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Impulse-radio ultra-wide-band (IR-UWB) signaling is a promising technique

for high-speed, short-range relay communications networks. Depending on how

the relay node retransmits the signal, there are two main relay schemes: conven-

tional one-directional (one-way) relay model, and bi-directional (two-way) relay

model. In bi-directional relay communications, wireless network coding (WNC),

also called physical-layer network coding (PNC), could be applied to overcome

the spectral efficiency limitation of the conventional one-way relay.

In the first part of this work, we propose asynchronous, differential, and

bidirectional decode and forward (ADBDF) and asynchronous, differential, and

bidirectional denoise and forward (ADBDNF) UWB relay methods, where the

relay node (RN) does not need to be synchronized with the end nodes (ENs). The

proposed schemes are attractive for networks in which stringent/complicated

synchronization between the RN and the ENs may not be feasible.

The second part of this work focuses on UWB channel classification. We pro-

pose a 2-dimensional (2-D) LOS/NLOS classification scheme that uses skewness



of the channel impulse/pulse response. The proposed channel classification de-

creases the complexity of existing channel classification methods and can be used

in a variety of areas such as localization, relay communications, and cooperative

communications.

The final part of this work deals with compressive sensing (CS) algorithms

that employ sub-Nyquist sampling for UWB communications. We develop coarse

graining (CG) for the proposed CS sub-Nyquist sampling technique, which leads

to: (1) reduced sampling rate at the receiver, and hence reduced use of analog-to-

digital converters (ADCs) resources; and (2) low-complexity channel estimation.
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Chapter 1 – Introduction

1.1 Overview

Ultra-wideband (UWB) radios have the potential to increase the spectrum-use

efficiency [1]. However, because of the strict regulations on the transmitted

power of UWB signals, these systems face some challenges in achieving wide

coverage while assuring an adequate system performance [2]. These drawbacks

should be solved for the widespread deployment of UWB systems. Recently,

cooperative diversity has emerged as an effective scheme to overcome multi-

path fading in wireless networks. The basic idea of the cooperative strategy is

to transmit data through multiple nodes in the network and these nodes work

cooperatively to improve the overall network performance by the provided di-

versity.

There are three main challenges in UWB relay communication systems: (1)

coherent synchronous detection/demodulation schemes are prohibitively com-

plex; (2) non-line-of-sight (NLOS) propagation significantly degrades the per-

formance; and (3) analog-to-digital converters (ADCs) working at the Nyquist

rate are expensive and power hungry.

This dissertation focuses on addressing these problems and develops algo-

rithms to classify LOS/NLOS UWB channels, improve UWB relay communica-

tion systems performance and finally decrease the high sampling rate required

for UWB signals.
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1.2 Summary of Contribution

First, we propose a 2-dimensional (2-D) LOS/NLOS classification scheme that

uses skewness of the channel impulse/pulse response, which has not been used

by existing work. While extensive work in this area exists, one channel statisti-

cal parameter which has not been used in existing work is the skewness of the

channel impulse response (CIR) or channel pulse response (CPR). Since skew-

ness characterizes the amount and direction of skew (departure from horizontal

symmetry), it could be an effective parameter for LOS/NLOS classification; if

the skewness of the impulse response of a UWB channel is high, then the channel

is more likely to be LOS and vice versa.

Second, asynchronous, differential, and bidirectional UWB relay schemes

are developed. The proposed algorithms are suitable for UWB communication

systems where maintaining a synchronous link between the relay node (RN)

and the end nodes (ENs) with coherent demodulation/detection, as commonly

assumed in existing work, is difficult and expensive. Two novel asynchronous

differential bidirectional decode and forward (ADBDF) and asynchronous differ-

ential bidirectional denoise and forward (ADBDNF) algorithms are proposed in

which the relay is not required to be synchronized with the ENs. Additionally,

a closed-form expression for solving integrals involving the Gaussian Q-function

is presented which can be conveniently used to calculate the average of the error

probability in fading channels.

Finally, we propose a coarse graining (CG) technique in compressive sensing

(CS) theory which can be employed in UWB channel estimation algorithms.

The proposed method would be useful when a low-complexity and fast channel
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estimation/synchronization is desired. We derive a closed-form expression for

applying the CG technique in CS-UWB channel estimation algorithm. We also

derive a closed-form `1-optimization expression for the proposed UWB channel

estimation, and study the performance of the proposed method for different

UWB LOS/NLOS indoor environments.

1.3 Dissertation Outline

Chapter 2 briefly reviews UWB communications systems and different UWB

channel types.

In chapter 3, different UWB relay communication techniques are described

and the advantages and disadvantages of each technique are analyzed. Then

we introduce two UWB relay communication algorithms that are suitable for

low-complexity fast applications to improve the coverage of the localization and

the throughput.

In chapter 4, UWB channel classification/identification techniques are stud-

ied. The effects of NLOS propagation in different UWB communication systems

are investigated. We then present a scheme that uses skewness for LOS/NLOS

channel classification. We also analytically derive the performance of the method

that employs skewness.

In chapter 5, CS theory and sub-Nyquist sampling theorem for UWB com-

munication systems are investigated. We propose a CG algorithm which can be

applied in CS to further decrease the sampling rate.

Chapter 6 gives conclusions and future work.
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1.4 Notation

≈ approximately equals to

‖.‖p `p-norm

Tr(·) the trace of a matrix

E {·} the expectation

� much small than

∆
= is defined as being equal to

Im m×m identity matrix
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1.5 Abbreviations

CS Compressive sensing

CG Coarse graining

UWB Ultra wideband

2-D Two-dimensional

3-D Three-dimensional

AWGN Additive white Gaussian noise

NLOS Non-line-of-sight

LOS Line-of-sight

RMSE Root mean-square error

ML Maximum likelihood

RN Relay node

EN End node

FCC Federal communications commission

ns Nanosecond

BER Bit error rate

PER Packet error rate

CIR Channel impulse response

FRI Finite rate of innovation

ADC Analog-to-digital converters

ADBDF Asynchronous differential bidirectional decode and forward

ADBDNF Asynchronous differential bidirectional denoise and forward

WNC Wireless network coding

PNC Physical-layer network coding

AF Amplify and forward

DF Decode-and-forward

APDP Average power delay profile

MUI Multi user interference

MLSD Maximum likelihood sequence detection

NNUB Nearest neighbor union bound

MPC Multipath component

IR Impulse response

TNIMP Truncated Newtom interior-point pethod

LLR Log likelihood ratio
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Chapter 2 – Ultra-wideband Preliminaries

This chapter provides an overview of UWB communications systems. A math-

ematical representation of UWB signals/channels is reviewed. Also, the advan-

tages and features of UWB communication systems are summarized.

2.1 UWB Definition

Impulse radio UWB (IR-UWB) has the potential to provide high data rates,

fine time resolution, multipath immunity and coexistence with legacy services

via frequency overlay. Thus, it is a good candidate for short range connectiv-

ity, location-aware wireless sensor networks and low-rate communications with

ranging capability [1–8]. IR-UWB systems convey information by transmitting

short-duration pulses, typically in the range of sub-nanoseconds to nanoseconds.

The federal communications commissions (FCC) in 2002 defines UWB as having

a fractional bandwidth greater than 20% or an absolute bandwidth of at least

500 MHz. The absolute bandwidth is calculated as the difference between the

upper frequency fH of the −10 dB emission point and the lower frequency fL of

the −10 dB emission point, which is also called −10 dB bandwidth, as shown in

Fig. 2.1. The fractional bandwidth is defined as Bfrac = B
fc

and B = fH − fL.

In this case the fractional bandwidth can be rewritten as

Bfrac =
2(fH − fL)

fH + fL
. (2.1)
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Figure 2.1: Illustration of UWB definition.

2.2 FCC Regulations for UWB Signals

Since UWB systems need to coexist with other legacy narrow band systems, the

transmission power of the UWB devices is strictly limited so that the UWB sig-

nals have negligible effects on the pre-existing narrow band systems. Specifically,

the average power spectral density (PSD) cannot exceed -41.3 dBm/MHz over

the frequency band from 3.1-10.6 GHz, and it is even lower outside this band,

depending on the specific application. For indoor and outdoor UWB communi-

cation systems, the FCC limits are shown in Fig. 2.2. The only difference in the

limit between the outdoor and indoor systems is that the emission for outdoor

systems in the frequency band from 1.61-3.1 GHz and 10.6-15 GHz should have

an extra attenuation of 10 dB compared to that of indoor systems. Besides the

FCC emission limit, there are some other common FCC regulations for all the

UWB systems [25,26].

• The frequency fM at which the highest power is emitted must be within

the −10 dB absolute signal bandwidth.
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Figure 2.2: FCC emission limits for indoor and outdoor UWB communication
systems.

• Peak emissions within a 50 MHz bandwidth around fM may not exceed 0

dBm EIRP.

• Operation on aircraft, ship, or satellite is not permitted.

2.3 UWB Standard

There have been efforts to establish standards to provide compliance between

devices from different origins. One of the leading standardization organizations

is the IEEE LAN/MAN Standards Committee. IEEE 802.15 Task Groups 3

and 4 established standards for wireless personal area networks (WPAN), which

led to IEEE-Std 802.15.3 for high-data rate [9] and IEEE-Std 802.15.4 for low-

data rate [10]. The IEEE-Std 802.15.3a proposal for high-data-rate has led to

the multi-band (MB)-OFDM UWB approach, which became the de facto stan-
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dard for high-data rate UWB communications, and was later adopted by the

WiMedia alliance for certified wireless-USB. MB-OFDM is a carrier based com-

munication protocol that divides the 3.1-10.6 GHz UWB spectrum into 14 bands

of 528 MHz each [11–14]. The MB-OFDM approach has been primarily used

for applications such as streaming video and wireless USB with data rates of

480Mb/s. A second outcome of the 802.15.3a task group was a direct sequence

(DS) UWB standard, supported by the UWB Forum (this is more in the orig-

inal spirit of UWB transmission of very narrow pulses, from 100 ps to 1 ns,

and considering a low frequency band from 3.1-5.15 GHz and a high frequency

band between 5.825-10.6 GHz). The IEEE-Std 802.15.4a proposal for low-data

rate [10] also considered the division into a lower band (3.1-5 GHz) and an upper

band (6-10.6 GHz). The IEEE 802.15 Task Group 6 (IEEE 802.15.6) was formed

in Nov. 2007 and is currently developing a communication standard for body

area networks (BAN). A heterogeneous approach of IR-UWB signaling paired

with narrowband signaling is being considered for this standard. IR-UWB ra-

dios, however, can be designed with relatively low complexity and low power

consumption. They have therefore found a niche in energy constrained, short-

range wireless applications including personal-area-networks, low-power sensor

networks, and wireless body-area-networks. Because of the bandwidths that can

be achieved with IR-UWB radios, they are also used in precise location systems

and for dedicated high-data-rate communication links. IR transmits information

by altering the positioning, amplitude, presence of pulse, or shape of the UWB

pulse, which corresponds to pulse position modulation (PPM), pulse amplitude

modulation (PAM), on-off keying (OOK), or pulse shape modulation (PSM),

respectively. The continuous transmission of uniformly spaced pulses gives rise
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to strong spectrum spikes occurring at integer multiples of the pulse repetition

frequency. Therefore, time hopping (TH) and direct sequence (DS) techniques

can be adopted to mitigate the frequency spikes by randomizing the pulse train.

TH and DS can also enable multiple access in UWB systems. TH is often applied

to low data rate UWBs with low pulse duty cycles. DS is suitable for medium to

high data rate transmissions with high duty cycles. Many IR-UWB applications

concern short-to-medium range with low data-rate and are focused on achieving

low power consumption. Applications that have been considered include wireless

sensor networks, sensing and positioning [15–17] systems, inter-chip communi-

cation [18,19] contactless wireless [20], biological or biomedical networks [21,22],

and imaging systems [23]. The main advantages can be summarized as follows:

• Good ability to penetrate through obstacles;

• High precision ranging, and hence high positioning accuracy;

• Potentially low power consumption.

The penetration capability of the UWB signal is due to its large frequency

spectrum that includes low frequencies as well as high frequencies. The large

bandwidth also results in a high time-resolution, which improves the ranging

accuracy.

2.4 UWB Channel Preliminaries

Due to the huge bandwidth of UWB signals, the channel is different from nar-

rowband wireless channels. UWB channels are characterized by the dense mul-

tipath that come in clusters. The UWB channel is usually studied by extracting
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a statistical model from measurements. Parameters of the model reflect the

statistical properties of various propagation environments. We adopt the multi-

path channel model specified by the IEEE 802.15.4a group for the performance

evaluation of the physical layer. The impulse response with this model can be

expressed mathematically by [12]

h(t) = β̃

R−1∑
r=0

K−1∑
k=0

bk,re
jφm,lδ(t− Tr − τk,r), (2.2)

where bk,r is the gain of the k-th path in the r-th cluster, R is the number of

clusters, K is the number of rays in each cluster, Tr is the delay of the r-th

cluster, and τk,r is the delay of the k-th ray in r-th cluster [24]. The factor β̃

jointly models the pathloss and shadowing. Cluster arrival time in UWB CIR

is modeled by a Possion process

p
(
Tr|T(r−1)

)
= Λexp

[
−Λ

(
Tr − T(r−1)

)]
, (2.3)

where Λ is the cluster arrival rate [24]. Furthermore, in order to fit better for

most environments, within each cluster, the distribution of the ray arrival times

is modeled by the mixture of two Poisson processes

p
(
τk,r|τ(k−1),r

)
=βλ1 exp

[
−λ1

(
τk,r − τ(k−1),r

)]
+ (1− β)λ2 exp

[
−λ2

(
τk,r − τ(k−1),r

)]
,

(2.4)

where β is the mixture probability of two Poisson distributions with λ1 and

λ2 ray arrival rates, which take different values in LOS/NLOS environments

[24]. The distribution of the small-scale fading, i.e., bk,r in (2.2), is Nakagami
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with parameter mk,r, which is modeled as a lognormally distributed random

variable, and finally the phase φk,r is considered as a uniformly distributed

random variable over [0, 2π]. The detail of the joint probabilistic model of these

parameters is summarized in [24].
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Chapter 3 – Compressive Sensing Sub-Nyquist Sampling

With Coarse Graining

3.1 Introduction

Wireless communications using a very large bandwidth face some common tech-

nical challenges: (1) ADCs working at the Nyquist rate are in general very expen-

sive and power hungry; (2) timing synchronization at sub-nanosecond precision

is difficult to accomplish; and (3) exploiting multipath diversity by capturing

sufficient number of paths needs accurate channel estimation.

Since IR-UWB signals are known to have resolvable multipath with sparse

structure at the receiver, the application of compressive sensing theory for UWB

channel estimation appears to be attractive, which leads to: (1) reduced sam-

pling rate at the receiver, and hence, reduced use of ADCs resources; and (2)

low-complexity channel estimation and timing synchronization. CS theory as-

serts that the number of measurements (samples) needed to reconstruct a signal

without error depends on its sparsity and not purely on the bandwidth [27–32].

Hence, if a signal has a sparse representation in some domains, for example time

or frequency, it is possible to recover the signal with a high probability from a

set of random linear projections using nonlinear reconstruction algorithms.

In this chapter the basics of CS and sub-Nyquist sampling theory are ex-

plained first. The CG technique for CS UWB channel estimation is developed
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in Sec. 3.5. The effects of the proposed algorithms for different LOS/NLOS

IEEE 802.15.4a UWB channel models are investigated in Sec. 3.6.

3.2 Innovation Rate for UWB Signals

Inspired by the fact that the received UWB signals are made up of many pulses

among which only a few are dominant components appearing at different points

in time, can we estimate only these dominant components? To answer this

question, we apply a CG technique in UWB channel estimation which provides

a means to study complex systems (in our case, UWB channels) by smoothing

away the fine details of the full explicit systems such that we only estimate the

dominant components.

Innovation rate for a signal is defined as the number of degrees of freedom in

representing the signal per unit of time. Vetterli et al. [33,34] showed that non-

bandlimited signals with finite rate of innovation (FRI) can be recovered from

uniform sub-Nyquist sampling. An example of FRI signal class is the UWB

signal which we aim to investigate in this section. UWB CIR can be modeled

as one period of the following τ -periodic signal

x(t) =
∑
k′∈Z

K−1∑
k=0

bkδ(t− tk − k′τ), (3.1)

where bk is the gain of k-th delta function and k-th delta function is located

at tk ∈ [0, τ ]. In this case, the innovation rate is the average number of delta

functions per unit of time: ρ = lim
T→∞

CT
T , where CT is the number of delta

functions in the interval [−T/2, T/2].
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As commonly adopted, the cluster arrival rate and the ray arrival rate are

independent. Also the values of R and K tend to infinity. In this case, from

(2.3) the innovation rate for the UWB channel can be calculated as

ρ = 2Λ (βλ1 + (1− β)λ2). (3.2)

If signal x(t) in (3.1) is filtered by a low-pass filter ψ(t) with a bandwidth of

B where B ≥ 2K/τ = ρ, and then sampled uniformly at N locations, where

N > Bτ and T = τ/N , these samples are sufficient for characterizing x(t). An

example of the low-pass filter is [33]

ψ(t) =
sin (πBt)

Bτsin (πt/τ)
. (3.3)

The above procedure can also be applied to non-periodic UWB signals. If the

received UWB signal y(t) is filtered by an ideal bandpass filter Hb = u (ω1, ω2),

and sampled uniformly at sub-Nyquist rate fs ≥ (ω2 − ω1) /2π, then the N

samples of Y (ω) with step ω0 = ω2−ω1
N−1 and N ≥ 2L

Y [n] = Y (ωn) = Y (ω1 + (n− 1)ω0), n = 1, 2, · · · , N, (3.4)

are a sufficient characterization of y(t). The above procedure is still applicable

for time-limited non-periodic UWB signals. In practice, discrete Fourier trans-

form (DFT) coefficients are computed to calculate the frequency response. Let
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Ya[n] = Y [n]/S[n]. In this case we have

Ya [n] =

L−1∑
l=0

ble
−jωnτl + η [ωn], (3.5)

where η[ωn] = N [ωn]/S[ωn]. In the absence of noise, the exponential term{
e−jωnτl

}
n∈Z can be annihilated by a FIR filter likeH(z) =

∏L−1
l=0

(
1− e−jω0τlz−1

)
=∑L−1

l=0 H[l]z−l, that is

H[n] ∗ Ya[n] =
L−1∏
l=0

(
δ[n]− e−jω0τlδ[n− 1]

)
∗
L−1∑
l=0

ble
−jωnτl

=

L−1∏
l=0

L−1∑
l=0

bl

(
e−jnω0τl − e−j(n−1)ω0τle−jω0τl

)
=

L−1∏
l=0

L−1∑
l=0

bl × 0 = 0

(3.6)

where * denotes convolution.

The above equation can be represented in matrix form as



Ya[L+ 1] Ya[L] · · · Ya[1]

Ya[L+ 2] Ya[L+ 1] Ya[2]

...
...

. . .

Ya[2L] Ya[2L− 1] · · · Ya[L]

...
...





H[0]

H[1]

...

H[L]


= 0. (3.7)

Since H(z) has multiple roots at zl = e−jω0τl , τl can be calculated as τl =
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−j ln(zl)
ω0

. We can represent h(t) in (2.2) as a FIR filter

h(t) =
M−1∑
m=0

amδ(t−mTh), (3.8)

where M ≥ LτL
Th

and Th is the time delay between each filter tap. In this case, the

unknown τl-spaced delta functions in (2.2) are replaced by Th-spaced resolvable

delta functions. In this case, Ya[n] can be represented as

Ya[n] =

M−1∑
m=0

ame
−jΩnm + η[n], (3.9)

where Ω = 2π
M and η(n) = N (n)/S(n).

Expanding (3.9) we get



e−jΩ(0)(0) e−jΩ(0)(1) · · · e−jΩ(0)(M−1)

e−jΩ(1)(0) e−jΩ(1)(1) e−jΩ(1)(M−1)

...
...

. . .

e−jΩ(M−1)(0) e−jΩ(M−1)(1) · · · e−jΩ(M−1)(M−1)





a[0]

a[1]

...

a[M − 1]


+



η[0]

η[1]

...

η[M − 1]


=



Ya[0]

Ya[1]

...

Ya[M − 1]


.

(3.10)

For simplicity we represent (3.10) as

Ỹa = F a+ η. (3.11)
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3.3 Low-Dimensional Signal Preliminaries

Signals can often be well-approximated as a linear combination of just a few

elements from a known basis or dictionary. Sparse signal models provide a

mathematical framework for capturing the fact that in many cases these high-

dimensional signals contain relatively little information compared to their am-

bient dimension.

3.3.1 Sparsity and Nonlinear Approximation

Mathematically, we say that a signal x is k-sparse when it has at most k nonze-

ros, i.e., ‖x‖0 ≤ k, where ‖x‖0 is the total number of non-zero elements in x.

In this case

Σk = {x : ‖x‖0 ≤ k} (3.12)

denote the set of all k-sparse signals, where `p-norm is denoted as ‖x‖p :=(∑N−1
n=0 |xn|

p
) 1
p
where p ≥ 1. Some signals are not sparse themselves, but they

have a sparse representation in some basis Φ. In this case we will still refer to

x as being k-sparse, with the understanding that we can express x as

x = Φc, (3.13)

where ‖c‖0 ≤ k.

Sparsity has long been exploited in signal processing and approximation the-

ory for tasks such as compression [35–39] and denoising [40,41], and in statistics

and learning theory as a method for avoiding over fitting [42–44]. Sparsity
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also figures prominently in the theory of statistical estimation and model selec-

tion [45,46], in the study of the human visual system [47], and has been exploited

heavily in image processing tasks [48,49].

However, only a few real-world signals are truly sparse; the majority of the

signals are compressible which means that they can be well-approximated by

sparse signals. Such signals have been termed compressible, approximately

sparse, or relatively sparse in various contexts. In fact, we can quantify the

compressibility by calculating the error incurred by approximating a signal x by

some x̂ ∈ Σk

σk(x)p = min
x̂∈Σk

‖x− x̂‖p. (3.14)

If x ∈ Σk, then clearly σk(x)p = 0 for any p. Moreover, we can show that the

thresholding strategy described above (keeping only the k largest coefficients)

results in the optimal approximation as measured by (3.14) for all `p norms [50].

Sparsity is a highly nonlinear model, since the choice of which dictionary

elements are used can change from signal to signal [50]. This can be seen by

observing that given a pair of k-sparse signals, a linear combination of the two

signals will in general no longer be k-sparse, since their supports may not coin-

cide. That is, for any x, z ∈ Σk, we do not necessarily have that x + z ∈ Σk

(although we do have that x+ z ∈ Σ2k).

3.4 UWB Compressive Sensing Preliminaries

When the short duration UWB pulses propagate through the multipath channel,

the received signal remains sparse in time domain. UWB signals can take zeros
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Figure 3.1: Sparcity in UWB channel impulse response.

or negligible values in a relatively long time interval, due to its nature in which

the received signal is composed of separate clusters and spaced rays in each

cluster. Therefore, it is obvious that the UWB channel is sparse/pseudo sparse

1. A typical UWB CIR is depicted in Fig. 3.1. As it can be clearly seen the

CIR takes negligible values in a relatively long time interval. More details about

sparsity in UWB channels is investigated in [51,52]. CS theory declares that in

certain cases, when a signal is sparse, that is, if its information rate is lower than

the Nyquist rate, the signal can be recovered from fewer samples than dictated

by the Shannon-Nyquist theorem. Let x ∈ CN denotes the discrete-time signal

which can be represented by some basis Ψ ∈ CN×N and the weighting coefficient

1We can call it pseudo sparse because there are negligible values rather than zeros.
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θ ∈ CN as

x =

N−1∑
n=0

ψnθn = Ψθ. (3.15)

If θ has only M non-zero coefficients, M � N , then x is an M -sparse signal

and can be expressed as

x =

M−1∑
i=0

ψniθni = Ψθ, (3.16)

where ni denotes the index of the non-zero elements of θ. By projecting x onto a

random measurement matrix, Φ ∈ CK×N , where K � N , a set of measurement

y = ΦΨθ can be obtained. In the absence of noise (ideal case), θ can be

estimated as

θ = arg min‖θ‖1 subject to y = ΦΨθ, (3.17)

where `p-norm is denoted as ‖θ‖p :=
(∑N−1

n=0 |θn|
p
) 1
p
. However, in real scenarios,

the measurement is corrupted by noise, x = Ψθ + n. Therefore

y = ΦΨθ + z, (3.18)

where z = Φn. In this case, θ can be estimated as

θ = arg min‖θ‖1 subject to ‖y − ΦΨθ‖2 ≤ ε, (3.19)

where ε ≥ ‖z‖2.

There are two main theoretical questions in CS. First, how should we design

the sensing matrix A ∈ Cm×n to ensure that it preserves the information in the

signal x? Second, how can we recover the original signal x from measurements
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y? When the data is sparse or compressible, matrix A can be designed to ensure

that the original signal can be recovered accurately and efficiently by using a

variety of practical algorithms.

While there exist a wide variety of approaches to recover the sparse signal x,

the first natural approach is to attempt to recover x by solving an optimization

problem of the following form

x̂ = argmin
z
‖z‖0 subject to z ∈ B(y), (3.20)

where B(y) ensures that x̂ is consistent with the measurements y. In the case

when the measurements are exact and noise-free, the following equation holds

B(y) = {z : Az = y}. When the measurements are contaminated by a small

amount of bounded noise, we have

B(y) = {z : ‖Az − y‖2 ≤ ε}. (3.21)

In both cases, (3.20) finds the sparsest x that is consistent with the measure-

ments y. In (3.20) we are inherently assuming that x itself is sparse.

The more common setting is where x = Φc. In this case, the approach is

modified and we instead consider

ĉ = argmin
z
‖z‖0 subject to z ∈ B(y), (3.22)

where B(y) = {z : AΦz = y} or B(y) = {z : ‖Az − y‖2 ≤ ε}. By considering

Ã = AΦ we see that (3.20) and (3.22) are essentially identical. Moreover, in

many cases the introduction of Φ does not significantly complicate the construc-
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tion of matrix A such that Ã will satisfy the desired properties.

Since the objective function ‖.‖0 in (3.20) is nonconvex and hence potentially

very difficult to solve, a more tractable approach is to replace ‖.‖0 with its convex

approximation ‖.‖1. Specifically, we consider

x̂ = argmin
z
‖z‖1 subject to z ∈ B(y). (3.23)

Provided that B(y) is convex, (3.23) is computationally solvable. In fact, when

B(y) = {x : Az = y}, the resulting problem can be posed as a linear program-

ming problem [53].

3.5 Coarse Graining for Compressive Sensing UWB Channel

Estimation

We propose a CG technique for the CS-UWB channel estimation algorithm

to further reduce the complexity of channel estimation and the sampling rate.

First, a quick review of the mathematical expression for the CG technique is

provided and then the effects of employing it in UWB channel estimation are

investigated.

3.5.1 Coarse Graining Preliminaries

The term of CG can be used to refer to any technique (usually in molecular

systems) that simplifies a system by grouping several atoms/nodes of it into

one component, thus to consist of fewer, larger components. In a large complex

network, CG can be used to reduce the number of nodes and edges by means of a
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mapping of the network with N nodes and E edges into a smaller network with

Ñ nodes and Ẽ edges, where Ñ and Ẽ must be small enough to be amenable to

analysis and visualization.

Definition 1: A linear mapping in the form of LMR∗ which transforms

(maps) M ∈ Cn×n to M̃ ∈ Cm×m is a CG transformation if

1. m ≤ n

2. L,R ∈ Cm×n s.t. LR∗ = Im

where L and R are referred to as semi-projector matrices and P = R∗L as a

projection matrix of rank m [54].

3.5.2 Coarse Graining in UWB

The aim here is to reduce the complexity of UWB channel estimation by shrink-

ing matrix F in (3.11) in order to estimate only a few element of a. CG trans-

formations can be applied in UWB channel estimation to decrease the sampling

rate and decrease the number of samples because we are interested in estimat-

ing only the dominant components a not all components of a. Let Fs ∈ CP×P

represent a shrunk version of F which is related to as = [a0, a2, . . . , aP−1]T ,

where P < N is the number of desirable paths to be estimated. In this case,

Φs ∈ CP×P is the new projection matrix corresponding to Fs and as ∈ CP×1.

A shrinking matrix T =

(
IP 0

)
∈ RP×N can be applied to Ψ as

Fs = T F T ∗. (3.24)
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The shrunk version of Φ Fsas is given by

ΦsFsas =

(
Φs ΦB

)
T

 Fs FB

FC FD

T ∗ as. (3.25)

From Definition 1, we can see that T can be used as a semi-projector for CG

technique. In this case, L = R = T and

P =

 IP

0

(IP 0

)
=

IP 0

0 0

, (3.26)

LR∗ =

(
IP 0

) IP

0

 = IP . (3.27)

3.5.3 `1-Optimization for the Proposed Coarse Graining Tech-

nique in UWB Channel Estimation

In this section, a closed-form expression for `1-optimization for the proposed

method is derived. By applying CG in (3.11), we have

as = arg min
as
‖as‖1 subject to ‖γs − ΦsFsas‖2 ≤ ε, (3.28)

where γs = ΦΓb. Using the Lagrangian method, (3.28) can be rewritten as

as = arg min
as

1

2
‖γs − ΦsFsas‖22 + λ‖as‖1, (3.29)
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where λ is the Lagrange multiplier and ‖as‖1 =
∑

i

(
x2
i + y2

i

)1/2
is `1 of the

complex vector as in which xi and yi are real and imaginary parts of i-th ele-

ment of as, respectively [55]. To represent (3.29) as a quadratic programming

with inequality constraints, we use the truncated Newton interior-point method

(TNIPM) [56]. Therefore, (3.29) is recast as

min
x,y,u

∑
i

ui subject to fu,i(xi, yi, ui) ≤ 0,

fε(xi, yi, ui) ≤ 0, i = 1, 2, · · · , P,
(3.30)

where fu,i(x, y, u) =
√
x2
i + y2

i − ui, fε (x, y, u) = 1
2

(
‖Φ̃sFsas − γs‖22 − ε2

)
and

Φ̃sFs =

Re{ΦsFs} −Im{ΦsFs}

Im{ΦsFs} Re{ΦsFs}

,
γs =

Re{γs}

Im{γs}

,
as =

Re{as}

Im{as}

.
The standard log-barrier method is used to transform (3.30) into linearly con-

strained program. In this case, for the k-th iteration we have

min
x,y,u

f (x, y, u) = min
x,y,u

∑
i

ui +
1

τk
Ξ (x, y, u), (3.31)
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where τ increases as Newton iterations progress and

Ξ (x, y, u) = −

(∑
i

log (−fu,i (x, y, u)) + log (−fε (x, y, u))

)
. (3.32)

By expanding f(x, y, u) around (x, y, u) according to Taylor’s formula, we have

f (x+ ∆x, y + ∆y, u+ ∆u) ≈ f (x, y, u) +∇f (x, y, u) (∆x,∆y,∆u)T

+
1

2
(∆x,∆y,∆u) Hf (x, y, u) (∆x,∆y,∆u)T,

(3.33)

where ∇f(x, y, u) and Hf (x, y, u) = J(∇f (x, y, u)) are the gradient vector and

Hessian matrix of f(x, y, u), respectively, which can be calculated as 2

∇f(x, y, u) =
1

τ

(
−f−1

u

x√
x2 + y2

− f−1
ε rT Φ̃sFs

(
∂as
∂x

)
,

−f−1
u

y√
x2 + y2

− f−1
ε rT Φ̃sFs

(
∂as
∂y

)
, f−1
u + τ

)
,

(3.34)

2J is the Jacobian matrix.
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H11 =
1

τ

(
−f−1

u

y2

(x2 + y2)3/2
+ f−2

u

x2

x2 + y2
− f−1

ε

(
∂as
∂x

)T
Φ̃sFs

T
Φ̃sFs

(
∂as
∂x

)

+ f−2
ε rT Φ̃sFs

(
∂as
∂x

)(
∂as
∂x

)T
Φ̃sFs

T
r

)
,

H12 =
1

τ

(
f−2
u

xy

x2 + y2
− f−1

u

xy

(x2 + y2)3/2
− f−1

ε

(
∂as
∂x

)T
Φ̃sFs

T
Φ̃sFs

(
∂as
∂y

)

+ f−2
ε rT Φ̃sFs

(
∂as
∂y

)(
∂as
∂x

)T
ΦsFs

Tr

)
,

H13 = H31 = −1

τ

(
f−2
u

x√
x2 + y2

)
,

H21 =
1

τ

(
f−2
u

xy

x2 + y2
− f−1

u

xy

(x2 + y2)3/2
− f−1

ε

(
∂as
∂y

)T
Φ̃sFs

T
Φ̃sFs

(
∂as
∂x

)

+ f−2
ε rT Φ̃sFs

(
∂as
∂x

)(
∂as
∂y

)T
Φ̃sFs

T
r

)
,

H22 =
1

τ

(
−f−1

u

x2

(x2 + y2)3/2
+ f−2

u

y2

x2 + y2
− f−1

ε

(
∂as
∂y

)T
Φ̃sFs

T
Φ̃sFs

(
∂as
∂y

)

+ f−2
ε rT Φ̃sFs

(
∂as
∂y

)(
∂as
∂y

)T
Φ̃sFs

T
r

)
,

H23 = H32 = −1

τ

(
f−2
u

y√
x2 + y2

)
,

H33 =
1

τ
f−2
u ,

(3.35)

where r = Φ̃sFsas − γ̃s,

∂as
∂x

=

 IP 0

0 0

, (3.36)
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Table 3.1: Innovation rates for LOS/NLOS UWB channels

LOS NLOS

0.0265 0.0535

and

∂as
∂y

=

 0 0

0 IP

. (3.37)

Finally, the Newton’s step in the log-barrier method which minimizes

f (x+ ∆x, y + ∆y, u+ ∆u) is given by

(∆x,∆y,∆u)T = −H−1f (x, y, u)∇Tf (x, y, u). (3.38)

3.6 Performance Results and Discussion

In this section we validate the performance of the proposed method. Simula-

tions are performed particularly for the indoor office LOS channel and indoor

office NLOS channel proposed by the IEEE 802.15.4a Task Group. We validate

the innovation rate of UWB CIR based on (3.2) for indoor LOS/NLOS envi-

ronments. If we assume that the UWB signal is periodic, then (3.2) is valid

for UWB signals/channels and provides an innovation rate comparison among

indoor LOS/NLOS channels/signals. The experimental innovation rates for the

LOS/NLOS channels are summarized in Table 3.1. It is clear that the innova-

tion rate for the indoor NLOS environments is much greater than indoor LOS

environments. CIR amplitude root mean squared error (RMSE) performance of

the proposed method is also investigated for different scenarios in this section.
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To have a fair comparison between LOS and NLOS channel environments in CS

method, we develop scenarios in which the ratio of the number of measurement

M to the total possible measurement N , r = M
N is fixed. Also, to investigate

the effects of the proposed CG algorithm in CS channel estimation, we suppose

the difference between the number of interested paths P and the total possible

measurement N , is fixed d = N − P . As it is clearly seen in Fig. 3.2, when

neither CS nor CG techniques is applied on channel estimation/synchronization,

the RMSE is significantly lower compared with other cases, because in this case,

none of the measurement has been discarded. Also, it can be seen that when

we increase the number of measurement from r = 30% to r = 50%, the RMSE

performance improves, because we consider more measurement/information in

channel estimation in this case. In Fig. 3.3, CIR amplitude RMSE is shown as a

function of SNR for the proposed CG schemes. As it is depicted, when the CG

algorithm is applied, for small d, the performance is still close to that of the sce-

narios when only CS is applied for channel estimation and synchronization. As d

increases, the number of discarded paths increases and consequently the RMSE

increases. By applying CG in CS UWB channel estimation, we decrease the

computational complexity by estimating only main components (first dominant

components) while the benefits of CS are still retained, i.e., decreased sampling

rate.

3.7 Conclusion

We have proposed a CG technique in CS theory to lower the computational com-

plexity and to decrease the required sampling rate in UWB channel estimation.
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Figure 3.2: CIR amplitude RMSE in LOS/NLOS environments with proposed
CS CIR estimation method.

In the proposed method, by smoothing away non-dominant components in the

received signal via the CG technique, we only estimate the dominant paths which

typically capture more than 70% of the total received energy. The innovation

rates of different UWB channels were investigated for UWB LOS/NLOS envi-

ronments. Results showed that NLOS channels have higher innovation rates

(degree of freedom) and simulation results illustrated the performance of the

proposed algorithm in different channel environments.
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Figure 3.3: CIR amplitude RMSE in LOS/NLOS environments with the pro-
posed CG algorithm in CS CIR estimation.
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Chapter 4 – UWB Channel Calssification

4.1 Introduction

Classification of LOS or NLOS propagation is critical for most pulsed ultraw-

ideband localization systems. In this chapter, first, we propose a 2-dimensional

(2-D) LOS/NLOS classification scheme that uses skewness of the channel im-

pulse/pulse response, which has not been used by existing work.

Extensive work has studied NLOS propagation effects on UWB localiza-

tion [57–72]. These efforts mainly address two areas: techniques to classify

LOS/NLOS conditions [57, 58] and methods to mitigate the effects of NLOS

[59,60].

LOS/NLOS classification commonly uses the statistical parameters of the

CIR or CPR [61–64], or range estimation [65]. For example, kurtosis, root

mean square (RMS) delay spread, and mean excess delay are used in [61, 62];

cumulative distribution function (CDF) of the CPR along with kurtosis is used

in [63]; rms delay spread, kurtosis, and maximum amplitude of the received

signal are used in [64]. The time-of-arrival (TOA) error models for LOS/NLOS

channels [65] can also be used for channel classification.

While extensive work in this area exists, one channel statistical parameter

which has not been used in existing work is the skewness of the CIR or CPR.

Skewness is a measure of symmetry, or more precisely, the lack of symmetry in

the probability density function (PDF). A distribution, or data set, is symmetric
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if it looks the same to the left and right of the center point; i.e., if the bulk of

the data is at the left and the right tail is longer, then the distribution is skewed

right, or positively skewed; if the peak is toward the right and the left tail

is longer, then it is said the distribution is skewed left, or negatively skewed

[73]. Since skewness characterizes the amount and direction of skew (departure

from horizontal symmetry), it could be an effective parameter for LOS/NLOS

classification; if the skewness of the impulse response of a UWB channel is

high, then the channel is more likely to be LOS. We propose a 2-dimensional

(2-D) LOS/NLOS classification scheme that uses skewness and demonstrate its

effectiveness. This approach is much simpler than existing 3-D methods.

4.2 Statistical Channel Parameters Used in LOS/NLOS Clas-

sification

Channel statistical parameters which have been used in existing work for LOS/NLOS

classification include:

• Kurtosis (k): The kurtosis of |h(t)| is defined as k =
E[(|h(t)|−µ|h|)4]

[E(|h(t)|−µ|h|)2]2
=

E[(|h(t)|−µ|h|)4]

σ4
|h|

, where µ|h| and σ|h| are the mean and standard deviation of

|h(t)|, respectively [75];

• Mean excess delay (τm) [76];

• rms delay spread (τrms) [76].
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4.2.1 Statistical Approach for Channel Classification

NLOS classification can be modeled as a binary hypothesis test. Let hypothesis

H0 denote LOS and H1 denote NLOS. One approach is to make a binary decision

based on a measured channel profile. Given the transmitted signal s(t), the

received signal is expressed as r(t) =
∑L−1

l=0 αls(t− τl) + n(t).

The maximum likelihood (ML) hypothesis test is written as

fr|H0
(r|H0)

H0

R
H1

fr|H1
(r|H1), (4.1)

where r is the vector representation of signal r(t) in the Hilbert space, which is

spanned by a complete orthonormal set of basis functions.

The conditional PDF is evaluated as [77]

fr|Hi(r|Hi) =

∫
· · ·
∫
frθ|Hi(r,θ|Hi)dθ

=

∫
· · ·
∫
fr|θ,Hi(r|θ, Hi)fθ|Hi(r,θ|Hi)dθ, i = 0, 1

(4.2)

where θ represents a vector of channel parameters such as path gains and de-

lays. Evaluation of the multidimensional integration in (4.2) is computationally

extensive. One way to resolve this problem is to treat θ as if its statistics were

unknown, resulting in a composite hypothesis test. A common approach to solve

the composite hypothesis test is to estimate θ under the assumptions H0 and

H1, and use it as if θ were known. In this case, the decision rule is given by

fr|θH0
(r|θ̂0, H0)

H0

R
H1

fr|θH1
(r|θ̂1, H1), (4.3)
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where θ̂i denotes the estimate of θ under hypothesis Hi. If a ML estimate of θ

is obtained, the hypothesis test becomes [77]

max
θ
fr|θH0

(r|θ, H0)
H0

R
H1

max
θ
fr|θH1

(r|θ, H1). (4.4)

The likelihood ratio (LR) test can be performed for LOS/NLOS classification

if some statistical information of the multipath channel is available. Kurtosis

(k), the mean excess delay (τm), and the rms delay spread (τrms) can be used to

capture the amplitude and delay statistics for the LOS and NLOS classification

scenarios. If a priori knowledge of the statistics of k, τm, and τrms are available

under LOS and NLOS scenarios in a certain environment, then a LR test can

be performed for the hypothesis test.

4.3 Using Skewness in Channel Identification

For a certain channel realization h(t), skewness of |h(t)| is defined as

s =
E[(|h(t)| − µ|h|)3]

[E(|h(t)| − µ|h|)2]
3
2

=
µ3

σ3
, (4.5)

where µ3 is the 3rd central moment of |h(t)| [73].

The main contributions of this paper are as follows:

1. Developing a 2-D LR test that uses skewness;

2. Deriving a new method for assigning weights in the weighted least-square

(WLS) algorithm based on the LR test;

3. Incorporating NLOS bias as a result of NLOS calcification for improved
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localization.

4.3.1 Two Dimensional LR Test

Skewness can be added to parameters k, τm, and τrms that have been used by

existing schemes as explained in Sec. 4.2.1. With skewness in the LR test, a

suboptimal approach is to assume that all these parameters are independent.

Thus the joint PDF is expressed as

fθ|H0
(θ|H0) = fk|H0

(k|H0)× fτrms|H0
(τrms|H0)× fτm|H0

(τm|H0)× fs|H0
(s|H0)

fθ|H1
(θ|H1) = fk|H1

(k|H1)× fτrms|H1
(τrms|H1)× fτm|H1

(τm|H1)× fs|H1
(s|H1),

(4.6)

where fk|H0
(k|H0), fk|H1

(k|H1), fτm|H0
(τm|H0), fτm|H1

(τm|H1), fτrms|H0
(τrms|H0),

fτrms|H1
(τrms|H1), fs|H0

(s|H0) and fs|H1
(s|H1) are the PDFs of the k, τm, τrms,

and skewness for LOS and NLOS cases, respectively. The 4-D LR test becomes

K(τrms, τm, k, s) =
fθ|H0

(θ|H0)

fθ|H1
(θ|H1)

. (4.7)

This 4-D LR test is complex and computationally intensive. A scheme that uses

skewness and τrms, forming a 2-D test, is developed in this section. In this case,

the suboptimal joint PDFs for LOS/NLOS classification becomes

fθ|H0
(θ|H0) = fτrms|H0

(τrms|H0)× fs|H0
(s|H0)

fθ|H1
(θ|H1) = fτrms|H1

(τrms|H1)× fs|H1
(s|H1).

(4.8)
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Table 4.1: Probability of uncertainty region

Method sr kre

Probability 0.0326 0.0500

Accordingly, the LR test is expressed as

K(τrms, s) =
fθ|H0

(θ|H0)

fθ|H1
(θ|H1)

. (4.9)

4.4 Simulation Results

This section presents results from simulation that uses the IEEE 802.15.4a chan-

nel model and experiments conducted in a realistic environment. Two channel

models, indoor office LOS environment (CM3) and indoor office NLOS environ-

ment (CM4) [81], are considered. For simplicity, the various evaluated methods

are called as:

1) kre: the method in [61], in which k, τm, and τrms are utilized in channel

classification;

2) sr: the 2-D LOS/NLOS classification method proposed in this paper;

The uncertainty region in channel classification for different methods is depicted

in Fig. 4.1. The exact values of the probability of falling in the uncertainty

region with these two methods is summarized in Table 4.1; it is found that the

proposed 2-D “sr” method reduces the probability of falling into the uncertainty

region by about 35% compared to the 3-D “kre” method. These results show

that skewness is an effective statistical parameter for channel classification. The
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Figure 4.1: PDF of the logarithm of the likelihood metric K for CM3 and CM4.
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performances of various methods are also compared in terms of two following

metrics [82]:

a) Probability of false alarm, PFA: The probability that a LOS channel is de-

clared (i.e., H0 is chosen) when the channel is in fact NLOS.

b) Probability of detection, PD: The probability that the channel is classified

as LOS (i.e., H0 is chosen) when the channel is in fact LOS.

PFA is calculated as

PFA=

∫ +∞

T
fθ|H1

(θ|H1) dθ, (4.10)

where fθ|H1
(θ|H1) is given by (4.6). Since the distributions of τrms, τm, k, and

skewness are modeled as log-normal, θ has also log-normal distribution. Thus

PFA =

∫ +∞

T

1√
2πσH1

e
− (θ−µH1)

2

2σ2
H1 dθ

=
1

2

(
1−erf

(
T−µH1√

2σH1

))
,

(4.11)

where erf(x) = 2√
π

∫ x
0 e
−t2dt.

The channel detection threshold, T , can be calculated for the specific PFA

in terms of the error function inverse as

T =
√

2σH1erf−1(1−2PFA) + µH1, (4.12)

where µH1 and σH1 are the mean and standard deviation of the θ in H1.
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PD is calculated as

PD =

∫ +∞

T
fθ|H0

(θ|H0) dθ =

∫ +∞

T

1√
2πσH0

e
− (θ−µH0)

2

2σ2
H0 dθ

=
1

2

(
1−erf

(
T−µH0√

2σH0

))
.

(4.13)

In the simulation, (µH0, µH1, σH0, σH1) for 3-D LR test “kre” and 2-D LR test

“sr” methods are chosen as (12.1238,−3.22323, 7.58917, 1.52168) and (10.6321,

− 4.36144, 6.76482, 1.54776), respectively. Probability of detection PD versus

probability of false alarm PFA is depicted in Fig. 4.2. It is observed that the

proposed 2-D “sr” method has better performance in channel detection than the

existing 3-D “kre” method. Since the “kre” method requires extracting three
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Figure 4.2: Probability of detection vs probability of false alarm.
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statistical parameters of the channel while the proposed method requires only

two, the proposed method is much simpler. The computational complexity of

the proposed 2-D method is also lower than that of the 3-D method, since only

two statistical parameters, rather than three, of the channel are needed for LR

test.

4.4.1 Experimental Results

We have conducted extensive amount of experiments to verify the effectiveness

of skewness for LOS/NLOS classification.

4.4.1.1 Experimental Environment and Setup

The experiment took place in a vacant building with an approximate dimension

of 76m×40m×7m. There are some small metal poles inside this space, but the

propagation will be LOS unless a transmitter-receiver path is blocked intention-

ally. NLOS propagation scenarios in the experiment are created in two different

ways: (1) a person stands in front of the receiver and blocks the direct path;

and (2) a metal object is placed right in front of the receiver to block the direct

path.

A pulsed UWB transmitter operating in the 3.1-5.1 GHz frequency range is

used as the transmitter. The transmitted signals under LOS and NLOS condi-

tions are received by a set of antennas optimized for operation in this frequency

range and then filtered and amplified, which is then sampled by a real-time sam-

pling scope operating at 12.5 Gsps. The sampled data are transferred to a PC



43

through Ethernet for further processing.

4.4.1.2 Results

Since the transmitted pulse shape is known and the pulse duration is very short

(less than 1 ns), instead of obtaining the statistical channel parameters such as

k, s, τm, and τrms from the CIR, which can be done, a simpler but still effective

and accurate method is to obtain these parameters directly from the CPR as

in some existing work [61–64]. LOS/NLOS classification results obtained by

using 3-D method (k, τm, and τrms) and the proposed 2-D LR method (s and

τrms) are shown in Fig. 4.3(a) and Fig. 4.3(b), respectively. The classification

uncertainty region with the proposed 2-D LR test is 18% less than that with

the 3-D LR test, demonstrating the effectiveness of using the skewness of the

channel for LOS/NLOS classification. Note that the experimental environment

does not fit exactly CM3 or CM4. Thus the difference between the simulation

results in Fig. 1 and experimental results in Fig. 4 is expected. Nevertheless,

the experimental results also verified the effectiveness of channel skewness for

LOS/NLOS classification.

4.5 Conclusion

We have developed a LOS/NLOS channel classification scheme that uses skew-

ness and rms delay spread of the CIR/CPR, and demonstrated its effectiveness.

Compared with an existing 3-D classification scheme that requires obtaining

three channel parameters, kurtosis, rms delay spread, and mean excess delay,
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the proposed 2-D scheme is simpler. The proposed 2-D scheme also has a smaller

classification ambiguity region than the 3-D scheme; in a typical indoor channel,

the probability of falling into the uncertainty region of channel classification is

reduced by about 35% with the proposed scheme when IEEE 802.15.4a chan-

nel models are assumed. In experiments conducted in a large vacant building,

we observed an 18% reduction in the classification uncertainty region with the

proposed 2-D method over a 3-D method.
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Chapter 5 – UWB Relay Communications

5.1 Introduction

IR-UWB signaling is a promising technique for high-speed, short-range relay

communications networks. Depending on how the relay node retransmits the

signal, there are two main relay schemes: (1) conventional one-directional (one-

way) relay model [83–88], and (2) bi-directional (two-way) relay model [89–91].

In bi-directional relay communications, wireless network coding (WNC), also

known as physical-layer network coding (PNC), could be applied to overcome the

spectral efficiency limitation of the conventional one-way relay schemes [83–91].

However, the current literature has mainly focused on the conventional syn-

chronous links between the relay node (RN) and end nodes (ENs) [88–90]. The

nature of the UWB signals require sub-nanosecond accurate timing synchro-

nization which even after long acquisition signaling, there may still be some

unknown residual timing offsets. To our knowledge, the effects of either the lack

of synchronization or poor synchronization in the UWB relay communication

systems have not been studied in the literature. In [88], perfect synchroniza-

tion between RN and ENs links is assumed in analyzing the effects of multiuser

interference (MUI) on the cooperative one-way amplify and forward (AF) and

decode and forward (DF) relay schemes. Also, existing work has mainly focused

on coherent modulation schemes which pose formidable challenges in system im-

plementation [87–89]. To avoid the coherent demodulation challenges, transmit-
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ted reference pulse (TRP) techniques [84, 85, 90] and differential demodulation

schemes [83,85,86] have been proposed. However, all these schemes still require

perfect time synchronization between RN and ENs even though they do not need

channel state information (CSI) at the relay node. A coherent UWB symbol-

by-symbol cooperation relay strategy that takes the orthogonal pulse position

modulation (PPM) into consideration is proposed in [87]. An analytical model

to study TH UWB relay communications is proposed in [88] which considers the

effects of MUI in the UWB relay. In [90], a transmitted reference pulse cluster

(TRPC) technique is proposed in PNC cooperative denoise and forward (DNF)

relay strategy to avoid the need for coherent modulation. In [86], differential

decoding one-way AF is presented where a new joint power allocation and path

selection (JPAPS) scheme is proposed.

In this chapter, we propose and develop asynchronous, differential, and bidi-

rectional decode and forward (ADBDF) and asynchronous, differential, and bidi-

rectional denoise and forward (ADBDNF) UWB relay methods, where the relay

does not need to be synchronized with the ENs. The proposed schemes are at-

tractive for UWB communications for which stringent synchronization between

the RN and the ENs may not be affordable for low-complexity UWB networks.

The rest of this chapter is organized as follows: differential detection tech-

nique used in the proposed schemes is reviewed in Sec. 5.2. In Sec. 5.3, we

explain the advantages of employing relay in UWB communications. Sec. 5.4

presents the proposed ADBDF relay algorithm. In Sec. 5.5, the ADBDNF relay

method will be explained. The performance achievable with the proposed relay

communications schemes is investigated in Sec. 5.6
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5.2 Bidirectional Relay Communications

Bidirectional (two-way) relay schemes have gained increasing attention in wire-

less communications as they are able to mitigate the inherent spectral loss of

unidirectional protocols [92–94]. In half-duplex relay schemes two time phases

are required to deliver only one unit of information, which loses half of the

spectral efficiency [92]. Bidirectional relay systems are thus proposed to fully

recover the rate loss, as only 2 time phases, i.e., broadcasting (BC) phase and

multiple access (MA) phase, are required to accomplish the communication on

both directions. Early work on bidirectional AF and bidirectional DF can be

found in [92], which have shown significant improvements on sum-rates. Later,

a new DNF protocol is proposed in [95], and a similar scheme called PNC is

proposed in [96], where the condition to guarantee one-to-one mapping is also

given. Later work in [97] shows that bidirectional DNF has higher sum-rates

than bidirectional AF and bidirectional DF, and in [98] the closed-form BER of

bidirectional DNF with coherent BPSK modulation in derived.

5.2.1 Decode and Forward

In DF relay schemes, the RN decodes the incoming signal from the ENs, and

then re-encodes it prior to forwarding it to the destination [12]. In bidirectional

DF, after decoding dAC and dCA, the RN B applies a canonical network coding

operation and broadcasts the packet bB = dAC ⊕ dCA, where ⊕ denotes the

bitwise XOR operation. Since the EN A already has dAC , it extracts the required

packet dCA through dCA = bB⊕dAC . Similarly, EN C extracts dAC . The relaying
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method shown in Fig. 5.1(b) requires only 3 time slots to transmit the packets

dAC and dCA, which means that the bidirectional throughput is “doubled” with

respect to the conventional relaying.

5.2.2 Amplify and Forward

In AF relay schemes, the RN is going to amplify the signals from the ENs without

decoding, and then forwards it to the destinations [99]. The noisy form of the

signal from the ENs is amplified by the relay usually under certain constraints

(e.g., power constraint). The resulting signal is transmitted to the destination.

The hardware complexity of AF is lower than DF since the decoding function is

excluded in AF.

The bidirectional AF relay scheme has been introduced and analyzed in [100]

and is different from the usual network coding, since it utilizes the inherent

packet combining provided by the multiple access channel. This technique is

illustrated in Fig. 5.1(c). Let xAC and xCA be the baseband representations

of the packets dAC and dCA, respectively. If in the first slot both ENs A and

C are transmitting over the multiple access channel, then RN B receives the

noisy version of yB = xAC + xCA + zB. If RN B amplifies yB and broadcasts

the amplified βyB, then EN A receives a noisy signal from which it can subtract

xAC and attempt to decode xCA (similarly for C). In the absence of noise, A

decodes xCA(dCA) and C decodes xAC(dAC) after only 2 slots, thus doubling the

throughput compared to the scheme in Fig. 5.1 (a). However, in the bidirectional

AF scheme, the relay node amplifies the noise as well. In the low SNR region,

this produces excessive packet errors and thus the obtainable throughput gain
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of bidirectional AF diminishes.

Figure 5.1: Different relay communication methods.

5.2.3 Denoise and Forward

In DNF relay, the RN B does not decode the packets sent by ENs A and C in

Step 1. Nevertheless, it can make an estimate xB = d̂xAC+xCA of xAC+xCA via a

decision process that aims to minimize the impact of noise. Hence, the signal xB

now carries the information about the set of codeword pairs {(xAC , xCA)} which

are considered by the RN B as likely to have been sent in Step 1. In general, this

set could consist of several codeword pairs; thus RN B has an ambiguity about
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what information has been sent. Since A(C) knows xAC(xCA), after receiving

xB, it will extract exactly one codeword as a likely one to have been sent by EN

C(A) in Step 1.

To avoid confusion, such a decision process is referred to as denoising, instead

of decoding. Fig. 5.1(c) can also be used to illustrate the timing for the bidirec-

tional DNF. In absence of channel errors, bidirectional DNF and bidirectional

AF perform identically. However, there is a fundamental difference between

them in presence of errors: DNF does not amplify the noise, as it broadcasts

its estimate d̂xAC+xCA to A and C. Such an operation makes bidirectional DNF

superior to the other two bidirectional strategies in terms of achievable through-

put. If BPSK modulation is applied, then RN B will receive either −2, 0 or

Figure 5.2: DNF bit mapping.

+2 for each symbol as depicted in Fig. 5.2. These three possible symbols are

mapped to a binary message, indicating either an “equal status” (−2 and +2)

or an “unequal status” (0). This compression ensures that a combined packet

only needs the same amount of bits as a regular packet. At the same time the

mapping removes any noise added during transmission, although decoding is not

performed. Note that the addition of signals in the air combined with the map-
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ping from −2, 0 and +2 to a binary message is effectively an XOR operation.

Equal symbols map to one value and unequal symbols map to another. The

final denoised packet is referred to as an analog network coded (ANC) packet.

This packet is broadcasted to ENs A and C, which can now reconstruct what

was intended for them by performing an XOR operation on the received packet

and the packet they transmitted themselves. [95, 100–102]

DNF relay is a way to combine the advantages of the AF and the DF relay

schemes. The operation is simple since decoding is not required and the noise is

removed. Moreover this scheme inherits the advantage of ANC - the decreased

number of necessary transmissions; hence the throughput is increased. The

drawback is that it also inherits the disadvantage of ANC - timing synchroniza-

tion among all the nodes is required. Another drawback is that DNF depends

on a priori information, which means an end node must be able to save the

transmitted packet in order to extract the desired information from the packet

broadcasted by the relay node.

The key difference between DNF and other relaying schemes is its special

signal processing process at the RN. In DF and AF, the RN either makes very

strict bit-level hard decision or simply amplifies the received signals. In the

DNF relay scheme, RN denoises the input signals to output signals by using

a specially designed multiple-to-one mapping. In this mapping, even if noise

causes signal distortion and makes one input similar to another, multiple-to-

one mapping can be designed to assign the same output to all these possible

inputs, i.e., the distorted input can still yield the same output, thus removing

the effect of noise. DNF can be viewed as an alternative to analog AF and

digital DF relaying. It retains the advantages of both schemes but overcomes
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their disadvantages.

5.3 IR-UWB Relay Assisted Communication Systems

According to the FCC rule, UWB should operate at a transmit power of at most

-41.3dBm/MHz to avoid interfering with existing narrow-band communication

systems. Due to this limitation, UWB systems face major design challenges in

achieving wide coverage while assuring an adequate system performance. There-

fore, efficient ways to enhance the system performance are desirable. A possible

effective solution is relay-assisted UWB communications. Cooperation via re-

lay represents a new communication paradigm which involves both transmission

and distributed processing to increase the capacity and diversity gain in wireless

networks [103–107], and to extend the network coverage.

Relay technique as a viable solution for coverage extension has been intro-

duced for UWB networks in [83,109–111] with one-way relay protocols. However,

one-way relay extends the coverage of UWB systems at the expense of spectral

efficiency loss.

In [114], a PNC aided bi-directional relay scheme, focusing on the detector

design, was proposed for TR UWB networks utilizing only one single relay. How-

ever, coherent detection based PNC schemes that are used for the narrowband

systems [96,115,116] may not be appropriate for the low complexity UWB net-

works, since coherent UWB detection requires complicated channel estimation

and stringent signal synchronization.

In order to extend the network coverage, relay techniques with one relay

topology were introduced for UWB networks [83,85,109,111] as promising can-
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didates for range extension.

IR-UWB communications may be classified into two categories: coherent sig-

naling and non-coherent signaling. Normally, the receiver for coherent signaling

requires accurate CSI which is difficult to obtain for highly frequency selective

UWB channels. Non-coherent signaling, on the other hand, is much simpler in

its receiver structure by avoiding explicit channel estimation. Moreover, digi-

tal implementation of UWB receivers requires ultra high analog-to-digital (AD)

sampling.

Some novel non-coherent two-way relay schemes have been proposed for

UWB networks recently [117, 118]. A cooperative two-way relay scheme is pro-

posed for transmitted reference pulse cluster (TRPC) UWB system [117], which

exploits TDMA in the MA phase and the network coded broadcasting (NCBC)

in the BC phase. Although TDMA ensures that the data waveforms are orthogo-

nal in the time domain and therefore gets rid of the multiuser interference in the

MA phase, the spectral efficiency is lowered. On the other hand, a two-way relay

scheme for code multiplexed TR (CMTR) UWB system with PNC, wherein a

simple heuristic UWB-PNC detector is developed, but the detector exhibits a

relatively high error-floor is proposed in [118]. To our knowledge, there is nearly

no existing work on the PNC aided non-coherent two-way relay UWB networks.



55

5.3.1 Differential Detectors

The transmitted signal in IR-UWB systems can be represented as

g(t) =

Nf−1∑
k=0

akw(t− kTf − ckTc) , (5.1)

where Nf denotes the number of pulses (frames) per symbol, each with duration

of Tf , resulting in the symbol time Ts = NfTf , ak ∈ {1,−1} is the DS code,

w(t) represents the unit-energy transmitted pulse waveform with duration Tp,

and ck is the TH value in the range 0 < ck < Nh − 1, where Nh is the total

number of the hops which should satisfy NhTc ≤ Tf .

The discrete time impulse response of the UWB channel can be written as

h(t) =
∑L−1

l=0 αlδ(t − τl), where αl is the multipath gain coefficient associated

with the l-th path and τl is the arrival time of the l-th path. In this case, the

received signal is given by

r(t) =
√
ε

+∞∑
n=0

L−1∑
l=0

αls̃(n)g(t− nTs − τl)+ϑ(t), (5.2)

where ε is the transmitted energy per pulse, s̃(n) :=s(n)s̃(n−1) is the differen-

tially encoded transmitted symbol, and ϑ(t) is AWGN with variance of σ2
ϑ.

In the reminder of this thesis, we consider the differential encoding (DE)

scheme at the RN and ENs. DE demodulation does not require CSI and nor

complicated coherent modulation at the relay. However, there is a performance

degradation compared to coherent modulation. A ML differential demodula-

tion technique for UWB communication systems is developed in [112], which is

used in our proposed relay schemes. The basic idea of the aforementioned ML
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technique is summarized as follows:

i) Forming the received signal r(t) over M symbol periods:

rm(t)=r(t+mTs), t∈ [0, Ts], m∈ [0,M−1]. (5.3)

In this case, rm(t) can be rewritten as

rm(t)= s̃(m−1)gR(t−Ts−τ0)+s̃(m)gR(t−τ0)+ϑm(t), (5.4)

where gR(t) =
∑L−1

l=0 αlg(t− τl,0) in which τl,0 = τl − τ0.

ii) Correlating corresponding adjacent “dirty” segments rm(t)

x(m)=

∫ Ts

0
rm(t)rm−1(t)dt. (5.5)

From (5.3) and (5.4), x(m) is determined as

x(m)= s̃ (m−1) s̃(m−2)ε1+s̃(m)s̃(m−1)ε2+ξm, (5.6)

where ε1 = ε
∫ Ts
Ts−τ0 g

2
R

(t)dt and ε2 = ε
∫ Ts−τ0

0 g2
R

(t) dt are the captured

energies of the received waveforms in the period of [Ts−τ0 Ts] and [0 Ts−τ0],

respectively. ξm is the bandpass filtered AWGN [112] with variance σξ =

εN0 + N0
2

4 BTs, where B is the bandwidth.

The average power delay profile (APDP) Ph(t) can be approximated as

Ph(t)≈ E
{
g2
R

(t)
}

[113]. In this case, the average energy of the CIR in a

generic time windowW = [a b] is obtained as E

{∫
W
g2
R

(t)dt

}
. By modeling
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the APDP as Ph(t) = εh
τrms

e
−t
τrms and normalizing the total CIR energy, i.e.,

εh = 1, we can estimate the average captured received energy E {ε1} and

E {ε2} as

E {ε1} = E

{
ε

∫ Ts

Ts−τ0
g2
R

(t)dt

}
≈ ε

∫ Ts

Ts−τ0
Ph (t) dt = ε

(
e−

Ts−τ0
τrms

)
,

E {ε2} = E

{
ε

∫ Ts−τ0

0
g2
R

(t)dt

}
≈ ε

∫ Ts−τ0

0
Ph (t) dt = ε

(
1− e−

Ts−τ0
τrms

)
.

(5.7)

After differential encoding, (5.6) can be rewritten as

x(m) = s(m−1)ε1+s(m)ε2+ξm. (5.8)

iii) Demodulating s(m) and s(m− 1) in (5.8).

This part will be explained in more detail in the next section.

5.4 Asynchronous Differential Bidirectional Decode Forward

Relay System

Let us consider an ADBDF UWB relay network consisting of two ENs A and

C and one RN, B. Namely, two ENs A and C exchange the sequences of in-

formation symbols via RN B. The received signals at relay B from two ENs

A and C are depicted in Fig. 5.3. Since there is no synchronization between

the relay and two ENs, the received signals at the relay have unknown delays

τ0A and τ0C . Once the relay receives the signals from the ENs, it applies the

differential detection (decoding) technique explained in Sec. 5.3.1 to decode the

transmitted sequences. Next, we propose and develop the optimal maximum
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Figure 5.3: Received signals at the relay in ADBDF relay algorithm from two
ENs A and C.

likelihood sequence detection (MLSD) and sub-optimal non-coherent demodu-

lation techniques for sequence detection.

5.4.1 Maximum Likelihood Sequence Detection for the Pro-

posed ADBDF Relay Algorithm

Here we investigate MLSD via the Viterbi algorithm to decode/detect the re-

ceived sequence at the relay for the proposed ADBDF relay scheme. The MLSD

technique finds the sequence through the trellis diagram that looks most like

the received output sequence. Let us assume that node A transmits data to re-

lay B. The received signal after applying asynchronous differential modulation

technique is

xA(m) = sA(m−1)ε1A+sA(m)ε2A+ξm. (5.9)

The diagram when node A transmits data to the relay B is depicted in Fig 5.4.

Each branch in the trellis diagram is labeled with the channel symbol and the

corresponding input, i.e., output value/input bit. Also, an error event in the
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/-1

/1

Figure 5.4: Illustration of trellis events diagram for the proposed ADBDF relay
algorithm, branch labels =: Output Value/Input Bit.

/1 /1

Figure 5.5: Illustration of a trellis error event diagram for the proposed ADBDF
relay algorithm.

proposed ADBDF relay algorithm is depicted in Fig. 5.5. The performance of

the MLSD via Viterbi is determined by its minimum distance dmin, which is

defined as the distance between two closest trellis sequences. The corresponding

dmin for the proposed ADBDF relay scheme is

dmin = 2
√
ε2

1A + ε2
2A. (5.10)

The nearest neighbor union bound (NNUB)1 is developed in this chapter to find

a bound for the probability of error for the proposed schemes. In this case, the

NNUB becomes an approximation of, and not necessarily an upper bound on,

the probability of erroneously detecting the sequence transmitted from the relay

1NNUB was studied extensively in [113].
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B. For the proposed method, the NNUB of pA(e) is given as

p̄A(e) ≤ N̄eQ

(
dmin
2σξ

)
= N̄eQ


√
ε2

1A + ε2
2A

σξ

, (5.11)

where N̄e =
∑

iNipi, Ni is the number of i-th smallest distance occurrences d(i),

for all sequences diverging at the same point as dmin = dmin(0) < dmin(1) <

· · · < dmin(i) and p(i) is the corresponding probability of occurrences. Therefore,

(5.11) can be rewritten as

p(τ0A) < Q

ε
√

1− 2e
−τ0A
τrms + 2e

−2τ0A
τrms

σξ

. (5.12)

The average probability of error is obtained as

pA = E {p (τ0A)}=

∫ ∞
0
pA(τ0A)fTA(τ0A) dτ, (5.13)

where we assume τ0A has an uniform distribution over [0 Ts], i.e., fTA(τ0A)= 1
Ts

.

Finally, the probability of denoising erroneously the received packet at the

relay is

ppA = 1− (1− pA)N , (5.14)

where N is the number of bits in the transmitted packet.



61

5.4.2 Low-Complexity Conditional ML Differential Detection

Scheme for the Proposed ADBDF Relay Algorithm

Under some conditions, a low-complexity algorithm can be employed to de-

modulate (decode) sA(m) in (5.9). When ε1A � ε2A, a simple sign-detector

demodulation scheme can be applied to demodulate sA(m) from xA(m + 1). In

this case, the probability of detecting s(m) erroneously is

pA (τ0A) =
1

4

(
p

(
xA(m+ 1)<0

∣∣∣sA(m)=1

sA(m−1)=1

)
+p

(
xA(m+ 1)<0

∣∣∣sA(m)=1

sA(m−1)=−1

)
+ p

(
xA(m+ 1)>0

∣∣∣sA(m)=−1

sA(m−1)=1

)
+p

(
xA(m+ 1)>0

∣∣∣sA(m)=−1

sA(m−1)=−1

))
,

(5.15)
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where

p

(
xA(m+ 1)<0

∣∣∣sA(m)=1

sA(m−1)=1

)
= p (ε1A+ε2A+ξm+1<0)

= Q

(
ε

σξ

)
,

p

(
xA(m+ 1)<0

∣∣∣sA(m)=1

sA(m−1)=−1

)
= p (ε1A−ε2A+ξm+1<0)

= Q

ε
(

1− 2e
−τ0A
τrms

)
σξ

,
p

(
xA(m+ 1)>0

∣∣∣sA(m)=−1

sA(m−1)=1

)
= p (−ε1A+ε2A+ξm+1>0)

= Q

ε
(

1− 2e
−τ0A
τrms

)
σξ

,
p

(
xA(m+ 1)>0

∣∣∣sA(m)=−1

sA(m−1)=−1

)
= p (−ε1A−ε2A+ξm+1>0)

= Q

(
ε

σξ

)
.

(5.16)

Hence, pA(τ0A) is given as

pA(τ0A) =
1

2
Q

ε
(

1− 2e
−τ0A
τrms

)
σξ

+
1

2
Q

(
ε

σξ

)
. (5.17)
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In Appendix A, E [p (τ0A)] is derived as

E [p(τ0A)] =
1

4
−
√

2

π

τrms
2Ts

∞∑
n=0

∞∑
m=0

(
2n+ 1

m

)(
ε

σξ

)2n+1 (−2)n−m αmβ2n+1−m

n! (2n+1) (2n+ 1−m)

×
(
e
−Ts(2n+1−m)

τrms − 1

)
+

1

2
Q

(
ε

σξ

)
.

(5.18)

Finally, the packet error rate (PER) at the relay can be calculated from (5.14).

5.4.3 Parameter Estimation

Since there is no channel estimation at the relay, the received energies at the

relay, ε1A and ε2A, are unknown, and an estimation algorithm should be applied

to estimate them. A simple technique is to send a training sequence such that

at the relay we have

x1(m) = ε1A+ε2A+ξ1m,

x2(m) = ε1A−ε2A+ξ2m.

(5.19)

In this case, the estimates of ε1A and ε2A can be derived as ε̂1A = ε

(
1− e

−τ0A
τrms

)
and ε̂2A = ε

(
e
−τ0A
τrms

)
, respectively. We propose another algorithm to estimate

ε1A and ε2A, which is based on the statistical information of the received signal.

The second and fourth moments of the noise-free received signal from EN A can
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be given as

E{x2
A

(m)} = ε2
1A + ε2

2A,

E{x4
A

(m)} = ε4
1A +

(
4

2

)
ε2

1Aε
2
2A + ε4

2A.
(5.20)

However, the aforementioned technique leads to two symmetric solution sets,

i.e., (ε1A, ε2A) = (γ, ω) or (ε1A, ε2A) = (ω, γ), where only one of them is correct.

In order to determine the correct solution set, we propose a new technique that

compares the following metrics (cost functions)

Ck1 =
k−1∑
m=0

|xA(m)− sA(m−1)γ−sA(m)ω|2 ,

Ck2 =

k−1∑
m=0

|xA(m)− sA(m−1)ω−sA(m)γ|2,

(5.21)

where k is the length of the sequence for the cost function input. The metric with

the minimum value is chosen as a metric that has the correct solution set for ε1A

and ε2A. In our algorithm even though the two ENs are not synchronized with

the RN, in the initializing step, in order to estimate (ε̂1A, ε̂2A), (ε̂1C , ε̂2C), the

RN receives packets from each EN in a timely manner. Once these parameters

are estimated, the two ENs can transmit their data simultaneously in the next

step. From the estimated parameters, a coarse timing acquisition algorithm

based on the statistical properties of the UWB channel is obtained.
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Figure 5.6: Received signal at the relay in asynchronous DNF relay algorithm.

5.5 Asynchronous Differential Bidirectional Denoise and For-

ward Relay System

In the proposed ADBDNF relay scheme the ENs transmit their data simultane-

ously to the RN. However, the RN does not decode the received data individ-

ually. The whole procedure of the DNF relay algorithm can be summarized in

two steps. In the first step, the ENs A and C send XAC and XCA packets to the

RN B simultaneously and in the next step, the RN estimates d̂XAC+XCA . The

received signal from two ENs A and C at the relay B is depicted in Fig. 5.6.

The received signal at the relay in the DNF relay method is

rm(t)= s̃A(m−1)gRA
(t−Ts−τ0A)+s̃A(m)gRA

(t−τ0A)

+s̃C(m−1)gRC
(t−Ts−τ0C )+s̃C(m)gRC

(t−τ0C )

+ϑm(t).

(5.22)

The correlation of the segmented signal is calculated in (5.5). Without loss

of generality, we assume τ0A < τ0C ; similar equations can be derived when

τ0A > τ0C . By defining ε1A =
∫ Ts
Ts−τ0Ag

2
RA

(t) dt and ε2A =
∫ Ts−τ0A

0 g2
RA

(t) dt and
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similar equations for ε1C and ε2C , we have

x(m) = sA(m−1)ε1A+sA(m)ε2A+sC(m)ε1C+sC(m− 1)ε2C

+ (s̃A(m− 1)s̃C(m−2) + s̃A(m− 2)s̃C(m−1)) ε1AC

+ (s̃A(m)s̃C(m−2)+s̃A(m− 1)s̃C(m−1)) ε2AC

+ (s̃A(m)s̃C(m− 1) + s̃A(m− 1)s̃C(m)) ε3AC

+ ξm,

(5.23)

where ε1AC , ε2AC , and ε3AC are interfered-received-pulses cross correlation (IRP-

CC) and can be calculated as

ε1AC =

∫ τ0A

0
gRA

(t+Ts−τ0A)gRC
(t+Ts−τ0C ) dt,

ε2AC =

∫ τ0C

τ0A

gRA
(t−τ0A)gRC

(t+Ts−τ0C ) dt,

ε3AC =

∫ Ts

τ0C

gRA
(t−τ0A)gRC

(t−τ0C ) dt.

(5.24)

The expected value of ε1AC is derived as

E {ε1AC} = E

{∫ τ0A

0
gRA

(t+Ts−τ0A)gRC
(t+Ts−τ0C )dt

}
. (5.25)

Since E
{
gRA

(t+Ts−τ0A)
}

= E
{
gRC

(t+Ts−τ0C )
}

= 0 and the received signal

from the ENs A and C are independent (or at least uncorrelated), it follows

E{ε1AC} = 0. Similarly, we have E {ε2AC} = E {ε3AC} = 0. The variance of

IRP-CC is derived in [113] as

var

{∫
A
gRA

(t)gRC
(t+τ)dt

}
=

∫ ∞
−∞

φ2(t)dt

∫
A
P

(A)
h (t)P

(C)
h (t+ τ)dt, (5.26)



67

where φ(τ) =
∫∞
−∞wT (t)wT (t + τ) dt. By normalizing φ(τ), i.e., φ(0) = 1, we

have

var{ε1AC} =
1

2
c1

ε2

τrms
e
−
(
τ0A−τ0C
τrms

)(
e
−2(Ts−τ0A)

τrms − e
−2Ts
τrms

)
,

var{ε2AC} =
1

2
c1

ε2

τrms
e
−
(
Ts+τ0A−τ0C

τrms

)(
1− e

−2(τ0C−τ0A)

τrms

)
,

var{ε3AC} =
1

2
c1

ε2

τrms
e
−
(
τ0A−τ0C
τrms

)(
e
−2(τ0C−τ0A)

τrms − e
−2(Ts−τ0A)

τrms

)
,

(5.27)

where c1 ≈ 0.0153τrms. We can also show that var{s̃A(m−1)s̃C(m−2)+ s̃A(m−

2)s̃C(m−1)} = var{s̃A(m)s̃C(m−2)+ s̃A(m−1)s̃C(m−1)} = var{s̃A(m)s̃C(m−

1) + s̃A(m− 1)s̃C(m)} = 2 and

ξm =

∫ Ts

0
ϑm−1(t)

(
s̃A(m−1)gRA

(t−Ts−τ0A)+s̃A(m)gRA
(t−τ0A)

+s̃C(m−1)gRC
(t−Ts−τ0C )+s̃C(m)gRC

(t−τ0C ) + ϑm(t)
)
dt.

(5.28)

In this case, var {ξm} can be given as

var {ξm} = εN0 +
N0

2

4
BTs. (5.29)

Hence, the total variance of the IRP-CC is

σ2
T (τ0C , τ0A) = 2

(
var{ε1AC}+ var{ε2AC}+ var{ε3AC}

)
+ var {ξm}

≈ c1
ε2

τrms

(
e
−(Ts+τ0A−τ0C )

τrms − e
−(τ0C−τ0A)

τrms

)
+ εN0 +

N0
2

4
BTs.

(5.30)
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+ + + + + +

Figure 5.7: Illustration of trellis error events diagram for the proposed ADBDNF
relay algorithm, branch labels =: Output Value.

5.5.1 Maximum Likelihood Sequence Detection Scheme for

the Proposed ADBDNF Relay Algorithm

In this section the Viterbi algorithm applied in the proposed ADBDNF relay

method to decode the transmitted sequences is explained. An error event for

the proposed ADBDNF relay scheme is depicted in Fig. 5.7. In this case, dmin

can be calculated as

dmin =


2
√
ε2

1A + ε2
2A τ0A < τ0C

2
√
ε2

1C + ε2
2C τ0A > τ0C

. (5.31)

Therefore, from (5.11), (5.30), and (5.31) an approximation of the the MLSD

error probability is bounded as

p(e|τ0A < τ0C ) < Q

(√
ε2

1A + ε2
2A

σ2
T (τ0C , τ0A)

)
. (5.32)
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A simplified approximation can be derived by assuming that the total captured

energy from the two ENs are fixed and equal, i.e., ε1A+ ε2A = ε1C + ε2C = ε. In

this case, we have ε2

2 < ε2
1A + ε2

2A < ε2. Also, by the fact that when τ0A < τ0C ,

σ2
T (τ0C , τ0A)≤c1

ε2

τrms

(
1− e−

Ts
τrms

)
+ var {ξm}, a bound for (5.32) can be given

as a simplified approximation can be derived by assuming that the total captured

energy from the two ENs are fixed and equal, i.e., ε1A + ε2A = ε1C + ε2C = ε.

Therefore, we have ε2

2 < ε2
1A + ε2

2A < ε2. Also, by the fact that when τ0A < τ0C ,

σ2
T (τ0C , τ0A)≤c1

ε2

τrms

(
1− e−

Ts
τrms

)
+ var {ξm}, a bound for (5.32) is given as

p (e|τ0A < τ0C ) < Q

(√
ε2

1A + ε2
2A

σ2
T (τ0C , τ0A)

)
< Q

(√
ε2/2

σ2
T (τ0C , τ0A)

)

< Q

√√√√ ε2/2

c1
ε2

τrms

(
1− e−

Ts
τrms

)
+ var {ξm}

. (5.33)

To find E {p (e|τ0A < τ0C )}, we define ε1A = x and ε2A = y. Hence, we have

E {p(e|τ0A < τ0C )} = E

{
Q

(√
ε2

1A + ε2
2A

σ2
T (τ0C , τ0A)

)}

=

∫ ∞
0

∫ ∞
0
Q

(√
x2 + y2

σ2
T (τ0C , τ0A)

)
fX,Y (x, y) dx dy

< Q

(√
ε2/2

σ2
T (τ0C , τ0A)

)
.

(5.34)

Therefore, the average MLSD error probability is

p = p(τ0A < τ0C )E {p(e|τ0A < τ0C )}+p(τ0C < τ0A)E {p(e|τ0C < τ0A)}. (5.35)
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We suppose the events (τ0A < τ0C ) and (τ0C < τ0A) are equally probable, i.e.,

p (τ0A < τ0C ) = p (τ0C < τ0A) = 0.5. Hence we have

p =
1

2
(E {p (e|τ0A < τ0C )}+ E {p (e|τ0C < τ0A)}). (5.36)

In this case, the average PER at the relay is given by

pr = 1− (1− p)N . (5.37)

In the DF relay method, since the two ENs do not transmit data simultaneously,

the received symbols at relay from the two ENs do not interfere with each other.

However, in the DNF relay scheme, two ENs transmit data simultaneously and

when timing synchronization between the ENs and the relay (the case that we

assume here) is not perfect, the received signals from the two ENs interfere with

each other at the relay. A comprehensive statistical analysis of UWB channel

correlation is available in [113]. It is shown that the cross correlation function

(CCF) of the received pulses can be modeled as an exponential function.

5.5.2 Low-Complexity Conditional ML Differential Detection

Relay Scheme for the Proposed DNF Relay Algorithm

Since in the DNF relay technique we are only interested in detecting the sign

of the received symbols at the relay, a low-complexity sign-detector can be em-

ployed to obtain the sign of {sA(m)sC(m)}. In this case, the probability of
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denoising sign{sA(m)sC(m)} erronously in (5.23) is given by

p (e|τ0A > τ0C ) = p

(
x (m+ 1)<

ε1A

2

∣∣∣sA(m)=1

sC(m)=1

)
,

p (e|τ0C > τ0A) = p

(
x (m+ 1)<

ε1C

2

∣∣∣sA(m)=1

sC(m)=1

)
,

(5.38)

which can be expanded as

p

(
x (m+ 1) <

ε1A

2

∣∣∣sA(m)=1

sC(m)=1

)
=

1

4

Q
ε 3

2 + 1
2e
−τ0A
τrms

σ2
T (τ0C , τ0A)

+Q

ε 3
2 + 1

2e
−τ0A
τrms − 2e

−τ0C
τrms

σ2
T (τ0C , τ0A)


+Q

ε 3
2 −

3
2e
−τ0A
τrms

σ2
T (τ0C , τ0A)

+ Q

ε 3
2 −

3
2e
−τ0A
τrms − 2e

−τ0C
τrms

σ2
T (τ0C , τ0A)

.
(5.39)
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In this case, pr can be calculated by (5.35), (5.36), and (5.37).

5.6 Throughput Analysis

In this section the throughputs of the proposed methods are calculated and com-

pared with the ideal case, i.e., synchronous links between the ENs and the relay

exists, and with the conventional relaying scheme. To compare the through-
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put of the proposed algorithms, first, the Markov model of each relay scheme is

presented and then the throughput of the corresponding scheme is calculated.

5.6.1 Conventional Relay Scheme

The Markov chain model of the conventional method is depicted in Fig. 5.8(a),

with the following states:

S0: Relay B is empty and node A is going to send its data to the relay;

S1: Relay B has received data from node A;

S2: Relay B is empty and node C is going to send its data to the relay;

S3: Relay B has received the data from node C.

p(S0)=p(S0)ppA+p(S3)(1−ppA),

p(S1)=p(S0)(1−ppA)+p(S1)ppC ,

p(S2)=p(S1)(1−ppA)+p(S2)ppC ,

p(S0) + p(S1)+p(S2)+p(S3)=1,

(5.41)

where ppA and ppC are the PER for the links A→B and C→B, respectively,

which are given by (5.14). The throughput of the conventional relay scheme is

proportional to the non-empty states probabilities, i.e., p(S0) and p(S1) and is

given as

RConv(pA, pC)=Rs (p (S1) (1−ppC )+p (S3) (1−ppA))

=Rs
(1−ppA) (1−ppC )

2−pA−ppC
,

(5.42)
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(a) Conventional relay. (b) ADBDNF relay.

Figure 5.8: Markov chain model of the conventional and ADBDNF relay
schemes.

where Rs is the data rate, p(S0)=
1−ppA

2(2−ppA−ppC )
and p(S1)=

1−ppC
2(2−ppA−ppC ) .

5.6.2 ADBDF Relay Scheme

The throughput of the DF scheme was studied comprehensively in [95] and is

derived as

RADBDF =Rs
(2− ppA − ppC )(1− ppA)(1− ppC )

3− 3ppA − 3ppC + ppAppC + p2
pA

+ p2
pC

. (5.43)

5.6.3 ADBDNF Relay Scheme

The throughput of the ADBDNF relay method can be analyzed by its Markov

chain model illustrated in Fig. 5.8(b). Let p(S0) be the probability that the

relay is empty, p(S1) the probability that the relay is full, and px the proba-

bility of denoising erroneously the received packet at the relay. The following
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relationships hold

p(S0)+p(S1)px=p(S1),

p(S0)+p(S1)=1,

(5.44)

and

px=pr(1−ppA)(1−ppC )+ppAppCpr+ppA(1−ppC )(1−pr)+ppC (1−ppA)(1−pr), (5.45)

where pr is given by (5.37). The throughput of the ADBDNF relay method is

proportional to p(S1) and is given by

RADBDNF =Rsp(S1)(1−px)

=2Rs

(
1−px
2−px

)
.

(5.46)

5.7 Numerical Evaluation

In this section, we investigate the throughput performances of the proposed re-

laying schemes in LOS and NLOS environments. We analyze the throughput

performance in two different scenarios. In the first scenario, the Viterbi algo-

rithm is employed to demodulate/detect the received signal at the relay, and

in the second scenario, a low-complexity sign-detector is employed at the relay.

We also compare the performance of the proposed schemes with that of the

synchronous differential demodulation scheme.

As it is clearly seen in Fig. 5.9 and Fig. 5.10, the synchronous differential

schemes have the best performance among all schemes. However, when low-
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complexity/low-cost systems are desirable, our proposed schemes are the ideal

candidates. Synchronous differential demodulation relay schemes have the high-

est throughput performance compared to other schemes. An abnormal behavior

in throughput performance for the proposed ADBDNF is circled in Fig. 5.9. The

main reason causing this abnormal behavior is interference at the relay. Since

in ADBDNF relay scheme both ENs transmit data simultaneously, interference

occurs at the relay. However, as explained in Sec. 5.5, due to the nature of the

UWB signals, the interference can be modeled as the cross-correlation between

two independent UWB signals whose variances are negligible compared to the

signal power.

It is also seen from Fig. 5.9 and Fig. 5.10 that the throughput performance

in LOS environment is better than in the NLOS environments, since τrms in

LOS channels is smaller than τrms in NLOS channels. Our simulation is based

on the IEEE 802.15.4a and for LOS channels τrms = 4.11 ns; for NLOS channels

τrms = 16.77 ns.

Another important parameter that significantly affects the throughput per-

formance is the length of the packets. As depicted in Fig. 5.11 and Fig. 5.12,

when the length of the packets is N = 1000 the throughput performance is de-

graded compared with the performance shown in Fig. 5.9 and Fig. 5.10 with a

packet length N = 100.

5.8 Conclusion

Asynchronous, differential, and bidirectional relay schemes for UWB communi-

cation systems in LOS/NLOS environments are proposed in this chapter. The
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proposed algorithms can be also employed in synchronous scenarios where opti-

mum performance can be achieved. The proposed schemes do not require timing

synchronization and channel estimation, which are complex to maintain or ob-

tain, and are thus appropriate for practical UWB relay networks. By efficiently

exploiting the properties of pulsed UWB signals, in the ADBDNF relay scheme,

even though the ENs are not time synchronized and the received signals at the

relay interfere with each other, the interferences diminish rapidly because their

cross-correlation reduces sharply as a function of their time differences. Con-

sequently, the throughput performance is still very good. A new closed-form

expression that can be used to solve integrals that involve the Q-function ana-

lytically is developed in this chapter. The throughput performances of the pro-

posed schemes are derived by using this new expression. The proposed schemes

and the conventional relay scheme are compared under different parameters and

also with the case of a synchronous link between the ENs and the relay.
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Chapter 6 – Conclusion and Future Work

6.1 Conclusion

This dissertation proposes solutions to address the technical challenges associ-

ated with three main areas of UWB communication systems: (1) LOS/NLOS

channel classification; and (2) relay-assisted UWB communication systems; and

(3) high sampling rate of UWB signals due to their huge bandwidth. We have

proposed novel solutions to solve these problems.

First, a novel 2-dimensional UWB channel classification is proposed to iden-

tify NLOS channel conditions with a higher accuracy and lower complexity than

existing schemes. The proposed scheme employs the skewness as a statistical

parameter in channel classification, and is shown to decrease the channel iden-

tification ambiguity and improve channel classification probability.

Secondly, we have proposed two novel UWB bi-directional relay-assisted com-

munication systems where the relay employs non-coherent differential demod-

ulation schemes to demodulate the received sequences. It is shown that with

the proposed scheme, even though the end nodes and the relay node operate

asynchronously, differential demodulation can be employed in the relay while

still achieving a good performance.

Thirdly, we have developed a novel compressive sensing based UWB channel

estimation algorithm. A coarse graining technique that can be applied in com-

prehensive sensing theory to reduce the sampling rate while still maintaining a
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good performance is proposed.

6.2 Future Work

In the area of relay communications, only one relay is considered in the relay

communications cases in this thesis. Extending the proposed schemes to a more

general case of UWB communications with multiple relays and with higher-order

modulation will be very useful. The proposed LOS/NLOS classification schemes

can be applied in cooperative UWB relay communication systems to improve

performance. When the link/channel between the EN and the RN If NLOS is

identified, the link may be left idle until the link improves to a LOS link. This

will improve the network performance drastically.
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Chapter 7 – Appendix

Calculating E

{
erf

(
α+ βe

−τ0A
τrms

)}
over a uniform distribution with fTA = 1

τ0A
.

By representing Q-function as

Q(x)=
1

2
− 1

2
erf

(
x√
2

)
, (7.1)

where

erf(x)=
2√
π

∞∑
n=0

(−1)nx2n+1

n!(2n+1)
. (7.2)

and after some manipulations, a new closed-form expression to get the average

of Q(aτ+γεR
σξ

) over the uniform distribution fτ0A(τ0A)= 1
Ts

can be derived as

erf (α+ βex)=
2√
π

∞∑
n=0

∞∑
m=0

(
2n+ 1

m

)
(−1)n αmβ2n+1−m

n! (2n+1)
(ex)

2n+1−m
. (7.3)

∫ b

a
erf (α+ βex) dx=

2√
π

∞∑
n=0
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m=0

(
2n+ 1

m

)
(−1)n αmβ2n+1−m

n! (2n+1) (2n+ 1−m)

(
eb(2n+1−m) − ea(2n+1−m)

)
.

(7.4)∫ b

a
Q (α+ βex) dx=

b− a
2
− 1√

π

∞∑
n=0

∞∑
m=0

(
2n+ 1

m

)
2
−(2n+1)

2 (−1)n αmβ2n+1−m

n! (2n+1) (2n+ 1−m)
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)
.

(7.5)

For simplicity, we replace τ0A with τ

∫ γ

ω
Q
(
α+ βe

−τ
τrms

)
dτ=

γ − ω
2

+
τrms√
π
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2n+ 1
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.

(7.6)
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In the special case when γ = Ts and ω = 0 we have

∫ Ts

0
Q
(
α+ βe

−τ
τrms

)
dτ=

Ts
2

+
τrms√
π

∞∑
n=0
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(7.7)

Hence

E
[
Q
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α+ βe

−τ
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=

1

2
+
τrms
Ts
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π
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(7.8)
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