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A mathematical model of a differential thermal analysis (DTA) 

system was formulated so that influence of the various physical para- 

meters on the DTA peak could be determined. The specific DTA ap- 

paratus simulated had cylindrical sample holes drilled into a nickel 

block considered to have a negligible thermal resistance, and the spe- 

cific reaction was the a to p quartz crystal transformation with zero - 

order kinetics. For this specific DTA system the thermal resistance 

of the sample was the controlling factor causing the differential 

temperature; consequently, the model was sublimated to a heat trans- 

fer problem involving a moving phase boundary within a cylinder be- 

ing heated. The ordinary explicit finite difference method was adapt- 

ed to describe the temperature profile in an infinite -cylindrical sam- 

ple, and special equations were derived to consider the moving phase 

boundary. A digital computer solution of these equations produced 



graphical DTA peaks whose shape was largely dependent upon the val- 

ues of the governing physical parameters for the apparatus and the 

samples. 

The results compared well with previous theoretical investiga- 

tions of a differential thermal analyzer, and it is felt that the results 

of this study are more accurate than those obtained by other investi- 

gators. In addition, good qualitative agreement was found between 

the results of the present model and the experimental peaks of the 

two previous investigations of the a -(3 phase transformation in 

quartz. Theoretical variations in the heating rate generated the same 

general trends in the maximum peak temperature and the peak area 

as indicated by previous experimental results. Finally, the effects 

of the heat of transformation and thermal diffusivity on the shape of the 

DTA peak were determined. 

Recommendations for the application of this model to a two - 

dimensional case are made for a cylinder. Specifically, a procedure 

for treating the movement of a phase boundary of variable shape is 

suggested. 
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A MATHEMATICAL MODEL FOR DIFFERENTIAL 
THERMAL ANALYSIS 

INTRODUCTION 

Differential thermal analysis (DTA) can be used to study heat 

effects which accompany a phase change, and to determine the tem- 

perature at which an abrupt phase change occurs. This use of DTA 

allows a tremendous reduction in the effort and time required to 

measure these phase change temperatures (melting points, boiling 

points, and structure transformation temperatures) over the usual 

methods. (Accurately determining a transition temperature using 

vapor pressure or heat capacity measuring techniques takes time in 

the order of days, but a DTA peak can be generated in about an hour.) 

Accurate melting points and boiling points have been determined (2, 

45) using a specially designed DTA apparatus, but this determination 

using normal DTA apparatus has been inaccurate because the corre- 

spondence between specific points along the peaks generated by a dif- 

ferential thermal analyzer and the temperatures of interest has been 

unclear (15, p. 154 -159). 

The reason for this lack of clarity in the precise evaluation of 

DTA peaks is the lack of understanding of the processes which cause 

the shape of a DTA peak (15, p. 152 -154). Since DTA is an empiri- 

cally developed method (29), theoretical considerations have seriously 



z 

lagged the applications (37, p. 1-13). In fact, no one has quantita- 

tively described the many variables affecting a peak or mathematical- 

ly generated an accurate DTA peak for comparison with any experi- 

mental case, although some have generated theoretically qualitative 

peaks (38, 45). The accurate quantitative description of the process 

involved in DTA is necessary before precise quantitative measure- 

ments of thermal properties can exist and before the wide range of 

interpretations and unsubstantiated assumptions used by various in- 

vestigators can be resolved. It is important to mention that an im- 

portant reason why an accurate solution may not have been found pre- 

viously is that few fast digital computers needed to determine the nu- 

merical solution of the model, have been available. 

The present work was proposed to investigate the relationship 

between the physical variables which cause the shape of the DTA 

peak. Specifically, the main purpose of this work is to formulate a 

mathematical model of a differential analyzer capable of producing 

an accurate DTA peak. It is hoped that a comparison between the 

peaks of this model and peaks derived from experimental means will 

promote a greater understanding of the relationships between the phy- 

sical variables causing the peak. As a result, it is hoped that the 

accurate measurements of certain thermal quantities from DTA peaks 

will be possible. 
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BACKGROUND AND THEORY 

Differential Thermal Analysis 

The method of differential thermal analysis (DTA) measures 

heat effects that occur when a substance is heated. Such heat effects 

are caused by any absorption or evolution of heat which is anomalous 

to that described by a normal heat capacity. These effects are usual- 

ly heats of physical transitions or heats of chemical reactions (49, 

p. 132), and the amount of heat evolved in one of these changes must 

be large enough to be plainly detected by the differential thermal ana- 

lyzer. The temperature range and the rate of occurrence of such a 

phase change varies depending upon the reaction kinetics. The phase 

change can occur instantaneously at a specific temperature (normal 

melting of ice) or contrastingly, it can occur gradually over a wide 

temperature range (the dehydration of a clay material). 

A differential thermal analyzer (15, p. 107-148, p. 13 -40, p. 

186 -228) compares the temperature in the center of the sample with 

the temperature in the center of a reference material when the ma- 

terials are heated together at a uniform rate. The two substances 

are placed into a sample holder (usually cylindrical holes of equal 

size symmetrically drilled into a metal block) contained inside the 

furnace of the analyzer, and the constant rate of temperature increase 

of the sample holder is maintained by a temperature controller. The 
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reference material, which should ideally have a thermal diffusivity 

equal to that of the sample, must not have a phase change in the tem- 

perature range of interest; in other words, it must be thermally inert 

in this temperature range. The difference in temperature is meas- 

ured by a differential thermocouple, one branch placed within the 

sample and the other branch placed within the inert material. The 

emf of this differential thermocouple plotted by a recorder against 

time or against an emf of some other thermocouple ir the system 

gives a thermogram characteristic of the sample and subject to ex- 

perimental variables. Various investigators have used system ther- 

mocouples which measured the temperature in the sample, in the 

reference material, or in the metal block (3). 

Peak Shape 

The shape of a thermogram peak can be more meaningful if it 

is heuristically explained. A comparison between the differential 

temperature AT, and the temperatures of the sample, of the ref- 

erence material, and of the block is shown in Figure 1. Both sub- 

stances are heated at a uniform rate maintained in the metal block. 

A quasi - steady state profile exists in the substances at a sufficient 

time after the heating begins. At this stage the differential tempera- 

ture, the difference between the temperatures of the inert substance 

and of the sample, is constant providing the thermal diffusivities of 
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the substances are constant or change proportionately, and this con- 

stant value of AT provides a baseline on the thermogram. Since 

the diffusivity of the reference material remains nearly constant 

throughout the DTA process, it will be said to maintain a profile of 

constant shape. As an endothermic transition begins at the surface 

of the sample at point A, a sharp decrease of the heat transfer to the 

center occurs. Between A and B the inside of this sample is heated 

more slowly than the reference material causing the upward deflec- 

tion of the differential temperature. As the transition approaches 

completion at B the peak reaches a maximum, but upon completion of 

the transition, the return to a quasi- steady state profile in the sample 

between B and C causes AT to decay. At C the profile in the sam- 

ple is again invariant, and the values of AT at A and at C will be 

the same if the diffusivity of the sample does not change during the 

reaction. If a change in the sample diffusivity does occur, the base- 

line at C will be shifted from that at A, 

Uses of DTA 

The number, location, and nature of the DTA peaks can be used 

to characterize the sample. Consequently, DTA has applications in 

qualitative and quantitative studies in ceramics, metallurgy, geology, 

mineralogy, soils, and chemistry. Specifically, the peaks can be 

used to identify a substance. Literally thousands of different 
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substances have been tested using DTA (37, p. 571 -618), but unfor- 

tunately, the data obtained by one experimenter often cannot be used 

for direct comparison by another experimenter because of the wide 

variation in apparatus and techniques (1). In addition, quantities 

which investigators obtained from a DTA peak have included the 

amount of reactive component in a mixture (43), the detection of a 

phase change temperature (46), and the heat of reaction (47). The 

kinetic mechanisms of reactions have also been determined from 

these peaks (6, 22). The results of these quantitative studies have 

been accurate in some investigations and erroneous in many other 

investigations, but while DTA is not generally as accurate as some 

other quantitative methods, it is sometimes the only simple method 

which can be used (29). However, DTA has been used most success- 

fully as a qualitative or semiquantitative tool (15, p. 1 -52). A major 

reason for this variability in the quantitative accuracy of DTA is the 

lack of precise theoretical knowledge of the variables affecting peak 

shape. 

The DTA Process 

A complete theoretical model of a DTA apparatus must take in- 

to account numerous physical aspects. These aspects include the 

heat transfer characteristics of the system, the kinetics of the phase 

changes, the diffusion of any gaseous reaction products, the 
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thermocouple effects, the temperature control, the variation of phy- 

sical and chemical properties of the samples and the sample holders 

during the process, and any effect of the gaseous atmosphere (1). It 

is obvious that the complexity of a completely general model that 

would consider all types of chemical and physical phase changes and 

all variations in apparatus makes such a model improbable. Instead, 

models describing particular types of apparatus and of reactions are 

more reasonable, and this less general approach has been followed 

by the previous work and will also be followed by the present work. 

Aspects of the Apparatus 

The aspects of the heat transfer, the temperature control, and 

the thermocouple effects are determined largely by a specific appara- 

tus with the notable exception of heat transfer in the samples. Sam- 

ple holder characteristics have a tremendous effect upon the proper 

mathematical treatment of the heat transfer (5). This effect is not 

only in the size of the sample wells but also in the geometry and ma- 

terial of the holder. On the one hand a sample holder can be made 

out of a metal block which has negligible thermal resistance to heat 

flow in comparison to the samples (42), or on the other hand the sam- 

ple holder can have such a high resistance that the temperature gra- 

dient in the samples can be neglected (47). The temperature control 

is normally achieved by an electronic system which attempts to cause 
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the block temperature to rise at a constant rate, the accuracy of this 

constant rate being dependent upon the apparatus. The assumption 

that the block continues rising at a constant rate throughout the pro- 

cess (an assumption made by all theoretical papers) could be erron- 

eous particularly if the heat effect is large in comparison to the total 

heat capacity of the block. This error is caused by the lag present 

in most temperature controllers. In addition to these other apparatus 

variables, the finite heat capacity of the thermocouples and the heat 

conduction along the thermocouple wires could have a significant ef- 

fect (5). 

Heat Conduction in the Samples 

In order to specifically describe the heat transfer aspect within 

the samples the heat conduction equation is used. The fundamental 

heat conduction equation (7, p. 1-13; 12, p. 9-11; 24, p. 70-73) for a 

homogeneous solid with a constant thermal conductivity is 

aT 
pc ót 

= kv2T 

where p = the density, 

c = the heat capacity per unit mass, 

k = the thermal conductivity, 

T = temperature, 

t = time, 

and v2 = the Laplacian operator. 

(1) 



The Laplacian operator in cartesian coordinates, x, y, z, is 

2 a2 a2 a2 
V + 

and in cylindrical coordinates, r, 0, z, is 

2 1 a a2 1 a2 a2 
v = r 

+ 2 
+7 

2 

+ 

ar r a9 

(2) 

(3) 

10 

For one dimensional parallel heat flow in a slab the heat equa- 

tion can be simplfied to 

aT a2T 
Pc at 

k 
ax2 

(4) 

and for only radial flow in a cylinder the heat equation can be simpli- 

fied to 

PcaT 1 a (raT) 
at r ar ar 

a2T 1 aT 

k( ar2 r ar + ) 

Analytical solutions for the heat equations exist for certain 

(5) 

geometries when the surface of a homogeneous medium is being in- 

creased at a rate such that T = 0t +To, where and To are 

constants, and the density, conductivity, and specific heat capacity 

are constant. These solutions are available, in general, for cases 

o c 

= 

axZ a 

z' az 

0 
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where no phase change occurs. For the case where this heating has 

begun at t = 0 with a temperature profile uniformly equal to zero, 

a solution for Equation 5 in an infinite cylinder of radius a, is given 

by Carslaw and Jaeger (7, p. 201) as 

2 2 

T = .13 (t-a a 4 ) + 

0o Jo(rßn) 
-aß t 
e n 

ßnJl(aPn) 
n= 

(6) 

where J0 and J1 are Bessel functions of orders 0 and 1, 

respectively, and Pn is the nth root of Jo(aPn) = 0. A solution 

for a finite length cylinder with these boundary conditions has been 

given (51) and also for unidirectional flow in a slab (7, p. 104). After 

a sufficiently long time after heating begins, a quasi- steady state pro- 

file can be described for unidirectional heat flow (45) in the x di- 

rection of a slab of thickness 2.Q , by 

2-x2 
T = To + (gt f 2a ) 

and in the radial direction of a cylinder, by 

2 2 

T =To+(t-a4a 
) 

(7) 

(8) 

However, when thermal properties are varying or an inhomogeneous 

boundary condition occurs, analytical solutions are often not 

aa 

0 

0 
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possible. In these cases, approximate solutions must be used (7, p. 

282 -283). 

Other Physical Aspects 

The aspects of the kinetics of the phase changes, the diffusion 

of the gaseous reaction products, and the effect of the gaseous atmos- 

phere are largely determined by the nature of the phase change. 

When the phase change is a complicated reaction, such as the dehy- 

dration or decomposition of a clay material, all of these aspects are 

important. However, when the phase change is strictly a physical 

transition with no gaseous products, such as a fusion or a crystal 

structural transformation, only the kinetics (which are often trivial 

for this case) need to be considered. It can be quickly deduced from 

the above that a model considering a complicated chemical reaction 

would be much more difficult to formulate accurately than one con- 

sidering a simple physical change. 

Previous Mathematical Treatments 

None of the previous mathematical models have accurately pre- 

dicted a DTA peak because unrealistic assumptions have been made 

to render the resulting equations easily solvable. There are three 

reasons why previous models have been generated: (1) a desire to 

know the relationship between the peak area and the latent heat of a 
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phase change, (2) a desire to know the kinetic parameters of a reac- 

tion, and (3) a desire simply to enlarge the theoretical knowledge of 

DTA (15, p. 152). These three types of models will be considered 

separately. 

Peak Area and Latent Heat 

Many papers have derived and studied the relationship between 

the area under a thermogram peak and the corresponding latent heat. 

(5, 25, 35, 39, 40, 41, 47). Many of the derived expressions have the 

form 

MAH/gk = ATdt 
a 

where 

(9) 

M = the mass of the active material in the sample, 

AH = the specific latent heat, 

k = the thermal conductivity, 

g = the geometrical constant, 

t = time, 

AT = the differential temperature, 

and a and c specify a time interval sufficiently large to contain 

all effects of the phase change. 

Speil (40) used this equation to predict the composition of various 

clays with reasonable accuracy from thermograms, and he realized 
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that it was only approximate since the thermal gradients in the actual 

samples were neglected. Kronig and Snoodyk (25) and Boersma (5) 

each derived this equation with specific expressions for g for both 

a spherical and infinitely long cylindrical sample holder. They as- 

sumed the thermal conductivity of the block to be much greater than 

that of the sample so that the resistance in the block could be neglect- 

ed, and they also assumed that the thermal properties of the two 

samples were identical except for the thermal effect in the test ma- 

terial. The former assumption is reasonable, but the latter is not 

consistent with reality as the respective conductivities, densities, 

and heat capacities of the inert and test materials are more often not 

alike. Soule (39) and Sewell and Honeyborne (35) proved that Equation 

9 is general for any sample shape providing several conditions are 

met: (1) the boundaries of the inert and test materials are of the 

same shape, (2) the temperatures are measured in identical loca- 

tions in the two materials, (3) the thermal resistance within the 

block and between the block and each sample is negligible, and (4) 

the heating rate is linear. The assumptions (1) and (2) are plausible, 

but the validity of (3) and (4) need to be verified experimentally before 

they should be completely accepted. Several conclusions were made 

from these general results (35): the peak area is independent of the 

heating rate, of the reaction rate, and of the specific heat of the test 

sample, but is dependent upon the conductivities of the test sample 
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and the materials in the furnace, and , of course, dependent upon the 

latent heat of the phase change. 

Some other workers (5, 47) have derived expressions relating 

the reaction heat to the peak area in a different type of sample holder 

which has a high thermal resistance. When such a sample holder is 

used, the thermal resistance of the samples may be neglected, and 

this thermal method takes on a name different from DTA, differen- 

tial calorimetry (15, p. 159 -165). Vold (47) and Boersma (5) consid- 

ered this type of apparatus and state that neglecting the thermal re- 

sistance of the sample allows an expression for the latent heat which 

contains only the heat transfer properties of the apparatus. While 

use of this different type of sample holder allows the elimination of 

the troublesome problem of considering heat lag in the samples, this 

method gives peaks which are much broader, and, as a result, diffi- 

culty is encountered in defining two peaks occurring close together 

(5). In any case, the theoretical considerations of Vold and Boersma 

will not apply to the most widely used type of DTA sample holder. 

Reaction Kinetics Parameters 

Papers dealing with determining reaction kinetics parameters 

have removed the problem of thermal lag in the samples and concen- 

trated on kinetics affecting the DTA curve. Murray and White (31) 

merely neglected thermal lag when they equated temperature 
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difference and loss -in- weight of the sample as exactly analogous ways 

of following the decomposition in clay materials. Kissinger (22, 23) 

assumed in addition that the rate of maximum reaction occurred at 

the peak temperature, and he generated a DTA peak and kinetics pa- 

rameters which showed good agreement with his experimental re- 

sults. Borchardt and Daniels (6) changed the conditions of the exper- 

iment in order to avoid the problems of thermal lag by making the 

samples well - stirred liquid solutions; thus, the samples were of uni- 

form temperature. More recent works (15, p. 210 -214; 33), which 

reviewed the methods of Kissinger and of Borchardt and Daniels, 

found the method of Borchardt and Daniels to give accurate predic- 

tions and the well- accepted method of Kissinger to be seriously in 

error. It was believed that in Kissinger's original work the error of 

neglecting thermal lag was cancelled out by the error in another as- 

sumption, namely, that the maximum reaction rate occurs at the peak 

of the DTA curve, so that for certain specific substances and condi- 

tions the DTA curves generated by Kissinger's equations may agree 

with experimental ones. Thus, thermal lag effects can be eliminated 

by changing the experiment (such as using well- stirred liquid samples 

rather than a solid material), but with normal DTA equipment the in- 

corporation of the sample's temperature gradient is necessary for 

accuracy. At this time, this correction has not been published. 
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Theoretical DTA Peaks 

Several authors have attempted to enlarge upon the theoretical 

knowledge of DTA. Smyth (38) and Tsang (45) theoretically generated 

DTA peaks which elucidated the qualitative nature of experimental 

peaks. Smyth's work is the most original and complete general de- 

scription of the heat transfer aspect within DTA samples published to 

date. Smyth uses a finite difference method to follow a moving phase 

boundary in a slab. Tsang's work follows that of Smyth by describing 

an alternative mathematical method for generating the same type of 

DTA peak. 

Both investigators made the following stipulations about the hy- 

pothetical DTA system they were describing: (1) the thermal conduc- 

tivities, densities, and specific heat capacities (other than the heat 

effect in the test sample) in both materials, which are assumed to be 

homogeneous, are equal and constant throughout the process, (2) the 

reaction was endothermic, free of any reaction products, and zero 

order, instantaneously occurring at one distinct transition tempera- 

ture, (3) the heating rate at the surfaces of the samples is linear 

with time, and (4) the heat conduction occurs principally in one co- 

ordinate direction in a slab (Smyth and Tsang) or in a cylinder (Tsang). 

From stipulations (1), (3), and (4) the quasi - steady state profile in 

the inert sample remains invariant throughout the process according 
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to Equations 7 and 8. An analytical solution of the heat equation un- 

der these conditions is impossible (7, p. 282 -283) because of the 

phase change so that approximate numerical methods are needed, and 

the methods used by Smyth and by Tsang will be considered separate- 

ly. 

The Peaks of Smyth. Smyth (38) found the temperature profile 

in the slab- shaped sample by solving the heat equation using a numer- 

ical method attributed to Schmidt (28, p. 43 -51). Smyth divided the 

slab by parallel planes normal to the direction of heat flow tax cm. 

apart and defined a time interval. 

2 

At = ( a) 
seconds (10) 

where a is the diffusivity. This Schmidt method states that the 

temperature at time t on a grid line is equal to the mean of the 

temperatures at time t - At on the two adjoining grid lines. This 

method does not account for the phase change, so Smyth generated 

additional equations. 

Smyth derived finite difference equations to describe a moving 

phase boundary from a heat balance about the boundary. The temper- 

ature profile and this boundary at some time during the transition are 

shown in Figure 2, together with the temperature gradients at the 
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Figure 2. Diagram used by Smyth (38) to calculate the phase 
boundary movement within a slab. 
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boundary, (8x)l and (ax)2' in the high and low phases, respec- 

tively. If the heat of transition per unit mass is AH, the movement 

bx cm. , of the boundary in a time interval At was derived from a 

heat balance as 
, 

sx - poH[-k(äx)1 + k(ax)2 ot 
where p and k are the density and thermal conductivity, respec- 

tively. The term in brackets can be interpreted as the net rate of 

heat conduction into the boundary, which converts a thickness, bx, 

of material in the low form to the high form in a time interval At. 

Since the gradients cannot be found directly the following approxima- 

tions were used 

(aT) 
.Tl -To and (12) 

ax 1 xl -xo 

aT ..,,To-T2 
- (ax )2 x -x 

where the T's and x's are shown in Figure 2. 

(13) 

The Schmidt method and the equation determining the boundary 

movement were combined, and iterative calculations across the slab 

at intervals of At seconds described the temperature profile and 

the boundary movement within the slab being heated. This method 

was applied to generating a DTA peak as follows: the temperatures 
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of the center of the slab were calculated using this method, the tern - 

peratures of the center of an inert slab material were found from 

Equation 7, and the differences of these center temperatures were 

plotted against a reference temperature to give a simulated DTA 

peak. The resulting DTA peaks had three shapes, depending upon 

whether the reference temperatures were chosen in the inert mater- 

ial, in the block (corresponding to the time for a constant heating 

rate), or in the sample. The case for the reference temperature in 

the inert material is shown in Figure 3. The peak for the case of the 

reference being in the block has a similar shape except that the en- 

tire peak is shifted along the temperature axis so that the initial de- 

viation from the baseline corresponds to the transitions temperature. 

When the center of the test sample is the location of the reference 

temperature, a completely different shape results, the peak rising 

very sharply and the temperature at the top of the peak corresponding 

to the transition temperature. These peaks and the related discus- 

sions of Smyth are the clearest and most complete qualitative de- 

scription of DTA peaks heretofore published. However, Smyth "s 

work had no intention of quantitatively predicting experimental DTA 

curves. 

The Peaks of Tsang. The mathematical method used by Tsang 

(45) utilized several assumptions which allowed the solution to be 
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obtained without the large number of numerical steps required by 

Smyth's method. Tsang treated the sample as a system made up of 

two hypothetical materials, one material a, having a finite k and 

having a C and a pH equal to zero and the other material b, 

having a k equal to infinity and a positive C and a positive pH. 

The material b, can be considered negligibly thick as regards heat 

transfer because there is no resistance to heat transfer, but the 

thermal inertia must be considered. The material a, has no 

thermal inertia but offers a resistance to heat flow; thus, the heat 

transfer problem is sublimated to one of flow through a material b, 

between points of material a, being heated. The size and location 

of the layers of b is determined by two conditions: first, that the 

rate of temperature rise upon heating varies linearly with position, 

and second, that the sum of the volumes of the layers is equal to total 

volume of the actual sample. The equivalent conductivity of material 

a for heat transfer between layers of b was determined by appli- 

cation of the solution 7 for the heat equation. By using this equivalent 

system of materials a and b and normal techniques for solving 

ordinary differential equations, Tsang obtained relatively simple so- 

lutions for one and two segments in a slab which agreed remarkably 

well with Smyth's curve shown in Figure 3. Tsang also applied his 

method to the infinite cylindrical shape for one and two sections (see 

Figure 7). 
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Moving Boundary Problems 

While Smyth considered a moving boundary in DTA, many math- 

ematical works have considered a moving boundary in melting prob- 

lems, often called Stefan problems, (11, 44). These methods may be 

applied to the moving boundary in a DTA sample. Unfortunately, 

none of these solutions have included the linerarly rising surface 

temperature boundary conditions nor the geometry of a cylindrical 

material; however, the application of ideas from these works is pos- 

sible. For example, in treating a moving boundary within a slab 

Crank (9) described the boundary movement and the temperatures at 

grids close to the boundary by using finite difference equations for 

the first and second distance derivatives of temperature derived from 

Lagrange's three -point interpolation formula (26, p. 36 -41; 30, p. 

83 -92). This idea of applying Lagrange's three -point formula to a 

moving boundary problem will be applied to a cylinder in the present 

work. 

Lagrange's interpolation formula, which can treat unequally 

spaced functions such as are encountered in a moving boundary prob- 

lem, can be written as 

n 

f(x) _ ) Q(x)f(aj) 

j/=J0 

(14) 



where 

and 

pn(x) 
/j(x) (x-aj)Pri(aj) 

pn(x) = (x-ao)(x-al)....... (x-an-1)(x-an) . 

For three point formulas (n =2) this becomes 

-.., 
(x-al)(x-a2) (x-a0)(x-a2) 

-al)(ao-a 
2 
)f(ao) + (al-ao)(al-a 
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(15) 

(16) 

(17) 
(x-ao)(x-al) 

o 1 f(al) 
+ (a2-ao)(a2-al)f (a2) 

and after taking the first and second derivatives the results are 

df(x) ti (x-al) +(x-a2) (x-ao) +(x-a2) 

dx (ao-al)(ao-a2)f(ao) + (al-ao)(al-a2)f(al) 

(x-ao) +(x-al) 
(18) 

+ (a2-ao)(a2-a) f (a2) 

and 

d2f(x) 
-.4:.2, 

f(a0) f(al) f(a2) 
(19) 

dx2 + (ao-a1)(ao-a2) (al + (a2-ao)(a2-al) 

Thus, Crank (9) used expression 18 to calculate a temperature gra- 

dient and expression 19 to calculate the right side of the heat Equa- 

tion 4 for a slab with unidirectional heat flow. 

Similarly, equations for a cylinder can be obtained from 18 and 

19. In a cylinder the Laplacian has the form given by Equation 3, and 

n 

f(x) , 

0 1 0 1 0 

i [ 
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considering only heat flow in the redial direction, the right side of 

the heat Equation 5 can be written as 

d2T x 1 dT(x) T(ao) T(a1) T(a2) 

dx2 
+ x dx La o-a1)(ao-a2) + (al-ao)(a1-ao) + (a2-a0)(a2-a1) 

(x-al) + (x-a2) (x-ao) +(x-a2) 

+ x 
[(7-al)(ao-a2) 

T(ao) + (al-ao)(al-a2) T(al) 

(x-ao) +(x-a1) 

+ (a2-ao)(a2-a1) T(a2) 
(20) 

In addition, the equations for the gradients at the phase boundary 

within a cylinder are identical to those within a slab. Equations 18 

and 20 will be applied to the present model. 

Summary of Previous Models 

Several conclusions were made on the previous theoretical 

works about their usefulness in generating a DTA peak. The models 

which related peak area to latent heat are not applicable because they 

are concerned with a different area of DTA. The models which treat 

kinetics did not account for thermal lag, and therefore, the use of 

these kinetic models, such as that of Kissinger, will not give reliable 

results and will not give an accurate result unless a fortuitous set of 

conditions are used which by chance balance out unreal assumptions. 

The works of Smyth and Tsang give useful qualitative results but 

2 

l 

-al)(ao-a2) 

~ 
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weren't intended to give accurate quantitative results. In summation, 

none of these previous workers have generated a quantitative DTA 

model capable of predicting an experimental peak. 
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THE DTA MODEL 

The only two previous studies that have generated theoretical 

DTA peaks were qualitative rather than quantitative, and both of 

these use the same data and assumptions. Also, while the finite dif- 

ference method used by Smyth is probably accurate, there is no as- 

surance that Tsang's mathematical method is really accurate for the 

cylinder. It was intended that the present model would be an improve- 

ment over these two previous models, for the present model would 

attempt to predict an experimental DTA peak by using assumptions 

as close as possible to physical reality and by using an accurate 

method of numerical solution. 

The development of the present model had several phases. 

First, a specific DTA apparatus was chosen as a basis for the model, 

and simultaneously, a certain type of kinetic reaction was chosen 

which described an instantaneous phase change. Afterwards, actual 

materials were chosen for both the reference sample and the test 

sample so that the results could be compared to the experimental ob- 

servations of other workers. Second, basic mathematical equations 

were developed and assumptions tentatively were made which were as 

close to physical reality as was feasible, but for which a mathemati- 

cal solution was still possible. Third, various numerical methods 

for solving the heat transfer equation were investigated, and the most 
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advantageous of these methods was chosen. Fourth, specific finite 

difference equations were derived for an infinite cylinder which could 

describe the moving phase boundary. Fifth, a computer program was 

written employing the difference equations to obtain numerical and 

graphical solutions of the model. Lastly, the numerical results were 

compared with other theoretical results and with experimental re- 

sults. This step served as a basis for determining the validity of the 

model, for affecting changes in the model, and for making suggestions 

for future work by others on this model or a new model. 

A DTA System 

As the first step toward generating the mathematical model a 

specific differential thermal analyzer will be asserted as a basis for 

analysis, and it will be based upon a typical, commonly available ap- 

paratus, the Deltatherm model D2000 differential thermal analyzer 

and the Deltatherm moded D2200 rate controller.1In this apparatus, 

diagrammed in part in Figure 4, the samples are held by holes 1/4 

inch in diameter drilled 1/2 inch deep into a heavy nickel block, and 

a metal lid fits tightly over the holes. The system temperature meas- 

urements for the temperature controller and for the temperature axis 

of the thermogram, are taken in the metal block. The temperature 

1An apparatus of this type is located at the Bureau of Mines in 
Albany, Oregon. 
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5.08 cm 

c 2.54 cm 

-sample holes 
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x 
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thermocouple thermocouple 
EMF EMF 

Figure 4. Diagram of the sample block and the thermo- 
couples of the present model. 

N 
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controller attempts to maintain a set rate of temperature rise in the 

block, but because of a high thermal inertia in the system, a rela- 

tively long time is required to affect a significant change in heat flux 

to the block after a command is given by the controller. There are 

some inertial effects and some conductance effects from the differ- 

ential thermocouple located in the centers of the samples. The emf 

measured by the differential thermocouple, an indication of the tern - 

perature difference between the test sample and the reference sam- 

ple, is illustrated by a strip -chart recorder against block tempera- 

ture. Closely related to the apparatus is the reaction which gener- 

ates the heat effect. 

The type of reaction decided upon is a zero order, instantane- 

ous phase change, which would occur at a specific temperature and 

have no gaseous reaction products. The reasons for this choice are 

first, that it approximates the change which occurs in many actual 

phase transitions, and second, that the problem of kinetics in such a 

reaction are trivial. The treatment of kinetics in this reaction is 

simple because the speed of this type of phase change is controlled 

only by the rate at which heat can be supplied to the material in tran- 

sition. The specific heat capacity of this type of material is a fairly 

smooth function except precisely at the transition temperature where 

it has a value of infinity, and the area under the heat capacity versus 

temperature curve at the point of the transition temperature is equal 
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to the latent heat of phase transformation, H. Alternatively, this 

heat capacity mathematically can be considered to undergo a jump 

discontinuity, without this jump to an infinite value, but with the ef- 

fect of off superimposed upon it at the transition temperature. 

In quartz the a to ß, low form to high form, crystal struc- 

ture transition has the phase change characteristics listed above (1), 

and therefore, quartz was chosen as the specific material to be con- 

sidered. Since this phase change in quartz occurs with only a slight 

structural change, no extra products are formed, and only minimal 

changes in physical properties occur as a result of the transition. 

The only significant change reported in the literature (16, p. 195) is 

cal in the heat capacity which has a value of 0. 297 before the 
g K 

transition (a) and a value of 0. 267 l after the transition (ß). 
g K 

The latent heat of the transformation is 290 calories per gram mole 

(50, p. 103), which is sufficiently large to produce a substantial 

and this transition occurs at 574 degrees centigrade (50, p. 103). -1 

The quartz sample was taken as crushed (100 mesh with an apparent 

g 3 
) rather than a single crystal. 

3 
density of 1.358 

cxn 

2It should be mentioned that these values of properties for 
quartz are only approximate since variations in the transition temper- 
ature occur among different samples and even occur at different loca- 
tions within a single crystal (21). 

3The properties of such a crushed quartz sample were deter- 
mined in studies at the U.S. Bureau of Mines in Albany, Oregon. 

peak, 



33 

The specific reference material chosen was powdered -Alumina, 

A1203. It is widely used in DTA (48) because of its thermal stability 

and its lack of a heat effect over a wide temperature range, and its 

use in the present model is entirely satisfactory. Having chosen the 

sample materials and the hypothetical apparatus, the next step was 

to formulate the equations and to consider applicable assumptions. 

Assumptions and Basic Equations 

In order to generate a DTA peak consistent with experimental 

results, the mathematical model should be able to describe the physi- 

cal reality of the process. The ideal mathematical model would be 

consistent with reality: to specify a sample geometry consistent with 

actual sample shapes, to account for thermal properties which change 

during the DTA process, to account for thermocouple effects, to spe- 

cify the temperature profiles in the samples and in the block, to de- 

scribe mathematically the response of the temperature controller, 

to realize accurately all effects of the reaction, and finally to have 

the accurate data necessary for describing the specific apparatus and 

samples for which the peak is to be simulated. However, the precise 

descriptions of some physical processes and the precise values of 

some of the physical properties presently are not known. This lack 

of knowledge, together with the mathematical complexities that would 

arise, make certain assumptions necessary. 
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A number of simplifying assumptions will be tentatively assert- 

ed, subject to possible change. These assumptions first will be stat- 

ed and then their validity will be discussed. (1) The geometry of the 

sample holder will be that of a cylinder, both an infinite length cylin- 

der with only radial heat flow and a finite length cylinder with axi- 

symmetric heat flow. (2) The temperature gradient in the block will 

be negligible in comparison with the gradient in the samples. (3) The 

rate of temperature rise of the block will be maintained at a constant 

value. (4) The thermocouple effects will be neglected. (5) The ther- 

mal resistance between the block and the samples will be negligible. 

(6) The crushed quartz and powdered alumina will have homogeneous 

physical properties. (7) The thermal conductivity of quartz remains 

constant throughout the temperature range of the peak. (8) The reac- 

tion is zero order and occurs at one temperature, the only limitation 

upon its rate being the net rate of heat transfer to the reacting sub- 

stance. The specific reaction which will be used is the a to 

crystal tranformation in quartz. (9) The transition occurs within an 

infinitesimally thick boundary which separates the a phase and the 

(3 phase of quartz. A comparison between the assumptions and this 

hypothetical DTA system will assess the validity of necessary as- 

sumptions. 

Assumption (1); asserting a cylindrical sample geometry, is 

consistent with the actual sample shape. The validity of 

Ç3 
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axisymmetric heat flow lies greatly upon the validity of assumptions 

(3) and (6), for axisymmetric heat flow would require that the block 

temperature at all points in contact with the surface of the sample be 

equal and that the sample properties do not vary with angular position 

in the sample. The assumption that the cylindrical sample can be 

treated as infinitely long is admittedly an approximation which is a 

sacrifice for the sake of mathematical simplicity. The present sam- 

ple has a length of twice its diameter, and assurance that an infinite 

cylinder is a good approximation of the present sample shape would 

only be possible after the finite cylinder solution had been found and 

shown to be nearly the same as the infinite cylinder solution. 

Assumption (2) may be checked by comparison of the thermal 

resistance of the block and of the sample. Since the nickel block has 

cal a conductivity of .088 
0 

(18, p. 2435) and the crushed 
sec cm C 

quartz sample has an apparent conductivity of about .00589 
sec cm C 

the block conducts heat much more easily than the sample, but this 

cal 

higher conductive ability of the nickel is partially counteracted by the 

larger distances of the heat flow through the block than distances of 

the heat flow through the sample. The resistance of heat flow through 

the block is probably at least an order of magnitude less than the re- 

sistance through the sample, but it may not be competely negligible. 

4'The calculation of this value for k will be shown later in 
this subsection under the discussion of assumption (7). 

4 -, 
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However, it will be assumed negligible for to take it into account ac- 

curately would greatly increase the complexityofthe present analysis, 

and a full account of the block resistance will be left for some future 

work for other investigators. 

The validity of (3) can be checked by a comparison between the 

total heat capacity of the block and the heat effect of the reaction. 

This comparison is justified because, while the controller can main- 

tain a constant rate of increase when gradual variations in the heat 

requirement occur, due to the systems relatively high heating lag it 

cannot respond quickly to a large abrupt change in heat flux require- 

ments caused, for instance, by an abrupt phase change. Thus, the 

cal 
total energy content of the nickel block with c = 1.27 

0 
(18, p. 

g C 

2267) and p = 8.86 
3 

(18, p. 2131) and with the dimensions 
cm 

shown in Figure 4, is 

pcV = 8.86 x .127 x (1. 905 x 5. 08 x 5.08) 

calories 
= 55.0 

oC 

The total heat effect of the quartz sample during a complete transi- 

tion is cal 
.6352 

290 
VpDH = (nx ' 6 x 1. 27)cm3 x 1. 358 x mole 

cm 60.1 g 

8.57 calories 

mole 

g 

g 

= 

- 

3 
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This amount of heat is the same amount required to raise the temper- 

ature of the block during heating by 

8.57 calories 
calories 55.0 
oC 

- 0.156°C . 

Therefore, it can be said that since the heat requirement of the reac- 

tion is small in comparison to the heat supplied to the block during 

the process, the demanded increase in heat absorption by the heat 

effect will not significantly alter the heating rate. 

The validity of assumption (4) will be shown later through the 

use of the model. 

The validity of assumption (5) cannot be easily checked. How- 

ever, it does seem intuitively true that the thermal contact between 

the sample wall and the crushed sample inside is good, and if this is 

true this assumption is valid. 

Assumption (6) is reasonable if the correct apparent properties 

can be found. If the packing of the sample is done carefully as to be 

uniform in a particular sample and to be consistent between different 

samples, apparent properties which take into account the voids with- 

in the crushed samples may be used. The optimum conditions would 

be when actual properties for the samples are available, but since 

this is generally not the case, these properties usually need to be es- 

timated. 
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Assumption (7) is admittedly a dangerous one, but necessary 

because data for the thermal conductivity, k, were not found for 

the p form of quartz. Data that were available for the a form 

(16, p. 197) showed a large dependence upon direction of conduction 

through the quartz crystal, particularly at around room temperature. 

Since the orientation of the crystal axes would probably be random 

within a crushed quartz sample, the constant k 
s 

for a solid sample 

was assumed to be an average of the value of k for the direction 

perpendicular to the crystal's c -axis and of the value of k for the 

direction parallel to the crystal's c -axis, thus, 

k1 +k11 

ks - 2 

.0126 +.0102 
2 

_ .0114 cal 

sec cm 0 
C 

The apparent value for k for a crushed sample was calculated from 

an equation given by Smith (36) which has showed good accuracy for 

soils: 

kapparent kvoidsf + kquartz(1 -f) 

where f is the void fraction calculated from the densities of the 

materials using 

_ 
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Psolid 
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Since the density of solid quartz is 2.65 g /cm3 (18, p. 2223) and the 

apparent density of the crushed sample is 1. 358 g /cm3, then f 

can be found; 

f- 2.65-1.358 
2.65 

= .487 . 

Knowing f, k , and k = 
cal 

s air 000132 o apparent cm sec C 

be calculated as 

k = .000132 x .487 + .0114(1 -.487) apparent 

= .00589 
cm sec 0 

C 

cal 

can 

This will be the constant value of k used for the quartz sample. 

Under assumption (8), this type of reaction is common among 

simple physical phase changes such as the melting and boiling of 

many chemicals, and the a --13 crystal transition in quartz (21). 

Assumption (9) follows directly from assumption (8). Since the 

only way in which heat may be transferred through a homogeneous 

solid is by conduction, and since a temperature gradient is needed 

for conduction, the only condition where heat could be transferred 

through a region undergoing a zero order transition at a uniform 
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temperature is for that region to be infinitesmally thick. 

Based upon these several assumptions, it is now possible to 

reasonably describe the DTA process mathematically. From assump- 

tions (1), (2), (4), (5), (6) and (7), the only significant resistance to 

heat flow is in the samples, and the heat Equation 1 becomes 

8T 82T 1 8T 8T cpôt 
2 +r âr +8z kar (21) 

When the infinite cylindrical case is considered the heat Equation 5 

applies. From assumptions (2), (3), and (5) the temperature rise at 

the surface of the samples will be linear; mathematically this can be 

written as 

Tsurf.4)t+To, (22) 

where qr and To are constants. 

An equation describing the movement of the phase boundary will 

be derived, and the result will be similar to those of Smyth (38) and 

Crank (9). Fourier's heat conduction law (24, p. 9) is 

dT 
q = -kA 

dx 

where 

(23) 

= 8r 

0 



q = the heat flow in the direction of the gradient, 

k = the thermal conductivity, 

A = the area perpendicular to heat flow, 

and dx = the temperature gradient. 

The rate of conversion for a zero order reaction can be written as 

d(pV) q 
dt OH 
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(24) 

where AH is the heat of reaction per unit mass, p is the density 

of the reacting material and V is the volume of the reacting mater- 

ial. If the phase change occurs in a cylindrical shell of area Ab, 

and thickness 5,-5/ and if p is invariant with time, then 

V = AbS and 

dAbS 
q 

dt pAH (25) 

The net heat flow through the boundary (see Figure 2) using Equation 

23 is 

dT dT 
q = (-k lAl dx li k2A2 dx ( 2)' (26) 

5As previously stated a zero order reaction occurs within an 
infinitesimally thick boundary, but the finite thickness of S is intro- 
duced here to facilitate the mathematical approximations later in 
this paper, 



and combining Equations 25 and 26 gives 

dAbS 
1 (_k A dT -1 +k A 

dT 
dt p A H 1 1 dx 1 2 2 dx 2` 
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(27) 

If a finite difference approximation is used for dS the thickness, , 

5X, of material being changed during a time interval At (Ab is to 

be nearly constant during this time) becomes 

SX = AbpAH ( k1A1 dx I 1+k2Á2 dx 1 2)At (28) 

This equation becomes precisely Smyth's Equation 11 when a infi- 

nitesimally thick boundary (S -0) is used in the numerical calcula- 

tions (in this case Ab = Al = A2). 

The Finite Difference Method 

Since many partial differential equations and their correspond- 

ing boundary conditions do not have exact solutions, they must be 

solved using approximate methods, and those most commonly used 

are finite difference techniques. Certain other approximate methods 

which have been used in solving specific problems have the potential 

of being useful, but these methods will need to be developed further 

before they can be generally applied by the non - expert (14). Finite 

difference methods substitute difference expressions for the deriva- 

tives in a differential equation, for example 

, 

. 

I 



or 

where 

n Tn+1,,n 
óT I m m O(At) 
at m At 

n n 
8 T 

In 
T - T m+l m-1 2 

ax m 2Ax + O(Ax) 

At = the time increment, 

Ax = the distance increment, 

superscript n determines a time, t = nAt, 

and subscript m determines a location, x = max. 
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(29) 

(30) 

Therefore, the problem of solving a differential equation can be re- 

duced to an algebraic, numerical problem using finite difference 

techniques. 

The term, O( ), refers to the "order of the error" in using 

a particular approximation, which means that the error of one step 

in the calculation is proportional to the order of the particular incre- 

ment as indicated. For example, O(At) means that the error de- 

creases proportionally to a decrease in At, and O(Ax)2 means 

that the error is proportional to the square of Ax (26, p. 87). Since 

increments are less than one generally, the higher this order, the 

lower the error. 
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Criteria for Selection 

Finite difference methods are chosen according to their accur- 

acy and to their convenience in solving a particular differential equa- 

tion, and this choice varies with the equation and the boundary condi- 

tions. In considering the accuracy of a method two stipulations must 

be made: first, that the solution converges, which means that the fi- 

nite difference solution approaches the desired analytical solution as 

increments become increasingly small; and second, that the solution 

is stable, which means that truncation errors (errors resulting from 

the rounding off of numbers) (26, p. 69) do not accumulate from one 

iteration to the next, but instead, stay of the same magnitude or pre - 

ferrably dampen out. Convergence can be most directly measured 

by comparison between the approximate solution and the analytic so- 

lution (11), if one is available, and stability can be detected opera- 

tionally by noting whether the error of the solution increases and 

probably oscillates in sign after a number of iterations (13, p. 13). 

If no corresponding analytical solution is available, the best way to 

estimate whether or not a particular finite difference solution has 

converged is to calculate another solution of the problem using small- 

er increments, and then to compare the two solutions. If the two ap- 

proximate solutions are nearly equal it can be assumed that the solu- 

tion has essentially converged; otherwise smaller increments are 



45 

needed for convergence (13, p. 8 -10). 

It should be added that while a numerical solution may converge, 

this fact alone does not guarantee that the solution has converged to 

the solution desired, for it may have converged to an erroneous solu- 

tion. A rigorous and usually very complex mathematical analysis is 

needed to prove the absolute convergence to the desired solution when 

a corresponding analytical solution is not available (11). The con- 

vergence of an explicit method for a Stefan problem has been proven 

(44), and since there is a close similarity between this solution of the 

Stefan problem and the solution of the present problem, the present 

explicit method will be assumed to converge to a correct solution . 

Comparison to experimental results will substantiate this conclusion. 

Finite difference methods for solving the heat equation, which 

is a parabolic partial differential equation, may be dichotomized into 

explicit methods (12, 27) and implicit methods (10), and it was first 

necessary to choose one of these two types. Explicit methods have 

the advantage that answers at a particular time step are given in 

terms of known quantities, but have a disadvantage that severe stabil- 

ity criteria are often imposed. This means, for example, that the 

ratio apt -2 
Ax 

upper bound of 2. 0, so that the time increment must be relatively 

in the case of a one -dimensional slab problem has an 

small (7, p. 471; 11). Conversely, implicit methods have the advan- 

tage that they are usually unconditionally stable so that any time 
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increment gives a stable solution, the limitation in increment size 

being the convergence of the solution. However, they have the disad- 

vantage that finding each point of a solution at a next higher time step 

requires the solving of a number of simultaneous algebraic equations 

containing other points at this next higher time step. While there are 

methods for finding the solutions of simultaneous equations (26, p. 163- 

164), the present problem would have an increased complexity over 

simpler heat problems due to the additional equation describing the 

boundary movement. Therefore, implicit methods were not consider- 

ed further, and the present work was limited to the use of explicit 

finite difference methods. 

Explicit Methods 

The first explicit method considered was the widely used con- 

ventional explicit method described by Schneider (34, p. 292-308), 

Douglas (11), and Dusinberre (13). This method has the advantage of 

being simple and of being surprisingly accurate, but, as previously 

mentioned, has a severe limitation placed upon the size of the time 

increment. 

For an infinite cylinder the heat Equation 5 can be written in a 

finite difference form. The first derivative term becomes, using x 

as the radial direction in place of r 



a_T 

ax 
Tn 

T 
n 

n 
m+1 

2 0(Ax) + 
2Ax m 

and the second derivative becomes 

a2T 
2 

ax 

Tn -2Tn +Tn 
m+1 m m-1 + 0(Ax2) . -2 m Ax 

Applying Equation 31 and 32 together with the fact that x = mAx 

gives the right side of Equation 5 in difference form if m 0, 

2 Tn -2Tn +Tn Tn+l-T11- 1 

a T 1 aT m+1 m m- 1 1 m m 

k(ax2.+x ax) k 
Ax 

+mAx 2Ax 
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(31) 

(32) 

= 
k 

[(2m-}-1)Tn -4mTn +(2m-1)Tn ] (33) 
2mAx2 

m+1 m m- 1 

Using Equation 33 to replace the right side of Equation 5 and using 

Equation 29 to replace the left side of Equation 5 gives 

,I,n+ 1- n 
m m k 1 [(2m+1)Tn -4mTn +(2m-1)Tn ] 

At pC 2mAx2 
m+1 m m-1 

Algebraic manipulation of Equation 34 gives 

Tm n+1 n 1 2m+1 n n 2m-1n 
m rn M 

T -2T 
2m m+1 m 2m m-1 ] 

For the special case of the center temperature of a cylinder if 

(34) 

(35 

m-1 

, 

+ 

n 

- 

T _ 
+ 



(dT /dx) = 0 at x = 0 (also m = 0) the result (13, p. 67) is 

,I,n+l 
= Tn 4 

M( Tn-Tn 
0 0 1 0) 
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(36) 

Two other methods claimed by Larkin (27) to have stability 

superior to the ordinary explicit method, were evaluated for use in 

the present model. The increased stability would allow larger time 

increments and, thus, shorter computing time, and also it was 

claimed that the convergences of these methods were good. These 

methods were the Dufort and Frankel method (12) and an exponential 

method (27), and the specific equations for these methods are given 

in Appendix II. 

A comparison of the accuracy of these two methods together 

with the conventional explicit method was based upon a solution of the 

temperature profile within an infinite cylinder being heated linearly 
o 

at the surface. The heating rate was 8----- C 
, the radius of the cyl- min 

Inder was one centimeter, and the diffusivity of the material in the 
2 

cylinder was 0.006 cm 
sec The specific comparison is derived from 

the time required for the differential between the surface tempera- 

ture and the center temperature to reach within 0.1% of the quasi- 

steady state temperature difference of 5. 5556oC (found from Equation 

8), for which an analytical solution applying Equation 6 gave an 

answer of 205,00 seconds. It was found that the exponential method did 

. 
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not converge to the desired answer even for small increments so it 

was dropped from further consideration. The comparison of the ac- 

curacy and of the number of calculations between the Dufort and 

Frankel method and the ordinary explicit method are given in Table 

1. 

Several conclusions can be drawn from the figures in Table 1. 

(1) The conventional explicit method is stable for M = 2.5, which 

contradicts Dusinberre (13, p. 67) who claims a more severe criter- 

ion of M = 5.0 for a cylinder. (2) The Dufort and Frankel method 

is about as accurate as the conventional explicit method during the 

cases when the latter method is stable. (3) The accuracy of the Du- 

fort and Frankel method decreases when M = 1.25, where the oth- 

er method is unstable. In conclusion, if an accuracy of in this 

problem is desired, either of these methods is satisfactory, but if a 

larger error can be tolerated, the method of Dufort and Frankel can 

be considered superior due to its better stability. However, the con- 

ventional explicit method was chosen because of its greater simplic- 

ity. 

In addition, the conventional explicit method was applied to afinite 

cylinder. It was found, however, that the extra calculations needed 

to determine the temperatures in two dimensions made the computer 

running time so long that the solution became too expensive monetar- 

ily. The equations that were used are given in Appendix IV. 
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Table 1. A comparison between the Durfort and Frankel Method (12) 
and the Conventional Explicit Method. 

2 A 
cm 

Conventional Explicit Method Duforth and Frankel Method 
number of 

time error calculations 
number of 

time error calculations 

M_Ax 
aft sec 

5. 000 0.0833 0.05 205.083 + . 083 49, 220 205. 250 +0. 250 49, 260 

2.500 0.1667 0.05 209.833 - .167 24,580 205.000 0 24,600 

1.250 0. 3333 0.05 unstable 203.667 -1. 333 12, 200 

0.625 0.6667 0.05 unstable 198.000 -7.000 5, 940 

5.000 0. 3333 0.10 205. 333 +0. 333 6,160 206.000 +1. 000 6, 180 

2.500 0. 6667 0.10 204.000 -1.000 3, 060 204. 667 -0. 333 3,, 070 

1. 250 1. 3333 0.10 unstable 198. 667 -6. 333 1, 490 

5.000 1.3333 0.20 205.333 +0.333 770 208.000 +3.000 780 

2.500 2.6667 0.20 200.000 -5.000 375 202.667 -2.333 380 

1.250 5.3333 0.20 176.000 -29.000 165 

M =- Ax 

- -- - -- - -- 
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The Boundary Equations 

In addition to the finite difference Equations 35 and 36, equa- 

tions for the temperatures near the boundary which are applicable to 

unevenly spaced distance intervals, and equations for the movement of 

the boundary were required. These equations were derived in two 

different finite difference forms: three -point formulas derived from 

Lagange's interpolation formula 17, and two -point formulas derived 

from a central difference formula similar to Equation 30. After de- 

rivation, the better of these two types of boundary equations was cho- 

sen on the basis of the convergence of the final solutions. 

These boundary equations were derived by considering the ar- 

rangement shown in Figure 5, which depicts a unit length of one half 

of an axial cross section through the center of an infinite cylinder. 

Consider that this cylinder is divided into K annular shells of 

thickness Ax, and that the lines bounding the shells are located at 

distances 0, Ax, 2Ax, ... , mAx, ... , (K -1)Ax, and KAx from the 

center. The location of the phase boundary at the transition tempera- 

ture, T , is a distance, x(nAt), from the center, and this dis- 
L. 

tance is also specified relative to a nearby divisional line by the ratio, 

p(1< p < 2). The necessary equations must give the temperatures at 

points m + 1 and m - 2, and account for the boundary movement. 

The calculation of temperatures at point m or at point ma - 1 was 
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deferred until the boundary had moved at least a distance of Ax 

away from the respective point because an instability occurred in the 

solution when p was smaller than one, or larger than two. 

Three -point Equations 

The three -point equations which were used to calculate Tm 
+1 

and Tn were derived using Equation 20 and 29 substituted into m -2 

the heat Equation 5. When these substitutions are made, the result 

is 

,I,n+l -,I,n 
m m 

At 
_ 2 

T(a0) T(al) `r(a2) 

(ao-al)(ao-a2) + (al-ao)(al-a2) + (a2-ao)(a2-al) 

1 
+ x 

(x-al) + (x-a ) (x-a ) + (x-a ) 

(ao-al)(ao-a2) T(ao) + (al-ao)(al-a2) T(a1) 

(x-ao) +(x-al) 
+ (a2-ao)(a2-a1 ) T(a2) 

(37) 

When finding Tm definitions can be made, referring to Figure 

5, that 

6This instability can be explained by noting that the condition 
2 

for stability in an equation for Tm- M = 
2.4N 

t > 5, is violated for 

p < 1 if the increments have been chosen so that M = 5 when p = 1. 
An analogous treatment shows that an instability results in the equa- 

tion for Tn + 1 when p > 2. 
rn 

6j 

+1, 



a 
0 

= (m+2)dx 

al = (m+1)dx 

a2 = x(t) 

x(t) _ (m-2+p)dx 

x=al . 

Substitution of Equation 38 into 37 and rearranging gives 
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(38) 

T,n+1 
m+1 

T,n 1 

m+1 M (4-p)(rn+1) 
(3-p)(m+2) 5-p 4n -.,r 1. 

L 
Z,n 

4-p m+2 p-3 m+1 (p-3)(p-4) 

+ Tn +p-2 T n 1 T p-3 4-p m+2 3-p Tm+1 (p-4)(3-p) L 

+ Yn-2+p 4-p ,,n 2p-7 
(p-3)(4-p)(m+1) 4-p m+2 3-p m+1 (p-4)(p-3) L 

Similarly, in finding Tm it can be defined that 

a = x(t) 
o 

al = (m-2)dx 

a2 = (m-3)Ax 

x(t) _ (m-2+p)dx 

x=al . 

Then Equations 40 and 37 are used to give 

(39) 

(40) 

= T 

+ 

) 
+ + 

-2, m 



Tn+l T 
n 1 (m-2+p) 2p+1 p+ 1 n 

+ 

, 
r 

n 
m-2 m-2 + M (m-2)p(p+1) p(p+1) T T L p m-2 p+1 m-3 

p_21. 
1 T +Tn --P_Tn 

p p(p+1) L p m-2 p+1 m-3 

[-1 p±2 n PlTL p m-2 p+1 m-3 

(p+1)(m-2) 
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(41) 

The equations for the boundary movement can be derived by 

using Equation 18. After applying Equation 38 to 18 in region I of 

Figure 5, the gradient at the boundary can be written as 

dT Ine p-3 ,I,n p-4 mn 2p-7 
dx I (4-p)Ox m+2 (p-3)AX m+1 Ox(p-3)(p-4) L' (42) 

Similarly, after applying Equation 40 to 18 in region II, the gradient 

at the boundary can be written as 

dT in 2p+1 p+1 n p 
dx II p(p+1)oX TL 

- 
pAx m-2 + T m-3 (43) 

Thus since Ab = Al = A2 (because Equation 42 and 43 give the gra- 

dient exactly on the boundary) substituting Equation 42 and 43 into 28 

gives the final result as 

At -kI .p-3 p-4 ,,n 2p-7 bx - pAH Ax 4-p 
Tn 

m+2 p-3 m+1 (p-3)(p-4) L 

II 2p+1 +1 -2- n 
+ A.x 

i p(p+1) TL p + p+1 
Tm-3 m-3]). (44) 

13(m- 3) 

- 

- 

T 

,,, n 

,,n 
m-2 

1 r 

T T + 
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Two -point Equations 

The two -point equations offer an alternate formulation for the 

boundary equations. The first distance derivative of temperature at 

a point between sections can be approximated by using temperatures 

at the midpoints of the two contingent sections and by using the dis- 

tance between these midpoint temperatures as 

dT 
dx 

n n 
T 1-T 1 

n rn+ 2 m- 

m Ax 
(45) 

For the unequally sized segments of Figure 5 a new form evolves as 

dT 
dx 

Tn - T 
n 

n 
1-2 

N m+1 óx (3-p)ax 
2 2 

where e denotes a position of T 
n at (rn-12+2 . 
e 

(46) 

The second derivative at point m +l is obtained by writing the 

derivative of Equation 46 as 

The term 

d id; n 
dT 
dx 

n 
dT 

m+12 dx 

n 

e 

m+1 Ox +(3-p)Ax 
2 2 

dT in 
1 is easily found from Equation 45 as 

dx m +12 

(47) 

N 2 



d 
dx 

n 

e 

dT 
dx 

n Tn - Tn m+2 m+1 

m+12 x 
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(48) 

is slightly more complex. The result from Equation 45 is 

dT 
dx 

n n Tm+l - TL 

e 
(3-p)Ax (49) 

Substitution of Equation 48 and 49 into 47 gives, after algebraic ma- 

nipulation, 

d2T 

dx2 

n n 
... (3-p)Tmn (P-4)Tm+1 +T L 

Ax (3-00-0 
m+1 

The first derivative of Tn can be written as m +1 

dT 
dx 

n 
n Tm+2 

- T L 

m+1 + (4-p)Ax 

(50) 

(51) 

Using Equation 50 and 51, the right side of the heat Equation 5 be- 

comes 

( 

1 dT d2T 
x dx + dx2 

m 

n 
1 

[Tn m+2- TL 
+ 2 

(3-p)Tm+2+(p-4)Tm+1+TL 
x (4-p)ox 

2 (3-p)(4-P)Ax 
(52) 

Finally, after applying Equation 52 and 29, the heat equation in finite 

difference form can be written as 

,, 

2. 

2 
- (Q ) 

m+2 

) n 
J . 
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Tn+1 _Tn Tn - TL (3-p)Tn + (p-4)Tn + T m+l m+1 k 1 m+2 
+ 2 

m+2 m+l L 
At pC Ox (x)(4-p) (3-p)(4-p)ex 

(53) 

Thus, the temperature at x = (m +l)Ex can be found, after some 

algebraic manipulation of Equation 53, from 

[x+(3-p)Ax][Tn 
,Tn ]-[_x +x][Tn -T 

n+1 n 1 m+2 m+l 3-p 2 m+1 
m+l m+l + M 

(4-p)x (4-p)x+ 4 (3p2-22p +40) 

n 
In an analogous derivation Tm was found to be 

[ X - Aa ][T -Tn ]-(x- (p+ 1)Ax][Tn -Tn 
Tn+1 =,Tn 1 J p 2 L m-2 2 m-2 m- 
m-2 m-2 M11 (p+l)x - 4 2 (3p +4p +1) 

(54) 

(55) 

The two -point equation for the boundary movement must now 

be considered. The derivative at the boundary in region II may be 

written as 
n 

dT 
n ,,,TL Tm-2 
If dx pßx (56) 

where f signifies the location x = (m- 2 +p /2)px . Also, the fol- 

lowing areas may be calculated (because the two -point equations for 

the gradients are considered at e and f rather than exactly at 

the boundary): 

L 

-2 

- 

- l) 

_ + 

- 
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Af = Tr[x(t)- pAx/2] (57a) 

Ab = Trx(t) (57b) 

Ae = Tr[x(t)+(3-p)dx/2] . (57c) 

These areas plus Equations 49 and 56 were substituted into 38 to give 

k Tn - T 
5x = x(t)pH x [x(t) +(3- p)Ax/2][' p L ] 

n 

+ Tx [x(t)-pAx/2][TL-Tm-2 . (58) 

Special Cases 

When the boundary is close to grid points near the extremities 

of the grid, the previously derived equations do not apply, so special 

equations were needed. Only an outline of the reasoning leading to 

these equations will be offered here. 

The equation for T0, when the boundary is near the center, 

is simply 

T = TL (59) 

This equation is valid if it can be assumed (and this assumption was 

later supported by the solution of model) that by the time the boundary 

has approached close to the center, the temperature at the center has 

already assymptotically reached the transition temperature. Also, 

it directly follows from Equation 59 that when the boundary is near to 

m3 

e 

{ 

dx 

. 



the center there is a zero temperature gradient inside the boundary 

in region II, and the Equation 28 can be simplified to 

bx= - 
k1AlAt 

dT 
AbpAH dx I1 

60 

(60) 

When the two -point Equation 49 for the gradient in region I and the 

areas from Equation 57b and 57c are substituted into Equation 60, the 

result is 

bx = -k At 
x(t) +(3-p)Ax/2 (Tn -T ). (61) 

1 x(t)pAH(3-p)Ax m+1 L 

When the three -point Equation 42 is used (since in this case 

Al = Ab), the result is 

bx 
-k At p- 3 Tn p-4 ,,n 2p-7 T 
AxpAH (4-p) m+2 p-3 m+1 (p-3)(p-4) L (62) 

A rather complex equation for bx is necessary near the begin- 

ning of the phase change when the boundary is in the outermost two 

sections. The gradient in region I can be written as 

dTI L 
dx 1 KAx-x(t)-bx/2 (63) 

Substituting Equation 63 into 28 gives the equation implicit in bx, 

= 



bx _ 
At -k TK TL k 

dT 
poH -k 

1 KAx-x(t)--6x/2 2 dx 2' 

61 

(64) 

To solve for bx, a specific expression for di 
I 

is substituted 

into Equation 64, and the resulting equation is solved using the quad- 

ratic equation (18, p. 318). For example, substituting the two -point 

dT formula (Equation 56) for dx 12 

Sx gives 

etk2(TL-Tm-2) 
Sx = KAx-x(t)t 

2pLHpAx 

- [x(t)Kx - 

into Equation 64 and solving for 

Atk2 (T -Tm-2) L 
2 

2pAHAxp 

1 

k (T -Tn )(Kpx-x(t)) 

poH 2 

L 
pAx2 - k1 0--1-)At (65) 

for the Kth section, where f designates the .eth time incre- 

ment, At, since the phase change began. The negative of the 

square root term was used because a plus sign would give a positive 

6x, which is untenable with physical reality, since the boundary is 

moving inward in a negative radial direction. The analogous result 

for the three -point equation is 

let 
2 

;' 

J 

llll 



6x = 
Atk2 2p+1 

T -Tn +-LTn x(nAt)+KAX 
2pAHAx p(p+l) L p K-2 p+l K-3 

{ 
Atk2 

2p+1 p+1,, n p n 
- T ,n 

+ Tn nAt)+x L2pHxp(p+1TL p K-2 p+1 K-3 

2 Atk 

+ pAHAx P(p+l)TL p TK-2+p+1 
TK-31(x(nAt)-KAx) 

2 1 

+ 

A 

ln t (KAX+x(nAt))(f -1) 2 
. 

pA Hx ( ) 2 

62 

(66) 

In the (K -1)th section, Equation 64 can be simplified, be- 

cause the term 6x /2 is generally much smaller than KAx -x(t). 

When this 6x /2 term is dropped, the quadratic formula is not need- 

ed since Equation 64 becomes explicit in 6x. The result for the 

two -point equation is 

[k(t ( ) 6x =- At (KAx+x(nAt))-k (T 
L 

Tn (x nAt Ax 
pAHAxx(nAt) 2(3-p) 2 K-3 p 2' 

(67) 

and the result for the three -point equation is 

Sx = 
At 

k 4)/At 
1 

k2 
2p+1 T- p+1 ,,n 

+ p 
Tn 

. 68 pAH KAx-x(nAt) Ax (p+1) L p K-3 p+l K-4) ( ) 

As was mentioned before, the temperature Tn is not calcu- m 

lated when the boundary lies between grid lines m and m -1, but 

when the boundary has just moved past m -Î , Tn must be calcu- 

lated. lated. The usual Langrange's three -point interpolation formula 

p+l 

[ 
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(Equation 17) was used for this calculation during the time increment 

just after the boundary has crossed the line m -1. This equation 

can be written 

n L23 n 2(p-3) n 2 

Tm 5-p Tm+2+ p-4 Tm+1+ (p-5)(p-4)1 L' (69) 

The only remaining equation which was needed describes the 

temperature at the surface of the cylinder. This equation is 

TK = (i) nOt + TK (70) 

where is the heating rate in °C /sec, and n designates the 

nth time increment, At, since the heating began from an initial 

surface temperature of T. These finite difference equations for 

the model were then solved by employing a digital computer. 

The Digital Computer Solution 

The programs for use on a digital computer, written in FOR- 

TRAN IV computer language (8, 32), for the cases of the three -point 

and two -point boundary equations are given in Appendix III. In addi- 

tion, a schematic block diagram of the program is given in Appendix 

ILI, 

The numerical solution was performed on a Control Data Cor- 

poration Model 3300 computer located at the Oregon State University 
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Computer Center. This machine has a facility which will plot the 

output graphically, and this facility was used to give many of the the- 

oretical DTA peaks directly in graphical form. 

Preliminary results of the numerical solution of the model were 

used to choose between the two -point and three -point boundary equa- 

tions based upon the convergences of the final solutions. The data of 

Tsang (45) for the infinite cylinder with a heating rate of 30oC /min 

was used in these solutions. The effect of changing the number of 

segments used in the solution is shown in Figure 6, and this is an in- 

dication of convergence. It is clear from Figure 6 that the two -point 

equations have converged to a solution at a division of ten segments, 

but the three -point equations still haven't shown convergence at twen- 

ty segments. Also, it can be seen from the extrapolation of this 

curve for the three -point equations that the solution of the three - 

point equations would probably converge to the same solution as the 

two -point equations if additonal segments would be used. Further- 

more, the three -point equations are more complicated than the two - 

point equations, and as a result, computer time used by a solution 

employing the three -point equations is significantly larger than the 

computer time used by a corresponding solution employing the two - 

point equations. Therefore, because of the better convergence and 

shorter running time for the two -point equations, these equations 

were chosen for the final model. 
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RESULTS AND DISCUSSION 

Results were calculated by a digital computer (CDC 3300) for 

the mathematical formulations developed. The computer not only 

gave printed answers but also graphically plotted the theoretical 

peaks. These peaks were the final tangible product of this study to 

be validated by comparison with previous work, both theoretical and 

experimental. 

Comparison with Previous Results 

The present model, using the data and the physical assumptions 

of Tsang (45), produced a peak which is shown with two peaks of 

Tsang in Figure 7. Since the present model divided the infinite 

cylinder into twenty sections against one section and two sections for 

Tsang, the present method should be more accurate, although the 

meaning of a segment in each method is not exactly the same. The 

trend of using additional segments in Tsang's method, shown in Fig- 

ure 7, is an increase in the maximum peak temperature, and it is 

highly possible that the results of the present model and Tsang's 

model would have been the same if Tsang's method had used several 

more segments. 

When the present model employed the data of the DTA system 

described earlier, the result was the theoretical DTA curves for 
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quartz shown in Figure 8 and Figure 9 for four different heating rates. 

These peaks show the same variations with heating rates as previous 

experimental results have shown (1, 3) and two of these variations 

are shown in Figure 10: that of the peak area, and in Figure 11: that 

of maximum peak temperature. The present model and past experi- 

ments both show that the peak area increases linearly with tempera- 

ture (3) and that the maximum peak temperature increases with tem- 

perature (1, 3). However, the theoretical results show a concave 

downward slope of the maximum peak temperature versus heating 

rate curve while experimental results give a concave upward slope, 

and this discrepancy has not been explained. 

In addition the peaks in Figure 8 and Figure 9 look qualitatively 

like experimental peaks shown in Figure 12a for Berkelhamer (4) and 

Figure 12b for Keith and Tuttle (21). Berkelhamer's peak, which 

was run at a heating rate of 10 or 11 degrees per minute, shows 

more curvature than those of the present model, but much of this 

may be accounted for in error in the value for thermal conductivity. 

Keith and Tuttle's peak, run at a very slow heating rate of about 

0.6°C per minute, also looks much like those of the present model, 

the major discrepancy being in the roundness of the top of the peak. 

But this roundness was probably due to a thermocouple being off cen- 

ter or due to a sample being inhomogeneous so that the phase bound- 

ary would not have reached the center thermocouple from all sides at 
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the same instant (38). While the conditions of these experiments 

were not identical with those of the present model, it was concluded 

that the qualitative comparisons are reasonably close. 

Unfortunately, in most experimental peaks, like those in Figure 

12, the actual value of AT is not given, but instead, only deflec- 

tions on the thermogram proportional to AT. As a result, a quanti- 

tative comparison of AT between theoretical results and experi- 

mental results is not possible, and only a qualitative comparison can 

be made. Specifically, this means that at present the qualitative shapes 

of the curves are the chief indicators of the validity of the theoretical 

model in predicting experimental peaks. Certainly this lack of exper- 

imental magnitudes for AT is a void which needs to be filled before 

a real quantitative model is possible. 

Sample Properties and Peak Shape 

As one would expect the shape of the peak is determined largely 

by the thermal properties used in a test sample of the theoretical 

model. This difference is exemplified by the two peaks in Figure 13. 

One peak in Figure 13a, shaped like a right triangle, was produced 

using a heat of reaction approximately 60 times larger than was used 

by the other peak of Figure 13a. One peak in Figure 13b, which has 

curvature more like experimental peaks than the other peaks gener- 

ated theoretically, used a heat of reaction of the same value but a 
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thermal conductivity one tenth the value of the respective values used 

to generate the other peak in Figure 13b. Thus, since the curvature 

of this theoretical peak is more like the experimental cases when a 

lower conductivity is used, a possible conclusion is that the discrep- 

ancy between the experimental peaks and the present theoretical 

peaks lies in the error of the thermal conductivity of the model being 

too high. However, a reservation should be made that a future com- 

parison with more explicit experimental DTA data giving actual ¿T's 

could corroborate this conclusion, or conversely, could reveal the 

importance of other effects such as block resistance. 

The magnitude of the baseline shift predicted by the theoretical 

curves relative to the peak height is much less than the relative mag- 

nitude of the baseline shift shown by experimental curves. The exact 

cause of this descrepancy is not known, but it is expected that exper- 

imental errors such as drift in signal amplifiers or changing proper- 

ties of thermocouples may contribute to this shift. Of course, if the 

thermal conductivity of the sample increases as a result of the reac- 

tion, this effect accounted for in the theoretical model would give a 

larger baseline shift than the present theoretical peaks. Hence, this 

is another case where the precise thermal conductivity of the quartz 

sample over the entire temperature range of interest is needed before 

the causes of one of the peak characteristics can be known. 

One additional effect tested was that of the sample thermocouple's 
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thermal inertia and the thermal conduction. Upon adding a correction 

for these thermocouple effects to the model, it was found that these 

effects had no effect upon the curvature. However, it was found that 

for conductions away from the sample the slope of the rising portion 

of the peak decreased and the temperature at the top of the peak in- 

creased. In addition, inertial effects tended to increase the peak 

temperature but had no other noticable effect upon the peak shape. 

For the thermocouple that was simulated (one which was made of plat- 

inum wire, 0.32 millimeters in diameter),?/ the magnitude of the ef- 

fects upon the peak temperature was less than one percent. 

A negative result of the present work is that no improved way 

of determining the transition temperature from a DTA peak was found. 

This only corroborates a statement of Garn (15, p. 1560157), deduced 

from the work of Smyth (38), that the only two simple relationships 

between a peak and the transition temperature are first, that when 

the system temperature is measured in the block, the initial rise of 

the peak from the baseline corresponds to the transition temperature, 

and second, that when the system temperature is measured in the test 

sample, the maximum peak temperature corresponds to the transition 

temperature. Other connections between the peak and transition tem- 

perature are unclear. 

7A specific description of the simulation of the thermocouples 
is given in Appendix V. 
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CONCLUSIONS 

A model was developed which utilizes fewer physical assump- 

tions, and a more accurate mathematical treatment than previous 

models. The model is capable of predicting, semi- quantitatively, the 

experimental results for quartz. While the present model is by no 

means perfect, it does offer a new starting point and a direction for 

additional work, and it does show more clearly the principle para- 

meters which dictate an experimental DTA curve. In addition pre- 

vious work upon the improved use of DTA in quantitative studies to 

determine transition temperatures was corroborated. 

A further conclusion upon the use of DTA in quantitative meas- 

urements can be made. Better success in measurements will result 

from careful experimental design: new apparatus being built to con- 

form to theoretical considerations, rather than theory being developed 

to conform to existing apparatus. Three successful approaches, that 

of Borchardt and Daniels (6), that of Boersma (5), and that of Vassallo 

and Harden (46), exemplify this fact. In each of these studies com- 

pletely new DTA apparatus were designed specifically to study parti- 

cular variables, and in this way, the interference of competing effects 

upon the effect under study may be designed out of the experiment. 

However, in the cases where a new apparatus cannot be built, invest- 

igators at this time will have to be content to rely upon the relatively 

few, mainly qualitative theoretical DTA investigations presently pub- 

lished in order to make quantitative interpretations from differential 

thermal analysis peaks. 
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RECOMMENDATIONS FOR FUTURE WORK 

Much of the success of future work on a quantitative DTA model 

is contingent upon the existence of additional experimental data. Fu- 

ture work should possess accurate thermal conductivity data for the 

samples, for without this data any theoretical peak will have question- 

able quantitative accuracy. Additionally, experimental DTA peaks 

giving actual magnitudes of 0 T and more specific descriptions of 

the experimental apparatus generating these peaks are needed in or- 

der to obtain a valid quantitative model. 

Two areas in which the present model could be improved are 

the account of heat lag in the block and the account for the finite 

length of a cylindrical sample. The account of the heat lag in the 

block would generate a second finite difference solution for the block 

superimposed around the present one for the sample, and this would 

certainly be a formidable problem. Similarly, the account for the 

axial heat transfer in a finite length cylinder would greatly add to the 

complexities, particularly regarding the movement and shape of the 

phase boundary. Some suggestions for solving the finite cylinder 

problem are given in Appendix IV. Since both of these improvements 

would require a much larger number of calculations to achieve a nu- 

merical solution and since in the present model the present high 

speed computer was being used nearly to capacity as regards the 
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storage capacity and the computer cost of each program run, these 

improvements may be contingent upon the development of a much 

higher speed computer or upon the use of a more efficient approxi- 

mate numerical method. 



81 

BIBLIOGRAPHY 

1. Arens, Pedro Laurent. A study of the differentail thermal ana- 
lysis of clays and clay minerals. Gravehage, Netherlands, 
Excelsiors Foto- Offset's, 1951. 131 p. 

2. Barrall, Edward M., II, Roger S. Porter and Julian F. Johnson. 
Microboiling point determinations at 30 to 760 torr by differen- 
tial thermal analysis. Analytical Chemistry 37:1053 -1054. 1965. 

3. Barrall, Edward M., II and L.B. Rogers. Differential ther- 
mal analysis of organic samples. Effects of geometry and 
operating variables. Analytical Chemistry 34:1101 -1106. 1962. 

4. Berkelhamer, Louis H. Differential thermal analysis of quartz. 
Washington, D.C., 1944. 18 p. (U.S. Bureau of Mines. Re- 
port of Investigations. R.I. 3763) 

5. Boersma, S. L. A theory of differential thermal analysis and 
new methods of measurement and interpretation. Journal of 
The American Ceramic Society 38:281 -284. 1955. 

6. Borchardt, Hans J. and Farrington Daniels. The application of 
differential thermal analysis to the study of reaction kinetics. 
Journal of the American Chemical Society 79:41-46. 1957. 

7. Carslaw, H.S. and J.C. Jaeger. Conduction of heat in solids. 
2d ed. Oxford, Clarendon, 1959. 510 p. 

8. Control Data Corporation. 3100, 3200, 3300, 3500 computer 
systems FORTRAN reference manual. Palo Alto, Control 
Data, 1966. Various paging. 

9. Crank, J. Two methods for the numerical solution of moving - 
boundary problems in diffusion and heat flow. Quarterly Jour- 
nal of Mechanics and Applied Mathematics 10:220 -231. 1957. 

10. Crank, J. and P. Nicolson. A practical method for numerical 
evaluation of solutions of partial differential equations of the 
heat -conduction type. Proceedings of the Cambridge Philosoph- 
ical Society 43:50 -67. 1947. 

11. Douglas, Jim, Jr. A survey of numerical methods for parabol- 
ic differential equations. Advances in Computers 2:1 -54. 1961. 



82 

12. Dufort, E.C. and S. P. Frankel. Stability conditions in the nu- 
merical treatment of parabolic differential equations. Mathe- 
matical Tables and Other Aids to Computation 7:135-152. 1953. 

13. Dusinberre, George Merrick. Heat -transfer calculations by 
finite differences. Scranton, International Textbook, 1961. 
293 p. 

14. Forsythe, George E. and Wolfgang G. Wasow. Finite- differ- 
ence methods for partial differential equations. New York, 
Wiley, 19 60 . 444 p. 

15. Garn, Paul D. Thermoanalytical methods of investigation. 
New York, Academic, 1965. 606 p. 

16. Goldsmith, Alexander, Thomas E. Waterman and Harry J. 
Hirschhorn (comps.). Handbook of thermophysical properties 
of solid materials. Vol. 3, Rev, ed. New York, Pergamon, 
1961. 1162 p. 

17. Grim, R.E. and R.A. Rowland. Differential thermal analysis 
of clay materials and other hydrous materials. The American 
Mineralogist 27:746 -761, 801 -818. 1942. 

18. Hodgman, Charles D., Robert C. Weast and Samuel M. Selby 
(eds.). Handbook of chemistry and physics. 42d. ed. Cleve- 
land, Chemical Rubber, 1960. 3481 p. 

19. Jakob, Max. Heat transfer. Vol. 1. New York, Wiley, 1949. 
758 p. 

20. Kaplan, Wilfred. Advanced calculus. Reading, Mass., 
Addison -Wesley, 1956. 679 p. 

21. Keith, M. L. and O.F. Tuttle. Significance of variation in the 
high -low inversion of quartz. American Journal of Science, 
Bowen volume, p. 203 -280. 1952. 

22. Kissinger, Homer E. Reaction kinetics in differential thermal 
analysis. Analytical Chemistry 29:1702- 1706. 1957. 

23. . Variation of peak temperature with heating 
rate in differential thermal analysis. Journal of Research of 
the National Bureau of Standards 57:217 -221. 1956. 



83 

24. Kreith, Frank. Principles of heat transfer. Scranton, Inter- 
national Textbook, 1958. 553 p. 

25. Kronig, R. and F. Snoodÿk. On the determination of heats of 
transformation in ceramic materials. Applied Scientific Re- 
search, sec. A, 3:27 -30. 1953. . . 

26. Lapidus, Leon. Digital computation for chemical engineers. 
New York, McGraw -Hill, 1962. 407 p. 

27. Larkin, Bert K. Some finite difference methods for problems 
in transient heat flow. In: Heat transfer - Cleveland. New 
York, American Institute of Chemical Engineers, 1965. p. 1- 
11. (Chemical Engineering Progress Symposium series, Vol. 
61, No. 59) 

28. McAdams, William. Heat transmission. 3d ed. New York, 
McGraw -Hill, 1954. 532 p. 

29. Mackenzie, Robert C. Thermal methods. In: The differential 
thermal analysis of clays. London, Mineralogical Society, 
1957. p. 1 -22. 

30. Milne, William Edward. Numerical calculus. Princeton, N. 
J., Princeton University, 1949. 393 p. 

31. Murray, P. and J. White. Kinetics of the thermal dehydration 
of clays. Part IV. Interpretation of the differential thermal 
analysis of the clay minerals. Transactions of the British 
Ceramic Society 54:204 -238. 1955. 

32. Organick, Elliot I. A FORTRAN primer. Reading, Mass., 
Addison -Wesley, 1963. 186 p. 

33. Reed, Ronald L. , Leon Weber and Byron S. Gottfried. Differ- 
ential thermal analysis and reaction kinetics. Industrial and 
Engineering Chemistry Fundamentals 4:38 -46. 1965. 

34. Schneider, Paul J. Conduction heat transfer. Cambridge, 
Mass., Addison -Wesley, 1955. 395 p. 

35. Sewell, E.C. and D.B. Honeyborne. Theory and quantitative 
use. In: The differential thermal analysis of clays, ed. by 
Robert C. Mackenzie. London, Mineralogical Society, 1957. 
p. 65 -97. 



84 

36. Smith, W. The thermal conductivity of dry soil. Soil Science 
53:435-459. 1942. 

37. Smothers, W.J. and Yao Chiang. Handbook of differential 
thermal analysis. New York, Chemical Publishing, 1966. 
633 p. 

38. Smyth, Harold T. Temperature distribution during mineral 
inversion and its significance in differential thermal analysis. 
Journal of The American Ceramic Society 34 :221 -224. 1951. 

39. Soule, J. L. Quantitative interpretation of differential thermal 
analysis. Journal of Physical Radium 13:516 -520. 1952. 

40. Speil, Sidney. Applications of thermal analysis to clays and 
aluminous minerals. In: Differential thermal analysis. Its 
application to clays and other aluminus materials. Wasington, 
D.C. 1945. p. 1 -37. (U.S. Bureau of Mines. Technical 
Paper 644) 

41. Speros, D.M. and R.L. Woodhouse. Realization of quantitative 
differential thermal analysis. I. Heats and rates of solid - 
liquid transitions. The Journal of Physical Chemistry 67:2164- 
2168. 1963. 

42. Strella, Stephan. Differential thermal analysis of polymers. 
I. The glass transition. Journal of Applied Polymer Science 
7:569 -579. 1963. 

43. . Differential thermal analysis of polymers. 
II. Melting. Journal of Applied Polymer Science 7:1281 -1289. 
1963. 

44. Trench, William F. On an explicit method for the solution of 
a Stephan problem. Journal of the Society of Industrial and 
Applied Mathematics 7:184 -204. 1959. 

45. Tsang, N.F. Theoretical background in quantitative DTA. In: 
Handbook of differential thermal analysis, by W.J. Smothers 
and Yao Chiang. New York, Chemical Publishing, 1966. p. 
90 -122. 

46. Vassallo, D.A. and J.C. Harden. Precise phase transition 
measurements of organic materials by differential thermal 
analysis. Analytical Chemistry 34:132-135. 1962. . 



85 

47. Vold, Marjorie J. Differential thermal analysis. Analytical 
Chemistry 21:683 -688. 1949. 

48. Wendlandt, W.W. Differential thermal analysis. In: Tech- -. 
nique of inorganic chemistry, ed. by Hans B. Jonassen and 
Arnold Weissberger. Vol. 1. New York, Interscience, 1963. 
p. 209 -257. 

49. . Thermal methods of analysis. New York, 
Interscience, 1964. 424 p. 

50. Wicks, C.E. and F.E. Block. Thermodynamic properties of 
65 elements - their oxides, halides, carbides, and nitrides. 
Washington, D.C., 1963. 146 p. (U.S. Bureau of Mines. 
Bulletin 605) 

51. Williamson, E.D. and L.H. Adams. Temperature distribution 
in solids during heating and cooling. Physical Review, ser. 2, 
14:99 -114. 1919. 



APPENDICES 



86 

APPENDIX I 

Nomenclature 
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Symbol Definition Units 

A Area of heat transfer cm2 

Ab Area of boundary def. by [57b] cm2 

A 
e 

Area of heat transfer def. by [57c] cm2 

Af Area of heat transfer def. by [57a] cm2 

a Outer radius of cylinder cm 

a Limit of integration in [9] sec 

a. Interpolation parameter (see [14]) 

cal 
c Specific heat capacity 

g °C 

c Limit of integration in [9] sec 

f Void fraction def. by the equation at the top 

of page 39. 

f( ) Interpolated function 

g Geometrical shape constant in [9] 

AH Latent heat of phase change cal 

JD Bessel function of zero order 

J1 Bessel function of first order 
a 

K Total number of cylindrical shells = - 
Ax 

k Thermal conductivity cal 
cm°C cm C 

cal kl Thermal conductivity of high form of quartz sec cm °C 
cal 

k2 Thermal conductivity of low form of quartz sec cm °C 

k Thermal conductivity of solid material cal 
s sec cm C 

Time increments since beginning of phase change 

g 

Q 

sec 
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Symbol Definition Units 

Half -thickness of slab in [7] cm 

. Def. by [15] 

Ax2 
M Def. by 

a At 

M Mass of active material in [9] g 

ni Specifies a radial distance (x = mpx) 

n Specifies a time (t = nat) 

P 
n 

Def. by [16] 

p Geometric ratio shown in Figure 5 

q Rate of heat flow cal /sec 

r Radial cylindrical coordinate cm 

S Transition boundary thickness cm 

T Temperature oC 

Tn Temperature at position móx at time nEt oC 

To Initial temperature oC 

TL Transition temperature oC 

AT Differential temperature oC 

t Time sec 

At Time increment sec 

Volume cm3 

x Distance coordinate cm 

x(t) Radial location of boundary at t cm 

x(npt) Same as x(t) cm 

P 

0.--AT 



Symbol Definition Units 

Ax Distance increment cm 

óx Boundary movement during At cm 

y Distance coordinate cm 

z Distance coordinate cm 

a 

Greek Symbols 

Thermal diffusivity = 
k cm2 /sec 

pc 

a Low phase of quartz 

High phase of quartz 

ß nth root of J(a) = 0 
n o n 

e 

p 

(I) 

Angular coordinate 

Density 

Heating rate 

Miscellaneous Symbols 

cm- 1 

radians 

g/cm3 
o 

C /sec 

3 Signifies partial derivative 

d Signifies total derivative 
2 

7 Laplacian def. by [2] and [3] cm 2 

O( ) Order of the error in a finite difference 

approximation (see page 43) 

m 
Signifies a derivative evaluated at x = mAx at 

t = nAt 

89 

n 

pi 
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APPENDIX II 

Two Explicit Finite Difference Methods 

Dufort and Frankel Method 

Exponential Method of Larkin 
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Two Explicit Finite Difference Methods 

The specific finite difference equations of radial heat conduc- 

tion in a cylinder for the Dufort and Frankel method (12) and for the 

exponential method described by Larkin (27) will be given. If the 

gradient of the heat Equation 4 is replaced by a finite difference ap- 

proximation the result may be written as 

aT 
at 

n 
2m+1 Tn - 2T + n 2m-1 Tn 
2m m+1 2m m- 1 =a -2 m Ax 

This equation will be the starting point in describing each of the two 

methods. 

Dufort and Frankel Method 

The Dufort and Frankel method results from two modifications 

of Equation II -1. First, the time derivative is replaced by a three - 

point central difference expression, and second, the temperature 

Tn is replaced by 
m 

T1+ T' m m 
2 

in order to improve stability. The result, if m 0 is 

m 

,L 



92 

I,n+1- rn-1 2m+1 ,Tn ,Tn+1-,Tn-1 1 ,rn 
m m 2m m+1 m m 2m m-1 

2At -2 a ' 
Ax 

Equation.Il -2 can be rearranged to 

n+1 n-1 2 2m+1 n n-1 2m-1 n 
T T 

+ M+2 ( 2m 
Tm+1- 2Tm + Tm- 1). (II- 3) 

Note that the Dufort and Frankel method requires the initial condi- 

tions at two time steps, n and n -1, to begin calculations. For 

the special case where m = 0 the result is 

Tn+1 
n-1 8 Tn- Tn-1 

0 0 M+4( 1 0 )° 

Exponential Method of Larkin 

(II-4) 

The exponential method of Larkin results from the integration 

of Equation II -2 with respect to time with T allowed to vary and 
m 

n with T 
m. +1 

and Tn held constant. The result of integrating 
m- 1 

Equation II -1 with respect to time from nAt to (n +1)At, if 

where 

,Tn+1 zTn + 1-z )( 
2m+1 ,Tn+1 +2m-1 ,Tn 

m m ( 4m m+1 4m m- 1) 

z = e 

I 

2in m- 

0 , is 

m m+1 m 

m 
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Note that calculations using this exponential method need to begin at 

a boundary where a TK +1 is known, and then m is decreased by 

one for each subsequent calculation during a single time step. The 

special case for m = 0 has the result as 

where 

TO+I 
= TO 

z' 
+ (1-z')Tl 

z' = e 

4 
-(M ) 

(II- 6) 
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APPENDIX III 

Computer Programs 

Computer Program Nomenclature 

Flow Chart Symbols 

Flow Chart 

Computer Programs (in pocket on back cover) 

Two -Point Equations Including Graphical plot 

Three-Point Equations 
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Computer Program Nomenclature 

Computer 
Symbol Meaning 

CON k 

CONI k1 

CON2 k2 

DELTT AT 

DELTX bx 

DIF1 al 

DIF2 a2 

DT At 

DX Ax 

INTER Number of calculational cycles between print -outs 

ITE Maximum number of calculational cycles before END 

K K + 10 

M m + 10 

ML Value of m + 10 containing the phase boundary 

N n + 10 

NL n + 10 

P p 

PHI 4) 

REM1 M = a IAt Ax 
1 



Computer 
Symbol 

REM 

RRL 

T(M, N) 

TIME 

TL 

X(NL) 

XT 

Meaning 

M = a 2tt /Zx 
2 

1 

pOH 

Tn m 

t 

TL 

x(t), x(nOt) 

a = KAx 

96 

M 
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Flow Chart Symbols 

The flow chart on the ensuing pages graphically represents the 

FORTRAN computer program which follows the flow chart. For 

equations too long to be printed out in a box on the flow chart, the 

numbers appearing in brackets specify the equations in the program 

by statement numbers plus, if needed, the numbers of lines beyond 

these statement numbers. Note that the plotting functions have been 

omitted in this flow chart. The flow chart conventions are the same 

ones used by Organick (32, p. 169): 

Symbol Meaning 

c= 

READ 

PRINT 

IF 

GO TO 

Symbol Meaning 

O 

DO Loop 

Calculation 

Connection 

Ç 



K, ITE, INTER, XT, TL, REM2, 
REM2, CONI, CON2, RRL, PHI, 

DT, DX(T(M, 10), M=10, K) 

"DATA ", K, ITE, INTER, XT, TL, 
REMI, REM2, CONI, CON2, RRL, 
PHI, DT, DX, (T(M, 10), M =10, K) 

TKO=T(K, 10), KEY= -1, 
X(10pXT, KM 1=K-1, KM2 =K-2, 
KM3=K-3, KM4=K-4, NL=10, 
ML=O, MLO=K, P=2 

900 
IT=11, ITE 

V 

\ 
N =11, / 

F=N+( IT- 11)*(INTER-10)-10 
T( K, N)=PHI*DT*F+TKO 

X(NL) 

Flow Chart 

>0 

ETL-T(K, N) 

100 

KEY 
>0 

TIME= DT *(F -1) KEY =1, 
ENLD -F -11, ML =K 
DELTT =T(K, N- 1) -T(10, N -1) 

"THE TRANSITION IS BEGIN- 
NING AT THE SURFACE AT 
TIME =" TIME, DELTT, 
(T, JO, N- 1),JO= 10,K,2)- 

NL=F -ENLD 

, 200 ( 300 

>4 
K-ML+1 j 

// 
( 350 

98 

Y 

\ I 

C 

0 

60 
M=11, KM1 

G=M -10 

T(M, Np= L60] 

T(10, N)=L60+2] 

800 800 
INTER 

750 

<o - . 00 

51 

) 



DELTX= [200+4] 
T(ML-2)= [210+4 
T(10, N)= 10+2] 

C M=11, 10/13 I 210 \ 

G=M -10 
T(M, N)=[21 

210 

700 

DELTX= [300+13 
T(ML-2)= [10+0 
T(10, N)= [10+ 

310 \ 
M=11, KM4 / 

G=M-10 
T(M, N)= [3107 

310 

700 

T( K-1, N-1)=( TL+T( K, N-1) 

*(3-1)))/(4-13) 

750 

400 

ML-MLO 
0 

T(ML+1, N-1)= [4103 

415 

M LO =ML 

DELTX= [430+] 
EL=ML-10, 
T(ML-2, N)= [470+37 
T(ML+1, N)= [470+6] 
MLP2=ML+2, MLM3=ML-3 
T(10, N)= [470+0 

99 

>4 

460 
=MLP2, KMl 

G=M-10 
TIM, N)=[46C3 

G =M-10 
l'(M, N)=7,470:7 

T 

700 



MLP2=ML+2 
T(ML+1)= [500+4 

510 
M=MLP2, KM1 

G =M -10 
T(M, 10)=[S103 

Y 

DELTX= [510+3) 
T(10, N)=TL 

X(NL)=X(NL-1)+DELTX 
P= '700+2, 
ML= 700+1 

1I 

CX(NL) 

<0 

DELTT =T(K, N -1) -T(10, N -1); 

TIME =DT *F 

"THE TRANSITION IS COM- 
PLETE AT TIME ", TIME, 
DELTT, 

(T(JO, N- 1),JO =10, K 

800 

750 

760 
M=11,KM1 

G=M-10 
T(M, N)=[7601 

T(10, N) = [760+2 

CN)-T( 10,N) ?0 
-T(K, N-1)+T(10, NT) ) 

<0 

DELTT =T(K, INTER 
-T( 10, INTER) 
TIME =DT *F 

(T(JO, INTER), 
JO=10, K), DELTT, 
TIME, P, X(NL), 
DELTX,ML, NL 

"THE END IS 

HERE" 

100 

950 

V 

DELTT =T(K, N) 
-T(10, N) 

TIME =DT *F 

"THE SHAPE OF THE 
PROFILE IS AGAIN 
INVARIANT AT 
TIME =" TIME, 
DELTT,(T(JO, N), 1 

JO=10, K) J 

\ 
; 999, 

END 

1 

J 

ii 

---f 
`I/ 

Ï 
900 \ 

M=10, K 

V 

999 

¡ 

I 

/ 

1 

) 

T( 

0 
) 

; J 
\ 

T(M,10)=T(M,INTERd 

I 

F 

) 
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APPENDIX IV 

A Finite - Length Cylindrical Sample 

Figure A- 1. Grid and moving boundary within a 
finite - length cylinder. 
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A Finite - Length Cylindrical Sample 

Suggestions for treating a finite - length cylindrical sample will 

be presented based upon the observations made during the course of 

this work. No actual complete calculations for a moving phase boun- 

dary were made in this study, but these observations are included as 

they could be useful in future investigations. 

Finite difference equations were derived which described the 

profile within the sample by approximating a solution to the heat 

Equation 21. The general case, where f , 0 and m 0 for the 

grid shown in Figure A-1 (,Q specifies a distance z = ,Q Az), can be 

written as 

,Tn+1-,Tn 
,rn f,m 

At -a 2 

Tn -2Tn +Tn 
2m+1Tn -2Tn +2m-1T 

L 

Q,+l,rn Q,m f-1,m+ 2m ,Q,m+l Q,m 2m 1,m-1 

Ax 
2 

Equation IV-1 

Az = Ax gives 

Az 

can be solved for 

(IV-1) 

and the special case when 

,Tn+1 ,Tn 1 Tn +Tn 2m+1,Tn 2m- l,Tn -4Tn 
m tn M .Q+1, m f-1, m 2m f, m+1 2m Q, m- 1 , m 

When m = 0 and f / 0, the result is 

Tri +1 Tn 
e, 0 f 0 M4 a Q 1+ T.Q +1 O+T 1 0- 

6Tn 

(IV-2) 

(IV- 3) 

+ 

Tn +1 
2,m 

+ 
,Q, 

+ .1 
M 

P 

' 

+ 

, 
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and when m 0 and I = 0, the result is 

T 
n+1 

= T 
n 1 2T + T + T -4T n 2m+1 n 

+ -- 2m-1 n n (IV-4) . 
O,m O,m M 1,m 2m 0,m+1 2m O,m-1 O,m 

Finally, when m = 0 and f = 0, the equation for TÓ 
+Ol is 

T,n+l T,n 
+ 4Tn 1 +2Tn - 6Tn 0,0 0,0 M 0,1 1,0 0, 

(IV -5) 

Equations IV -2 throughlV -5 were used to find the temperature 

profile in a cylinder with a length of twice the diameter, and with the 

same thermal properties used by Tsang (45). The computer running 

time became so long, and consequently so expensive for a 20 x 40 

segment grid, that plans for further calculations involving a finite - 

length cylinder were suspended. The reason for this long computer 

running time is that 861 temperatures need to be calculated during 

each time step for this two -dimensional grid instead of 21 tempera- 

tures for the infinite cylinder. In addition, the stability criteria are 

more stringent for the finite cylinder (11), and thus a smaller At 

is required. 

The mathematical analysis required to describe the movement 

of the phase boundary in a finite - length cylinder is much more com- 

plex than the same description in an infinite cylinder. This increased 

complexity results from the temperature gradient at the boundary 

being caused by a component in the axial direction in addition to a 

/ 

0' = 
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component in the radial direction. Consequently, the gradient and 

the rate of the boundary movement during a time step is a function of 

the location along the boundary. Thus several equations are needed 

to describe the changing location of the boundary during each time 

step. 

One of these equations specifying the movement of a certain 

point on the boundary will be described. The entire boundary can be 

approximated by straight line segments connecting several of these 

points lying on the boundary. The movement of the boundary will be 

in a direction i, normal to the boundary, and will have a magni- 

tude described by 

571 
p HA 

[-k IAI ( a )I IIAU ( +k a, )u (IV-6) 

where Ab, AI, and All 
are functions of the radial distance as in 

the infinite cylindrical model. Note the correspondence between 

EquationlV -6 and Equation 28; only the direction is different. 

The determinations of the gradients, (ôT)I 
and 

(8T)II , 

shown in Figure A-1, are complex. Lapidus (26, p. 155) gives a 

form for such a gradient as 

8T ax 
cos 0 + aT sin 0 

Y 

where 0 is the angle of the normal to the boundary from the 

(IV -7) = - 
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horizontal as shown in Figure A -1. The direction of 
8T 

can be 
1 

found by using Lagrange's interpolation equation (26, p. 36 -41) to 

determine the equation for the curved boundary at a fixed time and 

then by taking the negative of the distance derivative of this equation. 

Evaluating this equation at a point on the boundary gives the slope of 

a normal to the boundary. The magnitude of 
ax 

and 
ôT 

can be 
Y 

found applying difference approximations like those used in the one - 

dimensional model, but the resulting equations are involved. It can 

be seen that the treatment of a moving boundary in a two -dimensional 

case has complications not existing in one dimension. 
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APPENDIX V 

Thermocouple Effects 

Heat Conduction 

Thermal Inertia 
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Thermocouple Effects 

Thermocouple effects can be estimated by accounting for the 

heat conduction and the thermal inertia of a thermocouple in the cen- 

ter of a sample. The only change in the equations for the model oc- 

curs in Equation 36 . describing the center temperature. An additional 

term is added to Equation 36 to account for the thermocouple's heat 

conduction, and only a change in the diffusivity used in Equation 36 is 

needed to account for the thermocouple's thermal inertia. 

Heat Conduction 

The correction for heat conduction in a thermocouple can be 

made by considering a heat balance about the center of the sample. 

Consider the construct in Figure 5. The center -most section, 0, 

is a cylinder of a radius Ax /2 containing the thermocouple at a 

temperature, Tn and the next section, 1, is a cylindrical shell 

of thickness Ax of temperature T 1. The thermocouple will be 

considered to be a line at the center of the infinite cylinder acting as 

a heat sink. Consequently, the equation for TO 
+1 will contain a 

term for the thermocouple's heat conduction out of the central seg- 

ment. An energy balance for the central segment can be written as 

. 



dT 
p C V dt - kA dx + qt 

energy accumulation 
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(V -1) 

heat conduction in heat conduction in 

through the sample via the thermocouple 

where p, C, and k are properties of the sample. In finite dif- 

ference form, Equation V -1 for a unit length of the cylinder in Fig- 

ure 5 becomes 

T,n+1- T,n 

pc[,r( °-2X )2(1)] ° ° _ - k o [(oX)(1)] áX + qt. 

Rearranging Equation V -2 gives 

q 
TO 

+1 = 
TO +M(T1-TO+k) . 

(V -2). 

(V-3) 

Thus, provided qt can be found, Equation V -3 can be used to cal- 

culate T +1, thus accounting for the thermocouple conduction. 

The estimation of the rate of thermocouple heat conduction, 

can be made by using a variation of Fourier's Equation 23 as 

TD Tt 

qt ktAt D ' 

where 

qt' 

(V -4) 

= 

= 
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kt = the thermal conductivity of the thermocouple metal, 

At = the cross - sectional area of the thermocouple wires, 

Tt = the temperature measured by the thermocouple, 

TD = some datum temperature of the wires away from the center 

of the sample, 

and D = the distance along the wires between TI and Tt. 

The actual determination of TD seems very difficult, but the 

present discussion offers an estimate of TD and D so that the 

order of magnitude of qt may be ascertained. Boersrna (5) states 

that the thermocouple wires will have reached the block temperature 

at a very short distance from the point at which the wires have left 

the sample and have entered the block. This implies that in the pre- 

sent case TI - Tt S. 
5 °C and D -"-"'z'1.4 cm (from Figure 4). For 

cal platinum thermocouple wires, where k "Y.1 cm sec °C (18, p. 2435), 

of radius .032 cm, qt was found as 

n(. 032)2 5 -4 cal qt =.lx 
4 

x14 -2.87x10 sec (V -5) 

When a value of qt of -.00252 cal was used, the difference in 

the values of the differential temperature between this case and the 

case where the thermocouple effects were ignored was only 0. 14%. 

Since the absolute value of qt was much larger than that calculated 

1.4 
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above, the effect of qt calculated in Equation V-5 would be neglig- 

ible. 

Thermal Inertia 

Accounting for the thermal inertia for the thermocouple is re- 

latively simple. This only requires the use of a different value of 

M in Equation 36 to account for the thermal properties of the therm- 

ocouple being different from those of the sample. This correction 

entails assuming the thermocouple to be negligible in size compared 

to the sample as regards the phase change -an assumption which is 

physically tenable. As in the case of thermocouple heat conduction, 

the effect of thermal inertia of the thermocouple was negligible in the 

present model. 
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FORTRAN Computer Program Employing 
Two -Point Finite Difference Equations and Plotter Subroutines 

ISEQUENCE,500, CHEMICAL ENGINEERING JOHN KAAKING 
/JOB,75038RMJK: , JWK ,100, 
IEQUIP10=MTC1EOU01 
'CTO,SAVE TAPE FROM UNIT 1 FOR PLOTTING 
!FORTRAN,L,X 

PROGRAM INFCYL2 
DIMENSION T(30,130),X(130) 
DO 1200 LES=1,3 
READ 10,K,ITE,INTÉRPHI,DT,DX,DIF1,0I,F2,CON,RRLTL(T(M,10),M=10 K 

1) 

10 FORMAT(3I4,3F12.8/ 5F12.8/6F12.7/5F12.7) 
XT=DX*(K-10) 
PHIM=60*PHI 
REM1=DT*DIF1/DX*'K2' SREM2=DT*DIF2/DX-^2 
EM1=1/REM1 S EM2=1/REM2 
PRINT 20,K,ITE,INTER,PHIPHIM,DT,DXDIF1,DIF2tMl,E í-LXT,COkr-, 
1L,(.T(M10),M-10K) 
FORMAT(50X,4HDATA/4H, K=I45H ITc=I4,7H IïVT`i<=i45n Prit=r.66mvcG 

1/SEC=F6.2,12HDEG/MIíV DT=F1O.614H DX.=F-10.8/711 DIF1=F12.86ri D11-2= 

2F12.8,4H M1=F12.8,4H M2=F12.8,4H TL=F6.2,4H XT=F6.'4,5H CON=Fú.45h 
2 RRL=F8.4/36H THE INITIAL TEMPERATJi=tE Pi-WFILL = 7r12.1/i0r1.2.7/10 

1F12.7-/10F12.7/4F12.7) 
DELTS1=.25*PHI*XT**2/DIF1 $ DELTS2=.25*PHI ̂ XT^*2/DïF2 
DELTA=22.3 *PH I *XT*', 2 
PRINT 30,DELTS1,DELTS2DELTA 

30 FORMAT(/9H DELTS1=F12.7,9H DELTS2=F12.7,8H DELTA=F12.7//) 
DO 35 L=10,INTER 

35 X(L)=XT 
CON1=CON2=CON 
QT=O 
PI=3.14159 
TKO=T(K10) 
CALL 
CALL PLOTXY(TKO,O.,lO) 
KEY=-1 
KM1=K-1 $ KM2=K-2 KM3=K-3 S KM4=K-4 
P=ML=DELTX=LL=O 
MLO=K 
DO 900 IT=11ITE 
DO 800 N=11,INTER 
F=N+( IT--11)*( ÍNTER-10)-10 
T ( K, N ) =PH I*DT* F+TKO 
NL=N 
IF(X(NL)) 750,750,40 

40 IF(TL-T(KN)) 100,100,50 
50 DO 60 M=11,KM1 
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G=M-10 
.,J T(M,N)=( (1.-.5/G)FT(M-1,f`!-1 )+(1.+.5/G)%çT(M+l.,N-1) )*i<EM2+-(1.-2.i{Gí'í 

12) ̀ T(M,N-1) 
T(.10,N)=T(10,N-1)+4*REM2*(T(11,N-1)-T(10.N-1)+QT/PI/CON) 
GO TO 800 

100 IF (KEY) 110,1'10,199 
110 TIME=DT*(F-1) 

DELTT=T(K,N-1)-T(101N-1) 
PRINT 120,TIME,DELTT,(T(JO,N-1),JO=10,K) 

120 FORMAT(/55H THE TRANSITION IS BEGINNING AT THE SUi<FACE. AT TIME _ 

1F11.6,16H SECONDS DELTT=F12.7/12H TEMP = 10F12.7/11F12.7/1ÜF1 
22.7/10F12.7) 
P=2 
ML=K 
KEY=1 
ENLD=F-1 

199 LL=F-ENLD 
GO TO (200,300,350,400),K-F'1L+1 

200 CONTINUE 
D=-DT*RRL/X(NL-1) 
E=CON1*.5* ( XT+X ( NL-1 ) ) *PH I* ( LL-.5 )'FDT 
H=CON2/P*(TL=7(ML-2,N-1) ),.(X(íNL.-1)--5*P*DX)/DX-.D 
DELTX=XT-X ( NL-1 ) -.5 ̂ H-SORT ( (XT-X ( NL-1 ) -.5 ̂  H ) **2s2* ( ^ ( X T-X ( !VL- 

11)))l 
DO 210 M=11,KM3 
G=M-10 

210 T(M,N)=( (l.-.5/G)*T(M-1,N-1)+(1.+.5/G) *T(ivi+1,N-1) )3cREM2+(1.-2.^EM 
12)*T(M,N-1) 
T(10,N)=T(10,N-1)+4*REM2*(T(1<1,N-1)-T(10,N. 1)+UT/PI/CON) 
T(ML-1,N)=0 
T(ML--2,N)=T(ML-2,N-1)+REM23c( (TL-T(ML-2,N-1) )^ (X(iNL-1)/r'-.5*DX)--(T( 
1ML-2,N-1)-T(ML-3,N-1))*(X(NL-1)-(P+.-5)*DX))/((r+l)*X(,vi_-1)-DX*(.75 
2*P#*2+Pt.25)) 
GO TO 700 

300 CONTINUE 
DELTX=-DT#RRL/ ( X ( NL-1 )*DX ) * ( CÜN1 *PHI * ( LL-.5 ) *DT/ ( 3-r' ) *.5 ̂` ( XT+X ( NL- 

11))-CON2#(TL-T(ML-2,N-1))*(X(NL-1)/P-.5*DX)) 
DO 310 M=11,KM4 
G=M-10 

310 T(M,N)=( (1.=.5/G)*T(M-1,N-l)+(1.+.5/G)*T(M+1,N'-1) )*RFM2+(1.-2.};REM 
12)*T(M,N-1) 
T ( 10 , N ) = T ( 10 ,N-1 ) +4*REM2* (T ( 1 1 ,N-1 ) -T ( 10 , i`J-1 ) +T /P I /CON ) 

T(ML,N)=0 
T(ML-1,N)=0 
T(:ti1L-2,N)=T(ML-2,N-1)+REM2*((TL-T(ML-2eN-1))*(X(INL-1)/P-.5^ùX)-(T( 
1ML-2,N-1)-T(ML-3,N-1))x(X(NL-1)-(P+5)*DX))/((P+1)*X(iNL-1)-DX*(.75 
2*P**2+P+.25)) 
GO TO 700 

350 IF (ML-MLO) 370,420,420 
370 T(K-1,N-1)=(TL+T(K,N-1)*(3-P))/(4-P) 

GO TO 415 
400 IF (ML-MLO) 410,420,420 
410 T(ML+1,N-1)=(P-3)/(5-P)*T(ML+3,N-1)+2*(P-3)/(P-4)*T(ML+2,N-1)+2/(( 

1P-5)*(P-4))*TL 
415 MLO=ML 
420 GO TO (750,500,500,430),ML-9 
430 CONTINUE 

DELTX=-DT*RRL/(X(NL-1)*DX)*(CON13c(T(ML+1,!'v-1)-TL)x(X(iNL-1)/(3-P)+. 
15*DX)-CON2*(TL-T(ML-2,N-1))*(X(NL-1)/P--.5#DX)) 
MLP2=ML+2 
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DO 460 M=MLP2,KM1 
G=M-10 

460 T(M,N)=((1.-.5/G)*T(M-1,N-1)+(1.+.5/G)*T(M+1,N-1)),, +(ï.- 

11)*T(M,N-1 ) 

MLM3=ML-3 
DO 470 M=11,MLM3 
G=M-10 ,n 

, 

470 T(M,N)=((1.-.5/G)^T(M-1,N-l)+(1.+.5/G)*T(Nì+1,N-1))*:tM2->-(1-2.i«Í'i 
12) *T(M,N-1) 
T(`10-,N)=T(10sN-1)+4*REM2*(T(11,N-1)-T(10,N-1)+OT/PI/CON) 
T(ML-2,N)=T(ML-2,N-1)+REM2^-((TL-T(tiiL 2,N-L))*(X(NL-1)/P-.5^DX)-(T( 
1ML-2aN-1)-T(ML-3,N-1))*(X(NL-1)-(P+.5)DX) )/( (P+1)^`X(NL-1)-DX^(.75 

) ) 

T(ML+1sN)=T(ML+1,N-1)+REM1`((T(ML+2rN-1)-T(ML+1sN-l))*(X(NL-l)+(3. 
15-P)*DX)-(T(ML+1,N-1)-TL)*(X(NL-1)/(3-P)+.5*DX))/((4-P)*X(NL-1)+DX 
2* ( 10-5.5*P+.75*p**2 ) ) 

T(ML,N)=0 
T(ML-1,N)=0 
GO TO 700 

500 MLP2=ML+2 
T(ML,N)=0 
T(ML-1,N)=0 
EL=ML-10 
T(ML+1eN)=T(î1L+1,iN-.-1)+REM1*( (T(ML+2,iv-1)-T(ML+1,N-1),)*(X(NL-1)+(3. 

15-P ) ^,DX ) -( T ( ML+1 ,N-1 ) -TL ) * ( X (iNL-1 ) / ( 3-P ) +.5*DX ) ) / ( ( 4--P ) ^ X ( iNL- 1 ) +JX 

2* ( 10-5.5*P+.75*P3,K2 ) ) 

DO 510 M=MLP2,KM1 
G=M-10 

510 T(M,N)=((1.-.5/G)*T(M-1,N-1)+(1.+.5/G)*T(M+1,i'.;-1)) i<:_i;;i+(1.-2."L,,. 

11)*T(M,N-1 ) 

T(10,N)=TL 
(3ELTX=-DT*RRL/(X(NL-1)*üX)^-(CJN1*(T(ML+1,iv-1)-TL).^(X(NL-1)/(3-D)+. 

15*DX)) 
700 X(NL)=X(NL-1)+DELTX 

ML=X(NL)/DX+10.99999999 
P=(X(NL)+.5"ßELTX)/DX-ML+12 
IF (X(NL)) 710,710,800 

710 DELTT=T(K,N-1)-T(10,N-1) 
TOC=T(KsN-1) 
DELTC=DELTT 
CALL PLOTXY(TOC,DELTC,0,12) 
T I ME=DT*F 
PRINT 720,TIME,DELTT, ( T (JO,iN-1 )',J0=10sK ) 

720 FORMAT(/40H THE TRANSITION IS COMPLETLD AT TIME = 1-11.6,16H SLCüiN 

105. DELT=F12.7/12H TEMP = 10F12.7/11Fï2.7/1-0F Lz7/10F12.7/) 
T(11aN)=.33333333^(T(10,iN)-T(13,N))+T(12tN) 
P=0 
DELTX=0 
X(NL)=0 
GO TO 800 

750 DO 760 M=11,KM1 
G=M-10 

760 T(MrN)=((1.-.5/G)*T(M-1,N-1)+(1.+.5/G)^`T(iJi+1,iN-î)) i<EM1+(1.-2. 
11)*T(M,N-1) 
T(10,N)=T(10,N-1)+4*REM1*(T(11,N-1)-T(10ei'v-1)+T/PI/CjïN) 
IF(DELTS1-T(K,N-1)+T(10,N-1)+.0001) 800,950,950 

800 CONTINUE 
DELTT=T(KsINTER)-T(10,INTER) 
TIME=DT3cF 
CALL PLOTXY(T(K,INTER),DELTT:1,0) 
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PRINT 820,TIME,DELTT,LL.X(NL).DELTX,ML,Ps(T(JO,INTEK).J0=10.K) 
820 FORMAT(/6H TIME= F8.3,7H DELTT=F9.6,3H X(I4,2H)=F118.7H ù`LTX=t=11. 

18,4H ML=I3,3H P=F11.8/13H TEMPERATURE= 10F12.7 /1Xllr12.7 
21X10F12.7) 
X(10)=X(INTER) 
DO 900 M=10,K 

900 T(M,10)=T(M,INTER) 
PRINT 920 

920 FORMAT(//17H THE END IS HERE.) 
IT=ITE 
GO TO 999 

950 DFLTT=T(K,N)-T(1O,N) 
TIME =DT *F 
PRINT 960,TIME,DELTT,(T(JO,N),J0=10,-K) 

960 FORMAT(/55H THE SHAPE OF THE PROFILE IS AGAIN IiVVAi<LAi`úT AT TIME _ 

1F11.6,16H SECONDS DELTT=F12.7/12H 'TEMP = 10F1z.7/11r12.7/ì0F1 
22.7/10F12.7) 

999 CONTIN'JE 
CALL AXISXY(00.9,6,5,,150.,60.,0.,0..0.,0.,1,5) 

1200 CONTINUE 
dJRITE(10,1300) 

1300 FORMAT(9H /OSUEOF/) 
CALL UNLOAD(10) 
END 

FINIS 
'LOAD,56 
'RUN'S 

20 610 106 .08333333 
.0163 .0146 

.0125 

.00589 
.03175 
.153 573. 

565. 565. 565. 565. 565. 
565. 565. 565. 565. 565 
20 610 58 .16666666 .0125 .03175 
0163 .0146 .00589 .153 573-. 

565. 565. 565. 565. 565. 

565. 565. 565. 565. 565. 

20 610 34 .33333333 .0125 .03175 
.0163 .0146 .00589 .153 573. 

565. 565. 565. 565. 565. 

565. 565. 565. 565. 565.: 
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)REGON STATE UNIVERSITY, CORVACLi 

FORTRAN Computer Program Employing 
Three -Point Finite Difference Equations 

'SEQUENCE,600, CHEMICAL ENGINEERING JOHN ,`AAKIiV`i'v 

'JOB,75038RMJK , '00, 
IFORTRAN,L+X 

PROGRAM INFCYL3 
DIMENSION T(3.0,130),X(130)-- 
READ 10,K,ITE,INTER,PHI,DT,DX,DIF1,DIF2,CONoRRL,TL,(i'(M,10),M=10,K 

1) 

10 FORMAT(3I4,3F12.8/ 5F12.8/6F12.7/6F12.7/6F12.7/6F1-L,.7/oFï2.7/6F12. 
17/6F12.7) 
XT=DX#CK-10) 
PHIn1=603cPHI 
REMI=DT*DIF1/DX><*2 ëREM2=DT#DIF2/DX*3C2 
EM1=1/REM1 W EM2=1/REM2 
PRINT 20,K,ITE,INTER,PHI,PHIM,DT,ùX,DIF1,üIF2,EM1,EM2,TL,XT,COïv,RR 
1L,(T(M,10),M=1C,K) 

2^'FOR^r",T(50X,4HDATA/4H K-I4,5H ITE=I4,7H INTER=I4,5H PHI=F9.6,8HùEG 
1/SEC=F6.2,12HDEG/MIN DT=F10.3,4H DX=F10.8/7H DIF1=F12.8,6H DIF2= 
2F12.8,4H M1=F12.8,4H M2=F12.8,4H.TL=F6.2,4H XT=F6.4,5H CON=F8.4,5H 
2 RRL=F8.4/36H THE INITIAL TEMPERATURE PROFILE = 7F12.7/1OF1207/10 
1F12.7/10F12.7/4F12.7) 
DELTS1=.253<PHIyXT**2/DIF1 S DELTS2=.253ËPHI*XT**2/üIF2 
DELTA=22.3* PH I* XT**2 
PRINT 30,DELTS1,DELTS2,tDELTA 

30 FORMAT(/9H DELTS1=F12.7,9H DELTS2=F12.7,6H U_LTA=ri2.7//) 
DO 35 L=10,INTER 

35 X(L)=XT 
CON1=CON2=CON 
TKO=T(K,10) 
KEY=-1 
KM1=K-1 S KM2=K-2 $ KM3=K-3 S KM4=K-4 
P=ML=DELTX=LL=O 
MLO=K 
DO 900 IT=1I,ITE 
DO 800 N=11,INTER 
F=N+(IT-11)*(INTER-10)-10 
T(K,N)=PHI^DT*F+TKO 
NL=N 
IF(X(NL)) 750,750,40 

40 If(TL-T(K,N)) 100,100,50' 
50 DO 60 M=11,KM1 

G=M-10 
60 T('.^,N)=( (1.-.5/G)*T(M-1,N-1)+(1.+.5/G)<T(M+1,N-1) )',¡RiEì`12+(l.-2.*iREM 

12)*T(M,N-1) 
T(10,N)=T( 10,N-1 )+4*REM23c(T(11,.d-1)-T (10,N-1) ) 

GO TO 800 
100 IF (KEY) 110,110,199 
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110 TIME=DT*(F-1) 
DELTT=T(K,,N-1)-T(10,N-1) 
PRINT 120,TIME,DELTT,,(T(JO,N-1),J0=10,K) 

120 FORMAT(/55H THE TRANSITION IS 3EGINNING AT THE SURFACE AT TIME = 

1F11.6,16H SECONDS DELTT=F12.7/12H TEMP = 10F12.7/11F12.7/10F1 
22.7/10F12.7) 
P=2 

ML=K 
KEY=1 
ENLD=F-1 

199 LL=F-ENLD 
GO TO (200,300,350,400),K-ML+1 

200 DELTX=DT*RRL*CON2*.5/DX* ( ( 2* P+1 ) / ( P * ( P+l ) )-'xTL- ( P+l ) /P*T ( K-2 , N-1 )+P 

1/(P+1)*T(K-3,N-1))-X(NL-1)+XT-SORT((((2*P+1)/(P*(P+l))*TL-(P+1)/P* 
2T(K-2,N-1)+P/(P+l);FT(K-3,N-1))*C(JN2^-RRL,,.5*DT/DX-X(NL-1)+XT)**2+(( 
32*P+1) / ( P* ( P+l ) ) *TL- ( P+l ) /P*T (K-2,N1 )+P/ ( P+1 )*T (K-3,iN-1) )* 2<<DT*C0 

4N2*RRL/DX*(X(NL-i)-XT)+DT*'E2*CONi*RRL/X(NL-1) * (XT+X(NL-1) )*PHI*(NL 
5-10.5)) 
DO 210 M=11,KM3 
G=M-10 

210 T(M,N)=( (1.-.5/G)*T(tii-1,N-1)+(1.+.5/G)*T(Mi+1,N-1) )*REM2+(1.-2.*<_M 
12)*T(M,N-i) 
T(10,N)=T(10,N-1)+4*REM2*(T(11,N-1)-T(10,N-1)) 
T(ML-1,N)=0 
EL=ML-10 
T(ML-2,N)=T(ML-2,N-1)+REM2*((EL-2+P)/((EL-2);;(P+1)*P)*((2*P+1)/(P* 
1(P+1))*TL-(P+l)/P*T(ML-2,N-1)+P/(P+i)*T(ML-3,N-1))+(P-1)/'*(I/(P*( 
2P+1))'ETL+(P-1)/P*T(ML-2.N-1)-P/(P+1)*T(ML-3,N-1)).-P/(P+1)^(EL-3)/( 
3EL-2)*(-1/(PF(P+i))^TL+(P+l)/PFT(ML-25N-1)-(P+2)/(P+1)*T(ML-3,N-1) 
4)) , 

GO TO 700 
300 DELTX=DTa`RRL/X ( NL-1 ) * ( -CGN1* ( XT+X ( NL 1 ) ) *.5 *PH I * DT* ( i)L-i l ) / ( XT-X ( ÌN 

1L-1) )+CON2*X(NL=1)/DX*( (2*P+1)/(P-=(P+1))riTL-(P+1)/P'FT(K-3,N-1)+P/( 
2P+1)*T(K-4,N-1))j 
DO 310 M=11,KM4 
G=M-10 

310 T(M,N)=( (l.-.5/G)*T(M-1,N-1)+(1.+.5/G)*T(M+1,N-1) )*REM2+(1.-2.*i<LM 
12)*T(M-,N-1) 
T(lOsN)=T(10,N-1)+4*REM2y(T(11,N-1)-T(10,N-1) ) 

T(ML,N)=0 
T(ML-1,N)=0 
EL=ML-10 
T(ML-2,N)=T(ML-2,N-1)+REM2*( (EL-2+P)/( (EL-2)*(P+l)*P)"( (2'^P+l)/(P* 

1(P+1))*TL-(P+l)/P*T(ML-2,N-1)+P/(P+1)*T(ML-3,N-1))+(P-1)/P*(1/(P^( 
2P+1) )*TL+(P-1)/P*T(i-"L-2.N-1)-P/(P+1)*T(ML-3,N-1) )-P/(P+1)*('EL-3)/( 
3EL-2)*(-1/(P*(P+l) )3cTL+(P+1)/P*T(ML-2,N-1)-(P+2)/(P+1)^T( %ïL-3,iV-1) 
4)) 
GO TO 700 

350 IF (ML-MLO) 370,420,420 
370 T(K-11N-1)=(TL+T(K,N-1)*(3-P))/(4-P) 

GO TO 415 
400 IF (ML-MLO) 410,420,420 
410 T(ML+1,N-1)=(P-3)/(5-P)*TiML+3,iN-1)+2^(P-3)/(P-4)*T(ML+2,N-1)+2/(( 

1P-5 ) # ( P-4 ) ) *TL 
415 MLO=ML 
420 GO TO (750,500,500,430),ML-9 
430 DELTX=DT*RRL*(-CON1/DX*((P-3)/(4-P) T(ML+2,N-1)+.(P-4)/(P-3)ryT(ML+1 

1,N-1)+(2*P-7)/((P-3)*(P-4))^TL)+COiN2/DX*((2*P+1)/(P*(P+1)),.TL-(P+1 
2)/P*T(ML-2,N-1)+P/(P+1)*T(iti"L-3,N-1) ) ) 

EL=ML-10 
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T(ML-2,N)=T(ML-2,N-1)+REM2-F((EL-2+P)/((EL-2)*(P+1)*P)*((2*P+1)/(P* 
1(P+1) )*TL-(P+1)/P*T(ML-2,N-1)+P/(P+1)*T(ML-3aN-l) )+(P-1)/P*(1/(P*t 
2P+1))'*TL+(P-1)/P*T(ML-2,N-1)-P/(P+1)XT(ML-3,iN-1))-P/(P+1)*(EL-3)/( 
3EL-2)"(-1/(P*(P+1) )-c-TL+(P+1)/P*T(ML-2,N-1)-(P+2)/(P+l),c-T(EiL-3,N-1) 
4)) 
T(ML+1,N)=T(ML+1,N-1)+RE;<î1*((3-P)*(EL+2)/((4-P)*(EL+`1))*((5-P)/(4- 

1P)*T(ML+2,N-1)+(4-P)/(P-3)*T(ML+1,N-1)+1/((P-3)*(P`-=t))*TL)+(2-P)/( 
2P-3)*((3-P)/(4-P)*T(ML+2sN-1)+(P-2)/(3-P)*T("1L+1,N-1)-1/((P-4)-^(P- 
33))#TL)-(EL-2+P)/((P-3)*(P-4)*(EL+1))*((P-3)/(4-P)*T(M,L+2,ïN-1)+(4-, 
4P)/(3-P)*T(ML+19N--1)+(2-P-7)/((P-4)*(P-3))%;TL)) 
T(ML,N)=0 

T(ML-1,N)=C 
MLP2=ML+2 
DO 460 M =M'_P 2, K M 

G=M-10 
46C T(M,N)=( (1.-.5/G)*T(M-1,N-1)+(1.+.5/G)T(ti;+1,N-1) )*ilï=i'i1+(1.-2.-<-KEM 

11)*T(M,N-1) 
MLM3=ML-3 
DO 470 M=11,MLM3 
G=M-10 

470 T(M,N)=( (1.-.5/G)*T(M-1,N-1)+(1.+.5/6)3cT(M+1;N-1 ) )*i<Liì2+(1.-2. ïtM 

12)*T(M,N-1) 
T(10,N)=T(1O,N-1)+4*REM23=(T(11,N-1)-T(10,(N-1) ) 

GO TO 700 
500 MLP2=ML+2 

T(ML,N)=0 
T(ML-1,N)=0 

EL=ML-10 
T(ML+1,N)=T(ML+1,N-1)+it_fi1*(13-P)X(EL+2)/((4-P)*(LL+1))*((5-P)/(4-- 

1P)*T(ML+2,N-1 )+(4-P) /(P-3) *T(ML+1,N-1 )+1/ ( (P-3 )%=(P-4) ),íTL)+(2--' )/ ( 

2P-3)*((3-P)/(4-P)*T(ML+2,fJ-1)+(P-2)/(3-P)^T(ML+1-y-1)-1/((i'-4)-,(P- 
33) )*TL)-(EL-2+P)/(-(.P-3)*(P-4);:(EL+1)')*( (r'-3)/(4-P)"T(ML+2,iN-1)+(4- 
4P)/(3-P)*T(ML+1,N71)+(2*P-7)/((P-4)*-(P-3))*TL)) 
DO 510 M=MLP2,K'11 
G=M-10 

510 T(M,N)=( (1.-.5/G)*T(!ti1-1,N-1)+(1.+.5/G)#T(M+1,N-1) )^!1.Ml+(1.-2.,,N_ivi 
1 1 ) 

+F T ( M , N -1 ) 

T(10,N)=TL 
IF (X(NL-1)-.2*DX) 550,550,530 

530 DELTX=DT-=RRL*(-CON1/DX*((P-3)/(4-P)T(ML+2,N-1)+(P-4)/(P-3)*T(ML+1 
1,N-1 )+(2'`P-7)/ (-(P-3)*(P-4) ) FTL)+CCN2*.5*(TL-T( 10,ìN-1 ) )/X(NL-1 ) ) 

.:T(10,N)=T(T0,N-1)+4*(DX/X(NL-1))^-*2*REM12*(TL-T(10,iN-1)) 
GO TO 700 

550 DELTX=DT*RRL*(-CONI/DX-*((P-3)/(4-P)><T(iHL+2,N-1)+(P-4)/(P-3)T(L+1 
1,N-1)+(2*P-7)/((P-3),í(P-4))*TL)) 

700 X(NL)=X(NL-1)+DELTX 
ML=X(NL)/DX+10.99999999 
P=X(NL)/DX-ML+12 - 

IF (X(NL)) 710,710,800 
710 DELTT=T(K,N-1)-T(10,N-1) 

TOC=T(K,N-1) 
DELTC=DELTT 
TIME=DT*F 
PRINT 720,TIMEsDELTT,(T(JO,N-1),J0=10,K) 

720 FORMAT( /40H THE TRANSITION IS COMPLETED AT Tim_ = F11.6,16H SECON 
1DS. DELT=F12.7/12H TEMP = 10F12.7/11E12.7/IOr12.7/10F12.7/), 
T(11,N)=.33333333*(T(10,N)-T(13,N))+T(12,iN) 
P=0 
DELTX=O 
X(NL)=0 
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GO TO 800 
750 DO 760 M=11,KM1 

G=M-10 
760 T(M,N)=((1-5/G)*T(M-1,N-1)+(1+.5/G)*T(M+l,iN-1))*KLM1+(l.-2.^KEi'"¡ 

11)*T(M,N-1) 
T(10,N)=T(10,N-1)+4*REM1*(T(1l,iN-1)-T(10,iN-1)) 
IF(DELTS1-T(K,N-1)+T(10N-1)+.0001) 800,950,950 

800 CONTINUE 
DELTT=T(K,IN7ER)-T(10,INTER) 
TIME = DT*F 
PRINT 820,TI,ti1E,ÜELTT,LL,X(7NL),DELTX,ML,P, (T(JO,IfvTEK),JU=10,K) 

820 FORMAT(/6H TIME=F8.3,7H DELTT=F9.6,3H X(I4,2H)="F11.b7H DELTX=i=îi. 

18,4H ML=I3,3H P=F11.8/13H TEMPÉRATURC=10Fi2.7/1X1iF12.7/iXiOFlL7í 
2.1X10F12.7) 
X(10)=X(INTER) 
DO 900 "'1=10+K 

900 T(M10)=T(M,INTER) 
'PRINT 920 

920 FORMAT(//17H THE END IS HERE.) 
IT=ITE 
GO TO 999 

950 DELTT=T(K,N)-T(10,N) 
TIME=DT*F 
PRINT 960,TIME,DELTT,(T(JO,N),JO=10,K) 

960 FORMAT(/55H THE SHAPE THE OF PROFILE IS AGAIN iNVAKiANT AT TIM_ 
1f11.6,16H SECONDS DELTT=F12.7/12H TEMP = 10F1C.7/11F1.7/10F1 
22.7/10F12.7) 

999 CONTINUE 
END 

FINIS 
'LOAD,56 
'RUN,5 
208610 130 .33333333 .00125 .03175 
.00163 00146 .G00589 .153 573. 

565. 565. 565. 565. 565. 565. 

565. 565. 565. 565. 565,, 
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