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Nomenclature

Independent Variables

= horizontal distance

= vertical distance

= time

Fluid Variables

=i+ v_j>: velocity

= density

= pressure

= temperature

= entropy per unit mass

Fluid Parameters

= viscosity
= thermal conductivity
= specific heat per unit mass at constant volume
=k/C
/ v

Forces and Stresses Acting on the Fluid

= X714+ YT = external force per unit volume
= stress tensor
= normal component of the stress at the surface

= tangential component of the stress at the surface
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Numerical Parameters

= mesh width in the x direction
= mesh width in the v direction
= time increment

Auxiliary Variables in the Numerical Solution

)

= variable used in the u and P calculation
- variable used in the v and F calculation
= pressure coefficients in the pressure relaxation

= source term in the pressure relaxation

Subscripts

= x-component of a two dimensional quantity

= y-component of a two dimensional quantity

= numerical value at x = i6x

= numerical value at y = jby
. . , th )
= numerical value associated with the k particle

Superscripts

. . th .
= numerical value in the n time cycle

= indicates normalized independent variable



A PREDICTOR-CORRECTOR METHOD FOR THE TRANSIENT
MOTION OF A NONHOMOGENEOUS INCOMPRESSIBLE,
VISCOUS FLUID

I. INTRODUCTION

Fluid flow is generally described using one of the fcllowing

view-points.

Eulerian; Attention can be focused on some point in space and
the changes in the fluid can be described as functions of
time at this point.

Lagrangian: Attention can be focused on an infinitesimal fluid
element and the changes in this fluid element can be ex-
pressed as functions of time.

Although the latter method of description bears the name of J. L. La-
grange both were developed by Leonhard Euler. Major analytical
works in fluid dynamics use one or both of these viewpoints; corres-
pondingly numerical techniques have developed along these lines.

The early papers on numerical techniques for fluid problems

(Harlow, 1955; Evans and Harlow, 1957) used the Lagrangian view-
point. Instead of considering every infinitesimal fluid element, at-
tention was focused on a finite number of these elements. By mark-
ing the elements being considered, the fluid was conveniently repre-
sented by an array of particles. This representation by particles is

the primary feature of all Lagrangian numerical techniques; the fluid



properties such as density and velocity are localized to a finite num-
ber of particles which move with the fluid.

Later (Langley, 1959; Welchetal.,1966)an Eulerian technique was
developed for fluid problems. Instead of considering the fluid at all
spatial points, attention was focused at a finite number of fixed points.
Eulerian numerical techniques are characterized by finding the values
of the fluid variables at the mesh points of a fixed grid.

It was shown by Welch et al. (1966) that a system containing two
discrete fluids could be handled using a mixed Eulerian-Lagrangian
scheme. In this scheme the velocity and pressure were considered
as Eulerian variables and found at the mesh points of a fixed grid.
The density was considered a Lagrangian variable and was localized
to fluid particles. With the addition of the Eulerian variable temper-
ature this same mixed Eulerian-Lagrangian scheme is suited to the
problem of this thesis: finding the transient motion of a nonhomogen-

eous fluid with continuous density and temperature profiles.



II. THE SYSTEM OF EQUATIONS

In this chapter the physical laws that govern the motion of a
fluid will be presented. The approximations for an incompressible
fluid undergoing an adiabatic change will then be derived. For nota-
tional and computational convenience it is assumed that the motion is

two dimensional so that the independent variables will be x, y, and t.

The Physical Laws

To describe completely the motion of a Newtonian fluid it is nec-

essary to determine the six unknowns:

—

velocity, w=ul +v i;
density, p;

pressure, P;
viscosity, p;
temperature, T; and

entropy per unit mass, S.

Thus, six equations relating these six unknowns are needed. These

equations are mathematical expression of the following physical laws:

conservation of mass,
conservation of momentum,

first law of thermodynamics,



second law of thermodynamics,
law of liquid viscosity, and

equation of state.
These laws are given mathematical formulation by:
1. The continuity equation (Schlichting, 1960),

20, 2 B 0w - o
o g (W) o (pv) = O; (2.1)

2. The Navier-Stokes equation (Welch et al., 1966),

Dw - . 1/
P Dt

pF - VP + 2(v.u )W + VX(uy x W), (2.2)

where F = X1 + Y_j is the external force per unit volume acting on

the fluid;

3. The first law of thermodynamics (Schlichting, 1960),

DT —~ 5 .9T. 98.08T
2 Plowm) = 2 (k&) ¢ Ll .
PC, B + P(vw) = g0 (k) * gylkgy ) T re (2.3)

where C is the specific heat per unit mass at constant volume,

k is the thermal conductivity, and ¢ 1is the dissipation expressed

as

The material derivative {7 1is the time derivative following

U —
a fluid particle, namely %E = g;f + (W V),



ou 2 ov 2 9v 9du 2 2,0u 9v 2
$ =2[(3)) +(8y) ] +(ax+ay)'3 ox Tay)

4, The second law of thermodynamics (Streeter, 1961),

D 3 ,kaT 3 kT
T -— - —_— (— — (—= . 2.4
Silps) = 5 () toy (5y) TP (2.4)

5. The liquid viscosity equation (Bird, 1962),

(2.5)

where V(T) is the volume occupied by a mole of liquid at tempera-
ture T and A and B are empirically determined constants for

the liquid.

6. The equation of state is a relation between P, p, and T. In
general for a liquid it must be determined empirically.. For an ideal

gas it has the familiar form

P = pRT (2.6)

where R 1is the ideal gas constant.

The Approximations

The general incompressibility equation (Yih, 1965) is



(2.7)

It
<IID

This can be expressed using the definition of the material derivative
as

9p , ,8p  Op _
8t+u8X+v8y 0.

Similarly, Equation (2.1) can be expanded to

9p 8 % Bu ov, _,

ot TVax T Vay TPaxtoy) = O
The preceding two equations may be subtracted and the difference di-
vided by p (which never vanishes for a real fluid) to obtain an equa-
tion which is generally called the continuity equation for incompres-

sible fluids.

2L %Y gw=0 (2.8)

For an incompressible fluid, temperature variations are small
enough that the viscosity, p, and the thermal conductivity, Kk,
may be considered constant (Schlichting, 1960). The assumption of

constant y allows the following simplification of the last two terms

of Equation (2. 2):

— — 2——-> — —
2(VepV)w + Vx(uVxw) = 2uV 'W+p[V(V-W): Vzw]

il

2 —~ —
MY W+ uv(Vew).

il
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This can be further simplified for incompressible fluids (V'_’\_V’: 0) to
2 —

2(V-pv YW+ vX(va?v') =uVvV w.

Thus, the assumptions of incompressibility and constant viscosity

reduce the Navier-Stokes equation to

— 2—>
p—ﬁ\—zf—:pF—VP‘l‘pv W .

For the finite differencing of the above equation which takes
place in the next chapter, it is convenient to use the following vector

and tensor identities:

Ve(ka) = (Vk)ea + k(Vea)

v(a b)=(2:V)b + (V-a)b

to rewrite the first term:

Thus, the final form for the Navier-Stokes equation becomes
a — —_— — 2 —
S-E(pw)+ Vipww) = pF - VP+ vV w. (2.9)

The assumption that the thermal conductivity is constant



reduces the first law of thermodynamics (2. 3) to

DT — 2
pCVD_t + P(y-w) = kv T + po.

The incompressibility assumption reduces it further to

DT 2
pcV—D_‘c =Ry T Ao

In the next chapter an algorithm will be developed to solve the
system of partial differential equations now under consideration.
One of the conditions for the accuracy of this algorithm will be that
|;v’| << Cs, Cs being the local sound speed. When |:V’| << Cs
Thus, the

it is shown by Welch et al. (1966) that po << kVZT.

first law of thermodynamics assumes its final form;:

DT wo’T. (2.10)

An incompressible fluid undergoing an adiabatic motion has con-
stant entropy. For an incompressible fluid the incompressibility
equation (2. 6) replaces the equation of state. Thus, the assumptions

of incompressibility, adiabaticity, constant viscosity, and constant
thermal conductivity reduce the original six equations in six unknowns

(Equations (2.1) - (2. 6)) to four equations in four unknowns:



Dp _
Dt = 0, (2.7)
v..w =0, (2.8)
a — —_— — 2——’
g—t-(pw)+v-(pww):pF- VP +pV w (2.9)
DT k 2
— T 1
Dt pCV (2.10)

In the sequel these four partial differential equations will be

solved according to the boundary conditions derived below.

Scaling the Equations

When solving equations numerically, it is frequently desirable
that the variables have magnitudes less than one. The equations

(2.7) - (2.10) can be scaled by the tranformation of variables

x = Lix!
y = Ly
£ = o
W
W= Ww'
p = Rp'
P= RW°p!
T = T!

The incompressibility equation (2. 7) becomes



The continuity equation (2. 8) becomes

W ou' av'
—(=—+—) = 0.
T (5t 5gt)
Thus,
V'c-\;/" = O'

Similarly, the Navier-Stokes equation becomes

RW2

L

2
[ (0" %)+ v (o'W W] = p'RT -

L

VIPI + _W_Zp VIZ

—
w'.

10

(2.11)

(2.12)

—_— —_— 2
Multiplying through by L/RW2 and setting F'=LF/W and

p' =p/LRW gives

_a_(plgv'l) + Vl_(pl'\;l'v'v'l) - plf"l - V'P'+ plvlz-\;l.

Finally, the temperature equation is expressed as

oT' — a' 2
—_— + g )T = —g!'“T
YT (w'-v") 5 v ,
2 D! a .
—Dt' —.—at' + (we+¥v'), and
o] o]
Vl — — —

(2.13)

(2.14)
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where a' = k/RLOWCV. Thus the equations to be solved have the
same form before and after scaling. Hereafter, it will be assumed
that the equations have been scaled appropriately and the primes on

Equations (2.11) - (2. 14) will be dropped.

The Boundary Conditions

There are two basic types of boundary conditions to consider:

1. Conditions occurring at a material boundary,

2. Conditions occurring at a free surface.

A boundary of the fluid is a material boundary if no fluid can pass
through it. A free surface separates the fluid from a vacuum.

The system of partial differential equations is solved subject to

these boundary conditions:

1. At a material boundary the normal and tangential compon-
ents of the velocity vanish. The normal derivative of the
temperature vanishes.

2. At a free surface the normal and tangential components of
the stress vanish. The normal derivative of the tempera-
ture vanishes.

Let s(x,y,t) = 0 be the entire fluid surface. In general s

may contain both material boundaries and free surfaces. The unit

vector normal to s is defined
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E’_ Vs . -—X1+—;_]
T v s \[ 9s .2 9s .2
+____
(ax) (Y)
Thus, we may express n  as
n=ni+n j (2.15)
X y
os as
where n = ox and n = 9y
Vs| vy |vs]

The unit vector tangent to s 1is any vector of unit length which is a

solution to nsm = 0. Inorder that n and m form a right hand-

ed coordinate system choose

m=-n i+n T (2.16)
The velocity W can be expressed
W= (wsn)n + (Wem)m .
The normal derivative of T is
oT —
— =neVT.
on n

Thus, boundary condition 1 is expressed in equations as:

wen = 0, (2.17)



g
B
"
=)

=]
<
H
1
o

The stress ¢ ata point on a free surface with normal

given by (Yuan, 1967)

- —
o =Il~n.

Here 11 1is the stress tensor

Therefore, o is given by

T 7T T T\ a1

XX Xy’ X
o =

T i T i J n

YXJ YYJ YJ

=nT +n T )T+(n’l’ +n T )T.
X XX y’XY X yX y’y’y’

Since Equations (2.15) and (2. 16) can be solved for i and j

yield
— — —
1 =nn-nm,
X y
— — —
j =nn+nm,
v x
—

¢ can be expressed,

13
(2.18)

(2.19)

is

By

to
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T =@mT +nT )Ynn-nm)+(®nT +n T )o n+n m)
x xx y Xy x Yy x yx y yyy X

setting
_c?:o‘_r_;-i-o‘ r_I;
n m
2 2
c =(n T 4n n T +4n n +n T )
n X XX XYy Xy Xy yX Yy Yy
2 2
¢ =(-nnT -nT 4n T +n n T ).
m Xy XX y Xy X yX XYy yy

In general for a Newtonian fluid (Schlichting, 1960),

du odu du ov o
} ou 9u = 22 v.
P 0 ox ay\ 9x 9x 5 w0
n = tp tp -3
0 -P o 3—"/ du  ov 0 v.wl
9x 9y 9y 9y

For an incompressible fluid the last bracketed term vanishes.

Substituting the components for I into the equation for v

2 du du 9v 2 v
o= nx(-P+2p 8x) + annyp(8y+8x) + ny(-P+2p ay) .
. o 2 2 . .
Using the condition that n_ + ny =1, this may be rewritten as
2 du du 9v 2 dv
= -P — 4+ 2 —t+— 2 —.
o + an . + nxnyp(8x+8y) + nyp oy

Similarly, if the components of Il are substituted into the equation

for o the result is
m
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av  9du 2 2 ou  ov

crrn:2 H(By Bx)+(nx )”(ay ax)'

Thus, boundary condition 2 is expressed by setting o and

o equal to zero.
m
2 9u Ju 9v 2 av
P=2 — + 2n —_—— 2 — 2.20
"x " ox X p( oy ax)+ nypay ( )
av du 2 2 du av ‘
2 —_— - -— = 0. 2.21
non (Go-ge) + (non Got ) (2.21)

At the free surface the normal derivative of the temperature vanishes
so Equation (2. 19) must also be satisfied.

In addition to boundary conditions 1 and 2 the following initial
conditions must be satisfied:

1. The initial density field must be given.

2. The initial temperature field must be given.
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III. THE NUMERICAL METHOD

The general method of solution of the system of partial differ-
ential equations (2.11) - (2. 14) will be to represent the continuous
variables x, y, and t as multiples of &x, &y, and &t. Then
the partial differential equations can be approximated by finite differ-

ence equations and solved numerically for w, p, P, and T at

x = i6x, y = jdy, and t =nét for integer values of i, j, and n.

The Difference Equations

It was found by Welch et al. (1966) that some differencing
schemes were more accurate than others. The following scheme re-
portedly gives the most accurate solution of the Navier-Stokes equa-
tion (2.13). The fluid is covered by a double Eulerian grid as in Fig-
ure 1. The variables P, p, and T take values at the mesh
points of the grid represented by the dashed lines. The variables
u and v are found at the intersection of the dashed and solid grids.
The rectangular regions marked off by the solid grid are called cells.
Thus, the variables p, P, and T are defined at the center of a
cell while u is defined at the sides and v is defined at the top

and bottom of each cell.
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Figure 1. The double Eulerian mesh with the locations of the
fluid variables indicated by, @: p, P, T; a: u; m: v.

If x=1iéx, y =jéy, and t =ndt then itis possible to re-
present the variables as functions of the integers i, j, and n.

Thus, in Figure 1 for t = nét

3/
n =
p(x,y,t) = Pij

n
P(x,y,t) = P,

n
u(x, y,t) = ui-%j

n
vix,y,t) = v,
y ij-1

To express the partial differential equations in finite difference

form, the following difference operators are used

3The subscript notation used in this paper is the same as Welch
et al. (1966). The comma between the first and second subscript is
deleted.
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ottty Pt

R T bx
. 1- s R I

9y oy ‘ oy

depending on whether ¢ is placed at the center or side of the cell

respectively. Moreover
Yy p

2o ¢ ¢

- JPOLA .

ot . ot

where the superscript n+l indicates the value of the variable for
t = (n+1)6t and the absence of the superscript indicates the value at
t = nét.

The system of Equations (2. 11) - (2. 14) can be written in finite

difference form as follows:

n+1
Pip Py PPy Pty (5. 1)
5t ij &x 1) oy - .
. 1. . -1,
L LI L T i B (3.2)
ox oy
ri+l . ot
1 Lo, B e P -P. s °
("u)i%J §L+%J P! 1j Hlj) o)

where
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(pu ). ..-( )..  (puv). ( ). .
- (pu) st P )1+lJ Pu )iy 1P +15+3 P i+1j-3
ity ~ PHigL; . + 5
x y
u, 3.-2u, ;.tu. ;.
= (pX) o 4357 4L 1-%3)
ox
TER TR R T R
- , ) s
oy~
n+l ot
= — 3.4
(p )1j+% élJ-{-é 6y( 1j ij+1)’ ( )
where
(pv ). = (pv) (puv), ( :
= (pv) st PV )51 TPV ) . PRI 1541 P i-3j+3
ij+3 ij+3
oy ox
T ) |
v1+lJ+é v13+§ v1—13+% v1;|+% v13+7 vlj—é |
- (P, - b k )= )
T2 ox
and
n+l
T.., -T (uT). ;.-(uT). (vT).. -(vT)..
S e2y iy 3 1j-3
ot ox oy
T. -2T.. 4T . T, . -2T. +T..
a itly ij i-1j ij+1 i "ij-1
= — 5 + (3.5)
pij ox oy

For computational purposes it is convenient to put this system

of equations in a slightly different form. Equation (3.3) can be solved

n+1
for wu. ;.;
1+3]
. . -P .
nel eiddj o Fiyhieng)
u, )L = o
i+3] n+l ox n+l
Pivl; Pitl;

(3.6)
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Similarly,
oy P .-P..
n+l E”l—ﬁj ot ( i-1j 1J) 3.7
1 = . Z_ . ( * )
i-3] n+ ox pn 1
Pi-1] -]
For the v components
P -
n+1l ij+s 6t( ij ij+l)
V..l = + , (3.8)
1j+3 n+l 8y n+l
Pijes Pijs
n+l éij-%_— st ij-1 ij)
v.. | = - (3.9)
ij-3 n+l = by n+l
Pt P

If Equations (3. 6) - (3.9) are substituted into the continuity

equation (3. 2) for t = (n+1)dt, the resultis

x|\ n+l n+1l x n+l n+l |
Picgj  Pi-d] Pisk] Pi-dy -
i} P _P
1 éij+§ éij.g\ ot [ ij Pij+l ij-17"ij
+ —||—=- + — - = O.
oy [\ n+l n+1) x n+l n+1
Pijes Pij-d Pit}] Pij-%

This may be put in the form

1
P =B P +B2P 4B P +BIP  tA. . (3. 10)
ij i3 i+1j ij i-1j 1j ij+1 ij 1j-1 ij

The coefficients are given by
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S &1 L. . L,
A oL EL(H%J i-zj) 1 [Tijty 1J-%> ,

ij C..iéx n+l  n+l 8y |\ n+l  n+1
TL Pigky Pick; Pijt Pij-%
1
Bl - 1 ot 1 ’
1} 2 n+l
ijéx p. 1.
1+3]

BS = — 2=
ij ij 6 2 n+l
X . .
Pi-4]
3 L oet 1
ij7C...2 ntl
J oy Pij+_21_
4 1 6t 1
By 2 nt1
ij oy pij—l
and
IR D WD W U T3 1
ij . 2\ n+l  n+l 2\ nr1 T a1/
ox  ip P o p pP.. 1

i+7j Fi-3j ij+3 Tij-3

Equations (3. 6) and (3. 8) were modified slightly because they
led to physically unrealizable results. For fluids at rest they implied
that the gravitational and buoyant on a fluid element did not balance.
This effect was due to the density gradient in the fluid and was recti-

fied by setting

& P P
R Ci-13j 8t [ dj i+1j (3. 11)
i+3j ~ n+l o | n+l ™ ntl |’ '

Pitl; Pij  Pip1j

L. . P. P,

e .S A B M 0 (3. 12)
ij+5 = n+ 6y | n+l n+l '

1
Pij-2 P Pign
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For computational purposes it is convenient to put Equations

(3.1) and (3.5) in a slightly different form.

P. .- P P.. 1-P..
n+l itlj Tij ij+1 "ij
= - _ s 3.13
Pi; T Py 6t(uij ox T Vij oy (3.13)
T - (uT T)., .- (vT
n+l ()5 0T gy Oy (0500
T,., =T, -6t
ij ij ox oy
T -2 Lo -2 T
L a ( i+l 1j i-1j 1j+1 2] J—l> (3.14)
Pij ox oy

The system of equations which is actually solved is

P. 1:=P:. P.: - P
n+l i+l "ij ij+1 "1ij
= - 8t —_— —l 1
Pij = Pyj <uij ox ' Vij oy ’ (3-13)
P P
n+1 gi+§j 6t [ T ij it+1j
u, ;. =5+ - , (3.11)
it+3] n+l o0x\ n+l n+l
Pitl; Pi;  Pit1j
P P
n+1 éij+§ 6t [ ij ij+1
v...1 = +— - , (3.12)
ij+3 n+1 Sy | n+l n+l
Pij+s Pij  Pijrl
1 2 3 4
P.=B..P, .+B P, .+B P, +B .P. +A , (3.10)
ij iy i+1j ij  i-1j ij ij+1 ij- ij-1 ij
and
(uT), ;.- (@uT). ;. (vT).. 1-(vT)..
R i+3] i-3j s ij-3
ij 1] ox oy
T, .- T - T
o [Tir1;7 2 ;JJ“ 15 il i i1 5. 14)
le ox oy
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The Algorithm

The following eight steps are the basis of the computer program

which solves Equations 3. 10 through 3. 14. A flow chart is given in

Appendix A.

1.

The density distribution for t = (n+1)6t 1is calculated
from the solution for t = nét wusing Equation (3. 13).

The pressure field is calculated roughly by relaxing Equa-
tion (3. 10) starting from the pressure field for t = nbét.
Provisional values of the new velocities are calculated us-
ing Equations (3. 11) and (3. 12) with the new values of the
pressures.

The fluid particles are given weighted averages of the four
nearest horizontal and the four nearest vertical velocities.
The motion of the particles is found according to this pro-
visional velocity field.

A corrected value for the density for t = (n+1)6t 1is cal-
culated from

k
fnijpk

k
where n_lj is the number of particles of density P in

.th . . .
the 1ij cell according to the trajectories from step 4.

The corrected value of the density from step 5 is compared
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with the prediction of step 1. If there is any difference the
new density field is introduced into step 2. The process is
repeated until there is no difference.

7. Now the pressures are calculated more precisely. Final
values for the velocities are calculated and the particles
are moved.

8. After u, v, and p are found,the temperature equation
(3.14) is solved.

These eight steps relate all the essential features of the algo-
rithm. Steps 1, 5, and 6 are the predictor-corrector portion. The
calculation cycle continues until the density remains unchanged.

Steps 2, 3, 7, and 8 are the Eulerian calculation of the variables
P, u, v, and T. Steps 4 and 5 are the Lagrangian calculation of
the particle positions and the density in each cell.

In the Lagrangian calculation of the particle positions, the ve-
locity used to move each particle is a weighted average of nearby ve-
locities. The calculation of these weights is given below for the hori-
zontal velocity, u.

A rectangle of dimension &x by &y 1is centered over the four
nearest horizontal components of the velocity field. A similar rec-
tangle is centered over the kth particle. The particle rectangle and
the velocity rectangles overlap (see Figure 2). Each velocity's weight

is the percentage of the particle’s rectangle that it covers.



Figure 2a.
velocities.
A A
A
2 |° 1
A A
3 4
A A
Figure 2b. The velocities and their weights.

Thus, the particle's horizontal velocity is given by

1
- (A A A A
U T Bway (h1 Bkt AR Lyt AR L gt ALY 1

The particle's new x-coordinate is given by

A particle and the four nearest horizontal
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Similar calculations are performed for the vertical velocities

and the vy-coordinate.

Boundary Conditions for the Algorithm

The region in which the fluid motion occurs has been covered
with a mesh. It is necessary to approximate the boundary of the
fluid, s, in terms of line segments from the mesh. The algorithm
requires quantities from surrounding cells for the cadlculations at any
particular cell. Thus it is necessary to create a layer of fictitious
cells outside the boundary of the fluid. The quantities for these cells
are determined by the boundary conditions at the interface of the fic-
titious and actual cells. In this way the boundary conditions are ac-
counted for in the algorithm.

Figure 3 depicts a boundary between a cell and its fictitious

i . Th blem is t i oW, 1., Veoa. Ls P
image e problem is to determine uj 35 ul_%J vl—lJ—‘é‘ p1—lJ

Pi 1’ and T.1 1 from the boundary conditions. For all types of
boundary cells, pi-lj = pij'
Pi_1j
u, 3. 4 L Au. 1. ]
1-2) T 1-2)
i-1j
L
Vi-1j-5
i-1 1

Figure 3. Celli-1, jis a boundary cell.
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Suppose the boundary is a material boundary. The boundary

conditions to be satisfied are

—_—  —
wen = 0,
- —
we.em = 0,
—
n.vT = 0.

For a boundary oriented as in Figure 3 these equations become

u =0,
v = 0,
8T
ox - 0.
In finite difference form
iyt
Vigid T
-T
ij "i-1j 0
&x T

The boundary value of v, namely v, is equal to the aver-

age of the values at either side;
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Thus, at a material boundary

Vi-13-3 7 Vi-3o
Since
T -T. .
ij i-1; 0
ox o
=T, ..
T'1-lj ij

th th
Applying the continuity equation (2. 12) to the 1i-1j and ij cells

respectively gives

u. -, . V. . -V, .
i-357 025 i+ i-1j-

ox oy =0,
Giagit Mgy Vit ijed
ox oy )
Adding the preceding equations gives
L1 . ST L
Bivgim Moy Vit Viges Ci-1j-3t iged
ox oy oy ’

At a material boundary the last two terms of the preceding equation

vanish. Thus,

. n
Since u.

.= 0 forall n ata material boundary,
1-

J

N~

n+1‘ - (pu)

(Pu)i_%J = 0.

. l .
1-2)
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Substituting these values into the Navier-Stokes equation (3. 3) the re-

sulting equation can be solved for (i
T - ¥
4

Summarizing, at a material boundary

Piony TPy
(SR 0,
-5
Y3y Mgy
V. .1 - V., 1
i-1)-3 ij-2
2p
P e Ox{pX L. s
i-1) le *(p )1—%_] 6XU1~§_]
T =T
i-1j ij

Suppose now, that the boundary in Figure 3 is a free surface.

The boundary conditions to be satisfied are

¢ du 9V .2 0v

2 9du
P =2 — 4 2n — = - —,
"x¥ ox ! 11xnyp( ay ax) ! yH 9

ov au 2 2. ou 0V
v ou. R ey =0
anny( 9y 0x )+ Vly ny ) ay ¥ 9% ) ’

navT - 0.

For the vertical surface being considered n_ - -1 ard
’ X

Thus the equations reduce to

) Ju
P2
ax
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ou ov
9y  ox
T
nx - 0.
In finite difference form
u -u, 3
-2  1-3)
P = 2
i-1j 20 ox ’
u., 1.-Uu. 1 V.. | -V.
i-zj i-zj-1 ij-z i-1j-
ox oy ’
-T
ij i-1j 0
ox -

3

The second equation above can be solved for v, 1 1
i-1j-z

- v +_6_Y_(
Vicrjor T Vigos ek ok tinkie

The third equation reduced to

T =T, .
i-1j ij

t
As above, applying the continuity equation to the 1i-1j cell yields

u = u +—6—}E(v v )
i-3j itz by e ij-z

For a free surface the normal component of the velocity vanishes,

namely
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4. =0.
i-2j

u

Summarizing again, at a free surface

P P

i-1j Py,
u =0,
i-2]
N 6x( . )
u = . ——\V .. - s
i-3j  Ci+3i | 6y ij+z  ij-3
oy
Yiongep Vi P e Mty g
_ 2
Pi-lj T ox ti-lj
Ti-lj - Tij'

The variety of problems which can be handled using this numer-
ical method can be greatly increased if fluid is allowed to enter or
leave the region in which the calculations are being made. Following
is a development of conditions for an in boundary and an out boundary.

Frequently some of the boundary values of the variables are
known from the problem. For instance, the input velocity may be
specified or the input or output pressure may be held at some con-
stant value. In the absence of other information, the values may be
calculated as follows.

To simplify calculations, only problems are considered for
which the fluid enters normally to the in boundary. Thus, at the

boundary in Figure 4 the horizontal velocity v, ;. ; must be zero.
i 1
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This yields, as in the case of the material boundary,

Also like a material boundary a pressure boundary condition
can be derived if necessary by solving the Navier-Stokes equation

(3.3) for P, 1 A temperature boundary condition can be derived
1-

by requiring that the initial temperature profile is maintained at the

in boundary.

At an out boundary it is assumed that the fluid is not accelerat-
4/

ed. With this assumption--valid for problems where ITN’I << Cs
if the cell size is small--the boundary conditions for an out boundary
are as follows.

Since the fluid is not accelerated

V. .1 T V.. .
i-1j-z  ij-2

The horizontal velocity LAY is calculated from Equation
-2

(3.6). Since the continuity equation (3. 2) is satisfied in the 1i- ljth

cell,

ot
u, 3. =u, .+ —(

i-3j " i-zi ey )

V. ,.o1-V. .
1-13+% 1-13-%

4
See page 8.



The pressure boundary condition was found by Welch et al.

(1966) to be

ox
Pii15 7 i sy L (PR (ou)

-

The adiabaticity requirement is as before

T =T ..
i-1j ij

33
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IV. APPLICATIONS

A computer program for the flow of a fluid with a continuously
varying density stratification has immediate applications in meteor-
ology, oceanography, and hydraulics.

The infinite reservoir problem offers an interesting example of
the problems and potential of this numerical method. This problem
is interesting because it utilizes all four types of boundaries: in, out,
material, and free surface. It also is typical of a particular problem
in numerical solutions: providing a finite approximation to an infinite
problem. Before attempting this problem some attempt should be
made to check the algorithm to determine whether it is, in fact, solv-

ing the system of partial differential equations (2. 11) - (2. 14).

Checking the Algorithm

As a check, the algorithm was applied to various problems for
which the analytical solution was known. Simplest of thesewas a tank
of water undergoing no motion. The algorithm gave, to within the er-
ror of the numerical approximations, no change in any of the vari-
ables. Another problem whose analytical solution is known is uniform
horizontal motion. The algorithm provided the same solution as the
analytical methods. Although there are other checks that could have
been run, success in these two cases was deemed sufficient to try a

more sophisticated problem.
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The Infinite Reservoir Problem

The infinite reservoir problem is the problem of determining
the motion of a semi-infinite strip of fluid as it flows into a point sink
as shown in Figure 4. Any continuous density profile may be used. To
handle an infinite problem such as this it is necessary to simulate the
infinite reservoir on the left with an in boundary. Sufficiently for
downstream, i.e., to the left, the motion in the reservoir will
be uniformly to the right and the pressure will be hydrostatic. Fluid
can be drawn into the finite reservoir by setting the value of the hori-
zontal velocity at the in boundary equal to the velocity of the fluid

immediately to the right of the boundary.

Figure 4. An infinite reservoir with a point sink.

The model, then, is a rectangular region partially filled with
fluid particles. On the left is an in boundary. The velocity is equal
to the velocity of the column of cells to the right and the pressure is

hydrostatic. On the right is a material boundary, on the top is a free
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surface, and on the bottom is a material boundary with a small out
boundary to the right.

The primary feature of this numerical technique is that plotting
the positions of the fluid particles provides a visual display of the
motion of the fluid. The plots in Figure 5 are from a computer run
using a hyperbolic tangent curve as the initial density and tempera-
ture profile.

The plots were photographically obtained from cathode ray tube
displays of the particle positions. Successive photographs were tak-
en to provide sequences for a motion picture of the flow. In addition
to the photographs, which were taken for each time increment, nu-

merical values of all the variables were printed at regular intervals.
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T = t.000
T = 2.000

T = %.000
T = 7.000

Figure 5. The above results were obtained using a mesh size
§x = .1, &y = .1, and 6t = .05. The mesh was a square
array of 16 cells by 16 cells. Initially there were four
particles per cell.
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V. CONCLUSIONS

The goal of this study was to develop a numerical technique to
find the transient motion of a nonhomogeneous fluid. The general
success in solving all such problems to which this algorithm has been
applied indicates that the algorithm devised by Welch et al. (1966) has
been successfully modified and extended to handle nonhomogeneous
fluids. The test problems mentioned previously, reservoir problems,
and jets of fluid into tanks filled with a similar fluid are among those

successfully run.

Recommendations

Following are questions whose answers could be of great bene-
fit in the applications of this numerical technique.
1. Can the requirement of strictly adiabatic flow be weakened
to allow heat transfer problems?
2. Can the requirement of perpendicular flow across an in
boundary be removed?
3. How does the scaling of the problem effect the simulated

motion of the fluid?
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A. Flow Chart

Following is a flow chart of the algorithm developed on pages

23 and 24.

40
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B. A Sample Listing

Following is a computer listing for the infinite stratified reser-
voir problem discussed on pages 35-36. The primary variables are

designated in the program as follows:

t «— TIME
6x «— DX
0y — DY

6t «—— DT

To identify the cells, each cell is labeled;
IN if it is a boundary cell at an ir boundary,
ouv if it is a boundary cell at an cut boundar-,
NOSLIP if it is a boundary cell at a mazterial boundza-y,
SUR if it is a free surface,

EMP if it contains no fluid particles,
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REG if it contains fluid particles and is not a boundary cell.
Similarly each particle is labeled:
IN if it is in an IN cell,
ouT if it is in an OUT cell,
REG if it is in a REG cell,
AVAIL if it is not in the computing region.
The following program is in the FORTRAN IV language and was

run on a CDC 6600.



A NANEA!

N0y

AN aNaANANA

DAY N

10

PROGRAM STRATRES

PROGRAM STRATRES SOLVES THE INFINITc STRATIFILU REStRVUIRK PROosLeM
WITH HYPERBOLIC TANGENT INITinL UCNoITY ANL TEMPERATURe wIsTRIbu=
TIONS

CUMMON XoXNsYsYNsFsDENSsUs VP sPNsRsRNsRUsAsBLlonZopss0asXlsLrTA»OIN
19I1CsT»TN»TO

DIMENSTION X(800) sXN{(800)sY(B00)sYN(BOO)}»F{BQ0)»DENSIBQO)

DIMENSION U(17916)sVI{16s17)9P (169161 sPN(16916)sR{10slo)sRN{Llosl0)
1RO (32),PO(16)

DIMENSION Al16916)sB1(16916)982(16916)983(16910)984(16916)
DIMENSION X](16916) 9ZETA(16916)95(169106)sN{16916)91CL10010)
DIMENSION T(16916)sTN{16916)sTO(1l0)

DIMENSION D(16916)sDRU16916)

NIMENSTION XP(2)sYP(2)sXA(B00)»YA(ECO)

INTEGER F

REAL MU

INITIAL PARAMCTER ScT UF

DX=a1
DY=a1
DT=405
TIME=0.0
TIMELIM=104C
ITIME=10
MU=e000114
ALPHA=,0000141
==498
MMM=ITIME
NI IS THE NUMBER OF CELLS WIDcds nNJ IS THE NUMperR UF Celis vckePy
NK 1S THE NUMBER UF PARTICLES» NOUT 1S THe [Tn COOURUINATL UF THc
LAST NOSLIP CELL ALONG THE ©OTTOM, NSUR 1S THE JTH COURDINATE vtk
THE LAST CELL CONTAINING PARTICLESs ND IS THE NUMBER OF RUWS COUN-
TAINING PARTICLES.
NI=16
NJ=16
NK=800
NOUT=NI=3
NSUR=NJ-3
ND=NSUR=-1
NIMNSI=NI-1
NJMNS1=NJ=1
NIPLS1=NI+1
NJPLS1=NJ+1
H=(NSUR=¢5)%#DY
WIDTH=(NI-2)%DX
NEPTH=(NJ=2)*DY
DEEP=ND*DY

INITIAL CELL SET UP

THE VARIABLE ARRAYS ARE PRESET TO Z&RO
N0 9 I=1sNIPLSI

PO 9 J=1NJ

UllsJdy=0a0

DC 10 I=1sNI

DO 10 J=1sNJPLS1

ViIsJ)=0a0

DO 11 I=1sNI

DO 11 J=1sNJ
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w

16

17

24

45

IC(IsJ)=0
D{IsJ)=0.0
DR(T+J)=040
RN(TsJ)=0e0
R(I+J)y=040
T(IsJ})=0.0
PilsJ)=0e0

DO 25 J=1sNJ
TO(J)1=0.0

PO{J}=N40

NN=2#NI

DO 23 J=1sNN
RO(J}=040
ICeseBND=19IN=2+0UT=34FULL=109SUR=11+EMP=12
DO 1 [=2sNIMNS1

DO 1 J=2sNSUR
[C(leJ)=10

FREE SURFACE IS THE EIGHTH ROW
DO 2 1=2sNIMNSI
ICtIsNI-2)=11
IC(IsNU=-1)=12
BOTTOM WALL IS NOSLIP WITH TWO QUT CELLS
PO 3 I=1uNI
[C(Tsl)=1
ICINOUTs1)=3
ICINOUT+141)=3

TOP WALL IS NOSLP
DO 4 I=1sNI
[CtTsNJY=1

LEFT wALL IS IN

DO 5 J=2sNJIMNS1
[Cl1ed)=2

RIGHT WALL IS NOSLP
DO 6 J=1sNJ

[CINT,J)=1
INITIAL DENSITY DISTRIBUTION
NN=ND*2

DO 12 L=1sNN

=025+« 5¥DY¥(L-1)
RO(L)=69985~e0015%TANH{Y=~e5*DEEP )/ TANH( « 5% VEEP)
DO 13 I=1sNIMNS]
DO 13 J=2sNSUR
R{TsJ)=e5#%(RO(2%J=-3)+RO(2%J=2))
DENSITY BOUNDARY CONDITIONS
DC 7 I[=2sNIMNSI
RIT9yNSUR+1)=R(IsNSUR)

INITIAL TEMPERATURE DISTRIBUTION
DO 16 J=29sNSUR
Y=,05+{J-2)%#DY
TO(J)I=15e0+106 0¥ TANH{Y~o5*¥DEEP )/ TANH{ « 5#DEEP)
PO 17 T=1sNIMNSI
DO 17 J=2sNSUR
T(lsy)=TO(Y)

INITIAL PRESSURE DISTRIBUTION
DO 24 J=29NSUR
Y=(J=2)%DY
COSH1=e5#(EXP (e 5#DEEP)+EXP (—e5%#DEEP) )
COSH2=a 5% (EXP( Y—e5#DEEP)+EXP{(~Y+45%DEEP) )
PO(J)=e9B8% (49985 %#(DEEP-Y)~e0015/TANH( o 5*DEEP ) *¥ALOG(COSH1/COSHZ2]) )
DO 18 I=1sNIMNS]



a¥aNaXa)

18

19

21
20

22

100

123

124

110

DO 18 J=2yNSUR
P{IyJ)=PO(J)

INITIAL PARTICLE SET UP

FeeeAVAIL=13IN=2,0UT=3sREG=4
KL=2%ND

DO 19 K=1sKL

FlK)=2

ZK =K

X (K)==e25%DX
Y(K)=(o5%2K=025)*DY
DENS (K)=RO(K)

XN(K)=0

YN(K)=0

CONTINUE

IN=1

KM=KL+1
KN=4% (NI =2) ¥ND+KL

DO 20 K=KMsKN

IK=K=KL=( IN=1)%2%(NI=2)
ZIK=1K

ZIN=IN

Fik) =4
X(K)=(s5%21K=0425)*DX
Y(K) = (o5%ZIN=0425)%DY
DENS (K)=RO{IN)

XN (K)=0

YN(K)=0
IF(IKeLTe2%(NI=2)120521
IN=IN+1

CONTINUE

KL=KN+1

DO 22 K=KL #NK

Fik) =1

X(K)=0

Y(K)=0

DENS(K1=0

XN(K)=0

YN(K)=0

CONTINUE

GO TO 600

M=0

MM=0

1TNUM=0

DO 123 I=23NIMNS1
R(I41)1=R{1s2)

DO 124 J=2 sNJMNS1
R(19J)=R(2sJ)
RINIsJ)=R(NI=1sJ)

DO 101 I=2sNI

DO 101 J=2 sNJMNS1
RL=¢5%(R(I=1sJ)+R(IsJ))
UR=e5% (U(T+19J)+U(19J))
UL=e5%(UGI=19)+UlIsJ))
VB=e5%(V(I=15J)+V(IsJ))
IF(VBsGEe0) 1109111
RUVB=e5% (R{IsJ=11+R(I=19J=1))%U{IsJ-11%VB
GO TO 115

RUVB=e5% (R{IsJ)I+R(I=19J) )% U(T9J)*VD



114
116

101

118
119

120

121
122

102

aNaKe!

103

a¥a¥a)

106
109

107

aNaYa)

108

VT=eS5#{V(I=19J+1)1+V(1sJ+1))
[F(VTeGEe0)1134114
RUVT=e5¥(R{TyJi+RII-19J) )1 #U{TsJ)*VT

GC TO 1156
RUVT=e5%(R{IsJ+1)1+R(I-15J+1) )% U1+ 041 )*VT
DUX2={U(I+19J)=2e0%¥Ut I sJ)1+U(I=1sJ))/(DX¥*DX)
DUY2=(U(LsJ+1)—2e0%¥U{ 1 +J)+U(IsJ=1))/(DY*DY)
XI(I’J)=RL*U(I'J)-DT*((R(I'J)*UR**Z'R(I-l'J)*UL**Z)/DX+(KUVT-RUVU)
1/DY-MU#({DUX2+DUY2))

DO 102 1=2sNIMNS1

DC 102 J=2sNJ

RB=e5*%(R{I1sJ=1)+R(IsJ))
VT=e5#{(V(IeoJ+1)+VIIsJ))
VB=e5# (VI »J=2)1+VIIsJ))
UR=e5%¥(U(I+1esJ)+UlI+19J=1)])
IF(URGE«0)1174118

RUVR=e5# (R{IsJ)+R{IsJ-1) ) *¥UR¥V(I1J)

GQ TO 119

RUVR=e 5% {R{I+19J)+R(I+19J=1) ) %UR¥V(I+1sJ)
UL=e5% (U1 J)+U(T»J-1))

IF{ULeGE«0) 1209121

RUVL=e 5% (RITI=19JI+R(I=19J=1) ) %UL*¥V(I=10J)
GO 7O 122
RUVL=e5%(R(TsJI+R{T1sJ=1))%UL*V (] +J)
DVX2={V{I+1+J)=2e0%V(1+J)+V(I=19J) )/ (DX*DX)
DVY2=(V(TsJ+1)=2e0%V (I sJ)+V(IsJ=1))/(DY*DY)
ZETA(I;J)=RB*V(I’J)-DT*((R(I’J)*VT**Z‘R(X.J-l)*VB**Z)/DY+(RUVR‘HUV
1L) /DX—MU%(DVX2+DVY2)-RB*G)

INITIAL OENSITY PREDICTION

DO 103 I=2sNIMNS1

DO 103 J=2sNJMNS1
RN(TsJ)=RUT»J)=DTH{o5%#(U(T»J)+UlI+19J) ¥ (RET+19J)=REIsJ)}I/DX+e5¥(V
TCI ) +VITsJ+1 1 I (RUT»J+11=R(1sJ)) /DY)

DENSITY BOUNDARY CONDITIONS

DO 109 1=2sNIMNS1
R(I1s1)=R(Is2)}
DO 107 J=2sNJIMNS1
R{1sJ)=R(2sJ)
RINI9»J)=R(NI=19J)

PRESSURE COEFFICIENTS

DO 112 I=2yNIMNS1

DO 112 J=29NJMNS1

IF(IC(IsJ)elLEs101108y112

RL=e5*({R(I=1sJ)+R(T5J)}

RR=e5#(R(I+19sJ1+R(19J))

RT=eB5%#(R(1sJ+1)}+R(19J))

RB=e5#(R(I9J-11+R{IsJ})) .

ACLeJ)=(UXT(Isd) /RL=XTCI+1aJ)/RRI/OX+(ZETACL» U} /RE=LETACLJ+1)/RT)
1/DY)/(DT*{1e0/RL+10/RR)/(DX*DX}+DT*{1e0/RT+10Q/RB)/(DY*VY))
B1(IsJ)={DT/{DX*¥DX¥RR) )/ (DT#(1e0/RL+1e0U/RR}I/{DX#DXI+DT*(1eQ/RT+160
1/RB) /7 (DY#DY))
B2(1eJ)=(DT/(DX#DX*¥RL) )/ (DT*(1e0/RL+1e0/RR)/(DXXDX}+DT*#{140/RT+140
1/RB)Y/IDY*DY) !
B3(19J)=(DT/{DY*DY*RT} )/ (DT#(1e0/RL+1e0/RR}/(DX¥DX)+DT#{1e0/RT+1e0



DN

C

C

C

112

(e
o
D

202

203

204

48

1/RRY/(DY*¥DY))
HA(IoJE:{CT/(HvﬂDY*RR))/(DT*(l-O/RL+loO/RH)/(UX*DX)+DT*(1-0/RT+100

1/RBY /7 (DY*DY )
CONTINUE

PRESSURE BOUNDARY CONDITIONS

L=1

LL=1

1F=1

1FF=1

LFFT WALL IS IN

CONTINUE

1=2

NO 201 J=2 s NJMNS]

P{l=19J)=RP0C(I)

I[=NI

DO 202 J=2sNJMNS1

RIGHT WALL IS NOSLIP

USQL1=e25% (UlTs)+UGT+19J) ) *¥2

USQ2=e25% (UlT=19J)+UlT9J))#%*2

UV172e25% (U(1sJd+13+U{ToJd) ) (VIIsJ+1)+V(I=19J+11)}
UV7=925*(U(I'J)+U(I'J‘I))*(V(I'J)+V(I-1'J))
R12035*(R(I“laJ)+R(I'J)+R(1‘1'J+1)+R(1'J+1))
R22e25%XIR(I=1sJ)+R(I4JI+R(I-1sJ=1)1+R(1s»J-1))
DUX2=(U{T+1sJ)=2e0%U(T s J)+ULI=19J) )/ (DX*¥DX)
DUY2=(U(TsJ411-2e0%UL T sJ)+UlT9sJ=1))/7(DY*DY)
DPX=DX* ((R{1sJ)*USW1-R{I=1,J)%USW2)/DX+(R1*¥UYV1I-R2%UV2})/LY= MU¥* (LUX
12+DUY2) )

P{1sJ)=P({]~1sJ)=DPX

TOP WALL IS NOSLIP

J=NJ

DO 203 I=2sNIMNS1

VSQ1=a25% (VL sJi4+V{laJ+1))#*2
V5QR2=e25% (VI 3J)+V (T gJ=1))¥¥2

UV1ze25% (U(T+1sJ3+UlT+1aJ=10)0%(VII+10J)+VIIsJ))
UV2=e25% (ULTsJ)+UlT =111 (V(IsN+V(I=1+J))
R1ze25#(R{I+1sJ)+R(IsJI+R(I+19J=1)+R(I+19sJ-1))
R2=¢25% (R(I=13J)+R(IyJI+R(I=19J-11+R(1sJ=-1))
DVX2=(VI{I+1sJ1=20%V(1eJ)4+VII—19sJ))/ (DX*DX)
DVY2=(V(IsJ+11~2.0%V (1 sJ)+VI(1sJ=1))/(DY*DY)
DPY=DY*( (RIT+JI¥VSULI=R{14J=1)%VSU2) /DY+(RI*¥UVI=R2*¥UV2)/DX= MU¥(UVX
124NDVY2 )= 5% (R{TsJ)+R(T9J-1))*G)
P(l1yJ)=P{]l¢J=1)-DPY

ROTTOM WALL IS NOSLIP WITH TwO QUT CELLS

J=2

DO 204 1=2sNIMNS1

VSEQ1=e25% (VT o) +V I oJ+1))#¥2

VSQ2=e25% (VII3J)4V (] 9J-1))%¥2

UVT=e28% (U(T+19J)+UlT+1sJ=1)1*¥{(VII+19J}+V(IsJ))
UV2=e28% (U TsJ)+UTTs =11 1% (VIIaJ)+VII-19J))
R1ze25%{RII+19J)+R(I9JI+R{I+19J-1)+R(I+19J-1))
R2=a25%(RII=1sJI+R(IsJI+R(I-19J=1}+R(1yJ=1))
DVX2=(V(I+19J)=20%VIiLaJ)+VII=19J})/(DX¥*DX)
DVY2= (VT aJ+1)=2e0%V (I 9J)4V(IsJ=1))/(DYH*DY)
DPY=DY% ((R(IFsJ)#¥VSGI-R(19J=1)1%VSUW2)/DY+(RI*¥UVI=R2¥UV2) /DX~ MU* (LVX
124DVY2) = 5% (R(19J)I+R{ T +J=1))%QG)
P{lsJ-11=P(1sJ1+0PY

PRESSURE BOUNDARY CONDITIONS FOR THE OuT CELLS
I1=NOUT



R W

ROVE =g BN L =T o 0080 321 %0y (1=192)4V(1s2
RUVH <8R Sl i L e 2RIV T a2V +VIT+192
PiTel)sPile 40y X% {RUVR-RUVL)

TaNOUT !
RUVLﬁwﬁ*R{Eu;af;*U(I§2)*(V(}-l-Z)fV(Iyz))
RUVR =S¥ RIT e 232U T +1 5255 (VT3 2)+V (1 +182)}
PilolreP{s2150Y / DX*{RUVR~RUVL)

FREE SURFACE PRESSURE BOUNDARY CUNDIT.ONS
SQR=T L WRIF L2 L0

)}
1)

DO 20" 22 o NIrMNG
DO 0N tmD g NS
B 2065205
906 1. 207208
207 {419 J16FG1212094210
2C9

BRI |
210 IFICTiI=10Jd)ebQ:12)212e213
212 PY==30R
PY=80R
Goovp 21
713 P uile
DY=1:0
GO TO 21l
208 IFLICtTI+19J0aEQe12)21449215
214 TFIICiTod=13oF0e1212160217
216 PX =48GR
PY==SQR
GO TO 211
217 PX=leD
PY=0eN
GO TO 211
219 IFCICHI-1s0).EQel12)218+219
218 IF{ICITaJ=1)0ER-1212209221
220 PX==50R
PY==5QR
50 7O 211
221 PX==1,0
PY=(3eD
GO O 211
219 IF(IC T ad=1):EGa121222+205
222 PX=0.0
PY==1,0
211 PUIsJ) =2, 0¥MUR (PXHPX*¥(ULTI+19J)=U(TsJ))/DX+PX¥PY* (4258 (U([+19J+1)+U
I(Tsd+1 =0T ed=1)-U(I+19J=1))/0Y+e25%(V(I+1sJ+1)+V( I+19J)=VI(I=19J+1
21=V{I=19JY ) /DX +PYAPY# (V] +sJ+1)=VIIsJ)})/DY)
205 CONTINUE

PRESSURE [TERATION
i
DO 223 1=135N!
DO 223 J=19NJ
223 PN(leJ)=P[ist}
DO 224 [=2sNIMNSL
DO 224 J=2 yNJMNS51
IFLIC{T e ) ebE0e101225e224
225 PNIToJ1=81 (1 i#PN{I+T1sJ)+B2 (1 s ) ¥PN(LI~19J)+53(1sJ) *PN(IsJ+1)+840 1
s JI¥PN{T 9 )=11+AC T3 )
P24 CONTIMUE
TF{MefQe0)275:227

o



™y

]

{ CRUDE PRESSURE
226 IF{lLe D IF¥L 1228
228 IF=1F+1

MM =}

S0 RG

DO 234 i
TFLICTILs ) 2103231230

237 DP=aABSFLIPNI{L4:=P{l:J} )/ (ROIsJIHG*OLPTH) )
TFADP.LT.000012304229

230 CONTINGE
MM=1
WRITE(E132373)
233 FORMATISK,17RHCRUDE TEST PASSED)
WRITE{SH19234) L
234 FORMAT({SXoaHl = 13}
S50 YO 2350
229 FlLaeT230012320230
232 Lsiwl
235 DO 237 =1 NI
D0 237 u=lsNlJ
237 P{IyJr PNl
IR {mM=-1)200s248331
248 MM=Q
GO TO 331
- FINE PRESSURE TE
227 IF(LLaFQoIFF#*13)
238 IFF=1FF+1
MM =0
DO 240 1=2¢NIMNSI
DO 240 J=2sNJMNS]
TFLIC(IeJ)eEQel0i241 5240
241 DP=ABSF ({PN{IsJ}=P(IsJ))/{REI2JI*GHDEPTH) )
IFIDP.l.Tee00N212404+239
240 CONTINGE
WM = 7
WRITE(619243)
24%  FORMAT(SXs16HFINE TEST PASSED)
WRITE(ST s264y LL
264  FORMAT{SXsSHLL = 513}
239 IFCLL LT eB5001242:245
242 LiL=LL+1
GO TO 235
236 WRITE{&1:246)
246 FORMAT(5X$334AT0O0 MANY ITERATIONS IN CRUDE TEST)
STOP
245 WRITE{814247)
247  FORMAT(S5X32HTOO MANY ITERATIONS IN FINE TeST)
STOP

st
2384239

NEW VELOCITY Filkiu

231 DO 200 [=1sN[PL%d
DO 300 J=1sNJ
200 ULT3d1=060
DO 301 I=1sNI
DO 301 J=1sNJPLS]
301 VIIsJ)=0eC
NG 302 I=2sNIMNS]
DO 202 J=2 ¢NJIMNS]
[FIICI o Jlel Follildhle302



350
305

304

ey

3d&

07

304

309

334

332

34713

4
314

SR

ERN:!
BB

ISR RS
il Tedt

R{Teld}

51

055302
e il Il ) IHDTHAP (I =1sJ)/RULI-10J)—P(1sJ)/

J=tedier i,

[ERERES

CONT T pin

O Ang

Y/Ri{ L.

T » sl b e 304
[odn 10,0 & 10135 ,304
E2LOKFETA T URET s )V HRETad= 1) 1 +DT# (P (Lo d=1)/RETed=1)=PlLsJ

CITY BOdMoARyY TONDITIONS

BT L0
DO 309
VITe1)

UETa1 =

TOP WA
DO 31z
VITaN}
QLN

e

GO TH
HINDUT
HINOUT
NS T
VINQUY

VANGUT

PRI LR ACE

Ny u T
IR P
[

Tf(ﬁW

*
RIS
1
¢ '
Y en
Ty CONDITIONS FOR THE TwO OUT CkLLS

P PRI 3 II+RUTsJI=151+DTH¥(P(Lod~1)/R{1ad=1)=Pl1sJ

A4

R

tlald }

A YT {NOUTE 25 2)

s P VINDUT 21 4DY /DX EUINOUT+1 1) =UINOUT 1))

IT+152)+0DY/DX#CUINOQUT+291)~UINOQUT+191))
SCITY BOUNDARY CONDITIONS

v

i 3 L3
TEQTo 4 15+318
(RN K S IES RN 17318
Viisderi= AELUTT+Ledi=UlTsd))
el s 4]
[ETATIE S B B
i o= 082804111 3190320
VIilse 14

("’f [~Flm s

TheV Ll ey /DRy Cielo iU o))

N ISV I OV



N0y

[

GO0 TO 2172

320 VIl div=vit,
IR R RN
GOOYR

116 TFAIo T+, ) - B0 11323212322
321 S O T O AT ORI IS NPV SO IR B e DA I SR
3234 Utl#le id=yglp bt

Y20 SRR EEAVE IS S E O A |
GO 1O a1
04 ULTRT U DR/ DY R VT3 1=V T )

GOOTO 3y
227 TEQICCI- e dtatia1i13259326
B TR OIod e tnit el Gae? 113274328
’127 [’(I;}}:’Uij:—} g3
ViLydreVila il

) ;
GO TG YR

A28 0Tt ) e /ORI r )=V ed))
GO TG 313

326 FFLIC{T e d=1)siWati}A2%4313

170 W{Ta iVl fe iy nNXR Ui+l )=l sJ))

312 CONTINDY

PARTICL MOVERMENT

DO 400N K=1 sNk
IF(F{KYaE0e1 100601

401 T=2X{K)/DX+2
J2Y (K} /DY+2
XCl=al[~1aB ) %0K
YCJ={l~1e5)¥DY
FX=X{K)Y/DX+2a0=1
FY=sY{K)/DY4+Z o0
JFIF(K)eEQe?i4a53:403

45 UOUT =54 {01+ ¢ 4UTTeJY)
XN (R Y =X {0+t iy
GO TO a%4

4013 FAFY 1 Eaantald7eelB

a7 ERENES]
GO TO 409

408 )=l

409 YCJ A= (=1 B wDY
SX=(XCI=X{K}Y /DX
SY={YCJJ=Y R}/ DY+:5
W1=ABSF({aS=3{}#(e5=5Y)})
W2zABSF{{ e 540X 1% Lebh=5Y))
WRA=ARGF{ (o« 5+S5Xj#{a5+5Y))
WL=ABSF({ (+5~SXY ¥ {a5+SY))
UK=WI#U I+ o 24+ 1+ W ¥U I T o JJ+ 1) +W3RU (L s JII+WLHU([+19JJ)
XN (K Y=aX (K strsnt
TF(F ) aFQaltnsetsd

452 YN(K D) =Y (K
GO TO 400

454 IF‘(FX&LI“Q-“D)‘—&IO@(‘ll

410 1l=i-1
GO TC 412

411 I1T1=]

412 XCIT=(¥1l-leb)xDX
SX=f{XCTI=-X{(K)Y/DX+e5
QY =iV =Y (KA
WI=ARSE ({302 X1¥eh~8Y))




419
420
421

422

418

424

425
426

423

457

427

4z28

429

430
431

53

' s [P i [
[ N 1 Yo
[ [ ) ) Yoi
AR A S Pl vt il edr il ey iliedlewasViLi+leu)
VNIR D Py

COnT I
WERITE (6T sl 2}

FORMAT(HXy immbdm TioL & wuviu)
PEMSTTY CALTUL T

POCRETG L] e

Y Lba b lelid
S{lodt=0e0

N{Tsd=0

G 415 Kl aNK

PP Y e EQe T Tl gl Y
[IES SN RE AR AP &
JEYNLK S/ 0Y 2
N{Tedi»N{Tedr+i

HE SR IGICN I BEIRE ) S MR B
CONT THLE

REFLAGGING THE CELLS
DO 18 Ta2ehimnig

50 Aal8 s i
TFAN{T o) e PO
PCiledi=10
GO TO 418
IF(N(70J+1)0NEQO'3(.)[(-N(IwJ““]_)oNE‘.-C‘.OI’(ON(‘+1)J)0NEQOOURQI\(1'1'.})0‘\(;0
1016236422

fC(ledy=11

G0 7O 418

1C(YsJdi=12

CONT INUE

=]

DO 423 =2 NIMHSI

0O 423 J=29MIMNS]

TF{N{T o e FQeN)aibon?2n

RiTsd¥=GCe0

GO TO 4273

TFIG{T e I/ NIT s JlablUWaRETJIIB239426

RUTedi=Slio g /RUT )

M=0

CONTINUE

DO 458 I=2eNIMNS]

NO 458 J=2 sNJnNSL

TF{IC(TsJ)aEQel11459,4458

R{TaJ)=R{1sJ~-11

CONTINUE

IF{MMaiEQe2)14324451

TTRUM= { TNUM+ ]

[F{MeEQe (1427430

TFITTNUMLSGE LU} 4289106

M=l

WRITE(61+429)

FORMAT{SX« 20HOSCILLATING PARTICLED

GO TO 106

WRITE(S61 5431}

FORMAT({5X s 1 THNO DENSITY CHANGE)

G0 TO 106




[aNAS]

432
455
434

436

438

437
439
440
441
456
443
449
457
442
444

450
445

433

446

448

447

NN

501
500

()]

502

]

REFLAGGING OF PARTICLES

DO 433 K=1sNK
IF(F(K)eEQel)4334455
IF(F{K)sEQa2)4345440

I=XN({K)/DX+2

J=YN(K)/DY+2

IF(1eaGEa2)4369433

F(K)=4

DO 437 KK=19NK
TF({F(KK)eEQe1)438+437

FIKK}=2

XN{KK)=XN{K)—s5%DX

YN{KK)=YN{K)

DENS(KK)=DENS(K)

GO TO 433

CONTINUE

WRITE(61+439)

FORMAT(5Xs16HOUT OF PARTICLES)
STOP

I=XN{K)/DX+2

J=YN(K)/DY+2

IF(F{K)sEQe3)441443
IF(l1eEQaNI—=1e0ReI+sEQeNI-2)4560445
IF(JeEQel) 4435445
IF(F(K)sEQe&l)44949433
IF{]1eEQeNI=14a0RsI1e¢EQaeNI~=2)4571450
IF(JeEQel) 4425450

F{K)=3

WRITE(619444) DENS(K)

FORMAT(5Xs 19HPARTICLE OF DENSITYsF184893H0OUT)
GO TO 433 '
IF(IoGToNIMNSloORoIoLTOZOOROJOGTONJMNSIOQROJOLTOZ)4450433
F{K)=1

X{K)=0

Y{K)=0

DENS(K}=0.

XN(K)=0

YN{K)=0

CONTINUE

WRITE(619446)
FORMAT{5Xs19HPARTICLES REFLAGGED)
DO 447 K=1sNK
IF(F(K)eEQel)44T 448

X{K)=XN({K)

Y{K)=YN(K)

CONTINUE

TEMPERATURE BOUNDARY CONDITIONS

DO 500 I=1sNI

DO 500 J=1sNJ
IF(I1C(IsJ)eEQa12)5015500
T(I+J)=040

CONT INUE

BOTYOM WALL IS ADIABATIC
DO.502 1=2sNIMNS1
T(Is1)=T(142)

TOP WALL IS ADIABATIC

54



[ Na I

[a¥aNa}

55

NO 503 [=2sNIMNS1
503 T(IWNJI=T(IsNJ=-1)
RIGHT WALL IS ADIABATIC
DO 504 J=29sNIMNS1
504 TINIsJY=T(NI-14J)
LEFT WALL IS CONSTANT PROFILE
DO 505 J=2sNSUR
505 T(1sJ)=TO(J)
FREE SURFACE IS ADIABATIC
DO 506 I=2sNIMNS1
DO 506 J=2sNJIJMNS]1
IF(IC(IIJ) eEQe11)5074506
507 IF(IC{IsJ+1)EQe10)5084+509
508 TH{IsJ)=T(IlsJ+1)
509 IF(ICII+19J)eEQal0)5109511
510 T lsD)=T{I+1+J)
511 IF(IC(I=1+sJ)eEQe10)512+513
512 T(IsJ)=T(I=1+J)
513 IF(IC(IsJ-1)eEQe10)514+506
514 T(lseJ)=T(IyJ-1)
506 CONTINUE

TEMPERATURE CALCULATION

DO 515 [=2sNIMNSI
DO 515 J=23NJMNS]1
IF(IC(IsJ)eEQel0)5169515
516 TL=e5*(T(I=19J)+T(1sJ))
TR=eS5*¥(T(I+19J)+T(IsJ))
TT=e5#(T(TsJ+1)1+T(IsJ))
TB=e5*(T{IsJ=1)+T(IsJ))
DTX2=(T(I+1sJ)=2%#T (T4 J)+T(I-19J} )}/ (DX*DX)
DTY2=(T{IeJ+1)=2¥T (9 J)+T(1sJ=1))/(DY*DY)
TNCT o) =TT eI +DTHL(UIT s J)*TL-UCT+1sJ)*¥TRI/DX+(VIIoJ)I*¥TB=V(IsJ+1 )%
1TT)/DY+ALPHA¥MU/R(T» ) ¥(DTX2+DTY2))
515 CONTINUE
DO 517 I=2sNIMNSI1
DO 517 J=2sNJMNS1
IF(IC(TIsJ)eEQe1015184517
518 T(IsJ)=TNI(IyJ)
517 CONTINUE

OUTPUT ROUTINES

600 CONTINUE
IF (MMMJEQe ITIME) 6014607
602  MMM=MMM+1
GO TO 603
601 WRITE(611604)
604  FORMAT(1H1)
WRITE(615605) TIME
605 FORMAT(5Xs6HTIME =4F6e34///)
DO 624 I=14NI
DO 624 J=1sNJ
624 D(IsJ)=(ULT+10J)=ULTsd) ) /DX+(VIIsJ+1)=V (1)) /0Y
PO 629 1=2sNI
DO 629 J=1sNJ
629 DR(IsJI=R(IsJI-RN(T4J)
DO 703 I=1sNI
PO 703 J=1sNJ



793
704

603

623

WRITE(E1L»704) TsJaIC(TIod)sUlTsJ)sVIIsJ)sR{TIsJ)sPUIsJ)sT{IsJ)sD(Isy
1)1sDRI(T9J)

FORMAT(5X931897F1146)

MMM= 1

TIME=TIME+DT
IF(TIME«LESTIMELIM) 1009623
CALL TVEND

STOP

END



