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Degradation of watersheds is a major concern in areas where adverse climate effects 

and unsustainable use of the natural resources have caused extensive stresses to 

watershed systems (e.g., increased floods, increased droughts, worsened in-stream 

water quality) through the years. While considerable efforts are being made to generate 

technical solutions that focus on plans of spatially-distributed conservation practices 

(e.g., Wetlands, Filter Strips, Grassed Waterways, Crop Management practices, etc.) 

for restoration of existing conditions in the watersheds, adoption and implementation 

of these solutions require a better understanding of constraints faced by affected 

stakeholders and decision makers. Participatory modeling and design approaches have, 

as a result, become popular in the recent past to support a community’s engagement 

during the modeling process and during development of potential scenarios of plans 

(or, design alternatives). And now, with new and ongoing developments in Web 2.0 

technologies, there is an even greater need for research that examines how large number 

of stakeholders can be engaged in the development of design alternatives via the 

internet-based, decision support environments. 

The overarching goal of this research is to investigate how stakeholder participation 

(“humans”) and Interactive Genetic Algorithms (“computer”) can be coupled in a web-

based watershed decision support system (DSS) called WRESTORE (Watershed 

REstoration using Spatio Temporal Optimization of REsources-

http://wrestore.iupui.edu/), in order to generate user-preferred design alternatives of 

http://wrestore.iupui.edu/


 

 

 

        

     

       

      

    

           

    

        

       

 

         

 

      

 

         

     

       

 

        

       

         

       

 

             

   

         

        

          

  

distributed conservation practices on a watershed landscape. An important component 

of this goal is to also improve the understanding of how human behavior on the 

graphical user interface (GUI) of the DSS can be observed and evaluated in real-time, 

and then learned from to further improve the performance of the underlying search 

algorithm. Four specific objectives were addressed in this work to accomplish the 

overall goal: 

	 Objective 1: Observe interactions of multiple users with the GUI of a web-based 

watershed DSS (WRESTORE, http://wrestore.iupui.edu/) during interactive search 

experiments, and then use Usability metrics (response times, clicking events and 

confidence levels) to evaluate the differences and similarities in user behaviors and 

interactions. 

	 Objective 2: Examine relationships between the type of users (e.g., stakeholders 

versus surrogates), the Usability metrics, and patterns in the watershed-scale plans 

of conservation practices generated by the multi-objective Interactive Genetic 

Algorithm embedded in WRESTORE. 

	 Objective 3: Examine relationships between the type of users, the Usability metrics, 

and patterns in the user-preferred, sub-basin-scale plans of conservation practices 

generated by the multi-objective Interactive Genetic Algorithm embedded in 

WRESTORE. 

	 Objective 4: Develop and test novel human-guided search operators that adaptively 

learn for patterns in user-preferred alternatives generated by the multi-objective 

Interactive Genetic Algorithm, and, as a result, improve the convergence rate of the 

search algorithm for generating design alternatives that conserve these learned 

patterns. 

Results show that there is a clear difference on how different types of users interact 

with the Interactive Optimization system. The observed relationship between 

confidence levels, time spent on a task, and number of mouse clicking events, indicated 

that participants who were able to use the WRESTORE GUI to gather more information 

and had a higher rate of time per number of clicks, tended to increase their levels of 

self-confidence in their own feedback. Also, when engaging with watershed 

http://wrestore.iupui.edu/


 

 

    

        

        

   

       

      

       

          

     

        

       

      

            

         

     

   

       

      

        

      

       

       

      

       

       

            

          

        

            

    

    

stakeholders versus non-stakeholders (or, surrogates), 67% of the stakeholder 

participants steadily increased their average self-confidence levels as they continued to 

interact with the tool, in contrast to only 29% of surrogate participants who also showed 

an increase in their self-confidence levels through time. Such usability and confidence 

level evaluations provide assessments on which participant was potentially generating 

reliable feedback data for the search algorithm to use. An analysis of design alternatives 

generated by the individuals in both stakeholder and non-stakeholder groups showed 

that a majority (67%) of the stakeholder participants found a higher percentage (on and 

average 52%) of preferred design alternatives via the interactive search process. Also, 

users who were focused on assessing the suitability of design alternatives for the entire 

watershed trended to demonstrate a bias for one of the watershed-scale objective 

functions. In contrast, users, who were focused on assessing the suitability of design 

alternatives at only a few local sub-basins in the watershed, did not demonstrate any 

clear bias for any one of the watershed-scale objective functions. Additionally, patterns 

were observed in the design of decision alternatives generated by the human-centered 

search process, which further divulged potential user preferences related to the decision 

space for example, whether a specific participant preferred a certain practice over 

another, or a certain location over another for a specific practice. Finally, to improve 

the convergence rates of the Interactive Genetic Algorithm in WRESTORE, we 

investigated whether observed patterns in decisions (especially, when users were 

focused on local sub-regions of the watershed) can be used to improve the search for 

user-desire designs. A novel Interactive Genetic Algorithm with adaptive, human-

guided, selection, crossover and mutation operators was proposed. The new algorithm 

was tested with six types of simulated participants (three deterministic and three 

probabilistic users) developed from the feedback data of three real participants. Results 

of search experiments with the novel adaptive IGA operators indicated a faster 

convergence than the default IGA, for two out of three deterministic simulated users. 

However, none of the probabilistic user showed a convergence different than the 

default values. This indicates that while current results indicate promise, there is need 

for additional research on adaptive, human-guided IGA operators, especially when 

noisy/stochastic users participate in the search. Additionally, adaptation of search 



 

 

         

    

operators have the potential to improve convergence rates when participatory design is 

done via Interactive Genetic Algorithms. 
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CHAPTER 1. Introduction 

1.1 Problem Statement 

The Environmental Protection Agency (EPA) defines “Watersheds” as the area of land 

where all the water that is under it, or drains off of it goes into the same place 

(http://water.epa.gov/type/watersheds/whatis.cfm). Watersheds provide multiple resources 

(such as water supplies, food supplies, wood supplies, minerals, etc.) and ecosystem 

services (defined by MEA (2005) as the benefits obtain from the ecosystems, such as, 

hydrologic services – water storage and availability-, nutrient cycling, biological 

regulations, etc.) that are necessary for create sustainable living environments for 

communities (Strange et al., 1999; Smith et al., 2006, Brauman et al., 2007). Therefore, 

effective management of watersheds is critical for supporting the activities of settled 

communities.   

However, alteration of hydrologic cycle and impairment of streams has become a reality 

in a large number of watersheds in the United States and across the world, because of 

changes in land use that were necessary to facilitate the development and growth of settled 

communities. In the late 1800’s, the United States Federal Government became concerned 

about the growing impacts of ineffective watershed management on the general well-being 

of human and ecological communities living in the watersheds. The rapid increases in the 

population had begun to stress natural resources, in particular, water resources, which were 

necessary for ensuring water supply and waterway navigations (Cole et al., 2002). 

However, even though Federal entities were working towards finding solutions to 

overcome the impacts of developments (e.g., urban and agriculture) and population growth 

on the natural resources (water, forestry and soil), it was soon realized that successful 

adoption of prescribed actions by the stakeholders of the watershed was critical to ensuring 

effective restoration and remediation of degraded watershed conditions (Gregersen et al., 

2007). Over time, it became even more important for watershed planners to effectively 

communicate with stakeholders the multiple consequences of different scenarios of 

restoration plans that could potentially be adopted by them. 

http://water.epa.gov/type/watersheds/whatis.cfm
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According to the United States Department of Agriculture’s (USDA) “Budget Summary 

and Annual Performance Plan,” the conservation programs and have received 

approximately $66 billion in the last five years to assist with the implementation of plans 

that seek to diminish environmental damage 

(http://www.obpa.usda.gov/budsum/FY15budsum.pdf). Currently, the NRCS (National 

Resources Conservation Service) is the leading federal agency to assist in the restoration 

of watershed services providing technical and financial assistance to those private 

landowners committed to the re-naturalization of ecosystem services. 

The complex relationships and tradeoffs between the available watershed resources, 

available restoration budgets, and a community’s needs and aspirations have presented 

significant challenges in managing and restoring the quality of watershed resources 

(Johnson et al., 2002; Poch et al., 2004; Bonnell and Koontz, 2007; Jakeman et al., 2008; 

Cohen and Davidson, 2011; Margerum and Robinson, 2015), and the ecosystem services 

provided by these resources. Pahl-Wostl (2005), argues that, because of communities’ 

dissatisfaction with prescribed expensive and non-sustainable solutions, there is a need to 

find decentralized technological alternatives that include individual stakeholders in the 

problem-solving process and help them find acceptable and sustainable solutions. Several 

other studies have also recommended participation of different professionals and public in 

watershed planning and management projects as means for improving the adoption of 

management plans (Moote el at. 1997; Hamalainen et al., 2001; Lubell, 2004; Mostert et 

al., 2008; Kronaveter and Shamir, 2009; McFadden et al., 2011; Evers et al., 2012).  

One of the major tasks of planners and managers, who are responsible for managing a 

community’s resources, is to generate design alternatives for watershed management that 

satisfy community interests and criteria without overriding individual rights. Gregersen et 

al., (2007) indicate that successful watershed management should consider design 

alternatives for watershed’s built-in complex systems based on both technical and 

institutional perspectives. These perspectives may be related to rules, norms and laws 

established and accepted by the community, and may consider the range of technological 

solutions available for meeting management goals. Therefore, new plans and designs must 

http://www.obpa.usda.gov/budsum/FY15budsum.pdf
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be developed under a legal framework that protects the individual stakeholders’ rights, 

while also enabling sustainability of the watershed’s resources.  

However, it is almost impossible to create design alternatives where different 

management objectives and community interests do not conflict. For example, a 

community constrained by budget limitations may end up adopting restoration alternatives 

that cost less but do not necessarily meet all water quality goals. Therefore, multi-objective 

methods (e.g., multi-objective optimization) have become essential for assisting a 

community to search for multiple scenarios of non-dominated alternatives that satisfy their 

distinct goals and criteria to varying degrees of satisfaction and under a range of possible 

conditions (Krettek et al., 2009, Porzecanski et al., 2012; Kelly et al., 2012). To incorporate 

the diverse goals and criteria, integrated watershed management that relies on a well-

developed plan for public participation has become critical. Participation must include 

stakeholders in the decision-making process where they can: 1) get intimately involved 

from the conception of the project through the implementation and maintenance phases, 

and 2) become better informed about their problems and available choices for actions 

through a collective learning process in which the stakeholders can exchange information 

and accept responsibilities for the decisions made by the community (Moote et al. 1997).  

However, incorporating participation of stakeholders in the development of design 

alternatives via multi-objective optimization can pose significant challenges, due to the 

existence of qualitative, unknown, unquantifiable, and unrepresented preferences, goals, 

and biases of a large number of stakeholders who are affected by watershed decisions. 

Hence, there is a critical need to develop stakeholder-centric decision support systems 

(DSS) that enable groups of stakeholders and communities to develop design alternatives 

in the participatory design environment, where their preferences and biases can be learned 

about, expressed, shared, and evaluated. Engagement of the public in using such DSS can 

help them learn about potential solutions that could be used to sustain or improve their 

livelihood and awareness of risks (Gregersen et al., 2007; Evers et al., 2012). Hence, a 

growing body of researcher (Abbott, 1991; Gregersen et al., 2007; Evers et al., 2012; 

Delipetrev et al, 2013; Babbar-Sebens et al., 2015) has suggested that information and 

communication technology (ICT) should be used to assist with engagement of stakeholders 
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in participatory design efforts in watershed planning, in addition to facilitating effective 

outreach in a community. 

Development of the DSS that use ICT to support participatory processes requires 

consideration of multiple factors, including human. Theoretical and practical concepts 

from interdisciplinary fields such as civil engineering, engineering psychology, economics, 

and computer sciences, should be used towards rigorously evaluating the virtual design and 

visualization environments, behaviors of expected DSS users, and interactions between 

users and the different elements of the DSS. McIntosh et al. (2011) recently reported that 

most DSS used for supporting environmental decisions are not evaluated for their usability 

and face multiple hurdles related to interactions of the end users with the DSS. They further 

emphasized that there is a critical need to increase such evaluations as part of the DSS 

development and testing process so that standards and common issues of implementation 

can be identified. 

This dissertation contributes to the development and evaluation of a web-based DSS 

for participatory design, along with a novel human – computer collaborative design 

approach to incorporating stakeholder participation in the development of design 

alternatives for watershed restoration. 

1.2 Overarching Goal and Objectives 

The overarching goal of this research is to investigate how stakeholder participation 

(“humans”) and interactive search algorithms (“computers”) can be coupled in a web-based 

watershed DSS called WRESTORE (Watershed REstoration using Spatio Temporal 

Optimization of REsources- http://wrestore.iupui.edu/), in order to generate user-preferred 

design alternatives of distributed conservation practices on a watershed landscape. An 

important component of this goal is o also to improve the understanding of how human 

behavior on the GUI of the DSS can be observed and evaluated in real-time and then 

learned from to improve further the performance of the underlying search algorithm. Four 

specific objectives were addressed in this work to accomplish the overall goal:    

	 Objective 1: Observe interactions of multiple users with the GUI of a web-based 

watershed DSS (WRESTORE) during interactive search experiments, and then use 

http:http://wrestore.iupui.edu
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Usability metrics (response times, clicking events and confidence levels) to evaluate 

the differences and similarities in user behaviors and interactions. 

	 Objective 2: Examine relationships between the type of users (e.g., stakeholders versus 

surrogates), the Usability metrics, and patterns in the watershed-scale plans of 

conservation practices generated by the multi-objective Interactive Genetic Algorithm 

embedded in WRESTORE.  

	 Objective 3: Examine relationships between the type of users, the Usability metrics, 

and patterns in the user-preferred, subbasin-scale plans of conservation practices 

generated by the multi-objective Interactive Genetic Algorithm embedded in 

WRESTORE. 

	 Objective 4: Develop and test novel human-guided search operators that adaptively 

learn for patterns in user-preferred alternatives generated by the human-guided search 

algorithm, and, as a result, improve the convergence rate of multi-objective Interactive 

Genetic Algorithm for generating design alternatives that conserve these learned 

patterns. 

1.3 Outline 

In this research, the Web-based DSS WRESTORE was used to engage the multiple 

human participants in the interactive design of “user-preferred” alternatives for allocating 

conservation practices in a watershed. The test watershed chosen for this study was Eagle 

Creek Watershed (HUC-05120201120), which is located in Central Indiana near the city 

of Indianapolis. Chapter 2 reviews the essential background literature necessary to 

understand this body of work, followed by a brief description of the WRESTORE DSS and 

the multi-objective human-guided search algorithm IGAMII (Interactive Genetic 

Algorithm with Mixed-Initiative Interaction) used in WRESTORE to accomplish the 

workflow. Chapter 3 describes the test site Eagle Creek Watershed, followed by a brief 

overview of the simulation models used to simulate two conservation practices – cover 

crops and filter strips – in this watershed for flood and water quality benefits, and finally 

the formulation of the optimization problem for a distributed allocation of conservation 

practices on the landscape. Chapter 4 presents the methodology for the interactive search 

experiments that were conducted with a group of participants and the WRESTORE DSS 
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to accomplish the specific Objective 1, followed by results on the usability of the 

interactive design and visualization environment in WRESTORE.  In Chapter 5, a 

methodology for examining patterns in the decision space and objective space at watershed 

scale is presented and then used to examine relationships between user-preferred 

alternatives generated by participants, the participant types, and the Usability data 

(collected for Objective 1). Chapter 6 conducts a study similar to that achieved in Chapter 

5 but addressed Objective 3 by examining for patterns in the decision space and objective 

space at local sub-basins that were of interest to the participants. Chapter 7 uses the findings 

from Chapter 4, 5, and 6, to propose, develop, and test new search operators for the IGAMII 

algorithm in WRESTORE. These new search operators are adaptive in the sense that they 

learn from the patterns in the generated alternatives during the ongoing search process and 

steer the search process to converge quickly to alternatives that conserve the features found 

desirable by the user. Chapter 8 concludes the main findings from this research and 

provides recommendations for future investigations. 
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CHAPTER 2. Literature review 

This chapter gives an overview of the different subjects that have played a significant 

role in this research focused on interactive decision support systems (DSS) for watershed 

planning and management. DSS are useful information and communication technology 

(ICT) tools that can be used to assist stakeholders and decision makers (DMs) in building 

scenarios of watershed plans. These plans generally include a range of decisions – such as, 

strategies for on-the-ground, measures, and/or policies – that optimize a set of pre-

determined, performance-based goals. Those goal may include quantitative bio-physical-

economic achievements in the watershed (e.g., flooding impacts, water quality impacts, 

ecological impacts, and construction and maintenance costs), as well as qualitative 

individual personal criteria (e.g., landowner subjective preferences, local knowledge, and 

socio-cultural constraints). This research aims to evaluate and improve interaction of real 

humans (e.g., stakeholders) with a web-based DSS that has been previously developed to 

assist with generation of scenarios of spatial allocation of best management or conservation 

practices in a watershed. 

The work investigated in this dissertation is also related to the concept of human-

centered design. Hence, the discussion on background literature is also focused on issues 

pertinent to the problem of engaging individuals in optimization-based, human-centered 

design of watershed solutions. ISO 9241-210 (2008) provides guidelines to developers of 

computer software and hardware on how to generate usable and useful interactive 

technologies via a human-centered design process, so that they are able to assess user needs 

and expectations throughout the life cycle of the technology. These guidelines recommend 

use of multiple human factors/ergonomics, and usability knowledge and techniques to 

evaluate and improve such interactive systems. Nemeth (2004) has defined user-centered 

design as the consideration of users (or humans) and the technical subsystems where “users 

are consulted through the design process”. The definition of optimization-based, human-

centered design adopted in this research is related to not only the ability of users to 

understand and effectively use the DSS technology, but to also assist the underlying 

optimization algorithm within the DSS in finding design alternatives that improve on 
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quantitative as well as qualitative stakeholder preferences. This work especially 

investigates how the graphical user interface elements of a DSS, the users’ (or 

stakeholders’) unique perspectives, and an interactive search/optimization algorithm 

should be combined together to provide an effective participatory design process for the 

allocation of best management practices in a watershed. 

The sub-sections below describe the current understanding in related fields of decision 

theory, optimization, watershed planning and management, hydroinformatics, and 

participatory decision support systems, which provide the theoretical underpinnings for the 

proposed work. Section 2.1 provides an overview of the treatment of decision makers in 

the general Decision Theory literature, followed by discussion on how decision makers and 

stakeholders play an important role in watershed planning and management in Section 2.2. 

Section 2.3 introduces the concept of hydroinformatics and its role in facilitating 

engagement of stakeholders, followed by a discussion (in Section 2.4) on multiple types of 

methods and algorithms that have been previously used to accomplish the different levels 

of stakeholder participation in optimization of water resources and watershed optimization 

problems. Finally in Section 2.5, the WRESTORE (Watershed REstoration using Spatio 

Temporal Optimization of Resources) DSS, which is used to support the optimization-

based, human-centered design process investigated in this research, is described. 

2.1 Brief overview of decision theory literature 

In Rational Choice Theory (von Neumann and Morgenstern, 1944), decision-making 

processes must follow a rational and logical procedure, where the decision maker identifies 

a problem, defines causes and relationships, thinks about and identifies a possible set of 

solutions, and finally, selects the “best” or “optimal” option from a proposed set of 

solutions or alternatives. However, decision making is not an easy task and may include 

cognitive tasks, criteria, and actions performed by humans that may not seemingly be 

rational. Multiple researchers in Decision Theory and Behavioral Economics (Tversky, 

1969; Kahneman and Tversky, 1979; Tversky and Kahneman, 1981; Kahneman and 

Tversky 1984; Baron, 2000) now claim that humans often do not follow principles of 

rational choice, and limitations in humans’ cognition play an important role in determining 

their choices (Simon, 1955, 1956 and 1957). Simon also suggested that when people make 
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choices, many of them will “satisfice” instead of “maximizing” their goals. An individual 

who is a “satisficer” will tend to evaluate choices based on some degree of satisfaction, 

until a threshold of acceptability is achieved. When that occurs, the individual will select 

the choice that is both satisfactory and acceptable. Simon noted that when multiple choices 

are presented to a satisficer, he/she might choose a new choice if it is ranked higher than 

the previous one; therefore, a satisficer may sometimes move in the direction of 

maximization without realizing it. Therefore, algorithms that are able to generate discrete 

scenarios of choices can be useful for all types of human decision makers, irrespective of 

whether they are maximizers or satisficers, because it can provide them with a set of 

candidate alternatives/options that could potentially meet their individual criteria and/or 

constraints for decision making.   

Designing or generating alternatives is an integral part of problem-solving and decision 

making processes. In commonly used models (and their adaptations) of decision-making 

processes, such as those proposed by Simon (1977) and Mintzberg et al. (1976), the design 

of alternatives usually occurs in the second phase of a three phase process that includes – 

(1) problem identification and definition phase, (2) problem development and alternatives 

generation phase, and (3) negotiation and selection phase. The first phase involves 

interaction with stakeholders and experts to identify, structure, and define the problem at 

hand. The second phase involves use of various computational tools, such as simulation 

models and search/optimization techniques along with the parameters of the 

search/optimization algorithm and quantitative representations of the problem objectives 

and constraints defined in phase 1, to generate optimal/feasible sets of alternatives that 

would satisfy or outperform the problem objectives. Once, the search has ended in phase 

2, the alternatives are then presented to the stakeholders in phase 3 for decision making 

and selecting a final alternative for implementation.  

Decision makers generally undergo through an exhaustive analytical process to identify 

ways to formulate an optimization problem, so that the solutions identified by the 

optimization algorithm represents their interests and knowledge (Tsitsiklis, 1984; 

Fonseca and Flemming, 1995; Peng et al., 2011). Therefore, it is crucial to recognize 

that a simplified representation of a decision maker’s interests and local knowledge of 
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stakeholders in the formulation of an optimization problem could lead to identification of 

seemingly “optimal” solutions that may actually be unacceptable to a decision maker, 

especially if he/she is not consistently consulted with and represented in the design process. 

Hence, participation of decision makers and other stakeholders throughout the entire 

process of decision making, including during the design process where alternatives are 

generated, is of paramount importance. This is particularly true for problems involving 

natural resources (such as, watersheds), where, beyond the typical quantifiable objectives 

and constraints, representation of subjective criteria in the design process is equally, if not 

more, crucial in order to ensure acceptance of alternatives by multiple stakeholders. 

However, developing problem formulations that represent the range of criteria relevant to 

an entire community, and where the required local actions agree with the interest of local 

stakeholders in the community, is a challenging process. These challenges are further 

complicated by the fact that the number of individuals affected by the decisions may vary 

through time and from one location to other, and also by the fact that individuals may differ 

in their perceptions of proposed choices based on their unique set of beliefs and values, 

social concerns, economic interests, awareness of the consequences of their decision, and 

personal cognitive bias and learning. As a result, a need has arisen for the development of 

heuristic and human-guided optimization methods that integrate knowledge from different 

fields, with assistance from social computing technologies for effective communication, to 

enable a more direct inclusion of subjective criteria and expression of preferences by 

multiple stakeholders during the decision making processes (Fraternali et al., 2012). 

2.2 Engagement of stakeholders during watershed restoration  

Many watershed planning and management problems deal with allocation, use, and 

regulation of resources that are directly related to spatio-temporal necessities of humans 

co-existing in a shared area of the watershed. Federal concerns about careful planning and 

management of watersheds in the United States started in late 1800’s when the increasing 

stresses on existing natural resources due to a rapidly growing population necessitated 

actions and policies to protect the resources, in particular, protection of water resources to 

assure water supply and waterway navigations (Cole et al., 2002). However, even though 

Federal entities aimed to find solutions to overcome the negative impacts from rapid 
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watershed developments and population growth, it was soon realized that only solutions 

that were generated in collaboration with the local stakeholders of the watershed could lead 

to successful adoption of restoration solutions (Gregersen et al., 2007).  

Therefore, it has now become a priority to effectively communicate, instruct, and 

include stakeholders in the generation of designs of watershed restoration plans. These 

plans are expected to effectively target and achieve physical, biological, chemical and 

socio-economical goals determined in collaboration with the community stakeholders. 

Opportunities that enable stakeholders to contribute to the design process may also give 

them a sense of ownership, which may further increase the probability of adoption and 

acceptance of recommended plans (Moote et al., 1997, Johnson et al., 2001, Williams et 

al., 2012). Close interaction with stakeholders can also facilitate successful negotiations 

and conflict resolution, during the implementation of prescribed plans.  

Engagement of stakeholders becomes especially relevant when restoration is achieved 

via spatial landscape management practices where stakeholders live and work. These 

landscape practices are called as conservation practices (CP) or best management practices 

(BMPs), and include wetlands, filter strips, grassed waterways, crop management practices 

(e.g., cover crops, no-till practices), etc.. These practices have been proposed as potential 

strategies for preventing or reducing pollutant loads in water bodies, and for mitigation of 

flood events through runoff control and peak flow reduction (Ice, 2004; Arabi et al., 2007; 

Artita et al., 2008; Kelly and Merritt 2010). Achieving an optimal selection and spatial 

allocation of BMPs that is also acceptable to the stakeholder community is an inherently 

complex process. Multiple researchers (Arabi et al., 2006; Kelly and Merrit, 2010; 

Lethbridge et al., 2010; Tilak et al., 2011; Kaini et al., 2012) have investigated coupled 

simulation models and optimization algorithms to identify the optimal distribution of 

BMPs in a watershed. In these studies, simulation models were used to estimate the 

landscape responses and evaluate related design objectives, whereas the optimization 

algorithms were used to search through large decision spaces for design alternatives that 

enhance one or more objectives in the watershed. While these analytical techniques have 

the benefits of generating optimized scenarios of design alternatives with respect to 

quantifiable goals (many of which maybe developed via stakeholder engagement), they are 
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limited in their ability to incorporate diverse subjective, unquantifiable or unrepresented 

criteria (such as personal or social values, beliefs, interests, biases, local knowledge, etc.) 

and preferences of stakeholders. For example, a stakeholder’s preference might be 

constrained by her/his lifestyle and family situation, which might be difficult to learn about 

and/or quantify in the problem formulation. Additionally, Clearfield and Osgood (1986) 

reported that many times stakeholders may be more driven by subjective personal and 

social constraints than by economic considerations, when they are in the process of 

considering specific conservation practices for their land. Hence, unique stakeholder 

circumstances should be taken into consideration (Greiner et al., 2009) when developing 

plans for implementing practices on land. Current inability to incorporate these 

stakeholder-specific subjective issues and circumstances in the design process has likely 

contributed to the unsuccessful adoption of “optimal” design alternatives, and because of 

this the use of optimization algorithms in watershed planning has been criticized by some 

(Mendoza and Martins, 2006). 

2.3 Hydroinformatics approaches to support participation of stakeholders during 

design 

In 1977, Heidegger reported that individuals in a community will perceive a resource as 

being vital to their lives if the consequences of poor management of resources are revealed 

to them, and/or if they are directly affected by these consequences. Hence, when 

communities are engaged in watershed planning activities, education of the various costs 

and benefits of decisions, and the consequences of a decision on the ecosystem services 

provided by the watershed become necessary. Ecosystem services are based on four types 

of functions served by watershed resources (de Groot et al., 2002): 

1) Functions that regulate the biogeochemical cycles (regulation functions), 

2) Functions that provide refuge and reproduction habitat to native plants and 

animals (habitat functions), 

3) Functions that build a large variety of carbohydrate structures to provide goods 

ranging from food to raw materials and energy resources (production functions), 

and 
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4) Functions that provide spiritual enrichment, cognitive development, and 

recreational and aesthetic experiences necessary to maintain human health 

(information functions). 

Quantifying and representing these types of multiple functions as co-benefits during the 

design process can require integration of data and knowledge from multiple fields. Abbot 

(1991) proposed the development of a new field of hydroinformatics as a field that could 

harness advances in the information and communication technologies (ICTs) to deliver 

complex information related to water to communities, and thereby, enable an increased use 

of and integration of heterogenous types of data to educate and instruct communities about 

watershed resources, environmental processes, and ecosystem services. According to the 

Institute for Water Education from UNESCO-IHE (https://www.unesco-ihe.org/msc-

programmes/specialization/hydroinformatics-modelling-and-information-systems-water-

management-2), hydroinformatics is a field that employs a wide range of simulation 

modeling techniques, software tools, and information technologies to solve complex 

problems related to hydraulics, hydrology, and environmental engineering, for the better 

management of water. One of the unique strengths of Hydroinformatics approaches is their 

ability to fuse different types of data, information, and knowledge via mechanistic as well 

as heuristic methods, in order to appropriately cope with the complexity of natural and 

socio-economical systems in a watershed (Abbot, 1999; Evers et al., 2012; Delipetrev et 

al., 2013). 

In an attempt to find more effective ways to include stakeholders in the design process 

and potentially increase adoption of BMPs, researchers (Rabotyagov et al., 2010; Evers et 

al., 2015; Smit et al., 2015) have explored different hydroinformatics methods. Many of 

these methods also employ current information technologies (such as social networking 

technologies) to develop platforms via which the affected stakeholders can express their 

unique socio-economic and subjective constraints during the design process (Feather and 

Amacher, 1994; Rahelizatovo and Gillespie, 2004; Prokopy et al., 2008). For example, 

analytical approaches such as Systems Dynamics models (Metcalf et al., 2010), Bayesian 

Networks (Castelletti and Soncini-Sessa, 2007; Zorrilla et al., 2010), Fuzzy sets and 

cognitive maps (de Kok et al., 2000), Agent-based models (Barreteau and Abrami, 2007), 

https://www.unesco-ihe.org/msc
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and Human-guided/Interactive Optimization (Babbar-Sebens and Minsker, 2011) have all 

been used to create participatory decision support platforms aimed at improving the 

engagement of stakeholders. These semi-structured and interactive DSS elicit data, 

knowledge, and feedback from stakeholders, and then use that information to generate 

design alternatives. 

Recent reviews by Jakeman et al. (2008) and McIntosh et al. (2011) expose relevant 

user interaction issues that should be considered when developing Environmental DSS 

(EDSS) to engage stakeholders. McIntosh et al. (2011) also emphasized the importance of 

the evaluation of human factors such as needs, goals, fatigue, learning, etc. in the design of 

interfaces used by EDSS. Similarly, a growing number of research studies in water 

management have indicated interest in improving EDSS usability to enhance the users’ 

understanding of the underlying problem and of the design alternatives proposed for 

solving the problem (Johnson, 1986; Power and Sharda, 2007; Kirchoff et al., 2013; 

Babbar-Sebens et al., 2015). For example, Mysiak et al. (2005) emphasized the importance 

of end users feedback in the development of a decision support tool, while McIntosh et al. 

(2011) described the need for establishing a process that measures the evaluation and 

usability of this systems, in order to reach standards, create parameters, and identify 

common user-interaction issues that affect most of the decision support systems. Many 

authors in the computational sciences, industrial engineering, and web development field 

have also suggested that testing the usability of a product is crucial to determine its 

adoption among the community. It has been demonstrated by several studies in the 

biomedical field (Kushniruk et al., 1996; Patel et al., 2000) that the quality of the data 

provided by users will depend on the reasoning of the individuals motivated by their 

experience with the tool, and the information collected while interacting with the tool. 

Therefore, the usability of a tool or product is critical when the goals of a tool includes 

delivery of precise and clear information to its users via effective visualization of data in 

the DSS’s GUI. 

2.4. Interaction of humans with search and optimization algorithms 

Heuristic search and optimization algorithms, such as Genetic Algorithms, Simulated 

Annealing, Ant Colony Optimization, and Strength Pareto evolutionary algorithm, have 
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been widely applied in the water resources planning and management research to solve 

problems that have system uncertainties, multiple criteria and constraints, ill-defined 

search spaces, and are NP-complete1 in complexity. Applications of these methods include 

reservoir operations (Wurbs, 1993; Haddad et al., 2006; Mathur and Nikam, 2009; 

Adeyemo, 2011), groundwater modeling and management (McKinney and Lin, 1994; 

Sidiropoulos and Tolikas, 2008; Siegfried et al, 2009; Babbar-Sebens and Minsker, 2011), 

surface water management (Savic and Walters, 1997; Bekele and Nicklow, 2005; Nicklow 

et al., 2010; Babbar-Sebens et al. 2011), water distribution (Lansey and Mays, 1989; Cunha 

and Sousa, 1999; Eusuff and Lansey, 2003; Maier et al., 2003) and pipeline optimization 

(Golberg and Kuo, 1987; Simpson and Goldberg, 1994; Geem et al.,2001). 

For successful design of watershed plans, heuristic search and optimization algorithms 

must employ decision makers (or stakeholders) as key agents that affect the search process, 

as also discussed earlier in Section 2.2. One way to include stakeholder participation within 

heuristic search is via advancements in the communication and participatory media, such 

as the Social Web that has supported social interactions among people via the internet. 

These types of participatory media also encourage stakeholder learning, and providing a 

more informed environment for humans to understand the consequences of implementing 

a solution (Hare et al., 2001; Clark and Aufderheide, 2009; Vervoort et al., 2010). 

However, stakeholders are also one of the major sources of uncertainty, constrains, and 

criteria during decision making, because of the existent complexities and uncertainties 

embedded in the human behavior (Osman, 2010); hence investigation of the effect of 

human behavior on heuristic search is necessary. For example, there is still a need to 

understand, compare, and analyze how the uncertainty in human agents (stakeholders) and 

their interactions with the interface or algorithm per se affect the performance of search 

and optimization algorithms. Additionally, human behavior will affect the search process 

in different ways depending upon how participation of stakeholders is incorporated directly 

1 In computational complexity, the nondeterministic polynomial time (NP) is a fundamental complexity class 
where a problem’s solution can be verified quickly in polynomial (P) time, but there is no efficient way to 
determine the solution. These kinds of problems cannot be solved through a fast algorithm (Eppstein, 1996), 
hence heuristic and approximation algorithms are often used to solve such problems.  
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or indirectly in the heuristic optimization process. Some of the direct and indirect 

approaches investigated by researchers include:  

 Wang et al. (2001) explored a reference point method to support multi-objective decision 

making through interactive optimization algorithms. Theoretically, this method provides 

a changing reference point to satisfy decision maker (DM) preferences with just a single 

interaction. The authors did not provide experiments that involved real users (or DMs), 

but claimed that the technique guarantees the feasibility of the desired reference point. 

Their illustration example is limited by a two variable minimization problem that does 

not reflect the complexity that real user interaction scenarios may bring to the system. 

Also, they examined the reference point in the objective space, while many humans may 

be more interested in the values given in the decision space. 

 Avigad and Moshaiov (2009) proposed an Interactive Concept-based, Multi-Objective 

Evolutionary Algorithm (IC-MOEA) that provides extensive search in the decision space 

giving users the opportunity to build a set of solutions with similar conceptual criteria. 

The conceptual criteria are identified in the early stage, where an intensive use of the 

human creativity is required. Their approach seeks to include the users preferences based 

on a weighted vector that interacts (in a ranking process system) with the set of solutions 

found by traditional non-interactive optimization process. Their application studied the 

consequences of different scenarios in a more realistic application environment. 

However, their study also lacked results with real DMs for evaluation of the search 

optimization process, and instead used simulated users to introduce a human-based 

function. 

 Maringanti et al. (2009) tried to incorporate some aspects of landowner preferences in 

their optimization approach using a combination of NSGA-II and the simulation model 

SWAT, to optimize several best management practices in a watershed. The preferences 

were inferred using records from stakeholders and county agents of most current and 

commonly adopted BMPs, in their watershed sites. Those BMPs (i.e., nutrient 

management, buffers, conservation till and no-till) were then used within the 

optimization approach. Their approach did not investigate the potential effects of 

underlying spatial distributions of attitudes and preferences of stakeholders in the 



 

 

 

 

 

 

17 

selection of these BMPs. Due to the complexity associated with the preferences and 

behaviors of spatially-explicit individuals and communities, development most 

watershed plans are based on averaged data on farmer preferences (similar to the 

approach used by Maringanti et al., 2009). Commonly, the data is obtained from surveys, 

workshops or interviews conducted at a particular point in time in the watershed. At the 

time of implementation, many farmers may not perceive conservation practices in the 

same way as they did in the survey. Additionally, they may have emerging attitudes, 

biases, and preferences that could be associated with their own cognitive learning 

affected by new information and new experiences. This can lead to deterioration in the 

performance of original optimized watershed plan/design when stakeholders/landowners 

end up transforming the design into a sub-optimal modified design to suit their 

constraints, defeating the original purpose and effort of spatially optimizing conservation 

practices in a large watershed (Piemonti et al., 2013; Babbar-Sebens and Minsker, 2008). 

 Babbar-Sebens and Minsker (2011) developed an Interactive Genetic Algorithm with 

Mixed Initiative Interaction (IGAMII) algorithm that aids with human-centered 

search/optimization of alternatives. Its main goal is to assist users in the identification of 

designs that will satisfy user’s preferences, and at the same time enabling a learning 

process in participating humans. The algorithm was tested on a groundwater monitoring 

problem, where the optimization problem was based on two conflicting objectives: 1) 

minimize the number of active monitoring wells, and 2) minimize the error between 

measured benzene concentrations and the concentrations estimated from active 

monitoring wells via interpolation models. The researchers explored the use of IGAMII 

in the selection of sets of active monitoring wells, which based on the judgement of 

human participants (novice and experts) generated the most representative plume map. 

The researchers were also able to determine temporal changes in mean confidence ratings 

(i.e., a participant’s level of self-confidence in her/his own evaluation of design 

alternatives), as well as the differences between design alternatives generated from non-

interactive and interactive optimization. Their results support the theory of learning 

process (even for expert users), and suggest the effectiveness of human-algorithm 
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collaboration during the optimization algorithm’s search process in generating viable 

solutions that also satisfy user preference. 

A new system that uses interactive optimization techniques have been developed in 

order to accommodate for the new advances in participatory media that relies in the Web 

2.0 framework. The next section explains this novel participatory system and how it allows 

the human-centered design. 

2.5 WRESTORE DSS for interactive optimization  

Currently there are a wide variety of watershed modeling programs (such as SWAT, 

HEC-RAS, WMOST, etc.) and decision support systems (such as NSDSS, MODOLUS, 

CLAM, WEAP, etc.) that have been developed to support structured and unstructured 

watershed planning and management problems. These decision support systems use 

embedded simulation model to evaluate the multiple performance-based objective 

functions (Cox, 1996; Mysiak et al., 2005; Jakeman et al., 2008; Elmahdi and McFarlane, 

2012), which may be relevant to the water management problem. Additionally, since 

numerous decision variables may play an important role in the modeling and decision 

making process, the size of the decision space can explode and overwhelm decision 

makers. Hence, DSS researchers have resolved this issue by incorporating automated 

search/optimization algorithms that provide either a single optimal solution, or a set of non-

dominated optimal solutions (Pareto fronts) that lie on a tradeoff curve of objective 

functions (Arabi et al., 2006; Artita et al., 2008; Maxted et al., 2009; Kaini et al, 2012). 

In this research, the WRESTORE decision support system has been used for human-

centered optimization of BMPs in a watershed. Readers are recommended to review 

Babbar-Sebens et al (2015) for detail description of this tool.  WRESTORE (or Watershed 

REstoration using Spatio Temporal Optimization of Resources – Figure 2.1) is a web-based 

environmental decision support system (DSS) specifically developed to include the 

participation of individuals and communities in the design process and selection of optimal 

allocation of BMPs in agricultural watersheds in order to restore natural processes within 

agricultural watersheds. The web-based architecture of WRESTORE allows the DSS to be 

accessible for a large community of stakeholders, and facilitate the participatory watershed 

planning concept. 
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WRESTORE’s underlying search algorithm is a modification of the IGAMII algorithm 

(Interactive Genetic Algorithm with Mixed Initiative Interaction,-Babbar-Sebens and 

Minsker, 2011) that aids with human-centered search/optimization of alternatives. Its main 

goal is to generate optimal design alternatives that satisfy not only the physical objectives 

and constraints, but also individual stakeholders and community preferences. Within the 

system the users can 1) simulate single or multiple types of BMPs in a watershed plan 

alternative, 2) gathering information on the performance of the design alternative at a local 

or regional scale, 3) compare the performance of different design alternatives that differ in 

the spatial allocation of the conservation practices, 4) select their preferred designs based 

on their personal criteria, and 5) propose those designs to the community and agencies that 

provide assistance in implementation of BMPs and watershed plans.  

Figure 2.1. WRESTORE website home page 

The IGAMII algorithm is a human-guided (or, human-centered) optimization algorithm 

that engages with users in an iterative manner via visualization interfaces. In every 

iteration, which is called an interaction session, both the decision space of the alternatives 

(via maps) and the objective space of the alternatives (via graphs) are displayed to the user. 

Once the user has evaluated the alternatives, he/she can provide his/her feedback on the 

quality of the alternative to the IGAMII’s underlying optimization algorithm via a user 

rating determined on a Likert-type scale (e.g. “I like it”, “Neutral”, “I do not like it”).  The 

IGAMII’s optimization algorithm uses the user rating as an additional objective function 

(in addition to four quantitative objective functions) to identify the user’s preferences. The 

underlying optimization algorithm is critical to enabling search of new alternatives, and 
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though the IGAMII uses a multi-objective Genetic Algorithm called NSGA-II (Deb et al., 

2002), WRESTORE is not restricted by the type of multi-objective optimization technique 

and has the capabilities to select from a variety of other search approaches (e.g., 

Decentralized Pursuit Learning Automata (Singh, 2013)). 

Interaction sessions in WRESTORE can be of three types (Figure 2.2 shows the 

sequence of sessions): introspection sessions, human-guided search (HS) sessions, and 

automated search sessions. An introspection session is used for improving the learning 

efficiency of the human user by enabling the user to re-examine previously viewed and 

rated alternatives that are stored in a case-based memory (Craw, 2003; Shi and Zhang, 

2005), and re-assess his/her own thoughts, reasoning process, emotions, biases, 

consciousness, and user ratings of these previously assessed alternatives.  

Figure 2.2. Interaction sessions in IGAMII (Babbar-Senbens et al., 2015) 

For example, Figure 2.2. illustrates an IGAMII experiment in which five introspection 

sessions occurred at different times during the progress of the experiment. Each of the 

human-guided search (HS) sessions is an iteration of the underlying optimization technique 

(or, generation in the case when a Genetic Algorithm is used as the search method in 

IGAMII) where new alternatives created by the underlying optimization operators are 

shown to the user. In IGAMII, when a human-guided search is conducted, a small 

population micro-genetic algorithm is used. Hence, the number of alternatives shown in a 

typical HS session is typically equal to the population size of this micro-genetic algorithm. 

Every alternative (or, the genetic algorithm chromosome) is evaluated in its performance 

using a suite of mathematical objective functions and process simulation models (e.g., the 

SWAT model of a watershed); and then the values of these performance-based objective 

functions are displayed to the user, in addition to the alternative decision variables using 

maps and graphs. The user provides the feedback via the Likert scale-based user rating and 

then this user rating is used by the micro-genetic algorithm operators to create the next 

generation of new alternatives (or, new chromosomes in the case of Genetic Algorithm). 
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Hence, HS sessions are always presented successively and are equal to the number of 

generation of the micro-genetic algorithm. 

The use of such web-systems provides a safe environment to the stakeholder allowing 

a true introspection of their needs, concerns, and criteria (Yigitcanlar and Okabe, 2002; 

Kelly et al., 2012). In the same context, this tool enables researchers to understand, how 

stakeholders are exploring and interacting with such DSS, allowing the observation of 

preferences’ changes under a dynamic behavior. This is particularly relevant for 

agricultural stakeholders, whose mental maps, perceptions, behaviors and attitudes 

influence in their understanding of their environment and the interactions between systems, 

affecting the intrinsic motivation to adapt or accept changes. McCown (2002) emphasizes 

that the implementation of DSS need to face a change where the emphasis relies more on 

the ‘learning’ of what DMs (in this case stakeholders) are learning, without diminishing 

the design aspect. For the DMs accomplish this education there is a need for iterative 

learning and practice change process. These two features are embedded in WRESTORE 

through an iterative search process that supports not just the user’s growing knowledge, 

but also give researchers a window on how to explore the learning and selection process. 

The automated search session (as seen in Figure 2.2. between introspection sessions 4 

and 5) is the third type of session, which is a more computationally intensive optimization 

run and is performed by replacing the human user with a heuristic model of user ratings 

(or, a simulated decision maker model). The main purpose of automated search is to 

minimize user fatigue by replacing the human user with the simulated user, and hence no 

visual interfaces are shown to the user when automated search is running. Data on user 

ratings collected in earlier introspection and HS sessions are generally used to create the 

personalized and heuristic simulated decision maker models for every user. For example, 

Babbar-Sebens and Minsker (2011) used fuzzy logic models that related design parameters 

to user ratings, whereas in WRESTORE we have included multiple linear and non-linear 

classification models, neural networks, fuzzy logic models, and deep learning models 

(Singh, 2013) to create simulated decision maker models. 

In IGAMII, the sequence of interaction sessions ( similarly to Figure 2.2.) is decided 

via a flexible mixed initiative interaction (Hearst, 1999) (managed in the system by the 
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mixed initiative manager -MIM-) strategy that monitors the individual user learning and 

simulated decision maker model’s accuracy to identify when human-guided search should 

be conducted and when automated search should be conducted. Monitoring and tracking 

user learning is an active topic of research in Human-Computer Interaction and Cognitive 

Psychology. While additional research investigations will enable advanced tracking 

techniques to inform the mixed initiative interaction strategies, WRESTORE currently uses 

the technique proposed by Babbar-Sebens and Minsker (2011). This technique monitors 

the trends in users’ self-reported confidence in their user ratings to identify how fast human 

users are learning by interacting with the tool. In this manner, it is possible to use the human 

user and the simulated user models for search/optimization when they are most suitable for 

evaluation of alternatives. After every optimization run, irrespective of whether it is 

human-guided search or automated search, an introspection session is invoked to facilitate 

a user’s re-reflection of previously generated alternative and improve his/her own cognitive 

learning. 

In the first introspection session, the MIM will access the case-based memory to select 

potential design alternatives found earlier in a different search or by an offline optimization 

run that did not involve any user ratings (e.g. a preliminary non-interactive optimization 

run proposed by Babbar-Sebens and Minsker 2011). The MIM then calls the IM (Individual 

Manager), which sends these alternatives to the web server to show the alternatives to the 

user by means of a web-based interface (Figure 2.3). This same interface is also currently 

used for all human-guided search sessions and is being further improved for better 

engagement with users. The User Program will then trigger the EmailM (Email Manager) 

to send an email to the user whenever a session is available for viewing on the web server. 

After the user logs into the website, he/she is able to visualize and compare the 

previously evaluated alternatives, which have now been made available to him/her for 

viewing in the first introspection session. The user evaluates all the alternatives shown by 

the interface (Figure 2.3.) based on his/her assessment of how BMPs are sited and sized in 

the entire watershed or in their local sub-basins of interest (viewed in the map space). The 

bar graphs allow the user to evaluate the performance of the design alternative with respect 

to quantitative goals in the entire watershed or in their local subbasins of interest (SBint). 
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The user provides feedback on his/her assessment of the quality of the alternative via user 

ratings, and this data along with other usability data (e.g., confidence ratings, mouse clicks, 

clock time spent on interface features, etc.), are collected and sent back from the web server 

to the database for archiving and use by WRESTORE’s software managers. 

Figure 2.3. Visualization and Feedback Interface in WRESTORE (Babbar-Sebens et al., 2015) 

Implementing WRESTORE in a watershed involves three phases: pre-processing, real-

time participatory design experiments, and post-processing. Currently, WRESTORE has 

been implemented, and tested for user learning, and multi-users engagement issues, and 

overall tool improvements at the test site of Eagle Creek Watershed, Indiana. But the 

flexible architecture of WRESTORE allows other watershed groups, in the future, to 

include their own simulation models, design parameters, and data related to their region. 

Figure 2.4. provides a synopsis of the three phases. 
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Figure 2.4. Development of the WRESTORE tool for an asynchronous experiment 
Modified from Babbar-Sebens et al., 2015. 

Phase I. Pre-processing phase: In this phase, a watershed community’s agency personnel 

or stakeholder council group/alliance is expected to first engage with the various parties of 

interest to identify conservation practices of interest and specific areas where potential sites 

for these practices could exist. The watershed community is expected to then develop an 

appropriate simulation model of their study area, preferably via participatory modeling 

approaches (e.g. Palmer, 1996). We have currently used the SWAT model to simulate 

effectiveness of new conservation practices in the test site, but WRESTORE’s software 

architecture is not constrained by a specific hydrology or water quality model. Once a 

community-supported process simulation model to evaluate effect of conservation 

practices on the watershed has been developed and calibrated, the watershed group leaders 

can then submit the model files to the WRESTORE administrative team for setting up a 

WRESTORE project for their watershed. Copies of the folders of the simulation model 

input/output/executable files are saved on the WRESTORE program server, from where 

the program makes copies and saves in different nodes to allow the simulation whenever 

is required. Besides the simulation models, various GIS files identifying the watershed 
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boundaries, subbasins (SB), and stream network are also required for the interface. This 

GIS data are stored into Google Fusion Tables so that Google Maps API can be used in the 

interface. We are, currently, in the process of developing a separate interface that will 

enable watershed group leaders to automate this setup process of site data and models for 

any watershed via the web, in the future. 

Phase II. Real-time participatory design experiments: Once the WRESTORE project for 

the application watershed has been setup, it is then available for release to the general 

community and “crowdsource” feedbacks in the design of alternatives. There are multiple 

synchronous and asynchronous approaches (Babbar-Sebens et al., 2015) via which 

watershed groups could engage their stakeholders in conducting web-based, multi-user 

participatory optimization experiments in WRESTORE. Here, we present the 

asynchronous approach that was used in this research.  

i.	 Asynchronous multi-user experiments: In this type of experiment, every user can 

initiate his/her own human-computer collaborative search for exploring spatial 

implementation of conservation practices that are of interest to her/him. Hence, 

multiple instances of User Program will be generated in this experiment type. When 

a user logs in and begins the WRESTORE workflow (discussed earlier in Section 

2.4), he/she can choose from a set of available BMPs and goals for his/her 

watershed site. Multiple users can begin their experiments independent of others, 

and hence can asynchronously explore the effect of different types and 

combinations of conservation practices in the watershed. Since these experiments 

are conducted asynchronously (in a parallel fashion), WRESTORE currently does 

not assume preferred SBs of interest in advance, and, therefore, presumes that 

BMPs chosen (as shown in the maps for Figure 2.3) are applicable to all SBs in the 

watershed specified the potentially places for chosen BMPs. Additionally, because 

of this assumption WRESTORE uses the values of the quantitative goals at the 

watershed scale (as shown in the bar graph for Figure 2.3) as the objective functions 

for the underlying optimization algorithm. The future interface of WRESTORE 

will enable more detail settings for individual users, where user will be able to 

declare a narrower sub-region of interest. The user-feedback-driven search and the 
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learning process in the WRESTORE’s underlying algorithms are, however, 

customized to individual participating users. One advantage of this kind of 

asynchronous engagement with multiple users is that it provides users the flexibility 

to explore alternatives at a time that suits them the most, without being dependent 

on the feedback of others. 

Phase II. Post-processing: Once user experiments are finished, alternatives generated by 

the multiple users can then be post-processed for similarities and dissimilarities in spatial 

plans of practices (i.e. alternatives) liked or disliked by the users. Additionally, simulated 

decision maker models generated by the WRESTORE program can be processed for 

identifying underlying parameters and variables that best explain the user ratings. Data 

collected via the interface on users’ transient confidence ratings, numbers and types of 

clicks, time spent in sessions, etc. can also be post-processed to understand how each 

participant engaged with the interface and whether any detectable learning or changes in 

opinions were observed. Once this post-processing is completed, the analyses can be 

released to the user community for decision making and for identifying how individual 

user’s behavioral factors affected identification of promising alternatives. 

2.4 Interactions between Participants and the WRESTORE-Tool  

Twenty common selected designs were shown, in sets of two at the time, providing 

information regarding the spatial distribution of the BMPs from a pool of non-dominated 

design alternatives found by a multi-objective genetic algorithm that used only the four 

physical objective functions (Babbar-Sebens et al., 2015). In this session, all participants 

saw the same twenty designs. After I1, participants transitioned into human-guided search 

sessions (i.e., six HS sessions - HS1 to HS6) that had a one-to-one correspondence with the 

six iterations (or generations) of a micro-Interactive Genetic Algorithm (micro-IGA; 

Babbar-Sebens and Minsker, 2011; Babbar-Sebens et al., 2015). In each of these HS 

sessions twenty new designs (population of micro-IGA), generated by the micro-IGA, were 

presented to the user. After the micro-IGA was over (i.e. at the end of HS6), designs that 

had high user ratings and/or were on the best non-dominated front were saved into a Case-

Based Memory (CBM). Next, the participant revisited twenty random designs from the 

CBM in Introspection session 2 (I2), where he/she was provided the chance to modify 
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his/her previous user ratings and confidence levels based on any newly formed preferences 

and perceptions. This revisiting technique aimed to improve the participants’ skills in 

evaluating the performance of the design alternatives using the information gathered in the 

HS sessions. If the user is modified his/her evaluation of the revisited design in the 

Introspection session, the changes were updated in the CBM. At the end of I2, a sub-set of 

designs from the CBM were again inserted in the initial population of the next micro-IGA, 

and a new set of six HS sessions ensued. It is worth noting here that the WRESTORE 

interactive search tool was originally developed for an additional set of alternating I and 

HS sessions and an Automated Search session, all occurring after I3. The Automated Search 

session uses a Machine Learning model to learn from the participant’s user ratings 

collected in the earlier HS sessions and then conducts an exhaustive search on behalf of the 

participant by using the Machine Learning model as a simulated user. Interested readers 

are encouraged to refer to Babbar-Sebens et al. (2015) for details on these sessions. In order 

to limit human fatigue and keep the workload the same for all users, researchers requested 

that participants complete all alternating HS and I sessions, at least until the end of I3. 

Several participants in the surrogates group, however, did choose to complete sessions 

beyond I3. Nevertheless, these additional sessions were not considered as part of the first 

analyzes conducted to examine the hypotheses above.  

After the participant had submitted his/her user ratings for design alternatives, ten to 

fifteen minutes of waiting time was needed for the underlying optimization algorithm and 

hydrologic model to generate and evaluate new design alternatives. To allow participants 

to complete the experiment at their own pace, an email notification system was used to 

send them an automated reminder whenever the next session was available for user 

interaction. The automated e-mail included a log-in link to the WRESTORE web page, and 

when users clicked on the link to log into their account, a set of instructions on how to 

conduct the ongoing experiment was redisplayed on the screen (Babbar-Sebens et al., 

2015). 

When users progress through the workflow of the IGAMII algorithm in WRESTORE, 

they undergo two types of sessions: Introspection (I) sessions and Human-guided Search 

(HS) sessions. While the human-guided search involves the use of a micro-interactive 
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Genetic Algorithm to create new design alternatives, the introspection enables participants 

to reflect on and reassess their satisfaction with previously found design alternatives. In 

this study, each participant was requested to progress through at least fifteen sessions (3I 

and 12 HS). Each session displayed twenty design alternatives to the users (in sets of two), 

who were then expected to evaluate the suitability of the designs (based on individual 

considerations of decision variables, goals, and their local constraints and knowledge) via 

a Likert-type scale. The scale included three user rating classes - “I like it”, “Neutral” or 

“I do not like it”. Introspection session 1 (I1) was the starting point in the WRESTORE 

workflow, for all participants. In this session, twenty designs, randomly selected from a 

pool of 219 Non-Dominated design alternatives were displayed to the users. The pool of 

non-dominated design alternatives had been found by a prior simulation-optimization 

experiment that used a multi-objective genetic algorithm along with the four physical 

objective functions (i.e., Costs, Peak Flow Reduction, Nitrates Reduction, and Sediment 

Reduction) (Babbar-Sebens et al., 2015). To maintain same initial starting conditions for 

the participants, this same set of randomly selected design alternatives was used for all the 

user experiments. After I1, participants transitioned into six human-guided search sessions 

(i.e., six HS sessions - HS1 to HS6), in which each session had one-to-one correspondence 

with the iterations (or generations) of the micro-Interactive Genetic Algorithm (micro-

IGA; Babbar-Sebens and Minsker, 2011, Babbar-Sebens et al., 2015) within the IGAMII. 

In each of these HS sessions, twenty new designs (population of micro-IGA), generated by 

the micro-IGA, were presented to the user for obtaining user ratings. After the micro-IGA 

was over (i.e. at the end of HS6), designs that had “I like it” user ratings and/or were on 

the best non-dominated front were saved into a Case-Based Memory (CBM). Next, the 

participant’s workflow transitioned into the Introspection session 2 (I2) where they re-

examined twenty random designs from the CBM. The introspection session provided the 

participant a chance to modify his/her previous user ratings and confidence levels based 

on any newly formed preferences and perceptions at the end of recently completed HS 

sessions. If the participant is modified his/her evaluation of the re-examined design in the 

Introspection session, the changes were updated in the CBM. At the end of I2, a sub-set of 

designs from the CBM were again inserted in the initial population of the next micro-IGA, 
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and a new set of six HS sessions ensued. It is worth noting here that the WRESTORE 

interactive search tool was originally developed for an additional set of alternating I and 

HS sessions and an Automated Search session, all occurring after I3. 

After the participant had submitted his/her user ratings for design alternatives, ten to 

fifteen minutes of waiting time was needed for the underlying optimization algorithm and 

hydrologic model to generate and evaluate new design alternatives. An email notification 

system was used to send participants an automated reminder whenever the next session 

was available for user interaction. The automated e-mail included a log-in link to the 

WRESTORE web page, and when users clicked this link to log into their account, a set of 

instructions on how to conduct the ongoing experiment was redisplayed on the screen 

(Babbar-Sebens et al. 2015). The email notification allowed participants to complete the 

experiment at their own pace. 
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CHAPTER 3. Case Study 

Chapter 3 was divided into four different sections where each of the components to be 

studied is explained. Section 3.1 briefly describe the decision support system (DSS) used 

in this investigation (as it was explained in detailed in Chapter 2, section 2.6). Section 3.2 

describe the location and site use as experimental watershed to test the capabilities of the 

DSS and where a select group of stakeholders and decision makers was willing to address 

comments and run experiments using the developed tool. This section also describes the 

details of the construction and calibration of the selected hydrologic model (Soil and Water 

Assessment Tool -SWAT) use as a baseline by WRESTORE, as well as how the 

conservation practices were simulated by the hydrologic model, i.e., how the decision 

variables are represented in the decision space. Finally, section 3.3 introduces the 

participants and their association with different simulated models for this research. 

3.1 Decision Support System 

As described in Chapter 2, WRESTORE seeks to optimize the spatial distribution of 

conservation practices (or Best Management Practices-BMPs) in an agricultural watershed. 

The system was developed in a web-based environment to allow easy access and outreach 

larger stakeholder communities that wished to be included in the participatory planning 

efforts of their watershed. 

WRESTORE uses an innovative technique as the underlying multiobjective search 

algorithm, centered in adding the user’ subjective criteria in the search optimization process 

through an additional objective function. The search algorithm is a modification of the 

Interactive Genetic Algorithm with Initiative Interaction (IGAMII), developed by Babbar-

Sebens and Minsker (2011). IGAMII seeks to find optimal solutions for a design problem, 

using a collaborative strategy between human-computer interactions. The advantage of this 

strategy relies on teaching the search algorithm about the desirable objective space and 

decision space, developing solutions that have a better agreement with the human (users) 

constraints (specifically subjective and qualitative criteria, such as preferences in design, 

priorities of physical objectives function, and/or aesthetics). 



 

 

       

   

       

       

  

   

     

  

      

    

    

  

   

 

  

     

    

     

      

     

   

      

  

       

 

        

    

 

    

31 

WRESTORE uses an iterative process that requires providing a classification for each 

of the shown designs. To keep a control of the variables, two conservation practices widely 

accepted in the watershed study (cover crops and filter strips) and four physical goals 

(maximize peak flow reduction, minimize economic cost, maximize sediment reduction, 

and maximize nitrates reduction) were asked be chosen by to each of the participants. 

The Graphical User Interface (GUI) had seven different components (as shown in Figure 

2.3 in chapter 2) that might be used in the experiment execution: 1) a progress bar that 

inform the participant the stage of the experiment, 2) a set of two maps with the spatial 

allocation of the conservation practices, 3) a legend indicating the meaning of symbols and 

colors on the map, 4) a set of two bar graphs that indicate the performance of the system 

(at watershed and local levels), 5) a rating section, where the agreement with the design 

alternative is reflected and the confidence level on this rate is provided, 6) two back and 

forward buttons to facilitate navigation across all the designs in a session, and 7) the submit 

all button that will allow the search algorithm to gather the information from the user. 

3.2 Experimental Watershed 

Eagle Creek Watershed (ECW) is an HUC-11 watershed (05120201120) located in 

central Indiana across four different counties: Marion, Hamilton, Hendricks and Boone 

(Figure 3.1), about 16 km northwest of Indianapolis, Indiana. Its drainage area is 

approximately 419.26 Km2 into the Eagle Creek Reservoir (ECR), one of the major 

recreational and water drinking supplies for Indianapolis. The reservoir was developed as 

a flood control method of the seasonal inundated northwest area of Indianapolis and 

Speedway. This reservoir has been impaired mainly by sediments, pesticides, herbicides 

and fertilizers from the agricultural land in the upstream areas (Tedesco et al., 2005) 

transported in the streams. The watershed topography is relatively flat to undulating, with 

some dissection near Eagle Creek reservoir. 

Agriculture is the dominant land-use in the upstream area of the watershed 

(approximately 60%), with predominantly corn and soy-bean based crops (Census of 

Agriculture, 2007). Urban development has occurred mostly in the southeast region of the 

watershed, due to growth in the Indianapolis population (U.S. Department of Agriculture’s 
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(USDA) crop data layers database). According to USA.com reports, Indianapolis growth 

population rate since 2000 is 4.93 (http://www.usa.com/indianapolis-in.htm) 

Figure 3. 1 Location of Eagle Creek Watershed. Taken from Tedesco et. al, 2005 

Dominant soils association in the area consists of the Crosby-Treaty-Miami association 

in the headwaters (USDA’s Soil Survey Geographic Data Base). These soils are generally 

deep, poorly drained, and nearly level to gently sloping soils formed in a thin silty layer 

overlying glacial till. Whereas downstream areas are dominated by Miami-Crosby-Treaty 

association, generally deep well drained to somewhat poorly drained, and nearly level to 

moderately steep soils formed in a thin silty layer and the underlying glacial till. The Eagle 

Creek valley has a minor soils association that consists of Sawmill-Lawson-Genesee. In 

the northwestern boundary, two minor associations exist Fincastle-Brookston-Miamian 

association and Mahalasville-Starks-Camden association. The minor soils also vary in their 

drainage characteristics based on the composition. 

The climate in this area is predominantly temperate continental and humid (Clark, 1980; 

Newman, 1997), with an average annual temperature of approximately 11˚ C. The average 

annual precipitation varies from 97 to 102 cm, with late spring being the wettest seasonal 

period and February being the driest. Most of this average annual precipitation occurs 

during the 5-6 months of the frost-free growing season. 

All four counties have farmland owners with similar race, age, principal operator’s gender 

and principal crop. The agriculture community population consists mainly of Caucasian 

males in their mid-fifties. The community mostly produces corn and soybeans row crops 

http://www.usa.com/indianapolis-in.htm
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(Dobbins, C.L., and Cook, K., (2002-2012b), Purdue Agricultural Economics Report, 

Purdue Agricultural Economics Extension. 

http://www.agecon.purdue.edu/extension/pubs/paer/archive.asp). 

3.2.1. Hydrologic and Water Quality model 

The hydrology and water quality were simulated using the Soil and Water Assessment 

Tool 2005 (SWAT 2005) model. This modeler was developed by Dr. Jeff Arnold for the 

USDA Agricultural Research Service (Arnold et al., 1998; Neitsch et al., 2005). SWAT is 

a physically based, time model that can be operated from ArcGIS interface (via 

ArcSWAT). It simulates and predict the impact of management practices at subbasin (SB) 

and watershed scales. The spatial factors such as topography, land use, soil type, and 

climate are necessary inputs for the development of the model. 

Eagle Creek Watershed, the SWAT model, was built on a daily time step for a short 

time period of five years (i.e. 2004-2008). The watershed was divided into 130 SBs 

(average area of 327.41 hectares), and 130 reaches for modeling purposes. For each SB, 

the program calculated the SB outlet on the stream network based on the digital elevation 

model (10 meter DEM) and pre-defined boundaries. Once outlets were fixed, the point 

sources (National Pollutant Discharge Elimination System (NPDES) located in SBs: 16, 

42, 54, 59, 61, 71, 72, 74, 81, 87, and 128) and the reservoir (located in SB 128) were added 

(Figure 3.2). 

http://www.agecon.purdue.edu/extension/pubs/paer/archive.asp
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Figure 3.2 EWC SB and reach (Taken from Piemonti et al., 2013) 

The land use (USDA crop data layer, 2008) and soil type (USDA SSURGO) maps were 

then added to the model. These two maps were then combined with the land slope map 

(classified into three classes of 0-1%, 1-2%, and 2%) to divide the SBs into hydrologic 

response units (HRUs). The HRUs are disconnected, unique combinations of land use, soil 

type, and slope, in the SWAT model, and are used as a basic spatial unit for the mass 

balance in the watershed processes. 

Daily climate data for precipitation and temperature were obtained from the National 

Oceanic and Atmospheric Administration (NOAA) stations at Whitestown, IN (Station ID 

GHCND: USC00129557, latitude 39.996°, longitude -86.354°) and Indianapolis Eagle 

Creek, IN (Station ID GHCND: USC00124249, latitude 39.920°, longitude -86.313°). 

Various model input parameters were modified using specific values for the Eagle Creek 

Watershed. Model parameter values for tile drains are listed in Table 1 based on typical 
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values found for tile drains in Central Indiana. For estimating the runoff routing, the curve 

number method was chosen. While the Muskingum routing method was chosen for channel 

routing. 

Daily flow measurements at the USGS station at Clermont (# 03353460) were used to 

represent dam releases. For flow calibration, daily data from 2005-2008 (2004 year was let 

as a warming period for the model) of the USGS gage stations Zionsville gage station and 

Clermont gage station were compared with the outflows of SBs 70 and 128, respectively. 

To estimate the efficiency of the model calibration, Nash-Sutcliffe efficiency (ENS) (Nash 

and Sutcliffe, 1970), given by equation (1), was used. 

𝑛 (3.1)∑𝑖=1(𝑂𝑖 − 𝑀𝑖)
2 

𝐸𝑁𝑆 = 1 − 2𝑛∑𝑖=1(𝑂𝑖 − 𝑂𝑎𝑣𝑔) 

Where Oi is the observed data on day i, Mi is the model data in day i and Oavg is the 

average value of the observed data. Pearson’s product-moment correlation coefficient (R2) 

(Legates and McCabe, 1999), given by equation (3.2), was also used to estimate the model 

performance. 

𝑛 
2 (3.1)

(∑𝑖=1(𝑀𝑖 −𝑀𝑎𝑣𝑔) (𝑂𝑖 − 𝑂𝑎𝑣𝑔)) 
𝑅2 = 2 2𝑛 𝑛(∑ (𝑀𝑖 − 𝑀𝑎𝑣𝑔) ) (∑ (𝑂𝑖 − 𝑂𝑎𝑣𝑔) )𝑖=1 𝑖=1 

where Mavg is the model data average. For both efficiency estimations equations, a value 

close to 1 indicated superior model performance. Table 3.1 presents the parameters that 

were adjusted in order to improve the efficiency of the model for prediction of stream 

flows. 
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Table 3.1 Parameters used in the calibration of SWAT 

Parameter Description File Parameter range Calibrated value 

ALPHA_BF Base flow alpha factor (days) .gw 0-1 0.048 

CH_K2 Effective hydraulic conductivity in .rte 0-150 10 

main channel (mm/h) 

CH_N2 Manning’s n value for main channel .rte 0-1 0.01 

CN_FROZ Frozen soil adjustment on .bsn 0 or 1 1 (Active) 

infiltration/runoff 

CN2 Initial SCS runoff curve number for .mgt Specific to land For Land Use: 

moisture condition II use AGRR, CORN, SOYB: 

0.8075 * CN2default 

For Land Use: 

HAY: 1.045 * CN2default 

Other land-use: 

0.95 *CN2default 

ESCO Soil evaporation compensation factor .hru, 0-1 0.95 

.bsn 

GW_DELAY Groundwater delay time (days) .gw 0-50 31 

GW_REVAP Groundwater “revap” .gw 0.02-0.2 0.02 

coefficient/transfer of water from the 

shallow aquifer to unsaturated zone 

GWQMN Threshold depth of water in the .gw 0-5000 0 

shallow aquifer required for return 

flow to occur (mmH2O) 

HRU_SLP Average slope steepness (m/m) .hru Specific to HRU 2* HRU_SLPdefault 

LAT_TTIME Lateral flow travel time (days) .hru 4 

SLSUBBSN Average slope length (m) .hru 10-150 2 * SLSUBBSNdefault 

SMFMN Melt factor for snow on December 21 .bsn 0-10 1.4 

(mmH2O/°C-day) 

SMFMX Melt factor for snow ok June 21 .bsn 0-10 6.9 

(mmH2O/°C-day) 

SOL_AWC Available water capacity of the soil .sol 0-1 1.5* SOL_AWCdefault 

layer (mmH2O/mm soil) 

SURLAG Surface runoff lag coefficient .bsn 0-10 6 

Water quality observed data collected by the Center of Environmental and Earth 

Sciences (CEES) of IUPUI (Station ID: ECWMP-04, latitude 39.946°, longitude -86.260°) 

was used for water quality calibration (Figure 3.2). Since only monthly data from March 

2007 to December 2008 were available for sediments and nitrates, we decided to expand 

the calibration dataset for sediments and nitrates by using LOADEST (Runkel et al., 2004), 

and then compare the interpolated daily data with the SWAT model daily predictions 

(White and Chaubey, 2005). Table 3.2 shows the variables that were modified for the 

sediments and nitrates. 
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Table 3.2 Parameters modified for the sediments and nitrates calibration 

Sediments 

Parameter Description File Parameter Calibrated 

range value 

SPCON Linear parameter to calculate the maximum .bsn 0.0001-0.1 0.001 

amount of sediment re-entrained during channel 

SPEXP Exponential parameter to calculate sediment re­ .bsn 0.0-2.0 0.65 

entrained in channel sediment routing 

PRF Peak rate adjustment factor for sediment routing .bsn 0.0-2.0 0.01 

in the main channel 

CH_COV Channel cover factor .rte 0.001-1.0 0.12 

CH_EROD Channel erodibility factor .rte 0.05-0.08 0.08 

ADJ_PKR Peak rate adjustment factor for sediment routing .bsn 0.01 

in the sub basin (Tributary channels) 

Nitrates 

NPERCO Nitrate percolation coefficient .bsn 0.0-1.0 0.7 

SDNCO Denitrification threshold water content .bsn 0.8 

CDN Denitrification exponential rate coefficient .bsn 0.0-3.0 0.7 

RSDCO Residue decomposition coefficient .bsn 0.02-0.2 0.2 

IPND2 Ending month of mid-year nutrient settling .pnd 0-12 12 

“season” 

RCN Concentration of nitrogen in rainfall (mg N/L) .bsn 0.0-15.0 3 

RS4 Rate coefficient for organic N settling in the .swq 0.001-0.1 0.001 

reach at 20°C (day-1) 

RS3 Benthic source rate for NH4-N in the reach at .swq 0-1 1 

20°C (mg NH4-N/(m2*day) 

N_UPDIS Nitrogen uptake distribution parameter .bsn 15 

SOL_NO3 Initial NO3 concentration in the soil layer (mg .chm 0.0-100.0 100 

N/Kg soil or ppm) 

AI1 Fraction of algal biomass that is nitrogen (mg .wwq 0.07-0.09 0.071 

N/mg alg) 

RHOQ Algal respiration rate at 20°C/day .wwq 0.05-0.5 0.5 

NSETLW1 Nitrogen settling rate in wetlands for months .pnd 0.0-20.0 0.8 

IPND1 through IPND2 (m/year) 

NSETLW2 Nitrogen settling rate in wetlands for months .pnd 0.0-20.0 0.8 

other than IPND1-IPND2 (m/year) 

3.3 Participant selection and model modification 

Twenty-three participants volunteered for the study. We divided them into two groups 

based on their affiliation with the watershed: stakeholders and surrogates. Each group was 

treated as a predictor variable. The stakeholders group contained eight stakeholders from 

the Eagle Creek watershed who work at federal and state agencies and non-governmental 

organizations in programs that support the implementation of conservation practices in the 

watershed. The surrogates group contained fifteen non-stakeholder volunteers with science 

and engineering backgrounds, who were not directly involved in the watershed. 
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Three participants’ data sets were excluded from the analysis. One participant (a 

stakeholder) quit the study before finishing, leaving an incomplete set of answers. The 

other two participants (a stakeholder and a surrogate user) failed to follow the instructions. 

Therefore, twenty participants’ data sets were analyzed (Six stakeholders – five males, one 

female; fourteen surrogates – six males, eight females). We also want to note that for seven 

participants in the surrogates group, the tool used a different underlying hydrology model 

(used by the optimization algorithm to calculate the four physical objective functions). This 

was to create an enhancement of the BMPs performances and observe if there exist 

significant changes in the responses due to a better performance of the practice 

3.3.1. Design and procedure of experiment 

In this research, we investigated the asynchronous aspect of WRESTORE. The 

experiment was set up to be performed at the participant own convenience time. An initial 

workshop with the explanation of the capabilities of WRESTORE and the general 

instruction on how the optimization search process worked was provided to all the 

participants before they start the test. 

For each participant, a group of SBs were assigned. Four out of twenty participants were 

asked to classify the design alternatives based on their perception of design at a watershed 

scale. The other sixteen were requested to observe carefully and provide a judgement of 

the design, based on a selected region (as shown in figure 3.3). We call these sets the SB 

of interest (SBint). They will be evaluated and examined later on as part of the analysis at 

a local scale. 
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Figure 3.3 SBs assigned to different participants 

The first page of the registration process and before the experiment is shown in figure 

3.4. In this page, all the participants were asked to select the four objective functions (Peak 

flow reduction, Sediment Reduction, Nitrates Reduction and Economic Cost) and two 

BMPs (Cover Crops and Filter Strip width). This was set to have an understanding of the 

representation of two common conservation practices that were widely accepted in the 

watershed community and that represent one binary variable and one real variable. 
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Figure 3.4 Interface for starting a new search experiment for the user’s watershed of interest. 

Then, users will start the experiment as described in Chapter 2, sections 2.4 and 2.5. This 

is an iterative process where the user classifies the design alternatives based on his/her own 

subjective criteria, and provides information on his/her confidence level. We were also able 

to track the interaction of the user, such as time spent in areas of interests and clicks events, 

allowing to gather the appropriated data to test the usability of the tool based on the ISO 

Standard 9241 that defines usability as the “extent to which a product can be used by the 

specified users to achieve specified goals with effectiveness, efficiency, and satisfaction in 

a specified context of use.” The gathered data will provide information about the 

effectiveness and efficiency of the tool. 
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Abstract 

This paper evaluates the usability of a web-based watershed design tool called 

WRESTORE (http://wrestore.iupui.edu/). WRESTORE is an Environmental Decision 

Support System (EDSS) based on an interactive, multi-objective optimization framework. 

This framework uses participant’s ratings of design alternatives, collected via graphical 

user interface (GUI), as an additional objective function, guiding the search for user-

desired designs. Usability of WRESTORE’s GUI was evaluated for two groups of 

participants (surrogates and stakeholders) via 1) task times across sequential sessions, 2) 

percentage of time spent and percentage of mouse clicking events in different regions of 

the GUI (e.g., Info vs. Eval areas of interest), and 3) trends in self-reported user confidence 

levels. Results for task times showed that participants followed theoretical models of 

learning curves across Introspection sessions, with coefficients of determination of R2 > 

0.9 for both groups. Stakeholders, however, spent 15% more time than surrogates on 

information gathering regions. Similarly, stakeholders made 14% more mouse clicks than 

surrogates in information gathering areas. Confidence level trends increased over time in 

67% of the stakeholder participants, while only 29% of the surrogate participants showed 

this increase. Analysis of the relationship between time spent, mouse clicking events, and 

trends in average confidence levels indicated that most participants with higher number of 

mouse clicks per unit time in information gathering areas, increased their self-reported 

confidence levels. The approach presented provides a useful methodology that can be 

applied by other EDSS developers to evaluate the usability of their tools. 

Introduction 

ISO Standard 9241 defines usability as the “extent to which a product can be used by 

the specified users to achieve specified goals with effectiveness, efficiency, and satisfaction 

in a specified context of use.” Estimating usability attributes for different EDSS can 

potentially help developers to identify users’ interactions with their system, and gain a 

better understanding of their behaviors, preferences and needs. Some researchers, such as 

Haklay and Tobon (2003), Slocum et al. (2003), Jankowski et al. (2006), Nyerges et al. 

(2006) have examined the factors that influence the development and usability of EDSS. 

However, appropriate measurements and evaluations for EDSS usability, as well as 

http://wrestore.iupui.edu/
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standardized techniques, have not been extensively studied, applied, or developed for these 

systems. 

For example, in Slocum et al. (2003), the authors used a combination of cognitive 

walkthrough methods, think aloud protocols, and pluralistic inspection while developing 

software intended to visualize the uncertainties of global water balance. The cognitive 

walkthrough methods allow developers and human factors specialists to evaluate the steps 

of tasks-scenarios. The think aloud protocol permits users to verbalize their thought 

processes as they perform the tasks, while pluralistic inspection allows users with different 

expertise and backgrounds to contribute towards the improvement of the system. However, 

such approaches do not present quantitative results, but rather qualitative comments 

centered on the expertise of each of the tested groups. 

Other studies by Jankowski et al. (2006) and Nyerges et al. (2006) evaluated usability 

of a collaborative spatial EDSS that sought to create a consensus for solutions/options for 

surface water allocation and groundwater pumping rates, using qualitative and quantitative 

methods. The qualitative methods involved nonstandard usability questionnaire data, while 

quantitative methods provided information on task times for different activities, but they 

did not consider any measurement of the GUI’s usability. Jankowski et al. (2006) and 

Nyerges et al. (2006) provided communication results of two different groups (of ten 

stakeholders each) that collaborated together to propose scenarios of regulation laws for 

water allocation and groundwater pumping rates. However, their study examined the 

analysis and evaluation of collaborative interaction rather than the evaluation of EDSS 

based on individual stakeholders’s interaction and user’s behavior. Despite these advances, 

there are still gaps in the use of quantitative evaluation methods to determine the usability 

of such participatory EDSS. 

Tullis and Albert (2013) proposed quantitative measures such as task time, number of 

mouse clicks, and percentage of time spent in specific areas of interest of a web interface, 

as potential approaches that researchers can use for quantifying the usability of software 

and webpages. In this study, we investigated the use of these quantitative measures for 

evaluating the usability of a new, web-based participatory EDSS called WRESTORE 

(Watershed Restoration using Spatio-Temporal Optimization of Resources; 
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http://wrestore.iupui.edu/). WRESTORE has been recently developed with the goal of 

allowing stakeholders, policy makers, and planners to participate in the design of a spatially 

distributed system of BMPs in a watershed. WRESTORE uses a modification of the 

IGAMII (Interactive Genetic Algorithm with Mixed Initiative Interactions – Babbar-

Sebens and Minsker, 2011) algorithm to engage users in a human-guided search process 

that is targeted towards identification of user-preferred alternatives. In WRESTORE, users 

are shown multiple design alternatives and are asked to provide a qualitative rating of the 

candidate designs based on their preferences and subjective criteria. This user rating is 

then used as an additional objective function in the search algorithm to search for similar 

or better alternatives that would have design features liked by the user. In summary, 

WRESTORE optimizes five objective functions: four objective functions are related to the 

physical performance of the BMPs within the watershed, and one objective function (user 

ratings) is related to the user’s qualitative rating of the newly found design alternatives. 

Babbar-Sebens et al. (2015) have extensively explained how the user ratings for design 

alternatives are obtained via the GUI. Because these user ratings are what is used by the 

underlying optimization algorithm to search for new solutions/design alternatives that 

agree with user’s qualitative preferences (such as land management, biases towards 

practices and their implementation, individual local constraints and needs, etc.), evaluating 

the usability of the GUI is critical. In addition to the user ratings, the interface is also used 

to collect confidence levels from the users. The self-reported confidence levels indicate how 

confident a participant was regarding his/her own rating of a candidate design alternative 

(Babbar-Sebens and Minsker, 2011). The confidence levels, along with the user’s 

interaction, offer potential insights into the quality of user’s input. This information is also 

valuable for assessing the reliability of a user-guided search. 

Usability testing was conducted for WRESTORE, developed by Babbar-Sebens et al. 

(2015), and this article summarizes the findings on the nature of user behavior observed 

for two different types of users (stakeholders and surrogates) who interacted with the 

search tool’s GUI. In Section 4.3, we present the objectives and research hypotheses 

investigated in this work. Section 4.4 has the description of the methodology and the 

experimental design, followed by Sections 4.5 and 4.6 that contain the analysis and 

http://wrestore.iupui.edu/
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discussion of the results. Finally, in Section 4.7, we present some concluding thoughts, 

future work and recommendations that may address the usability testing of WRESTORE 

and similar EDSS. 

Objectives 

The aim of the study was to use an observational approach to determine how participants 

used the GUI of the WRESTORE EDSS, as they gathered information and made decisions 

in order to rate different design alternatives. This kind of system, that includes direct 

participation of stakeholders in the optimization process, is relatively new in the field of 

watershed planning and management, and also in the field of EDSS. As mentioned earlier, 

since the GUI is the primary mechanism to collect the user ratings from end users, it is 

important to determine if it can support the necessary functions for a user to be able to 

easily (a) gather information about the candidate design alternatives, (b) conduct 

comparisons between candidate design alternatives, and (c) provide meaningful feedback 

with improved confidence in his/her own evaluation of candidate design alternatives. 

Analyses of the user’s data will help to better characterize his/her interaction with the tool, 

enabling improvements in the efficiency of the underlying search algorithm used by 

WRESTORE (i.e, IGAMII). We tested the tool’s performance with two groups: 

stakeholders (watershed end users) and surrogates (non-stakeholder volunteers). Because 

surrogate users’ data is often used for prototype development of interfaces due to time and 

cost constraints, it is critical for us to know and understand the extent to which volunteers 

can be used as proxies for future end users. 

The study examined the following research hypotheses: 

H1. Over time, users should become more efficient in using WRESTORE’s GUI. As 

users learn how to navigate and use the GUI’s features, overall task times should decrease 

across repeated sessions. This decrease should follow the theoretical learning curves 

(Yelle, 1979; Newell and Rosenbloom, 1981; Estes, 1994), specifically, DeJong’s learning 

formula (Jaber, 2011). 

H2. Because stakeholders are directly affected by the issues and implementation 

decisions related to the watershed, we expect that the percentage of time they spend in 

information gathering areas of the interface will be greater than for surrogate users. 
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H3. Similarly, we expect that stakeholders will have a higher percentage of mouse 

clicks than surrogates in the information gathering areas of the web-interface. 

H4. As users gain experience by interacting with the tool and develop a better 

understanding of the performances of different designs alternatives, we expect that their 

overall self-reported confidence levels will increase over time, resulting in a positive trend. 

H5. A comparison among confidence level trends, time spent, and mouse clicking 

events should show that when users spend more time and make more mouse clicks in 

information gathering areas, their confidence levels increase over time. 

A final goal was to set a basis for evaluating the interactions between human factors and 

GUIs in participatory decision support tools. Such protocols will allow tool developers to 

test the usability of these systems for their user community, determine what improvements 

should be made based on specific user populations, and learn how to facilitate the 

participation of stakeholders in similar watershed design tools. 

Methodology 

4.4.1. Case study site 

The web-based WRESTORE tool (http://wrestore.iupui.edu/) was developed by 

Babbar-Sebens et al. (2015) to enable watershed communities to engage in participatory 

design efforts and influence the spatial design of conservation practices on their landscape. 

WRESTORE software is currently being tested at the study site of Eagle Creek Watershed, 

Indiana, where multiple researchers (Tedesco et al., 2005; Babbar-Sebens et al., 2013; 

Piemonti et al., 2013) have conducted watershed investigations. 

4.4.2. Web-tool WRESTORE evaluation 

Chapter 3 presents a detailed description of the selected participants and how the testing 

was performed. In summary, twenty participants are selected and divided into three 

different groups, depending on their background and the hydrologic model that was used. 

The first group (referred as Model A-Surrogates), was integrated by seven participants, 

with a majority of students related to the research group. The second group (Model B-

Surrogates) was also integrated by seven different participants, associated with engineer 

and sciences, but not directly related to the research group. The third and final group 

http://wrestore.iupui.edu/
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(Model B-Stakeholders) was integrated for actual stakeholders concerned about the 

solutions and design plans in the watershed. 

In general, the main goal is to rate 20 design alternatives in each session, with the aim 

to generate new design alternatives that will satisfy not just physical criteria and conditions, 

but also the participant’s subjective perception. To understand and evaluate the results, we 

provided a semi-structure design, where Cover Crops and Filters Strips most be optimized 

at a watershed scale (for five different users) and a local Subbasin (SB) scale. Figure 4.1 

shows the components of the interface for each pair of designs, where the participant is 

allowed to see the decision and objective space, and at the same time provide the 

classification on a rating scale, addressing the level of agreement (or disagreement) and the 

confidence level of that classification that will serve to generate future new design 

alternatives under a human-guided search. 

To measure interface interaction, we tracked the time spent and number of mouse clicks 

in three main areas of interest (AOI). The first AOI was associated with information 

gathering (AOI1 = Info) and included user interactions with the legend (component (ii)), 

the Alternative maps (component (iii)) and/or the drop-down (sub-drop in component (v)) 

menu. The drop-down menu allowed users to compare the performance of two design 

alternatives at watershed scale or at a local sub-basin scale (component (v)). The second 

AOI was associated with the evaluation process (AOI2 = Eval), and included user 

interactions with the Likert-scale user ratings and the confidence sliders (component (iv)). 

The final AOI (AOI3 = Other) included all other user activity outside the areas covered by 

AOI1 and AOI2, i.e., if the participant clicked in an area outside of the purple (Info) and 

green (Eval) boxes shown in Figure 4.1. 
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AOI1 = Info
AOI2 = Eval

Figure 4.1. Components of WRESTORE tool’s main design and feedback interface and areas of interest (AOI) 

(Modified from Babbar-Sebens et al., 2015) 

4.4.3. Measures of user interaction with the interface 

This section introduces the different usability metrics or response variables that were 

employed to evaluate the user’s interaction and usability of the WRESTORE tool. 

4.4.3.1. Overall task times 

We assessed the participant’s ability to navigate and learn the tool by evaluating the 

mean task times across successive I sessions and also across successive HS sessions, during 

which design alternatives were presented to the user via the GUI. Task times for each 

session were recorded and used to infer how quickly participants learned to use the tool 

interface. When the participants were not using the tool (e.g. taking a break), they were 

instructed to press the “Save all” button, so that we could consider these off-task time 
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intervals as outliers and exclude them from the task time analyzes. These events were saved 

in a database as “Save all Maps”, and removed from the post-processing analysis, along 

with “Quit” events. However, there were some occasions when some participants failed to 

click the “Quit” or “Save all” buttons, resulting in excessively long task times. To remove 

these outliers, we excluded the task time values that were greater than two standard 

deviations from the mean task time across all considered sessions, for each participant. 

4.4.3.2. Mean percentage of time spent in different areas of interest 

In order to compare time spent in each AOI (Info, Eval and Other described in section 

4.4.2), the percentage of time spent (ptsijm) was calculated using: 

𝐻 𝐿∑ ∑ℎ=1 𝑘=1 ∆𝑡𝑖𝑗𝑚𝑘ℎ 
= ∗ 100 (4.1)𝑝𝑡𝑠𝑖𝑗𝑚 𝐻∑ 𝑡𝑡𝑜𝑡𝑎𝑙𝑗𝑚ℎℎ=1 

where ptsijm is the percentage of time spent, i is an index that goes from one to three and 

represents each AOI, j is a vector that goes from one to five and represents I or HS sessions. 

Data from HS1 to HS6 sessions were grouped together into blocks of HS sessions in order 

to conduct a temporal analysis that was based on alternating session types. Therefore, if j 

is an even number it represents an Introspection session, and the variable H is equal to one 

(because Introspection sessions are not evaluated in blocks), but if j is an odd number it 

represents a Human-guided Search session, and H is equal to six (representing each of the 

iterations in the micro-IGA). The index for each participant is represented by m. The 

variable tijmkh is the interval of time between two events (k), L is the total number of events 

associated with the AOIi and ttotaljmh is the participant’s (m) total time in each session (j). 

The mean time spent was calculated by adding the percentage of time spent (ptsijm) per 

AOIi per participant (m). This mean was grouped by session type and by the group. 

Therefore, to calculate the mean percentage of time spent by AOI we used: 

𝑁∑𝑚=1 𝑝𝑡𝑠𝑖𝑗𝑚 
𝑀𝑃𝑇𝑆𝑖𝑗 = (4.2) 

𝑁 

where MPTSij is the mean percentage of time spent in each AOIi, and N is the total 

number of participants in the group. 
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4.4.3.3. Mean percentage of mouse clicking events by area of interest 

The same AOIs described in section 4.2.2 (Info, Eval and Other) were used to track the 

mouse clicking events. As the total number of clicking events varied between participants, 

the percentage of clicking events in each session was calculated for each participant, and 

for each group (surrogates and stakeholders). 

For each participant, we used the following general formula: 

𝐻∑ℎ=1 𝑁𝐶𝑖𝑗𝑚ℎ 
𝑃𝑀𝐶𝑖𝑗𝑚 = 𝐻 ∗ 100 (4.3)

∑ℎ=1 𝑇𝐶𝑗𝑚ℎ 

where, PMCijm is the percentage of mouse clicks per participant per AOI, NCijm is the 

number of clicks per ith AOI, per jth session, per mth participant, and TCjmh is the total 

number of clicks per jth session per mth participant. As in the mean percentage of time spent, 

H will vary with the session type. Therefore, for j equal to an even number (representing I 

sessions), the variable H is equal to one, and for j equal to an odd number (representing HS 

sessions)the variable H is equal to six. This allowed us to compare the clicking interactions 

of individuals within each group. 

The percentage for each group was calculated using the mean value of all the 

participants within the group. Therefore: 

𝑁∑ 𝑃𝑀𝐶𝑖𝑗𝑚 𝑚=1
𝑃𝐺𝑀𝐶𝑖𝑗 = (4.4) 

𝑁 

where PGMCij is the percentage per group per ith AOI, and N is the total number of 

participants per group. 

4.4.4. Confidence levels 

Confidence level indicates how confident the participant felt about his/her own user 

rating (I like it, Neutral, or I do not like it). User’s confidence in his/her user ratings were 

indicated via the confidence level slider bar (component (iv) in Figure 4.1Error! Reference 

source not found.) that ranged in its scale from 0 to 100, and could be modified by the 

user during the session. However, changes in the confidence levels for the same designs 

that appeared multiple times during the experiment could not be tracked, as new changed 

values replaced previous values in the archive database. 
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We classified participants by confidence level trends in the following manner. First, we 

conducted a nonparametric Mann-Kendall hypothesis test (Helsel and Hirsch, 2002) via a 

Matlab script (Burkey, 2006) to assess whether the trends in average values of confidence 

levels (estimated from data on confidence levels in each session) were monotonically 

increasing or decreasing. This test indicated whether or not participants presented a trend, 

at a significance level alpha of 0.1, and the Sen’ Slope (S value) determined if the trend 

was positive or negative. Since the main focus of this test was to minimize the risk of not 

detecting an existing trend (i.e. Type II error), a larger alpha value was chosen. Participants 

were thus separated into three confidence level trend groups (positive, negative and no 

trend). Finally, we attempted to identify similarities and differences between participants 

who showed positive, negative and no trend in confidence levels, and relate them to their 

interface behavior (i.e., time spent and mouse clicks) concerned with information 

gathering. 

4.4.5. Relationships between confidence levels, time spent and mouse clicking 

events 

We fitted trend curves to usability data (i.e. time spent and number of mouse clicks) in 

order to determine any underlying patterns and relationships for participants within each 

confidence level trend (positive, negative, or no). We also compared the differences in these 

trends for Info and Eval type events. To select the best trend curve model, we used a 

combination of the coefficient of determination, and three versions of the Akaike 

Information Criterion (AIC). 

The AIC provides the relative quality of a proposed model in a given data set, dealing 

with the goodness of fit and the complexity of the model. The approaches for calculating 

AIC were based on the following equations: 

𝐴𝐼𝐶 = ,2(𝑙𝑜𝑔(𝐿)) + 2𝐾 (4.5) 

𝐴𝐼𝐶𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = 𝑛(𝑙𝑜𝑔(𝜎2)) + 2𝐾 (4.6) 

2𝐾(𝐾 + 1) (4.7)
𝐴𝐼𝐶𝐶 = ,2(𝑙𝑜𝑔(𝐿)) + 2𝐾 + 

(𝑛 , 𝐾 , 1) 

where L is the likelihood of the model, K is the number of parameters, n is the sample size, 

AIC is the definition for the Akaike’s Information Criterion, AICResidual is based on the least 
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square regression (assuming normal distribution) and AICC is the second order AIC that 

includes a penalization for small sample sizes. (Mazerolle, 2004) 

4.5. Results 

In this section, we present the results from the data analysis for the task time, percentage 

of time spent in each AOI, percentage of mouse clicks in each AOI, and confidence level 

trends, as well as the relationships between these variables. 

4.5.1. Overall task times 

We first assessed differences between participant groups based on their mean task times 

for each session. The mean for each group (surrogates and stakeholders) was calculated 

and the results were separated according to the type of sessions (i.e., I or HS). Results for 

surrogates showed that in earlier sessions (for both I and HS) the mean task time and the 

standard errors were greater than in later sessions. Similar results were found for 

stakeholders in I sessions. However, stakeholders’ mean task times for HS sessions were 

somewhat more variable. 

Figure 4.2 presents the mean task times for surrogates and stakeholders for all 

completed I sessions, where the main task of participants was to evaluate initial designs 

and/or re-evaluate their previous user ratings. Despite the limited number of Introspection 

sessions, both groups show a good estimation of the theoretical power learning curve 

typically used to represent learning processes (Yelle, 1979; Newell and Rosenbloom, 1981; 

Estes, 1994; Jaber, 2011), with a coefficient of determination > 0.9 for both groups. 

However, we observed that the stakeholders’ learning curve started at a higher value of 

mean task time than that of the surrogates. Stakeholders’ mean task times decreased by 

85% from I1 to I3, while surrogates’ mean task times decreased by 74% from I1 to I3. This 

effect shows that the task might have seemed more challenging for the stakeholders in the 

first I session when they were still getting used to the interface, but as time progressed, 

their mean task time decreased to a value lower than the surrogates’, in the last I session. 

Variability also decreased over time for both groups. 

We also compared the task times of HS sessions for the two groups (Figure 4.3), where 

the main task of participants was to compare and evaluate newly generated design 
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alternatives, and provide feedback on these designs to help guide the search algorithm in 

creating new design alternatives for the next HS session. Error! Reference source not 

found..3 shows two different learning curves for surrogates and stakeholders. Surrogates 

showed continuous learning with a decrease in average time across HS sessions. 

Surrogates’ behavior fit the power learning curve with a coefficient of determination of R2 

= 0.87. The mean task times for stakeholders, though generally higher than surrogates, 

poorly fit the theoretical power learning curve, resulting in a coefficient of determination 

of R2 = 0.23. This fit is substantially lower than the R2 value previously obtained for the 

stakeholders’ I sessions, primarily due to the higher variability of the mean task times 

within HS sessions. On average, the standard error for stakeholders in the HS sessions was 

62% larger than that for surrogates. 
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Figure 4.2. Power function representing the learning curves of the mean task times for the surrogates and 

stakeholders groups across I sessions. Error bars represent the standard error of the mean. 
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Figure 4.3. Power function representing the learning curves of the mean task times for the surrogates and 

stakeholders groups across HS sessions. Error bars represent the standard error of the mean. 

4.5.2. Mean percentage of time spent in different areas of interest 

We also analyzed the mean percentage of time spent within the different AOIs for each 

group. Figure 4.4 shows a pie chart table that compares surrogates and stakeholders for 

all sessions. On average, stakeholders spent 15% more time on information gathering than 

surrogates, while surrogates spent more time in the Eval and Other AOIs (8% and 7% 

respectively greater than stakeholders). 

I1 HS_1 I2 HS_2 I3

Surrogates

Stakeholders

39%

25%

36% 33%

28%

39% 30%

16%

54%

27%

35%

38% 32%

23%

45%

56%
17%

27%
47%

21%

32%
43%

14%

43% 38%

26%

36%

51%

7%

42%

Figure 4.4. Mean percentage of time spent in each AOI for surrogates and stakeholders. Refer to section 4.2.2 

and Figure 4.1 for descriptions of each AOI. 
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Table 4.1 summarizes the data in Figure 4.4, and presents the overall mean percentages 

of time spent (averaged across sessions) and 95% CIs for surrogates and stakeholders in 

each AOI. 

Table 4.1 Confidence intervals (CI) for the mean percentages of time spent in each AOI across all sessions by 

group 

AOI Group Mean 95% CI 

Info 
Surrogates 32 [25, 39] 

Stakeholders 47 [36, 57] 

Eval 
Surrogates 25 [21, 30] 

Stakeholders 17 [13, 22] 

Other 
Surrogates 42 [36, 48] 

Stakeholders 36 [27, 45] 

4.5.3. Mean percentage of clicking events in different areas of interest 

Similarly to Figure 4.4, Figure 4.5 displays a summary pie chart table with the mean 

percentages of mouse clicks in the Info, Eval and Other AOIs for the two groups across the 

different types of sessions. On average, stakeholders clicked 14% more in Info areas than 

surrogates, while surrogates had a greater percentage of clicks in the Eval and Other areas 

of interest in comparison to stakeholders. The percentage of clicks in the Eval AOI was 

11% greater for the surrogates group, and the percentage of clicks in the Other AOI was 

3% greater for surrogates. 

I1 HS_1 I2 HS_2 I3

Surrogates

Stakeholders

40%

39%

21%
30%

51%

19%
25%

56%

19%
32%

40%

28%

58%
31%

11%

45%

41%

14%

42%

31%

27%
37%

46%

17%

41%

12%

47%

29%

30%

41%

Figure 4.5. Mean percentage of mouse clicking events for surrogates and stakeholders within each AOI. Refer to 

section 4.2.2 and Figure 4.1 for descriptions of each AOI. 
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We calculated 95% Confidence Intervals (CI) for overall mean mouse clicking events, 

similar to the analyses in Table 4.1 for time spent. Table 4.2Error! Reference source not 

found. presents the overall mean percentages of mouse clicks (averaged across sessions) 

for surrogates and stakeholders in each AOI. 

Table 4.2 Confidence intervals (CI) for the mean percentages of mouse clicking events within each AOI across 

all sessions by group. 

AOI Group Mean 95% CI 

Info 
Surrogates 31 [24, 38] 

Stakeholders 45 [34, 56] 

Eval 
Surrogates 43 [38, 49] 

Stakeholders 33 [24, 42] 

Other 
Surrogates 26 [21, 30] 

Stakeholders 22 [14, 30] 

4.5.4. Confidence Levels 

For each participant, and for each of the rating classes (i.e., I like it, Neutral and I do 

not like it), a Mann-Kendall trend test was performed to identify if there were monotonic 

trends in the mean confidence levels across consecutive sessions. The results were 

separated according to Positive, Negative, or No trends, based on the results over time. A 

Positive trend indicated that users were becoming more confident over time about the 

ratings they provided for the designs. On the other hand, a Negative trend indicated that 

they were becoming less confident over time. In summary, 40% of all of the participants 

showed a Positive trend in at least one of the rating classes. For the stakeholders group, 

67% of the participants showed a Positive trend, while just 29% of the participants in the 

surrogates group showed a Positive trend. It is, however, important to mention here that 

these trends were calculated for the sessions that lasted until the end of I3. It is possible 

that if participants continued beyond I3 then they could change their trends, especially if 
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the additional engagement during the interactive search process improved their reasoning 

process and led to a change in their confidence levels. 

4.5.5. Relationships between confidence levels, time spent and mouse clicking 

events. 

We also associated the mean percentage of mouse clicks for information gathering and 

the mean percentage of time spent for information gathering (Table 4.3) with each of the 

trends in mean confidence levels reported in the previous sub-section. Results showed that 

participants with a Positive trend in mean confidence levels also had 13% more mouse 

clicks than participants with a Negative trend, and 9% more mouse clicks than participants 

with No trend in areas of interest related to information gathering. Participants with a 

Positive trend in mean confidence levels spent 1% more time than participants with a 

Negative trend, and 12% more time than participants with No trend in areas of interest 

related to information gathering. 

As it was suggested earlier, it is possible for participants to experience changes in the 

trends of the means of their confidence levels, during the course of their interaction with 

the tool. Therefore, we identified participants who had interacted with WRESTORE tool 

beyond the I3 session, and re-evaluated the trends in their interaction data by including the 

data from the additional sessions after I3. Figure shows four plots that relate time spent 

vs. number of mouse clicking events for each participant in the Info and Eval AOI. Figure 

a) and 4.6b) show the relationships for the data collected from sessions completed by all 

participants until the end of I3. Figure c) and 4.6d) show the results for all of the available 

data from each participant, which includes data from additional sessions for participants 

who progressed beyond I3. It can be seen that while the classification of trends in mean 

confidence levels remained the same for the majority of participants (see Figure a) and 

4.6c)), the trend for Participant 2, however, changed from No trend (for sessions from I1 

to I3) to Positive trend (for sessions from I1 to I5). This indicates that when Participant 2 

engaged actively with the tool longer than I3, she/he was eventually able to improve his/her 

confidence in the user ratings provided during the experiment. Results also showed that, 
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for the Eval AOI (Figures 4.6b) and 4.6d)), there is no clear separation between the 

responses for each trend, irrespective of how long the experiment lasted. 

Table 4.3 Classification of confidence levels, mean percentage of clicking events and mean percentage of time 

spent across participants with the same trend. 

Trend 
% of Total 

participants 

Mean % of clicking 

events in Info AOI 

Mean % of time 

spent in Info AOI 

Positive 40 42 41 

Negative 30 29 40 

No 30 33 29 
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Table 4.4 shows the comparison of the different AIC values obtained for four different 

approximations generated using the results for the sessions completed by all the 

participants. The AIC values indicate that a power approximation represents the best-fit 

model for any of the trends, with the exception of a negative trend in “All Available 

Sessions”, where a linear function seems to have a better fit. 

Table 4.4 Coefficient of determination and AIC values for the different tested models 

Sessions I1 to I3 All Available Sessions 

Trend Model R2 AIC AICResidual AICc R2 AIC AICResidual AICc 

P
o

si
ti

ve
 

Linear 0.38 -1.64 302.55 -1.59 0.17 -1.65 478.38 -1.62 

Quadratic 0.67 0.18 281.16 0.32 0.57 0.14 442.11 0.23 

Third 0.73 2.11 277.28 2.39 0.67 2.06 430.93 2.24 

Power 0.75 -1.85 321.37 -1.80 0.69 -1.89 502.60 -1.86 

N
o
 

Linear 0.06 -1.13 219.08 -1.06 0.29 -0.44 145.04 -0.35 

Quadratic 0.45 0.46 207.22 0.67 0.31 1.42 146.48 1.69 

Third 0.60 2.40 205.28 2.83 0.66 2.99 149.38 3.54 

Power 0.68 -1.38 215.91 -1.31 0.62 -0.77 141.38 -0.68 

N
eg

a
ti

ve
 

Linear 
2.35E-

03 -0.69 242.36 -0.64 0.22 -0.71 325.21 -0.67 

Quadratic 0.14 1.07 239.52 1.24 0.25 1.19 325.49 1.30 

Third 0.17 2.83 250.73 3.17 0.35 3.08 321.65 3.31 

Power 0.53 -0.73 239.70 -0.68 0.58 -0.55 325.90 -0.52 

4.6. Discussion 

In this paper we investigated the usability of a novel web-based tool, WRESTORE, 

which supports decision makers in the search and design of alternatives for allocating 

conservation practices in agricultural watersheds. 

Four main usability metrics were considered for the analysis: task time evaluation, 

percentage of time spent in different areas of interest, percentage of mouse clicking events 

in different areas of interest, and trends in mean confidence levels. 

4.6.1. Overall task times 

We evaluated overall task times in order to assess participants’ efficiency in using the 

tool interface. Overall task times decreased across repeated sessions following a power 
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learning curve. The results are consistent with hypothesis H1 where it was stated that over 

time, users should become more efficient in using the interface, as they learn how to 

navigate and use the different features. I sessions followed a power learning curve for both 

surrogates and stakeholders, but stakeholders showed a greater decrease in overall task 

time for I sessions than surrogates. 

HS sessions also followed a power learning curve for the surrogates. However, the mean 

task times for stakeholders were much more variable, resulting in a poor fit to the expected 

learning curve. The differences in mean task times across stakeholders may be due to the 

following potential reasons: 1) some abnormally large task times that were still within two 

standard deviations from the mean and hence were not excluded as outliers, possible related 

with a re-learning process due to the lag time between sessions, 2) small sample size of 

stakeholders, or 3) existence of two learning curves instead of one overall learning curve 

as seen by an apparent increase in the time spent again at the start of the second block of 

HS sessions (i.e., HS1_2 in Figure 4.3). 

Overall task times can provide estimates of the tool’s efficiency to developers. 

Information on how fast the users learn via the GUI can be expected to assist the tool 

designers in the re-evaluation of the users’ interactions during the sessions, and of the tool’s 

ability to use participation in guiding the search process. Further, an insightful 

understanding of time needed to complete goals and provide useful feedback is also 

important for eliminating extra sessions, which could increase user fatigue and introduce 

noise without meaningful benefit to the search algorithm. 

4.6.2. Mean percentage of time spent in different areas of interest 

The analysis of these data provided us with insightful evidence about the percentage of 

time each group spent in each of the areas of interest (AOIs). The groups showed fairly 

consistent behavior across sessions. However, stakeholders expended more time in the Info 

AOI, while surrogates expended more time in Eval and Other AOIs. This supports 

hypothesis H2, where we predicted that because the stakeholders are directly affected by 

issues and actions in the watershed, their percentage of time spent in information gathering 

areas of the interface would be greater than for the surrogates. 
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4.6.3. Mean percentage of clicking events in different areas of interest 

These results help to understand how different groups were using the interface to 

perform the tasks. The higher percentage of mouse clicking events for stakeholders vs. 

surrogates in Info areas of interest supports hypothesis H3 and is consistent with the results 

reported above for mean percentage of time spent. Surrogates and stakeholders behave 

differently regarding information gathering. On average, the majority of stakeholders tend 

to make more mouse clicks to gather information from the user interface in order to make 

their decisions. Surrogates, on the other hand, do not explore the information gathering 

areas of the interface as much, making fewer mouse clicks in these regions. This could be 

a consequence of lack of interest in the task, or a lack of information about the tool’s goals. 

4.6.4. Confidence levels 

Previous work using confidence levels, showed a positive trend as experimental time 

progressed (Babbar-Sebens and Minsker, 2011). A positive trend indicates that mean 

confidence levels increase over time as users gained experience with the tool. However, 

we did not find that mean confidence levels increased for all of the users. Therefore 

hypothesis H4, was only partially supported. 

Our results showed that just 40% of participants exhibited a Positive trend in mean 

confidence levels over time. Nevertheless, there was a clear distinction between surrogates 

and stakeholders in relation to these trends. Approximately 67% of the total stakeholder 

participants presented a positive trend, while just 29% of the total surrogate participants 

presented a positive trend. 

4.6.5. Relationships between confidence levels, time spent and mouse clicking 

events. 

The section examines the results on the relationships between trends in mean confidence 

levels, time spent and mouse clicking events. The results in Table 4.3 help to support 

hypothesis H5 that states “when users spend more time and make more mouse clicks in 

information gathering areas, their mean confidence levels increase over time”. An analysis 

of relationship between time spent, clicking events and mean confidence levels trends 

indicates that participants with a Positive trend had a larger number of clicking events per 
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unit time spent in information gathering areas, compared to participants with a Negative 

trend. This may indicate that if a participant interacts with the interface to gather more 

information on the design alternatives for the same amount of interaction clock time (i.e., 

the time spent), then there exists a probability for them to either improve their self-

confidence over time or maintain a steady value over time. In addition to the slope, the 

fitted value of the exponent in power curves was also lower for the Negative trend than for 

the Positive trend in mean confidence levels. In the Eval AOI, no clear difference across 

confidence level trends was observed. 

Conclusions and future work 

This research presented some techniques widely used in usability testing and adapted 

them to a set of data collected with the WRESTORE tool to evaluate its performance and 

usability. Overall, this work provided three important contributions: 1) determination and 

validation of usability and metrics for participatory design tools based on information 

technologies, 2) evaluation of differences between how surrogates (volunteers) and 

stakeholders (end users) use such interactive design tools, and 3) suggestions for possible 

improvements and considerations for similar web-based watershed design tools. 

WRESTORE was developed for the Eagle Creek Watershed, in Indianapolis, IN, with 

the goal of providing a more democratic venue for stakeholders to engage with the 

watershed community in the design of alternatives for spatial allocation of conservation 

practices. The tool was initially tested by surrogates who were not intimately involved 

with the issues and concerns in the watershed. Their feedbacks were recorded and saved 

for later analysis. Then, the tool was tested with stakeholders (i.e., potential end users) to 

determine if the findings from surrogates held true for the actual end users. 

As the majority of usability tests are performed by students or volunteers, we wanted to 

track possible differences in responses between the tested group (surrogates) and the end 

users (stakeholders), and analyze to what extent the results from surrogates would be 

reflected in the behaviors of stakeholders. From the overall task time analysis, we 

concluded that the participants of both groups became more efficient as they learned how 

to navigate and use the tool’s features. Overall task times decreased across repeated 
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sessions. Therefore, surrogates can potentially be used as proxies for stakeholders for 

overall task time analysis and improvements. 

For time spent on the areas of interest (AOIs), results showed that stakeholders 

expended more time than surrogates in gathering information about the performance of the 

different design alternatives. This could be a result of the motivation of stakeholders in 

creating a designed distribution of Best Management Practices (BMPs) that better suits 

their interests. Surrogates that were not involved with the watershed may have lacked this 

motivation. Similarly, as we predicted, a higher percentage of mouse clicks were made on 

the information gathering areas by stakeholders vs. surrogates. 

We also noticed that the majority of the stakeholders showed an increase in their mean 

confidence levels over time, while the surrogates did not. A comparison among trends in 

mean confidence levels showed that Positive and No trends were associated with more 

information gathering activity. Surrogates that did less information gathering were more 

likely to show a decrease in their confidence levels. As observed, for one of the participants 

(Participant 2), extensive information gathering over repeated sessions can also lead to a 

later positive change in the trend of mean confidence levels (see Figure 4.6). 

Some suggestions to improve the WRESTORE tool, which may also be of interest to 

other researchers developing EDSS are: 

1) decrease the time that user has to expend for giving feedbacks, particularly reducing 

the number of sessions they need to go through; overall task times could be a good indicator 

to determine how long user interactions should last, 

2) motivate the use of the areas of interest related to information gathering to increase 

the confidence levels of the users. This motivation could be achieved through interface 

development that emphasizes the exploration of areas where users have the opportunity to 

gather more information via menus, graphs, maps, and improved data visualizations to 

allow better comparisons among design alternatives, and 

3) provide a final “summary” session that recapitulates the findings and designs of 

desirable alternatives found by the users. 
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5.1 Abstract 

Participatory decision support systems (DSS) aim to provide a framework for increasing 

participation of stakeholders in the decision making process, and have become increasingly 

popular in the recent past. However, there is a critical lack of understanding of how 

stakeholder participation and interaction with such DSS affect the function and 

performance of underlying computational techniques and models in participatory DSS. 

This paper presents the results and analyses of observational experiments where multiple 

participants interacted with a web-based DSS called WRESTORE, for interactive 

optimization of scenarios for allocating conservation practices in a watershed. In 

WRESTORE, user interactions and feedback on the graphical user interfaces are used to 

guide the search process of underlying optimization algorithms. The main goal of this study 

is to use different metrics (such as, the percentage of desirable design alternatives found 

via interactive optimization, measure for relative distances between Pareto fronts in the 

objective space, and similarity measures for identifying patterns in the decision space of 

design alternatives) for quantifying and evaluating how the interactive optimization 

algorithm adapts to individual user’s participation. Results for different participants 

(surrogates and stakeholders) are presented, with the goal to evaluate the tool’s ability to 

capture user preferences under a variety of semi-controlled experimental conditions. Our 

conclusions show clear differences in how the surrogate test group interacts with the DSS 

in comparison to the group of stakeholders. Stakeholders interacted more with multiple 

features of the DSS GUI, and demonstrated a correlated increase in their self-confidence 

in which designs they liked (or did not like). This work also proves that the variability 

across surrogated individuals is clearly higher than that shown by the stakeholders. In 

conclusion, the presence of patterns on the design alternatives may assist with the 

evaluation of the decision space preferences to have a better understanding of the decision 

making process of optimal design alternatives. Also, the identification of possible noise in 

the user’s input data, using metrics such as confidence level trends and interactions with 

the system is very helpful to disregard those users that may disturbing the performance of 

the optimal search in a collaborative process. 
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5.2 Introduction 

Alteration of land uses in watersheds generate consequences and challenges for the 

entire watershed community, including agency managers and planners. Alterations that 

degrade the natural systems in a watershed and alterations that restore the watershed lead 

to two opposing system-scale transformations driven by the same agents: Stakeholders. 

Hence, engagement of stakeholders in the planning and management of their watersheds is 

of paramount importance. Participatory modeling and decision support environments 

(DSS) are needed to enable stakeholders to (a) reflect on their use of available natural 

resources, and (b) create multiple scenarios of land use alternatives that can potentially 

improve impaired watersheds, while also being sustainable and acceptable. 

The literature provides with several systems that claim to be participatory in nature. 

Systems such as, Web-based, Water-Budget, Interactive, Modeling Program (WebWMPI) 

(Matsuura et. al, 2009), Sierra Nevada Adaptive Management Project (SNAMP) (Fry et 

al., 2015), Environmental Risk Assessment Management (eRAMS) (https://erams.com/), 

and WRESTORE (Babbar-Sebens et al., 2015), among others, aim to adapt management 

plans in order to include users criteria as part of the design process. In most of this systems 

the main task is to inform the users about processes and results, giving the opportunity to 

evaluate complex systems via visually friendly systems. For example, WebWMPI uses the 

information of weather input to simulate hydrological effects in a region. The capabilities 

of WebWMPI are limited to water balance, but it has the advantage and facility of a web-

based environment. On the other hand, SNAMP serve as a more collaborative site, were 

information can be shared through documents or data, and where the public participation 

in concerns is encouraged. However, SNAMP does not offer the assistance of generating 

optimal plans that may improve or change the stakeholders concern. Kaunda-Bukenya et 

al. (2012) have focused their efforts in develop tools that will assist the state and federal 

agencies to develop a case-by-case scenario, providing municipal officials with a system 

that combines modeling and geographical information systems (GIS), to assist in the spatial 

data processing required for land changes, land modification, and consequences of land use 

decision in a case by case scenario. However, they do not specifically evaluate the different 

http:https://erams.com
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plans before implementing an alternative, but shows the consequences of the land uses 

changes in a specific region. 

On the other hand, WRESTORE is a novel tool that now just support the optimization 

of management plan for an agricultural watershed, but also a system that encourage the 

user to interact with the different available options in order to understand the effects as 

consequences of the changes in a decision. 

5.3 Research Objective 

This study focuses on participatory DSS WRESTORE, which has been developed for 

the purpose of engaging individuals in the design of conservation practices in a watershed. 

Specifically, the objective of this study is to investigate relationships between two types of 

users (i.e., stakeholders versus non-stakeholders), users’ interaction with the interface 

when they inspect proposed alternatives and give feedback (via usability metrics), and 

patterns in the watershed-scale plans of conservation practices generated by the multi-

objective Interactive Genetic Algorithm embedded in WRESTORE. Four research 

questions related to the research objective have been examined: 

1.	 How efficient is the interactive optimization algorithm in generating design alternatives 

that are preferred by a user, when users are included within the simulation-optimization 

loops of the search algorithm? To investigate this question, the percentage of design 

alternatives in each of the levels of WRESTORE’s Likert-type user rating scale were 

calculated. A high percentage value for “I like it” user rating scale reflected the ability 

of the optimization algorithm to identify participant’s preferences and generate new 

alternatives that reflect those preferences. Since the user rating calssifications are used 

as values of an additional objective function in the interactive optimization algorithm, 

it is expected that the selection pressure from this objective function will guide the 

optimization algorithm towards regions in decision space that meet user preferences. 

Hence, if the percentage of design alternatives classified as “I like it” is high, then we 

could assume that the algorithm was able to determine “user preferred” features (either 

in the objective or decision space) related to the spatial design of conservation 

practices. 
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2.	 In objective functions space, how different or similar are the design alternatives found 

by user-driven interactive search experiments in comparison to the design alternatives 

found by a typical non-interactive search? To examine this question, the similarity 

measure proposed by Piemonti et al. (2013) was used to estimate the distances between 

Pareto Fronts in the objective functions space, since it measures both the spread and 

the distance between the centers of mass of any two fronts. The measure was calculated 

using values of physical objective functions (e.g., cost, peak flow reductions, nitrate 

reductions, and sediment reductions) estimated at the scale of the entire watershed. 

3.	 In decision variables space (or decision space), how different or similar are the design 

alternatives for different types of users? The similarities and differences between 

design alternatives based on the spatial allocations of conservation practices were 

examined for multiple users, and for every user rating. This analysis aimed to 

determine if there were distinctive patterns in the spatial distribution of the 

conservation practices that could help identify what types of decisions were preferred 

by specific individuals or user groups (e.g., stakeholder group and non-

stakeholder/surrogate group). 

4.	 How do user ratings during the search experiment affect the performance of the 

interactive optimization algorithm over time? One of the critical limitations of 

inserting humans in the search/optimization loop is the issue of human fatigue. With 

increased workload, the tired user is also at a risk of providing noisy feedback that can 

detract the interactive optimization algorithm’s convergence rate. However, on the 

other hand, continuous interaction with a search algorithm can provide opportunities 

for users to learn about their problem via experimentation and reflection. Hence, the 

dynamic nature of the user behavior and search process was examined using usability 

metrics and the temporal patterns in objective and decision spaces of alternatives 

preferred (or, not preferred) by multiple users. 

5.4 Methodology 

5.4.1. Setup of Participatory Design Experiments 

The WRESTORE tool was developed by Babbar-Sebens et al. (2015) to enable 

communities to engage in participatory design efforts and guide the search algorithm in the 
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spatial allocation of conservation practices on stakeholders’ landscape. The study site that 

was used to test WRESTORE in this research is Eagle Creek Watershed (ECW), located 

10 miles NW of Indianapolis, IN (Babbar-Sebens et al., 2013; Piemonti et al., 2013). 

The hydrology and water quality in ECW for baseline conditions and for conditions 

when conservation practices are implemented on the landscape were simulated using the 

Soil and Water Assessment Tool 2005 (SWAT 2005) model (Arnold et al., 1998; Neitsch 

et al., 2005). SWAT uses the topography, land use, soil type and regional weather 

information to estimate the water routing and the water quality through the watershed on a 

daily time step. Piemonti et al. (2013) and Chapter 3 give a detailed description of the 

model construction, calibration, and how the SWAT model outputs were used to calculate 

four physically based objective functions (Peak Flow Reduction, Sediment Reduction, , 

Nitrates Reduction, and Economic Costs,) relevant to this study. These objective functions 

are shown in Table 5.1 

Table 5.1 Objective function formulas used to optimize the design alternatives used by the WRESTORE 

Objective Function 

Peakflow Reduction (PFR) ഗ഍ങ റ മപയ[ഫമഢഹශෆ෌ (ഗ഍ශෆ෌ෆයඹ෋ල ഫ ഗ഍ශෆ෌ෆඹහ෌)]* 

Sediments Reduction (SR) ചങ റ മപയീഫ ඨ [ඨ (ചരശവශෆ෌ෆයඹ෋ල ഫ ചരശവශෆ෌ෆඹහ෌)
හඹ෋෌ ඼ඹෑ ඲ഛ 
෌ഥച෋෌ ඼ඹෑ ඲ച ]ඬ 

ශഥച ൄ** 

Nitrates Reduction (NR) കങ റ മപയീഫ ඨ [ඨ (കരശവශෆ෌ෆයඹ෋ල ഫ കരശവශෆ෌ෆඹහ෌)
හඹ෋෌ ඼ඹෑ ඲ഛ 
෌ഥച෋෌ ඼ඹෑ ඲ച ]ඬ 

ශഥച ൄ+ 

Economic Cost (EC) ഌഊ റ മപയ[ඨ കഗഝශ 
ඬ 
ශഥച ]++ 

*i = SB ID, t = day, PF = peakflow, base = result of baseline of calibrated model, alt = result of alternative’ simulation 

**N = total number of SBs, T1 = initial year of simulation, T2 = final year of simulation, Sout = sediment production 

+Nout = nitrate production 

++NPV = Net of Present Value (Piemonti et al., 2013; Babbar-Sebens et al., 2015) 

ECW was divided into 130 different sub-basins (SBs) to simulate the local 

implementation of a set of conservation practices. Currently, WRESTORE is capable of 

generating design alternatives for seven different BMPs (strip cropping, crop rotation, 

cover crops, filter strips, grassed waterways, no-till practices, and wetlands) in all the sub-

basins considered for allocation. In each of the targeted sub-basins, decisions for 

implementing the BMPs are modeled as binary variables or as a real variables (Piemonti et 
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al. 2013). For this study, the researchers focused only on two practices Cover Crops (CC) 

and Filter Strips (FS), which represented binary and real decision variables respectively. 

Table 5.2 explains how the search algorithm’s decision variables were converted into 

parameters relevant to the practice. 

Table 5.2 Changes made on the SWAT model to simulate conservation practices 

Practice SWAT Variable File Range Installation 

Modified 

Filter Strips FILTERW .mgt 0-5 m A typical installation requires a 19 ha field 

(implemented in a and a 37 m length 

sub-basin with the 

decision variable 

value FILTERW) 

Cover Crops Operation .mgt An example of Corn-Winter Wheat in one 

(implemented in a Schedule year. 

sub-basin when This operation changes at a HRU level for 

decision variable Corn and Soybeans 

has a value 1) Year HU* Operation Kg/ha 

1 0.28 Harvest and Killing 

1 0.1 Pesticide application 1.12 

1 0.12 Plant Corn 

1 0.3 Fertilizer application 200.00 

1 1.5 Harvest and Killing 

1 0.997 Generic Fall Tillage 

1 0.998 Plant Winter Wheat 

In WRESTORE, besides the four cost\benefit objective functions, a user rating 

objective function is also used for the search process of the interactive optimization/search 

algorithm. The underlying search algorithm used by the web-based participatory decision 

support system WRESTORE is based on IGAMII (Interactive Genetic Algorithm with 

Mixed-Initiative Interaction) (Babbar-Sebens and Minsker, 2012). IGAMII includes 

alternating sessions of search and introspection. The values for the user rating function is 

decided by stakeholders who are engaged in the search process. The values are based on a 

Likert-type scale – “I like it” (R3), “Neutral” (R2), and “I do not like it” (R1) – that users 

can utilize to indicate their preference for an alternative. At every iteration of the search 

process (see Babbar-Sebens et al., 2015 for details), the human visualizes the design 

alternatives on a graphical user interface, learns about the decision space and the objective 

space performance, and then provides a value for user rating to indicate the degree of 

his/her satisfaction with the design alternative. 

In this study, twenty participants were asked to interact with the tool to test 

WRESTORE’s capability for finding solutions based on their preferences. The participants 
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were divided into three different groups according to their affiliation with the watershed 

(i.e. Surrogates (non-stakeholders) and Stakeholders) and based on the SWAT model 

parameters (i.e. Model A and Model B). In the following paragraphs, these groups will be 

identified as Model A-Surrogates, Model B-Surrogates, and Model B-Stakeholders. The 

Model A-Surrogates and Model B-Surrogates groups contained seven participants (four 

females and three males for both groups). The Surrogates participants were volunteers with 

science and engineering backgrounds, who were not directly involved in the watershed but 

are useful representatives of potential participants in a community who may be only 

cursorily interested in the decisions. The group Model B-Stakeholders consisted of six 

participants (five males, one female) associated with the ECW through land ownership or 

work. Many of them belonged to federal agencies, state agencies, and non-governmental 

organizations who are promoting the implementation of conservation practices in the area. 

Please note that because of limited resources and logistical constraints we were not able to 

conduct a Model A-Stakeholders experiment. However, the findings of this study are not 

expected to be affected significantly by the absence of data from such an experiment. 

The Model B was a SWAT model of the watershed created by artificially enhancing the 

flow and water quality benefits predicted by the calibrated SWAT model (i.e. Model A-

Surrogates). Enhancement in benefits was accomplished by activating a few wetlands in 

the watershed. This change considerably increased the benefits of peakflow reduction, 

sediment reduction, and nitrate reduction, when the conservation practices under 

consideration – i.e. Cover Crops and Filter Strips – were allocated in the SBs by the search 

optimization algorithm. However, the users were not informed of this enhancement and 

were asked to evaluate the design alternatives on the basis of the assumption that only 

Cover Crops and Filter Strips were being implemented in the watershed. The rationale for 

this artificial enhancement of benefits was to examine if an improvement in benefits would 

change the participants’ preferences for practices, design alternatives, or spatial locations 

on the interface. 

5.4.2. Evaluation Metrics 

In this study, the results from the user experiments were analyzed using two different 

perspectives – one that examined the overall outcome of the search at the end of the 
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interactive optimization algorithm (i.e., End of Search or EoS), and another that examined 

the convergence (or, lack of convergence) in search outcomes through time as the 

interactive optimization algorithm progressed through its iterations (i.e., During Search or 

DS). 

For the DS perspective, the search outcomes were assessed at specific time intervals 

called Epochs. Three Epochs were used in this study – the first one that examined the data 

on initial design alternatives the were shown to user in the first introspection (I1) session, 

the second Epoch that examined all design alternatives from human-guided search sessions 

(HS1 to HS6) after I1, and, finally, the third Epoch that examined all design alternatives 

from human-guided search sessions (HS1 to HS6) after second introspection (I2) session. 

For analyzing results relevant to the EoS and DS perspectives, assessment metrics was 

set up based on 1) participant’s user ratings, 2) similarities between discovered design 

alternatives in the objective space, 3) and the similarities between discovered design 

alternatives in the decision space. Below are descriptions on how these metrics were set 

up. 

5.4.2.1. Metrics based on user ratings 

A. EoS: Percentage of design alternatives per user rating 

To evaluate and compare the final number of design alternatives with a specific user 

rating at the end of the search experiment (EoS), we used a metric based on the percentage 

of design alternatives in each user rating classification. This metric, PRateik, was calculated 

using Equation 5.1. 

ടශස
ഗങഢവദශස റ ව ൘ൗൗ (5.1)

ഛഋ 

where PRateik is the percentage of design alternatives of ith user rating (Ri), for the kth user, 

Xik is the total number of designs in user rating Ri for the same kth user and TD is the total 

number of designs presented to every participant. As explained earlier, all the participants 

were shown at least 260 design alternatives that were included in the first two cycles of the 
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Introspection – Human-guided Search sessions (i.e., I1 → HS1-HS6 → I2, → HS1-HS6). 

Therefore, TD had a value of 260. 

To examine the overall outcome, for users in each of the three groups (i.e., Model A-

Surrogates, Model B-Surrogates, and Model B-Stakeholders), a global assessment of this 

metric (GPRateik) was estimated using the average of the PRateik in each group. 

ඨඬ ഗങഢവദශසසഥച
എഗങഢവദශ റ (5.2) 

ക 

where N is the total number of users in the group. 

B. DS: Percentage of design alternatives per user rating 

The percentage of design alternatives within a user rating was also calculated through 

time, for every Epoch that occurred as the experiment progressed. This was calculated for 

each participant in the following manner: 

ടශස෌ 
ഗങഢവദශස෌ റ ව ൘ൗൗ (5.3)

ഛഋ෌ 

where, PRateikt is the percentage of design alternatives of ith user rating (Ri), for the kth user 

of the group, and at tth Epoch. Xikt is the total number of designs in user rating Ri for the 

same kth user in the tth Epoch, and TDt is the total number of designs presented to the kth 

user in the tth Epoch. 

To examine the overall outcome, for users in each of the three groups (i.e., Model A-

Surrogates, Model B-Surrogates, and Model B-Stakeholders), a global assessment 

(GPRateit) was estimated using the average of the PRateikt in each group. 

ඨඬ ഗങഢവദශස෌සഥച
എഗങഢവദශ෌ റ (5.4) 

ക 

where N is the number of users in the group. 

5.4.2.2. Metrics based on Similarities in Objective Space 

The similarities and dissimilarities between design alternatives in objective space were 

evaluated using a metric proposed by Piemonti et al., (2013) for the overall distance 
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between Pareto Fronts. This distance metric was first estimated for each of the participants, 

and then an average of the metric values across the participants was calculated to 

summarize the results for participants in each groups. 

For every participant, in order to assess the impact of interactive optimization on search 

results, the distance in the objective space between the design alternatives found via the 

participant’s interactive search experiment and the design alternatives found via a non-

interactive search was estimated. Note that even though the participant was not involved 

in the non-interactive search process, he/she had the opportunity to review and rate twenty 

of the non-interactive search’s final non-dominated design alternatives. The twenty designs 

were shown to the participant in the first introspection session I1. All design alternatives 

were first separated into three separate groups based on their user rating Ri (i.e. “I don’t 

like it”, “Neutral”, and “I like it”), and then the distance metric was calculated for 

alternatives in each group. Two physical objectives at a time (e.g., cost and peak flow 

reduction, or cost and nitrates reduction) were selected to calculate the distance. This metric 

is based on an average relative euclidean distance (Equation 5.5) and compares the position 

of every jth design alternative from the non-interactive Pareto Front, with each lth design 

alternative that has ith user rating and is from the Pareto Front found via interactive search. 

ഛ ഛඨ ඪඹරඨ ඨ √(ഈෂ ഫ ഈශහස) പ (ഉෂ ഫ ഉශහස)ෂഥച හഥച (5.5)
ഋങශස(ഈෆ ഉ) റ ഑ ව ഓශස 

Then, DRik (A, B) represents the distance between two objective functions (A is the 

performance of peakflow reduction, sediment reduction or nitrate reduction, and B is the 

economic cost); J is the total number of alternatives in the non-interactive Pareto Front 

shown to the user (design alternatives in Introspection I1), and Lik is the total number of 

design alternatives with ith user rating for the kth participant. 

Once the distance metric was calculated for each participant, a representative group 

distance metric was calculated for the multiple participants belonging to a group (e.g., 

stakeholder group or surrogates group). Equation 5.6 shows how this group metric, GDRi, 
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was calculated as the average of all the participants’ distances, DRik, in each of the user 

ratings. 

ඬඨ ഋങශස(ഈෆ ഉ)සഥച
എഋങශ(ഈෆ ഉ) റ (5.6) 

ക 

where N is the total number of participants in the group. 

Similarly, distance was also calculated using Equation (5.7) to examine changes in 

distance between Pareto Fronts through time, for every Epoch that occurred as the 

experiment progressed. . This metric is based on an average relative euclidean distance and 

compares the position of every jth design alternative from the non-interactive Pareto Front, 

with each lth design alternative that has ith user rating and is from the Pareto Front found 

via interactive search 

ഛ ഛඨඨෂഥചඨ
ඪ
හഥ
ඹරහ 
ച 
√(ഈෂ ഫ ഈශහස෌) പ (ഉෂ ഫ ഉශහස෌) (5.7)

ഋങශස෌(ഈෆ ഉ) റ ഑ ව ഓශස෌ 

then, DRikt (A, B) represents the distance between two objective functions (A is the 

performance of peakflow reduction, sediment reduction or nitrate reduction, and B is cost); 

J is the total number of alternatives in the non-interactive Pareto Front shown to the user 

(design alternatives in Introspection I1) and Likt is the total number of designs with ith user 

rating for kth participant at tth Epoch. 

To examine changes in group distance over time, a group distance metric (GDRit(A, B)) 

at each Epoch (t) was also calculated. Equation 5.8 shows how this temporal distance, 

DRikt, was estimated for each user rating (i) and for each participant (k) 

ඬඨසഥച ഋങශස෌
എഋങශ෌(ഈෆ ഉ) റ (5.8) 

ക 

where N is the total number of participants in the group. 
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5.4.2.3. Metrics based on similarities in Decision Space 

Similarities and dissimilarities between design alternatives in the decision space were 

estimated in order to identify what types of solutions were preferred (or not preferred) by 

participants. Metrics for similarities were estimated differently based on whether a decision 

variable representing the BMP (or, conservation practice) was a Binary variable or a Real 

variable. The Binary variables represent whether a BMP is implemented (when the variable 

value is 1) or not implemented (when the variable value is 0) in a sub-basin. Whereas, the 

Real Variables specify a design parameter value related to the BMP (e.g. decisions for the 

BMP Filter Strips were represented as Filter Strip Widths, which are real numbers that can 

lie between a minimum and a maximum real number value). Piemonti et al., (2013) and 

Table 5.3 give additional information on how the binary and real decision variables are 

incorporated in to the optimization algorithm, and how they are used to simulate a practice 

in the watershed simulation model. 

To estimate similarities in decision variable values across multiple design alternatives, 

we first classified all the design alternatives rated by the participants according to their user 

rating (i). Next, a set of summary metrics were estimated for each of the genes (g) in the 

chromosome used by the genetic algorithm, IGAMII, to represent the design alternative 

(Piemonti et al., 2013; Babbar-Sebens et al., 2015). The following general approach was 

used to estimate these summary metrics: 

1. For 	genes representing binary decision variables, we calculated a “probability of 

implementation” of the BMP in a SB, 

2. For genes representing real decision variables, we calculated the mode (or most repeated 

design variable value in a gene) and calculate the percentage of design alternatives with 

this value in a specific gene. 

Table 5.3 shows the compilation of the different specific metrics and their equations, 

which were used to find the patterns in design alternatives with the same user rating. 

Following are the descriptions of these metrics: 

	 ProbgRik is the probability of BMP implemented in the gth gene of design alternatives 

that have the same user rating Ri and have been evaluated by the same participant (k). 
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	 ccimpgilk is the decision variable value (1/0) in gene g, which indicates whether a BMP 

has been implemented in the SB represented by that gene. Additionally, i is the specific 

user rating given to the lth design alternative by the participant k. 

	 Lik is the total number of design alternatives that have the same user rating i given by 

the kth participant. 

	 For every unique f value of FSW (filter strip width) in a chromosome of Gi genes we 

calculated the mode (most repeated FSW) using: 

ඥඹ (5.9)
൘ ു പധ ഍ചഞ඿ റ ഍ചഞ 

഍ചഞ඾ റ ∑ ു		 ൠ 
ൗ ു രവഩദളസപഴദ 

඿ഥച 

ഔരഥദ റ ൴൨ൿ(഍ചഞ඾) (5.10) 

 POMgRik is the percentage of design alternatives (that have same user rating Ri given 

by participant k) with decision variable values in gene g equal to the mode of all values 

in gene g. 

 DEMgRik is the number of design alternatives (that have same user rating Ri given by 

participant k) with decision variable values in gene g equal to the mode of all values in 

gene g. 

 GProbgRi is the average probability of BMP implemented in the gth gene across all 

participants in the same group, and for the set of design alternatives with the same user 

rating Ri. 

 As previously stated, N is the total number of participants in the group. 

 GPOMgRi is average value of percentage of design alternatives with design parameter 

(or, decision variable value) in gene g equal to the mode across all participants in the 

same group, and for the set of design alternatives with the same user rating Ri. 

For During the Search (DS) analysis, the same definition for these variables were 

considered, but each variable was calculated for a specific tth Epoch. 
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Table 5. 3 Equations used in the evaluation of the decision space 

Variable type in gth gene Metric Equation 

In
d

iv
id

u
al

 p
ar

ti
ci

p
an

t

E
o

S
 Binary ഗളരണ඿ධශස റ 

ඨ തതപമറ඿ශහස 
ඪඹර 
හഥച 

ഓශස 
(5.11) 

Real ഗഖഔ඿ධශස റ 
ഋഌഔ඿ධශස 

ഓශස 
ව ൘ൗൗ (5.12) 

D
S

 Binary ഗളരണ඿ධශස෌ റ 
ඨ തതപമറ඿ශහස෌ 
ඪඹරහ 
හഥച 

ഓශස෌ 
(5.13) 

Real ഗഖഔ඿ධශස෌ റ 
ഋഌഔ඿ධශස෌ 

ഓශස෌ 
ව ൘ൗൗ (5.14) 

G
ro

u
p

s 

E
o

s 

Binary 

എഗളരണ඿ධශ റ 
ඨ ഗളരണ඿ධශස 
ඬ 
සഥച 

ക 
(5.15) 

ചവഥദഷ඿ධශ റ ∛ 
ඨ (ഗളരണ඿ධශස ഫ എഗളരണ඿ධශ )
ඬ 
සഥച 

(ക ഫ ൘) 
(5.16) 

Real 

എഗഖഔ඿ධශ റ 
ඨ ഗഖഔ඿ධශස 
ඬ 
සഥച 

ക 
(5.17) 

ഝഢളഗഖഔ඿ධශ റ 
ඨ (എഗഖഔ඿ධශස ഫ എഗഖഔ඿ධශ ) 

ഛඬ 
සഥച 

(ക ഫ ൘) 
(5.18) 

D
S

 

Binary 

എഗളരണ඿ධශ෌ റ 
ඨ ഗളരണ඿ධශස෌ 
ඬ 
සഥച 

ക 
(5.19) 

ചവഥദഷ඿ධශ෌ റ ∛ 
ඨ (ഗളരണ඿ධශස෌ ഫ എഗളരണ඿ධශ෌)
ඬ 
සഥച 

(ക ഫ ൘) 
(5.20) 

Real 

എഗഖഔ඿ධශ෌ റ 
ඨ ഗഖഔ඿ධශස෌ 
ඬ 
සഥച 

ക 
(5.21) 

ഝഢളഗഖഔ඿ධශ෌ റ 
ඨ (എഗഖഔ඿ධශස෌ ഫ എഗഖഔ඿ධශ෌) 

ഛඬ 
සഥച 

(ക ഫ ൘) 
(5.22) 

5.5 Results and discussion 

As mentioned earlier, the user search experiments conducted in this study included 

participants from two types of groups (e.g. stakeholders and non-stakeholders (also called 

surrogates)), and included two types of watershed models (Model A and Model B), in order 

to examine: 

a)	 potential differences in participant biases and preferences, and their user behavior on 

the GUI, and 

b)	 potential differences in users’ overall evaluation of how acceptable the proposed 

design alternatives are to them, when they also have to consider the performance-

based physical objective functions estimated by different watershed models into their 

decision making. 

Additionally, as also mentioned earlier, two different perspectives (i.e. EoS and DS) were 

used to examine the effectiveness of the interactive search process that included the above 
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scenarios of participants and watershed models.  Hence, this section has been divided into 

multiple sub-sections in order to examine the results relevant to multiple types of 

experimental setups, participants, and the research objectives (mentioned in Section 5.3). 

First, results related to the overall search outcomes at the end of every user experiment (i.e. 

EoS) are discussed in section 5.5.1, followed by a discussion of results that were obtained 

at various intermittent times of the search process (i.e. DS) in Section 5.5.2. Within each 

of the sections 5.5.1 and 5.5.2, results are first evaluated using the metric for User Ratings 

(i.e., Sections 5.5.1.1 and 5.5.2.1), followed by discussions on similarities and 

dissimilarities between results in Objective Space (i.e., Sections 5.5.1.2 and 5.5.2.2), and 

discussions on similarities and dissimilarities between results in Decision Space (i.e., 

Sections 5.5.1.3 and 5.5.2.3). In each of the sub-sections (i.e., 5.5.1.1-5.5.2.3), the 

discussion first focuses on how individual users working with a specific watershed model 

(i.e. Model A or Model B) found similar or dissimilar results, followed by summarizing 

discussion on the group results. Comparison of results found by individual participants, 

and then those found by the groups of participants, offer the following benefits: 

a)	 Evaluation of results of individual users has the potential to help us understand how 

effective interactive optimization can be in generating personalized design 

alternatives in a human-guided search process for different types of user 

preferences and behaviors.  

b)	 Evaluation of users’ results that are grouped based on the type of participants or 

watershed model type can help identify agreements between participants and 

variability across participants that belong to a certain group. This further provides 

insight into whether the personalized interactive search can also assist in the 

generation of desirable alternatives that satisfy the requirements of most of the 

community members within a group. 

5.5.1. EoS assessment of user searches experiments 

5.5.1.1. Percentage of design alternatives per user ratings 

A. Assessment of Individual Participants 
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The percentage of user ratings provide insight into how successful the interactive 

optimization algorithm was in identifying desirable alternatives (e.g., those with user rating 

R3) for different participants and when different watershed models were used to evaluate 

cost-benefits of the design alternatives. The percentages of user ratings (i.e., PRate1 to 

PRate3) for each of the participants were also associated with the trends in average 

confidence level (calculated in previous chapter 4) for each of the user rating 

classifications. Note that the trends in confidence levels provide an insight into the 

participant’s learning process and a self-assessment of the accuracy of his/her own 

evaluation of alternatives through time. Figure 5.1 shows the percentage of user ratings 

(PRatei) at the end of the search experiment, and for each ith rating (Ri) ranked by surrogate 

participants (bars) who were working with watershed Model A. The horizontal red, yellow, 

and green lines are the average values for PRate1, PRate2, PRate3 bars across all 

participants, respectively, and are discussed in next Section B on group statistics. The 

confidence level trends are represented by white arrows (positive trend) and black arrows 

(negative trend) in this figure. 

By the end of the experiments, shown in Figure, we noticed that four (i.e. 57%) out of 

seven of these surrogate participants have a higher value of PRate1 (for R1 or “I don’t like 

it” alternatives) than PRate3. This indicates that majority of these participants did not like 

most of the design alternatives produced by the interactive search algorithms. However, 

only two (i.e. 50%) of these four surrogate participants indicated an increase (white 

arrows) in the average confidence levels of R1 design alternatives over time (Participant 1 

and Participant 6 – Figure 5.1), suggesting that only half of these four individuals by the 

end of the experiment were increasingly self-confident about the design alternatives that 

they did not like. Moreover, when data from the participant’s interaction with the GUI was 

considered (Piemonti et al., (in review) and Chapter 3), we observed that the Participant 6, 

unlike Participant 1, spent a considerable amount of time and made a large number of 

mouse clicks in tasks involving gathering information on the GUI. Therefore, we could 

assume that his/her conclusions about giving a user rating R1 to design alternatives and 

self-confidence in his/her own assessment of designs were well supported by a learning 

process that considered substantial information on how the design will benefit the 
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watershed, and meet their personal constraints and interests. Also, notice that for “I like it” 

alternatives, Participant 3 and Participant 7 have the highest PRate3 than PRate2 and 

PRate1. However, user rating provided by Participant 3 may be more reliable due to no 

changes in confidence levels through time for PRate3, increasing confidence levels for 

PRate1, and the high percentage of his/her interaction with the tool in the information 

gathering areas (67% of time and 66% of mouse clicks in gathering information). 

Participant 7, on the other hand, had significantly lower interaction with the GUI (34% of 

time and 14% of mouse clicks) in information gathering areas of the GUI, and also 

experienced a decrease in all of his/her confidence levels through time. This indicates that 

even though Participant 7 liked most of his/her designs, the user behavior, and self-

confidence in his/her feedback do not suggest that the user ratings may be a reliable 

portrayal of her/his assessment of designs alternatives. 
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Figure 5.1 Percentage of designs classified by the participants at each level of the user rating Model A-

Surrogates
 

Figures 5.2 and 5.3 show the percentage of user ratings for the Model B-Surrogates and 

Model B-Stakeholder experiments respectively. Contrary to Model A-Surrogates (Figure 

5.1), user experiments with Model B (i.e. Surrogates and Stakeholder) generated a higher 

percentage of participants that found a high proportion of design alternatives that they 

liked. Specifically, four out of seven (i.e. 57%) of Model B-Surrogates participants and 

four out of six (66%) of the Model B-Stakeholders participants had values for PRate3 higher 

than PRate1 and PRate2. These results indicate that participants (stakeholders and non-
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stakeholders) seemed to be a lot more satisfied with their design alternatives when the 

watershed simulation model over-predicted the performance of the conservation practices, 

than participants in Model A-Surrogates. 

However, on closer observation of the level confidence trends, Model B-Surrogates 

had only one participant (Participant 21) whose confidence level increased over time for 

design alternatives rated R3, even though his/her PRate3 was smaller than PRate1. This 

participant has a moderate amount of interaction (the average percentage time in 

information gathering was 34% and the average percentage of mouse click in information 

gathering was 47%) with the GUI. Participants 20, 22 and 24, on the other hand, had PRate3 

higher than PRate1 (Figure 5.2) but still presented a decrease in their confidence level 

trends over time. The interaction of Participants 20, 22, and 24 with the GUI also varied 

from 0 % on average percentage time spent and 1% in average percentage mouse click, for 

Participant 22 to 34 % on average percentage time spent and 71% in average percentage 

mouse click, for Participant 20, suggesting that the activities in the areas of interest are not 

consistent with the expected tendencies of mouse clicks events with time spent in 

information gathering for positive trends in confidence levels. 
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Figure 5.2 Percentage of designs classified by the participants at each level of the user rating for Model B-

Surrogates
 

On closer observation of Model B-Stakeholders, the majority of these participants (i.e., 

four out of six participants or ~66%) were found to have increasing confidence levels over 

time. In particular, Participant 15 had PRate3 close to 70 %, suggesting that he/she was 
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satisfied with most of the design alternatives found by him/her. However, unlike other 

participants, Participant 15 did not spend a lot of time interacting with the GUI to collect 

information on the design alternatives. This can be attributed to the fact that Participant 15 

was interested in the entire watershed and was not focused on a smaller region of interest. 

Hence, this user did not need to do additional mouse clicks or use drop down menus in 

order to procure information for the watershed. Also, only one of the participants in this 

group presented a decrease in the confidence level trends (Participant 16) for design 

alternatives with user rating R2. In summary, even though PRate3 was found to be highest 

for the majority of the participants in both the two groups using Model B, most of the 

participants in Model B-Stakeholders were found to be increasingly confident in the 

accuracy of their user ratings throughout the experiment than the participants in Model B-

Surrogates. 
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Figure 5.3 Percentage of designs classified by the participants at each level of the user rating for Model B-

Stakeholders
 

B. Overall Group Assessment 

As mentioned earlier, the horizontal red, green, and yellow lines in Figures 5.1, 5.2 and 

5.3 provide information on the average of the percentage of solutions (for each user rating) 

across all participants in a group. Figure 5.1 shows that on an average PRate1 > PRate3 > 

PRate2 for the Model A-Surrogates, whereas Figures 5.2 and 5.3 show that PRate3 > PRate2 

> PRate1 for Model B-Surrogates and Model B-Stakeholders. This indicates that when 

participants used the watershed Model B, the search algorithm seemed to have a better 
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performance in capturing their preferences and delivering more design alternatives that the 

participants were satisfied with. 

5.5.1.2. Similarities in Objective Space 

The physical objective space reflects the range of physical environmental benefits and 

costs (or, revenues) that different design alternatives would be expected to deliver, as well 

as the tradeoffs between the non-dominated alternatives. As also mentioned earlier, the 

similarity between results from multiple user experiments in objective space was assessed 

by calculating the distance (Equation 5.3) between the set of a non-dominated design 

alternatives found by every participant and the initial set of optimized non-interactive 

design alternatives. Design alternatives in each set were separated into three groups based 

on the user ratings Ri. Below is a discussion of similarity and dissimilarities in objective 

space of various design alternatives with user rating Ri in each set, and found by the 

participants in Model A-Surrogates, Model B-Surrogates, and Model B-Stakeholders. 

A. Assessment of Individual Participants 

Table 5.4 present the results of distance metric calculated for participants in Model A-

Surrogates group, for each of the user rating Ri, and using two objectives at a time. It can 

be observed that for any one of the specific pair of objective functions (e.g., cost vs. PFR), 

the distances (e.g., DR1) for the same user rating (e.g. R1) was similar across all users. Note 

that this distance metric not only represents how far the center of masses of two sets of 

design alternatives are from each other, but it also represents the spread of the alternatives 

around the center of mass. For all the participants in this group, it can be seen that DR1 was 

greater than DR3, suggesting that designs classified as R3 (i.e., “I like it”) are closer to the 

design alternatives in the non-interactive Pareto Front. For some participants - i.e., 

Participants 1 and 6 - DR3 was greater than DR2. This could be attributed to the fact that 

for these participants (Participant 1 and Participant 6), the Pareto Front of R2 design 

alternatives was less spread than the R3 design alternatives, leading to a smaller value of 

DR2. 

Figure 5.4 shows a common example of the distribution of user ratings in the objective 

space for two of these participants – Participant 1 who was interested in the performance 

of design alternatives at the scale of the entire watershed (Figure 5.4a), and Participant 6 
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who was interested in the performance in a small set of local sub-basins (SBs) (Figure 

5.4b). This figure shows that for Participant 1 there are clear clustered regions where the 

user found most of her/his preferred and less-preferred design alternatives. In this example, 

Cost at the watershed scale seems to be the deciding criteria based on which a user decided 

the acceptability of alternatives. However, this clear distinction in the regions of desirable 

and less-desirable alternatives does not seem to exist for Participant 6, who was less 

concerned about watershed scale performance. Even when most of the preferred design 

alternatives lie on the low Cost (on the left side) region of the objective space, there are 

multiple design alternatives in the same region that were rated R1 by the participant. 

Table 5.4 Distance from design alternatives performance between non-interactive and interactive Pareto 

Fronts for Peakflow Reductions (PFR), Sediments Reduction (SR) and Nitrates Reduction (NR) for Model A-

Surrogates 

Objective 1: COST, Objective 1: COST, Objective 1: COST, 

Objective 2: PFR Objective 2: SR Objective 2: NR 

PARTICIPANT DR1 DR2 DR3 DR1 DR2 DR3 DR1 DR2 DR3 

1 0.22 0.09 0.12 0.24 0.08 0.11 0.22 0.07 0.09 

2 0.25 0.16 0.11 0.27 0.17 0.12 0.23 0.15 0.10 

3 0.21 0.14 0.11 0.24 0.15 0.14 0.20 0.14 0.11 

4 0.19 1.3E-4 0.11 0.21 1.4E-4 0.11 0.18 1.2E-4 0.10 

5 0.24 0.14 0.16 0.27 0.16 0.18 0.22 0.13 0.16 

6 0.23 0.08 0.10 0.25 0.10 0.12 0.23 0.08 0.09 

7 0.31 0.12 0.12 0.34 0.15 0.15 0.32 0.12 0.12 

Average 0.24 0.10 0.12 0.26 0.12 0.13 0.23 0.10 0.11 

Standard deviation 0.04 0.05 0.02 0.04 0.06 0.03 0.04 0.05 0.02 

Figure 5.4 also shows the set of design alternatives (labeled as CBM or Case Base 

Memory) that were selected for the initial evaluation in Introspection 1 (I1). These design 

alternatives were found after an exhaustive non-interactive search was performed using the 

4 physical objective functions. The set of the CBM gives the participant a starting point for 

those solutions known to have an optimal performance. 
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Figure 5.4 Pareto front representation of watershed performance for Participant 1 (a)) and Participant 6 

(b)) in Model A-Surrogates group. Participant 1 was asked to provide the user rating for the design alternative 

based on the watershed performance, while Participant 6 was asked to provide the user rating for the design 

alternative based on the group of SBs: 103, 105, 106, 121, and 122 

R1R2R3 CBM

a) b)

Table 5.4 presents the DRi for Model B-Surrogates and Model B-Stakeholders. Notice 

that the values of these distances are significantly higher than for Model A-Surrogates. This 

is an effect of the artificial enhancement of the peak flow reduction, nitrate reduction, and 

sediment reduction benefits, as explained in section 5.4.1. 

Results of Model B-Surrogates showed that 43% of the participants seem to have DR1 

> DR3, while 83% of the participants for Model B-Stakeholders showed distances values 

of DR1 > DR3. These results suggest that not all Participants in both groups preferred 

solutions that have enhanced PFR, SR, and NR values, and more spread out and farthest 

away from the Pareto Front of non-interactive design alternatives. 

Figure 5.5. shows some demonstrative examples of the distribution of user ratings in 

the objective space quantified at the entire watershed scale. Note that two of these 

participants rated design alternatives based on their performance at the scale of the entire 

watershed (Figure 5.5a and 5.5c), and two of these rated designs based on the performance 

of alternatives in a particular subset of local sub-basins (Figure 5.5b and 5.5d). Notice that 

even when Figure 5.5a and Figure 5.5c are participants who were concerned with 

optimizing the solutions for the entire watershed, the design alternatives with different user 

ratings are more scattered in the objective space for the Participant 15 in Figure 5.5c. 

Participant 8 in Figure 5.5a, on the other hand, has well-defined clusters of R1, R2, and R3 
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design alternatives, similarly to Participant 1 from Model A-Surrogates (shown in Figure 

5.4). However, on the other hand, note that Participant 8 did not have any clear trend in 

confidence levels (Figure 5.2), whereas Participant 15 had an increase in self-confidence 

levels over time for R2 and R3 ratings (Figure 5.3). Then, the results of Participant 15’s user 

experiments should be considered more compelling, in spite of the lack of clear clusters in 

objective space. Two other examples in figure (5.5) Participant 11 and Participant 20 rated 

the design alternatives based on a particular set of SBs. Their results in the objective space 

might look similar, however, Participant 11 have an increase of confidence levels for all 

the trends, while Participant 20 have a negative trend for alternatives with user ratings R3 

and R2. Even when both participants seem to have a good percentage of mouse click events 

(76 % and 71% respectively), the discrepancies in the average percentage time spent (73 

% and 36% respectively) suggest that the reliability of the classification for Participant 11 

may be higher than for the classification of Participant 20. 

Table 5.5 Distance from design alternatives performance between non-interactive and interactive Pareto 

Fronts for Peakflow Reductions (PFR), Sediments Reduction (SR) and Nitrates Reduction (NR) 

Objective 1: COST, 

Objective 2: PFR 

Objective 1: COST, 

Objective 2: SR 

Objective 1: COST, 

Objective 2: NR 

PARTICIPANT 

8 

9 

20 

21 

22 

24 

25 

DR1 DR2 DR3 

0.50 0.41 0.33 

0.27 0.01 0.21 

0.63 0.47 0.29 

0.33 0.37 0.46 

0.34 0.39 0.41 

0.40 0.37 0.41 

0 0.39 0.38 

DR1 DR2 DR3 

0.47 0.41 0.35 

0.38 0.01 0.32 

0.58 0.44 0.28 

0.33 0.37 0.45 

0.38 0.38 0.39 

0.39 0.37 0.40 

0 0.39 0.36 

DR1 DR2 DR3 

0.46 0.41 0.35 

0.33 0.01 0.28 

0.57 0.45 0.29 

0.32 0.36 0.45 

0.37 0.38 0.40 

0.39 0.38 0.40 

0 0.38 0.35 

Average 

Standard deviation 

0.35 0.34 0.36 

0.20 0.15 0.09 

0.36 0.34 0.36 

0.18 0.15 0.06 

0.35 0.34 0.36 

0.18 0.15 0.06 

11 0.24 0.13 0.26 0.37 0.19 0.42 0.32 0.17 0.37 

13 0.29 0.28 0.18 0.41 0.36 0.26 0.36 0.32 0.23 

14 0.24 0.30 0.18 0.36 0.37 0.26 0.31 0.34 0.23 

15 0.30 0.11 0.24 0.47 0.16 0.37 0.41 0.13 0.33 

16 0 0.23 0.28 0 0.30 0.36 0 0.28 0.33 

18 0.45 0.23 0.42 0.44 0.23 0.41 0.45 0.23 0.41 

Average 

Standard deviation 

0.25 0.21 0.26 

0.15 0.08 0.09 

0.34 0.27 0.35 

0.17 0.09 0.07 

0.31 0.25 0.32 

0.16 0.08 0.07 
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a) b)

R1R2R3 CBM

c) d)

Figure 5.5 Part Pareto front representation of watershed performance for Participant 8 (a)) and 

Participant 20 (b)) in Model B-Surrogates group. Participant 8 was asked to provide the user rating for the 

design alternative based on the watershed performance, while Participant 20 was asked to provide the user 

rating for the design alternative based on the group of SBs: 58, 59, 61 and 63. Similarly, the Pareto Fronts for 

Participants 15 and 11 (c) and d) respectively) in Model B-Stakeholders group are shown. Participant 15 was 

asked to provide the user rating for the design alternative based on the watershed performance, while 

Participant 11 was asked to provide the user rating for the design alternative based on the group of SBs: 

41,90,92, and 93 

B. Overall Group Assessment 

Table 4 show the group averages in distance metrics for the different participant groups 

and models, calculated using Equation 3. Notice that in general GDR1 was found to be 

greater than GDR3 suggesting that the groups, in spite of the model type (i.e. Model A or 

Model B), on an average, preferred design alternatives located closer to the design 

alternatives on the non-interactive Pareto Front. While this outcome seems reasonable for 

participants working with Model A-Surrogates, the finding seems counterintuitive, at first 
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glance, for participants working with Model B-Surrogates or Model B-Stakeholders. Note 

that Model B over-estimated the PFR, SR, and NR benefits in comparison to the Model A, 

and Model A was used to estimate benefits of alternatives on the non-interactive Pareto 

front. Hence, a user assessing the quality of the design alternative based on only the 

physical objective function values estimated by Model B would have been expected to 

prefer designs with higher GDR3 than GDR1. However, this was not always observed, 

indicating that even Model B participants may not have been entirely motivated by the 

performance of design alternative estimated at the watershed scale in order to decide what 

design alternatives they liked. Additional factors may have been more important to these 

participants when they were evaluating design alternatives. For example, some participants 

may have been more influenced by the value of the design decisions (e.g., certain locations 

may be more favorable for a BMP from the user’s perspective, in spite of the performance). 

This issue is examined in the next section. 

Table 5.6 Group average for distance between non-interactive optimal Pareto Front 

Objective 1: COST, 

Objective 2: PFR 

Objective 1: COST, 

Objective 2: SR 

Objective 1: COST, 

Objective 2: NR 

GROUP 

Model A-Surrogates 

Model B-Surrogates 

Model B-Stakeholders 

GDR1 GDR2 GDR3 

0.24 0.10 0.12 

0.41 0.34 0.36 

0.30 0.21 0.26 

GDR1 GDR2 GDR3 

0.26 0.11 0.13 

0.42 0.34 0.36 

0.41 0.27 0.35 

GDR1 GDR2 GDR3 

0.23 0.10 0.11 

0.39 0.30 0.34 

0.37 0.25 0.32 

5.5.1.3. Similarities in Decision Space 

A. Assessment of Individual Participants 

As described in the methodology, the decision space was represented by two different 

BMPs, Cover Crops and Filter Strips. The BMPs were modeled using two different types 

of variables, binary and real. In this study, the binary variable represents whether cover 

crops exist in a particular SB, while the real variable represents the design parameter of 

filter width for the BMP filter strips. Each BMP can be simulated in one of the 108 different 

SBs identified in an earlier study Babbar-Sebens et al. (2015). Therefore, the chromosome 

in the genetic algorithm (used for interactive search in WRESTORE) consisted of 216 

genes, where each gene value represents the decision for one of the two BMPs. For each 

of the variables we calculated a pattern metric (as shown in section 5.4.3.3), depending on 

the variable type. 
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Model A-Surrogates results are shown in Table 5.7. As with the percentage of user 

ratings, we added user behavior information related to their interaction with the GUI and 

the trends in their self-reported, average confidence levels. To estimate the level of 

agreement (or disagreement) within the watershed for cover crops, we first identified those 

SBs with ProbgR3k > 0.5 and then the set of SBs with ProbgR1k > 0.5. Since, R1 and R3 are 

the extreme values for a participant’s user rating, we then identified a sub-set of sub-basins 

in the entire watershed where (a) the participant clearly prefers cover crops (i.e., the 

conditions (ProbgR3k > 0.5) and (ProbgR3k > ProbgR1k) are met for the SB), and (b) the 

participant clearly does not prefer cover crops (i.e., the condition (ProbgR1k > 0.5) and 

(ProbgR1k > ProbgR1k) are met for the SB). Table 5.7 shows these results. For all the 

participants there are a higher numbers of SBs where cover crops implementation is higher 

in their R3 design alternatives. Additionally, the probability of implementing cover crop is 

greater than 50% (since ProbgR3k > 0.5), leaning towards an agreement of the use of this 

BMP in large majority of their design alternatives and SBs. 

Table 5.7 also shows the results for the design alternative patterns of the Filter Strip 

width. Similarly to the cover crop analysis, we calculated the number of SBs where the 

POMgR3k was greater than 50%. This means that majority of the design alternatives in R3 

have their design value for the filter width equal to the mode of all values, indicating a 

clear preference by the participant. Similar to the results for cover crops, there are a greater 

number of SBs where Mode value is distinctly the filter width preferred by the user. 

These results also allow us to compare designs across participants. We can see that 

according to Table 5.7, Participants 6 and 7 seem to have a close agreement on the design 

alternatives (in either Cover Crops or Filter strips width). However, Participant 7’s 

interaction with the tool and trends in her/his confidence levels indicate that she/he did not 

gather enough information to develop a confident judgment. Whereas, Participant 6 

demonstrated an increase in his/hers confidence trends, and has a high level of interaction 

with the GUI in the information gathering areas. These user behavior parameters seem to 

indicate that even when similar design alternatives were found by these two participants, 

the feedback provided by Participant 6 seemed to be more reliable. The maps in Figure 5.6 

show examples of the probability distribution within the watershed for Participant 6 and 7. 
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This example is the pattern for cover crop Probabilities in the designs rated R3 and R1 by 

Participant 6. We also noticed that as all the participants present a lower ProbgR3k in the 

Southern region of the watershed (close to the reservoir). This suggest that in optimized 

solutions, regardless of the participant, the allocated system of Cover Crops and Filter 

Strips are more desired in the upstream region. 

Table 5.7 Number of SBs with a design alternative pattern for the Probabilities of Cover Crops and the 

Filter Strip width. 
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fo Number of SBs 

where 

ProbgR3k > 0.5 

& 

ProbgR3k > 

ProbgR1k 

(out of 108) 

Number of SBs 

where 

ProbgR1k > 0.5 

& 

ProbgR1k > 

ProbgR3k 

(out of 108) 

Number of SBs 

where 

POMgR3k >50% 

& POMgR3k > 

POMgR1k 

(out of 108) 

Number of SBs 

where 

POMgR1k >50% 

& POMgR1k > 

POMgR3k 

(out of 108) 

1 +R1 1 3 81 10 108 0 

2 None 72 62 79 13 59 2 

3 +R1 60 56 66 26 45 39 

4 None 10 14 82 17 51 2 

5 -R3 40 45 53 39 62 29 

6 +R1, R3 66 67 82 8 73 0 

7 -R1, R2, R3 14 34 82 7 77 0 

Average 
38 40 75 17 68 10 

Std. deviation 
29 24 11 12 21 16 
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a) b)

ProbjR3k

c) d)

Participant 6 Participant 7

Figure 5.6. Examples of the distribution of ProR3 > 0.5 (a and b) and POM >50% (c and d) for Participants 

6 and 7 

Model B-Surrogates and Model B-Stakeholders results are presented in Table 5.8. The 

average number of SBs where conditions (ProbgR3k >0.5) and (ProbgR3k > ProbgR1k) are met 

are 67 and 72, for Model B-Surrogates and Model B-Stakeholders respectively. Hence, the 

number of SBs where cover crops are clearly desired are slightly lower for these 

participants, than for the participants in Model A-Surrogates where cover crops were 

desired in 75 SBs on an average across all participants. Similarly, for filter strips, the 

average number of SBs where conditions (POMgR3k >0.5) and (POMgR3k > POMgR1k) are 

met are 36 and 39, for Model B-Surrogates and Model B-Stakeholders respectively, in 

comparison to Model A-Surrogates where the Modes of filter strip widths were clearly 

desired in 66 SBs on an average across all participants. This suggests that Model B-

Surrogates and Model B-Stakeholders participants are satisfied with designs where not too 

many new cover crop and filter strip practices are added into the current baseline watershed 

landscape. Additionally, between the individual participants there are also unique 
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differences in the manner they prefer one practice over other. For example, Participant 16 

indicates a clear preference for cover crops in majority of the SBs (83) in her/his R3 design 

alternatives, in comparison to cover crops in her/his R1 design alternatives, and in 

comparison to filter strips in all of his R1 and R3 design alternatives. This participant also 

has high amount of interaction (69% of mouse clicks and 65% of time spent) with the GUI 

to gather information, and no discernable increasing or decreasing confidence trend in 

design alternatives rated R3 or R1. The same trends and preferences are also presented by 

Participant 25, except for the amount of interaction (2% of mouse clicks and 1% of time 

spent in gathering information) that this participant had with the GUI. 

Table 5.8 Number of SBs with a design alternative pattern for the Probabilities of Cover Crops and the 

Filter Strip width. 
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where 

ProbgR3k > 0.5 
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ProbgR3k > 

ProbgR1k 

(out of 108) 

Number of SBs 

where 

ProbgR1k > 0.5 

& 

ProbgR1k > 

ProbgR3k 

(out of 108) 

Number of SBs 

where 

POMgR3k >50% 

& POMgR3k > 

POMgR1k 

(out of 108) 

Number of SBs 

where 

POMgR1k >50% 

& POMgR1k > 

POMgR3k 

(out of 108) 

Model B-Surrogates 

8 None 0 0 82 10 90 0 

9 None 57 47 73 13 79 0 

20 -R2,R3 36 71 62 34 11 0 

21 +R3 47 34 57 37 4 1 

22 -R3 0 1 56 38 22 7 

24 -R1,R3 15 21 61 27 45 16 

25 None 2 1 79 0 0 0 

Average 22 25 67 23 36 3 

Std. deviation 24 27 11 15 36 6 

Model B-Stakeholders 

11 +R1, R2, R3 76 73 77 13 99 0 

13 None 54 47 82 15 35 0 

14 +R2 38 40 59 27 30 2 

15 + R2, R3 3 2 71 17 24 0 

16 -R2 69 65 83 0 0 0 

18 +R1 45 50 57 30 46 8 

Average 48 46 72 17 39 2 

Std. deviation 26 25 11 11 33 3 
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In summary, by identifying patterns across the different design alternatives liked or 

disliked by the user, it is possible to categorize which and where are practices more favored 

by different individuals. However, to examine fidelity of the preferences expressed by 

users for locations and practices, the user-GUI interaction data provides useful supporting 

information. 

B. Overall Group Assessment 

Group statistics for the decision space were calculated using Equations 5.13 and 5.14, 

in order to examine any patterns in the preferences for locations or practices expressed by 

a specific group of participants. In this section, results for design alternatives rated R3 by 

the participants are discussed, in order to focus on designs that were considered acceptable 

by the participants. 

Figure 5.7. shows three maps (maps (a), (c), and (e)), representing the GProbgR3 

(Average Probability of Cover Crop across participants for design alternatives rated R3) for 

each of the three participant groups. In addition to the GProbgR3, maps (b), (d), and (f) show 

the variability across participants in the probability of cover crops at every SB. This 

variability was estimated by calculating the standard deviation (StdevR3) of the GProbgR3 

values across participants. The maximum value for StdevR3, across all SBs and all groups, 

was found to be 0.26. Observe that 59% of the SBs in Model B-Surrogates present a StdevR3 

> half of the maximum value (i.e., 0.26/2 = 0.13), indicating a high disagreement in these 

SBs. While for Model A-Surrogates and Model B-Stakeholders, these percentages are 

lower (i.e., 41% and 31% of SBs with StdevR3 > 0.13 in Model A-Surrogates and Model B-

Stakeholders, respectively). These results suggest that participants from the Model A-

Surrogates and Model B-Stakeholders groups may have a better chance for negotiating 

implementation of cover crops in most of their SBs, since participants in these groups 

strongly disagree (i.e., when StdevR3 > 0.13) with each other on fewer number of SBs in 

the set of design alternatives rated R3. Figures 5a), 5b) and 5c) also show that the percentage 

of SBs with GProbgR3 < 0.5 (i.e., SBs where the average probability of cover crop across 

participants is low) is low for the three groups. For example, for Model A-Surrogates, there 

are less than ~20% (22 SBs) of SBs with GProbgR3 < 0.5. These SBs are located mostly in 

the downstream area of the Watershed, close to the Eagle Creek Reservoir. When 
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variability (or, disagreements) across participants are considered in the Model A-

Surrogates example, there are only ~11% (12 SBs) where cover crop probability is low 

(GProbgR3 < 0.5), but not all participants agree with the low value of the probability (i.e., 

StdevR3 > 0.13). 

a) b) c)

d) e) f)

Figure 5.7. Maps of Average ProbgR3 (upper row) and Standard Deviation (lower row) for each of the 

Model groups. From left to right we have Model A-Surrogates (a and d), Model B-Surrogates (b and e) and 

Model B-Stakeholders (c and f) 

In an overall analysis, we can say that Model B-Stakeholders for the GProbgR3 present 

a more uniform preference and assessment of the design alternatives across all participants, 

while the Model A-Surrogates and Model B-Surrogates seem to develop more variable 

patterns across participants. 

For the analysis of the group assessment of Filter Strip width, we calculated the Mode 

of Modes across participants (GPOMgR3) to estimate the group’s central tendency, and also 

calculated the second moment around the Mode of Modes to estimate the variability across 

participants (VarPOMgR3). Figure 5.8. show that, in this case, there is a more consistent 

preference for filter strip modes in SBs across the groups and less variabilities across 

participants (see figure 5.8.b), 5.8.d) and 5.8.f)). Similarly to the process for Cover Crops, 
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the maximum value for VarPOMgR3, across all SBs and all groups, was found to be 5.2. 

Again, there indicates a higher agreement across participants in Model B-Stakeholders, 

with approximately 91% of the SBs (98 SBs) present a VarPOMgR3 < 3 value (i.e., second 

moment around the mode is less than 3 – as indicated in figure 5.8.). While the variability 

is higher for the Model A-Surrogates and Model B-Surrogates, the variability is high for 

fewer than 17% of the total SBs (18 SBs Model A-Surrogates and 10 SBs Model B-

Stakeholders). 

a) b) c)

d) e) f)

Figure 5.8. Maps of Average ProbgR3 (upper row) and Standard Deviation (lower row) for each of the 

Model groups. From left to right we have Model A-Surrogates (a and d), Model B-Surrogates (b and e) and 

Model B-Stakeholders (c and f) 

5.5.2. DS assessment of user search experiments 

In the previous section 5.5.1 (and its sub-sections), we examined the design alternatives 

generated via interactive optimization, at the end of the users’ search experiments. In this 

section, results are presented that examine the same metrics related to user ratings, 

objective space, and decision space, but through time for all users. Such a temporal 

perspective is expected to provide insights into convergence properties of the user-guided 

search process. 
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5.5.2.1. Percentage of design alternatives per user ratings 

A. Assessment of Individual Participants 

In this section, the changes in the percentage of solutions in every Epoch are described. 

As explained in section 5.4.3., an Epoch is a specific time interval related to a session type 

within the experiment where the user provides design alternatives’ rates for the first time, 

to generate more design alternatives. Therefore, Epoch 1 is associated with the first 

introspection (I1) session, Epoch 2 with design alternatives from human-guided search 

sessions (HS1 to HS6) after I1, and, finally, the Epoch 3 with design alternatives from 

human-guided search sessions (HS1 to HS6) after the second introspection (I2) session. 

The three participants in Model A-Surrogates who had positive trends in the confidence 

levels (Participants 1, 3, and 6) demonstrated a decrease in the percentage of design 

alternatives that were rated R3 as the search progressed from Epoch 1 to Epoch 2. However, 

from Epoch 2 to Epoch 3, the change in percentage switched to an increasing trend for two 

of these participants while the other two continued towards a declining trend in percentage 

(see Figure 5.9 for details on these three participants) 

Participant 1 Participant 3 Participant 6

Figure 5.9. Participants 1, 3 and 6 percentage of solutions in user rating Ri by Epochs 

The change in the trend could be an effect of multiple factors that influenced the search 

algorithm. For example, they could be because of potential changes in the users’ reasoning 

process for rating R3 in the Epoch 2 – Epoch 3, or they could have occurred because of the 

stochastic nature of the exploration-exploitation operators (in the underlying Genetic 

Algorithm, IGAMII) that led to a more successful search in the later Epoch 2 – Epoch 3 

period. We also observed that two out of these three participants (Participants 1 and 3) 

experienced an increase in their percentage of design alternatives rated R1 as the Epochs 
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progressed. These same participants, however, also seemed to have the percentage of R3 

design alternatives in Epoch 1 be greater or equal to 50%. 

For the case of Model B-Surrogates, just one (Participant 21) demonstrated a positive 

trend in his/her confidence levels over time. This participant experienced a decreased in 

the percentage of design alternatives rated R3 from Epoch 1 to Epoch 2, but then 

experienced an increase in the percentage of design alternatives rated R3 from Epoch 2 to 

Epoch 3. Model B-Stakeholders results show that four out of six participants consistently 

experiences an increase in the percent of design alternatives rated R1. While only one of 

them consistently increases design alternatives rated R3. However, four out of six 

participants will present an increase in Epoch 3. We also observed that five out of six 

participants present an increase in design alternatives rated R1, and four of these 

participants will start with 15% or fewer designs rated R1. For this group, the participants 

with positive trend show and an increase of R1 design alternatives in Epoch 1 to Epoch 2 

and Epoch 2 to Epoch 3. While the participant with none presents a decrease in Epoch 1 to 

Epoch 2 and then and increase from Epoch 2 to Epoch 3. The result indicates that 

participants with positive trends increase their design alternatives rated R1, and in the 

majority of the cases also those designs rated R3. 

This analysis shows the dynamic across participants over time. An early identification 

of patterns in the design may improve the search process and avoid the repetition of designs 

that were clearly disregard by the user. A combination of confidence levels values, previous 

percentages of designs in each rate and the information about the amount of interactions 

may avoid losing key features of the design that meets with the user’s criteria. 

B. Overall Group Assessment 

Figure 10 shows the average percentage per user rating at each epoch. The results show 

that Model A-Surrogates participants do not show a consistent trend through the Epochs. 

However, we observe that participants with positive confidence level trends increase the 

number of R1 design alternatives at each Epoch. In fact, from Epoch 2 to Epoch 3, there is 

just one participant that decreases the percentage of user rating alternatives (PRatei) rated 

R1. This is an indication that the solutions found by the system are in disagreement with 

the goals of the participants in this model. 
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Figure 5.10 Average of percentage of solutions per participant per Epoch 

Again, the case of Model B-Surrogates, we find a lot of variability regarding the 

percentage of the design alternatives. However, we noticed that three participants 

consistently decrease the percentage of design alternative rated R3. We also notice that 

there is not a consistent decrease for the design alternatives rated R1, i.e., the percentage 

of R1 alternatives is always increasing across participants of this group. Model B-

Stakeholders’ group presents a more uniform patterns across the Epochs and participants, 

especially in Epoch 3 where there is an increase of designs rated R1 and R3 in the majority 

of the participants of this group. These results then show how the community that is directly 

affected and involve with the location seems to have a better agreement on the required 

actions to improve the watershed management. 

Figure 5.10 shows the average percent of user rating across participants in each group. 

Notice that the error bars represent the variability (standard deviation) for each group. As 

we stated before, Model B- Stakeholders shows a better agreement in the percentage of 

solutions in each of the rates, with an average standard deviation (error bars) of 15%, 

compare to the Model B-Surrogates and Model A-Surrogates (21% and 18% respectively). 

5.5.2.2. Similarities in Objective Space 

A. Assessment of Individual Participants 

This information provides an evaluation of how the user rating is affecting the other 

objective functions, and what is the direction the new user-tool designs are taken. At the 

same time the distances give us an estimation regarding how the non-interactive Pareto 
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Front with physically found optimal design alternatives and allow us to quantify the reduce 

of the performance in the objective space. 

For Model A-Surrogates, the changes in the distances for the Pareto front are similar to 

the PFR vs. Cost, SR vs. Cost and NR vs. Cost measurements. Three participants 

(Participants 3, 4 and 5) presented a higher distance in Epoch 2. Meaning that in Epoch 3 

they found R1 solutions closer to the non-interactive Pareto Front. However, this same 

three participants also found R3 solutions farther from the Pareto Front in Epoch 3. This 

could be a consequence of improvement in the particular areas of interests. However, the 

improvements in local SBs reduce the performance of the entire system. From these three 

participants, just one of them (Participant 3) have a positive trend of the confidence levels 

in R1 and the highest activity in the information gathering area. This indicates that the 

designs he classified in R1 and the calculated distances may be more reliable. 

For the case of Model B-Surrogates, the distances in Epoch 2 and Epoch 3 are nearly 

identical, suggesting that there are not significant changes in the objective space through 

time. However, this technique is not capturing the dissimilarities in the objective space 

across participants, because the distances are fairly equal for all the participants, except for 

one (Participant 9). However, the group’s usability metrics are very low, telling that the 

interaction with the tool was minimal, with no increases in the confidence levels trends (or 

negative trends) weaken the reliability of the input provided by the participant. The 

distance metric in the Model B-Stakeholder for the designs rated R1 present some 

variability from Epoch 2 to Epoch 3. For Epoch 3, participants select designs closer to the 

non-interactive Pareto Front, while also having similar distances for Pareto Fronts rated 

R3. 

B. Overall Group Assessment 

Model B-Surrogates and Model B-Stakeholders temporal analysis, suggests that overall 

there is not a significant variation in the objective space performance for Epoch 2 to Epoch 

3. We also noticed that Model B-Stakeholders choose and lead the search towards designs 

that are closer to the non-interactive Pareto Front, this is reflected in the lower average 

distance metric presented by the stakeholders. 
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5.5.2.3. Similarities in Decision Space 

A. Assessment of Individual Participants 

Because we would like to understand the characteristic of desirable designs, this 

analysis is center on those design alternatives rated R3 by the different participants. The 

results in the decision space for the temporal analysis showed that for the average 

probability of implementation in the binary variable (Cover Crop), there is a general 

decrease of the probability of implementation from Epoch 1 to Epoch 2 to Epoch 3 in all 

the user ratings. However, two participants present an exception in the trend from Epoch 2 

to Epoch 3, where there is an slightly increase in the average of probabilities across SBs. 

Due to the decrease of the probabilities in all three user ratings, we could not conclude that 

the decrease is a consequence of the user’s rating. Also, the probability found here is 

associated with the entire watershed. In order to draw significant conclusions we will need 

a more detailed consideration about the local scale performance. 

For the real variable case (Filter Strips width) we found that the averages in the whole 

watershed ranged from 2.74 m to 3.19 m. Remember that in this case we calculated the 

percentage of solutions with the filter width value equal to the mode of the design 

alternative (POMRi). The behavior of the average of POMR3, is very erratic across 

participants. The is a 45% of the participants that decreases POMR3 from Epoch 1 to Epoch 

2, but then increases within Epoch 2 and Epoch 3. Then, another 25% of the participants 

exclusively increases the POMR3 values, a 20% that exclusively decreases the POMR3 and 

then there is just one participant who increases from Epoch 1 to Epoch 2, but decreases 

from Epoch 2 to Epoch 3. This analysis does not provide any conclusive results, and 

therefore there is a need to explore the parameter further (i.e., at local scale) to truly 

understand if there is a particular design that motivates the participant to select a certain 

particular rate. 

B. Overall Group Assessment 

As a group, the results show and increase of the variability and a common decrease of 

the probability of implementation in the pattern analysis. GProbRi for Model A-Surrogates. 

Model B-Surrogates and Model B-Stakeholders have a similar behavior, however, the 

second case presents a lower variability across participants. This indicates that 
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As section 5.5.1.1, we used the average of the percentage of modes to observe the trend 

of selections of “I liked” alternatives for each of the participants. In most of the cases by 

the end of epoch three there is an increase in the average percentage of modes, indicating 

that more solutions present the same pattern for the real number. The standard deviations 

seem to decrease. However, the present high uncertainty may be a result of the average of 

the watershed scale results. 

5.6 CONCLUSIONS AND FUTURE WORK 

This research provided a very useful observational study were users’ answers, and 

feedbacks are analyzed in order to understand the decision process and validate the user’s 

input data supplied to a participatory search algorithm. The uniqueness of this research 

relies in the understanding on how user’s input data (as an additional objective function) is 

used by the optimization algorithm in order to search for designs that will meet the user’s 

criteria. Intuitively we can say that if a design alternative is rated R3 there is a higher chance 

for it to be implemented by the stakeholders because they agree with either the decision 

space or the objective space performance. 

To gather the user rating a Liker-type scale with three classifications was provided: “I 

liked” (R3), “Neutral” (R2) and “I do not like it” (R1). In general results show that 55% of 

participants present a higher percentage of design alternatives in R3. This percentage 

suggests that over half of the population agree with the design alternative found for them 

by the IGA. 

The objective space evaluates the distances between the Pareto Front of design 

alternatives found in a non-interactive exhaustive search (designs presented in I1) and the 

Pareto Front generated by the user’s interaction with the tool. The measure calculates not 

just the accuracy but also the precision of the design alternatives of different classifications 

with respect to those design alternatives found on the non-interactive search. In general, 

the design alternatives classified as R1 have a greater distance and are less precision than 

those design alternatives classified as R3. The classification is more evident for those 

participants that evaluate the design alternatives based on the watershed level performance 

(Piemonti, 2014) 
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The differences between the probabilities and the variability across participants 

demonstrate the ability of the search algorithm to identify individual preferences, and how 

they affect the designs in complex systems. Even when all the groups were given similar 

areas to evaluate, stakeholders have a common goal/interest that must be achieved within 

the watershed. Therefore, the results are consistent with the expected behavior of 

participants with a common goal. On the other hand, Surrogate participants are focused in 

SBs assigns as part of the experimental process. Therefore, there is not a common objective 

in improving the overall area, but a very deterministic tasks of improving their own areas, 

regardless of the performance of other SBs. It is possible that the selection of the design 

alternative based on specific areas leads the design to generate solutions that may 

underestimate the performance in other SBs. Therefore, future research must include the 

analyzes of localized design patterns based on those SBs on interest, establishing 

comparisons across participants, and showing where the possible agreements and 

disagreements may occur. A general evaluation of the decision space gave detailed 

information regarding the number of SBs where designs present common features such as 

implementation or designed. As was mention before, the decision space was divided into 

two different analysis depending on the BMP in the design alternative. For the binary BMP 

(Cover Crops), the general evaluation suggests that all the participants would agree to the 

implementation in a higher number of SBs, regardless their interaction with the tool, or 

their confidence level trends. While, the real BMP (Filter Strip width) there is more 

variability regarding the number of SBs where the practice should be implemented. 

The analysis in the decision space presented distinct patterns on the designs in the 

individual and group analysis. It seems that the search may identify agreements more 

accurately for the real variable designs, where the results show a lower variability on the 

mode selected for those designs rated R3. However, there is still a need to understand better 

the selections based on local scale preferences. We suggest and encourage to take a closer 

look at the results for how the human-guided optimization process affects not just SBs of 

interest, but also other participants SBs of interest. 
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6.1 Abstract 

Participatory modeling and design have been recommended by multiple researchers as 

effective means for supporting a more active role of stakeholders towards Integrated 

Management of their watersheds (Johnson et al, 2002; Gregersen et al., 2007; Lubell, 2014; 

Kelly et al., 2012; Evers et al., 2012). Interactive Optimization (IO) is a human-in-the-loop 

type participatory technique that has the potential to include different types of community 

stakeholders in the design process. IO aims to use stakeholder participation towards 

generation of scenarios of satisficing (satisfy + suffice) watershed plans that fulfil people’s 

subjective constraints and criteria, in addition to achieving quantified physical cost-benefit 

goals (Piemonti et al. 2013; Piemonti 2014; Babbar-Sebens et al., 2015). However, little 

research had been done that improves our current understanding of how participation of 

humans, who may be interested in only a few sub-areas of a watershed, can affect the 

overall search process of an interactive optimization algorithm that is set up to generate 

plans for the entire watershed. Such investigations have the potential to generate insightful 

evaluation of links between IO-based participatory design algorithms and the preferences 

and criteria expressed by stakeholders willing to participate in the planning and 

management process. In a previous study (Chapter 5), we examined IO-generated design 

alternatives and analyzed them for the presence of spatial patterns in locations and practices 

at the entire watershed scale. In this study, we have examined how stakeholder feedback 

that is more driven by the local decisions in sub-areas of a watershed affects the search 

process of the IO algorithm centered on the entire watershed. Results show that, in 100% 

of the cases, there is a correlation of performance of the SBs in the objective space for 

those SBs connected through a stream. In the decision space, we observed that, in general, 

there is an acceptance towards an implementation of Cover Crops in 95% of the SBs for 

the majority of the participants (even if they are not focused on the region). For Filter Strips 

width, there is a better agreement for similar designs in those SBs upstream. However, the 

average percentage of designs equal to the mode is less than 60% for all the SBint. This 

analysis enables researchers, designers, and decision makers to evaluate discrepancies in 

preferred designs that are considered optimal by different individuals, and at the same time 



 

 

    

  

  

     

     

     

    

    

      

    

       

      

      

   

      

       

     

 

      

   

      

   

      

      

     

       

    

      

      

       

110 

provides valuable information about the crowdsource solutions to generate democratic and 

participatory watershed management plans. 

6.2 Introduction 

Generation of scenarios of watershed plans (or, designs) based on physical goals and 

constraints have been extensively researched before (Seppelt and Voinov, 2002; Arabi et 

al, 2006; Artita et al, 2008; Babbar-Sebens et al., 2013). Multiple researchers have 

recommended that multi-objective optimization-simulation approaches can be notably 

effective in incorporating multiple conflicting criteria towards the development of 

restoration plans for degraded watersheds (Randhir et al., 2000; Perez-Pedini et al., 2005; 

Lethbridget et al., 2010; Kaini et al, 2012). On the other hand, optimization based on 

subjective criteria still remains a challenge, because of the diversity in socio-economic and 

cultural conditions that may exist in a watershed community. Complexities from diverse 

conditions influence how people determine their priorities, beliefs, interests, and biases via 

their underlying cognitive processes, and express individual subjective preferences during 

decision making (Mintzberg and Westley, 2001; Cash et al, 2002; Prokopy et al., 2008; 

Hoag et al., 2012; Ahmadi et al., 2014). Hence, there is a dire need for studies that examine 

approaches for incorporating the complex human preferences in to the design of watershed 

plans, while also evaluating the effect of such stakeholder integration. 

In this paper we examine the problem of interactive optimization of conservation 

practices in agricultural watersheds, based on not only goals that target land services, water 

quality, and flooding problems, but also stakeholders’ diverse subjective criteria and 

preferences pertinent to local sub-areas of the watershed. Many location-specific 

stakeholder factors, e.g. a land owner’s personal constraint in using a specific patch of 

her/his land for implementing a conservation practice, past unsuccessful experience with a 

specific practice or a specific location, or limited available personal financial resources to 

implement and maintain a practice, etc., may influence the stakeholder’s decision to select 

a prescribed conservation practice at a recommended location. However, when developing 

watershed-scale plans for a community, planners and managers may overlook or not be 

able to pre-determine these stakeholder factors (Cole, et al., 2002; Greiner et al; 2009; 

Hoag et al., 2012). Exclusion of spatially-explicit stakeholder subjective factors may 
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weaken the acceptability of proposed practices in individual sub-areas, and create hurdles 

in the adoption of the larger management plan. 

Analyzing the design alternatives generated by Interactive Optimization at the local sub-

basic scales relevant to individual stakeholders, provides an opportunity to understand how 

the stakeholders’ interaction with the tool and their spatially-explicit preferences may 

influence the IO’s assignment of decisions at the sub-basin scale. Especially decisions in 

sub-basins, which lie in a stakeholder’s region of interest, can not only influence watershed 

processes in her/his region, but also other surrounding regions that may be ecologically 

and/or hydrologically connected to her/his region. Additionally, for multiple stakeholders 

focused on the same local sub-basins, the disagreements between stakeholders at sub-basin 

scales can be assessed based on what alternatives they like or do not like. 

6.3 Objectives 

In this study, we focus on the web-based tool WRESTORE, a participatory framework 

for Interactive Optimization of conservation practices in watersheds (Babbar-Sebens et al., 

2015). This study examines the relationships between the types of users, their usability 

behavior, and patterns in alternatives generated by users interacting with WRESTORE. A 

previous study identified the presence of patterns in the decision space of design 

alternatives classified as desirable or undesirable by the user on a Likert-type scale (see 

chapter 5). Here, we examine the presence of similar patterns in user preferred designs, but 

at the local scale. The overall research objective is to understand how the user rating that 

is assigned by stakeholders interested in specific local sub-basins, but is used by the search 

algorithm to assess the desirability of the entire watershed plan (which includes decisions 

in other sub-basins beyond the stakeholders’ region of interest), affects the IO algorithm’s 

assignment of conservation practices in the entire decision space and design performance 

in the local sub-basin scale objective space. To achieve this research objective, two 

research questions were addressed: 

1.	 For design alternatives preferred by participants, are there any patterns in the 

objective space of local sub-basins that are of interest to multiple stakeholders? 

When users have to consider multiple quantitative and subjective goals to evaluate 

their preference for decisions proposed in the local areas common to all of them, it 
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can be challenging to determine well-defined patterns in the objective function space 

that represents physical/environmental goals. However, similarities in the central 

tendencies can be used to assess the presence of potential patterns in the objective 

function space. Hence, such central tendencies were estimated in this study, and 

used to address this research question. 

2.	 For design alternatives preferred by participants, are there any patterns in the 

decision space of local sub-basins that are of interest to multiple stakeholders? 

Multiple disagreements between stakeholders can arise due to the different 

subjective preferences (discussed earlier) for which practices should be 

implemented and where in their common area of interest. Hence, comparison across 

users at the sub-basin scale may help to determine similarities in decisions that the 

users may be more willing to negotiate for and/or adopt. Hence, in this study, we 

conducted a similarity assessment for all user-preferred designs to identify which 

sub-basin decisions could potentially yield less conflict or more conflict. 

6.4 Methodology 

6.4.1. Spatially-explicit Subbasins of interest 

As mentioned in chapters 3, 4 and 5, the selection of specific conservation practices 

(i.e. decision variables) and goals (i.e. physical objective functions) for IO was prescribed 

by the researchers to all participating users, so that the user experiments could be conducted 

in a semi-controlled environment. Six groups of sub-basins of interest (SBintq) were 

identified to represent local regions in the watershed (See Figure 3.3 in chapter 3 and Table 

6.1). The experiments with 20 participants in chapter 4 and chapter 5, were also employed 

for this study. Sixteen participants were assigned one of the six groups in Table 6.1 as their 

study area, while the other four users were asked to use the whole watershed as their study 

area. 
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Table 6.1 ID numbers of SBs inside the SBint groups and participants focused on this areas 

Group IDs of SBint Participants 

1 [10 11 14 15] 2, 9, 16 

2 [12 19 20] 3, 24 

3 [38 39 44 ] 4 

4 [41 90 92 93] 7, 11, 18, 25 

5 [58 59 61 53] 5, 13, 20 

6 [103 105 106 121 122] 6, 14, 21 

Note that the researchers selected both connected and unconnected SBint in specific areas 

of the watershed, in order to capture the effect of the hydrologic connectivity on the 

preference in design expressed by participants. In Table 6.1, the connected sub-basins are 

adjacent SBs where the upstream SBint (ID value = n) drains to the downstream SBint (ID 

value = n+1). When SBint are hydrologically unconnected, their SBint ID value does not 

have any upstream or downstream ID in the SBint. 

6.4.2. Objective Space Analysis 

A histogram analysis was conducted at the End of the Search (EoS) to quantify the 

number of user-preferred designs (user rating R3) within particular range of multiple 

physical objective functions calculated at sub-basin scale (e.g., cost of implementing the 

prescribed practice in SB 10 in Table 6.1). The range varied depending on the bin size. The 

bin size was calculated using: 

max(𝑂𝐹𝑚𝑙𝑘) − min⁡(𝑂𝐹𝑚𝑙𝑘)⁡ 
= (6.1)𝑏𝑖𝑛𝑂𝐹𝑚𝑙𝑘 10 

Where, binlOFmlk is the bin size of the mth physical objective function OF (for 1 ≤ m ≤ 4), 

in lth SB in SBintq, and for kth participant. The OFm objective functions are found in table 

6.2. The mathematical function can be found in Chapter 2, and Chapter 5, as well as in 

Piemonti et al. (2013) and Babbar-Sebens et al. (2015). 
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Table 6. 2 Table with the objective function and the type of Objective Function 

m OF Type 

1 Peakflow Reduction Physical, related to flooding 

2 Sediments Reduction Physical, related to water quality 

3 Nitrates Reduction Physical, related to water quality 

4 Cost Physical, related to economics 

5 User rating: 

1 = “I do not like it”, 
2 = “Neutral”, 3 = “I like it” 

Subjective, related to user’s 

unquantified goals and 

constraints in SBint 

Comparison of results across participants was done by relating the average of re-scaled 

OF values calculated using equation 6.2 

𝑂𝐹𝑚𝑙𝑘𝑗 
𝑅𝑎𝑡𝑖𝑜𝑂𝐹𝑚𝑘𝑗 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 ( ) (6.2)

𝑀𝑎𝑥(|𝑂𝐹𝑚𝑙𝑘𝑗|)

Where RatioOFmkj is the average value of the re-scaled physical objective function OFmlkj in 

SBintl for the kth user. 

6.4.3. Decision space patterns 

Similar to the objective space, the decision space was analyzed for all user-preferred 

design alternatives (user rating R3) at the End of the Search (EoS). Two variables were 

used to represent the different BMPs in the decision space: binary variables and real 

variables. In this study, the binary variables were used to represent the implementation (1) 

or non-implementation (0) of the cover crop BMP, whereas the real variables represented 

the filter strip width of the Filter Strips BMP. Piemonti et al., (2013), as well as Chapter 5, 

give detailed information about how the decision variables were incorporated in the 

optimization algorithm, and how they were used in the hydrological simulation model. In 

summary, design alternatives are transformed into a vector of decisions (also called 

chromosome in Genetic Algorithm terminology) of length CP*108, where CP is the 

number of conservation practices to be optimized in the watershed. Each gene (j) inside the 

chromosome represents a specific SB, and the BMP (or, conservation practice) decision 

proposed for that SB. 
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6.4.3.1. Binary variables 

As mentioned above, cover crops are represented using binary variables. Hence based 

on frequency of implementation of cover crops (CC) in every sub-basin (SB), a probability 

of implementation of the CC (ProbjR3k) in all the design alternatives with user rating R3 

was calculated using equation 6.3 

𝐿3𝑘∑ 𝑐𝑐𝑖𝑚𝑝𝑗3𝑙𝑘
𝑃𝑟𝑜𝑏𝑗𝑅3𝑘 = 𝑙=1 (6.3) 

𝐿3𝑘 

where ccimpj3lk is the binary variable value of the jth gene that represents the CC decision 

in one of the SB in SBint, in the lth design alternative, and for the kth participant. L3k is the 

total number of designs rated R3 by the kth participant. This metric allows determination of 

the percentage of design alternatives that include CC in the SBintq. The value is interpreted 

as the probability that the participant is likely to implement the conservation practice. 

We also calculated the average ProbjR3k for each of the groups of participants focused 

on the same SBint. Such a group metric has the potential to provide an overall preference 

for cover crop in a sub-basin, across all users interested in the sub-basin. Equation 6.4 

shows how this group metric was estimated: 

∑𝑁 𝑃𝑟𝑜𝑏𝑗𝑅3𝑘
𝐴𝑣𝑔𝑃𝑟𝑜𝑏𝑗𝑅3 = 

𝑘=1 (6.4) 
𝑁 

Where, N is the total number of participants (in each group) 

6.4.3.2. Real variables 

In this study, the real decision variables represent the filter strip width for the 

conservation practice filter strip (Chapter 3). The Mode of Filter Strip width calculated 

from values of the gene g representing the filter width for a specific SB in SBint (see chapter 

5 for details), and the Percentage Of Mode in solutions (POMgR3k) based on the percent of 

designs rated R3 that have the value of gene (g) equal to the calculated mode gfor those 

design alternatives. Equation 6.5 was used to calculate the POMgR3k 

𝐷𝐸𝑀𝑗𝑅3𝑘
𝑃𝑂𝑀𝑗𝑅3𝑘 = ∗ 100 (6.5)

𝐿3𝑘 
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where DEMgR3 is the number of design alternatives with filter width design in the gth gene 

equal to the calculated mode for each kth participant, L3k is the total number of designs rated 

R3. 

We also calculated the GPOMgR3 (Global Percentage Of Mode). This value represents 

the percentage of participants who are associated with a specific SB of interest and have 

the same Mode of Filter Strip. Equation 6.6 shows the parameters used for this metric. 

Before applied 6.6 we calculated the mode (most repeated value) across the participants, 

then: 

𝑃𝐷𝐸𝑀𝑗𝑅3
𝐺𝑃𝑂𝑀𝑗𝑅3 = ∗ 100 (6.6)

𝑁 

Where PDEMgR3 is the number of participants with mode equal to the mode, and N is the 

total number of participants 

6.5 Results and discussion 

In this section, we have examined the potential effects of spatially-explicit user 

preferences for cover crops, filter strip widths, their locations, and their performance with 

respect to physical goals in SBint, on the overall outcome of the search (i.e., End of Search 

or EoS). In Sub-section 6.5.1, we present results from the user experiments by examining 

the performance of the user-preferred (R3) designs in the Objective Space relevant to the 

sub-basins in SBint. And, finally, in Sub-section 6.5.2, we examine the results from the same 

user experiments for possible patterns in the decision space of SB that indicate potential 

spatially-explicit preferences in design parameters. 

6.5.1. Objective Space Analysis 

Results in chapter 5 showed that there was not a very clear pattern in the objective 

space of preferred design alternatives at watershed scale, for those participants who were 

only interested in a specific set of SBs in SBint. Note that during experimental setup 

process, researchers had assigned only specific set of SBs to these participants. Hence, this 

is also an indication that these users overlooked the performance of the objective function 

at the watershed scale during their personal decision-making process. 

To assess for differences between participants in the sub-basin scale objective space 

(e.g., cost of implementing the prescribed practice in a specific SB), we generated 
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histograms that provide information on the number of designs within a given objective 

function bin size (Equation 6.1). The bin size varies based on the SB, objective function 

(OF), and participant. We noticed that, in general, participants interacting with Model B 

have relatively similar number of design alternatives in each bin of objectives functions 

OF1, OF2 and OF3 (regardless of whether the user is a Surrogate or a Stakeholder). 

However, it is possible to identify the range of performance (indicated by OF) that the 

participant may be more interested in, by identifying values of OFs associated with the 

majority of user-preferred designs. It is relevant to note that in majority of the participants’ 

R3 designs, the values of OF4 (i.e. cost) were in the low range for majority of the sub-basins 

in SBint. For example, for Participant 2 (SBint shown in Figure 6.1) majority of the R3 

designs in three (i.e. IDs 10, 11, and 14) out of four sub-basins have the values of 

performance OF4 in the low range. However, in SB 15 this is not true, indicating the 

possibility that this participant may not be concerned about the cost in SB 15. We also 

noticed that the other participants interested in this SB (Participant 9 and 16) also presented 

similar behaviors (even though they worked with a different simulation model: Model B). 

Therefore, there is a chance that this effect could be a consequence of the search algorithm 

and its exploration/exploitation process. Figure 6.1 also shows the correlations between the 

objective function values of each of the SBs. For 8 out of 23 SBs in SBint groups (Table 

6.1) a high correlation in their performance in the objective space was observed. We 

noticed that these 8 SBs were hydrologically connected SBs, indicating a relationship 

between hydrologic connectivity and sub-basin scale OF performance. 

Figure 6.2 show a set of re-scaled plots (equation 6.2) that summarize the similarity in 

the performances of OFs between participants who were focused on the same set of sub-

basins in SBint. These plots show how close the absolute values of the average values of 

each objective function, (i.e., Absolute (Average(OFm))) are to the absolute values of their 

maximum values (i.e., Absolute(Max(OFm))), in every SB of SBint. The results are 

consistent across all participants for OF1, OF3, and OF4. However, out of the 23 SBs in 

SBint, two of the SB (SB15 and SB44, i.e., 9%) have preferred average values that are 

approximately half of the maximum value. Additionally, for some of participants the scaled 

average values in OF4 of their SB are contradictory to what other participants showed. 
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Specifically, in SB 38 (Participant 4), SB 63 (Participants 5 and 13), and SB 105 

(Participants 6, 14, and 21), the average value of OF4 in the R3 designs have a positive cost 

value, contrary to negative values in other sub-basins and other participants. This indicates 

that, on an average, these participants liked design alternatives in these specific sub-basins 

of interest even if they do not get any revenue (i.e., cost) for their decisions in these sub-

basins. An examination of the user behavior of these participants indicates that their 

confidence levels are either absent (Participants 4 and 5) or negative (Participants 13). 

However, the interaction with the system varies depending on the participant. This 

interaction shows that even when they are gathering information, their confidence levels in 

the design alternative’s rating decrease. 
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Figure 6.1 Histogram and correlations of SBint for Participant 2 
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Figure 6.2 Group analysis of the Objective Space in for the participants in the SBint1 

6.5.2. Decision Space Analysis 

For the analysis of the decision space of user-preferred design alternatives, the spatial 

location of SBs of interest (SBint) in the watershed was taken into consideration for each 

participant. Two SBint groups (Groups 1 and 2) are located in the northern (or upstream) 

region; three groups (Groups 3, 4 and 5) were located in the mid region, and one (Group 

6) was located in the southern region (or downstream) close to the reservoir. Each group 

has at least 2 hydrologically connected SBs. As mentioned earlier, any two SBs are 

considered hydrologically connected when their IDs are consecutively numbered and/or a 

stream flows through them. The unconnected SBs are those in the same region, but which 

stream does not drains to (or come from) an adjacent SB. 

6.5.2.1. Binary variables (Cover Crops) 

For each SBintq and each participant, we calculated and produced plots as the ones 

showed in Figure 6.3. Such a plot is useful to understand the ProbjR3k for every participant 

(whether or not she/he was interested in specific sub-basin in SBint) and in every SB. The 
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blue arrows in Figure 6.3 represent the flow direction (and connection) of the SBs. Though 

Figure 6.3. shows results for only the SBint with SB IDs 10, 11, 14, and 15, the majority of 

the participants (80%) have a ProbjR3k > 0.5 in all the SBs, regardless of which the group 

they belong, and all of the participants have a ProbjR3k > 0.5 in at least one SB. When 

ProbjR3k < 0.5, it indicates that CC is implemented in the SB (associated with the jth gene) 

for less than half of the R3 design alternatives (L3k). 

All the participants have at least one SB where their preference for cover crops has 

ProbjR3k < 0.5. For example, Participant 7 has a ProbjR37 < 0.5 in 17% of the total SBs of 

interests. Further, cover crop was least desired in one of the SBs (SB103) since 61% of 

participants had their ProbjR3k < 0.5 in this SB. From the perspective of participants, 

Participant 25 is the participant with more SBs with a ProbjR325 < 0.5 (with 7 out of 23 

SBs), meaning that this participant did not desire the implementation of CC in the different 

SBs of interest. However, all his/her SBs that he/she was personally interested in (Group 

4) the ProbjR325 > 0.5. Also, this participant has no statistically significant trend in 

confidence levels, and had very few interactions with the GUI towards information 

gathering. Therefore, his/her data could be considered as a noisy data set, giving less 

credibility to his/her selections. 

Even when the majority of participants have ProbjR3k > 0.5, there is a group of 5 

participants (Participants 5, 6, 13, 20, 21) with ProbjR3k < 0.5 in at least one of their assigned 

SBs of interests. Among these participants, only two have a positive trend on their 

confidence levels and a fair amount of interaction with the interface in gathering 

information about the designs (Participants 6 and 21). These two participants were focused 

on SBint6 and agree that SB106 should not have a cover crop implemented. We can 

conclude that due to the level of interaction, and increase their confidence levels; their 

preferences are clear regarding the distribution of the CC implementation. 
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Figure 6.3 Individual (bar plots) and average (black lines) values of probability of CoverCrops by SBint for 

Group 1 

In the evaluation of the averages by a group of participants, we observed that in 65% of 

the cases, Model A-Surrogates have a higher AvgProbjR3, regardless if the SBs are located 

upstream or downstream. We also noticed that 6 out of 10 of the SBs in downstream 

showed probabilities of CC higher than for those SBs in their directly related upstream SB. 

Therefore, we can assume that the preferences and general performance of CC in the 

downstream region have a better effect in the reduction of the objective function a 

watershed scale, and are also preferred by the participants. 

6.5.2.2. Real variables (Filter Strip Widths) 

The results for the real variable indicate that there is an agreement across most of the 

participants on the Mode values in the upstream region of the watershed. Figure 6.4 shows 

an example of these results. In this outcome GPOMjR3 = 100% in SB10 and SB14, even if 

they were not concern about the design or performance in this SBs, the participant 

advertently (if they were focused on these SB IDs) or inadvertently (if they were not 

focused on these SB IDs) found design alternatives with similar filter width. Notice, for 

example, Participant 1 (a watershed-focused participant) has a POMjR3 very close to 100%, 

indicating that almost all the design alternatives that were rated R3 have the same value for 

filter strip width. In average, 19 out of the 23 SBs of interest present a GPOMjR3 > 50%, 
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meaning that there is a good agreement regarding the design of the filter strip width, even 

if the participant is not interested in the region. 
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Figure 6.4 Example of the mode and percentage of the filter strip width for each participant, in SBint1 

However, we notice that there were ten SBs of interest, where the participants focused 

on the areas do not agree with the filter strip width selected by the majority of the 

participants. This is an evidence of how participants concentrated in a region may disagree 

with what is considered optimal for the rest of the community. 

6.6 Conclusions and future work 

The complexity of interactions in a watershed is not just limited to the relationship 

between the human and the natural system. Community interactions and agreements during 

decision making and collaboration are just as important, in order to identify acceptable 

watershed management plans. Understanding how participatory decision support systems 

(DSS) address the preferences of each participant give us a sense of how DSS environments 

can be improved. Such improvements can yield an adaptive design environment that is able 

to provide more opportunities for stakeholder-driven generation of scenarios for spatially 

explicit problems. 

This work helped to understand different preferred design alternatives that meet the 

criteria of a group of individuals focused on different sub-regions in the watershed. This 
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understanding can support the negotiation and implementation of practices, as well as 

educate the stakeholders about the consequences of their selection and how it affects the 

other stakeholders. The safe and private environment for providing information about their 

preferences through a web-based outreach tool is a significant opportunity to support 

collaboration between stakeholders in participatory watershed planning processes.The 

WRESTORE plataform is a web-based DSS tool that can be used at any time and place. 

Here, the initial explanaition of the tool and how to use it was hold in a classroom, but the 

actual experiment was performed at the participant’s best convenience. 

Knowing the developed and accepted patterns, as well as its uncertainty levels would 

help to improve the existing problem of iterative designs, not just because it can help 

designers to center in individual problems, but it also will allow the search algorithm to 

focus on the essential stakeholder-centric characteristics of the decisions, rather than to 

improve the designs based on only the watershed scale perspective. From this study, we 

can conclude that it is possible to identify the preferences at a local scale through 

histograms of the objective performances. This information (that is not currently used by 

the tool) could be added to the system to improve the interactive optimization algorithm’s 

ability to find solutions that satisfy the use’s preferences for certain types of decisions 

and/or criteria.  

The average binary pattern allows us to compare the users even if their SBs of interest 

are different. It is a useful metric that can be used towards negotiation processes, because 

it determines the level of agreement in community to implement this practice. The real 

variable pattern also can offer insight into what values are more preferred in a design 

alternative. We notice that upstream designs are very consistent across participants. 

However, the designs of the downstream elements are in disagreement with the plans that 

the participant focused in the area may have for the land. This suggests that those 

participants who are concentrated on the local sub-regions, e.g. SBint in this study, may be 

more affected by the location of their regions in their decision to agree or disagree with 

specific values for filter strip width. 
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7.1 Abstract 

Over the last few years, incorporation of human stakeholder participation in modeling 

and multi-objective optimization of watershed planning and management problems has 

gained an increasing amount of interest. Interactive Genetic Algorithm (IGA) is one such 

participatory design technique that enables users to participate in the generation of 

desirable design alternatives by guiding the search process of the algorithm via a user 

feedback mechanism. However, IGA can suffer from poor convergence and performance 

in identifying “user-preferred” alternatives, especially if, for example, the decision space 

is enormous, users preferences are biased by the values of only a sub-set of decisions in 

addition to (or, in some cases, instead of) physical objective functions, and if the user’s 

feedback on the quality and acceptability of design alternatives is not always consistent. 

Here, we propose a modification of exploration-exploitation operators (e.g., selection, 

crossover, and mutation) used in an Interactive Genetic Algorithm to improve the 

convergence rates of IGA. These proposed operators, called Adaptive Human-guided 

Search (AHS) operators, use emerging patterns in the decision space and feedback from 

the participants to adapt the values of the search operators. The main purpose of this 

adaptation is to re-direct the search towards areas in the decision space that are preferred 

by the user. To evaluate this new approach, we created six simulated participants (SP) 

(three deterministic users and three stochastic users) based on a set of previous experiments 

with three real participants. The three human participants were short-listed from an original 

group of 20 participants after a careful selection process to identify users with most reliable 

feedback. The selection process was based on their confidence levels trends, and their 

interaction behavior on the graphical user interface supported by the Interactive 

Optimization software. Convergence was measured using the percent of design alternatives 

in the Genetic Algorithm population that had user rating (i.e., the user’s feedback) 

classified by the participants as “I like it”. Results show that for one of the deterministic 

SP, there is a convergence towards a 100% of designs after just 10 generations. However, 

the results with the stochastic SP does not show this convergence in any of the cases, This 

effect is attributed to the procedure selected to give one rate to the entire design, based on 

the combination of the user rating of the subbasins (SBs) of interest. 
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7.2 Introduction 

Extensive research has been conducted previously to examine and improve optimization 

techniques used for water resources planning and management problems (Goldberg and 

Kuo, 1987; Seppelt and Voinov, 2002; Nicklow et al., 2010). However, when optimal or 

“near optimal” solutions are presented to the different users, it has been very challenging 

to persuade an individual (or community) to adopt and implement the proposed designs. 

Therefore, there is a growing interest on methods, in fields such as and Integrated 

Watershed Management, that support the inclusion of human stakeholders in the generation 

of design alternatives for land, water and soil management (Cole et al, 2002; Gregersen et 

al., 2007; Margerum and Robinson, 2015). 

In Interactive Optimization methods (e.g., Interactive Genetic Algorithm (IGA)), users 

participate in the generation of satisficing (satisfy and suffice; Simon, 1956) design 

alternatives by guiding the search process of the underlying optimization algorithm via 

their feedback on the desirability of the emerging design alternatives. The feedback is 

collected via a parameter called user rating, and the user uses a graphical user interface 

(GUI) to provide values for user rating on a psychometric scale (e.g., Likert-type scale). 

However, little is known about how users determine values for user rating in a typical 

watershed optimization problem, and how that could influence the search performance of 

the optimization technique. This is because the user’s cognitive process to decide a value 

for user rating may be influenced by not only the performance of the design alternative, 

but also by the decisions proposed in the design alternative itself, and her/his biases to these 

values. Without the knowledge on a specific user’s rationale for user rating, it can be 

extremely challenging to implement Interactive Optimization methods in an efficient 

manner, especially when the algorithm has to navigate through large multi-dimensional 

decision spaces in order to identify user-preferred design alternatives, and with limited 

human interaction and minimum human fatigue. 

In an IGA, the creation of and search for new design alternatives in decisions spaces are 

controlled by the selection, crossover, and mutation operators. A large variety of crossover 

and mutation operators has been developed in the literature (Gen and Cheng, 2000; Gong 

et al., 2005; Gong et al., 2008), and may be useful in an IGA. In this study, we focus on 
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the Interactive Genetic Algorithm called IGAMII (Babbar-Sebens and Minsker, 2011), 

which is embedded in a participatory watershed planning tool called WRESTORE 

(Babbar-Sebens et al., 2015). Currently, IGAMII uses constant probability values for its 

uniform crossover operator and mutation operator, respectively, to generate a new 

population in every iteration of the search. The crossover probability determines the chance 

with which a gene is allowed to exchange its value with a gene in a different chromosome 

of the population, whereas the mutation probability determines a low chance modification 

of a gene to a new random value. The uniform crossover assigns the constant crossover 

probability to every gene (i.e., individual decisions in binary or real number format) in 

population’s chromosomes (i.e., a string of genes for multi-dimensional decisions). In the 

previous work (in chapters 5 and 6) on experiments with humans, who used Interactive 

Optimization to design plans for conservation plans in a watershed, it was illustrated that 

when users and the search algorithm collaborate to generate new design alternatives 

patterns in the decision space of design alternatives can emerge. These patterns indicate (a) 

what values of decision variables in her/his local area of interest (sub-basin scale) agree 

with a user’s personal preference, and (b) how should values of decision variables in 

surrounding sub-basins be adapted by the search algorithm in order to maintain (or, 

improve) the overall performance of the entire decision space. Therefore, if the crossover 

and mutation operators could be adapted to preserve such emerging patterns in the design 

alternatives that are rated by a user as being desirable (i.e. “I like it” in this study), then the 

search process could be improved in the Interactive Genetic Algorithm to yield faster 

convergence rates; this hypothesis is examined and tested in this study. 

7.3 Objectives 

This overall objective of this study is to develop and test human-guided search operators 

that adaptively learn for patterns in user-preferred alternatives generated by the Interactive 

Genetic Algorithm, and, as a result, improve the convergence rate of the search algorithm 

for generating design alternatives that conserve these learned patterns. The improved 

convergence rate is also expected to assist with the user fatigue issue due to the fewer 

number of generations that would be required to conduct the evolutionary search process, 

and at the same time find solutions that agree with the users’ criteria. 
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To evaluate the performance of the Interactive Genetic Algorithm with the proposed 

modified operators, six (three deterministic and three stochastic) simulated users were 

developed by using the user feedback data gathered in a previous research experiment. The 

following questions were investigated: 

1)	 What is the average rate of convergence? Using simulated user models, we 

examined the changes in percentage of preferred designs (“I like it”) when the search 

was conducted using the default search operators versus the adaptive human-guided 

search operators. This comparison serves as an initial test to prove the ability of the 

proposed operators to facilitate faster convergence to desired solutions. 

2)	 At what rates to average probabilities of crossover and mutation change in each 

generation for the algorithm using the adaptive operators? The goal of the interactive 

genetic algorithm with the adaptive human-guided operators is to preserve features 

that are repeated in user-preferred design alternatives. When the operators change 

over time, it allows us to examine under what conditions and at what rate do the 

AHS operators begin to detect patterns in the decision space and conserve them. 

3)	 How do the results of the adaptive human-guided operators vary, based on different 

types of users? Six types of simulated users (three deterministic and three stochastic) 

were developed and used to test the efficiency of proposed operators. 

7.4 Methodology 

7.4.1. Interactive Optimization Algorithm 

WRESTORE’s interactive optimization method is an adaptation of the Interactive 

Genetic Algorithm with Mixed-Initiative Interaction (IGAMII) that was originally 

developed by Babbar-Sebens and Minsker (2011). IGAMII’s selection and search 

operators are based on the operators used in Non-dominated Sorting Genetic Algorithm 

(NSGA-II), proposed by Deb et al., (2002). In IGAMII, the objective function user rating 

is used as an additional objective function (in addition to physical objective functions), 

requiring that, in each generation, the user provides with a value for this rating for each of 

the design alternatives. Therefore, the total number of design alternatives (that represents 

the population of an IGA) presented to the user every interactive session, and the number 

of human-guided search sessions (that represents the micro-IGA number of generations) 
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must be carefully selected to avoid user’s fatigue. User’s fatigue (due to routine processes 

or long tasks) can affect the accuracy of the user’s feedback data (Llora et al, 2005; Gong 

et al, 2008), introducing noise in the search, and potentially misleading the optimization 

process. Hence, because of limited population size and number of generations, the default 

search operators (i.e. selection, crossover, and mutation operators of NSGA-II) tend to be 

effective for only interactive optimization problems with few decision variables (or, short 

chromosomes). 

7.4.3. Proposed Adaptive Human-Guided Search (AHS) Operators 

In this research, we developed a modification of the search operators (crossover and 

mutation), and conducted test experiments to evaluate and compare the convergence rates 

with respect to the baseline (or, default) operators in IGAMII. Convergence rate is based 

on the percent of the algorithm’s population that consists of design alternatives that meet 

the user’s criteria. Figure 7.1 shows the flowchart of the Interactive Genetic Algorithm 

with Adaptive Human-Guided Search operators. The overall process for proposed 

algorithm is generally the same as followed by the NSGA-II. However, in each generation, 

the probability of crossover (Pcrossgj) and the probability of mutation (Pmutgj) are re-

calculated and updated based on the user rating objective function values provided by the 

human. 
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Figure 7.1 AHS flowchart 

The following sections describe: 1) how the simulated participants (SP) were generated 

to estimate User Rating for testing the proposed operators, 2) how the crossover and 

mutation operators are updated in the proposed method, and 3) which metrics was used to 
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compare the results of proposed and baseline operators for each of the simulated 

participants. 

7.4.2. Simulated Participants (SP) 

To test the performance of the modified operators, we designed six different simulated 

participants (SP). These SP were generated by using the information provided by real 

participants in previous experiments. In these previous experiments with real users, each 

participant had been assigned a group of three to five Subbasins (SBs) and had been asked 

to provide feedback via a Likert-type rating scale (R1 = “I do not like it”= 1, R2 = “Neutral” 

= 2, R3 = “I like it” = 3) and a confidence level for each of the design alternative proposed 

by the Interactive Genetic Algorithm (for more information regarding the feedback see 

Babbar-Sebens et al. 2015, and Chapters 3 and 5). 

The task of the SP, in this study, was to predict the user rating, similar to the human 

participants, on the same Likert-type scale and for each of the new design alternatives 

generated by the interactive optimization technique. The model for simulating user rating 

was based exclusively on the decision space of assigned SBs in the design alternatives, and 

was built by using user rating data from actual experiments with three participants 

(Participant 3, 6 and 11). For each of these users, two different types of SP models were 

generated: deterministic SP and stochastic SP. The deterministic SP first estimated SB-

specific values of user rating based on decisions in each SB that were in the human 

participant’s area of interest. The decisions in each of the SBs included combination of the 

conservation practices (or Best Management Practices, i.e., BMPs) prescribed by the genes 

of the Interactive Genetic Algorithm. The SB-specific user rating was estimated for every 

design alternative by using the following steps: 

1) In SBj (or SB of interest), count the number of total designs in the population with 

a particular design combination (DCi) where i = 1:4, and represent four different 

design combinations when cover crops and filter strips are chosen as candidate 

BMPs 

 DC1 = YesCCYesFS (Cover crop is implemented (value = 1) and FS width 

ofequal to the mode of FSs), 
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	 DC2 = NoCCYesFS (Cover crop not implemented and FS equal to the mode 

of FSs), 

	 DC3 = YesCCNoFS (Cover crop implemented and FS not equal to the mode 

of FSs), and 

	 DC4 = NoCCNoFS (Cover crop not implemented and FS not equal to the 

mode of FSs). 

1)	 Notice that the value of i represents a combination vector of all the possible 

outcomes in the design. Hence, if we add an additional BMP the number of 

combinations that need to be considered will increase. 

2)	 From the real users experiments, select all the designs rated R3, and determine the 

design combination with the maximum number of the designs across the maxDCi. 

3)	 Use equation 7.1 to determine the scaled value of the count in each combination 

(ReScaledDCi). This scale value is a weight metric based on the number of designs 

that were classified in the design combination DCi 

(7.1)	)𝑖݆݇(𝑛!𝑚 
= 𝑖ݞݠݖݕݕ݆݇ݔ𝑙ݕ 

))𝑖݆݇(𝑛!𝑚(⁡ް޻ޤ 

4)	 Use Table 7.1 to determine the range of ReScaledDCi value falls in and assign the 

corresponding rate. 

Table 7.1 Assignment of user rating based on scaled values 

Range user rating 

0.66 < ReScaledDCi ≤ 1 3 

0.33 < ReScaledDCi ≤ 0.66 2 

0 < ReScaledDCi ≤ 0.33 1 

Because we are unaware of a user’s internal process to select a final value for the user 

rating, we will assume that the participant used the average of user ratings of each of the 

SBs (in the participant’s area of interest) to provide a single final user rating to the design. 

Hence, the final rating was determined to calculate the average user rating across SBs and 

rounded to the closest integer. Table 7.2 summarizes the user rating assigned for the four 

design combination (DCi) based on the implementation of the conservation practice. 
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Table 7.2 Summary table of the selected rates in each SB based on the DCi 

SP Subbasins DC1 DC2 DC3 DC4 

1 

103 3 3 2 1 

105 1 3 3 2 

106 1 3 2 3 

121 3 3 1 2 

122 3 2 1 1 

3 

41 3 2 1 1 

90 3 2 1 1 

92 3 2 1 1 

93 3 2 1 1 

5 

12 3 1 3 2 

19 3 1 3 2 

20 3 1 3 2 

The stochastic SP will provide the design user rating based on a probability (PjRi). This 

probability was calculated using equation 7.2 

𝐿𝑖 (7.2)𝑙𝑖݆݇ 1=𝑙ߤ
 𝑗𝑅𝑖ݓ=

𝑖ݏ 

where PjRi is the probability of design alternative (l) to be rated Ri given a DCli (design 

combination), and Li is the total number of designs in Ri. Similar to the deterministic SP, 

the final user rating was determined by calculating the average user rating across all SBs 

in the real user’s area of interest, and then rounded up to the closest integer. 

7.4.3. Operators Update. 

The operators are updated when patterns in design alternatives rated R3, or preferred by 

the user, are present. The AHS is activated once the number of design alternatives rated R3 

is at least half the number of designs presented to the participant. Figure 7.2 shows the first 

check and determination of activation of the AHS. This routine is called the activator, and 

will allow to access to process ①. 
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Variables:

X3: number of design alternatives with user rating R3

(“I like it”)

TD: Total number of designs presented to the user

PRate3: Percentage of design alternatives with user

rating R3

Pcrossgj: Probability of crossover of the jth gene (g)

Pmutgj: Probability of mutation of the jth gene (g)

BMP: Number of BMPs in the design

SB: Number of Subbasins in the watershed

Is 

PRate3 ≥ 

50%?

Yes

No No change in 

operators: Pcrossgj

and Pmutgj

j = 1

j <= 

BMP*

SB?

2

YES

NO

1

End

j = j + 1

Start

𝑃𝑅𝑎 𝑒 =
  
 𝐷

    

X3, TD

Figure 7.2 Flow chart for the activator of AHS 

The update to crossover and mutation operators does not get activated unless at least 

50% or more design alternatives are rated R3 in the population. Then, once it enters the 

update process (①) the following steps are executed for each of the genes in the entire 

chromosome: 

1) Identify the type of variable in the gene, 

2) identify patterns of the gene, using just those values that that were rated as preferred, 

and 

3) modify the genes where a pattern is present in such a way that it will reduce the 

design. 

These steps are represented in Figure 7.3 where the information provided shows those 

formulas used to calculated the pattern design. We expect that this update will generate a 

vector of Pcross and Pmut of the same size as the chromosome used in the decision space. 
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In this manner, just those genes presenting similitudes will be decrease their probability of 

changing in the following generation. 

Is 

ProbgjR3

≥ Pup ?

YES

Is 

ProbR3

≤ Plow?

NO

YES

NO Is 

POMgjR3

≥ 50%?

YES

Calculate 

Mode of g

NO

1
Is gj

binary?

YES

𝑃    𝑗𝑅 =⁡
∑ 𝑐𝑐 𝑚  𝑗𝑙
  
𝑙=1

  

Pcrossgj = (1-ProbgjR3)

Pmutgj = Pmutg/2

Pcrossgj = ProbgjR3

Pmutgj = Pmutgj/2

Pcrossgj = 0

Pmutgj = Pmutgj/2

No change in 

operators: Pcrossgj

and Pmutgj

𝑃   𝑗𝑅 =⁡
𝐷  𝑅 

  

    

2

NO

2

2

2

No change in 

operators: Pcrossgj

and Pmutgj

2

Update (cont.)

Pcrossgj, Pmutgj

Figure 7.3 Internal process for the AHS after the activator have been set. 

7.4.3. Metrics for Evaluating Convergence and Performance 

This section describes the methods used for the evaluation and quantification of adaptive 

and default algorithms. We wanted to observe in which generation the design alternatives 

started to be rated in the R3 scale by the simulated user, and how it compares with the 

default parameters (i.e., without any change in the crossover or mutation rate). We also 

wanted to observe if there were changes in the objective space, and what were the final 

patterns in the set of SBs of interest (SBint) in each simulated user. The final observation 

is related to the generation where the operators start changing and what is the minimum 

value they reach. 

7.4.3.1. Percentage of user rating 

In order to determine the percentage of designs at a rate, we used equation 7.3. This 

equation provides information of the changes in the rates in the different design 

alternatives. It is the indicator of the algorithm’s converge to find solutions that satisfy the 

SP criteria. 
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𝑘𝑖 𝑒ݛ
 𝑘𝑖 𝑒 (7.3)ݕ ݞݕݓ=߼ޓޓޔ

𝑒 ݇ݗ 

For this equation, PRatekige is the percentage of solutions for the kth SP for user rating i 

per generation (ge) Xkige is the number of design alternatives, and TDge is the total number 

of design alternatives in each generation. These values were calculated for the two types 

of SP (deterministic and stochastic) in order to observe the effect of a noisier dataset and 

how the algorithm reacts to the noise. 

7.4.3.2. Operators: Crossover and mutation 

The operators’ metric aims to understand the changes of the different generations in 

those SBs that are of interest to the user. In this work, we observed the changes through 

the generations for both operators. We calculate the average of all the Pcross and Pmut in 

the shown design alternatives. However, we give a close look to those SBint used by the 

SP to select a rate for the design. If the algorithm is capturing patterns in the design, then 

there will be an exponential decrease of the Pcross and Pmut. 

It is also important to understand at which generation is the change of the operators 

occurring, we could answer questions regarding how this changes may be associated with 

the percentage of user ratings, or they may establish the needed number of generations that 

allows to another process such as automated search, or a simple crowd of the desired 

alternatives. 

7.5 Results and discussion 

In order to understand and provide insightful discussions and conclusions regarding the 

performance of the new modification, we decided to run two sets of the experiments, one 

using the default operators (referred as Default in the following subsections), and the other 

one using the new modification adaptive process (referred as Adaptive in the following 

subsections). 

7.5.1. Percentage of user rating 

Figure 7.4 shows the average result of the Simulated Participant (SP) User 3 for the 

percentage of user rating in each generation as an example of the behavior of the SPs. The 

left hand side represents the average for the deterministic SP, while the right hand side are 
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the results for the stochastic user. Two out of the three participants rated all the shown 

design alternatives R3 before the end of the generations (User 1 and User 3). However, User 

5 does not seem to reach convergence of the designs rated R3. Notice that the AHS has a 

rate of activation of 50% or more of the design alternatives rated R3. This stage was never 

reached by the User 5. 

Deterministic Probabilistic

Figure 7.4 comparisons between the deterministic user and the Stochastic User for Participant 3 

Notice that the stochastic SP follows the default behavior pretty closely, indicating that 

there are not significant adventages of the AHS for this case. However, we could attribute 

this behavior to two different causes: 1) the noise related to the calculated probability of 

the selection of a rate in each SB, or 2) the fact that we assume the Users to be risk averse 

and calculate the average of each of the SBs in order to provide a unique rate for the design. 

In either case, there is a need of a more exahustive exploration of the selection of the 

final design alternative in order to determine the cases and excepcion where the technique 

should be use or avoid. Nevertheless, it can be say that for those users with a very 

predictable rating the implementation of AHS will allow a faster convergence to desirable 

designs. 

7.5.2 Operators: Crossover and mutation changes 

Figure 7.5 and 7.6 shows a typical behavior for the Probabilities of crossover and 

mutation for the SP. This example corresponds to SB12 as it is part of the SBs of interest 

for SP User 3. The percentage of solutions with user rating R3 are reflected in figure 7.4. 
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As we mention before, the deterministic SP reaches a convergence of 100% R3 design 

alternatives after the first 10 generations. All the SBs of interest for this SP User 3 (and for 

the other SP) seem to behave similarly, with some change in the rate of decay of the 

Probability of crossover, regardless the variable evaluated. This indicates that the AHS is 

working properly in trying to preserve those characteristics that the user desired 

The operators for each of the SBs of interests are expected to decrease based on the 

selection of patterns. For the deterministic SP, in 100% of the cases (of the three performed 

runs) there is a decrease in both the binary and the real variable. However, for the stochastic 

SP, this trend is not observed in all the cases. One of the reasons is that the users did not 

reach the required 50% threshold of preferred designs in order to establish patterns as can 

be observed in figure 7.4. 

Figure 7.5 Probability of crossover for Cover Crops (up) and mutation (down) for SB 12 (User 3) for 

deterministic (left) and stochastic (right) SP through generations. 

However, even when the pattern did not affect the binary variable for the stochastic case 

(as shown in Figure 7.5 right), there is an evidence of changes in all the probabilities of 
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crossover for filter strips. This changes occurs at a later stage and in a slower rate than the 

deterministic SP. But shows that there is still room to determine patterns and reach 

desirable solutions. 

Figure 7.6 Probability of crossover for Filter Strip (up) and mutation (down) for SB 12 (User 3) for deterministic 

(left) and stochastic (right) SP through generations. 

7.6 Conclusions 

Successful implementation of optimal plan designs required the participation of the 

stakeholders, not just in the first stages of the development plan, but also during the design, 

implementation, and maintenance of the system. Including Stakeholders at all stages in the 

process generates a sense of identification and responsibility about the causes and possible 

consequences of a management decision (). 

The decision support systems (DSS) contribute to the generation of designs and plans 

that may consider not just physical and economical features, but that may include a 

qualitative component currently overrule by many developers. Understanding the 

complexity of how decision support systems and users’ interactions affect not just the 
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objective space, but also the decision space, may help developers to improve the search of 

solutions, not just to satisfy the criteria, but also to deliver a better performance in the 

objective space. 

This work explores the modification of a current interactive decision support system 

that uses a NonSorting Genetic Algorithm (NSGA-II) to search for optimal solutions to the 

spatial allocation of conservation practices in a watershed. This types of systems, although 

useful to explore large decision space areas, is exhausting for the users due to a large 

number of repletion needed for convergence. Therefore, knowing the generations where 

the adaptation process is initially activated can assist in providing a better limit for the 

necessary generations to reach the desired solutions. 

Previous observation of the performance of this system suggested the presence of 

patterns in the designs that may be influencing the final classification of the design as a 

preferred (or not preferred) design. 

The results suggested that there is an improvement of finding solutions if the user has a 

very clear idea of the desired solutions. Convergence may be reached after the first ten 

generations. However, we also notice that there is one user with not a clear convergence 

towards preferred alternatives. On the other hand, those users that present a noisy behavior 

are challenging to quantify, suggesting that a third element, besides objective and decision 

space, may be included in the search process in order to improve the satisfaction and 

percentage of user ratings. A proposal of modifying the 50% threshold have been suggested 

as part of the exploration of this novel addition to the interactive decision support system 

for spatial allocation of conservation practices. 

Researchers have the plan to test two other simulated user, where the selection of the 

particular rate for the design is not related to the average rated of each SB, but rather to the 

maximum rate. Also, the idea of different combinations of SBs where the motivation is for 

specific designs may be explored to provide a wider set of possible user scenarios. Finally, 

tests with real users should be addressed in order to provide comparisons with simulated 

users and delivering their effect on the use of the modification. 
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CHAPTER 8. Final discussion 

8.1 Conclusions 

With the growing use of Information and Communication Technologies (ICT) in 

decision support systems (DSS), the need for improving our understanding of the user-

DSS interactions has never been more critical. Interactive DSS provide a framework for 

communicating and educating stakeholders and decision makers on critical resource 

management problems, and for supporting collaborative and participatory watershed 

planning activities. Among the multiple technologies available for communication, 

internet-based computing technologies have had a rapid influx in our lives over the last 

few decades, and have now become some of the most commonly used in our society. One 

of the biggest strengths of using web platforms for user-DSS interactions is that they 

create a remotely-accessible, secure, and private communication environment, which 

people can use to examine and express their own personal preferences, test hypotheses 

and ideas, simulate scenarios of decisions, and interact with others in their social 

network. 

This research has investigated how individuals and optimization-based, human-

centered design methods can be coupled in a web-based, watershed decision support 

system (DSS) called WRESTORE (Watershed REstoration using Spatial-Temporal 

Optimization of REsources- http://wrestore.iupui.edu/). The main goal of WRESTORE is 

to assist stakeholders in a watershed community with the generation of user-preferred 

design alternatives of spatial allocations for conservation practices in an agricultural 

watershed. WRESTORE was originally developed for the Eagle Creek Watershed, in 

Indianapolis, IN, with the goal of providing a more democratic venue for stakeholder-

driven design of watershed plans. 

This dissertation contributes to the assessment of the user-DSS interactions in 

WRESTORE, and to the development of a novel human–centered search/optimization 

algorithm that incorporates stakeholder participation in the development of design 

alternatives for watershed restoration. The examination of how real users interact with 

WRESTORE is done via Usability techniques adopted from the field of Human-

http://wrestore.iupui.edu/
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Computer Interaction. This assessment of the quality of a user’s interactions is an 

important contribution of this study because it provides mechanisms via which the 

WRESTORE DSS can ascertain the reliability of the user-provided evaluations, which 

are later used by WRESTORE’s underlying optimization algorithm to identify user-

preferred regions of the objective space and decision space. At the same time, this work 

also improves our understanding of how human-centered interactive genetic algorithms 

can be improved upon for faster convergence to satisficing solutions (based on a user’s 

evaluation of alternatives on the GUI), and, thereby, have lesser impact on human 

fatigue. 

The following sections describe the conclusions in each of the sections of this 

dissertation work. Section 8.1.1 discuss the findings from Chapter 4 on usability metrics 

that have been proposed for assessing quality of user data used in Interactive Genetic 

Algorithms (IGA). Sections 8.1.2 and 8.1.3, describe the most relevant findings from 

chapters 5 and 6 on the plans generated at the watershed scale and at the local scale 

respectively, while section 8.1.4 summarize the general conclusions for the new adaptive 

human-guided search operators proposed for IGA applications. 

8.1.1. Usability Metrics for IGA 

Usability metrics were found to be effective methods for tracking user behavior in a 

DSS, when real-time data from users is collected via the DSS to guide the search process 

of the Interactive Optimization algorithm within the DSS. Tracking user behavior can 

also help assess whether a user’s evaluation of the design alternatives generated via the 

algorithm are reliable or not. In Chapters 4, the main goal of this work was to conduct an 

observational study of the interactions of multiple users with the Graphical User Interface 

(GUI) of WRESTORE during interactive optimization experiments. During this 

observational study, we were able to record and analyze multiple usability metrics (such 

as response times, clicking events and confidence levels), and evaluate the differences 

and similarities in user behaviors and interactions between two different types of 

participants, surrogates (volunteer non-stakeholder group who assisted with testing of the 

tool) and stakeholders (end users who would be expected to use the tool). Overall, the 

results in this section provided three significant contributions: 
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1)	 Usability metrics for participatory design tools based on information technologies 

were proposed and validated as measures for determning reliability of user-

generated data. 

2)	 Differences between how surrogates and stakeholders use such interactive DSS 

for designing alternatives were evaluated, and 

3)	 Suggestions were proposed for possible improvements in GUI of similar web-

based watershed DSS that support continual user interactions. These 

recommended improvements are expected to also address the current gap in the 

evaluation of how effective Environmental Decision Support Systems can be in 

supporting needs of end-users; investigations of these gaps have also been 

advocated by many other researchers (Jakeman et al., 2008; McIntosh et al., 

2011). 

Results indicate that overall time taken by participants in both (surrogate and 

stakeholder) groups decreased over time, as participants became more efficient in 

navigating the GUI and using the GUI’s features. Therefore, surrogates can potentially be 

used as proxies for stakeholders for analyses related to overall task times. For the 

assessment of the time spent and mouse clicks in information gathering areas of the GUI, 

the results concluded that the stakeholders were more engaged with features of GUI that 

yielded useful decision-aiding information for the users. These results suggest that 

knowing the consequences of the design alternatives before evaluating them for being 

acceptable and/or satisfactory from a user’s perspective was of greater importance to the 

stakeholders than to the surrogates. 

It was also noticed that the majority of the stakeholders showed an increase in their 

mean confidence levels over time. A comparison of trends in mean confidence levels 

showed that Positive and No trends were directly related with whether participants spent 

more or less time and effort in gathering information, respectively. Those participants 

with negative trends have the same average in time spend in the information gathering 

areas, but there is a 30% less activity for the clicks events. Additionally, it was also 

observed that some participants may learn slower, and for them a change in their 
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confidence level trends may be observed if they are given the opportunity to continue 

engaging with the tool for gathering information over repeated sessions. 

8.1.2. Watershed Scale Plans Generated from IGA 

The differences between the design alternatives, investigated in Chapter 5, 

demonstrate the ability of the interactive genetic algorithm to incorporate individual 

preferences in the design of the entire watershed plan. Individual preferences related to 

two different spatial scales were examined in this chapter – participants who were 

interested in decisions, goals, or both for the entire watershed, and participants who were 

interested in decisions, goals, or both in a local area of the watershed. Chapter 5 also 

examined relationships among users (stakeholders and surrogates), usability metrics, and 

patterns in the watershed-scale design alternatives generated during the experiment with 

WRESTORE. 

In general, results show that the majority (55 %) of the participants presented a higher 

percentage of design alternatives with user rating R3 (i.e., “I like it”) than design 

alternatives with user rating R1 (i.e., “I don’t like it”). This further suggests that these 

majority of participants found the interactive genetic algorithm (IGA) to be beneficial in 

finding more scenarios of watershed plans that also agreed with their individual 

preferences. In this chapter, the design alternatives generated via the IGA were also 

compared with those generated via a typical non-interactive GA that did not include the 

user-evaluations (i.e. user ratings) as an additional objective function. The comparison 

was conducted by calculating the distances between the set of non-dominated design 

alternatives found via the non-interactive optimization, and each of the sets of IGA-

generated design alternatives classified based on their user ratings (i.e., R1, R2, and R3). 

The IGA-generated design alternatives classified as “I do not like it” have a greater 

distance and are more spread out in objective space than those design alternatives 

classified as “I like it”. In total, 80 % of the participants presents a DR1(A,B) > DR3(A,B) 

The separation between sets of R1, R2, and R3 in the objective space is more evident for 

those participants who evaluated the performance of design alternatives at the entire 

watershed-scale (Piemonti, 2014). 
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The analysis of IGA-generated design alternatives in their decision space helped 

identify spatial patterns in decisions across participants and across space in the entire 

watershed. For binary decision variables (e.g. for cover crops practice where a decision 

variable value of 1 indicated that the cover crops were implemented in that subbasin 

(SB), where as a value of 0 indicated otherwise) probabilities of implementation were 

calculated for R3 design alternatives to identify SB where the practice was most likely to 

be implemented. The standard deviation in these probabilities across participants 

demonstrated SBs where participants most likely agreed or disagreed with each other. 

The results showed that the stakeholder’s group have the lowest variance in the majority 

of the SBs (70 out of 108 with standard deviation less than 0.13). While the surrogates 

group for model A have a similar behavior, with just 64 out 108 SBs; the surrogates 

model B have just 49 out of 108 SBs with standard deviation less than 0.13. The SBs 

with highest standard deviation are located between the Northwest and South area of the 

watershed in all the groups 

Similarly, for real decision variables (e.g., for filter strips practice where the decision 

variable value indicated the width of the filter strip in a SB), the mode of filter strips was 

founded for all the R3 design alternatives, to identify the preferences in a design 

parameter. The variability was calculated using the second moment around the mode and 

it shows that there is a higher agreement across participants in the selection of design 

alternatives with a particular filter strip width. Again, Model A-Surrogates and Model B-

Stakeholders showed a higher agreement with 90 and 98 SBs respectively with a second 

moment around the mode that is lower than 3 m2 and where the highest differences are 

located close to the central area of the watershed. On the other hand, Model B-Surrogates 

have just 82 SBs were the second moment around the mode is lower than 3 m2. However, 

the distribution of the highest disagreements are also located towards those SBs in the 

central area. 

8.1.3. Local Scale Plans Generated from IGA 

In Chapter 6, the focus of the analysis was narrowed to specific local SBs that were of 

interest to individual participants, to assess whether there were any demonstrated user-

preferences in practices or goals in these SBs. The chapter also evaluated potential 
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relationships between the type of users, the usability metrics, and patterns in the IGA-

generated user-preferred design alternatives for the spatial allocation of conservation 

practices in SBs of interest. 

Patterns in the values of the binary decision variables in local SBs of interest allowed 

us to identify probabilities of implementation of the practice in a particular SB, even if 

the participants were or were not directly concerned with the SBs of interest. The 

majority of participants have ProbjR3k > 0.5 in all of their SBs of interest, except for a 

group of 5 participants (Participants 5, 6, 13, 20, 21) who had ProbjR3k < 0.5 in at least 

one of their assigned SBs of interests. Among these five participants, only two 

(Participants 6 and 21) had a positive trend in their mean self-confidence levels, and had 

a fair (in average, 57% of click events and 51% of time spent in information gathering ) 

amount of interaction with the interface in gathering information about the designs. In 

summary, we observed that all the participants had at least one SB of interest (SBint) 

where the probability of implementation of cover crop is greater than 0.5. An important 

observation is that 61% of the participants (regardless of the group or model) had a 

probability of cover crop lower than 0.5 for SBint 103. This demonstrates that even 

agreements on where the practices should not be implemented can be determined through 

this processes. 

The results in the real variable showed more agreement in the selected filter strip 

width (actual design value), regardless of the group or model. However, the percentages 

of solutions with filter strip width equal to the mode varied from participant to 

participant. Participants in Model A seemed to select the majority of the design 

alternatives with the preferred filter strip width equal to the mode (i.e., 96 % of SB have 

an GPOMR3 > 50% - where GPOMR3 is the Group percentage of design alternatives with 

filter strip width equal to the mode). Assessment of the performance of R3 (i.e. “I like it”) 

design alternatives in objective space indicated that for 17% of the SBs of interests 

participants seemed to like the designs even if the performance in the SBs was not the 

best. This suggests that the performance of physical objective functions (i.e. cost, peak 
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flow reductions, nitrate reductions, and sediment reductions) in those particular SBs was 

not a significant factor in the participant’s reasoning process. 

8.1.4. New Adaptive Operators for IGA 

Finally, in Chapter 7, we examined whether the observed patterns in decision space 

identified in the user experiments could be used towards improvement of the IGA-based 

search algorithm. A novel human-guided search operators for IGA were proposed and 

developed, which identify and learn from patterns in the design space of user-preferred 

alternatives and, then, use the patterns to adapt the mechanisms of selection, crossover, 

and mutation. The goal of these operators is to generate new design alternatives that 

preserve the learned patterns. The proposed modification was done on default selection, 

crossover, and mutation operators in the multi-objective Nondominated Sorting Genetic 

Algorithm – II (NSGA-II; Deb et al., 2002), which are used by the underlying IGA 

approach in WRESTORE. The goal of these modifications was to assist the multi-

objective IGA algorithm to rapidly converge to design alternatives, especially when the 

number of decision variables are significantly large, and the design space is immensely 

complex. Rapid convergence is also expected to facilitate a lower level of human fatigue 

in participating humans. 

Simulation experiments were conducted with different types of user models 

(deterministic and stochastic user models), which were generated from the data of the real 

humans who had participated in user-experiments reported in Chapter 4, 5, and 6. 

Experiment results suggest that the new adaptive operators certainly improve (two out of 

three simulated participants) the convergence rates for deterministic users (i.e., when the 

user has a very clear idea of what she/he desires in a solution and always gives consistent 

user ratings). For example, for two of the three deterministic users, a convergence of 100 

percent (i.e. 100% of IGA population consisted of R3 alternatives) was reached after the 

first ten generations. On the other hand, those simulated users who presented a noisy user 

evaluation (i.e. stochastic users) demonstrated poorer convergence that was similar to the 

convergence of the IGA with default NSGA-II operators. It is recommended that 

additional user types should be tested in the future to examine the conditions under which 

the adaptive operators work better than or similar to the default search operators. 
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8.2 Future Research 

Even though the concept of participation and human-centered design has been widely 

studied in different fields, such as web page development and software development, and 

ergonomics, its application in watershed planning and management problems is relatively 

new, providing a vast opportunity for future research topics and long-term advancements 

in the Systems Analysis and Hydroinformatics fields. Some of the areas that require 

additional research investigations include improvement of optimization-based interactive 

search algorithms, development and evaluation of new usability metrics, detection and 

evaluation of users’ conceptual learning processes when they are immersed in interactive 

DSS for participatory planning and design, and monitoring of the actual rates of adoption 

of the user-preferred design alternatives in the communities. 

While the research described in this dissertation investigates the usability of GUI 

features in one decision support system (i.e. WRESTORE), it is recommended that 

similar usability evaluations of other DSS should be also performed and investigated. 

Additionally, future studies should also examine how Usability metrics can provide 

insights into user types, especially when participants engage in synchronous experiments 

that allow them to interact and collaborate on problems where they agree or disagree with 

each other. 

The kind of optimization-based human-centered design platform investigated in this 

research is expected to create new opportunities for including capabilities of web-based, 

social networking tools within DSS. Such networking environments are expected to help 

connect diverse sets of individuals in collaborating during the design process, educate 

them based on their needs, and create a more user-friendly and secure environment that 

can serve as a platform for negotiation processes in a community. Finally, development 

and implementation of similar systems will generate more venues for bottom-up decision 

making efforts that communities can initiate themselves and/or in collaboration with 

NGOs, state and federal agencies, and other institutions. 

On the subject of interactive optimization algorithms, additional investigations are 

recommended so that better methods can be developed for using individual participant’s 
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and multiple participants’ personal feedback in the generation of solutions that satisfy 

subjective criteria, while at the same time informing and educating the stakeholders about 

the benefits of simulated scenarios. In this research, we incorporated the observed 

patterns in the decision space to guide the search operators in algorithm and tested the 

new operators with experiments involving simulated participants. Therefore, there 

remains a need to test these new operators with real human participants, as well as test 

different selected thresholds and mechanisms to guide the adaptation of search operators. 

Finally, since multiple stakeholders are generally interested in a few SBs, it is 

recommended that distributed and coordinated approaches for interactive optimization 

should also be investigated so that individual participants can conduct interactive search 

for decision relevant to their local areas, but still be able to influence a compromise 

search for the entire watershed. 
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APPENDIX 
Chapter 4. Results per participant for: a) Introspection Session vs. Time spent, b) HS 

session vs Time spent, c) Total percentage of time in each Area of Interest (AOI, Info = 

information gathering, DM = evaluation, Other = other), d) Total percentage of clicks in 

each AOI, and e) Confidence level trend. Notice: Period = Epoch 

Model A-Surrogates 

Figure A.1 Usability metrics Participant 1 Figure A.2 Usability metrics Participant 2 

Figure A.3 Usability metrics Participant 3 Figure A.4 Usability metrics Participant 4 
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Figure A.5 Usability metrics Participant 5 Figure A.6 Usability metrics Participant 6 

Figure A.7 Usability metrics Participant 7
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Model B-Surrogates 

Figure A.8 Usability metrics Participant 8 Figure A.9 Usability metrics Participant 9
 

Figure A.10 Usability metrics Participant 20 Figure A.11 Usability metrics Participant 21
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Figure A.12 Usability metrics Participant 22 Figure A.13 Usability metrics Participant 24 

Figure A.14 Usability metrics Participant 25
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Model B-Stakeholders 

Figure A.15 Usability metrics Participant 11 Figure A.16 Usability metrics Participant 13
 

Figure A.17 Usability metrics Participant 14 Figure A.18 Usability metrics Participant 15
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Figure A.19 Usability metrics Participant 16 Figure A.20 Usability metrics Participant 18 
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Chapter 5 

Model A-Surrogates 
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Model B-Surrogates 
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Figure A.28 EoS Percentage of design alternatives Figure A.29 EoS Percentage of design alternatives
 
per user rating Participant 8 per user rating Participant 9
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Figure A.30 EoS Percentage of design alternatives Figure A.31 EoS Percentage of design alternatives
 
per user rating Participant 20 per user rating Participant 21
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Figure A.32 EoS Percentage of design alternatives Figure A.33 EoS Percentage of design alternatives
 
per user rating Participant 22 per user rating Participant 24
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Figure A.34 EoS Percentage of design alternatives
 
per user rating Participant 25
 



 
 

 

 
   

  

 
   

  

 
   

  

 
   

  

  

  

  

175 

Model B-Stakeholders 
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Figure A.35 EoS Percentage of design alternatives Figure A.36 EoS Percentage of design alternatives
 
per user rating Participant 11 per user rating Participant 13
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Figure A.37 EoS Percentage of design alternatives Figure A.38 EoS Percentage of design alternatives
 
per user rating Participant 14 per user rating Participant 15
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Figure A.39 EoS Percentage of design alternatives 

per user rating Participant 16 

Figure A 40 EoS Percentage of design alternatives 

per user rating Participant 18 
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Model B-Surrogates 

Figure A.45 DS Percentage of design alternatives per Figure A.46 DS Percentage of design alternatives per 

user rating Participant 8 user rating Participant 9
 

Figure A.47 DS Percentage of design alternatives per Figure A.48 DS Percentage of design alternatives
 
user rating Participant 20 per user rating Participant 21
 

Figure A.49 DS Percentage of design alternatives Figure A.50 DS Percentage of design alternatives
 
per user rating Participant 22 per user rating Participant 24
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Figure A.51 DS Percentage of design alternatives 

per user rating Participant 25 

Model B-Stakeholders 

Figure A.52 DS Percentage of design alternatives Figure A.53 DS Percentage of design alternatives 

per user rating Participant 11 per user rating Participant 13 

Figure A.54 DS Percentage of design alternatives Figure A. 55 DS Percentage of design alternatives 

per user rating Participant 14 per user rating Participant 15 



 
 

 
   

  

 
   

  

    

 

 
    

    

   

 

 
    

    

   

  

  

179 

Figure A.56 DS Percentage of design alternatives per 

user rating Participant 16 

Figure A.57 DS Percentage of design alternatives per 

user rating Participant 18 

EoS (End of Search) Similarities in Objective Space per user per rating 

Model A-Surrogates 
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Figure A. 58 Objective Space performance for PFR Figure A. 59 Objective Space performance for PFR 

(Peak Flow Reduction), SR (Sediment Reduction) (Peak Flow Reduction), SR (Sediment Reduction) 

and NR (Nitrate Reduction) vs. Cost per user rating and NR (Nitrate Reduction) vs. Cost per user rating 

for Participant 2 for Participant 3 
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Figure A.60 Objective Space performance for PFR Figure A.61 Objective Space performance for PFR 

(Peak Flow Reduction), SR (Sediment Reduction) (Peak Flow Reduction), SR (Sediment Reduction) 

and NR (Nitrate Reduction) vs. Cost per user rating and NR (Nitrate Reduction) vs. Cost per user rating 

for Participant 4 for Participant 5 
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Figure A. 62 Objective Space performance for PFR 

(Peak Flow Reduction), SR (Sediment Reduction) 

and NR (Nitrate Reduction) vs. Cost per user rating 

for Participant 7 
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Model B-Surrogates 
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Figure A.63 Objective Space performance for PFR 

(Peak Flow Reduction), SR (Sediment Reduction) 

and NR (Nitrate Reduction) vs. Cost per user rating 

for Participant 9 
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Figure A.64 Objective Space performance for PFR 

(Peak Flow Reduction), SR (Sediment Reduction) 

and NR (Nitrate Reduction) vs. Cost per user rating 

for Participant 21 
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Figure A.65 Objective Space performance for PFR 

(Peak Flow Reduction), SR (Sediment Reduction) 

and NR (Nitrate Reduction) vs. Cost per user rating 

for Participant 22 
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Figure A.66 Objective Space performance for PFR 

(Peak Flow Reduction), SR (Sediment Reduction) 

and NR (Nitrate Reduction) vs. Cost per user rating 

for Participant 24 
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Figure A. 67 Objective Space performance for PFR 

(Peak Flow Reduction), SR (Sediment Reduction) 

and NR (Nitrate Reduction) vs. Cost per user rating 

for Participant 25 

Model B-Stakeholders 
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Figure A.68 Objective Space performance for PFR Figure A.69 Objective Space performance for PFR 

(Peak Flow Reduction), SR (Sediment Reduction) (Peak Flow Reduction), SR (Sediment Reduction) 

and NR (Nitrate Reduction) vs. Cost per user rating and NR (Nitrate Reduction) vs. Cost per user rating 

for Participant 13 for Participant 14 
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Figure A.70 Objective Space performance for PFR Figure A.71 Objective Space performance for PFR 

(Peak Flow Reduction), SR (Sediment Reduction) (Peak Flow Reduction), SR (Sediment Reduction) 

and NR (Nitrate Reduction) vs. Cost per user rating and NR (Nitrate Reduction) vs. Cost per user rating 

for Participant 16 for Participant 18 
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Chapter 6 

Subbasins of interest Objective space analysis: Gplots, for SBint1 
Part2 Peak Flow Reduction
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Figure A.72 Matrix plot for performance of Peak flow reduction (PFR) of design alternatives rated “I like it” in Subbasins of 

interest for group 1/Participant 2 
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Figure A.73 Matrix plot for performance of Cost of the design alternatives rated “I like it” in Subbasins of interest for group 

1/Participant 2 
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Part2 Sediment Reduction
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Figure A.74 Matrix plot for performance of Sediment reduction (SR) of design alternatives rated “I like it” in Subbasins of 

interest for group 1/Participant 2
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Figure A.75 Matrix plot for performance of Nitrates reduction (NR) of design alternatives rated “I like it” in Subbasins of
	
interest for group 1/Participant 2
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Part9 Peak Flow Reduction
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Figure A.76 Matrix plot for performance of Peak flow reduction (PFR) of design alternatives rated “I like it” in Subbasins of 

interest for group 1/Participant 9 
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Figure A. 77 Matrix plot for performance of Cost of design alternatives rated “I like it” in Subbasins of interest for group 

1/Participant 9 
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Part9 Sediment Reduction
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Figure A.78 Matrix plot for performance of Sediment reduction (SR) of design alternatives rated “I like it” in Subbasins of 

interest for group 1/Participant 9
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Figure A.79 Matrix plot for performance of Nitrate reduction (NR) of design alternatives rated “I like it” in Subbasins of
	
interest for group 1/Participant 9
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Part16 Peak Flow Reduction
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Figure A. 80 Matrix plot for performance of Peak flow reduction (PFR) of design alternatives rated “I like it” in Subbasins
	
of interest for group 1/Participant 16
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Figure A.81 Matrix plot for performance of Cost of design alternatives rated “I like it” in Subbasins of interest for group 

1/Participant 16
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Part16 Sediment Reduction
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Figure A.82 Matrix plot for performance of Sediment Reduction (SR) of design alternatives rated “I like it” in Subbasins of 

interest for group 1/Participant 16
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Figure A.83 Matrix plot for performance of Sediment Reduction (SR) of design alternatives rated “I like it” in Subbasins of 

interest for group 1/Participant 16
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Group analysis for SBint 2 to 6
 
SBint2 SBint3 

Figure A.84 Ratio group analysis for SB of interest in group 2 Figure A.85 Ratio group analysis for SB of interest in group 3 

SBint4 SBint5 

Figure A.86 Ratio group analysis for SB of interest in group 4 Figure A.87 Ratio group analysis for SB of interest in group 5
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SBint6 

Figure A.88 Ratio group analysis for SB of interest in group 6 

Decision Space Analysis 

Individual bar plots for Probability of CoverCrops by Participants, and Average by group 

Figure A.89 Bar plots for Probabilities of Cover Crop in SB of interest in group 2 
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Figure A.90 Bar plots for Probabilities of Cover Crop in SB of interest in group 3 

Figure A.91 Bar plots for Probabilities of Cover Crop in SB of interest in group 4
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Figure A.92 Bar plots for Probabilities of Cover Crop in SB of interest in group 5 

Figure A.93 Bar plots for Probabilities of Cover Crop in SB of interest in group 6
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Individual bar plots for Mode of Filter Strip Width and percentages of designs with Filter 

Strip width equal to the mode for SBint 2 to 6
 

Figure A.94 Bar plots for Filter Strip mode and Percentage of design alternatives equal to the mode in SB of
 
interest for group 2
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Figure A.95 Bar plots for Filter Strip mode and Percentage of design alternatives equal to the mode in SB of
 
interest for group 3
 

Figure A. 96 Bar plots for Filter Strip mode and Percentage of design alternatives equal to the mode in SB of
 
interest for group 4
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Figure A.97 Bar plots for Filter Strip mode and Percentage of design alternatives equal to the mode in SB of
 
interest for group 5
 

Figure A. 98 Bar plots for Filter Strip mode and Percentage of design alternatives equal to the mode in SB of
 
interest for group 6
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Chapter 7 

Simulated User 1 and 5 results 

Figure A.99 Percentage of design alternatives in different generations for: Deterministic Simulated user 1 (left) 

and Probabilistic Simulated user 1 (right) 

Figure A. 100 Percentage of design alternatives in different generations for: Deterministic Simulated user 5 (left) 

and Probabilistic Simulated user 5 (right) 
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