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Nomenclature 

Independent Variables 

x = horizontal distance 

y = vertical distance 

t = time 

Fluid Variables 

w = u i+ v j= velocity 

p = density 

P = pressure 

T = temperature 

S = entropy per unit mass 

Fluid Parameters 

p = viscosity 

k = thermal conductivity 

C = specific heat per unit mass at constant volume 
v 

a = k/C 
v 

Forces and Stresses Acting on the Fluid 

F = X i + Y j = external force per unit volume 

H = stress tensor 

o- 
n 

= normal component of the stress at the surface 

o- = tangential component of the stress at the surface 
m 



Numerical Parameters 

bx = mesh width in the x direction 

by = mesh width in the IT direction 

bt = time increment 

Auxiliary Variables in the Numerical Solution 

= variable used in the u and P calculation 

= variable used in the v and P calculation 

B(1-4) = pressure coefficients in the pressure relaxation 

A = source term in the pressure relaxation 

Subscripts 

x = x- component of a two dimensional quantity 

y = y- component of a two dimensional quantity 

i = numerical value at x = ibx 

j = numerical value at y = jby 

k = numerical value associated with the kth particle 

Superscripts 

n = numerical value in the nth time cycle 

= indicates normalized independent variable 



A PREDICTOR - CORRECTOR METHOD FOR THE TRANSIENT 
MOTION OF A NONHOMOGENEOUS INCOMPRESSIBLE, 

VISCOUS FLUID 

I. INTRODUCTION 

Fluid flow is generally described using one of the following 

view -points. 

Eulerian: Attention can be focused on some point in space and 

the changes in the fluid can be described as functions of 

time at this point. 

Lagrangian: Attention can be focused on an infinitesimal fluid 

element and the changes in this fluid element can be ex- 

pressed as functions of time. 

Although the latter method of description bears the name of J. L. La- 

grange both were developed by Leonhard Euler. Major analytical 

works in fluid dynamics use one or both of these viewpoints; corres- 

pondingly numerical techniques have developed along these lines. 

The early papers on numerical techniques for fluid problems 

(Harlow, 1955; Evans and Harlow, 1957) used the Lagrangian view- 

point. Instead of considering every infinitesimal fluid element, at- 

tention was focused on a finite number of these elements. By mark- 

ing the elements being considered, the fluid was conveniently repre- 

sented by an array of particles. This representation by particles is 

the primary feature of all Lagrangian numerical techniques; the fluid 
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properties such as density and velocity are localized to a finite num- 

ber of particles which move with the fluid. 

Later (Langley, 1959; Welch et al. , 1966) an Eulerian technique was 

developed for fluid problems. Instead of considering the fluid at all 

spatial points, attention was focused at a finite number of fixed points. 

Eulerian numerical techniques are characterized by finding the values 

of the fluid variables at the mesh points of a fixed grid. 

It was shown by Welch et al. (1966) that a system containing two 

discrete fluids could be handled using a mixed Eulerian - Lagrangian 

scheme. In this scheme the velocity and pressure were considered 

as Eulerian variables and found at the mesh points of a fixed grid. 

The density was considered a Lagrangian variable and was localized 

to fluid particles. With the addition of the Eulerian variable temper- 

ature this same mixed Eulerian- Lagrangian scheme is suited to the 

problem of this thesis: finding the transient motion of a nonhomogen- 

eous fluid with continuous density and temperature profiles. 
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II. THE SYSTEM OF EQUATIONS 

In this chapter the physical laws that govern the motion of a 

fluid will be presented. The approximations for an incompressible 

fluid undergoing an adiabatic change will then be derived. For nota- 

tional and computational convenience it is assumed that the motion is 

two dimensional so that the independent variables will be x, y, and t. 

The Physical Laws 

To describe completely the motion of a Newtonian fluid it is nec- 

essary to determine the six unknowns: 

velocity, w= u i + v j; 

density, p; 

pressure, P; 

viscosity, p; 

temperature, T; and 

entropy per unit mass, S. 

Thus, six equations relating these six unknowns are needed. These 

equations are mathematical expression of the following physical laws: 

conservation of mass, 

conservation of momentum, 

first law of thermodynamics, 



second law of thermodynamics, 

law of liquid viscosity, and 

equation of state. 

These laws are given mathematical formulation by: 

1. The continuity equation (Schlichting, 1960), 

ap 
at + a(pu) + ay (Pv) - 0; 

2. The Navier- Stokes equation (Welch et al. , 1966), 

Dw - - - 1 
p Dt = pF - VP + 2(v.µv)w + vx(uvxw), 

(Z. 1) 

(2. 2) 
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where F = X i + Y j is the external force per unit volume acting on 

the fluid; 

3. The first law of thermodynamics (Schlichting, 1960), 

pCv Dt + P( v-w) óx (k8x ) + 8y(k8y ) + 
(2.3) 

where C 
v 

is the specific heat per unit mass at constant volume, 

k is the thermal conductivity, and cf) is the dissipation expressed 

as 

1The material derivative Dt is the time derivative following 

a fluid particle, namely D = at + (w. V )il 

DT 
= 

at 



au 2 av 2 av au 2 2 au av 2 
) = 2[(ax) +(a) ] +(aX+a)3(aXay) ; 

4. The second law of thermodynamics (Streeter, 1961), 

T Dt Ps) = ax (-87T ) + ay (-ay) + 
pc1), 

5. The liquid viscosity equation (Bird, 1962), 

A - BT 
N -V(T)e 

(2. 4) 

(2. 5) 
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where V(T) is the volume occupied by a mole of liquid at tempera- 

ture T and A and B are empirically determined constants for 

the liquid. 

6. The equation of state is a relation between P, p, and T. In 

general for a liquid it must be determined empirically.. For an ideal 

gas it has the familiar form 

p = pRT (2.6) 

where R is the ideal gas constant. 

The Approximations 

The general incompressibility equation (Yih, 1965) is 
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Dt 0 (2. 7) 

This can be expressed using the definition of the material derivative 

as 

a +uá + vá =o. 
Y 

Similarly, Equation (2.1) can be expanded to 

u+v +p(au+av) 
at ax ay ax ay 

The preceding two equations may be subtracted and the difference di- 

vided by p (which never vanishes for a real fluid) to obtain an equa- 

tion which is generally called the continuity equation for incompres- 

sible fluids. 

au av 
ax ay = v.w o 

Y 
(2. 8) 

For an incompressible fluid, temperature variations are small 

enough that the viscosity, N, and the thermal conductivity, k, 

may be considered constant (Schlichting, 1960). The assumption of 

constant p allows the following simplification of the last two terms 

of Equation (2. 2): 

2(v.N7)w + vx(NVxw) = 2NV2w + µ[ v(vw) = v2 w] 

2 - 
= N v w+ N v(vw). 

= 

=0. 

- 
+ 
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This can be further simplified for incompressible fluids (vw = 0) to 

2(vpv )w + vx(pvxw) _ p v2 w. 

Thus, the assumptions of incompressibility and constant viscosity 

reduce the Navier- Stokes equation to 

pDt=pF- vP+pv2w. 

For the finite differencing of the above equation which takes 

place in the next chapter, it is convenient to use the following vector 

and tensor identities: 

V(k1) _ (vk). a + k( v.a ) 

v(a b) = )b + (va)b 

to rewrite the first term: 

P Dt P at + P(w'v)w 

= át (P w) + v(P w w). 

Thus, the final form for the Navier- Stokes equation becomes 

as ( p w ) + v' ( p w w) = p F - v P + p v "' w. 

The assumption that the thermal conductivity is constant 

(2. 9) 

Dw 



reduces the first law of thermodynamics (2. 3) to 

PCv Dt + P(v.w) = k v2T + N cf). 

The incompressibility assumption reduces it further to 

DT 
PCv Dt - Kv2T + µcl). 

In the next chapter an algorithm will be developed to solve the 

system of partial differential equations now under consideration. 

One of the conditions for the accuracy of this algorithm will be that 

IwI « Cs, Cs being the local sound speed. When Iw1 « Cs 

it is shown by Welch et al. (1966) that pcp « kV 
2T. Thus, the 

first law of thermodynamics assumes its final form: 

DT 
PCv Dt = kv2T. 
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(2.10) 

An incompressible fluid undergoing an adiabatic motion has con- 

stant entropy. For an incompressible fluid the incompressibility 

equation (2. 6) replaces the equation of state. Thus, the assumptions 

of incompressibility, adiabaticity, constant viscosity, and constant 

thermal conductivity reduce the original six equations in six unknowns 

(Equations (2.1) - (2. 6)) to four equations in four unknowns: 

s 



Dt 0' 

p .w = 0, 

ót (p w) + p (p w w) = pl"; - VP + µ V2 w 

DT k 
p 2T 

Dt pC 
v 
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(Z. 7) 

(2.8) 

(2. 9) 

(2.10) 

In the sequel these four partial differential equations will be 

solved according to the boundary conditions derived below. 

Scaling the Equations 

When solving equations numerically, it is frequently desirable 

that the variables have magnitudes less than one. The equations 

(2. 7) - (2.10) can be scaled by the tranformation of variables 

x = Lx' 

y = Ly' 

t = ti 
W 

w=Ww' 

= Rp' 

P= RW2P' 

T = AT' 

The incompressibility equation (2. 7) becomes 



Or, 

WR ap' ap' a 
L (at' +u +v ey ) = O. 

D' 
= O. 

?/ 
Dt' p 

The continuity equation (2. 8) becomes 

Thus, 

W au' av' 
L (ax'+ay' ) = O. 
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(2.11) 

v'.w' = 0. (2.12) 

Similarly, the Navier- Stokes equation becomes 

2 2 RW 
[ 

a (p'w')+ v'(p'w'w') = p'RF RW2 W v,2 W, 
L a t' L 

L2 

Multiplying through by L /RW2 and setting F' = L F /W2 and 

P' = P /LRW gives 

aá, (P'w')+ v '.(p'w'w') - p' F' v'P'+P'v'2w'. 

Finally, the temperature equation is expressed as 

atT + (w' 
v1)T1 

av 2T° P 

2 

Dt' at' + (wv'), and 

v' =aX, +ay, . 

(2.13) 

(2. 14) 

_ + 

. a 

a 

Y 

Ox' 

_ 
VP' 
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where a' = k /RLOWC 
v 

. Thus the equations to be solved have the 

same form before and after scaling. Hereafter, it will be assumed 

that the equations have been scaled appropriately and the primes on 

Equations (2. 11) - (2. 14) will be dropped. 

The Boundary Conditions 

There are two basic types of boundary conditions to consider: 

1. Conditions occurring at a material boundary, 

2. Conditions occurring at a free surface. 

A boundary of the fluid is a material boundary if no fluid can pass 

through it. A free surface separates the fluid from a vacuum. 

The system of partial differential equations is solved subject to 

these boundary conditions: 

1. At a material boundary the normal and tangential compon- 

ents of the velocity vanish. The normal derivative of the 

temperature vanishes. 

Z. At a free surface the normal and tangential components of 

the stress vanish. The normal derivative of the tempera- 

ture vanishes. 

Let s(x, y, t) = 0 be the entire fluid surface. In general s 

may contain both material boundaries and free surfaces. The unit 

vector normal to s is defined 



n = 
vs 

Iv s 
I 

Thus, we may express n as 

as- as-- 
axl +á j 

Y 

(ax)2+()2 
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n = n 
x 

i+ nyj (2.15) 

as as 
ax where nx 

s( and n = v y !Vs' 

The unit vector tangent to s is any vector of unit length which is a 

solution to n . m = O. In order that n and m form a right hand- 

ed coordinate system choose 

m= - n i+nxj. (2.16) 
Y 

The velocity w can be expressed 

-- - - -- - - - 
W = (wn)n + (wm)m 

The normal derivative of T is 

aT vT. 
an 

Thus, boundary condition 1 is expressed in equations as: 

w.n = 0, (2.17) 

. 
--I. 

. 

y 

= 



w.m = 0, 

vT = O. 

The stress o- at a point on a free surface with normal n is 

given by (Yuan, 1967) 

6 = lln. 

Here II is the stress tensor 

II = 

T i i T i j xx xy 

Tyx j i Tyy J j 

Therefore, o- is given by 

Cr _ 

T i i xx 

T j yx 

T i j 
xy 

Tyy 

n i 
x 

ny 

_ (n T +n T ) i + (n T +n T ) j. 
x xx y xy x yx y yy 

Since Equations (2.15) and (2.16) can be solved for i and j to 

yield 

_-- - _-- 
i =n n - n m, 

x y 

j = n + n x m, 
v 

o- can be expressed, 

i j 

13 

(2.18) 

(2.19) 

yx yy 

1 
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o - _ (n T +n T )(n n - n m) + (n T +n T )(n n+n m) 
x xx y xy x y x yx y yy y x 

s etting 

= o- 
n 

n + a- m m 

o- = (n 2T +n n T +n n T +n 2T ) 
n x xx x y xy x y yx y yy 

o- = ( -n n T -n 2T +n 2T +n n T ) . m x y xx y xy x yx x y yy 

In general for a Newtonian fluid (Schlichting, 1960), 

II = 

-P 0` 

0 -P 
+p 

au au 
ax ay 

av av J 

ax ay 

+N 

áua av 
ax ax 

au ay 
ay ay 

s Dw 

For an incompressible fluid the last bracketed term vanishes. 

Substituting the components for H into the equation for o-n, 

z au au av 2 Dv 
vn = nx (-P+2p ax ) 

+ ¿n n µ ( + aX ) + n (-P+2p 
e 

) . 

Y Y Y Y 

Using the condition that n 2 
+ n 

2 
= 1, this may be rewritten as 

x y 

n = -P + 2nx2 
8x + 2nxn N (-+-) X v + 2n 

2N 

av . 

Y Y Y Y 

Similarly, if the components of U are substituted into the equation 

for o- the result is 
m 

2 

3N 

0 

o V 
I 

j 

x 

x 



av au 2- au av vm = ( 2nxnyN ay ax ) 
+ (n 

nx - 
ny )N 

( ay + ax ) 
. 

Thus, boundary condition 2 is expressed by setting a 
n 

and 

o- equal to zero. 
m 

2p au av 2 av P= 2n µ 
ax + 2nnyµ ( )+ 2n N ay 

2n n av au 2- 2 au av = O. 
x y( ay ax ) ( x y)( ay ax ) 
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(2. 20) 

(2.21) 

At the free surface the normal derivative of the temperature vanishes 

so Equation (2. 19) must also be satisfied. 

In addition to boundary conditions 1 and 2 the following initial 

conditions must be satisfied: 

1. The initial density field must be given. 

2. The initial temperature field must be given. 

2 

au 
ay ax x Y Y 

- - 
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III. THE NUMERICAL METHOD 

The general method of solution of the system of partial differ- 

ential equations (2. 11) - (2. 14) will be to represent the continuous 

variables x, y, and t as multiples of óx, by, and ót. Then 

the partial differential equations can be approximated by finite differ- 

ence equations and solved numerically for w, p, P, and T at 

x = ióx, y = jäy, and t = nót for integer values of i, j, and n. 

The Difference Equations 

It was found by Welch et al. (1966) that some differencing 

schemes were more accurate than others. The following scheme re- 

portedly gives the most accurate solution of the Navier- Stokes equa- 

tion (2.13). The fluid is covered by a double Eulerian grid as in Fig- 

ure 1. The variables P, p, and T take values at the mesh 

points of the grid represented by the dashed lines. The variables 

u and v are found at the intersection of the dashed and solid grids. 

The rectangular regions marked off by the solid grid are called cells. 

Thus, the variables p, P, and T are defined at the center of a 

cell while u is defined at the sides and v is defined at the top 

and bottom of each cell. 



J 

J-z 

j-1 

A 

i- 1 i-z i+z i+1 

by 

Figure 1. The double Eulerian mesh with the locations of the 
fluid variables indicated by, : p, P, T; : u; : v. 

If x = ibx, y = jby, and t = nbt then it is possible to re- 

present the variables as functions of the integers i, j, and n. 

Thus, in Figure 1 for t = nbt 

n 
p(x, y, t) = piJ 

P(x, y, t) = P. 
1J 

n 
u(x, y, t) = u. 1. 

n v(x, y, t) = v.. 1J-z 

3/ 
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To express the partial differential equations in finite difference 

form, the following difference operators are used 

3The subscript notation used in this paper is the same as Welch 
et al. (1966). The comma between the first and second subscript is 
deleted. 

T 

- _ _ - 

bx 

I - 

I 

- 



a i-}-J 1)1 
2J 

ax 6x 

ay 

(1).. 1- w. . 1 

1J+z 1J Z 

by 

or 

or 

cl)i+ 
11 ij 

bx 

rij+1 
by 

depending on whether C, is placed at the center or side of the cell 

respectively. Moreover, 

aj 
at 

n+l-et, 
.---. ----- 

b t 
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where the superscript n +l indicates the value of the variable for 

t == (n +1)6t and the absence of the superscript indicates the value at 

t = nbt. 

The system of Equations (2.11) - (2. 14) can be written in finite 

difference form as follows; 

n+l 
ßi3 -Pï3 ßi+-lj-pìj Pij+lï.3 

+ ixi . bx 
+ i. ; 

bt J J y 

U, .U. . 17. l wu, 
1+zJ 1°zJ 13!-z 

bx. by 

(F 

)nTi u 
1+zJ 

where 

1 

bt 
r bx 

(P 
i 'JPïfl ) 

J j 

ô¢ 

- 

. . 

0; 

i+2j 

( "3. 1) 

(3. 2) 

(3. 3) 

4'íj 

_ 



u - 
- P )i.+z 

bt 

2 2 
_(pu 

)i +lj -(pu )ij (Puv)i + ?j (Puv)i +Zj -2 

bx by 

ui+3j-2uiz+ul-zJ 
- (pX)i+zj - 

N 
( 

bx 

ui+z j+ 1- 2u.i+2 j+ui+L 

by- 

n+1 bt 
(Pv)ij+Z ij+Z + (Pij Pij+1) 

where 

and 
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(3. 4) 

2 2 
(Pv ) ij+l - (Pv 

)iJ 
(Puv)i+j+2 -(Pv)izJ+z 

= (Pv)ij+Z - bt + 

by bx 

vi+1 
+1 - 2vi.+l+vi-1.+i 1+3 2 i+i+i._i 

-(PY)+1 - N( 
J z J z J a)-P( J z 2 J z) 

,J+. bx2 by 

n+1 
T.. -T. . (uT). 1 . - (uT ) 1 (vT).. 1 - (vT ) 

1J 1J 1+ZJ i-zJ ij+z 1+ZJ 13+2 

st bx by 

T, -2T +T. T -2T,.+T., 
1.+1y ij 1- lj ij+1 1J 1J- 1 

+ 

bx2 by2 
(3.5) 

For computational purposes it is convenient to put this system 

of equations in a slightly different form. Equation (3. 3) can be solved 

for n +1 
ui+2 ; 

n+1 i+zJ at (Pij Pi+lj) ui+Z 
ui+zj n+1 + ox n+1 

P. 1 P. 1 1+ZJ 1+ZJ 

(3. 6) 

i 2J + 

+1- 

1 
) 

' 

i'+1 J z 

a - 
Pij 

+FJ +zJ 

- P) 
f+ 

- sy 



Similarly, 

n+1 
u. 

. 

1 -n 
(li-1j Pij) 

For the v components 

L. at (Pij Pij+1) 
lj+z n+1 by n+1 

Pij+z Pij+i 

n+l ij-z at (Pij- 1 Pij) 
vij-z n+1 -1- by n+l 

Pij-Z Pij-Z 
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(3.7) 

(3. 8) 

(3. 9) 

If Equations (3. 6) - (3. 9) are substituted into the continuity 

equation (3. 2) for t = (n +1)ót, the result is 

bt 1 ¡ i+z j 
i-Zj 

bx n+1 n+1 
-Pi+zj Pi-Zj 

1 

+ ó Y 

/P -P Pi+lj P i- -P ljije 
+ - bx n+1 n+1 

Pi+ij 
-z3 

Pi-iJ 
zj 

I J 

Z\ bt ij Pij+1 Pi j- 1 
-P. 

n+l + bx n+1 n+1 

Pij-Z pi+Zj Pij-Z 

This may be put in the form 

P.. = B.P. +B2P. +B3P,. +B4P,. +A 
zj lj 1+1j ij lj ij 1j+1 ij lj- 1 ij 

The coefficients are given by 

= O. 

(3. 10) 

i-?j bt 
ñ+T bx n1-1 
Pi-iJ Pi-1. 

aJ zJ 

n+1 

ij+`- - J 

n+1 
Pij+? 

. 

+ ' 

S 

I 

i 
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1 I 1 7i+zj 
Aij C.. bx n+1 n+1 

13 L Pi+ZJ Pi-ZJ 

1 1 bt 1 

Bij C. 2 n+1 
1 J bx 

P i+i J 

2 1 bt 1 B. 
C. 2 n+1 

1J bx 
Pi_ZJ 

3 
B 

1 bt 1 

C.. 2 n+1 
13 SY 

P1J+z 

4 1 bt 1 

Bij C.. 2 n+1 
13 SY Pij-á 

S 1\ ij+i 
n+1 n+1 

P1J+? 
Pij_Z i 

and 

bt 1 1 bt 1 1 

Cij - 2 
J bx n+1 + 

Pi+zJ 
n+1 

Pi-áJ 
+ 2 

bY 
n+1 

Pij+2 
n+1 

pij-z 

Equations (3. 6) and (3. 8) were modified slightly because they 

led to physically unrealizable results. For fluids at rest they implied 

that the gravitational and buoyant on a fluid element did not balance. 

This effect was due to the density gradient in the fluid and was recti- 

fied by setting 

n+1 i- lZ St 
u. 1. = 

1+2-3 n+1 + bx 

P1+áJ 

n+1 13+Z 
ij+z n+1 

Pij 

bt 
+ S 

Y 

Pi' Pì+l J J 

n+1 n+1 ' 

pij pi+lj 

Pij+1 
n+1 n+1 

pij Pij+1 

(3. 11) 

(3. 12) 

j+ 1 
/ 

by 

+ 

_ 

/ Pij 

) 



For computational purposes it is convenient to put Equations 

(3. 1) and (3. 5) in a slightly different form. 

and 

n+l 
- öt u, pi+lj- pij +v pij+l- pij 

pij pij iJ bx ij by 

n+1 T 
. . bt 

1J 1J 

a 
+ 

pij 

(uT )i+z j 
(uT )1 _ z J 

(vT).. - (vT).. 

bx + Sy 

T -2T..+ T. T - 2T + T.. 
i+lj 1-lj ij+l ij 1j-1 

Sx2 by2 

The system of equations which is actually solved is 

n+l pi+lj- Pii pij+1- pij 
pi. = pi. - ót ui 

x 
. 

ó 
+ V. 

pij 13 J 13 y 

n+l 
U. 1 1+2J 

bt / Pi j Pi+1 j 
+ 

bx n+l n+1 
pij Pi+lj 

n+1 ij+2 St Pij Pij+l 
Vij+z n+1 + Sy n+1 n+1 

pij+Z `pij pij+l 
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(3. 13) 

(3. 14) 

(3. 13) 

(3. 11) 

(3. 12) 

d. 

3 P. . = B.P. + B2 P. + B .P. + A , (3. 1 0) 
13 iJ i+1j ij i-lj B. ij+1 ij 1J-1 ij 

n+1T -bt 
ij iJ 

(uT ). i . - (uT ). i . (vT). . 1- (vT). 
1+2J 1-2 J 1J+z iJ-2 

bx by 

/T i+lj +T. T T. -2T +T, 
a ij 1-lj ij+1 ij 1J-1 

pij 1 Sx2 by2 / 

(3. 14) 

= 

- 

r- 

-i 

i+z j 
n+1 

pi+z j ` 

+ B ` P.. 

T.. 
+ 

= T. 

( 

= 

+ 
+ 
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The Algorithm 

The following eight steps are the basis of the computer program 

which solves Equations 3.10 through 3. 14. A flow chart is given in 

Appendix A. 

1. The density distribution for t = (n +1)6t is calculated 

from the solution for t = nbt using Equation (3. 13). 

2. The pressure field is calculated roughly by relaxing Equa- 

tion (3. 10) starting from the pressure field for t = nbt. 

3. Provisional values of the new velocities are calculated us- 

ing Equations (3. 11) and (3. 12) with the new values of the 

pressures. 

4. The fluid particles are given weighted averages of the four 

nearest horizontal and the four nearest vertical velocities. 

The motion of the particles is found according to this pro- 

visional velocity field. 

5. A corrected value for the density for t = (n +1)6t is cal- 

culated from 

Enk.pk 
k J 

pij k an.. 
k iJ 

where nk, is the number of particles of density pk in 
J 

the ijth cell according to the trajectories from step 4. 

6. The corrected value of the density from step 5 is compared 
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with the prediction of step 1. If there is any difference the 

new density field is introduced into step 2. The process is 

repeated until there is no difference. 

7. Now the pressures are calculated more precisely. Final 

values for the velocities are calculated and the particles 

are moved. 

8. After u, v, and p are found,the temperature equation 

(3. 14) is solved. 

These eight steps relate all the essential features of the algo- 

rithm. Steps 1, 5, and 6 are the predictor- corrector portion. The 

calculation cycle continues until the density remains unchanged. 

Steps 2, 3, 7, and 8 are the Eulerian calculation of the variables 

P, u, v, and T. Steps 4 and 5 are the Lagrangian calculation of 

the particle positions and the density in each cell. 

In the Lagrangian calculation of the particle positions, the ve- 

locity used to move each particle is a weighted average of nearby ve- 

locities. The calculation of these weights is given below for the hori- 

zontal velocity, u. 

A rectangle of dimension bx by by is centered over the four 

nearest horizontal components of the velocity field. A similar rec- 

tangle is centered over the kth particle. The particle rectangle and 

the velocity rectangles overlap (see Figure 2). Each velocity's weight 

is the percentage of the particle's rectangle that it covers. 
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U. 1 . 

1 -zi 

u. 1 

1-z j- 1 
U. 1 

Figure 2a. A particle and the four nearest horizontal 
velocities. 

A2 ' Al 

A 

A A 

Figure 2b. The velocities and their weights. 

Thus, the particle's horizontal velocity is given by 

1 

u (Au+Au +Au j3i-z +Au ) óxby 1 i+áj2i-á j- 14i-5j- 1 

The particle's new x- coordinate is given by 

xk+1 ukbt. 

1 
1 

3 4 

+ 
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Similar calculations are performed for the vertical velocities 

and the y- coordinate. 

Boundary Conditions for the Algorithm 

The region in which the fluid motion occurs has been covered 

with a mesh. It is necessary to approximate the boundary of the 

fluid, s, in terms of line segments from the mesh. The algorithm 

requires quantities from surrounding cells for the calculations at any 

particular cell. Thus it is necessary to create a layer of fictitious 

cells outside the boundary of the fluid. The quantities for these cells 

are determined by the boundary conditions at the interface of the fic- 

titious and actual cells. In this way the boundary conditions are ac- 

counted for in the algorithm. 

Figure 3 depicts a boundary between a cell and its fictitious 

image. The problem is to determine 

Pi -1 ' 
and T 

- i 1 J J 

ui-2 ui-Z , vi- 1j-2 ' pi- 
from the boundary conditions. For all types of 

boundary cells, pi -lj Pii. 

u. 3. 
1-zJ 

Figure 3. Cell i-1, j is a boundary cell. 

, 



Suppose the boundary is a material boundary. The boundary 

conditions to be satisfied are 

w-n=0, 

w -m = 0, 

n.vT= O. 

For a boundary oriented as in Figure 3 these equations become 

u = 0, 

v=0, 

aTO. 
ax 

In finite difference form 

u. 1.=0, 
1-zJ 

V. 1 . 1 = 0, 
1-iJ-2 

Ti.-Ti- 
1 J J = 0 . 

Sx 

The boundary value of y namely v. 1. J-2" 

age of the values at either side; 

v. v. 1. 1 - 
1-zJ-2 2 

V. 1+v.. 1 

1- lJ-2 1J-z 
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is equal to the aver- 1, 



Thus, at a material boundary 

Since 

T. T Ti.- .- 
J J 0 

bx 

Ti- lj - Tij. 
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Applying the continuity equation (2. 12) to the i -ljth and ijth cells 

respectively gives 

u. 1 . - u. 3. v. 1 - v. 
1-zJ 1-23 1-lj+z 1-1j-2 

bx by = 0 

u. 1.-u. . V.. 1-v.. 
1-zJ 

Y 

Adding the preceding equations gives 

u. . 1 - u. 3 . v. 1 + v. . v. 1 + v. 
f-Z 

. 1 

1- 1j- 1J+Z 1- 1j-f, 1J-z O. 
bx by by 

At a material boundary the last two terms of the preceding equation 

vanish. Thus, 

U. 3. = U. 1 . 

1-zJ 1+2j 

Since u. 1 . = 0 for all n at a material boundary, 
1 -z J 

n+1 
(pu). (Pu)i-Zj = O. 

' 

1 

zJ J z J-z 
bx 

1 

= 

vi- 1J-z 

- 
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Substituting these values into the Navier- Stokes equation (3. 3) the re- 

sulting equation can be t 1yed for l' .. 

Summarizing, at a material boundary 

ü. 3 U. 1 

ì`zj 1+2j 

v. 1 __ ._ v.. 1, 
ì- 1J-z 

P 
i- 1 

2p 
bx(pX)i 

iJ óx13i- zj 

Suppose now, that the boundary in Figure 3 is a free surface. 

The boundary conditions to be satisfied are 

P= Zn. 2p 
du 

+ 2n n p(u dv l- 2n 2p 
av 

, 

x óx x y <3y ax y ay 

av au . 
2 2 au av 

2nxny( ax ) + (nx -n 
y 

)( +- ) 

n. vT - O. 

For the vertical surface being considered n -- -1 and 
x 

ny = 0. Thus the equations reduce to 

du 
P == 2p ---- 

ax 

:: p. 

. 

pij 
.- 

Ti- l j 
_ Ti . 

ax 

' 

ij 

_:q 
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au av -+- 
ay ax 

aT 
ax 

In finite difference form 

=o. 

u. 1.- u 3. 

Pi- 1 j 
2µ 

bx 

u. 1.- u. 1. V. 
iJ-Z 1- 

bx by - 0, 

Ti'-Ti- 1 13 J 0 . 
bx 

The second equation above can be solved for v, 1 , 
1- lj -z 

b 
v. 1 = V. . 1 + y(u. 1 . - u. 1 ) . 

1-1j-z 1J-2 ox 1-ZJ 1-zJ 

The third equation reduced to 

T. 
1- 

__ T 
' 

As above, applying the continuity equation to the i- 1 jth cell yields 

bx 
u. 1 . = u. 1. +-(v.. 1 -v.. 1 ) . 

1-ZJ 1+ZJ SY 13+z 13--.E 

For a free surface the normal component of the velocity vanishes, 

namely 

0, 

1-vi-1 J. 

ibx aJ J a 

= 

li 

= 
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u. 3. = O. 
1-z) 

Summarizing again, at a free surface 

Pi- l j = Pij , 

u. a = 0 , 

1- a 
. 

bx 
u = u+ S {v - v ) 

b 
v. 1= v. . 1+ Y(u 

i -zJ 1 
1.- u. 1. ), 

1-lj-z 113--z bx 1-zJ- 

2N 

Pi- lj bx 

Ti- 
lj 

. = Tij 

The variety of problems which can be handled using this numer- 

ical method can be greatly increased if fluid is allowed to enter or 

leave the region in which the calculations are being made. Following 

is a development of conditions for an in boundary and an out boundary. 

Frequently some of the boundary values of the variables are 

known from the problem. For instance, the input velocity may be 

specified or the input or output pressure may be held at some con- 

stant value. In the absence of other information, the values may be 

calculated as follows. 

To simplify calculations, only problems are considered for 

which the fluid enters normally to the in boundary. Thus, at the 

boundary in Figure 4 the horizontal velocity v. 1 . must be zero. 

ij+Z 

ui -z J 

1 -iJ-z 
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This yields, as in the case of the material boundary, 

V. 1 = -v.. 1 , 13-Z 

U.. 1 = u. 1 

1-2 J 1+2-3 

Also like a material boundary a pressure boundary condition 

can be derived if necessary by solving the Navier- Stokes equation 

(3. 3) for Pi . A temperature boundary condition can be derived 
J 

by requiring that the initial temperature profile is maintained at the 

in boundary. 

At an out boundary it is assumed that the fluid is not accelerat- 
4/ 

IwI « C 
s 

ed. With this assumption - -valid for problems where 

if the cell size is small - -the boundary conditions for an out boundary 

are as follows. 

Since the fluid is not accelerated 

= 
. 

The horizontal velocity u. 1 . is calculated from Equation 
1 -z3 

(3. 6). Since the continuity equation (3. 2) is satisfied in the i- ljth 

cell, 

ót 
u. 3 . = U. 1 . + - (v. 1 - y. 1 ) 

1-z3 1-EJ óy 1-lj+Z 1-1j-2 

4 
See page 8. 

V. 1 V.. 1-lj-Z 1J-z 

z 

- 
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The pressure boundary condition was found by Welch et al. 

(1966) to be 

óx 

Pi-lj 
= 

Pij óy[ (PU°)i_áj+Z- (Puv)i_áJ-2) 

The adiabaticity requirement is as before 

Ti- lj 
. = Tij 

b. 
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IV. APPLICATIONS 

A computer program for the flow of a fluid with a continuously 

varying density stratification has immediate applications in meteor- 

ology, oceanography, and hydraulics. 

The infinite reservoir problem offers an interesting example of 

the problems and potential of this numerical method. This problem 

is interesting because it utilizes all four types of boundaries: in, out, 

material, and free surface. It also is typical of a particular problem 

in numerical solutions: providing a finite approximation to an infinite 

problem. Before attempting this problem some attempt should be 

made to check the algorithm to determine whether it is, in fact, solv- 

ing the system of partial differential equations (2. 11) - (2.14). 

Checking the Algorithm 

As a check, the algorithm was applied to various problems for 

which the analytical solution was known. Simplest of these was a tank 

of water undergoing no motion. The algorithm gave, to within the er- 

ror of the numerical approximations, no change in any of the vari- 

ables. Another problem whose analytical solution is known is uniform 

horizontal motion. The algorithm provided the same solution as the 

analytical methods. Although there are other checks that could have 

been run, success in these two cases was deemed sufficient to try a 

more sophisticated problem. 
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The Infinite Reservoir Problem 

The infinite reservoir problem is the problem of determining 

the motion of a semi - infinite strip of fluid as it flows into a point sink 

as shown in Figure 4. Any continuous density profile may be used. To 

handle an infinite problem such as this it is necessary to simulate the 

infinite reservoir on the left with an in boundary. Sufficiently for 

downstream, i. e., to the left, the motion in the reservoir will 

be uniformly to the right and the pressure will be hydrostatic. Fluid 

can be drawn into the finite reservoir by setting the value of the hori- 

zontal velocity at the in boundary equal to the velocity of the fluid 

immediately to the right of the boundary. 

Figure 4. An infinite reservoir with a point sink. 

The model, then, is a rectangular region partially filled with 

fluid particles. On the left is an in boundary. The velocity is equal 

to the velocity of the column of cells to the right and the pressure is 

hydrostatic. On the right is a material boundary, on the top is a free 
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surface, and on the bottom is a material boundary with a small out 

boundary to the right. 

The primary feature of this numerical technique is that plotting 

the positions of the fluid particles provides a visual display of the 

motion of the fluid. The plots in Figure 5 are from a computer run 

using a hyperbolic tangent curve as the initial density and tempera- 

ture profile. 

The plots were photographically obtained from cathode ray tube 

displays of the particle positions. Successive photographs were tak- 

en to provide sequences for a motion picture of the flow. In addition 

to the photographs, which were taken for each time increment, nu- 

merical values of all the variables were printed at regular intervals. 
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.............. 

2.000 

- 7.000 

Figure 5. The above results were obtained using a mesh size 
bx = . 1, by = . 1, and St = . 05. The mesh was a square 
array of 16 cells by 16 cells. Initially there were four 

particles per cell. 

- O. 

T - 1.000 

r .s00 

r 
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V. CONCLUSIONS 

The goal of this study was to develop a numerical technique to 

find the transient motion of a nonhomogeneous fluid. The general 

success in solving all such problems to which this algorithm has been 

applied indicates that the algorithm devised by Welch et al. ( 1966) has 

been successfully modified and extended to handle nonhomogeneous 

fluids. The test problems mentioned previously, reservoir problems, 

and jets of fluid into tanks filled with a similar fluid are among those 

successfully run. 

Recommendations 

Following are questions whose answers could be of great bene- 

fit in the applications of this numerical technique. 

1. Can the requirement of strictly adiabatic flow be weakened 

to allow heat transfer problems? 

Z. Can the requirement of perpendicular flow across an in 

boundary be removed? 

3. How does the scaling of the problem effect the simulated 

motion of the fluid? 
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A. Flow Chart 

Following is a flow chart of the algorithm developed on pages 

23 and 24. 
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B. A Sample Listing 

Following is a computer listing for the infinite stratified reser- 

voir problem discussed on pages 35 -36. The primary variables are 

designated in the program as follows: 

IN 

u U 

v -- V 

p --- R 

P 

T 

x -- X 

y 

t - TIME 

fix.-- DX 

by DY --- 

bt --DT 

To identify the cells, each cell is labeled: 

if it is a boundary cell at an ir. boundar-, 

if it is a boundary cell at an cut boundar 

NOSLIP if it is a boundary cell at a material bourda y, 

SUR if it is a free surface, 

EMP if it contains no fluid particles, 

OU7' 

--- P 

---- T 

--- Y 

, 



43 

REG if it contains fluid particles and is not a boundary cell. 

Similarly each particle is labeled: 

IN if it is in an IN cell, 

OUT if it is in an OUT cell, 

REG if it is in a REG cell, 

AVAIL if it is not in the computing region. 

The following program is in the FORTRAN IV language and was 

run on a CDC 6600. 
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PROGRAM STRATRES 
C PROGRAM STRATRES SOLVES THE INFINITE STRATIFILU kESERVUiü PkOOLLA 

C WITH HYPERBOLIC TANGENT INI1i-L DENSITY ;Nu TEkPCRNTURt u1STkIoo- 

C TIONS 
COMMON X,XN.Y,YN,F,DENS,J,V,P, Pìß, k, RN,RJ,A,J1.o[.ós.o4,X1,4cTA.s,N 

1, IC, T,TN.TO 
DIMENSION X(800),XN( 800), Y(800).YN(800),F(800).DEN6(800) 
DIMENSION U( 17, 16), V( 16, 17), P( 16, 16 ),PN(16,16),R(1t>,1e),kN(1o,16). 
1R0(32).PO(16) 
DIMENSION A( 16, 16), B1( 16, 16 ).B2(16,16).B3(1ó,1),B4(16,16) 
DIMENSION XI(16,16). ZETA( 16, 16),S(16,16),N(16,16),IC(i6,lo) 
DIMENSION T(16,16),TN(16,16).T0)lo) 
DIMENSION D(16,i6),DR(16.16) 
DIMENSION XP(2).YP(2).XA(80U).YA(860) 
INTEGER F 

REAL MU 

C 

Ç INITIAL PARAMETER SET UP 

DX =.1 
DY =.1 
DT =.05 
TIME =0.0 
TIMELIM =10.0 
ITIME =10 
MU =.000114 
ALPHA = .0000141 
G = -.98 
MMM =ITIME 

C NI IS THE NUMBER OF CELLS WIDE. NJ IS THE NUMBER uF CELLS DEEP, 

C NK IS THE NUMBER OF PARTICLES. NOUT IS THC ITH COORDINATE OF THE 

C LAST NOSLIP CELL ALONG THE BOTTOM, NSUR IS THE JTH COORDINATE OF 

C THE LAST CELL CONTAINING PARTICLES. ND IS THE NUMBER OF RJWS CON- 

TAINING PARTICLES. 
N1 =16 
NJ =16 
NK =800 
NOUT =NI -3 
NSUR =NJ -3 
NO =NSUR -1 
NIMNSI =NI -1 
NJMNS1 =NJ -1 
NIPLS1 =NI +1 
NJPLS1 =NJ +1 
H= (NSUR- .5) *DY 
WIDTH= (NI -2) *DX 
DEPTH= (NJ -2) *DY 
DEEP =ND *DY 

C 
r INITIAL CELL SET UP 

THE VARIABLE ARRAYS ARE PRESET TO ZERO 
DO 9 I= 1,NIPLS1 
DO 9 J =1,NJ 

9 U(I,J) =0.0 
DO 10 I =1,NI 
DO 10 J= 1,NJPLS1 

10 V(I,J) =0.n 
DO 11 I =1,NI 
DO 11 J =1,NJ 

C 

r 

C 
C 
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IC(I,J) =0 
D(I,J) =0.0 
DR(I,J) =0.0 
RN(I.J) =0.0 
R(I,J) =0.0 
T(I,J) =0.0 

11 P(I,J) =0.0 
DO 25 J =1,NJ 
TO(J) =0.0 

25 PO(J)=0.0 
NN =2 *NI 
DO 23 J =1,NN 

23 RO(J) =0.0 
C IC... BND= 1, IN= 3,FULL =10,5UR= 11,EMP =12 

DO 1 I =2.NIMNS1 
DO 1 J =2,NSUR 

1 IC(I.J) =10 
C FREE SURFACE IS THE EIGHTH ROW 

DO 2 I =2,NIMNS1 
IC(I.NJ -2) =11 

2 IC(I.NJ -11 =12 
C BOTTOM WALL IS NOSLIP WITH TWO OUT CELLS 

DO 3 I =1,NI 
3 IC(T,11 =1 

IC(NOUT,1) =3 
IC (NOI)T 1) +1, =3 

C TOP WALL IS NOSLP 
DO 4 I =1,NI 

4 IC(I.NJ) =1 
C LEFT WALL IS IN 

DO 5 J= 2,NJMNS1 
5 IC(1,J) =2 

C RIGHT WALL IS NOSLP 
DO 6 J =1,NJ 

5 IC(NI.J) =1 
INITIAL DENSITY DISTRIBUTION 
NN =ND *2 
DO 12 L =1.NN 
Y= .025 +.5 *DY *(L -1) 

1.2 RO(L) =. 9985 -. 0015 *TANH(Y- .5 *DEEP) /TANH(.5 *ÜLEP) 
DO 13 I= 1,NIMNS1 
DO 13 J= 2,NSUR 

13 R(I,J)= .5 *(RO(2 *J- 3) +RO(2 *J -2)) 
C DENSITY BOUNDARY CONDITIONS 

DO 7 I= 2,NIMNSI 
7 R(I,NSUR +1.)= R(I,NSUR) 

C INITIAL TEMPERATURE DISTRIBUTION 
DO 16 J =2,NSUR 
Y= .05 +(J -2) *DY 

16 TO(J) =15.0 +10.0 *TANH(Y -.5 *DEEP) /TANH(.5 *DEEP) 
DO 17 I= 1,NIMNSI 
DO 17 J= 2,NSUR 

17 T(I,J) =TO(J) 
C INITIAL PRESSURE DISTRIBUTION 

DO 24 J =2,NSUR 
Y= (J -21 *DY 
COSH1= .5*(EXP(.5 *DEEP) +EXP) -.5 *DEEP)) 
COSH2 =5 *(EXP( Y -.5 *DEEP) +EXPI- Y +.5*DEEP)) 

24 PO(J)= .98*(.9985 *(DEEP -Y) -. 0015 /TANH(.5 *DEEP) *ALOG(COSH1 /COSH2)C 
DO 18 I= 1.NIMNS1 

C 



DO 18 J=20NSUR 
18 P(I,J)=P0(J) 

C 

C INITIAL PARTICLE SET UP 
C 

C F...AVAIL=1,IN=2,0UT=3,REG=4 
KL=2*ND 
DO 19 K=1,KL 
F(K)=2 
ZK=K 
X(K)=-.25*DX 
YlK1=(.5*ZK-.25)*DY 
DENS(K)=RO(K) 
XN(K)=0 
YN(K)=0 

19 CONTINUE 
IN=1 
KM=KL+1 
KN=4*(NI-2)*ND+KL 
DO 20 K=KMKN 
IK=K-KL-(IN-1)*2*(NI-2) 
ZIK=IK 
ZIN=IN 
F(K)=4 
X(K)=(.5*ZIK-.25)*DX 
Y(K)=(.5*ZIN-.25)*DY 
DENS(K)=RO(IN) 
XN(K)=0 
YN(K)=0 
IF(IK.LT.2*(NI-2))20,21 

21 IN=IN+1 
20 CONTINUE 

KL=KN+1 
DO 22 K=KL,NK 
F(K)=1 
X(K)=0 
Y(K)=0 
DENS(K)=0 
XN(K)=0 
YN(K)=0 

22 CONTINUE 
GO TO 600 

100 M=0 
MM=O 
ITNUM=0 
DO 123 I=2,NIMNS1 

123 R(I,1)=R(I,2) 
DO 124 J=2,NJMNS1 
R(1,J)=R(2,J) 

124 R(NI,J)=R(NI-1,J) 
DO 101 I=2,NI 
DO 101 J=2,NJMNS1 
RL=.5*(R(I-1,J)+R(I,J)) 
UR=.5*(U(I+1,J)+U(I,J)) 
UL=.5#(U(I-1,J)+U(I,J)) 
VB=.5*(V(I-1,J)+V(I,J)) 
IF(VB.GE.0)110,111 

110 RUVB=.5*(R(I,J-1)+R(I-1,J-1))*U(I,J-1)*VB 
GO TO 115 

111 RUVB=.5*(R(I,J)+R(I-1,J))*U(I,J)*Vß 
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115 VT=.5*(V(I-1.J+1)+V(I,J+1)) 
IF(VT.GE.0)113,114 

113 RUVT=.5*(R(I,J +R(1-1,J))*U(I,J)*VT 
GO TO 116 

114 RUVT=.5*(R(I,J+1)+R(I-1,J+1))*U(I,J+1)*VT 
116 DUX2=(U(I+1,J)-2.0*U(I,J)+U(I-1,J) )/(OX*DX) 

DUY2=(U(I,J+1)-2.0*U(I,J)+U(I,J-1)1/(DY*DY) 
101 XI(I,J)=RL#U(I,J)-DT*l(RII,J*UR**2-R(I-1.J)*UL**2)/DX+(KUVT-RUVö) 

1/DY-MU*(DUX2+DUY2)) 
DO 102 I=2,NIMN51 
DO 102 J=20NJ 
RB=.5*(R(I,J-1)+R(I,J)) 
VT=.5*(V(I,J+1)+VII.J)1 
VB=.5*IV(I.J-2)+V(I,J)) 
UR=.5*(U(I+1,J)+U(I+1,J-1)) 
IF(UR.GE.0)117,118 

117 RUVR=.5*(R(I,J)+R(I,J-1))*UR*V(I,J) 
GO TO 119 

118 RUVR=.5*lR(I+1,J)+R(I+1,J-1))*UR*V(I+1,J) 
119 UL=.5*(U(I,J)+U(I,J-1)) 

IF(UL.GE.01120.121 
120 RUVL=.5*(R(I-1.J)+R(I-1,J-1))*UL*V(I-1.J) 

GO TO 122 
121 RUVL=.5*(R(I,J)+R(I,J-1))*UL*V(I,J) 
122 DVX2=(V(I+1,J)-2.0*V(I,J)+V(I-1,J)1/(DX*DX) 

DVY2=(V(I,J+1)-2.0*V(I,J)+V(I,J-1)1/(DY*DY) 
102 ZETA(I,J)=RB*V(I,J)-DT*((R(I,J)*VT**2-R(I,J-1)*VB**2)/DY+(RUVR-KUV 

1L)/DX-MU*(DVX2+DVY2)-RB*G) 
C 
C INITIAL DENSITY PREDICTION 
C 

DO 103 I=2,NIMNS1 
DO 103 J=2,NJMN51 

103 RN(I,J)=R(I,J)-DT*(.5*(U(I,J)+U(I+1,J)1*(R(I+1,J)-R(I,J))/DX+.5*(V 
1(I,J)+V(I,J+1))*(R(I,J+1)-R(I,J))/DY) 

C 

Ç DENSITY BOUNDARY CONDITIONS 
C 

106 DO 109 I=2,NIMN51 
109 R(I,1)=R(I,2) 

DO 107 J=2,NJMNS1 
R(1,J)=R(2,J) 

107 R(NI,J)=R(NI-1.J) 
C 

C PRESSURE COEFFICIENTS 
C 

DO 112 1=2,NIMNS1 
DO 112 J=21NJMNS1 
IF(IC(I,J).LE.10)108,112 

108 RL=.5*(R(I-1,J)+R(I,J)) 
RR=.5*(R(I+1,J)+R(I,J)1 
RT=.5*(R(I.J+1)+R(I,J) 
RB=.5*(R(I,J-1)+R(I,J)) 
A(I,J)=((XI(I,J)/RL-XI(I+1,J)/RRl/OX+(LETA(I,J)/Rd-LTA(1,J+1)/KT) 

1/DY)/(DT*(1.0/RL+1.0/RR)/(DX*UX) +DT*(1.0/RT+1.0/R6)/(DY*UY) 
B1(I,J)=(DT/(DX*DX*RR))/(DT*(1.0/RL+1.U/RR)/(DX*UX)+UT*11.0/RT+1.0 
1/RBI/(DY*DY)) 
B2(I,J)=(DT/(DX*DX*RL))/(DT*(1.0/RL+1.0/RR)/(DX*DX)+DT*(1.0/RT+1.0 

1/RR1/IDY*DYI', 
B3(I,J)=(DT/(DY*DY*RT))/(DT*(1.0/RL+1.0/RR)/(DX*UX)+UT*(1.0/RT+1.0 
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1 /Rß1 /(fY *DY)) 
P41I,J)== dCT /(D,, DY*RB))/( DT*( 1. 0/ RL +1.0 /KR) /(DX *DX) +DT *(1.0/RT+1.0 

1 /RB) /(DY *DY)) 

112 CONTINUE 
f 

C PRESSURE BOUNDARY CONDITIONS 

L=1 
LL=1 
IF=1 
IFF=1 
LEFT WALL iÇ IN 

2.00 CONTINUE 
I=2 
no 201 J=2,NJMNS1 

201 P11-1,J)=P0(J) 
I=NI 
DO 202 J=2,NJr,NS1 

C RIGHT WALL IS NOSLIP 
USO1=.25*(UII,J)+U(I+1,J))**2 
US(J2=.25*(U( I-1,J)+U( I,J) 1**2 
UVt°.25*(U(I,J+1)+U(I,J))*(Vl1,J+1)+V(I-1,J+1)) 
OV2=.25*(lJ( I,J)+O( I,J-I ) 1*(V( I,J)+V( I-1,.J11 
R1=.25*(R(I-11J)+R(I,J)+R(I-1,J+1)+RII,J+1)1 
R2=.25X1R(I-19J)+R(I,J)+R(I-1,J-11+K(I,J-1)) 
nOX2=(U(I+19J)-2.0ifU(I1J)+U(I-19J11/(DX*DX) 
DUY2=lU(I,J+1)-2.0*U1I,J)+U(I,J-1))/(DY*DY) 
DPX=DX*((R(I,J)*US1-R(I-1,J)*USw2)/DX+(R1*UV1-R2*JV2)/UY- MU*IUUX 

12+DUY2)) 
202 PII,J)=P(I-1,J)-DPX 

C TOP WALL I5 NOSLIP 
J=NJ 
DO 203 I=2,NIMN51 
VS01=.25*IVII,JI+V(I,J+1))**2 
V502=.25*(V(I,J)+VII,J-1))**2 
(1V1=.25*(U(I+1,J)+U(I+1,J-1))*(V(I+1,J)+V(I,J)) 
UV2=.25*(UII,J)+U(I,J-1))*(V(I,J)+V(I-1,J)) 
R1=.25*(R(I+1,J)+R(I,J)+R(I+1,J-1)+R(I+1,J-1)) 
R2=.25*(R(I-1,J)+1l(I,J)+R(I-1,J-1)+R(I,J-1)) 
DVX2=(V(I+1,J1-2.0*V(I,J)+V(I-11,J))/(DX*DX) 
DVY2=(V(I,J+1)-2.0*V(I,J)+V(I,J-111/1DY*DY) 
DPY=DY*((R(I,J)**VS01-R1I,J-11*VS612)/DY+1R1*UV1-R2*UV21/0X- ihU*(uVX 

12+0VY2)-.5*(R(I,JI+R(I,J-1)1*G) 
203 P(I,J)=P(I,J-1)-DPY 

C BOTTOM WALL IS NOSLIP WITH TWO OUT CELLS 
J=2 
DO 204 I=2,NIMNS1 
VS01=.25*(V(I,J)+V(I,J+1))**2 
VS02=.25*(V(I,J)+V(I,J-1))**2 
UV1=.25*(UfI+1,J1+U(I+1,J-1))*(V(I+1,J)+V(1,J1) 
UV2=.25*(U(I,J)+U(I,J-1))*(V(I,J)+V(I-1,J)) 
R1=.25*(R(I+1,J)+R(I,J)+R(I+1,J-1)+RII+1,J-111 
R2=.25*IR(I-1,JI+R(I,J)+R(I-1,J-1)+R(I1J-1)) 
DVX2=(V(I+1,J)-2.0*V(I,J)+V(I-1,J))/(DX*DX) 
DVY2=(V(I,J+1)-2.0*V(I,J)+V(I,J-1))/(DY*DY) 
DPY=DY*((R(I,J)*VS(J1-RII,J-11*VSïJ2)/OY+lR1*UV1-R2*UV2)/UX- MU*IUVX 

12+DVY2I-.5*(R(I,J)+R(I,J-I))*G) 
204 p(I,J-1)=P(I,J)+DPY 

C PRESSURE BOUNDARY CONDITIONS FOR THE OUT CELLS 
I =NOoJT 

r- 



P'.!\/1 1 - 1 ; , ? ) ' , J f ) * ( ( 1-1.2 ) +V ( 1,2) ) 

PH'gl)r,OHT.':)+C,Y. ,-%'(RUVR-RUVL) 

RUVL=.50-6.1-J2i,-WIt2)*(V(/-112)+V(1,2)) 
RUVF,,,,,,5*RMp.,:hULP-1.)2)*(V(I.2)+V(1+1.2)) 
PN,Hrp(1521+DY/DX*RUVR-ROVL) 

C FREE !-TM'S',URE BOUNDARY CONDIT...UNS 

00 H,"2,74\1!mfV)1 

DO 20') 

TFM,Thi)aEQ,11Hjib205 
206 IFATC(I,J+1),C,;2207.208 
207 /FHt ( 1+19J ).F0.11 )2099210 
2C9 

210 IFélC(1-1.j).LO,12)212.213 
212 PY=-SR 

PY=SOP 
e TO 211 

213 

GO TO 211 
208 IF( TCM-1.,1 E1031-2 )214.215 
214 t F ( r c r j t ) 4FO.12 )216.217 
116 DX.-SR 

PY=-SOR 
GO TO 211 

217 PX=.1.0 
PY=0.0 
GO TO 211 

215 IF(IC(1-1,J1E00121218.219 
218 IF(IC(1.-1-1),EO,12)220,221 
220 PX=-SOR 

PY=-SOR 
GO TO 211 

221 PX=-1,0 
PY=0.0 
GO TO 211 

219 IF( IC( 1 ) ,E'UD12 )222.205 
222 PX=0.0 

PY=-1.0 
211 P( I .J)=2.0*MU*(PX*PX*(11( 1+1.J )-U( I .J))/DX+PX*PY*( .25*(U( 1+1.J+1 

1( I.J+1)-U( I.J-1)-U(I4-1.J-1))/0Y+.25*(VII+1,J+1)+VI1+1,J)-V(I-1,J+1 
2 ) --1( J ) ) /DX ) +PY*PY* V ( .J+1 ) -V( I ...I ) ) /DY ) 

205 CONTINUE 
C 

PRESSURE ITERATION 

DO 223 1 r1 

DO 223 J=I9NJ 
223 PNCI,J)=P(I.j) 

DO 224 1=25NIMNSI 
DO 224 J=2,NJMN51 

I9J).E.0.10 )225.224 
725 PN(19J)=BIII0J)*PN(i+11J)+B2( I0J)*PN(1-1,J)+E33( IIIJ)*PN(1,J+1)+134(1 

1,j)*PNCI,J-1)+A(I,J) 
724 CONTIN!IE 

TF(M.F0.0)9227 

RUVR'*""i 

I.NOUT+! 

WRVA( 
50R,,I,O/SQR 

20 

GO FO 21 

PXmn.D 
0Y=1.0 

r. 

kfl'iOti.,A$2)*(V(1.2)+V(1+192)I 

I- 
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(PmDF PRESSURE TEST 
226 IFU,061F*(,)22,22R 
228 IF=IF+1 

MM=0 
'3( 236) 2 

DO 230 J=2tNiNSI 
IF( IC; I*J),E.Q..1,))22,1,230 

231 DP=ABSFf0=N-R(LJ))/(R(10J)*G*)EPTH)) 
TE(DP,,,0003)230229 

230 CONTINUE 
MM=1 
WRITE(611233) 

233 EORMAT(5X917HCRODE TEST PASSED) 
WRITE(619234) L 

234 FORMAT(5X4HL = gI3) 

SO TO 235 
229 IF(L,LT,SDO)232a236 
232 L=L+i 
235 DO 237 

DO 237 J=101.1 

237 P(Toj,RWTpj) 
IFMM-1)200248231 

263 MM=O 
GO TO 331 
FINE PRESSURE TEST 

227 IF(LL3FO.IFF13)233239 
238 IFF=IFF+1 

MM=0 
DO 240 1=2,NIMNS1 
DO 240 J=2oNJMNS1 
IF(IC(192).EQ010)2419240 

241 DP=ABSFHPN(l9J)-P(10))/(R(I.J)*G*DEPTH)) 
IF(DP.LT.60002)24-09239 

260 CONTINUE 
MM=2 
WRITE(610243) 

243 FORMAT(5Xs16HFINE TEST PASSED) 
WPITE(619244) LL 

244 FORMATC5Xs5HLL " 9I3) 
239 IFCLLot_To500)2,.2,245 
242 LL=LL+1 

GO TO 235 
236 WRI1E(61e246) 
246 FORMAT(5X033HT00 MANY ITERATIONS IN CRUDE TE'ST) 

STOP 
245 RITE; s .2e 
247 FORMATC5X02HT00 MANY ITERATIONS IN FINE TEST) 

STOP 

NEW VELOCITY FIELD 

331 DO 300 I=19N:RL'',1 
DO 300 J=10r3J 

300 U(TJ)=060 
DO 301 I=19NI 
DO 301 J=1oNJPL51 

301 ViI,J)=0.0 
DO 102 I=35NIMNS1 
DO 302 2=2*N._W1 SI 
IF,ACtI9.1)13302 

r 

: rd l; i': . L 

1=1.NI 

C 

C 



51 

u ( i j ; -1J))+DT*(P(1 -1,J) -1-1(1,J)/ 
1R(I(LJ1L 

"11) 2 IrONT7.NH' 

'DO 1.(11 

F f r I i 

-Io13(1; 5 304 
305 v(I.J,(2.(-,421-f- ;(f.))/(1.((19J)+R(I,J -1))+DT'IAP(I,J -1)/k( I,J -1) -H(itJ 

304 CONTIN01- 

VFLOCITY 1;0oNO.'10,-y ;10NDITIONS 

LFFI WALL 5 N 

DC, 111 1 

311 U±,1,1((..1('-',,,,I) 

DO 7,96 

106 11( H 
110 ',0-(1 

WAu 
110 ) 

) ) - 1 ) 

V NI 0,i 
O *rroo 7O P 

DO 309 N 

1.+11,-,V(I(:ii 

309 11(1111-:-D(I,)1 
WAL 

DO 312 r, .? 

112 0(1,UN.1)-( -U !-L,N.1 -1) 

O 111_1.o1-1-fl Or.(01;.10F.Y CONDITIONS FOR THE TWO OUT CELLS 
,1()M!- 

tORT 'fl 
17/1 

oJ-1) }+DT*(P( i ,J-1) /R( I tJ-1 ) -P C I 9J 

1,1L/f1I.11/1)1 
(FIlooT,(I.O,LL.L333 

332 1,NC,Hr.,-i 
TOWN). 
On 70 
IHNOUT ).--11((-011.1i."2) 

iwNOUT (,1 )(-0: r1OUT 1-102 ) 

V(N0117(11,V(NOtL2)+DY/DX*(O(NOUT+1,1)-U(NOUTilD) 
VINCIOTI11)-V(NOH74-121+DY/DX*(UCNOUT+2,11-U(NOUT+1,111 
CNIL ;',o7 77 - îV BOUNDARY CONDITIONS 

fr (IC( 
11.)3159316 

111; 

1 1 7 " V i47 1 4 . 1 , - ; ; . ) Y /0x31- ( 1 . 1 ( ( - 1 - 1 1 . . . 1 1 -U I I 9,J)) 

u((-41,14,1),H(T4.1,J) 

SO TO 

71103 1r111((1-1*..fl,F11111-..i19(320 
310 0(1,14,,L(-v{7,"'..-y.yrr)x-*ti,j(i+19J)-UHo-1)) 

±4-"; I 41 

r 

c 

r 

Ju2.04JMW>) 
0( 

. 
407 \!;;) 

RI72, 
3!,e 7 

104 t..jt 

TOP 

V(IoN1-4.1) nVIkNJ-1/ 

114 
313 

MNOUTit1)-,f.W40Or+202) 

3 14 IF(TC.(i.J.1-119P,: 
I F (t*:t 0:.1% )317.318 

. 

111 A 

1'11 11.A1C(11*J;.,;...1J1.1(C30302 
3°1 

DO 304 ,,74t1,i'',0). 

150 

1//R(1.3)1i0e 
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(120 TO 71? 
'111.)() V(1...4,Hi i':-H,','i(l.)(1.4-loj)-U6 I v.))) 

uM41 
GO 1 (1 1 

316 IF I ,11'1,1j );3:::1.322 
321 U.- ("1,1(! L) , ,3,:3.1324 
323 UL131 

CIO IC) 11? 
124 HS. t4.1 '..;!-Ii()Y4(VL I *J+.1 1.-V( I *J) 

Go 1,-.) 3i 
'122 IF (1(+ I- 1.f !HO1'),11)325f326 
'325 Tr (N: 1327 
27 !HT, 

1 

cU 1-(1', 

32 JC I ".'l'i14),,114P4Iirrty(1...)÷1)-y( j eJ ) 

GO TO '313 
326 iF TH:( r t; J-11, Lu., 1 82) 1,313 

1.211 V ( I ,L) T (1) 141.J) -U( ....11) 

313 CON T1 

pART ;., Ni 

DO 400 K 01k: 

IF CF. (K1 ,,LOt 1 )400 f01 
401 1X(K)/0X+2 

J.Y(K)/DY+2 
XC î I-1 .F1 *LX 

FX,.X(K)/Dx+2.0-1 
FY,,Y(K)/DY4-2.0 
IFAF(KII,F..0.:i)1+53403 

4 5 14 LVO T t 5 4. ( T 1 1 U ( 1 . J ) 1 

XN (K ) X ( 

GO TO 
403 1FLEY,1_11,,..5 iìß 

407 JJJI 
GO TO 409 

408 ,...)%j 

409 YCJJ= 
Sx.--(xCI-X(K) )/ox 
SY, ( YCJJ-Y 20Y-4-t 5 

VilzABSF1( ( .5-SY ) 

W2-.AP,';F )11- L .5-SY ) 

4,13--rAEY1F t1-4.5X )44-I .54-13Y ) 

W,ABF.F .5-SX ) M ( .5+SY I ) 

UK --,W1.*U L 1+1 $.1J4 1 )4-27.44-1_)( L 9JJ+1 )+W3*U( 1 ) +W4*U( 1+19-U) 
X.N(K).--,X(k:) 4UK,DT 
IF (F1 ( 

YN(K),Y(K, 
GO TO 400 

454 IF (FX.,1F.,,5 )410 s411 
410 11=1-1 

GO TO 412 
411 INI 
412 XC I Jr-s(I 

SXrAXCII-YAK ))/r,X+e5 
SYri"(r....1-Y(K1/172Y 

R5-SY ) ) 

I*I; 

lt 

V(Is.!1:V(Is.IIt 
,.+1 ,Uf I ) 

3 

f 1. 1- 11 .T tJ. : 1 

I-+1., J1 

11? 

) S4) 

^':I: 

T f I. r MriVI. 

YCJ=(J°1.5)++0Y 

454 

l l'. I ) 

rn.?.e.ct+ 

452 

t11=A05F1 
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Hil'iD-'7i91 »9 

^1,), I ) A 1_ 
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f9C1 i',97 
J ,-,14" 

(!,) 

414 INII.J)0 
DO Kt 
.1f t I 

J9-AN(K)/uY9-? 

41'9 CnNTINUL 5 

r QEFLANG THE CELLS 
DO 
r30 41P .12.NJP1N4:, 

TFANCTJ).F0,0)4205,419 
419 iC( It-1)-,-10 

GO TO 418 
420 IF(N(19J+1)6W.000k.N(19J-1).N.OK.NI1+1,..JI.NL.0.yli.14(1-1,J).NE 

10)4219422 
421 IC(1oJ)=11 

GO TO 418 
422 IC(I,J)=]2 
418 CONTINUE 

M,1 

00 423 I2eNIMNS1 
DO 423 J=29NjMNS1 
iE(N(isj.P.O.rfl4249t,2± 

424 R(i)=O0 
GO TO 

425 1F(S(11,))/N:!I 9,..)),.i7( t...)) ) 423 .426 
426 R( ls.J)=S(loJ)/NJ) 

M=0 
423 CONTINUE 

DO 458 1.2eNIMNS1 
00 458 J.20J(0.N,51 
IF(IC(19J).E0.11)459,458 

459 RfItJ)=R(I,J-1) 
458 CONTINUE 

IE(MME0.2)432*451 
451 ITNUM,(TNUM+1 

IF(MeEO.0)427,30 
427 IFITTNUM.GE.10)42d9106 
428 N1.1 

WRITE(61.429) 
429 FORMAT(5X,20HOSCILLATING PARTICLE) 

GO TO 106 
430 WRITE(61v431) 
431 FORMATI5X,17HNO DENSITY CHANGE) 

60 TO 106 

( t. )' ., ! 

I (:, 
7t/,..7::'.Fr4 :y._. (o"4 A)) 
VK=..)1sv( i u. «1f+::.`'IVl lle..+; )+;.:x'J(I1fJ)+:e4V(ll+ifJ) 
.( ) 

' ír 7. ! 

407 ((.f;T1A:(11. 

YRI(f.16ie+1i) 
413 FQ12'(AT(5X:I 

414 j ::t gtJ 1 

'i( IeJ)=ll.O 

4 I 5 0 M t; 

417 1,0(N11(1/0X+2 

N(IoJ)-1(JeJ14) 
:;( I.J)- ;( ? sJItDLWAK) 

4.1({ 1 ::'eNIV:r;;'1 

423 
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C REFLAGGING OF PARTICLES 
C 

432 DO 433 K=1,NK 
IF(F(K).E0.1)433.455 

455 IF(F(K).E0.21434.440 
434 I=XN(K)/DX+2 

J=YN(K)/DY+2 
IF(I.GF.2)436,433 

436 F(K)=4 
DO 437 KK=1,NK 
IF(F(KK).EQ.11438437 

438 F(KK)=2 
XN(KK)=XN(K)-.5*DX 
YN(KK)=YN(K) 
DENS(KK)=DENS(K) 
GO TO 433 

437 CONTINUE 
WRITE(61,439) 

439 FORMAT(5X,16HOUT OF PARTICLES) 
STOP 

440 I=XN(K)/DX+2 
J=YN(K)/DY+2 
IF(F(K).EQ.3)441,443 

441 IF(I.EQ.NI-1.0R.I.EQ.NI-2)456,445 
456 IF(J.EQ.1)443,445 
443 IF(F(K).EQ.41449,433 
449 IF(I.EQ.NI-1.OR.I.EQ.NI-2)457,450 
457 IF(J.EQ.1)442.450 
442 F(K)=3 

WRITE(61,444) DENS(K) 
444 FORMAT(5)(.19HPARTICLE OF DENSITY,F18.8,3HOUT) 

GO TO 433 
450 IF(I.GT.NIMNS1.OR.I.LT.2.OR.J.GT.NJMNS1.0R.J.LT.21445,433 
445 F(K)=1 

X(K)=0 
Y(K)=0 
DENS(K)=0. 
XN(K)=0 
YN(K)=0 

433 CONTINUE 
WRITE(61,446) 

446 FORMAT(5X,19HPARTICLES REFLAGGED) 
DO 447 K=1.NK 
IFfF(K).E0.1)447,448 

448 X(K1=XN(K) 
Y(K1=YN(K) 

447 CONTINUE 
C 

C TEMPERATURE BOUNDARY CONDITIONS 
C 

DO 500 I =1,NI 
DO 500 J =1,NJ 
IF(IC(I,J).E0.12)501,500 

501 T(I,J) =O.O 
500 CONTINUE 

C BOT.ÌOM WALL IS ADIABATIC 
DO'502 I= 2,NIMNS1 

502 T(I,1)= T(I,2) 
C TOP WALL IS ADIABATIC 
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no 503 I= 2,NIMNSI 
503 T(I,NJ)= T(I,NJ -1) 

C RIGHT WALL IS ADIABATIC 
DO 504 J= 2,NJMN51 

504 TCNI,JC= TINI -1,J) 
C LEFT WALL 15 CONSTANT PROFILE 

DO 505 J= 20SUR 
505 T(1,J) =TO(J) 

C FREE SURFACE IS ADIABATIC 
DO 506 I= 2,NIMNS1 
DO 506 J= 2,NJMN51 
IF(IC(I,J).EQ.11)507,506 

507 IFCICCI,J +1I.EQ.101508.509 
508 ICI,J)= T(I,J +1) 
509 IF(ICII +1,J).E0.10)510,511 
510 T(I,J)= T(I +111J) 
511 IF(IC(I- 1,J).E0.10)512,513 
512 T(I,J)= T(I -1,J) 
513 IF(IC(I,J- 1).E0.10)514 +506 
514 T(I,J)= T(I,J -1) 
536 CONTINUE 

t, 

C TEMPERATURE CALCULATION 
C 

DO 515 I=2.NIMNS1 
DO 515 J=2,NJMNS1 
IF(IC(I,J).EQ.10)516,515 

516 TL=.5*IT(I-1,J)+T(I,J) 
TR=.5*(T(I+1,J)+T(I,J)1 
TT=.5*(T(I,J+11+T(I,J)) 
TB=.5*(T(I,J-11+T(I,J)) 
DTX2=(T(I+1,J)-2*T(I,J)+T(I-1,J))/(0X*DX) 
DTY2=(T(I,J+1)-2*T(I,J)+T(I,J-11)/(DY*DY) 
TN(I,J)=T(I,J)+DT*((U(I,J)*TL-U(I+1,J)*TR)/DX+(V(I,J)*TB-V(I,J+1)* 

1TT)/DY+ALPHA*MU/R(I,J)*(DTX2+DTY2)) 
515 CONTINUE 

DO 517 I=2,NIMNS1 
DO 517 J=20JMNS1 
IF(IC(I,J1.EQ.10)518.517 

518 T(I.J)=TN(I,J) 
517 CONTINUE 

C 

C OUTPUT ROUTINES 
C 

600 CONTINUE 
IF(MMM.EQ.ITIME)601,60: 

602 MMM=MMM+1 
GO TO 603 

601 WRITE(61,604) 
604 FORMATf1H1) 

WRITF(61.605) TIME 
605 FORMAT(5X,6HTIME =,F6.3,///) 

DO 624 I=1,NI 
DO 624 J=1,NJ 

624 DII,J)=(U(I+1,J)-U(i,J))/DX+(V(I,J+1)-V(I,J)1/üY 
DO 629 I=2,NI 
DO 629 J=1,NJ 

629 DR(I,J)=R(1,J1-RN(I.J) 
DO 703 I=1,NI 
DO 703 J=1,NJ 
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7u3 WRITE(61 704) I+ J +IC(I +J)+U(IJ) +V(I +J) R(I,J) P(I.J),T(I J) D(1 J 
1)DR(IiJ) 

704 FORMAT(5X 3I8 7F11.6) 
MMM=1 

603 TIME = TIME +DT 
IF(TIME.LE.TIMELIM) 100 +623 

623 CALL TVEND 
STOP 
END 


