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NEW THEOREMS AND EXAMPLES 
FOR FREEDMAN'S DENSITY SPACES 

CHAPTER I 

INTRODUCTION 

In 1930, L. Schnirelmann [ 9, 10] introduced the following 

density for a subset A of the positive integers: Let A(n) be the 

number of positive integers in the set A which do not exceed n. 

Then the Schnirelmann density of A is given by 

(1) a = {A(n) I n>1}. 
n - 

Definition 1. 1. Let A and B be two subsets of the positive 

integers. The sum of A and B, denoted by A + B , is the set 

AvBv{a+bl aeA, beB} . 

Now let a, ß, and y denote the Schnirelmann densities of 

A, B, and C = A + B respectively. Some of the results which 

have been obtained are: 

(2) If a+ ß > 1, then y = 1 (Schnirelmann [ 10] ). 

(3) y > a+ ß - aß (E. Landau [ 7] and Schnirelmann [ 10] ). 

(4) If a+ ß< 1, then y > ß /(1- a) (I. Schur [ 11] ). 

(5) y > min { 1, a + í3} (H. Mann [ 8] and F. Dyson [ 2] . 



In 1965, A. Freedman [ 3, p. 1 ] generalized the notion of 

Schnirelmann density to arbitrary sets as follows: 

Definition 1. 2. Let S be an arbitrary set. For a subset 

X of S, and a finite subset D of S, let X(D) denote the 

number of elements in the set Xr-D. Lets be any family on non - 

empty finite subsets of S. Then the density of a subset A of S, 

with respect to , , is 

a = gQb A( G) I Ge 
S( G) 

Then Freedman [ 3, p. 8-15] developed a general theory for 

density by introducing two sets of axioms. The first set of axioms 

requires S to be a certain type of abelian semi -group which is 

called -set. The second set of axioms gives structure to the 

family ,6C , which is then called a fundamental family on S. The 

pair (S, ° ) where S is an s -set and T is a fundamental 

family on S is called a density space. Freedman [ 3, p. 51 -103] 

was able to extend many of the results which have been obtained 

for positive integers, including (2), (3), (4), and (5), 

In this thesis we present new theorems useful in the construc- 

tion of s -sets and study a special class of fundamental families 

called discrete fundamental families. In Chapter II we state those 

definitions and results of Freedman which are utilized in our work. 

2 
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Freedman [ 3, p. 28 -40] also provided a list of examples of 

s -sets and fundamental families. In Chapter III we make a detailed 

study of methods for constructing s -sets, particularly those which 

are subsets of the positive real numbers. We also study methods 

for constructing fundamental families. 

In Chapter IV we study a special class of fundamental families 

which Freedman [ 3, p. 101-103] calls discrete fundamental families. 

In Chapter V we investigate the relationships between inequali- 

ties (3) and (4) for density spaces and two transformation properties 

defined by Freedman [ 3, p. 43 -44] 

In Chapter VI we list ten examples of density spaces and 

summarize the results which have been obtained for each of them. 

Throughout this thesis various unsolved problems are stated. 

Such problems are clearly marked. 

.. 
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CHAPTER II 

BACKGROUND 

In this chapter we state those definitions and theorems from 

Freedman' s thesis [ 3, p. 8 -78] which are used in the remainder 

of the thesis. Proofs of these theorems are found in Freedman' s 

thesis. 

2.1. s-sets 

Throughout this section, unless otherwise indicated, S is a 

non -empty subset of an abelian group G. The operation in G is 

denoted by + and the identity element by O. 

Definition 2. 1. For x and y in G, we write x.< y 

(or y> x) whenever y - x E S. 

Definition 2. 2. For x E S, let L(x) denote the set of all 

y E S for which y-<x or y = x. We call L(x) the lower set 

of x with respect to S. 

The set S is called an s -set whenever the following three 

axioms are satisfied. 

Axiom s -1. S is closed under +. 

Axiom s -2. 0 ¿ S . 



5 

Axiom s -3. L(x) is finite for each x e S. 

It is easy to see the set I of positive integers is an s -set. 

Now we look at some theorems which enable us to construct 

new s -sets from given ones. 

Theorem 2. 1. If T is a closed subset of an s -set S, then 

T is an s -set. 

For example, the set of even positive integers is an s -set. 

Definition 2. 3. For a set X contained in a group G, we 

denote by X° the set XU {0} where 0 is the identity element 

of G. 

Definition 2. 4. Let A be a non -empty index set. Consider, 

for each S e A, a set X6 contained in an abelian group G. Let 

X be the set of all functions f defined on A which satisfy the 

following two properties: 

(i) f(ó) e X° each ó e A , 

(ii) the set of ó for which f( 5) # 0 is non -empty and finite. 

We call X the product of the X5 and write X =TI {X5 I óe t }. 

Theorem 2. 2. If Só is an s -set for each S e o, then 

S = II {Só I S e A} is an s -set. Addition is defined by 

(f1 + f2) (ó) = f1(ó) + f2(6). 

for 
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Theorem 2. 3. Let T be an s -set and G be a finite 

abelian group. Then the set S = GX T = { (x, y) 

an s -set where addition on S is defined by 

X G, y T} is 

(x,y) + (x' ,y') _ (x+ x', y+ y'). 

2. 2 Fundamental Families 

Before listing the fundamental family axioms we must define 

some terminology used in the axioms. 

Definition 2. 5. Let S be an s -set and let x E S. Denote 

by U(x) the set of all y E S such that x-<y. 

Note that x is never a member of U(x). 

Definition 2. 6. Let X be a subset of an s -set S. An ele- 

ment x E X is called a maximal element of X if X ìU(x) = . 

The set of all maximal elements of X is denoted by Max(X). 

Definition 2. 7. For an arbitrary set S, let ,P = e a(S) 

denote the family of all non -empty finite subsets of S. 

We write F \A for the set of all elements in F and not in 

A. 

Definition 2. 8. Let be an arbitrary subfamily of 1) 

and let F be a set in . An element x E F is called a 

I 

4 

1 
1 
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corner element of F if either F = {x} or F \ {x} e ° . The 

set of all corner elements of F is denoted by F *. 

Let S be an s -set. A non -empty family IC (S) is 

called a fundamental family on S if the following four axioms are 

satisfied: 
-p Axiom f -l. For each x E S there is an F E J with x E F. 

Axiom f -2. The union of any non -empty finite subfamily of 

is a set in . 

Axiom f -3. The intersection of any non -empty subfamily of 

is a set in , provided the intersection is non - empty. 

Axiom f -4. If F E ° then Max (F) C F *. 

Definition 2. 9. The ordered pair (S,1) is called a density 

space whenever S is an s -set and is a fundamental family 

on S. 

The following theorem is useful in the actual construction of 

fundamental families for s -sets. 

Theorem 2.4. Let S be an arbitrary s -set. Corresponding 

to each x e S, let B(x) be a subset of S satisfying the follow- 

ing three conditions: 

(i) x E B(x), 

(ii) B(x)C L(x), 

(iii) if y E B(x), then B(y) C B(x). 

V 

1 
1 

1 
1 

Y 

-. 



Let 1B = {FIFE a(S), x E F implies B(x) C F} . Then 

8 

JB 

is a fundamental family on S. Conversely, given any fundamental 

family J' on S, there exists a function B(x) satisfying condi- 

tions (i), (ii), and (iii) such that 1B = J. 

Definition 2. 10. Let xE S. Denote by [ x] the intersec- 

tion of all F such that x E F E 1. Then [ x] is called the Cheo 

set of determined by x. 

Theorem 2, 5. Let S be an s -set and let B(x) satisfy 

conditions (i) , (ii), and (iii) of Theorem 2. 4. Then [ x] , the 

Cheo set of °B determined by x, is equal to B(x). 

We define a special fundamental family as follows: 

Definition 2. 11. Let S be an s -set. We denote by /C= (S) 

the fundamental family 1B with B(x) = L(x) for each x E S. 

Theorem 2. 6. For any fundamental family on an s -set S 

we have `xC 5C D 
The following theorem enables us to construct new fundamental 

families from given ones, We will consider this problem in more 

detail in the next chapter. 

Theorem 2. 7, Let { 16 I S E t} be a non -empty class of 

fundamental families on an s -set S. Then { eg 5 6I E A} is a 

fundamental family on S. 

J 

n 

° 
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2.3 Density 

In the remainder of this chapter let (S,5) be an arbitrary 

density space. 

Definition 2.12. Let X be a subset of S. For any finite 

(possibly empty) subset D of S we let X(D) be the number 

of elements in the set X n D. If D is non -empty, let q(X, D) 

be the quotient X(D) /S(D). 

Definition 2. 13. Let A be an arbitrary subset of S. The 

o 
K- density of A with respect to J is 

d(A,1) = gib { q(A, F) I F E}. 

Definition 2. 14. Let A be an arbitrary subset of S. The 

C- density of A with respect to is 

d (A, 
c 

5) = gib {q(A, [x])IxES}, 

where [ x] is the Cheo set of determined by x. 

K- density generalizes the density defined by B. Kvarda [ 6] 

and C- density generalizes the density used by L. Cheo [ 1 ] and F. 

Kasch [ 5] . Both of these densities reduce to Schnirelmann density 

when the density space is (I, X), where we recall that I denotes 

the s -set of positive integers. It is immediate from the definitions 

J 

I 



that 0 < d(A,°) < 1 and 0 < dc (A, 5) < 1. 

Definition 2.15. Let A and B be subsets of S. The 

sum A + B of A and B is the set 

AL)Bk,_){a + bi a e A, b E B}. 

10 

In all that follows A and B are arbitrary subsets of S. 

We write C = A + B, a= d(A,°), ß= d(B,°), and y = d(C,5). 

We also write a 
c 

= dc (A,5), p 
c 

= dc (B, 4), and 

yc = dc(C,J') 

Theorem 2.8. y > max { a,131. 

Theorem 2, 9. If a+ ß> 1, then y = 1. 

Theorem 2. 10, y > c- max {ac, ßc} . 

Theorem 2.11. If 1= 26S) and a + ß > 1, then y = 1. 
c c - c 

Definition 2.16. A fundamental family is separated if, 

whenever x and y are elements of S such that 

y I [ x] , then [ x] n [y ] is empty. 

xd [y] and 

Theorem 2. 12. If J is a separated fundamental family, 

then K- density and C- density are identical. That is, a= a for 

each ACS. 

'1 

c c 

c c 
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Freedman [ 3, p. 43 -44] defines two transformation proper- 

ties, which we call T -1 and T -2 respectively. 

Definition 2. 17. For each F E and x e Fo, let 

D = F r\U(x) and T1[ D] = {y - x I y E D }. Then ° is T-1 

if T1[ D] is in 7 v {4 } for every F and x E Fo. 

Definition 2. 18. For each x E S and F E ° v {4 } , let 

D = [ x]\ F and T2[ D] = { - yI y E D\{x} }. Then is T-2 

if T2[ D] is in ° {4 } for every x and F. 

Theorem 2. 13. If S is an s -set, then 7(S) is both T -1 

and T -2. 

Freedman [ 3, p. 65 -78] uses properties T -1 and T -2 

to obtain several results including the following: 

Theorem 2.14. If ° is T -1, then y > a+ ß - aß. 

Theorem 2. 15. If is T -2 and a+ p< 1 , then 

y > r3/(1 - a). 

Theorem 2. 16. If is T-1, then y > c + ß c ß' - c- 

1 

T 

J 
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CHAPTER III 

DENSITY SPACES: THEOREMS AND EXAMPLES 

In Section 2. 1 we saw several ways to obtain new s -sets from 

given ones. In this chapter we develop theorems which are useful 

in constructing s -sets, particularly s -sets which are subsets of the 

set of positive real numbers. We also study the problem of con- 

structing fundamental families. 

3. 1. Definitions and Preliminary Theorems 
for Some s -sets of Positive Real Numbers 

Let R+ denote the set of all positive real numbers. 

Definition 3. 1. Let A be any subset of R +. Let S be 

the set of all finite linear combinations of elements of A with posi- 

tive integral coefficients. Then we say S is the set generated by 

A. 

Definition 3. 2. Let A CR+ and x e S, where S is the 

set generated by A. Each way in which x is generated by A 

is called a representation of x in A. We say x is finitely 

represented in A if it can be generated by A in only a finite 

number of ways. The sum of the coefficients of a representation is 

called the length of the representation. 
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Theorem 3, 1. Let A C R+ and x, y e S, where S is 

the set generated by A. Then y-<x iff a representation of y in 

A can be extended to a representation of x in A by adding a 

finite, non -zero number of elements of A to it. 

Proof: By Definition 2. 1, we have y x iff x - y E S. But 

x - y E S iff there is a representation of x - y in A, which is 

equivalent to saying that a representation of y in A can be ex- 

tended to a representation of x in A by adding a finite number 

of elements of A to it. 

Theorem 3, 2, Let A C R+ and x E S, where S is the 

set generated by A. Then L(x) is finite iff x is finitely repre- 

sented in A. 

Proof: Assume x is finitely represented in A. Let n be 

the number of distinct representations of x in A and let h be 

the length of the longest one. Then there can be at most nh dis- 

tinct elements of A occurring in representations of x in A. 

Let A ' be the set of elements of A occurring in representations 

of x in A. Let m be the number of elements in A' . Of 

course m< nh. Let 

B = {b b = b,a. , a. E A' , b.non-negative integers, , b. < h} . i - 
i= 1 i= 1 

. 

m m 
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Then B is a finite set. Now let y E L(x). If y x, then y -<x and 

y E S, and so by Theorem 3. 1, any representation of y in A is 

of length h -1 or less and consists entirely of elements of A'. Thus 

y E B. If y = x, we also have y e B. Hence, L(x) CB and L(x) is finite. 

Assume x is not finitely represented in A. We show that 

the set A' of elements occurring in representations of x in A 

is infinite by supposing that A' is finite and obtaining a contradic- 

tion. If A' is finite there is a least element a 
o 

E A'. Let h 

be the greatest integer part of 
x 

. Each representation of x in 
ao 

A must be of length h or less. Therefore, we can construct only 

a finite number of different representations of x in A. This con- 

tradicts our assumption that x is not finitely represented in A. 

Therefore, A' is infinite. If a e A' and a x, then a occurs in 

some representation of x in A. By adding the rest of that repre- 

sentation to the element a, we can extend a to a representation of 

x in A by adding only a finite number of elements of A to a. 

Hence, by Theorem 3. 1, we have a <x. Therefore, a E L(x) and 

we have L(x) infinite. Hence, L(x) finite implies x is 

finitely represented in A and the proof is complete. 

Definition 3.3. Let AC R+. If there exists a sequence 

{an} of distinct elements of A such that lim a = a, then a 
n - oo n 

is called an accumulation point of A. 

i 
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Theorem 3. 3. Let A C R +. Let S be the set generated 

by A. If A has no accumulation points, then S is an s -set, 

Proof: Axioms s -1 and s -2 are immediate. To verify Axiom 

s -3 we must show that L(x) is finite for all x e S. Consider any 

x E S. Since A has no accumultion points, there are only a finite 

number of elements of A in the interval (0, x]. Therefore, the set 

A' = {a I aEA, a-<x or a = x} is finite. Let ao be the smallest 

element (real number) in A' . Let h be the greatest integer part 

of a 
. Then each representation of x in A has length h or 

0 

less. However, we can construct only a finite number of different 

linear combinations of elements of A' with coefficient sums not 

exceeding h, because A' is a finite set and h is finite. There- 

fore, x is finitely represented in A, and by Theorem 3. 2, we 

have L(x) finite. Therefore, S is an s -set and the proof is 

complete. 

If A is finite, it has no accumulation point, and so by 

Theorem 3. 3, we have S is an s -set. Hence, we have proved the 

following corollary. 

Corollary 3. 4. Let A C R +. 
+, Let S be the set generated 

by A. If A is finite, then S is an s-set. 

0 
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3. 2. Some s -sets Generated by Strictly Increasing 
Sequences of Positive Real Numbers 

Lemma 3. 5. Let fan} be a strictly increasing convergent 

sequence of positive real numbers. Let A denote the set of ele- 

ments in {an} and let S be the set generated by A. Then 

there are no strictly decreasing convergent sequences in S. 

Proofs Since A has a least element al, which is positive, 

the maximum length of the representations of x in A, for any 

x E S, is finite. Hence, the proof is by induction over the maximum 

of the sum of the coefficients of linear combinations of elements of 

A. Let S denote the set of elements generated from A by 

linear combinations with coefficient sum not exceeding P. 

When p = 1, we have S1 = A. Any strictly decreasing se- 

quence in S1 must begin with an element in {an} , say a.. 
J 

However, {an} is strictly increasing and hence exactly j -1 

elements of A are less than a.. Therefore, there exist no 
J 

strictly decreasing infinite sequences in S1 = A. 

For our induction step, we assume that there are no strictly 

decreasing convergent sequences in Sk, for some k(k > 1). 

Let x E R +. We must show that there are no strictly de- 

creasing sequences in Sk 
+ 1 

which converge to x. Let 

lim an = a. From our induction hypothesis, we know that there 
n-- 

P 

n 

n 
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are no strictly decreasing sequences in Sk which converge to x, 

none converging to x - a, and none converging to x - a. for 

each positive integer i. Therefore there exist positive numbers 

Ex, E , and E. for each positive integer i such that the open 
a i 

intervals (x, x + E ), (x - a, x - a + E ), and (x a., x a. + E.) x a 

for each positive integer i contain no elements of Sk. 

Since Ian} converges to a, we can find an integer J > 0 

such that a - ai < 
2 

Ea for all i > J. Let 

(1) E = min { Ex, E 
1 

, E2, . . . , EJ , 2 Ea } . 

We proceed to show that there are no elements of Sk 
+1 

in the open 

interval (x, x + E). 

By ( 1), we have E < E . Therefore, there are no elements of - x 

Sk in (x, x + E), since there are no elements of Sk in (x, x+ Ex). 

Hence, in order for an element of Sk 
+1 

to be in (x, x + E), 

there must be an element of Sk in at least one of the intervals 

(x - a., x - ai 
3. 

+ E), because all elements in Sk+ 
+1 

not also in Sk 

are of the form y + ai where y E Sk and a. E A. 
I. 

There are no elements of Sk in (x - a., x - a. 
3. 

+ E) for 
I. 

i(1< i < J), because by (1), E Ei for all i(1 <i < J). If 

i > J, then a - a. < 2 Ea . Therefore, x+ a- ai < x+ 
2 

Ea , 

1 1 and so x - ai + E < x - a+2Ea+ E. Since E< 2 Ea by (1), we 

have x - a. + E < x - a+ ca. Hence (x - a., x - a.+ E) C (x - a, x - a+ E ), 
i i i a 

- 
i 1 i 

i a i a 

a 

1 

n 
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which contains no elements of Sk. Therefore, there are no ele- 

ments of Sk in (x - ai, x - ai + E) for i > J. 

We have shown that there are no elements of Sk 
+l 

in 

(x, x + c). Hence, there are no strictly decreasing sequences in 

Sk +1 
which converge to x. But x is arbitrary, so the proof 

is complete. 

Theorem 3. 6. Let fad be a strictly increasing convergent 
n 

sequence of positive real numbers. Let A denote the set of ele- 

ments in fan} and let S be the set generated by A. Then S 

is an s -set. 

Proof: Axioms s -1 and s -2 are immediate. To verify Axiom 

s -3, we must show that L(x) is finite for each x e S. Assume 

that there is an xo e S such that L(xó is not finite. By Theorem 

3. 2, we know that x 
0 

is not finitely represented in A. More - 

over, since fad is a strictly increasing sequence, we have 
n 

al < ai for all i(i > 1). Let h be the greatest integer part of 

xo 
a 

Then each representation of xo in A has length h or 
1 

less. 

Let { an 4} be the set of all elements of A, listed in strictly 

increasing order, which occur in at least one representation of x . 
0 

Then {a contains an infinite number of elements. If not, x 
o 

would be finitely represented in A, since each representation has 

n 

n 

n 
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length h or less and there would be only finitely many elements 

of A available. 

Consider the sequence {x 
o 

- an } . Each x 
o 

- an E S 

because each an is in at least one representation of x 
o 

. The 

sequence {x 
o n 

- an } is strictly decreasing, because { is 

strictly increasing. Let lim a = a. Then lim (x -a) = x -a, n 09 o n o 

since {an 
* 

} is an infinite subsequence of the convergent sequence 

{an} and hence converges to the same limit. But now we have a 

strictly decreasing convergent sequence in S, which contradicts 

Lemma 3. 5. Therefore, L(x) is finite for each x E S and 

Axiom s -3 holds. Hence, S is an s -set and the proof is complete. 

Theorem 3. 6 can be generalized to the following theorems. 

Theorem 3. 7. Given a finite number of strictly increasing 

convergent sequences of positive real numbers, let A be the set 

of elements which occur in at least one of the sequences. Let S 

be the set generated by A. Then if S is non -empty, it is an 

s -set. 

Theorem 3. 8. Given a countably infinite collection of strictly 

increasing convergent sequences of positive real numbers, let A 

be the set of elements which occur in at least one of the sequences. 

Let S be the set generated by A. Then S is an s -set if the 

} 

h --00 

* á 

n 

n 

n 
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following condition holds: 

( *) for each x E R +, the interval (0,x] contains elements 

from only a finite number of the sequences. 

The proof of Theorems 3. 7 and 3. 8 parallel that of Theorem 

3. 6. We omit the details of these proofs but indicate how they may 

be constructed from the proof of Theorem 3. 6. In each case we 

first show that there are no strictly decreasing convergent sequences 

in S, which uses a proof paralleling that of Lemma 3. 5. Then we 

show that S is an s -set. The basic difference is that at each step 

we must work with a finite number of sequences instead of just one. 

We only need to work with a finite number of sequences, even in the 

proof of Theorem 3. 8, because given any x E R +, all but a finite 

number of the sequences occur completely to the right of x on 

the real line. In Theorem 3. 8, this follows immediately from con- 

dition ( *). In fact, if we do not have ( *), the set S is not always 

an s -set. For example, if the first elements of the sequences form 

the strictly decreasing sequence { 1 } , an s -set is not generated, 
n 

as we shall see in Theorem 3.15. 

We can generalize Theorem 3. 7 to the following theorem. 

Theorem 3. 9. Given a finite number of strictly increasing 

convergent sequences of positive real numbers, let A be the set 

of elements which occur in at least one of the sequences. Let a 
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be the maximum of the set of limits of the given sequences. Let 

B be a finite or countably infinite set of positive real numbers 

having no accumulation point and subject to the condition that 

b > a for each b e B. Let S be the set generated by A v B. 

Then S is an s -set. 

Proof: By properly placing more elements in the set B, we 

can create a finite or countably infinite number of strictly increasing 

convergent sequences satisfying condition ( *) of Theorem 3. 8. Call 

such a set of additional elements B' . Let S' be the set gen- 

erated by AL)BuB' . By Theorem 3. 8, or Theorem 3. 7, we 

know S' is an s -set. Therefore, by Theorem 2. 1, S is an 

s -set, because S is a closed subset of S' . 

3. 3. Some s -sets Generated by Strictly Decreasing 
Sequences of Positive Real Numbers 

Now we are ready to examine strictly decreasing convergent 

sequences of positive real numbers. The word convergent can be 

omitted, because all strictly decreasing sequences of positive real 

numbers converge. The next lemma is similar to Lemma 3. 5. 

Lemma 3. 10. Let {an} be a strictly decreasing (conver- 

gent) sequence of positive real numbers. Let A denote the set 

of elements in {an} and let S be the set generated by A. Let 
n 
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lim a = a. If a > 0, then there are no strictly increasing con - n-. n 

vergent sequences in S. 

Proof: Since a > 0, the maximum length of the representa- 

tions of x in A, for any x e S, is finite. Hence, the proof is 

by induction over the maximum of the sum of the coefficients of 

linear combinations of elements of A. Let S denote the set of 
P 

elements generated from A by linear combinations with coefficient 

sum not exceeding p. 

When p = 1, we have S1 = A. Any strictly increasing se- 

quence in S1 must begin with an element in {an} , say a.. 

However, fan} is strictly decreasing and hence exactly j - 1 

elements of A are greater than a.. Therefore, there exist no 

strictly increasing convergent sequences in S1 = A. 

For our induction step, we assume that there are no strictly 

increasing convergent sequences in Sk, for some k(k > 1 ). 

Let x E R+ . We must show that there are no strictly in- 

creasing sequences in Sk 
+1 

which converge to x. From an 

induction hypothesis, we know that there are no strictly increasing 

sequences in Sk which converge to ,x, none converging to x - a, 

and none converging to x - a. for each positive integer i. There- 

fore, there exist positive numbers E x , e , and c for each a i 

positive integer i such that the open intervals (x - Ex , 

x 
x), 

J 

n 
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(x - a - Ea, x - a), and (x - a. - E. , x - a.) for each positive 

integer i contain no elements of Sk. 

Since an converges to a, we can find an integer J> 0 

such that a. - a < 
2 

Ea for all i > J. Let 

(2) 
1 

E = min {Ex, El , E2 , . , EJ , 2 Ea } 

We proceed to show that there are no elements of Sk 
+l 

in the open 

interval (x - E, x). 

By (2), we have E < E. Therefore, there are no elements of 

Sk in (x - E , x), since there are no elements of Sk in (x - Ex, x). 

Hence, in order for an element of Sk 
+1 

to be in (x - E,x), there 

must be an element of Sk in at least one of the intervals 

(x - a. - E, x - a.) because all elements in Sk+ not also in Sk 

are of the form y + ai where y e Sk and a. E A. 

There are no elements of Sk in (x - ai - E, x - a.) for 

i(1 < i < J), because by (2), E < E for all i(1< i < J). If 
i- 

i > J, then ai - a < 2 Ea . Therefore, x + ai - a < x + 2 Ea , 

and so x - a - Ea < x - ai - 
1 

E . Since E < 2 Ea by (2), we a 1 2 a - 2 a 

have x - a - Ea <x -ai -E. Hence, (x -a. -E, x- a.)(x -a -Ea, x -a) 

which contains no elements of Sk. Therefore, there are no ele- 

ments of Sk in (x - a. - E, X - a.) for i > J. 

We have shown that there are no elements of Sk 
+1 

in 

(x - E, x). Hence, there are no strictly increasing sequences in 

. 

- x 

a i i i a 

n 
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Sk +1 
which converge to x. But x is arbitrary, so the proof 

is complete. 

This proof is valid only when fan} is bounded away from 

zero; that is, when a > 0. The reason may not be immediately 

clear, but suppose lim a 0. = Then for any positive integer k, 
n -P-00 n 

there are no strictly increasing sequences in Sk converging to x. 

However, there may be strictly increasing sequences in S con- 

verging to x. We obtain such a case by taking A = { 1 } for 
n 

all n( n > 1),. and letting S be the set generated by A. The 

induction proof remains valid, however, as long as { an} is 

bounded away from zero, because then given any x E R+ there 

exists an integer K > 0 such that for all k > K, we have S 

and Sk identical in the interval (0, x] . 

Theorem 3. 11. Let {an} be a strictly decreasing (con - 

vergent) sequence of positive real numbers, where lim a = a. 
n--c,0 n 

Let A denote the set of elements in {an} and let S be the 

set generated by A. If a > 0, then S is an s -set. 

Proof: Axioms s -1 and s -2 are immediate. To verify Axiom 

s -3, we must show that L(x) is finite for each x E S. Assume 

that there is an xo E S such that L(xo) is not finite. By Theorem 

3. 2, we know that x 
0 

is not finitely represented in A. 

n 

n 
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Moreover, since {a } is strictly decreasing and lim a = a> 0, 
n n-. oo n 

we have 0 < a < a, for all i(i > 1). Let h be the greatest 
x 

integer part of 
ó Then each representation of x in A has a o 

length h or less. 

Let {an } be the set of all elements of A, listed in strictly 

decreasing order, which occur in at least one representation of x . 
0 

Then {a} contains an infinite number of elements. If not, x 
n o 

would be finitely represented in A, since each representation has 

length h or less and there would be only finitely many elements 

of A available. 

Consider the sequence {x 
o 

- an } . Each x 
o 

- an E S 

because each an is in at least one representation of x 
o 

. The 

sequence {x 
o 

- an } 
* 

is strictly increasing, because {an} is 

strictly decreasing. We have lim (x - a ) = x - a, since 
n - o0 o n o 

{an} is an infinite subsequence of the convergent fan} and hence 

converges to the same limit. But now we have a strictly increasing 

convergent sequence in S, which contradicts Lemma 3. 10. There- 

fore, L(x) is finite for each x S and Axiom s -3 holds. 

Hence, S is an s -set and the proof is complete. 

Theorem 3. 11 can be generalized to the following theorems. 

Theorem 3. 12. Given a finite number of strictly decreasing 

(convergent) sequences of positive real numbers, let A be the 

1 

n 

e 

* * 

* 

n 

n 

n 

n 
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set of elements which occur in at least one of the sequences. Let 

S be the set generated by A. If each of the given sequences 

has a positive limit point and S is non -empty, then S is an 

s -set. 

Theorem 3. 13. Given a countably infinite collection of strictly 

decreasing (convergent) sequences of positive real numbers, let A 

be the set of elements which occur in at least one of the sequences. 

Let S be the set generated by A. Then S is an s -set if the 

following conditions hold: 

(i) for each x E R+, the interval (0,x] contains elements 

from only a finite number of the sequences, 

(ii) each of the given sequences has a positive limit point. 

The proofs of Theorems 3. 12 and 3. 13 parallel that of 

Theorem 3, 11. We omit the details of these proofs but indicate 

how they may be constructed from the proof of Theorem 3. 11. In 

each case we first show that there is no strictly increasing conver- 

gent sequence in S, which uses a proof paralleling that of Lemma 

3.10. Then we show that S is an s -set. The basic difference is 

that at each step we must work with a finite number of sequences 

instead of just one. We only need to work with a finite number of 

sequences, even in the proof of Theorem 3. 13, because given any 

x E R +, all but a finite number of the sequences occur completely 
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to the right of x on the real line. In Theorem 3.13 this follows 

immediately from condition (i). In fact, if we do not have condition 

(i), the set S is not always an s -set. For example, if the first 

elements of some of the sequences form the strictly increasing se- 

quence { 1 - } and if one of the strictly decreasing sequences 

is { 1 + 1 } , an s -set is not generated, as we shall see in Theorem 

3. 17. 

We can generalize Theorems 3.12 and 3.13 to the following 

theorem. 

Theorem 3. 14. Given the conditions of either Theorem 3.12 

or Theorem 3. 13, let a be the minimum of the limit points of 

the given sequences. Let B be a finite set of positive real num- 

bers in the open interval (0,a). Let S be the set generated by 

AFB, Then S is an s -set. 

Proof: Order the elements in B in decreasing order. Call 

the last element (the smallest) in this finite sequence b. We can 

extend this strictly decreasing finite sequence of positive reals to a 

strictly decreasing infinite sequence of positive real numbers which 

converges to 2 > 0 by inserting appropriate elements from the 

interval (2 , b) into the sequence. Call these newly inserted 

elements B' . Let S' be the set generated by A L.)BB' . 

The conditions of Theorem 3. 12 or Theorem 3. 13 still hold. 

1 
n 



Therefore, S' is an s -set. Hence, by Theorem 2, 1, the set S 

is an s -set, because S is a closed subset of S' . 

Suppose we have a set S generated by the elements of a 

strictly decreasing sequence {an} of real numbers and that 

lim a O. Then sometimes S is an s -set and sometimes it 
n co n 

is not as we see from the following two theorems. 

{ñ} 
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Theorem 3. 15. If A is the set of elements in the sequence 

and S is the set generated by A, then S is not an s -set. 

First, note that { 
n 

is strictly decreasing and lim -1 = 0. n-.con 

Proof: Consider any positive rational number r. We can 

write r = 
P where p and q are positive integers. Now 

qE A. Therefore, r = p 
q 

e S. Hence, S is the set of all 

positive rational numbers. The value of L(r) is not finite for 

any positive rational r, because L(r) is the set of all positive 

rationals less than or equal r. Therefore, Axiom s -3 fails and S 

is not an s -set. 

Theorem 3. 16. If A is the set of elements in the sequence 

{ tn} where 0 < t < 1 and t is transcendental, and S is the 

set generated by A, then S is an s -set. 

First, note that {tn} is strictly decreasing since 0 < t < 1, 

and that lim to = 0. 
n__. oo 

= 

} 

-1 
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Proof: Axioms s -1 and s -2 are immediate. To show that 

Axiom s -3 holds, consider any x E S and assume we have two 

distinct representations of x in A. Thus, 

and 

X = 

k= 1 

m 

tk , 

x = ckt k 
, 

k= 1 

where the bk and ck are non -negative integers, bk ck 

for some k ( 1 < k < m) , and m = max { k I bk + ck > 0 } . 

Then 

m m 
0 = x - x 

bktk- cktk = ck) tk, 
k=1 k= 1 k= 1 

and so t satisfies a polynomial equation in one unknown and with 

integral coefficients not all zero. Hence, t is algebraic, a con- 

tradiction. Therefore, x has a unique representation in A. By 

Theorem 3. 2, we have L(x) is finite. But x is an arbitrary 

element of S. Therefore Axiom s -3 is valid and S is an s -set. 

3. 4. Some s -sets Generated by Other Subsets 
of the Positive Real Number 

Suppose we have a set S generated by the elements of a 

= - 

m 

kLLL=1 

m L 
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strictly increasing and a strictly decreasing sequence of positive 

real numbers. Then sometimes S is an s -set and sometimes it 

is not as we see from the following two theorems. 

Theorem 3. 17. If A is the set of elements in at least one 

of the two sequences {1 + 1 n= 1, 2, ... } and {1 -- ( n= 2, 3, ... }, 

and S is the set generated by A, then S is not an s -set. 

Note that is strictly increasing and converges to 1 

while { 1 + 1 } is strictly decreasing and converges to 1. 

Proof: We can write 2 = (1 + 1n ) + (1 - 1n ) for each integer 

n(n > 2). Therefore, since 1 + - e A and 1 - 1 E A for each - n n 

n(n >2), the element 2 is not finitely represented in A. Hence, 

by Theorem 3. 2, L(2) is infinite, Axiom s -3 fails, and S is not 

an s -set. 

Theorem 3.18. If A is the set of elements in at least one of 

the two sequences {1 - tn} where 0< t < 1 and t is transcen- 

dental, and { 1 + 1 } , and S is the set generated by A, then 

S is an s -set. 

Note that { 1 - tn} is strictly increasing and converges to 1 

while { 1 + } is strictly decreasing and converges to 1. 

Proof: Axioms s -1 and s -2 are immediate. To show that 

Axiom s -3 holds, consider any x E S and assume we have two 

I 

n 

{ 1 - 1 } 

n 

n 

n 

1 
n 

n 



distinct representations of x in A. Thus, 

and 

x = 

X = 

bk ( 1 - tk) + 

k= 1 

k= 1 

ck(1-tk) + 

k= 1 

hk(1+k) , 

where the bk, ck, gk, and hk are non -negative integers, 

bk ck or gk hk for some k (1 < k < m), and 

m = max {k I ck+ gk+ hk> 0 } : 

Then 

m 
0= x -x= (bk-ck)(1-t 

k 
) + (gk hk)(1+k) 

k= 1 k= 1 

k= 1 

-bk)tk+ [(gk-hk)(1+k)+(bk-ck) ] , 

k= 1 
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and so t satisfies a polynomial equation in one unknown and with 

rational coefficients. Since t is transcendental, we must have 

ck = bk for all k(1 < k < m). Therefore, x uniquely determines 

the elements from the sequence { 1 - tn} which occur in any repre- 

sentation of x in A. 

Let 

m 

k=1 

# 

) 

m 
- 

m 
) 

gk(1+), 

m 
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x' _ bk(1 -tk). 
k= 1 

Since x uniquely determines x' , we know that x and x - x' 

both have the same number of representations in A. Therefore, 

by Theorem 3. 2, we have L(x) is finite iff L(x - x' ) is finite. 

However, any representation of x - x' contains only elements 

from the sequence 1 
{1 + n 

}, which is strictly decreasing and has 

a positive limit. Now the set S' generated by the elements of the 

sequence { 1 + 1 
n 

} is an s -set by Theorem 3. 11. Thus, L(x - x' ) 

is finite. Therefore, L(x) is finite and S is an s -set. 

Theorems 3. 3 through 3. 18 provide us with several sufficient 

conditions for s -sets of positive real numbers. A corresponding set 

of theorems can be listed for negative real numbers. 

Unsolved Problem. Give necessary and sufficient conditions 

for a subset of the positive (negative) real numbers to generate an 

s -set. 

3. 5. Other Examples of s -sets 

The most useful s -set in our study of density spaces is the set 

I of positive integers with the usual addition. If, in Theorem 2. 2, 

we set Ss = I for each b E A , then 
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S = II {I I SE A}, 

which Freedman [ 3, p. 28] denotes by In, is an s -set. We will 

use this example in Chapter VI. 

We can construct an unlimited number of different s -sets using 

Theorems 2. 1 through 2. 3 and 3. 3 through 3. 14. All of Freedman' s 

examples [ 3, p. 28 -30] follow from Theorems 2. 2, 3. 3, and Corol- 

lary 3. 4. 

Unsolved Problem. Construct an s -set which is essentially 

different from those we can construct with present theorems. 

3. 6. Construction of Fundamental Families 

Theorem 2. 4 is very useful in the construction of fundamental 

families for s -sets. For example, if we are given the s -set I, 

we can construct a fundamental family on I by letting 

B(x) = {1, 2, ... , x} for all x-e I. Here we obtain the density 

space (I,7() which is the one Schnirelmann [ 9, 10) worked with. 

Furthermore, if we let B(x) _ {x} for all x E I we obtain the 

density space (I,z). Here and are defined as in 

Section 2. 2. 

From this point on, whenever we define B(x) in order to 

obtain a particular density space, it is to be understood that condi- 

tions (i), (ii), and (iii) of Theorem 2. 4 are satisfied. 

2 rj 



34 

Theorem 2. 7 states that the intersection of any non -empty 

class of fundamental families on an s -set S is itself a fundamental 

family. If we replace intersection by union, the theorem fails as we 

see in the following example on the s -set I. 

Let 1B be defined by 
1 

Let 4B 
2 

B1(x) = 

be defined by 

{2,3} if x = 3, 
B2(x) _ 

{ x} otherwise. 

Let J= v J Then 11,3} 3} e 1 C 5 and 
B1 B2 BI 

{2, 3} e 5B2 C 5, but {1,3} n {2, 3} _ {3} ¿ 5. Therefore, 5 
does not satisfy Axiom f -3 and is not a fundamental family on I. 

Definition 3. 4 [ 4, p. 189] . A lattice is a partially ordered 

set in which any two elements have a least upper bound and a great- 

est lower bound. A lattice is complete if any subset has a least up- 

per bound and a greatest lower bound. 

Freedman [ 3, p. 24] proved the following theorem. 

Theorem 3. 19. The class of all fundamental families on an 

s -set S forms a complete lattice with respect to the partial 

1,3} if x= 3, 

{ x } otherwise. 

1 
- 

{ 
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ordering by set inclusion. 

Given an s -set S and two fundamental families °B and 
1 

(5B2 on S defined by B1(x) and B2(x) respectively, we 

have seen that v1 is not always a fundamental family. 
B1 B2 

However, Theorem 3. 19 assures the existence of a fundamental 

family J* such that 

mental families 

J v C C for all funda- 
B1 B2 - 

with the property that v C ?. 
B1 B2- 

Theorem 3. 20. Let and be two fundamental 4B1 

families, on an s -set S, defined by B1(x) and B2(x) respec- 

tively and let 5,,, = ,2µb { 

B1 
, ° }. Then °,,, is defined 

by B(x) where B(x) = B1(x) ,-B2(x) for all x E S. 

Proof: First, we show that B(x) satisfies conditions (i), 

(ii), and (iii) of Theorem 2. 4. Since x E B1(x) and x E B2(x) 

for all x E S , we have x E B(x) = B1(x) ,m B2(x). Therefore, 

condition (i) is satisfied. Now B(x) = B1(x)nB2(x)CB1(x)CL(x) 

for all x E S. Hence, condition (ii) is satisfied. Furthermore, if 

y E B(x) = B1(x) , B2(x), we have y E B1(x) and y E B2(x). Thus, 

B1(y) B1(x) and B2(y) B2(x). Therefore, 

B(y) = B1(y) n B2(y) C B1(x) , B2(x) = B(x) and condition (iii) 

is satisfied. Therefore, the family defined by 

B(x) = B1(x) B2(x), is a fundamental family on S. 

5 

J B2 

°IB, 

5,, 5 
" 
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Now B(x) B1(x) and B(x) C B2(x). Thus, In C 
`TB 

,.p 1 

and 1B C JB, by the way JB B and °B are de- l- 
cp 

1 2 
Arp 

fined, and so 
B1 v JB C_ 5B. We also have B1(x) E Ç5, 

1 2 1 

and B2(x) E 
B 

. ,, , by the way 1B and /B are de- 
1 1 2 

fined. Therefore, B(x) = B1(x) n B2(x) E J,;, for each x E S, 

by Axiom f -3 for fundamental families. However, B(x) e?,,, for 

all x E S implies 1B C /-e . Therefore, / 
L) 

1 C °5 C ` SB1 B2 - B - and so 

complete. 

vB = Jk and the proof is 

We conclude the chapter by showing that if B1(x) and B2(x) 

determine fundamental families, then B1(x) 2(x) does not 

always define a fundamental family. Let the s -set be I and let 

and 

Then 

B1(x) = 

B2(x) = 

12,4} if x = 4, 

{ 1, 3} if x = 3, 

{ x} otherwise. 

{3,4} if x = 4, 

{ x } otherwise. 

{ 2, 3, 4} if x = 4, 

B1(x) B2 (x) = { 1, 3} if x = 3, 

{ x} otherwise. 

C 

, 

* 

v 

L.) 

cp 



However, B1(x) 1/4..)B2(x) 

I because condition 
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does not define a fundamental family on 

(iii) of Theorem 2. 4 fails. To see this note 

that 3 E B1(4) uB2(4), but B1(3) cB2(3) B1(4) uB2(4). ,$ 
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CHAPTER IV 

DISCRETE FUNDAMENTAL FAMILIES 

In this chapter we study discrete fundamental families, and 

find restrictions needed for various density properties to hold. We 

also state some problems which have come up in this study and re- 

main unanswered. 

4. 1. Discrete Fundamental Families in General 

Freedman [ 3, p. 1011 defines a discrete fundamental family 

of order n as follows: 

Definition 4. 1. A fundamental family J on an s -set S is 

discrete of order n if satisfies -the following two conditions: 

(i) °S. is separated, 

(ii) for each x E S, we have S([ x] ) < n with equality holding 

for some x. 

Recall that S( [ x]) is the number of elements in S ç[ x] , 

which is the same as the number of elements in S B(x). Since 

J is separated, we know by Theorem 2. 12 that K- density and 

C- density are identical. Therefore, whenever we are working with 

discrete fundamental families we can say that the set A has density 

a , knowing that a is both the K- density and the C- density of A. 

T 

, 
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Freedman [ 3, p. 102 -103] proves the following theorem: 

Theorem 4. 1. Let (5,1 ) be a density space where is 

discrete of order 1 or 2. Let A, B, and C = A + B be subsets 

of S with densities a, ß , and y respectively. Then 

Y >min{1, a+ß}. 

The following example shows that the preceding theorem fails 

for discrete fundamental families of order n for each n(n > 3). 

In fact, Theorem 2. 8, which is true for all density spaces, gives 

the strongest result. Let the s -set be I and let 

{1,3} ifx= 3, 

{1,3,4} ifx= 4, 

{2,5} ifx= 5, 

{2,5,6} ifx= 6 

{11,12,...,10+n} ifx = 10+ n (n >3), 

{ x} otherwise. 

It can be verified in a straightforward manner that B(x) satisfies 

conditions (i), (ii), and (iii) of Theorem 2.4 and hence 1B is 

a fundamental family on I. Likewise it can be verified that vB is 

separated. Also I ( [ 10 + n] ) and I ( [ x] ) < n for all x e I. 

Therefore, by Definition 4. 1, J" is discrete of order n. Now 

let A = B = { 1,2,7,8,9,... }. Then C = { 1,2,3,4,7,8,9,... }. 

Since q(A, [ x] ), q(B, [ x] ), and q (C, [ x] ) are all minimized 

B(x) = 

_ 

= n 

1 
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at x = 6, we have a= ß = y = 3 . Hence, Theorem 2, 8 

gives the strongest valid result. 

In the rest of this chapter we place various restrictions on dis- 

crete fundamental families so that we can prove results which are 

stronger than that given by Theorem 2. 8. For some of these re- 

sults it may be possible, of course, to weaken our additional 

restrictions somewhat without changing the conclusions. A con- 

jecture of such a result is included later in the form of an unsolved 

problem, 

4. 2. Purely Discrete Fundamental Families 

Definition 4, 2, A fundamental family on an s -set S 

is purely discrete of order n if irS satisfies the following two 

conditions: 

(i) is discrete of order n, 

(ii) if y E [ x] and y , x, then [ y] _ { y }. 

Definition 4. 2 restricts severely. However, we prove 

the following theorem which is useful later. 

Theorem 4. 2, Let (S, 1) be a density space where J is 

purely discrete of order n. Then y > min { 1, a+ p } . 

Proof: Let A be any subset of S, and let a be the 

density of A. From condition (ii) of Definition 4. 2, we conclude 

c5 

1 

1 
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that for any x E S, either 

( a) [ x] _ { x} , 

or (b) [ x] _ { x1, ... , xi x } where [ x.] _ {x.} for all 
J J 

j(1 <j <i - 1). 

In case (a), we have a= 0 if x ¿ A. In case (b), we have a= 0 

if x. ¿ A for some j. Thus, if a 0, we must have 
3 

q (A, [ x] ) = 1 or q (A, [ x] ) = 
i -1 Therefore, the only den- 

sities a, ß , and y can take on are 0, 1, or i -1 for all 
i 

i (2 < i < n). If either a or ß is 0, then by Theorem 2. 8, 

we have y > max { a , ß } = min { 1, a+ ß } . If either a or ß 

is 1, then by Theorem 2. 9, we have y = 1 = min { 1 , a+ ß } . 

If a= aal for some a(2 < a < n) and ß= bbl for some 

b(2 <b <n), then 

a+ ß= a-1 b-1 > 1 1= 1. a b - 2 2 

Thus, by Theorem 2. 9, we have y = 1 = min { 1, a + p } . 

4. 3. Singularly Discrete Fundamental Families 

Definition 4. 3. A fundamental family ° on an s -set S is 

singularly discrete of order n if T satisfies the following two 

conditions: 

(i) ° is discrete of order n. 

(ii) S ( [ x]) = i for at most one x e S where i = 2, 3, n 

. 

... , 
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Theorem 4. 3. Let (S, I) be a density space where J is 

singularly discrete of order 3. Then y > min { 1, a+ (3). 

Proof: Consider the following cases: 

Case I: Let JB be defined by 

B(x) _ 

{xi,x2,x3} if x = x3, 

{x } otherwise, 

where x2-<x3. Then 
vB 

is purely discrete of order 3 and, 

by Theorem 4. 2, we have y > min { 1, a+ ß }. 

Case II: Let 1B be defined by 

{x1,x2,x3} if x = x3, 

B(x) _ { x4, x5} if x = x5, 

{ x} otherwise, 

where x1'.x2 <x3 and x4 <x5. Then 
B 

is purely discrete 

of order 3 and, by Theorem 4. 2, we have 

Case III: Let 1B be defined by 

Y > min { 1, 3). 

{ xi, x2, x3 } if x = x3, 

B (x) = { xi, x2 } if x = x2, 

{ x} otherwise. 

where x1x2 -<x3. The only densities possible for a or ß are 

0, 3 , 2 , 3 , and 1. If either a= 0 or ß = 0, then by 

Theorem 2. 8, we have y > max { a, P} = min { 1, a +ß }. If 
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a+ P> 1, then by Theorem 2. 9, we have y = 1 = min { 1, a+ (3). 

The only cases left to consider are a= ß= 3 and a= 3 , 

ß= 
2 

(or a= 

If a= ß = 
1 

, then x2 q' A, B and x3 ' A, B and all other 

elements of S are in both A and B, hence in C. Since 

xl -< x2 <x3, we have x2 - x1 E S. Also x2 - x1 ..<x2 because 

x2 - (x2 - x1) = x1 E S. Therefore, x2 - xl. x2 <x3, and so 

x2 - x1 # x2 and x2 - x1 x3 since >> .< 11 is transitive. 

Thus, x2 - x1 E A because x2 and x3 are the only two ele- 

ments of S not in A. However, x2 - x1 E A and xi E B 

imply (x2 - x1) + x1 = x2 E C. Therefore, y > 
2 

= min {1, a +ß }. 

If a= , 
3 

ß = 
2 

, then x2 A, B; x3 A; x3 E B; and 

all other elements of S are in both A and B, hence in C. 

Again since xl< x2 -<x3, we have x2 - x1 a S, and again 

x2- x1 # x2 and x2 - x1 # x3. Therefore, x2 - x1 E A. Now 

xi E B, so (x2 - x1) + x1 = x2 E C. Since x3 E B C C, all 

elements of S are in C and so y = 1 > = 
6 

min { 1, a+ ß }. 

We do not have the case where ° is defined by 
B 

{ x1, x2, x3} if x = x3, 

B(x) = { xi , x4 } if x = x4, 

{ x} otherwise, 

where x1ux2<x3 and xi -<x4 because here 
* 

is not 

separated and hence not discrete. Therefore the proof is complete. 

1 
, ß= 1 

). 

1 
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Indications are that we can prove similar theorems for singu- 
4 

larly discrete fundamental families of 5, 6, and so on. How- 

ever, each successive proof seems to require a greater number of 

cases and we have found no generalization of the proof for n = 3, 

Unsolved Problem. Prove (or disprove) that if (S, °4.) is 

a density space where is singularly discrete of order n, 

then y > min { 1, a+ ß }. 

Before going on, we should show that y > min { 1, a+ ß } is 

the strongest valid result for a density space (S, 5 ) where 

is singularly discrete of order n. Consider the following example 

where the s -set is I: 

Let vB be defined by 

{iJ 1 <i<x} if 1 <x <n, 
B(x) 

- - - 
{ x} otherwise, 

where n > 2. Then (I, 5B) is a density space where 
`7B 

is 

singularly discrete of order n. Let A = B = { 1, n +1, n +2, ... } . 

Then C = { 1,2,n +1,n +2,... }, 

2 
Y = n and so y = a+ P. 

Therefore a = ß = 1 and 

4.4. Nested Singularly Discrete Fundamental Families 

Definition 4.4. A fundamental family 
B 

on an s -set S 

is nested singularly discrete of order n if is defined by 

- 

DT 

_ - 

JB 

7 
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B(x) = 4 

and x 
1 

--<x 
2 

. . 

{x. I 1 < i < m i - - 
x } 

x , 
n 

} if x = x m (1<m< n) , 

otherwise, 

Case III of Theorem 4. 3, which is the most difficult case to 

prove, concerns nested singularly discrete fundamental families of 

order 3. 

Theorem 4.4. Let (S, ) be a density space where 5 
is nested singularly discrete of order 4. Then y > min { 1, a + P} . 

The inequality y > min { 1, a + ß} is the strongest possible 

result according to the example at the end of Section 4, 3. Before 

proving Theorem 4. 4, we prove two lemmas. 

Lemma A. Let (S, eS) be a density space where vB 

is the nested singularly discrete fundamental family of order 4 de- 

fined by 

B(x) = 

{ x2, x3, x4} 

{ x1, x2, x3} 

{ xl, x2} 

if x = x4, 

if x = x3, 

if x = x2, 

x} otherwise, 

where x1 <x2- .x3-<x4. Let A and B be subsets of S 

with densities a and ß respectively and let C = A + B. If 

a > 0 and x1 E B, then x2 E C. 

Proof: Since x1 -<x2- .x3-<x4, we have x2 - x1 E S. 

- 
{ 

. 

{ 

- 
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Now x2 - x1 < x2 because x2 - (x2 - x1) = x1 E S. Hence, 

x2 - x1 x2. ßx3 -<x4 and since ".<" is transitive we have 

x2 - x1 # x2, x2 - x1 # x3, and x2 - x1 # x4. Since a> 0, only 

x2, x3, or x4 can be missing from A. Therefore, 

Now x1 e B so (x2 - x1) + x1 = x2 e C. 

X2 
- 

X1 

Lemma B. Let (S, °B) be a density space where (4B 

E A. 

is 

the nested singularly discrete fundamental family of order 4 defined 

by 

{ x1, x2, x3, x4} if x = x4, 

{ x1, x2, x3} if x = x3, 
B(x) _ 

{ x1, x2 } if x = x2, 

{ x } otherwise, 

where x11 x2 .<x3 <x4. Let A and B be subsets of S 

with densities a and ß respectively and let C = A + B. If 

a > 0, x1 E B, and x2 e B, then x3 e C. 

Proof: Since x1 <x2 <x3 -<x4, we have x3 - x2 E S, 

X3 - X1 e S, and x2 - xi e S. Now x3 - x2-<x3-<x4 because 

x3 - (x3 - x2) = x2 E S, and so x3 - x2 # x3 and - x2 x4. 

Likewise, x3 - x1.x3.1x4, and so x3 - x1 # x3 and 

because x3 -X1 ßx4. But x3 - x2<x3 -xl, 

(x3 - x1) - (x3 - x2) = x2 - x1 e S, and so x3 - x2 # x3 - x1. 

Therefore, either x3 - x2 # x2 or x3 - x1 # x2. Since a> 0, 

x3 
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only x2, x3, or x4 can be missing from A. Therefore, either 

x3 -x2EA or x3 - x1 
1 

E A. But x1 E B and x2 E B, so in 

either case, x3 E C. 

Proof of Theorem 4.4: By an appropriate selection of nota- 

tion, ° is defined by 

B(x) = 

{ xi , x2, x3, x4} if x = x4, 

{x1,x2,x3} if x = x3, 

{ x1, x2} if x = x2, 

L { x} otherwise, 

where x1.<x2ux3.<x4. The only densities possible for a and 

P are 0, 4' 3' 2' 3' 4' and 1. If either a= 0 or P= 0, then 

by Theorem 2. 8, we have y > max { a , ß } = min { 1, a+ ß } . If 

a+ ß> 1, then by Theorem 2. 9, we have y = 1 = min {1, a+ ß }. 

We may select our notation so that a< P. Then the cases which 

remain are (i) a= f3 4, (ii) a= ß= 1 , (iii) a= 1 

, ß- 
1 

3 3 

(iv) a= , ß= , (v) a= , ß= , (vi) a= 1 
, ß= . 

1 Case (i): If a= ß= 4 , then x2 / A, B; x3 I A, B; 

x4 et A, B; and all other elements of S are in both A and B, 

hence in C. In particular, x1 E B. Therefore, by Lemma A, 

we have x2 e C, and so y > 2 = min { 1, a+ ß }. 

Case (ii); If a= p= 
3 

, then x2 e' A, B; x3 ¿A, B; and 

all other elements of S are in both A and B, hence in C. 

_ 

, 

2 



Again since x1 E B, we have x2 E C by Lemma A. Hence, 

2 
y >= min { 1, a+ p }. 

Case (iii): If a= 1 
, ß = 1 3' then x2 IA, B; x3 1 A, B; 
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x4 ¿A; x4 E B; all other elements of S are in both A and B, 

hence in C. Since x1 E B, we have x2 E C by Lemma A. 

Since x4 E B C C, we have y = 3 > 12 = min { 1, a+ p }. 

Case (iv): If a= 
3 

, 13= 2 , then there are two possibilities, 

one of which is x2 ¿ A, B; x3 WA; x3 E B ; x4 E A ; x4 may or 

may not be in B ; and all other elements of S are in A and 

B, hence in C. Since x1 E B, we have x2 E C by Lemma 

A. Since x3 E B C C and x4 E A C C, then all elements of S 

are in C and so y = 1 > 
5 

= min { 1, a+ (3). The other possi- 

bility is x2 A ; x2EB x3 ¿A,B; x4 EA; x4 ¿B; and all 

other elements are in A and B, hence in C. Since x1 E B 

and x2 E B we have x3 E C by Lemma B. Since x2 E B C C 

and x4 E ACC, then all all elements of S are in C and so 

y = 1 > = min 
6 

{ 1, a+ 131. 

Case (v): If a- 
4 

p = 
1 

2' 

one of which is x2 ¿ A, B ; x3 ¿A 

then there are two possibilities, 

x3EB; x4 ¿ A ; x4 may or 

may not be in B ; and all other elements of S are in both A 

and B, hence in C. Since xi E B, we have x2 E C by 

Lemma A. Since x3 E B C. C, we have y > 
4 

= min { 1, a+ p I. 

The other possibility is x2 A ; x2 E B; x3 of A, B ; x4 ¿A, B ; 

, 

d 
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and all other elements of S are in both A and B, hence in 

C. Since x1 E B and x2 E B, we have x3 E C by Lemma B. 

3 Since x2 E { p BCC, we have y > 
4 

= min 1, a+ }. 

1 2 Case (vi): If a = 
4 

, p = , then x2 (I A ; x2 E B ; 

x3 dA, B ; x4 é A ; x4 E B ; and all other elements of S are in 

both A and B, hence in C. Since x1 E B and x2 E B, 

we have x3 E C by Lemma B. Since x2 E BCC and x4 E BCC, 

then all elements of S are in C and so y = 1 > 
122 

=min {1, a +ß }. 

The proof of Theorem 4. 4 is complete. 

Now we examine the density space (I, ° ) where °41 is 

nested singularly discrete of order n. Even here, we have been 

unable to prove that y > min { 1, a+ ß }. However, we prove 

below both the Landau -Schnirelmann inequality, y > a+ p - a p , 

and the Schur inequality, Y> 
(1 ßà) 

proofs depend on the nested property of and are based on 

proofs given by Landau [ 7] and Schur [ 11 ] for the density space 

(I,¡/-). 

when a+ p< 1. The 

Definition 4. 5. Let (S, 1B) be a density space and let 

x E S. Then x is called a singleton if B(x) _ {x} . 

The following definition for X(x) is used in the remainder 

of this chapter and is not to be confused with the B(x) defined in 

Theorem 2. 4. 

3 

7 
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Definition 4. 6. Let X be a subset of I. Then X(x) 

denotes the number of integers in X which do not exceed x. 

The following theorem is useful in proving Theorem 4. 6 and 

4. 7. 

Theorem 4. 5. Let (I, 1) be a density space where 5 is 

nested singularly discrete of order n. Let A be any subset of 

I and a be the density of A. Let T be the set of singletons 

in I which are greater than 1. If T {1} CA, then 

a= gib {A(x) - T(x) 
x - T(x) I XE I } . 

Proof: Since J is discrete, we have 

a = gib {q(A, [x] )I xE I } . 

Now the set of all singletons, T v{ 1 }, is contained in A, and 

so q(A, [ x] ) = 1 for all x E T{i}. Therefore, 

a = gib {q(A, [x])IxeI, xi Tu {1 } }. 

Since is nested singularly discrete of order n, then using 

the notation of Definition 4. 4, we have 

(1) 

Thus, 

(2) 

{ x I x E I , xEl Tu{ 1}}= {xiI <i <n} . 

a= min {q(A,[xi] )I 2 < i < n ) . 

. 

7 
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Hence , for each i ( 2 < i < n), we have [ xi] _ {x1, x2, ... xi} . 

Since T(xi) is the number of singletons from 2 through xi, then 
3. 

(3) 

T(xi) = (xi - 1) - (i - 1) 

= x. - i i 
= x. -I([x.]) 

i i 

whether x1 = 1 or x1 > 1. Let R be the number of non- 

singletons in A which do not exceed x. (2 < i < n). Since all 

singletons are in A, we have 

(4) A(xi) - (T(xi) + 1) = R. 

However, since the non - singletons in A which do not exceed x. 

form the set { x. 12 < j < i }, then 
J - 

(5) 

A([ xi] ) = A ({x1} 

= A ({x1})+ A (x2,... 
, xi) 

= 1+R 

Combining (4) and (5), we obtain 

(6) A([ x.] ) = A(xi) - T(x.). 

Equations (3) and (6) yield 

A([x, ] ) A(xi) - T(xi) 
1 

q(A, [ x . ] ) = - 
1([ xl] ) x. - T( xi) 

v{x2, . . . , xi}) 

. 

i 



where 2 < i < 

and by (1), 

( 7) 

If x E Tv{1}, 

and u E T L,{1} 

(8) 

If no such y 

n, and so by (2), we have 

A(x.) - T(x.) 
i i 

= 

x 
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2 < i < n 

I, xiTv{1} }. 

such that y < x, y d T v {1 } , 

then 

T(x-1) A(y) - T(y) 

a min { 
T(x.) - T(xi) 

y 

- 

a= gib x- T(x) 

and there exists a 

whenever y < u < x, 

A(x) - T(x) A(x-1) 
x - T(x) x-1 - T(x-1) y - T(y) 

exists then A(x) = x, T(x) = x - 1, and so 

(9) A(x) - T(x) 
x - T(x) 

Therefore, by (7), (8), and (9), we have 

a = gib { A(x) - T(x) 
x - T(x) 

and the proof is complete. 

1. 

Theorem 4. 6. Let (I, ) be a density space where ci5e 

is nested singularly discrete of order n. Then y > a +ß a ß 

xi 

= 

x e I} 

- - 

I 
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Proof: Recall that X(x) denotes the number of integers in 

X I which do not exceed x. Let A and B be subsets of I, 

and a , ß , y be the densities of A, B, C = A + B respectively. 

If A = I, then a= y = 1 and the theorem follows. Therefore, 

we assume that at least one positive integer m is not in A. We 

construct integers a. and b. where 

0< a <b < a <b < ... < a < b < a < m - 1 1 2 2 2 k-1 k-1 k 

as follows. Let al + 1 be the least positive integer missing from 

A. Let b1 + 1 be the least integer greater than al + 1 which 

is in A. In general, let a. + 1 be the least integer greater 

than b. + 1 which is not in A and let b. + 1 be the least 

integer greater than ai + 1 which is in A. This process ter - 

minates when we reach ak < m and find that either bk does not 

exist or b > m. k- 
We can assume that all singletons are in both A and B, 

hence in C. Otherwise, a= 0 or f3 = 0, and the theorem is 

immediate. Let T be the set of all singletons in I which are 

greater than 1, as in Theorem 4. 5. 

We have 

C(m) > A(m) + B (bi - al) + . . . + B(bk-1 ak_i) + B(m - ak) 

and so 

- 
, 

-1 
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B(b -a )+... +B(b -a )+B(m-a ) (10) C(m) -T(m) >A(m)-T(m) 1 1 k-1 k-1 k 
m-T(m) - m-T(m) + m - T(m) 

By Theorem 4. 5, we have 

A(m) - T(m) 
q, - m -T(m) 

Hence, there exists a non -negative constant a 
m 

a+ a = m m - T(m) 
A(m) - T(m) 

Also by Theorem 4. 5, we have 

such that 

B ( m - ak) - T( m - ak) B ( m - ak) 
(12) ß< < - m - ak - T(m - ak) - m - ak 

and 

B(b. - a.) - T(b -a.) B(b. - a.) 
ß< i i i 1 < i i 

b. - a. - T(b. - a.) - b. - a. ' 
i = 1, 2 k-1. 

i i i i i i 

Combining (10) , (1 1) , (12) , and (13) , we obtain 

(14) Cm)T(m, ) >a+án+ m-T(m) {(b -a 
1 
)+...(bk-l-ak-1)+(m-ak)} . 

But A(m) = ak - (b1 - al) ... - (bk- - ak -1)' so (14) becomes 

- 

ß 
m-T(m) 

(13) 



C(m) -T(m) 
m-T(m) > a+a + m m-T(m) {m-A(m) } 

= a+a + m m-T(m) m- T( m)+ T( m) -A(m)} 

= 
A(m) - T(m) a}a m 

+ ß-ß{ m - T(m) 

> a+a +ß -ß { a+ a } 
- m m 

= a+ß -aß+a m 
{ 1-ß} 

>a+ß - aß 

because a is non -negative and ß< 1. Therefore, m - 

(1 5) 
C(m) - T(m) 

+ ß - a ß m - T(m) 

for all m WA. 

(16) 
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If m e A and all integers less than m are in A, we have 

C(m) - T(m) 1>a+ ß - aß m - T(m) 

Otherwise, we find the largest integer m' less than m and 

in A. Then 

(17) 
C(m) - T(m) 0(m') - T(m' ) > a+ ß - a ß . m - T(m) - m' - T(m' ) - 

R 

- 

= - 

} 

> 
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From (15), (16), and (17) we can conclude that 

C(x) - T(x) > a + ß - a 
x - T(x) 

for all x E I . Therefore, 

gib { C(x) - T(x) x - T(x) 

ß 

X E I} > a+ß -a ß, 

and so by Theorem 4. 5, we have y > a +ß -a ß and the proof is 

complete. 

Theorem 4. 7. Let (I, 4') be a density space where J is 

nested singularly discrete of order n. If a +ß< 1, then 

y> ß /(1 - a). 

Proof: Recall that X(x) denotes the number of integers in 

the set X,I which do not exceed x. Let A and B be sub- 

sets of I, and a , ß , y be the densities of A, B, C = A + B 

respectively. Let T be the set of all singletons in I which are 

greater than 1, as in Theorem 4. 5. We can assume all singletons 

are in both A and B, hence in C. Otherwise, a= 0 or 

P= 0, and the theorem is immediate. If y = 1, we have 

y>a+ß= ay+ß, and so Y(1 -a)>ß and the theorem follows. 

Hence, we can assume that y < 1, and so, at least one integer 

is missing from C. Let x1, x2, ... be the integers missing from 

( 

- 
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C. Let x = O. First, we show that 
o 

(18) x. - x. - 1 > B (x.) - B(x. ) + A(x. - x. -1), 
1 i-1 - i i-1 i i-1 

for any i (i > 1). Now B(x.) - B(x ) is the number of integers i i -1 

in B which lie in the interval (xi xi] . Assume there are 

such integers b b2, ... b . Since x. ¿C, we know that 
P 

x. - b. áA for each j(1 < j < p). We also know that 

0 < xi -b.< xi -x. - 1 for each 
J- 

j(1< j<P) 
A(xi - xi-1-1) xi xi-1 - 1 - p. Hence, 

Therefore, 

xi-xi-1 - 1 = p+xi-xi-1 i-1 1 

P 

For any h such that xh ¿C, we can sum (18) from 1 to 

h, obtaining 

(19) xh -h> B(xh)+ 

i-1 

A(x.-x. -1). 
i i-1 

However, C(xh) = xh - h and by Theorem 4. 5, we have 

a< A(m) - T(m) A(m) 
- m -T(m) - m 

for any positive integer m. Therefore, (19) becomes 

j - - 

-p > B(xi) -B(xi-1 -xi-1-1). 

1 

< 

- 

t i - i i 

h 
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h 

C (xh) 
> 

B(xh) + a(xi - xi-1 - 1) 

i= 1 

= B ( xh) + a ( xh - h) 

= B(xh) + a C (xh) 

Hence, 

(20) (1 - a) C(xh) >B(xh) . 

Therefore, by (20) and Theorem 4. 5, we have 

(21) (1- a) C(xh) - T(xh) B(xh) - T(xh) 

xh - T( xh) - xh - T( xh) ß 

But 0 < 1 - a< 1 so (1 - a)T(xh) < T(xh). Hence, (21) becomes 

and so 

(22) 

(1 - a 
C(xh) - T(xh) 

> 

xh - T(xh) 

C ( xh) - T(xh) 

xh - T ( xh) 

ß, 

> ß - (1 - a) 

If m E A and all integers less than m are in A, we have 

(23) 
C(m) - T(m) ß 

m - T(m) (1 - a) = 1 > 

j L 

' 
_ 
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Otherwise, we find the largest integer m' less than m and in 

A. Then 

(24) C(m) - T(m) C(m' ) - T(m' ) ß 
m - T(m) - m' - T(m' ) - (1 - a) 

From (22), (23), and (24) we can conclude that 

C(x) - T(x) ß 
x - T(x) - (1 - a) 

for all x E I. Therefore, 

C(x) - T(x) gib { x - T(x) XEI}? (1ßa) 

and so by Theorem 4. 5, we have y > ß /(1 - a) and the proof 

is complete. 

Unsolved Problem. Study discrete fundamental families of 

infinite order. Such a family is defined by replacing condition (ii) 

of Definition 4. 1 by " the set { S ( [ x]) ( x E S } is unbounded. " 

The density space (I, ) is an example of a discrete fundamental 

family of infinite order. 

I 
, 

> > 

> 



60 

CHAPTER V 

THE TRANSFORMATION PROPERTIES 

In this chapter we study some relations between the two trans- 

formation properties T - 1 and T - 2, and the Landau - 

Schnirelmann and Schur inequalities. 

5. 1. The Landau -Schnirelmann Inequality and T -1 

Let (S, ° ) be any density space. Theorem 2. 14 tells us 

that the Landau -Schnirelmann inequality, y > a +ß - a ß, holds if 

S is T -1. In this section we show that y > a +ß -a ß does not 

imply that 5 is T -1. In order to show this we prove the fol- 

lowing theorem which is of independent interest. 

Theorem 5. 1. Let (I, 1B) be a density space where 
B 

is discrete of order n. Then `B is T -1 iff "B is de- 

fined by B(x) = {x} for all x E I; that is, iff n = 1. 

Proof: Let `SB be defined by B(x) _ {x} for all x e I. 

Then JB =i), and so 1 
B 

is T -1 because all non -empty 

subsets of I are in "B 
=D 

Now let vB be T -1 and assume that is not defined 

by B(x) _ {x} for all x E I. Then there exists an integer 

c4)B 
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k(k > 2) and an integer i(1 < < i < k - 1) such that B(x) _ {x} 

for all x(1 < x < k - 1) and { i, k} C B(k). 

Suppose B(k +1) = {k+ 1 } . Then, using the notation of Defini- 

tion 2. 17, if x = 1 and F = { 1,k + 1 } , we have D= { k + 1 } 

and T1 [D] = {k} ¿ v {(i)} 

Thus, a4B 

by the way °4B is defined. 

is not T -1, a contradiction. Therefore, B(k + 1) 

is not a singleton. 

As our induction step we assume that B(k + j) is not a single- 

ton for an arbitrary integer j(j > 1). 

Suppose B(k + j + 1 ) = {k + j + 1 }. Then, if x = 1 and 

F = { 1 , k + j + 1 } , we have D = {k + j + 1 } and 

T1 [D] = {k + j } I °gB {(I) }, by the way cjB is defined. 

Thus, is not T -1, a contradiction. Therefore, B(k+ j) 

is not a singleton for any j(j > 1). Hence, only the first k - 1 

positive integers are singletons. 

Now each B(x) must contain at least one singleton, because 

the smallest integer in each B(x) is a singleton. Therefore, one 

or more of the first k -1 integers must occur in infinitely many 
co 

of the B(x). Let y be any such integer. Then y E n B(x.) 
i= 1 

for some strictly increasing sequence {xi }. Since B is a 

discrete fundamental family it must be separated. Hence, since 

y E B(xi) B(xi +1) and xi < xi +1 
we must have B(xi) CB(x. 

i 
Therefore, 

°B , 

i 

n , . 
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B(xl) C B(x2) C C . . . C B(xi) B(xi) C . . . 

which contradicts the fact that is discrete of order n. 

Therefore, IB is defined by B(x) _ {x} for all x e I and 

the proof is complete. 

Let (I,B) be be any density space where *TB is discrete 

of order 2. By Theorem 4. 1 , we have y > min { 1 , a+13}> a +ß - a p.. 

By Theorem 5. 1, we know that vB is not T -1. Therefore, 

y > a+ ß - a ß does not assure us that is T-1. 

Unsolved Problem. Replace the T -1 property in the hy- 

pothesis of Theorem 2. 14 with a weaker condition which still im- 

plies the Landau -Schnirelmann inequality. 

5. 2. The Schur Inequality and T -2 

Let (S, ) be any density space. Theorem 2. 15 tells us 

that if El is T -2, then y > (3/(1 - a) whenever a+13< 1. 

In this section we show that the Schur inequality does not imply T -2. 

Consider the following example on the s -set I. 

Let IB be defined by 

{ 2, 4 } if x = 4, 

B(x) = { 1, 5} if x = 5, 

{x} otherwise. 

1B 

p 
,1B 
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If, using the notation of Definition 2. 18, we let x = 5 and F be 

empty, then D = {1, 5} and T2[D] _ {4} ¿ JB v {0. Hence, 

B is not T -2. However, the Schur inequality holds in (I, 

To see this we note that if a+ ß< 1 , then by Theorem 4. 1, we have 

since vsB 

y > min { 1, a+ ß} = a+ ß> ay + ß, 

is discrete of order 2. Thus, 

y > ßs(1 - a). 

y -ay>ß:, and so 

Unsolved Problem. Replace the T -2 property in the hy- 

pothesis of Theorem 2. 15 with a weaker condition which still implies 

the Schur inequality. 

5. 3. The Correspondence Between T -1 and T -2 

Property T -2 does not imply property T -1 as we see by 

the following example on the s -set I. 

Let alB be defined by 

B(x) = 

{1,2,} if x= 2, 

{x} otherwise. 

Using the notation of Definition 2. 18, the only choices allowed for 

D are {0, {1, 2 }, and {x }. Hence, the only possibilities 

for T2[ D] are {4} and { 1), which are both in 1B v {0. 

Thus, °B is T -2, However, JB is discrete of order 2 

and hence is not T -1 by Theorem 5. 1. 
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It seems unlikely that T -1 could imply T -2 because then, 

by Theorem 2.15, T -1 would imply the Schur inequality. How- 

ever, T -1 incorporates the characteristics of density spaces for 

which the Landau- Schnirelmann inequality hold, and the Landau - 

Schnirelmann and Schur inequalities are dissimilar. 

Unsolved Problem. Prove that T -1 implies T -2 or find 

a density space which is T -1 but not T -2, 
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CHAPTER VI 

DENSITY SPACES AND PROPERTIES 

In this chapter we list several density spaces and summarize 

properties which they satisfy. We are particularly interested in 

the properties Freedman [ 3, p. 43 -46] has defined and the in- 

equalities made famous in the study of Schnirelmann density on the 

set of positive integers. 

6. 1. Examples and Properties 

The properties we study are T -1, T -2, separation, the Schur 

inequality, the Landau -Schnirelmann inequality, and y > min {1, a +ß }. 

We consider both K- density and C- density. We examine the follow- 

ing density spaces which have been of particular interest in our work. 

These are only representatives of a much longer list which could be 

developed. 

Example l': (S, ß). This is the density space (S, 1), 
where 5 is discrete of order 1. 

Example 2: (S, ° ) where °'S is discrete of order 2. 

Example 3: (S, 5) where ° is discrete of order n(n >2). 

Example 4: (S, 5') where is purely discrete of order n. 

Example 5: (S, °, ) where is singularly discrete of 

order n. 

. 

° 



66 

cj Example 6: (I, where is nested singularly discrete 

of order n. 

Example 7: (S, X) . 
Example 8: (I, This is the density space for which 

Schnirelmann density was first studied. 

Example 9: (In, /) where In is defined as in Section 

3.5 and n> 1. 

Example 10: (I, B) where 
B 

is defined by 

{ 2, 4, x} if x is even, 
B(x) _ 

{x} if x is odd. 

A clear way to summarize the results for these ten examples 

is with a chart like the one we have included at the end of this 

chapter. Each box in the chart represents one of the properties and 

one density example. A YES in the box means that the property 

under consideration is always true for that example, a NO means 

it is not always true, a UKN means that to our knowledge the 

truth of the result is unknown, and a CNJ means that the truth of 

the result is unknown but we conjecture a YES. Many boxes also 

contain letters which identify the person or persons who first verified 

the results. The results in boxes containing no letters are easily 

verified or are not attributed to any individual. The letter code for 

the chart is as follows: 

) 

... , 

_ 
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S = Schnirelmann [ 9, 10] 

L = Landau [ 7 ] 

H = Schur [ 11 ] 

M = Mann [ 8 ] 

D = Dyson[2] 

C = Cheo [ 1 ] 

K = Kvarda [ 6] 

F = Freedman [ 3] 

A = The author 

If a number occurs in a box, then a comment concerning the re- 

sults in that box is found following that number in Section 6. 2. 

6. 2, Comments 

The number preceding each comment in this section identifies 

it with the box or boxes in the chart which contain that number. 

1. These results follow from Theorem 4. 1. 

2. The example following Theorem 4. 1 shows that all of the 

listed density inequalities fail to hold in general for Example 3, 

3. These results follow from Theorem 4, 2. 

4. These results hold for n < 3, by Theorems 4. 1 and 4. 3, 

We conjecture that they hold for all n. 

5. These results follow from Theorem 4, 6. 

6. These results follow from Theorem 4. 7. 
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7. These results hold for n < 4, by Theorems 4, 1, 4, 3, 

and 4. 4, We conjecture that they hold for all n. 

8. These results follow from Theorem 2, 13. 

9. This result follows from Theorems 2. 13 and 2. 14, 

10. These results follow from Theorems 2.13 and 2.15. 

11. Example 9 is a particular case of Example 7 for which this 

result is known to fail. 

12. These results are easily verified. 
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Example 
Property 1 2 3 4 5 6 7 8 9 10 

T -1 
YES NO NO NO NO NO YES 

F -8 
YES YES NO 

T -2 
YES NO NO NO NO NO YES 

F -8 
YES YES YES 

Separation YES YES YES YES YES YES NO YES NO YES 

> Y a+ ß- a ß 

YES YES NO YES n 
ES 

YES YES YES YES YES 
F -1 F -1 A -2 A -3 

CNJA 
A -4 

-5 F -9 L,S K 12 

Yc- c_> > a 
c +ßc 

- a 
cßc 

YES 
F -1 

YES 
F -1 

NO 
A -2 

YESh <3 
A -3 

YES 
YES 

-5 
UKN YES 

L, S 
UKN YES 

12 CNJA 
A -4 

Y > ß/ (1 -a) 

when a} ß< 1 

YES 
F -1 

YES 
F -1 

NO 
A -2 

YES 
A 3 

n 3S YES 
6 

YES 
F -10 

YES 
H 

YES 
F -10 

YES 
12 

CNJ 
A -4 

Y ß > ß / (1 - a ) c- c c 

when a +13 < 1 
c c 

YES 
F -1 

YES 
F -1 

NO 
A -2 

YES 
A -3 

YE 

- A -6 
YES UKN YES 

H 
UKN YES 

12 
CNJ 
A -4 

y >min {lea +ß} 
YES 
F -1 

YES 
F -1 

NO 
A -2 

YES 
A -3 - 

YES 
n< 3 

YES 
n <4 - 

UKN YES 
M,D 

UKN YES 
12 

CNJ CNJ 
A -4 A -7 

> min 1 a + Yc { ßc} 
YES 
F -1 

YES 
F -1 

NO 
A -2 

YES 
A -3 

,;,NJ 

YES 
n< 3 - 

YES 
n< 4 - 

NO 
11 

YES 
M,D 

NO 
C 

YES 
12 

CNJ 
A -4 A -7 

i 

- -- - - - - - 

c 

- - 

T 

' 
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