of interest remains
invariant after a transformation.

29
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It is this definition which continues to be an important element in the search for

understanding of the general designs of nature (Zee 1986). A number of key concepts in

physics are based on the invariance to some transformation, among them Einstein's special

theory of relativity. Symmetry continues to find application in a host of other areas of study,

from music (Ferris 1988) to General Systems Theory (Urmantsev 1986), and Chaos Theory

(Blackmore 1986).

The definition relating symmetry to invariance has direct application in growth and

yield simulators. When modeling stand dynamics, we may consider transformations

(aggregation or disaggregation) to different levels of resolution. It is desirable that dynamic

components of any system of equations which operate at different levels of resolution be

invariant to aggregation. It is natural, therefore, to question the existence of a symmetry for

various modeling methodologies. Specifically, is a stand growth prediction invariant to the

application of a disaggregation function k(t1'(w,p,'Io))?

If we consider transformations from one level of dimensionality to another, one may

question whether a lower level of resolution maintains information sufficient to describe the

given phenomenon, or if the loss of information resulting from aggregation is too great to

describe the phenomenon with some desired level of accuracy. There are two descriptions

which are crucial to this process. The first is the functional description. The second is the

apparent state description. That is, we must consider the resolution with respect to the two

different aspects of system representation discussed earlier.

However, in real world situations, aggregation of a system state will generally result

in some loss of information. For example, if we reduce dimensionality of our information

from n trees with q states to the average or summation of these q states, then the

representation of the state of the system has been reduced from a a x q to a 1 x q expression.

We need to balance the information lost through this aggregation with the benefits of lower

dimensionality (speed, simplicity, and perhaps better forecasts over a long time horizon). It
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is unlikely that we can conclude that no information, relevant to the prediction of stand

growth, is lost in this process. Rather, we may be able to conclude that the information lost

through aggregation is not critical to the forecast of interest, or that the information lost is

not of sufficient magnitude to be a concern for any forecast.

In the integrated, consistent system of models presented by Daniels and Burkhart

(1988), the term "consistent" is somewhat ambiguous. There is certainly a close relation, or

some degree of symmetry, between the functions employed for different levels of

dimensionality In general these models do not display perfect symmetry. The characteristics

of this symmetry, and the benefits thereof, are not immediately evident.

Leary et al. (1979) also presented a system of functions for differing levels of

resolution. In both of these systems, the dimensionality is allowed to vary, thus producing

transformable systems. The result is a family of functions capable of dealing with more than

one given dimensional representation of the stand. As pointed out by Daniels and Burkhart,

their system offered no assurance of numerical consistency. The relationship therein reflect an

imperfect symmetry.

2.6.1 Imperfect Symmetry

We have considered the necessary requirements for absolute, or perfect, symmetry.

However there are other means of expressing symmetry in a system. These include filtered

symmetry, constrained symmetry, and characteristic symmetry. The following discussion is

drawn directly from Ijiri's (1971) discussion of consistency, and relating it to the more general

framework of symmetry.

A constrained symmetry is one for which symmetry occurs only under certain

conditions or due to certain constraints on the variables. It should be noted that with this

definition, no distinction is made between a parameter and a variable. Any restriction on the
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domain of the function resulting in symmetry could be applicable. For example, a set of

equations may be constrained to provide symmetry for equilibrium conditions only. Within

the context of growth and yield analysis, growth functions or mortality functions may be

constrained to preserve symmetry with some assumed macro-function. Doing so basically

engenders a disaggregation function. Examples of these are the disaggregation functions

presented by Clutter and Jones (1980, equation 6) and Pienaar and Harrison (1988, equation

3). That is, a disaggregative function is constrained by the aggregate dynamics.

The distinction between this and perfect symmetry implies that there is a "correct"

expression for the micro-relation, and that this expression suffers for some predictions when

constrained. However, one could just as easily specify that the constrained function is, itself,

correct, and there is no hidden function which is more broadly applicable.

Filtered symmetry, or consistency, can be described conceptually as being based in

the decision process driven by the given system representation. Symmetry is expressed with

respect to the decision making process being invariant to the level of aggregation, as opposed

to system states themselves being invariant to the aggregation. If the micro-system and

macro-system are consistent with respect to decisions or conclusions reached from a given

simulation scenario, then the system could be said to maintain a filtered symmetry, having

been filtered by the reference to resulting decision or conclusion alone. This is a symmetry

which is, or could be, ephemeral and dependent on not only the given states being assumed

but on the particular decision process.

A final type of symmetry one might consider is that of characteristic symmetry. A

system may be said to maintain a characteristic symmetry if some quality of system behavior

remains invariant to aggregation. Characteristic symmetry would seem to be at the heart of

the conflict between divergent modeling philosophies. We may be willing to accept systems

for which there is no perfect symmetry, if these philosophies do not produce models which are

in conflict with one another qualitatively. For example, it has been noted that a number of
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different simulators produce very flat curves at the maximum of mean annual increment.

This characteristic may be observed in both ORGANON and DFSIM. With respect to the

general shape of the MAT curve, there is a characteristic symmetry between ORGANON and

DFSIM. The particular macro-system in DFSIM and system of tree functions in ORGANON

produce some results which are characteristically invariant, though certainly not

mathematically equivalent under aggregation.

Both the Daniels and Burkhart, and Leary formulations are geared towards

maintaining a characteristic symmetry. This symmetry can be defined as one in which

certain characteristic traits of the micro- and macro- systems of interest are maintained with

the transformation from one system to the other. That is, in growth and yield modeling we

might be willing to accept any aggregation (or disaggregation) if the functions conform to

accepted biological principles with respect to key attributes of the system, while not

necessarily maintaining numerical equivalency across different levels of aggregation.



2.7 Aggregation in Individual-Tree and Disaggregative Models

We have now laid the foundation for a discussion of the differences between modeling

strategies. Suppose that the phenomenon of interest is the state (or states) predicted for a

given stand over time. Both whole-stand and individual-tree simulators provide estimates of

states that a given aggregation of trees will attain over time, obviously with varying levels of

dimensionality.

The individual-tree modeling approach uses a passive aggregation scheme which is a

linear aggregation of the individual-tree growth function. This structure is illustrated in

Figure 2.2. There is no macro-transition function 111(X) either explicitly stated or implied.

The passive aggregation function, j, is that function from which stand level growth is

estimated, given the micro-relation, . The active aggregation function is somewhat

irrelevant in this context, inasmuch as there is no need to drive any macro-relation.

However, initial state descriptions can be aggregated to the stand level. In the example

individual-tree model presented earlier, the micro-relation, i, is defined as the individual-tree

basal area growth function. The passive aggregation function determines stand basal area

growth by summing predicted tree growth multiplied by the number of trees represented by

each tree in the sample.

w,p -f '(w,p,D,S) ba

zlI
D LBA

Figure 2.2. Illustration of the passive aggregation structure
in an individual-tree/distance-indepefldeflt model. The

function represents the passive aggregation function and
the micro-dynamics (individual-tree functions).
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Figure 2.3. Illustration of the macro-transition struc-
ture (W) of the example whole stand model.

The active aggregation structure used by disaggregative simulators is shown in Figure

2.4. The growth resulting from the macro-transition W(S,D,A) may be disaggregated to

individual-trees via a disaggregation function, '. There are two distinct estimators of gross

basal area growth; that obtained by means of the active aggregation scheme (ABA) and that

obtained by passive aggregation of 1". They are not necessarily equal.
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The active aggregation structure of a whole stand model is shown in Figure 2.3. The

active aggregation function, here, is only necessary if the initial state description is a tree-level

description. Otherwise the only component to this system is a macro-transition function, W.

In the earlier example, the macro-relation was simply a gross basal area growth equation as a

function of site quality, density and age.



w - ,b'(w4BA) - .ba

I
D W(S,D,A) - LBA LBA'

Figure 2.4. Illustration of the active aggregation structure of

a simple disaggregative simulator. The function g represents
the active aggregation function and 'I' the basal area
increment (zBA) function. The disaggregation function, ',

is a function of both tree dimension and predicted basal area
increment and can be aggregated to estimate basal area
increment zBA'.

This illustrates the importance of considering both functional and apparent resolution

in a simulator. It is evident that. this system maintains the full dimensionality of the tree

list, while the, functional, or dynamic, component of the stand is limited to the

dimensionality of the expression for site quality, density, and age. Thus, there is a tacit

assumption here that the dynamics of the macro-system may be captured at the lower

dimensionality of macro-relation. That is, individual-tree information is irrelevant to the

estimation of stand growth. The macro-function, SIt, may act only as an adjustment

embedded in an implied micro-relation as defined by the function 1". For stand level

projections, the disaggregative model functions at the stand level.

If tree-level information is predicted, then it functions as a constrained individual-tree

model. Information present in the individual-tree characterization of the stand affects only

the variability of the stand trait, not the aggregate value, unless the disaggregation function

itself is not specified so as to ensure constrained symmetry (i.e., BALBA').

In addition to functional simplicity, the advantage of these simulators would seem to

be that, for single-species, even-aged stands, a stand level functional resolution may indeed be

sufficient. One may argue that the disaggregative simulator will maintain a sufficient

functional resolution while providing the user with the apparent resolution of an individual-

tree simulator without the disadvantages associated with long term projections of models with

a higher degree of dimensionality.
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The primary problem with a simulator whose functional resolution is at the stand

level is that the dynamics may be poorly defined for stands which are not even-aged single

species stands. One must assume that the macro-level function is sufficient to describe

aggregate dynamics. This may be an untenable assumption for more heterogeneous

aggregates. Furthermore, if the disaggregation is driven strictly by tree dimension, then one

must also assume that allocation of growth within an aggregate can be fully determined by

this dimension. Not only might this be a problem when there is a high degree of

heterogeneity, it may also present problems in modeling thinning response. For example in

simple proportional allocation based on some tree dimension, a method to be described later,

there may be no distinction between different types of thinning with regard to how growth is

allocated among trees. That is, thinning will produce the same proportional effect on all trees

in the stand; if tree growth is boosted by thinning then all trees will show the same

proportional response.

The higher level of apparent resolution in disaggregative simulators is dictated by a

disaggregation function. This is simply a function which disaggregates any given trait based

on the empirical distribution in the higher dimensionality of the input. These functions vary

somewhat between simulators. They are all based, to some degree, on allocating growth

according to the distribution of some tree dimension in the aggregate. This distribution may

relate to diameter alone or some more complex function of diameter, number of trees and

height. Growth may be allocated by diameter (Leary et al. 1979), basal area (Harrison and

Daniels 1987), or volume (Dahms 1983, Zhang 1990). Functions are generally either based on

an additive allocation or on a proportional allocation and may, or may not, maintain a

constrained symmetry. The following discussion explores the particular applications of

constrained symmetry as applied in disaggregative simulators.

One of the more well constrained disaggregation functions was described by Harrison

and Daniels (1987). This is an additive disaggregation scheme, and may be expressed as:
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Lba2_W= ba1 - j

where:

iba1= gross basal area growth for the ith tree in period p with expectation p,

ba= basal area for the ith tree in period p,

= exp (a2 S).

= average growth per tree from the gross basal area growth function,

= sample mean basal area,

= dominant height at period p, and

S = site index.

There are a number of important features of this particular disaggregation scheme. One is

that growth is distributed among trees by an additive allocation, and this scheme is

constrained so that symmetry is maintained. The sum of basal area growth for individual

tree projections equals predicted stand growth rate. This is because deviations about a

sample mean sum to zero. Furthermore, it can be shown that is a logical minimum for

the relative average growth rate:

w >k.
IL Prp

One drawback of this disaggregation function is that it is conceivable, in theory anyway, to

obtain negative growth rates.

This additive disaggregation scheme also tends to provide monotonically increasing

variance in tree basal area over time. In actuality, variance in basal area will be dependent

on the allocation of mortality. If mortality were allocated proportionately, or if there is no

mortality, then variance will increase. If mortality is allocated among smaller trees, then this

may not be the case.

An example of a proportional disaggregation function is that of Dahms (1983), which

allocates tree volume increment instead of basal area increment. In general, a proportional

allocation rule is based on the ratio between some expression of tree dimensions w, and its
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stand level aggregate, W. Given this ratio then some prediction of interest, y, may be

established as:

l,=Y.-*-=y *.
Note that this ratio can also be expressed as a function of the means rather than the

aggregates. In this second expression the ratio may be referred to as relative tree size.

Generalizations of this simple model have been developed. Zhang (1990) used a second degree

polynomial of relative tree size rather than a linear function. The significance of this will be

evident later. One implication of this general strategy is that the coefficient of variation of y

is equal to the coefficient of variation of w. That is, if y is an expression of the growth in w,

such that y = w + zw, then the trait y will have a constant coefficient of variation over time.

Also, if the coefficient of variation is constant, variance itself will increase as long as growth is

positive. As with the additive disaggregation scheme, this may also depend on the allocation

of mortality.

Symmetry is maintained by defining a proportional allocation function such that the

proportion sums to 1.0 over the entire stand. There is no possibility of negative growth being

forecast for any given element (tree) because allocation is based on a strictly positive ratio.

For the Dahms expression, w is established as:

= d818. h786

and growth is allocated to tree volume, by the following function:
( d'88. h'786 '1

v =LvJ
1

E(d.818.h.786)I

where:

= change in volume of tree un the aggregation,

z V = change in total aggregate volume,

d. = breast height diameter of the ith tree at the start of the projection period,

Ii. = total height of the ith tree at the start of the projection period.
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The ratio of V and the sum of w over i is a constant for all trees. This ratio

dictates the slope of the line relating volume growth and this particular function of diameter

and height (w1). Other examples of this type of allocation include the function of Clutter and

Jones (1980), and Pienaar and Harrison (1988).

The proportional allocation function may be an oversimplification of the relationship

between growth and tree dimension. This was found to be the case by both Leary et al.

(1979), and Zhang (1990), who both used a generalization of this basic approach. While both

of these functions were more flexible as to the relationship between growth and tree

dimension, this was achieved at the cost of symmetry. Either, however, can be constrained so

as to maintain invariance between stand and tree predictions.

There is yet another possible means of addressing the problem of oversimplification

while maintaining symmetry. The disaggregation function as traditionally applied has relied

on very simple assumptions of the relationship between the stand growth and the growth of

any individual tree. This is not done of necessity, and there are means by which, in theory at

least, a traditional individual-tree growth model could be used as a disaggregation function.

The distinction between the two can be made on the basis of two characteristics: complexity

and constraints. Historically a disaggregation function is much simpler than the functions

used in individual-tree models. The disaggregation function is conceptually based in the

allocation of pre-determined stand growth being fixed, and the individual tree growth being

derived from that fixed stand growth. This usually is affected by some type of constraint

embedded in the function. The individual tree allocation of growth is implied by the form of

the disaggregation function assumed. Therefore this implied tree growth function is

constrained by the stand growth projections.

The system by which this might be applied to growth, such as basal area increment,

would be to establish the dynamics through active aggregation of the macro level. Given the

earlier example of predicted stand growth [2.11, and the example tree growth equation [2.21



The allocation of growth then can be established by the ratio,

W(S,D,A)

-
where the function aggregates the i micro-level predictions to the stand level.

A disaggregation function, sb', can then be developed to allocate gross basal area

growth to tree i by combining equations [2.21 and [2.71:

= R.cb(w,p,S,D).

It is evident that this is nothing more than a scaling of the micro-relation i'( w,p,S,D), by the

function F(S,D,A). However it also functions in precisely the same fashion as a

disaggregation function.

Any individual-tree growth equation may be constrained in the preceding manner.

The primary difference between this method and traditional disaggregative models is that the

individual-tree models are generally more complex and may provide for greater variability in

growth response and more sensitivity to individual-tree characteristics found to be related to

tree growth.

This application of individual-tree growth functions does represent a distinct change

in philosophy. Rather than stand growth being derived from the micro-relation (individual-

tree growth), individual-tree growth becomes subservient to the defined stand growth (macro-

relation).
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2.8 Discussion

Existing disaggregation functions which are constrained to maintain symmetry all

depend on a linear relationship between growth and some measure of tree dimension.

However, in two applications of a proportional allocation of growth, some evidence was found

to suggest a linear function is often inappropriate (Leary et al. 1979, Zhang 1990). In neither

of these applications is symmetry constrained. The method of disaggregating growth by

means of a specific growth function is intuitively appealing since the disaggregation function

is itself an implied individual-tree growth function. And by application of this type of

disaggregation function, one merely scales the micro-relation, based on the macro-relation.

However, generalizations of model behavior are difficult if not impossible to define and the

models themselves loose some of the beneficial simplicity embodied in more traditional

disaggregation models. Whatever means is employed to disaggregate, users need to seriously

consider the applicability of any given system, with an emphasis on the implications of

assumptions which are foundational to the system.

Disaggregative models traditionally do not include a tree rank variable, and while

tree rank and tree dimension are most certainly correlated, the relationship between the two

is generally not linear. The relationship between tree basal area and basal area in larger

trees, for example, is linear oniy when the distribution of tree basal area is approximately

uniform. The problems with a lack of a rank variable may be illustrated if one considers a

proportional allocation of basal area growth based on tree basal area. Unless the expression

for density in the macro-relation (stand growth function) is somehow sensitive to type of

thinning (i.e. thinning from above or below) then this structure cannot distinguish between

different types of thinning in the effect on growth of any particular tree. In other words, it

would matter not which trees one thins, as long as the basal area removed is kept constant,

all sample trees would be predicted to respond identically.
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Figure 2.5. Illustration of the active aggregation structure of a
disaggregative simulator including a mortality component. The
function g represents the active aggregation functions, '1 and '2 the
basal area increment and mortality functions. The disaggregation
function, , is a function of both tree dimension and predicted basal
area increment. The passive aggregation function, , is used to
obtain net basal area increment (BAe) or gross basal area
increment (ABA') from unit area expansion factor (n) and mortality
(m).
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To this point, the discussion has focused on a very simple illustration of a growth and

yield model. In application, however, mortality functions will generally be included, as well

as models for predicting height, crown length, or any other components which are used to

predict growth in the driving function(s). In order for the earlier example of a model to

predict basal area growth to be viable, mortality functions would be required. The addition

of the mortality function to the system may complicate the structure of a disaggregative

model substantially. One fairly straightforward means of structuring such a model is shown

in Figure2.5. Here, disaggregation functions allocate both gross stand basal area growth and

predicted stand mortality (M). This function of predicted stand mortality produces a

probability of tree mortality which is then applied to n, yielding the number of trees lost to

mortality (m) among those represented by the subject tree. These functions are represented

as and b' respectively. Net stand basal area growth may then be obtained via a passive

aggregation function. An example of a function which could be used to determine aggregate

mortality (''2) is the self-thinning rule (Smith and Hann 1984).
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From Figure 2.5, it is evident that the macro-relation for basal area growth

influences, or drives, all other functions in this simple system. Furthermore, while gross basal

area growth is clearly a stand-level growth function, net basal area growth is derived by

means of a passive aggregation scheme, much as would be done in an individual-

tree/distance-independent model. Therefore the anticipated benefit of a disaggregative

approach may not be realized with respect to net basal area growth. In this particular

example symmetry is only a concern with respect to the estimation of gross basal area, since

there is no parallel active aggregation scheme for net basal area.

This is by no means the only structure by which disaggregation could be employed;

there are numerous options. If, for example, W is defined as a function predicting net, rather

than gross, basal area growth, the structure changes substantially. Furthermore, tree

mortality need not be expressed as a disaggregation function; W2 could be dropped from the

model altogether and the disaggregation function replaced with a more traditional individual-

tree mortality function.

The disaggregative approach is a structure which, in application, may exhibit

elements of individual-tree/distance-independent models. The manner in which this is

manifested may vary in different applications. A modeler may use this approach as a

foundation for all components, or may opt for a partial application where some subset of the

models are driven by this methodology.



2.9 Conclusion

Individual-tree simulators have the disadvantage of high dimensionality along with

the benefit of very flexible means of describing the stand. Passive aggregation forces the

modeler to depend on the specified tree models for stand growth and, furthermore, to make

an assumption that any aggregate errors are not compounded over time. Indeed, experience

has shown that the greatest challenge in developing an individual-tree model comes when all

the components are brought together and the process of verification yields questionable

aggregate behavior. This may occur despite apparently well behaved component functions.

One with a reductionist point of view may argue that a proper, or well specified, suite

of driving functions ensures that the simulator will be well behaved. However, models are by

definition simplifications of complex phenomena, and we cannot be certain what the effects of

these simplifications will be. This may be an indication of problems with the aggregation

itself which is a reflection of mortality prediction.

One method which may be used to ensure desirable long term behavior, is to

constrain some component in concert with some allocative algorithm. This, in effect, causes

the individual tree to take on some of the characteristics of the disaggregative simulator. As

such, the same problems may arise in dealing with some structurally diverse stands. This

solution to the problems introduced by high dimensionality is fraught with difficulties itself.

The application of the Reineke's stand density index, as in ORGANON and some variants of

Prognosis, for example, may not be well suited to either mixed species or stands without a

fairly well defined unimodal diameter distribution.

The disaggregative simulator is truly in keeping with the spirit of whole stand

modeling. Because of this, the disaggregative simulator requires an assumption that the

stand dynamics are functionally well defined. Without this assumption, one faces a tradeoff

between the advantages of lower functional resolution (lower dimensionality and presumably
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a more well behaved system of equations for long term projections) and the disadvantage of a

poorly conceived system of equations due to the lack of homogeneity in the system being

modeled. Assumptions of linearity and the lack of indices of tree rank may result in models

which are over-simplified and very limited in application.

If one may assume very homogeneous conditions, such aggregate functions may be

acceptable. Application of a traditional disaggregative approach to mixed-species, uneven-

aged stands is not recommended because simple linear size growth relationships will likely

over-simplify the process. In situations where either simulator may be appropriate, the

disaggregative simulator is, in theory, to be preferred for predicting aggregate states. It is not

yet evident that this theory translates well to application. That is to say, this has not been

confirmed empirically. Some means of disaggregation may not apply well to certain

simulations of management activity. The stand structure, as forecast by the allocation of

growth via the disaggregation function, is not necessarily superior to the individual tree

growth forecast.

One promising technique is the application of traditional individual-tree models in a

disaggregative setting, constrained so as to ensure symmetry with some stand-level estimator

of growth or mortality. This type of structure offers sensitivity to tree rank and tree

dimension while still relying on predictions of stand growth for aggregate dynamics.
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Chapter 3

Evaluation of Individual-Tree/Distance-Independent and

Disaggregative Prediction Methods for Douglas-fir

Stands in Western Oregon

3.1 Abstract

Efficiency of a number of disaggregative methods and two individual tree methods

are evaluated in terms of their ability to predict five-year basal area increment for Douglas-fir

stands in western Oregon. Models were developed for predicting gross stand basal area

increment and individual-tree diameter increment. In addition, models were developed to

disaggregate the passive increment prediction methods to the tree level.

Passive and active prediction schemes are evaluated for both the tree level, and the

stand level predictions. Generally, the individual-tree approach was superior to a

disaggregative approach for both prediction of stand and tree growth. However, this

superiority diminished significantly when crown ratio was eliminated from the individual-tree

models. This suggests that at least some of the disparity between the two is due to the

presence of crown ratio in an individual-tree passive aggregation approach. The additive

disaggregation approach of Harrison and Daniels (1987) appeared to be best suited to young

stands (less than 50 years of age). The linearity assumption required for this particular

model appeared to suffer for older stands with larger trees. The two whole stand gross

growth models used in this study were inferior to the individual-tree method for predicting

gross basal area growth for one period.
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3.2 Introduction

The modeling of stand dynamics can be achieved by a number of different methods

which may be distinguished from one another by their associated level of resolution (Munro

1973). However differences in levels of resolution associated with contrasting modeling

philosophies are often not readily apparent. The whole-stand/disaggregative and individual-

tree/distance-independent simulators, although different functionally, bear some similarity to

one another due to the ability of both to produce output of the same resolution. Thus, the

functional disparity between these two may be obscured by the unity of apparent resolution.

Examples of the former are: Dahms (1983), Harrison and Daniels (1987), and Zhang (1990).

Examples of the latter include Prognosis (Stage 1973), CACTUS (Wensel et al. 1986) and

ORGANON (Hann et al. 1992).

The individual-tree modeling approach is based on growth projections for each

individual in a sample of trees representative of the stand, or aggregate. The functional

components of these approaches, model such traits as height growth, diameter growth,

probability of mortality and crown dynamics. The sample tree list is updated based on these

predictions, and stand dynamics are derived from the aggregate of these predictions. This can

be described as an active aggregation scheme (Ijiri 1971). Individual-tree models are capable

of simulating stands diverse in structure and species composition. Furthermore, because more

information is required to run individual-tree models, they have the potential for better

predictions based on this more complete representation of the stand.

The whole-stand/disaggregative approach, in contrast, achieves predictions based on

the dynamics of the aggregate (passive aggregation). This may be achieved by modeling

gross basal area growth (e.g., Harrison and Daniels 1987) or gross volume growth (e.g.,

Dahms 1983). These methods reflect a whole stand approach with the added ability to take

this growth projection and distribute it among trees in a sample tree list. For some
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simulators the step of disaggregating growth is an option based on the resolution of the input

data. Until the disaggregation takes place, this is a stand growth model.

The flexibility of the disaggregative model is such that they are capable of making

predictions based on stand level attributes alone, or with the more complete stand description

afforded by a tree list. This is a very attractive feature, as users are not obligated to provide

a tree list, but may do so if one is available. If a tree list is maintained, then the

disaggregation function is the means by which the stand growth predictions are linked to tree

level descriptions of the stand. In addition the disaggregation function is solely responsible

for describing changes in within stand variability.

A disaggregation function may be structured in such a way as to maintain symmetry

between stand and tree growth. This symmetry means that stand growth remains invariant

to the application of the disaggregation function. That is, if disaggregated growth is then

summed, resulting stand growth is equal to the stand-level prediction.

A symmetric growth and yield prediction system is one for which the prediction of

stand growth is consistent with the aggregation of individual-tree predictions. Aggregation of

tree values does not therefore affect stand-level prediction of growth. If a growth and yield

simulator is built in this manner it can be said to maintain a constrained symmetry (Ijiri

1971).

Disaggregation functions vary in complexity and in their ability to maintain

symmetry in predictions. In this paper we will attempt to empirically address two questions

pertaining to these different methodologies: (1) Does the disaggregative approach adequately

reflect the higher resolution dynamics of stands? And, (2) which approach best reflects

aggregate dynamics? In order to evaluate these questions, we will focus on gross basal area

increment for a single five-year growth period. Use of multiple growth periods would

unnecessarily
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complicate the analysis by incorporating additional components and design features which

vary greatly from one simulator to another and are often an expression of the modelers

unique approach to the problem at hand. Because separate components of simulators do not

function independently, we don't want to obfuscate the issue with other aspects of simulator

design.



3.3 Data

The data used in this study are from 105 Douglas-fir stands in western Oregon. The

stands are all located on Oregon State University's College of Forestry, Forest Properties;

specifically McDonald Forest. McDonald Forest is located in the mid-Willamette valley just

west of Corvallis Oregon. The sample is primarily composed of even-aged second-growth

stands of Douglas-fir (Pseizdoisnga menziesii (Mirb.) Franco). In some of the stands there is

a minor component of other conifers, usually grand fir (Abies grandis (Dougl.) Lindl.).

King's (1966) site index ranged from 90 to 136 feet (breast height base age=50). Stand ages

f2ranged from 26 to 142 with breast height basal area ranging from 12 to 270 --.

The sampling methodology was described in detail by Hann and Larsen (1991). A

grid of points were installed in each stand, at densities ranging from one per acre to one every

five acres. At each point on the grid a nested plot design consisting of a 20 BAF variable

radius plot for trees greater than 8.0 inches, a 1/57 acre plot for trees from 4.1 to 8.0 inches

and a 1/228 acre plot for trees less than 4.1 inches in diameter was installed. All conifers

greater than four inches in diameter at breast height (4.5 feet) were bored for past five-year

radial increment. In addition, tree heights, diameters and crown ratios were measured.

Stand and tree growth were established using these measurements.

Because the measurement of past diameter growth of trees less than four inches in

diameter was not consistently obtained across the whole data set, this analysis will only

consider those trees in the stand with breast height diameters greater than 4.0 inches. While

this may not be the optimal method for development of a working simulator, we feel it will

not dramatically affect the results of this analysis. For most of these stands, the understory
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trees less than 4.0 inches consist largely of suppressed non-crop trees, many of which are

prime candidates for mortality in the near future. For full implementation of some of the

disaggregative approaches discussed in this paper, a more complete range of diameters would

be more desirable.
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3.4 Analysis

3.4.1 Gross Basal Area Growth Rate Function

Two aggregate gross basal area growth rate equation forms were chosen. The first is

based on age, King's site index (King 1966) and stand density index (Reineke 1933).

Application of this equation does not require any tree-level information beyond breast height

diameter in order to estimate stand basal area and trees per acre. The second equation

replaces stand density index with an estimate of crown surface area for the stand. A number

of different crown surface area estimation methods were initially applied, with the best being

those of Biging and Wensel (1990). Since the crown surface area equations are dependent on

more individual-tree information, such as heights and crown ratio, this equation is limited in

application to stands for which such information is available.

The equations were fit using linear regression and a log-transformation of the

dependent variable. This transformation was found to provide residuals which appeared to be

approximately normally distributed, implying an approximate log-normal distribution for

basal area growth. The first gross basal area growth equation is expressed as:

E(LBA) = exp[001 + 0 . ln(A) + °21 + 031 . ln(SDJ)], [3.1]

where,

LBA = 5-year aggregate gross basal area growth (square feet per acre),

A = stand age,

S site index (ft),

SDI = stand density index (log of trees per acre).

The second aggregate gross basal area growth equation is expressed as:

E(1BA) = exp[002 + 012. ln(A) + 022 - + 32 ln(CSA) + 042 GSA2 1' [3.2]

where,

GSA = crown surface area, proportion of unit area (Biging and Wensel 1990).
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A number of variations of equations [3.1] and [3.2] were also investigated but those

presented here provided the lowest mean squared error. The ordinary least squares (OLS)

parameter estimates for equations [3.1] and [3.2] are shown in Table 3.1. The adjusted r-

squared (y2) values for these two log-linear fits were 0.74 and 0.82 respectively.

Table 3.1. Parameter estimates (and standard errors) and residual mean squared error
from the log-transformation, linear regression of models [3.1] and [3.2]. Intercept terms are
corrected for log-bias with M (Flewelling and Pienaar 1981).

In general we have a predictive equation, which we will refer to as 1It(Z,O) within

which expected gross stand basal area increment is expressed as a function of some vector of

stand parameters, Z, and a vector of parameter estimates, O, j=1, 2 for models 1 and 2 above

respectively.

3.4.2 Additive Disaggregation Function

While a number of approaches have been used in developing a disaggregation

function, these generally either allocate growth additively or proportionately. Harrison and

Daniels (1987) presented a methodology for development of a disaggregative simulator that

can be used to illustrate an additive disaggregation function:

[Aba1 - I'] = [ba2 - ],
13.3]

where,

Lba1 = individual tree basal area increment of the tree i in the aggregate,

'P estimated gross basal area growth for trees in the given aggregate,

ba2 = basal area of the tree z in the aggregate,

Pba = mean basal area for sample trees in the given aggregate.

Model 94 MSE

1 0.943847
(0.95)

0.654745
(0.20)

0.171678
(0.090)

0.805055
(0.065)

-- 0.0617

2 2.380485
(0.81)

0.435310
(0.17)

0.175736
(0.076)

0.879799
(0.063)

0.000595242
(0.00022)

0.0434
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This disaggregation function is based on the assumption that tree growth is linearly related to

tree size. The parameter R varies from stand to stand, and is expressed as a function of site

index and dominant height (II) with the following assumed relationship:

E() 71S"2. ezp(73. H). [3.4]

The simplicity of this model is an attractive feature. The allocation function is dynamic.

That is, the disaggregation coefficient R changes over time with changes in dominant height.

Model [3.3] is formulated so as to provide constrained symmetry (Ijiri 1971). This

symmetry insures invariance to aggregation. That is, data from a tree list may be aggregated

to stand-level statistics prior to initiation of the simulator without affecting predictions of

stand growth. In theory, a more generalized model may be developed by adding terms to the

disaggregation function as long as any additional terms also maintain a linear relationship

with basal area increment.

For each of 105 stands, ?C was estimated using OLS on a model relating basal area

growth and basal area:

= + . ba +
[3.5]

for tree i in stand p. The values obtained for ranged from 0.00389 to 0.678, with a mean

of 0.1245. All of these were significantly different from zero, the largest p-value associated

with t-tests of the significance of R (Ho: =0) was 0.017, most were well below 0.001. In

terms of linear association between basal area and basal area increment, there is a tremendous

range as illustrated in Figure 3.1. The plots in Figure 3.1 were selected to cover a range of

linear associations between tree growth and tree basal area. In general, the best linear

relationships were associated with the youngest stands.
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Figure 3.1. Three selected plots illustrating the relationship between basal area

(in2), and basal area increment (ft2) for sampled trees. 3.1(a) shows a plot with

a correlation coefficient of 0.95. 3.1(b) shows a plot with a correlation

coefficient of 0.81. 3.1(c) shows a plot with a correlation coefficient of 0.16.

Considering correlation coefficient as an index of the linear association between basal

area and basal area increment for each stand, we find values as high as 0.95, yet others were

less than 0.10. These fits tended to be worse for older stands (Figure 3.2), possibly indicating

a shortcoming in predicting tree growth for older stands. This finding was further evaluated

by adding a quadratic term to equation [3.3].

On all but three of the stands, a quadratic term was significant (p-values less than

0.05) with most p-values for the quadratic term less than 0.01. This problem was evident
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most often in stands with large trees. Homogeneous young stands did indeed seem to

maintain an approximately linear relationship. However, the presence of any large trees

forming a positive skew diameter distribution seemed to accentuate the problem of

nonlinearity in the equations for the disaggregation coefficient, .

The linearity assumption apparently is not as reliable among older stands, where

increasing variability in stand structure with stand age results in a less well-defined

relationship between increment and basal area. This within stand heterogeneity may also

reflect changes in management strategies over time. It is not known if the young stands of

today will, in time, develop into the older stands of this data set.
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0.6

r2

0.4

0.2

0.8

+

+

Figure 3.2. Indices of fit (r2) plotted over stand age for the OLS fit of
for 105 Douglas-fir stands in western Oregon.
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The disaggregation coefficient is predicted for individual stands as a function of

dominant height and site index. In our analysis a similar model was also considered which

used age instead of dominant height, however, the dominant height equation (3.4] provided

superior fit statistics. One would expect that the disaggregation coefficient, ec would be

negatively correlated with H, as is the case (Figure 3.3). The coefficient may be interpreted

as an estimator of the ratio of standard deviations of basal area growth and basal area, that

is #c ---. Since tree basal area is the sum of basal area increment, and the variance of the

sum should exceed the variance for any one period, one would then anticipate that ,c would

be less than one and would decrease as stand age (or dominant height) increases. This does

appear to be the case. The values of varied from 0.00389 to 0.678 with this largest value

being somewhat of an outlier, as all but four observations were below 0.40.
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Dominant Height

Figure 3.3. Plot of over dominant height for 105 Douglas-fir stands in western

Oregon.

There is a weak relationship between site index and (Figure 3.4.). This relationship

is not as well defined as that between and H. Three dimensional graphical analysis of this

data did not reveal any other trends which might be hidden by viewing dominant height and

site index independently.

A function may be developed by obtaining estimates for the vector y in equation

(3.41. This results in a predictive system which is sensitive to stand age and site productivity.

However, since dominant height in the disaggregation function, and stand age in the gross

growth function are both even-aged stand concepts, the application of this system to stands

which are not even-aged is inappropriate.
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Figure 3.4. Plot of over King's (1966) site index for 105 Douglas-fir stands in
western Oregon.

The values of for each of the stands (p = l,2,...,105), were used as the dependent

variable in model [3.4] above. However, in order to find a more linear solution locus, model

(3.4] was reparametrized in the following manner:

E(R) = exp[ + 2 ln(5 + 73.R]. [3.6]

The parameter estimates for model [3.6] were obtained using iteratively re-weighted non-

linear least squares with a weight of where V(i)=estimated variance of from the OLS

fit. The results of this regression are shown in Table 3.2. The unweighted Y2 is 0.6081.
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Table 3.2. Results of nonlinear regression on disaggregation coefficient, iii

equation (3.6].

The application of equation [3.6] is then:

- (z,i)
TPA

where,

TPA = stand trees per acre,

BA = total stand basal area at breast height.

The technique suggested by Harrison and Daniels for disaggregation is not limited to

the simple linear equation expressed above. The model can be generalized by adding

additional terms. One possible generalization is the addition of crown ratio to the model:

[ba1 - = . [bag - ] + ?C2 - flcr]' [3.8]

In this formulation the parameter , can be fit using the same equation used in the restricted

model. Using the same techniques applied above, i estimates were obtained using OLS

regression, and these were used in a nonlinear fit of equation [3.61 with results shown in Table

3.3. It should be noted that in the regression analysis of equation [3.81, the ,c2 term was often

of marginal value. The improvements in fit statistics were not dramatic, 2 values rarely

improved more than 0.10.

Table 3.3. Results of nonlinear regression on disaggregation coefficient, Rj

in equation [3.8], a generalization of the Harrison and Daniels

disaggregation model.

Parameter Estimate Asymptotic Standard Error

5.46155 4.240

12 0.977221 0.8662
0.0182865 0.002838

Parameter Estimate Asymptotic Standard Error

3.65155 4.256

12 0.588408 0.8721

73 0.0196083 0.002952
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This particular generalization has the advantage that information contained in crown

ratio is brought to bear on predictions of individual tree growth. Crown ratio is a variable

which has been used extensively in individual-tree growth equations (Stage 1973; Wensel et al.

1986; llann et al. 1992). The disadvantage is obviously that a simple list of diameters alone

will not be sufficient to power the disaggregation component of the model; crown ratio will be

required. In addition, this system would require equations for crown change.

We could find no trends for relating R2 to any stand parameters. Accordingly we

employed a weighted mean for all stands as a predictor. The weighted mean was 0.4104 with

a standard error of 0.0 19.

The application of this particular model in allocating tree growth is then:

W(z'2) -
iba = TPA + ic1 .{ba - + .{cr -

where,
E(cr1. n)

CR TPA

n1= number of trees per acre represented by the subject tree.

Note that, as with the simpler version of this model, invariance is maintained: (i.ba2. n1) =

I'(Z,O2). The remaining terms all sum to zero.

3.4.3 Proportional Allocation Disaggregation Function

Another means of disaggregating growth is a proportional allocation approach such as

that used by Clutter and Jones (1980) and Dahms (1983). The general form of this type of

model is:

g(u1) [3.10]

g(u1).n1'

where,
2

= some trait of interest (e.g., volume growth, basal area),

W = predicted aggregate of w,

[3.9]



8(u) = a function of some measured tree dimension (e.g. diameter, height).

A simple derivative of this form for basal area growth is:

zba ba

zBA

By multiplying both sides of equation [3.11] by trees per acre, the left hand side could be

viewed as an index of relative tree growth and the right hand side as an index of relative tree

dimension. This is the general approach used by Zhang (1990), in generalizing [3.11]. In this

generalization, the left hand side of [3.11] is identified as relative tree growth (rig), which is the

same variable used by Dahms. The right hand side is a polynomial of relative tree size (ris),

which is explicitly defined by Zhang as predicted tree volume divided by stand volume. That

is, g(u) is a tree volume function. The Zhang generalization is:

= o + r rts1 + 2 . ris. [3.12]

The elements of the parametric vector q are estimated as a function of stand parameters.

Equation 3.10 above is then (approximately) a special case of Zhang's model with qlO, 20,

and =1. One problem with this generalization is that, unlike the more simplified model of

Dahms, symmetry is not maintained.

A constraint can be established which will produce the desired symmetry in application

of the system. This constraint may be expressed as:

I g(u1)2 )

1_1_b2 2' [3.13]

We developed predictors for basal area increment using both the restricted and generalized

proportional allocation model. For this application we defined the following variables:

rig= ,
c/(z,01)

ba.rts --
BA

The estimates of 4 for these stands did not reveal any trends useful for predicting

either c or Although the two are highly correlated, as was found by Zhang, neither
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parameter showed any significant relationship with other stand variables. Therefore we

calculated weighted means for both variables: =0.80735 (s.e.=0.0252), 2=-3.5167

(s.e.=0.250). The function for the intercept term, q5 is then:

ba

o= J54 10.19265 + 3.5167
BA2

Predicted growth with this model then is:

iba= '1(Z,1).{0+ 1rs2 + 2.rs} [3.14]

3.4.4 Individual Tree Growth Rate Equation as a Disaggregation Function

An individual tree growth equation can also be used as a disaggregation function.

Generally this does not maintain symmetry with any particular whole stand growth function

other than that implied by the active aggregation of such a function. However, some

individual tree functions may, within the context of the particular application, actually act as

a symmetric allocator of growth. An example of this is use of individual-tree mortality

functions in ORGANON (Hann et al. 1989). In this particular application, situations may

arise wherein the individual-tree mortality functions are scaled according to an aggregate level

prediction - that provided by the size-density trajectory of Smith and Hann (1984). Symmetry

is maintained in these situations and this particular phase of simulator operation is actually a

disaggregative approach.

Similarly, the basal area growth equation may be scaled by a whole stand basal area

growth prediction, thereby maintaining symmetry with the passive aggregation scheme. Given

an aggregate gross basal area growth equation, W(Z,O), and an established individual-tree

equation:

/Xba2 =

where:

x2 = a vector of predictors for individual-tree diameter growth for tree i, [3.15J

then the proper allocation of growth can be established by the ratio:
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E(&(xì,i3).
[3.16]

A disaggregation function, 1' then can be developed to allocate gross basal area growth to tree

i by combining equations [3.15] and [3.16]:

[3.17]

This is actually another proportional allocation scheme, not unlike that used by Dahms.

Instead of tree dimension, however, this method uses estimated basal area growth divided by

the aggregate of estimated basal area growth. Another perspective of this method is that

predicted tree growth is scaled by the ratio of the two estimates of stand gross basal area

growth. For this predictive model, an individual-tree model is required. For our analysis, we

fit individual-tree diameter growth regressions for Douglas-fir and grand fir.

The regression for individual-tree diameter growth functions was based on the findings

of Hann and Larsen (1991) for conifer species in southwest Oregon. Hann and Larsen (1991)

found that the basal area growth prediction function was unreliable for very small trees, and

instead used diameter increment as a response variable. Employing the fully specified model

for predicting individual-tree diameter increment, parameter estimates were obtained for the

model:

E(id) = exp[i90+/31 .f1(d)+/92 f2( d)+i33 f3(S)+/34 .f4(bal,d)+135 .f5(BA)+136 f6(cr)] [3.18]

where,

= five-year diameter increment in inches,

= ln(d+1).O.1,

12 = d2.O.0001,

f3 = ln(S-4.5),

= ln(d-i-5)
0.00001,

f5 =

f(cr-i-O.2fl16 - 1n1 1.2



cr = total tree height

d = diameter at breast height (in.),

bal = aggregate basal area in larger trees than the subject tree (ft2/ac),

BA = aggregate basal area (ft2/ac).

The parametric vector /3 was estimated (Table 3.4) using the nonlinear least-squares technique

of Marquardt (1963). This fit was iteratively re-weighted assuming that the variance of the

error term was proportional to the predicted growth. This weight was found to be optimal by

Hann and Larsen (1991). There are 9526 Douglas-fir and 595 grand fir sample trees in the

data sets.

Table 3.4. Results of nonlinear regression on the full individual-tree diameter
growth rate equation [3.18].

Those modelers working on disaggregative models have, by convention, avoided

inclusion of crown ratio. In a disaggregative setting where crown information is generally

absent, a growth function without crown ratio is more appropriate. Accordingly, we fit a

reduced form of model 3.18, shown below as model 3.19:

E(d) = exp[/30+/31.f1(d)+ /32.f2(d)+ 93.f3(8) +/34.f4(bal, d) +135.f5(BA)] [3.191

Results of this regression are shown in Table 3.5 below.

Parameter
Douglas-fir grand fir

Estimate Asympt. std. err. Estimate Asympt. std. err.

fl0 -4.69641 0.2991 -2.34621 1.363
3.39517 0.1752 5.94642 0.8051

-4.28248 0.1241 -9.76101 1.465

/33 1.15615 0.06069 0.555335 0.2769
/34 -4.46313 0.2571 -2.90672 0.8624
/3 -2.37026 0.3960 -4.70849 1.738

/36 1.19951 0.02374 1.12712 0.1058
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Table 3.5. Results of nonlinear regression for individual-tree diameter growth rate
equation excluding crown ratio [3.191.

3.4.4 Individual-Tree Prediction

The models developed above were then used to establish eight different predictive

methods for individual-tree basal area growth (P1 - P8). These are defined below:

Reduced individual-tree diameter growth rate equation [3.191

Full individual-tree equation [3.181

Disaggregative equation [3.171, using reduced individual-tree [3.191 scaled by predicted
stand basal area growth [3.1],

Disaggregative equation [3.171, using full individual-tree [3.181 scaled by predicted
stand basal area growth [3.2],

Harrison and Daniels disaggregative equation [3.71, method with predicted stand
basal area growth [3.1],

Simple proportional allocation disaggregative [3.11] method with predicted stand
basal area growth [3.11,

Harrison and Daniels generalization [3.9] with predicted basal area growth [3.21,

Constrained generalized proportional allocation[3.14] with predicted basal area growth
(3.1].

Two of these are standard individual-tree/distance-independent predictive models (P1 and

P2); the remaining models are disaggregative with a symmetry constraint.

For P1 and P2, diameter increment for an individual tree is estimated as dictated and

then transformed into basal area increment as BA= . ((d+id)2_ d2). Those models

requiring crown ratio were paired with the whole-stand equation [3.2] because this whole
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Parameter
Douglas-fir grand fir

Estimate Asympt. std. err. Estimate Asympt. std. err.

o 5.55071 0.3352 1.82328 1.503
f3 3.00611 0.1976 6.27648 0.8772

t2 3.67024 0.1379 10.1022 1.622
/33 1.32808 0.06792 0.446850 0.3061
/34 6.17127 0.2933 2.85420 0.9310

7.11432 0.4319 10.7188 1.732



stand growth model is dependent on an aggregation of individual-tree crown measurements.

The residuals (observed-predicted) from these eight predictive schemes were used to

calculate the mean squared error and 2 for the complete data set. These results are

presented in Table 3.6, below.

Table 3.6. Individual-tree summary statistics for the residuals of predictive
methods P1 - P8 on the entire data set, where residual = observed -
predicted.

72

The summaries in Table 3.6, indicate the superiority of the full individual tree model

over all other methods. The reduced individual-tree and disaggregated full individual-tree

models appear to work equally well. For these data, therefore, the loss in predictive power is

approximately equal for dropping crown ratio and imposing a stand level growth constraint.

The reduced individual-tree model with a whole stand basal area growth constraint (P3),

shows a substantial reduction in predictive ability. Both of the more traditional

disaggregative approaches (P5 and P6) are much worse than the individual-tree based

approaches (P1- P4), even those which use a tree function in a disaggregative approach. The

addition of crown ratio to the Harrison and Daniels method resulted in a modest reduction in

the MSE, from 0.048 to 0.042. However, P4 has a substantially lower MSE of 0.033, so if

crown ratio is to be used, the individual-tree function is superior. The generalization of the

Dahms model resulted in a tremendous reduction in MSE, but even with this improvement

the MSE is substantially worse than any of the individual-tree based methods.

method bias () variance (of) MSE
P1 0.3903 -0.02624 0.03249 0.03318
P2 0.4701 -0.003969 0.02882 0.02884
P3 0.2781 -0.02384 0.03872 0.03929
P4 0.4001 -0.01714 0.03236 0.03265
P5 0.1260 0.03450 0.04638 0.04757
P6 -2.9963 -0.12488 0.2019 0.2175
P7 0.2288 0.04268 0.04015 0.04197
P5 0.1735 0.001055 0.04499 0.04498
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It should be noted that the presence of a negative y2 indicates that the prediction

generated is worse (has a larger mean squared error) than the sample mean. In typical

regression applications, residual sum of squares is constrained to be less than the total sum of

squares, thus i2 is, in most instances, positive. Since these predictions are not the direct

result of ordinary least squares regression, the residual sum of squares is not so constrained.

Crown ratio, or the absence thereof, appears to be an important determinant of

model performance. This was also found to be the case in prediction of height growth for

individual trees in the ORGANON simulator (Hann and Ritchie 1988; Hann et al. 1992).

The addition of crown ratio in the generalization of the Harrison and Daniels model does

result in an improvement. However, among disaggregative approaches, the use of an

individual tree growth model as an allocator of growth, either P3 or P4, is still superior.

The generalization of the proportional disaggregation method of Dahms (P8), while

vastly superior to P6, is still nowhere near any of the individual tree approaches.

An earlier observation was that the assumptions required for the additive

disaggregation method seemed to be affected by stand age. If so, then perhaps the benefit of

using an individual-tree method would be less evident among younger stands. We calculated

summary statistics for the predictive methods for stands less than 50 years old (Table 3.7).

While mean squared errors for the Harrison and Daniels model did improve, so did all of the

individual-tree based methods. Therefore the Harrison and Daniels model is no more ill-

suited to older stands than are the individual tree models. However, MSE increased for both

the Dahms model and it's generalization in the younger stands.



Table 3.7.. Individual-tree summary statistics for the residuals of predictive
methods P1 - P8 for stands less than 50 years of age, where residual =
observed - predicted.
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An ideal prediction scheme would be one for which there was nearly a one-to-one

linear correspondence between observed zba1 and prediction, jm This was evaluated by

fitting a linear regression for residual as a function of predicted for each of the m predictive

methods (m=1,2,...,8).

The results of this analysis are shown in Table 3.8. The ideal predictor has a slope

and intercept of zero, or nearly so. A high j is indicative of poor fit, a linear trend in the

residuals with respect to predicted growth, Pm The individual tree methods are superior to

the disaggregative methods, although the Harrison and Daniels method isn't a great deal

worse than employing a reduced individual-tree growth function, and inclusion of crown ratio

appears to result in a better fit.

Table 3.8. Results of analysis of residuals for linear trends.

method f2 bias (b) variance (of) MSE
P1 0.5579 -0.03160 0.01618 0.01718
P2 0.6525 0.001373 0.01356 0.01356
P3 0.1812 0.009058 0.03187 0.03195
P4 0.5362 0.001138 0.01810 0.01810
P5 -0.1373 0.03756 0.04297 0.04438
P6 -8.4282 -0.06467 0.3638 0.3679
P7 0.2079 0.03169 0.02991 0.03091
P8 -0.2503 0.02233 0.04829 0.04879

method intercept slope
P1 0.005939 -0.094930 0.0279

0.020862 -0.078417 0.0069
P3 0.071061 -0.28200 0.0872
P4 0.051342 -0.20763 0.0586
P5 0.13164 -0.34918 0.0933

"6 0.22401 -0.79734 0.7966
P7 0.098231 -0.20571 0.0254
P8 0.12234 -0.38922 0.1433
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The cumulative distribution of the absolute value of the residuals expressed as a

percent (e') is displayed for P3, P5, and P6 in Figure 3.5. The ideal predictor would have zero

values for all residuals and therefore would display a horizontal line at the 100% level over

From this we see that, among the disaggregative approaches without crown ratio, the Dahms

method is the least effective predictor. However, either of the models with crown ratio

(whole-stand disaggregative or traditional individual-tree) are superior to any without crown

ratio (Figure 3.6).
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Figure 3.5 Cumulative distribution of the percent absolute deviation of
residuals (e') for all trees in the data set, for three of the active
aggregation methods: reduced individual-tree scaled by predicted stand
basal area growth (P3), Harrison and Daniels-type model (P5), and,
simple proportional allocation model (P6).
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Figure 3.6. Cumulative distribution of the percent absolute deviation (e')
of residuals for all trees in the data set, for three predictive methods:
reduced individual-tree model (F1), full individual-tree model (P2),
reduced individual-tree model scaled by predicted basal area growth (P3),
and full individual-tree model scaled by predicted basal area growth (F4).
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3.4.4 Aggregate (Stand-Level) Prediction

Four different aggregate predictive methods may be implied by the preceding tree-

level predictive schemes, these are:

Predictions based on the aggregate of the reduced individual tree model [3.19],

Predictions based on the aggregate of the full individual-tree model [3.18],

Predictions based on whole stand predictive model [3.1] (with SDI),

Predictions based on whole stand predictive model [3.2] (with CSA).

The first two of these are based on an aggregate of the predictions from the individual-tree

predictive models. These predictions are made by summing the product of predicted tree

growth and the per-acre expansion factor. The other two models predict the stand-level gross

growth directly. Since gross-growth is used here, there is no reduction in expansion factors for

mortality. The summary of residuals for these four models are summarized in Table 3.9.

Table 3.9 shows that the full specification of the individual-tree predictive method

has the lowest mean squared error, however the bias is smallest with AP4, a whole stand

predictive method. For long projections, therefore, the whole stand approach may provide

better predictions were this trend to hold. For short term projections, the individual-tree

approach appears to be superior. It should also be noted, that the degree to which successive

projections are independent may affect these conclusions. If the residuals for a given plot are

highly correlated from period to period (that is, if an underestimate at time t likely indicates

a similar underestimate at time 12), then the variance encountered may contain an element

which is constant for the given plot over time. To the extent that this occurs, the bias may

be offset by an underestimate of stand density over time, resulting in overestimate of growth.
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Table 3.9. Summary statistics for the residuals of aggregate predictive
methods AP1-AP4 for 105 Douglas-fir stands in western Oregon.
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The individual-tree method without crown ratio, although not as good as the whole

stand model with crown surface area (AP4), has a lower mean square error than the whole

stand model based on stand density index (AP3). Note however that the predictive method

AP4 is dependent on the information needed for a individual-tree based prediction system. In

order to calculate the crown surface area using the Biging and Wensel (1990) equations, a list

of trees with crown ratio is required. In general, whole stand models, even disaggregative

systems, do not maintain this information. A more standard approach, such as AP3 which

does not require crown information is only marginally better in terms of bias and is much

worse in terms of variance than the individual-tree prediction with crown ratio (AP2).

The cumulative distribution of the absolute value of relative residuals expressed as a

percent shows that the distributions are very similar, and that the individual tree method,

AP2, has nearly 100 percent of the predictions within 40% of the actual growth. This is a

great improvement over the predictions made at the tree level. The other observation that

may be made is that, at the stand level, these predictive schemes generally look better.

Whether one looks at f2, or the percentage of predictions which are within some percent of

the actual growth rate, the aggregation is superior.

Despite the knowledge gained over years of stand growth and yield studies, and that

stand growth is generally well defined for even-aged stands, the individual tree approach was

superior predictive technique for this one growth period (Figure 3.7). Figure 3.7 also

method 12 bias () variance (of) MSE
AP1 0.6914 2.1419 19.3170 23.9050
AP2 0.8193 0.21905 13.9549 14.0030
AP3 0.6517 0.13175 26.9666 26.9839
AP4 0.7797 0.0033101 17.7941 17.7942
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illustrates the general improvement in estimating stand growth versus tree growth among the

individual-tree prediction methods when compared with Figure 3.6. This does not necessarily

mean that this trend will hold over a long projection. However much of the difficulty in

obtaining reasonable long-term projections with a individual-tree approach may be due to

mortality functions. Existing individual-tree probability of mortality functions may not

aggregate reliably. The effects of mortality prediction are beyond the scope of this study and

unconstrained mortality estimation techniques are certainly not a necessity for individual-tree

architecture.

20 40 60 80 100

Figure 3.7. Cumulative distribution of the absolute value of residuals (f'),
expressed as a percent, for stand level predictions on 105 Douglas-fir stands:
Aggregate of reduced individual-tree model (AP1), aggregate of the full
individual-tree model (AP2), whole stand predictive model [3.1] (AP3), and,
whole stand predictive model [3.21 (AP4).



3.5 Conclusion

We could find nothing in these data to suggest that the disaggregative approach is

able to predict tree or stand basal area growth as well as an individual-tree approach. Crown

ratio appears to be an important component in prediction of both tree and stand gross

growth; the full individual-tree model consistently out performed both additive, and

proportional allocation, disaggregative models. Use of the individual-tree functions in a

disaggregative modeling approach did not result in any improvement in predicting stand or

tree growth over the more traditional application of unconstrained individual-tree growth

models.

We found that, of the two disaggregative approaches employed, the additive

allocation system patterned after Harrison and Daniels (1987) was far superior to the simple

proportional allocation, based on basal area. The constrained generalization of this

proportional allocation, patterned after the work of Zhang (1990) was a great improvement

over the simplified proportional allocation. While, it appears that the linearity assumption

demanded by the Harrison and Daniels model does not hold as well for older stands in this

data set, the effect of stand age on predictions is also evident for individual-tree predictive

methods.

Since these stands are mostly even-aged and are dominated by a single species, we

can't say what the results would be for more complex stands. However, one would expect

that the whole stand models, in general, would suffer in their ability to predict growth for

such stands. If disaggregative models were to work well anywhere, it should be in even-aged

single-species stands, such as those in this study. The superiority of individual-tree approach

for gross growth estimation may not hold for predicting net growth; this is partially

dependent on mortality estimation, which may be an area where disaggregative methods will

be beneficial.
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Chapter 4

Conclusion

The discussion of disaggregative and individual-tree/distance-independent modeling

reveals a core problem for modeling in any discipline: How to determine the proper

dimensionality for the functioning of a system. Conventional wisdom holds that longer

projection periods require lower dimensionality in order to maintain reasonable predictions,

and, therefore, simpler models are more appropriate for long projection periods. The

disaggregative approach is a method which places a premium on model simplicity and

expression of aggregate behavior. It is dependent on the development of a tenable whole

stand model and a disaggregation structure which will provide the desired behavior of

individuals in a stand.

Several problems with these models may be found. Some do not maintain perfect, or

constrained symmetry between stand an disaggregated growth. Furthermore, the simplicity

of traditional disaggregation models may be a handicap. Assumptions of linearity between

tree growth and tree dimension, as well as the lack of any effect of tree position, may render

them ineffective at expressing the variability within a stand over time. Yet, this is the

primary goal of any disaggregation function.

In even-aged Douglas-fir stands, we found that of the traditional disaggregative

models were incapable of predicting five-year growth of individual trees, or stands, as well as

the passive aggregation of individual-tree/distance-independent models.
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The application of typical individual-tree models in a disaggregative framework offers

some promise. However all disaggregative approaches are handicapped by the need for a

working whole stand growth model. The finding that unconstrained individual-tree models

are superior predictors of stand growth is somewhat surprising, but it gives support to a

reductionist perspective of modeling. It should be noted that this analysis focused only on

tree growth, not on mortality. Yet mortality estimation is often a weak link in individual-

tree/distance-independent growth models. Perhaps mortality estimation is a more fertile

ground for disaggregative approaches to modeling than is the estimation of dimensional

changes among individual-trees, since it is a necessary component for net growth.

The findings of this analysis are limited by the narrow range of species, stand

conditions and time frame. There are many opportunities for further research in this area,

given data of sufficient detail. In particular, long-term permanent plot data with periodic

remeasurements over a wide range of stand conditions will be needed to better evaluate the

differences between individual-tree and disaggregative models.
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