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PERFORMANCE OF SOME TESTS FOR BIVABIATE INDEPENDENCE,
INTERCHANGEABILITY, AND EQUALITY OF DISTRIBUTIONS OF RATIOS

I. INTRODUCTION

Statistical analyses for bivariate, or more generally multi-

variate, continuous data have not been developed very completely

except for multivariate normal models. Transformations, such as

logarithmic and square root, are frequently applied to non-normal

data so that normal-theory analyses may be justified. One difficulty

commonly encountered is that the transformations required to obtain

exact marginal normality may depend on unknown parameters. Moreover,

even if the transformed variables have marginal normal distributions,

the joint distributions need not be multivariate normal. In analyses

of non-normal data; asymptotic distribution theory is often applied

to statistics on which the inference procedures are based. In

certain small sample size cases the asymptotic theory approximations

may be quite poor; for example, normal approximations to the distri-

bution of sample means can be quite inaccurate when the sampling is

from skewed distributions.

This thesis is concerned with some inference problems for

bivariate (11V) distributions which permit marginal distributions of

specified forms. Since BV distributions are not uniquely determined

from the marginal distributions, several different procedures for

constructing BV distributions with specified marginals have been

proposed. We consider the Morgenstern [24], Plackett [24], and

Moran [19] forms which are described in Chapter II. Each of these
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three forms has the convenient property that the BV cumulative

distribution function (c.d.f.) H(x,y) depends on x and y only

through the marginal c.d.f.'s F(x) , G(y) and one unknown parameter

0 ; that is, H(x,y) = Q[F(x) , G(y) ; 0] for some function Q . This

property may be used in developing certain inference procedures which

are distribution free relative to the marginal c.d.f.'s F and G .

We are particularly interested in BV distributions for positive

random variables X and Y with skewed marginal distributions,

including the gamma, Weibull and lognormal families.

This study was motivated, in part, by inference problems

arising from rain-making experiments. Cloud seeding with silver

iodide smoke is used to increase the ice crystals in the clouds in

order to increase the rainfall. Measurable precipitation data,

X > 0 , have been found [23] to be fit quite well by gamma distribu-

tions with shape parameter less than unity. The X and Y measure-

ments may represent, respectively, precipitations resulting from

unseeded and seeded clouds. If these X and Y measurements are

taken near the same location at approximately the same time, X and

Y will in general be dependent random variables. In addition to

rain-making experiments, the BV models and inference procedures

studied in this thesis should have application in other

areas of research, including reliability and medical studies.

In Chapter II, the BV distribution are described and compared.

Conditional distributions of YIx are also studied for the

Morgenstern and Plackett BV distributions. In Chapter III, the
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problem of testing indeper,derAce, H
o

: H(x,y) = F(x) 0(y) , in the

Morgenstern, Plackett, and Moran distributions is considered.

Asymptotic optimal parametric C(a) tests and locally most powerful

rank tests are derived and compared. Asymptotic relative efficiency,

ARE, comparisons of the tests for independence are also made _in

Chapter III.

In Chapter IV, some nonparametric tests for interchangeability,

H
o

H(x,y) = H(y,x) , are studied. Sen [25] developed conditional

permutation tests for H
o

based on linear rank statistics. We

consider the Wilcoxon (W ), sum of squared rank (SSR), and Savage

(S ) statistics. Also using Sen's general asymptotic theory results,

ARE comparisons of the three rank tests are made for gamma scale

alternatives,
a
(y) = F

a
(x/e) for some B¢ 1 and common shape

parameter a , in the Morgenstern and Moran BV families.

In Chapter V, the Wilcoxon statistic, the symmetric squared

rank statistic [17] and normal score statistic are used for comparing

ratios Y/X from two bivariate samples. The applications of these

tests in two different designs used in rain-making experiments are

discussed. ARE's among the Wilcoxon, the symmetric squared rank

test and normal score test are also evaluated for the Morgenstern

BV gamma distribution scale alternatives with common shape parameter

a = 1,2 and 3 .



II BIVARIATE DISTRIBUTIONS

Consider positive random variables X and Y with joint proba-

bility density function (p.d.f.) h(x,y) and marginal p.d.f.'s f(x)

and g(y). As indicated earlier, we let H(x,y), F(x) and G(y) denote

the c.d.f.'s corresponding to p.d.f.'s h(x,y), f(x) and g(y). The

following five types of BV distributions have been considered by

others.

(1) Morgenstern ,24]:

where

h(x,y) = f(x)g(y) [1 -Fy(2F(x)-1) (2G(y)-1)I (2.1)

H(x,y) = F(x)G(y) [ 1 +T(F(x)-1)(G(y)-1) (2.2)

-1 < y < 1 .

(2) Plackett[24,26]:

where

h(x,y) =
tpfgt(IP-1)(F+G-2FG)+11

1[11-(4/-1)(F+G)]2-440-1)FG13/2

S - (S2 - 4oG(V/-1)FG)1/2

H(x,y)
2(i1,-1)

0 < < m and S = 1+[F(x)+G(y)] 61/-1) .

(2.3)

(2.4)

4
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(3) Moran [19]:

1 (A2-2PAB+82)

dA dB
1 20.-c )

h(x,y) = dx dy
27r(1-P

2
)
1/2

where

A =
-1

(F(x))

B = -1
ci) (G(y))

-1
43 is the inverse function of unit

normal c.d.f.

(4) Gumbel's [7] BV exponential distributions:

h(x,y) = ((1 4-6x)(14-(5y)-1)e -x-Y-6xY

H(x,y) = 1-e-x-e-Y+e-x-Y-6xY

where

(2.5)

(2.6)

(2.7)

0<4<1, f(x) = ex, and g(y) = eY for 0<x<co,05y<ao.

(5) Lancaster [11]:

h(x,y) = f(x)g(y)(1+-Pix (i)
y
(i)

) (2.8)

where x(i), y(i) are certain sets of orthonormal functions and P.

are the "canonical correlations".

Distribution types 1, 2, 3, and 5 can be used for any random

variables X and Y which have absolutely continuous c.d.f.'s F and

G. We see that use of relations



lnx-A
F(x) 4)( x )

(Tx

and (2.9)

G(y) (D(
Y)

in equation (2.5) gives the classical BV lognormal distributions.

, U, 1For positive parameters V a
2'

0
l'
and 0

2'
transformations x=k77)

1

V a2
and y = (--) can be used in Gumbel's BV exponential distributions

)32

to give BV Weibull distributions. Marshall and Olkin [16] and

Downton [3] have also considered different BV exponential and

Weibull distributions which are useful in reliability studies.

It is instructive to investigate the conditional distribu-

tions of X, given Y=y, for 1W distributions with gamma or exponential

marginals. Attention is restricted to only the Morgentern, Plackett,

and Moran BV distributions because they are the underlying distribu-

tions used in the next two chapters.

2.1 nrgenstern's BV Distribution

The BV distribution, equation (2.1), has been extended to a

more general form by Farlie [5],

h(x,y) = f(x)g(y)11-1-1'

a[FA(F)] [G13(G)]

aF aG

H(x,y) = F(x)G(y)[14TA(F(x)) B(G(y))] ,

where

6

(2.10)



A(F(x))-->0 as F(x) >l, B(G(y))-->0 as G(y)>l,

and A(F(x)) and D(G(y)) are bounded and have bounded first order

derivatives in their arguments F(x) and G(y).

by

where

The regression curve of X on y, as derived in [5], is given

h(x,y)
E(Xly) =ix dx

g(Y)

3[G°B(G)]
=

x
+ K "Y

3 G

6[FA(F)]
K =J//x dx .

6F

7

(2.11)

Gumbel [7] studied the conditional distributions for the

Morgenstern type BV distributions with exponential marginals in

addition to the BV exponential distribution of equation (2.6). The

following analysis of the Morgenstern BV gamma distributions

generalizes Gumbel's work since an exponential density is a special

case of a gamma density with shape parameters equal to unity.

Densities

where

x
1 1

- a
1
-1

0,

f(x;a1,01) = ° e L (E)

r(al) 01
01

0 <o1, 0 <0
1'

0 < x < co

(2.12)



and

where

-
1

1
y a2 -1 a2

g(Y;g2°2)
"a2) °2 82

0 <
2'

. 0 < 13
2'

0 < y < co

8

(2.13)

are used in equation (2.1) for the Morgenstern BV distribution. For

integer a, c.d.f.'s corresponding to equations (2.12) and (2.13)

can be written as

and

. x
x Ta -1 () e 1

1 01

F(x;a1,01) = 1 - (2.14)

i=0

i
Y

a -1 e
2 0

2

G(Y;a2,02) = 1 -

i =0

The conditional p.d.f. of X, given y, is

f(xly) = f(x;a1,01)[1+712F(x;a1,01)-1112G(y;a2,02)-11] , (2.16)

The boundary p.d.f. of X given y is

is

(2.15)

-
al-1 (r)

x i
e

1

f(x10) = f(x;a1 ,)3 1)11+ 7 [2 E
i=0

(2.17)



where

a = 1 , 2 , 3, . . 0 <131

2.1.1. The Regression Curves

Using equation (2.16), the nonlinear regression curve of X on

y can be expressed in the form

E(Xly) =fxf(xjy)dx

Ax[1 +y 2G(y;a2,02)-11] -70112G(y;a2,432)-1 I' K(al) ,

where

and

Atx
= a

1
0
1

is mean of X

a 1-1 r(a +i+1)
1 1

K(a
1
) = E

r (a )r(i+1) a 1+1
i=0 1 2

The symmetry relation

1/2 E_7(Xly) + E7(Xly)] = ilx = aloi

is easily found from equation (2.18).

For the case where a
1
= 1, equation (2.18) reduces to

9

(2.18)

(2.19)

E(Xly)

= 01 [141'12G(y;a2,132)-11- 12G(y;a2,02)-1 i]

Graphs of equation (2.20) for7 = -1, 0, and 1, and a2 = 1/2,

(2.20)



1, and 2 are given in Figure 1. When al = a2 = 1, Figure 1 corre-

sponds to Gumbel's Graph 2 in [7,p.705].

2.1.2. The Conditional Variance

Using equation (2.16), we obtain

,

E (X21 Y)

a
1
-1

1

=
91
a
2 1 r 2'a

1-
fa1

r(a
1
+i+2)

-1 1
+a

1
+7[2G(y' rx

2' 2 )-1J L
i+1) a

1
+1+111. r(a

1
M

1=0
2

Moreover,

, 2
1/2 [E

1'-(x
2
ly)+E

1'

(x
2
Iy)j = al201 + a101

2
= EX

2

10

(2.21)

Thus, from equations (2.20 and (2.21), we have the conditional variance

2

XI Y

al-1
2 2

r(a.,+i+2) 1

=
1
la

1
+7[2G(y;a202)-1] [-al+al- >2 I"

i=1
r(a

1
)r(i.-El) a

1
+1+1

2

(2.22)

a if 1

r(a
i
fi+1) 1

a1 La ] -7
2
[2G(y.' a

2
/3
2
)-1]2

1=0
F(ce

1
)1'(i+1) a

1
+1+1

2

a
1
-1

r +1+1)
a
1
-1

r(a1+1+1)1 1
2 1 21

Cal-al E + (

1=1
r((y

1
) r(i+1) a +i-1

1=0
r(a

1
)r(i+1) a +i

2 1 2 1



a2=1/21.5
E(xly)

81 1.4 t N

1.3
x2 =1

1.2

a2=2
1.1

1.0

\
0.9

a2=20.8

\ a

0.7
2.1

\,
0.6 ,
0.5

a2--1/2
warommio. =IMMO

0.4

0.3 y=1

0.2 y=0

0.1 y=-1

0 1 2 3 4 5 6

y/r3

2

Figure 1. Regression curves for Morgenstern BV gamma distributions

with X- gamma (a1=1,81) and Y gamma (042,82).

11



2.1.3. Correlations of X and Y

The correlation ratio q(X(y), as defined in [7 , equation

(1.9)],reduces in our case to equation (2.23).

, r
n(xly) =1---JE(x)-E(113)12g(Y;202)dY1112a 2

1

12

(2.23)

2
1/2 -y 01

2 [(Y1/31 411 K (a1)] 21
[a

1
- K(ce

1
)]

3a
2
0
2

1/3 ay

As in [7], we now show that 77 (XI y) is a multiple of the

coefficient of correlation p. By and using definition (2.19),

we find

E(XY) = 01021a1a2 [al-K(a1)] [a'2 -K(

which gives

P
E(XY) - E(X)E(Y)

ax ay
(2.24)

1' [al Main Ece2 K(a2)1

1/71 1/72-

The inequalityly < 1 implies

141
-f <

1
[a

1
-K(a

1
)] [a

2
-K(a

2
)]r

Using equations (2.23) and (2.24) yields



V cl .o.,
n(xfy) =P

11/3 [(Y2 K(cY2)]

13

(2.25)

2.1.4. Conditional Median of X Given y

From equation (2.1), the conditional c.d.f. of X, given y,

is found:

F(xly) = F(x) +1'F(x)

The conditional median M
X

[1-F(x)] [1-2G(y)] .

is defined by
y

(2.26)

F(M
x

)y) = 1/2 (2.27)

Solving equation (2.27), we obtain

-1-1,(1-2G)-14/[1(1-2G)]" + 2(2G-1)
=Q ,(G) (2.28)F(Mx )

Y 2(2G-1)

and

M
x

= F - 1(Q

y
(G)) (2.29)

For the case where a
1
=1

'

equation (2.29) reduces to

M
xly

= -0
1
ln[TQ (G)] (2.30)

Notice that F(xly) and consequently M , depends on x and y only
x y

through F and G. Graphs of equations (2.28) are given in Figure 2

for "Y = -1, 0, 1. Using expression (2.14) for F with al=1 and a

table of chi-square distributions with degrees of freedom 1, 2, and

4 for evaluation of C, graphs of equation (2.30) are given in
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Figure 2. Regression curves of F on G for Plackett and
Morgenstern BV distributions.



M

xy

al

4.0

3.5

3.0

2.5

2.0

1-5

1.0

0.5

0

Y~1

y=0, 11)=1

y = -1

11)=0

0 1 2 3 4

Plackett BV gamma distribution

Morgenstern BV gamma distribution

5

y
8
2

6

Figure 3. Median regression curves for two BV gamma distributions
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Figure 4. Median regression curves for two BV gamma distributions
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Figures 3, 4, and 5 for the case a2 = 1/2, 1, and 2 respectively.

2.2 Plackett's BV Distribution

Let 4/ be an arbitrary positive number. Plackett constructed

the joint c.d.f. H(x,y) (equation 2.4) as the root of the quadratic

equation

H(x,y)* [1-F(x) - G(y) + H(x,y)]
(2.31)

[F(x)-H(x,y)] [G(y) - H(x,y)]

Mardia [14] showed that only one of the two roots of equation (2.31)

satisfies Frechet inequality

Max(0, F(x) + G(y)-1) < H(x,y) < Min(F(x),G(y)) . (2.32)

When H(x,y) = Max(0,F(x).+G(y)-1), the entire BV distribution lies on

the line F(x)+G(y)=1. From equation (2.31), we see that this is true

when 4,=0. When H(x,y) = Min(F(x),G(y)), the entire BV distribution

lies on the F(x)=G(y), corresponding to 111=03 in equation (2-31).

Notice that equation (2.31) can be written in terms of proba-

bilities as

P (X<x,Y<y)P(X>x,Y>y)
ii/ (2.33)

P (X<x,Y>y)P(X>x,Y<y)

The Plackett distribution has been called [14] a contingency type

BV distribution. Plackett [24] considered 4, as a measure of

association in a four-fold contingency table. 4/= 0 implies the

independence of X and Y.
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2.2.1. Conditional Median of X Given y

Plackett determined the conditional c.d.f. of X, given Y=y,

,)11(x,y)

F(xly)
aG(y)

(2.34)

F(x) H(x,y)(4,-1)

1 + [F(x) + G(y) 2H(x,y)]

The conditional mean of X, given Y=y, is usually not of simple

form; therefore Plackett considers the conditional median of X,

given Y=y,

1

M = F
-1

(
x y

(1 + (P-1) G(y) ))

or correspondingly,

1

F(Mxly) = (1 + (4'-1) G(y)) = W,(G)

ti-1-1

(2.35)

(2.36)

Equation (2.36) is graphed in Figure 2 for 4,=0, 1, andco.

Using equations (2.14), (2.15), and (2.35) for the gamma marginals

with a
1
= 1, we obtain

M
x y

= -0 ln

Z-

1
a2 -1

(--
0
2

) e- 0
2

[1+0,-1)(1- E )]1
1=0

(2.37)

Equation (2.37) is graphed for 4,=0, 1, and m in Figures 3, 4, and 5

for a
2
= 1/2, 1, and 2, respectively. For a

2
= 1/2, the evaluation



of G(y) is found by using the table of chi-square distribution with

1 degree of freedom.

2.2.2. The Correlation Coefficient

According to Mardia [14], the correlation coefficient of X

and Y based on contingency type BV distribution can be expressed

in the form
b d

Pab,c,d(41) a 1 f f (H-FG) dxdy

1 2
a c

2
where a

1

2
= Var(X) and a

2
= Var(Y).

In [14, p.239 ] ea,b,c,d(° is shown to have a limit p(0 as

a,c > -wand b,d ----> co under the following conditions:

(1)
xlimco

xiF(xly) - F(x)] = 0 ,

(2) lim y [H-FG] = 0 ,

"">+.

co

(3) flF(xly)-F(x)Idx < I(y)

where I(y) is an integrable function of Y. Mardia [14] and

Plackett [24] further establishes the relations

0<P(V") <1 if 1 < <

20

(2.38)

P 0,0 = 0 if V/ = 1

-1 < p (co <0 if 0 < ;1/ < 1

Moreover, the correlation coefficient pF
,G(V,)

of random variables

F(X) and G(Y) is given

pF2G = (4/2-1-21k1n4) / (1,1,.-1)2 (2.39)
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2.3. Moran's BV Distribution

Motivated by analysis of rainfall data, Moran [19] constructed

BV distributions equation (2.5) with gamLia marginals. Moran [19]

and Mardia [13] showed that equation (2.5) satisfies the Frechet

inequality

Max( F(x) + G(y) 1,0) < H(x,y) <Min(F(x),G(y)) .

Moran also discussed an iterative procedure for obtaining

the maximum likelihood estimators for the gamma parameters al,

a2, 01, )32, and the parameter P . Moreover a test for equal scale

parameters based on maximum likelihood estimators is discussed for

rain-making experiments.

These BV gamma distributions are constructed as follows:

Let (W,Z) follow a standard unit BV normal distribution with cor-

relation coefficient P,

1

27r(1-P2 )1
/ 2 e

with marginal c.d.f's

and

1
(w
2-2Pwz+z2)

2(1-p
2)

w
1

- t
2
/2

cl)(w) f dt
t/271-

= f
-co

1
t
2
/2

1/11r
e dt

Let X and Y each have p.d.f.'s given by equations (2.12) and (2.13).

Equating,

cb(w) = F(x) and eb(z) = G(y)



gives
-1

w =4) (F(x)) and z =
-1

(G(y))

and the resulting p.d.f.

1 -1,, dw dz
h(x,y) = 00, (E(x)), ki;(y))).-- dxdy

dx dy

1

(1-p
2
)
k

22

12
Z 2

1
Da 4, (F(x))-21)(13 (F(x)) l(G(Y))44

1
(G(Y))]

2(1-P )
e

(25...+X_) a -1 a
2
-1

1 1

.0
1 2

1 1

e ('E-) (L) dxdy

F(al) r(a2) 0
1

0
2

01 02

Among the Morgenstern, Plackett and Moran BV distributions,

the first gives the simplest form. However the Morgenstern distribu-

tion does not attain the Frechet inequality [7, 14, 241, whereas

the other two do. For these three BV distributions, H(x,y) and

h(x,y)

f(x)g(Y)

forms are utilized for the nonparametric consideration in the follow-

ing two chapters. For the Morgenstern and Plackett distributions,

H(x,y) have explicit forms in F(x) and G(y); however, two variable

numerical intergration is needed to evaluate H(x,y) for the Moran

distribution.

depend on X and Y only through F(x) and G(y). The special



III TESTS FOR INDEPENDENCE

For testing the null hypothesis of independence of random

variables X and Y, asymptotically optimal C(a) tests and locally

most powerful rank tests (l.m.p.r.t.'s) are considered for the

Morgenstern, Plackett and Moran BV distributions. The general class

of C(a) tests was developed by Neyman [21], who used locally root-n

consistent estimators for nuisance parameters. We compare the forms

of these two kinds of test statistics and their asymptotic relative

efficiency. ARE comparisons are also made with other tests for

independence.

3.1. Locally Asymptotically Optimal C(a) Tests

First, the general development of optimal C(a) tests is

summarized.

Suppose a sample (K1,X2,...,Xn) is taken from a population

with p.d.f. f(x;E,O) where 0=(81,...,er). The observations Xi may

be vector values. For testing the null hypothesis H
o
:=E

o
, against

the alternatives H -k>k
o

(or <E
o
) or H

2
:Ekk

o
with unknown nuisance

parameters 0, Neyman [21] considered tests based on the statistics

Z
n
(X;k

o
,) =

A r
ct) (x. ,0) ra.o gt) (x.; ,O)

n °i 3 °
1 1=1

trri a

23

(3.1)



where

i_nf(x.;E,13)
A J

,8
k 0

)

6E o

A
0 = 0

61.11f (x. ,1)
A ,

A
0- = 0

o
andthea.

,

sare chosen so as to minimize the variance of
1

24

(3.2)

(3.3)

A r o A
0 (K.;

o
,0) - 1] a. 4),

of

(x.
o

; ,O) under H. The resulting minimum

1=1
I
. 3

A
variance is denoted by Q82

0

2
. The estimators 6 = (0

A
l'

...,0
A
r
) are

assumed to be either locally root-n consistent or root-n consistent

ginfor 8 . Neyman [21] defines an estimator
°

to be locally root-n

consistent for 0. if there exists a number A.
J

4 0, such that as

A

jn
n >m, the product 0

j
- 6. - A.

j
(k- (o) Vriremains bounded in

probability for all k and 6 . If pin - 0J/1'T-remains bounded in

probabilityasn--->co,ginis said to be root-n consistent for e..
i

.

The p.d.f. f(x;E,O) is also assumed to satisfy Cramer-type regularity

conditions [21,p.215].

The statistic of equation (3.1) has also been shown to have a

limiting unit normal distribution under H0. The optimal symmetric

C(a) tests based on equation (3.1) for two-sided alternatives

H
2
:E4 E

o
has critical regions S

2
(a) = Zn : I Zn[ > z

a/
, where z

u/2
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is such that

1

- t
2
/2f e dt = a/2

27r
za/2

For optimal one-tailed C(a) tests

the critical region is S
I
(a) =

of Ho:=

Zn Z > z
n a

against
H1:

>Eo

Moran [18] indicates that Z
n

is asymptotically equivalent to

tests using the maximum likelihood estimator (MLE) k of E , and to

the likelihood ratio test based on the statistic

n n

2

IE lnf(xj;i,1) - 2] lnf(xj;E,i)

i=1

where k and 0 are MLE's and Bo are MLE's under the null hypothesis.

An advantage of the C(a) test over the other two types of tests is

that the C(a) tests are frequently easier to compute.

Now we consider optimal C(a) tests for independence.

Suppose (X,Y) follows a certain BV distribution with p.d.f. h(x,y;,0)

where E is a parameter indicating the association between X and Y.

That is, h(x,y;E,8) = f(x;e)g(y;0) if, and only if, for some number

k
o'
t=t

o
. For the Morgenstern, Plackett, and Moran distributions,

the null hypothesis of independence is given by -y=0,11/=1, and,D=0,

respectively, in equations (2.1), (2.3) and (2.5).

The C(a) test statistics of independence for the Morgenstern,

Plackett, and Moran distributions will now be shown to be a function

of 4 only. This result will follow from the fact that (15 and 0e

i=1,...,r, are uncorrelated under the null hypothesis, which gives
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a1 = = a
o

= 0 . By using the r.d.f.'s of equations (2.1),

(2.3), and (2.5) in equations (3.2) and (3.3), it may be seen that for

appropriate functions K(U), 0 <U < 1 95 can be expressed in the

form

and

ct, = K(F(x))K(G(y))

61nf 31ng
4, =

ao NE4

J

Under Ho: 4 = E , the relations

(3.4)

j=1,...,r . (3.5)

E = EEK(F(X))K(G(Y))] = E[K(F(X))] E[K(G(Y))]

imply that

= [E(F(X) ) = 0

E[K(F(X))] = E[K(G(Y))] = 0 (3.6)

Using relation (3.5) and the fact that E 09. =0, we have, for

3

j =1,.. ,r

oov(4 ) ,4) ) = E(4) -40
- -

3

= E[X(F(x)).K(G(y)) Eallnf(X;(
,0) 3ing(y;k0,e)

+

6o.
3

6o.
3

E[K(F(X))*K(G(Y)) ---lnf(X;E0,0)+E[K(F(X)).K(G(Y)).---lng(Y;k0,6]
C.0

=0



Hence, the asymptotic optimal C(a) test for independence, Ho:E=k
o

is based on

n
AE 0 (x.,y.;k ,0)0

1 i=1
t =
n -- a

27

(3.7)

A
where 0 are any locally root-n consistent or simply root-n consistent

A
estimators of 0 and a

2

A
diis the variance of (x,y; ,0).k

o

Now consider estimation of the parameters (a
l'
a
2'
0
l'

0
2
) of

both the gamma and Weibull distributions. For the case where there

are no linear restrictions on the parameters, any estimators,

A A
af (X) ,a/
1 2

(y),01(X),02(y), which are functions of only one of the

variates X or Y, and are root-n consistent with respect to the

corresponding marginal distributions, such as MLE's and moment

estimators, will be root-n consistent with respect to the bivariate

distributions. Under the assumption of common shape parameter,

al=a2=a, any linear function c18/1(x)4cA(x), with positive coeffi-

cients C1 and C2 satisfying C1+C2=1, of root-n consistent estimators

&
1
(X) and "(X

2
(Y) will be root-n consistent since

v/ii-ly1(X)+C2a2
11/1-4109cil-i2x18e2(x)al

The optimal C(a) test statistics of equation (3.7) are

easily evaluated for the Morgenstern, Plackett, and Moran BV distri-

butions, and are given below. Using densities of equation (2.3)

in equation (3.2) gives

K(U) = 2u-1 (3.8)



in equation (3.4) for both the Morgenstern and the Plackett altern-

atives.

Using the additional result

2 2
act, = = 1 / 9

tiv

in equation (3.7) then gives

3 A
to [2F(x.0)-1] [20(0)-1]

n

Similarly, for Moran alternative

and

yields

K(U) =4)-1(u)

2 =141,

ct.;

28

( 3.9)

(3.10)

1
A -

n
to = E liF(x.

1
42. [G(y. (3.11)

I

i=1

3.2 Locally Most Powerful Rank Tests

In this section, we consider 1.m.p.r.t.'s for the null

hypothesis of independence in the Morgenstern, Plackett and Moran

families of distributions.

The 1.m.p.r.t.'s for independence are derived in general

as follows. For a random sample of size n from any BV distribution



with p.d.f. h(x,y),(X(1), ),..., (X(n),Y(Rn) is a sufficient

reduction of data, where X(1) < X(2)...< X(n) and R1' R
2' 'Rn are

ranks of the corresponding Y's among Y1,...,Yn. The joint p.d.f.

for this sufficient statistic (X
(1)

,Y
(R ) (n)

,Y
(Rn)

) is
1

n

nt n h(x(i),y(Ri))

i =1

29

The problem of testing H0: H(x,y)=F(x)G(y) against 111:H(x,y)0(x)G(y)

for some (x,y) in each of the Morgenstern, Plackett, and Moran

distributions is invariant under the group of function transforma-

tions G with elements

go go [(Xf Y
12.

) .. (X Y 11
l' 2 l' 2

,1) (1) (n), (Rn)

= (0
1
(X

(1) ),02 (Y (R1) )),..,(01
(X

(n)
),0

2
(Y

(Rn) ))

where 0
1
and 0

2
are any continuous increasing functions from the

(3.12)

real line onto the real line. The induced group of function trans-

formations G on the parameter space has elements

go = g, = (F01,G01,0 (3.13)
1' 2 '1,'2 1 2

where t is the parameter associated with independence of X and Y.

In particular, = 1,G, and p respectively for Morgenstern,

Plackett and Moran distributions.



A maximal invariant statistic for the group of transforma-

tion is (R1,...,Rn) and the probability function for (R1,...,Rn)

is given by

n

P (r
1

,r n) = nis n h(x.,y )dx.dy."
i=1

30

(3.14)

whereS=10(1,Yr ),...,(Xn,Yr);Xi<,..,<Xnandr.is the rank

of the Y-observation corresponding to Xi among the Y-sample}. The

l.m.p.r.t. of H0: E = En against H1:>E0 rejects Ho for

T =
3

1nP(r ...,rn) > K (3.15)

=

The tests which reject Ho: k = E for

IT1 > K (3.16)

may be used for the two-sided alternatives H2 : #

Using the relation

1: lnht(xi,yi)

II h (x.,y.) = e
i=1

1 1

i=1

and (3.1) for the Morgenstern, Plackett, and Moran distributions,

we obtain



8
T1 h

E
(x.,y.)

()

=
(x.,y.)

iht(xi,yi)=1
o 1=1

={ n f(xi)g(yi)
i=1

=to

31

(3.17)

From equations (3.14) and (3.15), we then evaluate the l.m.p.r.t.

T =
3
--1nP m fn. , n h (xi,y.) n

I
dx.dy.1

6
i=1

k _

i=1
kl

k =ko= S

= nflE (xy.)] n f(xi)g(yi)11 dx.dv
i=1 i=1 i=1

S

E Eoo, (-1c(i),y(r )) = T*

i=1

For the Morgenstern and Plackett distributions, using equations

(3.4) and (3.8) in equation (3.18), we obtain

(3.18)



T*= EE2F(X
(i)

)-1] E[2G(Y(r) -1]

1.
i=1

n
r.

E [2--- 1] [2 1 1]

i=1
n+1 n+1

32

(3.19)

n(n-1) 12 n h+1 nil
= 1/3 E a - )(r. - )J = 1/3 .12112:1). y

n+1
n+1 n -h

i=1
2 2

n

where 7
s
=

32
(i=

n+1
)(r.

n+1
2 2

) is Spearman's rank correla-
n -n=n+

tion coefficient.) hence, the test which rejects H
o

for y
s

> K n3((
n-11))

is equivalent to rejection of Ho for T* > K. Therefore, the one-tailed

test based on T
s
is a l.m.p.r.t. for both the Morgenstern and

Plackett distributions. Kendall [9,p.76] shows the asymptotic

normality of Ts and has the table of probability function of Is.

Farlie [5] shows that the tests based on 7
s
are asymptotically

efficient with respect to tests using the MLE for the correlation

index 'Yfor the Morgenstern distributions.

For the Moran distributions, using equations (3.4) and (3.10),

equation (3.18) gives the Fisher-Yates rank correlation coefficient

n n n

T*/ [Ez
(i)

]2 =
:44)

-1[1
fl

-1
lEic [F(y )]1/ [E(z

(i)
12

1 1

n n

= 2] EZ EZ //): [EZ
(1

.

)
]
2

i=1 (1) (ri) i=1

(3.20)
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where Z
(k)

is the kth order statistic from the unit normal distri-

bution. The l.m.p.r.t.'s for Moran alternatives can also be obtained

from the previous work of Hajek and kdSk [8,p.112] who showed that

l.m.p.r.t.'s of independence against the BV normal alternatives

P> 0 can be based on the Fisher-Yates rank correlation coefficient.

Since rank tests are distributed independently of F(x) and G(y),

any l.m.p.r.t. of independence against BV normal alternatives will

also be a l.m.p.r.t. against Moran alternatives. Hence the Fisher-

Yates rank correlation coefficient gives a l.m.p.r.t. of independence

against the Moran distribution with P > 0.

1 .

Using the approximate scores 4) (1/(n+1)) in place of EZ(i)

in equation (3.20) gives the Van der Waerden correlation coefficient

n

43

r
-1 i

n

i=1

-1 2
(3.21)1:4-1(i;41 )

i=1
(-1-1+1)/ [ I' (TTY) ]

Hajek and keak [8,p.112] have showed the asymptotic equivalence of

test statistics (3.20) and (3.21).

It is interesting to note a relation between the optimal

C(o) tests of independence, equations (3.9) and (3.11), and the

A
corresponding l.m.p.r.t.'s. Replacing F(Xi;) and G(Yi0) by

F(Xi)=i/(n+1) and G(Yi)=ri/(n+1), respectively, in equations (3.9)

and (3.11) yields statistics which are proportional to the cor-

responding Spearman and Van der Waerden correlation coefficients

given in equations (3.19) and (3.21).

in the next section we will show that 1.m.p.r.t.'s are



asymptotically efficient with respect to the corresponding C(u)

tests. Unless F and G have simple forms, the rank tests may be

much easier to compute than the corresponding C(a) tests.

3.3. Asymptotic Relative Efficiency of Nonparametric Tests with

Respect to Optimal C(u) Tests

In this section we compute the ARE of tests based on the

Spearman correlation coefficient and the Fisher-Yates (normal

scores) correlation coefficient with respect to the asymptotically

optimal C(a) tests of equation (3.7) for the three distributions

under consideration.

The general form for the efficacy of C(a) tests is derived

as follows. Letting µ denote the asymptotic mean of the statistic

to in equation (3.7), we find

n

E Eet (Xi,Yi;c),O)

1=1

aot

34

EePt(X,Y;k00)

tr-n- (3.22)

vT7Et[K(F(x))K(G(Y))]

EK
2
(F(X))

2
where cr

2
= E4) - CEO )

2
. Using equation (3.4), we obtain

0



a = EK
2
F(X)'EG

2
(Y) = [EK

2
F(X)]

2

Differentiation of equation (3.22) then gives

v/Ti7EK2(F(X))- y( (GM)
o

at K
2
(F(X))

io

t
o

""tiC"- EtoK2 (G(Y) ) VT Et K2 (F (X) ) .

Using the result that to has asymptotic unit variance under the null

hypothesis, we have for the efficacy

lim e (t
n
) = lim

n-->a) n > n Var (t )
to n

(64 4=4E((tn))

2

6/2c

k
=

(
)2

L0

= [E K2(F(X))12

35

(3.23)

For the Morgenstern and Plackett distributions, the efficacy of the

optimal C(ce) tests is,from equations (3.8) and (3.23),

lim
,

e(tn) = LEK
2 (F)] 2

n> 00
(3.24)

=
[E(2F-02]2



For the Moran distributions, using equations (3.10) and (3.23),

we obtain

lim e(tn) = [E(4'
1(x,))2)2

n> co

= 1

The efficacy of Spearman rank correlation coefficient ys

for the Morgenstern and Plackett distributions is calculated as

follows. The term 7 in equation (3.19) can be written as

where

4n
3 n

. r.

1 's
2, --2

cli
ein n1 )] n

(n+1)
i=1

4n
3

S - n

(n+1)2

S =
1 En n nn
1=1

36

(3.25)

(3.26)

Computing the efficacy of Sn is sufficient to compute ys. In terms

of the empirical distribution functions

n

Fn (x) =
1

I(Xi < x)

i=1

Gn(Y) =
1

I(Y. < y)
n



n

Hn(x,Y) n 2: 7-(xi < x' 71. Y)
i=1

where I(A) is the indicator function of the set A.

S
n
may be written as

Sn = E F (x . )G )n n n (1) n (ri)

i=1

= ifFn(x)Gn(y)dlin(x,y)

The asymptotic mean of S
n

is given by

ifF(x)G(y)dN(x,y)

=ffF(x)G(y)h(x,y)dxdy

Using equation (3.4), we find

2)h.(x,Y) 1

h,(x,y)dxdy16aLL I =ffF(x)G(y)3
h (x,Y)

=4oE =k0

ifi(x)G(y)(2F(x)-1)(2G(y)-1)dF(x)dG(y)

= 1/36

The exact variance of S
n
under the null hypothesis, as given in

[8,p.114], is

Var(Sn)
(n+1)

2
(n-1)

144 n4

37

(3.27)

(3.28)



Hence, the efficacy of and Sn is

13 0 2

Ik=0
lira e(7) = lira e(S ) = lim
n> co n>o* n >a' n Var (S

n
)

= lim
n>co n(n+1)

2
(n-1)

144 n

2

= 1/9

38

(3.29)

Evaluation of the efficacy of ys for the Moran distributions

is similar to that of the Morgenstern and Plackett distributions.

Using equation (3.27), we obtain

AL
lim 77

n>co 0 P
=1:1F(x)G(y)4>1(W)t1(G(y))dF(x)dG(y)

P=0

= [fi(x)4T1(F(x))dF(x)] 2

[(w)wd(1(w)]2

= (1/2 x 0.56419)2 = .079524

The last equality follows from the fact that 2/34(w)d4i(w) is the

expectation of the minimum of two independent unit normal random

variables. From equations (3.30) and (3.28), we obtain

lim e( 1 ) = lim e(S )
rr>ce

s n

(1/2 x 0.56419)4

1/144

= 9(0.56419)
4

= .91169

(3.30)

(3.31)



We will now calculate the efficacy of the statistic

n

T
1

= E
n+1 (Tin n

1
( n+1 )

i=1

39

(3.32)

which is
1
times the numerator of the Van der Waerden correlation

coefficient (expression 3.21) and is asymptotically equivalent to

the Fisher-Yates correlation coefficient equation (3.20). The

statistic T' has asymptotic mean

1
1-1. =ft; l(F(x))4) (G(y))h (x

'

y)dxdy

Then for the Morgenstern and Plackett distributions, we have

and

= ff 43(x) (Y)) h(x,y)
h

k
(x,y)dxdyl

E

k=ko

ff(x))43 l(G(y)) cqx,y)f(x)g(Y)dxdy

=1.74r1(F(x))4r1(G(y))[2F(x)-1][2G(y)-1]dF(x)dG(y)

= Pl(F(x))(2F(x)-1)dF(x)]2

= y;[243(w)-1]143(w)]2

=4fwc1(w)dc13(w)]2

n
1 1 2 2

Var(Tn I) =
n-I 11n 2: [IATT)] 1

i=1

(3.33)

(3.34)



Using equations (3.33) and (3.34) we obtain the efficacy

lim e(n) = lim
1I4[

n> co n>
2

oo

n.n1Lrn 4--"\ `n+1//

2

i=1

16[ w4)(w)d(13(w)12

[irp1(F(x))12dF(x)12

= 144(w)d4(w)]4 = 0.1012999

40

(3.35)

For Moran distributions, using equation (3.10) we can reduce equation

(3.33) to

3µp
1(F)

= [EZ2]2

(3.34) and

lim e(n)
co

1(G)(t_ 1 (F ) (1)." (G )dF d G

= 1

(3.36) give the efficacy

1

(3.36)

(3.37)

lira

Then equations

n>
1

.

J-P-1
2

(F)dF]
2

The ARE's of the nonparametric tests relative to the C(a) tests are

computed by taking the appropriate ratios of efficacies.



TABLE 1. THE ARE'S OF NONPARAMETRIC TESTS FOR INDEPENDENCE BASED ON
THE SPEARMAN AND FISHER-YATES (VAN DER WAERDEN) STATISTICS
RELATIVE TO THE ASYMPTOTIC OPTIMAL C(a) TESTS

BV distributions

Test
statistics

Morgenstern
and Plackett

Moran

41

Spearman
correlation
coefficient

Fisher-Yates
(Van der Waerden)
correlation
coefficient

1

.91169

.91169

1

3.4. ARE's of Two Other Tests of Independence Relative to the C(a

Test for the Plackett Distribution

Plackett [24] considered the consistent estimator

n
ad

be

where a,b,c and d are defined as the frequencies of pairs (Xi,Yi)

respectively in the quadrants (X < h, Y < k), (X < h, Y > k), (X > h,

Y < k) and (X > h, Y > k) .

Mardia [14] considered the consistent estimator4,
n
which is

the solution of the equation

r = P
u(P)

where

P 0) = Corr (F(x),G(y)) = (4,
2
-1-24,1n4)/(4,-1)

2

and f is the Pearson product moment correlation of (F.,G.) =
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(F(Xi,),G(Yi,103)), i = 1,...,n.

Mardia also evaluated the efficacies

and

lim e(in)
*
) = 1/9

n> co

lim e(4,11) = 1/16.

n> co

+ *
Hence from equation (3.24), the ARE' s of Vin and tkn relative to

asymptotically optimal C(a) tests are respectively 9/16 to 1.
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IV. COMPARISON OF NONPARAMETRIC TESTS

FOR BIVARIATE INTERCHANGEABILITY

Given a random sample (X ,Y
1
),...,(X

n n
) from a BV absolutely

continuous c.d.f. H(x,y), we consider rank tests for the null hypoth-

esis of interchangeability, Ho: H(x,y) = H(y,x). Three linear rank

test statistics, Wilcoxon (WN), sum of squared ranks (SSRN), and

Savage (SN), are described in section 4.1. In section 4.2, ARE

comparisons of the three types of tests are made for Morgenstern and

Moran BV alternatives with marginal distributions satisfying G(x) =

F(x/o) for some 0 ¢ 1. Both gamma and lognormal marginal distribu-

tions are used.

4.1. Description of the Test Statistics

Let Z
(1)

< Z
(2)

< < Z( with N = 2n, represent the

order statistics of the combined sample of X's and Y's. Define

CN,1""CW,N by

1 if Z
(i)

is an X-observation
CN,i =

0 if Z
(i)

s a Y-observation.

Sen [25] studied linear rank statistics

=
TN n

EEN,iCN,i

i=1

where the coefficients

(4.1)

= J
N
(i/(N+1)), i = 1,...,N, are specified.
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The coefficients for the three tests under consideration are defined

by

WN : JN (ii(N+1)) = J(i/(N+1)) = i/(N+1) (4.2)

SSRN

S
N

JN(i /(N +l)) = J(i/(11f1)) = (i/(N+1))2 ,

J
N
(ii(N+1)) = 1/(N-j+1)

j=1

(4.3)

= -1n(1-1./(N+1))-1 = J(i/(N+1)). (4.4)

Sen considered permutation tests based on TN. A summary of

Sen's development of the permutation tests is included here for

completion. Define the 2xn matrix AN as

A
N

=

Y
1
Y
2'

..Y
n

and define rank matrix RN as

RN

RX1RX2RXn

Ry Ry ...Ry
1 2 n-

(4.5)

(4.6)

whereRxandRyaretheranksofX.and Y. in the combined sample
1 1

(z
1, '

Z ).

Also, define the set S(RN) as



S(RN) = RN:
RN can be obtained from RN by permutations

of two rank elements within each column.

There are 2
n
possible rank matrices in S(RN). S(RN) is called the

permutation set of RN. Under Ho: H(x,y) = H(y,x).

otN=R; sold =
1

2n

for all 11; f S(RN)
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(4.7)

Thus, the conditional distribution of TN given RN = RN, under Ho

can be obtained from equation(4.7). It should be pointed out that

the unconditional distribution of RN, and consequently of TN, does

depend on H(x,y) under H. Hence, an unconditional test based on

T
N
would not be distribution free.

Calculation of the level of the conditional Wilcoxon test is

now illustrated by the following example. Consider five By obser-

vations given in the data matrix form of equation (4.5)

A
10

4 9 5 11 2

3 10 7 13 6

Using the ordered combined sample

Cz(1),z(2),z(3),z(4),z(5),z(6),z(7),z(8),z(9),z(10))

= (Y5,X1,Y1,Y32175,X32Y27x2,3741x4)

= (2,3,4,5,6,7,9,10,11,13)

the rank matrix R
10

is evaluated.

2 8 6 10 5 1

10
=

3 7 4 9 1

Using equation (4.2) in (4.1), we obtain



T10
1 2 + 8 + 6 + 10 + 5 31

5 11

=

55

The following three R
10

elements of S(R
10

) also have T
10

greater

than or equal to
T10.

3 8 6 10 5 7 6 10 5 3 8 6 9 5

and

2 7 4 9 1 2 8 4 9 1 2 7 4 10 1 .

The other 28 R
10

elements of S(R
10
) have T

10
less than T

10
.

Therefore,

P(Tio >
T70 (S (R10) ) = 4/32 = .125.

The conditional significance level of the test statistic T
10

is

then equal to 2P(T10 > T10 ) = .25 .

Under suitable conditions on the coefficients SenN,i'

[25, Th.5.1] establishes the asymptotic normality of the conditional

distributions of the test statistics. The three statistics under

consideration satisfy Sen's conditions. Now, for the example, we

compare the normal approximation with the exact tail probability for

T10
To
10

are

The conditional expection and conditional variance of T
N

N

E(TNIS(RN)) = /2 EN,i

i=1
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(4.8)



n
1

var (IIIIS(RN)) = 2 (E1 R Em
N 1"-p

)

2

2.k
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(4.9)

where denotes the rank of the jth element of kth pair, j = 1,2 .

In our example,

and

E(T10iS(R10)) = 1/2

23
var (ilOIS

(R10) ) 12100

0
T
10

- E(T
10

IS(R
10

)) 7

z =
[Var (Tio IS (Rio

1/2

For the normal approximation to Pao > T70 IS(Rio)), we have

P (Z > z°) = .068

= 1.49 .

where Z N ( 0, 1 ) . Using the correction for continuity improves

the approximation to P (Z > 1.08) = .100

4.2. ARE's for Morgenstern and Moran BV Gamma Distributions

The ARE's of the Wilcoxon, sum of squared ranks, and Savage

tests are now evaluated for the Morgenstern and Moran BV gamma

distributions with common shape parameter a = 1/2,1,2,3,...,16 and

the BV lognormal distribution.

The general form for the asymptotic efficacy of conditional

tests for interchangeability based on linear rank order statistics

with the alternatives satisfying G(y) = F(YI ) with 6 4 1 was found

by Sen [25]:



where

and

aEo(TN)1
2

I ao le -1

lim e(TN) = lim
N > Co N>00 N Var0.1 (TN)

1/4 C
2
(F,J)

1/2 A
2
(J)[1-B(H,J)]

1 1 2

A
2
(J) =

2
(U)dU - ifJ(U)dUl

00 00

1off J(FW(F(Y))dB(x,y) - JJ(U)dUj
2

B(H,J) -6D

A2(J)

00

C(F,J) = JXJ'(F(x))f(x)dF(x)

-oo

J(U) = lira JN(U) for 0 < U < 1 .

N> co
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(4.10)

(4.11)

(4.12)

(4.13)

Concerning the constants A, B, and C, notice that A is independent

of distributions,B depends on the BV distribution form and is equal

to zero for the case of independence, whereas C depends on the BV

distribution only through the marginals. The quantities in Equa-

tions (4.10), (4.11), (4.12) and (4.13) are evaluated below.

First we consider the case of the Morgenstern BV gamma dis-

tributions with common shape parameter a.
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For the Wilcoxon test statistic (WN) with J(U) = U, 0 <U < 1 ,

A
2(J)

= 1/12 (4.14)

Evaluation of B(H,J) requires the integration:

ffJ(F(x))J(F(y))dH(x,y)

=ffi(x)F(y)f(x)f(g)[1+7(2F(x)-1)(2F(y)-1)]dxdy (4.15)

1/4 + 'Y /36

For C(F,J), we find

C(F,J) =fxf 2 (x)dx

Hence,

r (2a)

2
2a[r(a)] 2

3 r(2a) 2

lirn e(WN) = 1/2
N> co 1- --Y3- 22a[r(a)]2

(4.16)

(4.17)

For the sum of squared ranks test statistic (SSRN) with J(U) = U2,

0 <U < 1, we have

2A (J) = 4/45

ifJ(F(x))3(F(y))dH(x,y)

DifF2 (x)F2(y)f (x) f (g) 1+"Y(2F (x) -1) (2F (y) -1) jdxdy

= 1/9 + Y/36

(4.18)

(4.19)
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Using equations (4.19) and (4.18) in (4.12), we have

B(H,J) = 51116 . (4.20)

00
The term

C(F,J) = fixF(x)f 2 (x)dx

reduces to
0

°° a-1 i -x a-1 -xxe x e 2

C(F,J) = f2x(1-E ) [ ] dx
o is r(a)

i=o

r(2a)
a-1

r(i+2a)

2'E 2 2a
for integer a

r(a) .2
il[r(01)]2.3i+2a3

i=0

and to

y-
x e

00 x - -y -1 -2x

C(F,J) = ff 2x

0 0 tr71r
dydx

x -k -y -2x m co

=
y e e dydx = ff

2e
-2x

dx
y e

dy
o o

7r3/2
o y Ir5/2

oo -3y
e y

dy = for a =1/2 .

3/2 3

Using equations (4.18), (4.20), (4.21) and (4.22) in (4.10), we

have

(4.21)

(4.22)



51

2

a-1
r(2a)

12

r(i+20

2

for integer a.

2 2
r(a) .2 a

i=o
r(a).i:*3

i+2a

lim e(SSRN) =

4/45 - 7/36 (4.23)

N-> 00
1

for a = 1/2.

' 6'7'2(4/45 - 1/367) (4.24)

For Savage test statistics (SN) with J(U) = -1n(1-U)-1, we have

A
2
(J) = 1

and

(4.25)

ffJ(F(x))J(F(y))dH(x,y)

= J(U)J(V)E1+7(2U-1)(2V-1)]dUdV
o o

(4.26)

= 7/4

where U = F(x) and V = F(y).

Using equations (4.26) and (4.25) in equation (4.12), we obtain

B(H,J) = 7/4. (4.27)

The term

co
x

2
C(F,J) = (4.28)f (x)dx

0 1-F(x)

reduces to



C(F,J) =<
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f°
x2a-1 e-x

2u-1 dx

[r(a)]2
x
i

fot integer a , (4.29)
is

i=o

CO
-2x

xe

[1-Fa (x) ]7r

dx for a = 1/2 , (4.30)

where expressions (4.29) and (4.30) are approximated by 32 point
co 32

quadrature numerical integration j(k(x)e
-x
dx = k(xi)Ai .

0
i=1

Tables of x. and A. given in [9,p.352] were used.

Using equations (4.25), (4.27), (4.29) and (4.30) in equation (4.10),

we have

lim e(Sw) =
N> 00

2
03 2a-1

(r()2E xi

x
o a-1

0
e
- x

dx

]

i=0 for integer a ,

2 ( 1 - 114 )

00
1 xe

-2x 12

1-F (x) 1-

dx]
o a

2 ( 1 - 7/4 )

(4.31)

for a = 1/2 (4.32)

The ARE's for the Wilcoxon, Savage and SSR tests are tabulated

in Tables II -IV for the Morgenstern BV gamma distributions with common
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shape parameter a = 1/2,1,2,3,...,16 and parameter 7 = -1(.1)1.

For the case of independence (7= 0), our results of the ARE of WN

relative to SSRN for all integer a's, and the ARE of WN relative

to S
N

for Q' = 1 agree to four decimal places with those of Duran

and Mielke [4]. Also for 7 = 0, the ARE of SSRN relative to SN

agrees with that of Mielke [4] to three decimal places. In figure 6,

values of a and 7 for which each of the three tests is most effi-

cient are indicated. The Savage test is seen to be best among the

three tests for negative 7 . For positive 7 , either the Wilcoxon or

the sum of squared ranks test is preferred to the Savage test depend-

ing on the combination of a and 7

For computing ARE's for Moran BV gamma distributions with

common shape parameter a , we only need to evaluate B(H,J) since

A(J) and C(F,J) do not depend on the form of the BV distribution.

We use the following transformations

F (x) = 4 (w)

F(y) =10 (z)

H(x,y) =40 (w,z) ,

where (41,Z) are BV unit normal random vcriables with correlation

coefficient P .

For the Wilcoxon statistic W
N

then,

J:(3(F(x))J(F(y))dH(x,y)

=f)j(t(w))J(01)(z))dt( w,z)

= P(U < W,V < Z)

(4.33)



a

16

15

14

13

12

11

10

9

8

7

0

SSR

Savage

Wilcoxon

-1.0 -.6 0 .2 .4 ,6 .8 1.0

Figure 6. Regions of the most efficient tests for the
Morgenstern BV distribution
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TABLE II. ASYMPTOTIC RELATIVE EFFICIENCY OF THE WILCOXON TEST RELATIVE TO THE SAVAGE TEST OF H
H(,y)=H(y,x) AGAINST ALTERNATIVES G(Y)=F(Y/0,841,FOR THE MORGENSTERN BV DISTRIBUTION °

-1 -.9 -.8 -.7 -.6 -.5 -.4 -.3 -.2 -.1 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1

1 203 .707 .711 .715 719 .723 .728 .733 .738 .744 750 57 .763 .771 .779 788 797 207 S18 230 .844

'2 7.803 .807 .811 .816 .821 .826 831 .837 .843 .850 .857 .864 .872 .880 889 899 910 922 934 .948 .964

3 .851 .855 .860 .865 .870 .875 881 .887 894 .901 S08 .916 .924 .933 943 953 965 977 .990 L005 1021
4 .881 .885 .890 .895 .900 S06 .912 .918 .925 .932 .940 .948 .956 .966 .976 987 998 1011 1025 L040 1057
5 .902 .906 911 .916 .922 .928 .934 .940 .947 .954 .962 .970 .979 .989 .999 1010 1422 1035 1050 1065 1082
6 .917 .922 .927 .932 .938 .944 .950 .956 .963 .971 .979 .987 .996 1006 1016 L027 1040 1.053 1068 1083 1101
7 .930 .935 .940 .945 .950 .956 .963 .969 .976 .984 .992 1000 L009 L019 1030 1.041 1054 1.067 1082 1.098 1116
8 .940 .945 .950 .955 .961 .967 .973 .980 .987 .994 1002 L011 1.020 L030 1041 1053 1065 1.079 L094 1.110 1128
9 .948 .953 .958 .964 .969 .975 .982 .988 .996 L003 1011 1020 1029 1039 1050 1062 1075 1088 1.103 L120 1038

10 .955 .960 .965 .971 .977 .983 989 .996 1003 L011 1019 L028 1.037 L047 1058 1.070 1083 1097 1112 1128 1146
11 .962 .966 .972 .977 .983 .989 .995 L002 L010 1017 L026 1034 L044 L054 1065 1.077 1090 1104 1.119 L136 1154
12 .967 S72 S77 .983 .988 .995 1001 1008 L015 1.023 1031 1040 L050 1060 1071 1083 1096 1.110 1.125 1142 1160
13 .972 .977 .982 .988 .993 1000 1006 1013 1.020 L028 1.037 L046 1.055 L065 1076 1088 1.101 1115 1131 1.148 1166
14 .976 .981 .986 .992 .998 1.004 1011 L018 1025 L033 1.041 L050 1.060 1070 1081 1093 1.106 1.120 1.136 1153 1171
15 .980 .985 .990 .996 1002 1008 1015 L022 1.029 L037 1045 L054 1.064 L074 1086 1098 1.111 1.125 1140 L157 1176
16 084 .989 .994 .999 1005 1012 1018 1025 1.033 1041 1049 L058 1068 L078 1089 1.102 1.115 1.129 1.144 1.161 1180



TABLE III. ASYMPTOTIC RELATIVE EFFICIENCY OF THE SUM OF SQUARED RANKS TEST RELATIVE TO THE SAVAGE
TEST OF H

o
: H(x,y)=H(y,x) AGAINST ALTERNATIVES G(y)=F(y/e), 1, FOR THE MORGENSTERN BV DISTRIBUTION

or
1 -..9 -.8 -..7 -.6 - ..5 4 -.3 -.2 -.1 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1

1 .827 .830 .833 .837 .841 .845 .849 .853 .858 .863 .868 .874 .880 .886 .893 .900 .908 .917 .926 .936 .947
2 .889 .892 .896 .900 .904 .908 .913 .917 .923 .928 .934 .939 .946 .953 .960 .968 .977 .986 .996 1.007 1.018
3 .917 .920 .924 .928 .932 .937 .941 .946 .951 .957 .963 .969 .976 .983 .990 .988 1.007 1.017 1.027 1.038 1.050
4 .934 .937 .941 .945 .949 .954 .958 -963 .969 .974 .980 .987 .993 1.001 1.008 1.017 1025 1.035 L046 1.057 1.070
5 .945 .949 .953 .957 .961 .965 .970 .975 .981 .986 .992 .999 1.006 1.013 1.021 1.029 1.038 L048 1.058 1.070 1.082
6 .954 .957 .961 .965 .970 .974 .979 .984 .990 .995 1001 1,008 L015 1.022 1.030 1.038 1.047 1057 1.068 1.080 1.092
7 .960 .964 .968 .972 .976 .981 .986 .991 .996 1.002 1.008 1.015 1.022 1.029 1.037 1.045 1.055 1.065 1075 L087 1.100
8 .966 .969 .973 .977 .982 .986 .991 .996 1.002 1,008 1.014 1020 1.027 1.035 1.043 1.051 1.061 1,071 1.081 1.093 1.106
9 .970 .974 .978 .982 .986 .991 .996 1.001 L006 1.012 1.018 1025 1.032 1.039 1.048 1.056 1.065 1.075 1.086 1.098 1.111

10 .974 .978 .982 .986 .990 .995 1000 1.005 1010 1.016 1.022 1.029 1.036 1.044 1052 1.060 1.070 1.080 1091 1.102 1.115
11 .977 .981 .985 .989 .993 .998 1003 1.008 L014 1.020 1.026 1.032 1.039 L047 1.055 1.064 L073 1.083 1.094 1.106 1.119
12 .980 .984 .988 .992 .996 1001 1006 1011 1.017 1.023 1.029 1.035 1.043 1.050 1.058 L067 1.076 1.086 L097 1.109 1.122
13 .982 .986 .990 .994 .999 1.004 L008 1.014 1.019 1,025 1.031 1038 L045 1052 1.061 L070 1.079 1.089 1.100 1.112 1.125
14 .985 .988 .992 .997 1001 1006 1011 1016 1.022 1.028 L034 1040 1.048 1.055 1.063 1.072 1.081 1.092 1.103 1115 1.128
15 .987 .990 .994 .999 1003 1008 1013 1018 1024 1,030 1.036 1.043 1.050 L057 1.065 1.074 1084 1.094 1.105 1.117 1.130
16 .988 .992 .996 .1001 1.005 L010 1015 1020 1.026 1.032 1.038 1.045 1052 L059 1.067 1.076 1086 1-096 L107 1.119 1.132

Ui
rn



TABLE IV. ASYMPTOTIC RELATIVE EFFICIENCY OF THE WILCOXON_TEST RELATIVE TO THE SUM OF SQUARED RANKS
TEST OF Ho: H(x,Y)=H(y,x) AGAINST ALTERNATIVES,G(y)=F(Y/0),(Ail,. FOR THE. MORGENSTERYBV DISTRIBUTION

\71 -1 -.9 -.8 -.7 -.6 -.5 -.4 -.3 -.2 -.1 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1

.788 .789 .790 791 .792 .793 .794 .796 .797 .798 .800 .802 .804 .806 .808 .810 .813 .815 .818 .821 .825
1 .851 .852 .853 .854 .855 .856 .858 .859 .861 .862 .864 .866 .868 .870 .872 .875 .878 .880 .884 .887 .891
2 .903 .904 .906 .907 .908 .909 .911 .912 .914 .916 .918 .920 .922 .924 .926 .929 .932 .935 .938 .942 .946
3 .928 .929 .931 .932 .933 .935 .936 .938 .939 .941 .943 .945 .947 .950 .952 .955 .958 .961 .964 .968 .973
4 .944 .945 .946 .947 .949 .950 .952 .953 .955 .957 .959 .961 .963 .965 .968 .971 .974 .977 .980 .984 .989
5 .954 .955 .957 .958 .959 .961 .962 .964 .966 .967 .969 .971 .974 .976 .979 .982 .985 .988 .991 .995 1.000
6 .962 .963 .965 .966 .967 .969 .970 .972 .974 .975 .977 .980 .982 .984 .987 .990 .993 .996 1,000 1.004 1,008

7 .968 .970 .971 .972 .974 .975 .977 .978 .980 .982 .984 .986 .988 .991 .993 .996 .999 1,002 1.006 1,010 L014
8 .973 .975 .976 .977 .979 .980 .982 .983 .985 .987 .989 .991 .993 .996 .998 1.001 1.004 1.008 1.011 1,015 1.019
9 .978 .979 .980 .982 .983 .984 .986 .987 .989 .991 .993 .995 .998 1000 1.003 1.006 1.009 1.012 1.016 1,020 1,024

10 .981 .982 .984 .985 .986 .988 .989 .991 .993 .995 .997 .999 1001 1004 1006 1.009 1.012 1,016 1.019 1,023 1.028

11 .984 .985 .987 .988 .989 .991 .993 .994 .996 .998 1000 1002 1004 1007 1009 1.012 1.016 1,019 1,023 1.027 1.031

12 .987 .988 .989 .991 .992 .994 .995 .997 .999 1001 1.003 1005 1007 1010 L012 1.015 1.018 1,022 1.025 1.029 1034
13 .989 .991 .992 .993 .995 .996 .998 .999 1.001 1.003 1005 1007 1010 1012 1015 1.018 1,021 1.024 1,028 1,032 1.036

14 .991 .993 .994 .995 .997 .998 1000 L001 1.003 1.005 1007 1009 1012 1014 1017 1.020 1.023 1,026 1,030 1,034 L039
15 .993 .995 .996 .997 .999 1.000 1,002 L003 L005 L007 1009 1011 1014 1016 1019 1.022 1.025 1.028 1.032 1.036 1041
16 .995 .996 .998 .999 3.000 1002 1,003 1005 1.007 1.009 1011 3.013 1015 1018 1021 1.024 1.027 1,030 1.034 1,038 1043
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where U and V are independent unit normal random variables which are

also independent of W and Z. Let

S
1

= (W-11) A5

and

S2 = (Z-V) /V-2-

with second order moments

and

2

var(S1) = 1/2(var(W) + var(U)) = 1

var(S2) = 1/2(var(Z) + var(V)) = 1

cov(S1,S2) = 1/2 cov(W,Z) = 1/2 P

Equation (4.33) then is equal to

P(0 < S 0 < S
2
) = 1/4 + 1/(2r) sin-1(P/2) .

The equality of equation (4.34) was established in [2,p.290].

Therefore, from equations (4.12), (4.14), (4.33) and (4.34) we

have

(4.34)

B(H,J) = (6/r) sin
-1

(P/2) (4.35)

Using equations (4.14), (4.35) and (4.16) in equation (4.10) gives



lim e(WN) =
N> co

F (2a)
2

(02.22a

2[1/12 - 47() sin-1(P/2) ]

3
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for integer a , (4.36)

for a = 1/2 (4.37)

2n
2

[1 - 6/7r sin
-1

(P/2)]

For the sum of squared ranks test statistic (SSIRN),

ifj(F(x))J(F(y))dli(x,y)

=.11J(t(0).0(z))&13(w,z)

= ff4)2(w)(132(z)dc1)(4,z)

ffp(Ul< w,U2< w, V1< z,V9< z)d(13(w,z)

(4.38)

where U1, U2, V1 and V2 are independent unit normal random variables

which are also independent of W and Z. Let

S1 = (d-U1)447, S2 = (W-U2)/1/27 S3 = (z-V1)/1/2, and S4 = (Z-V2)A2,

so that (S
1,

S
2'

S3, S
4
) has a quadrivariate normal distribution

with zero mean vector and covariance matrix.

1

1

2

A
7
A
2

1

2

1

A

-2-

P

P
2

P
2

1

1

P-
2

P
2

2

1

(4.39)



Then equation (4.38) may be written as

P( 0 < S1, 0 < S2, 0 < S3, 0 < S
4

)

= 1/16 Asin1(1/2)+2 sin- 14)1/47r+i[sin-1(1/2)]- 2_2[sin-1 ,e,,21/4,2
2,-1

-1 p 2 2 -1 , , 2142L.U,cos(-2-)11-1121.[..f]..L.[f ,cos (1/2)jirr
1
2

i
2

1
2

= L(P)

60

(4.40)

Equation (4.40) was derived in [1,1"153] with (x) and L. (r,0)
12

12

representing logarithm functions given in [11].

Hence, from equations (4.12), (4.18), (4.38) and (4.40) we have

L(p) - 1/9
B(H,J) (4.41)

4/45

Using equations (4.18), (4.41), (4.21) and (4.22) in equation (4.10)

gives

lim e(S
N->co

12i

2

r(2a)
a-1 r(i+20

r(a)
2
*2

2a, r(a)20i1.3i+2a]
i =0

2 [1/5 - L(p)]

1

6 r2 [1/5 - L(p)]

for integer a ,

for a = 1/2

(4.42)

(4.43)
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For Savage test statistics (S
N
) we have

B(H,J) :11.1(4(w))J(4)(z))d4)(w,z)

:filn(1.4(w))1n(1-4)(z))0(w,z)dwdz - 1 (4.44)

2

((1-p2) z w-pz)2

1 ,
2(1-P

2
ifln(1-4)(0)e 2(1-P

2

)dw dz - 1
477-(1-P2

ln(1-4,(z))e

)

Using the transformation

W - pz
S= T

V2(-77) V 2

and letting

h
1
(s,t) = ln[1-444(1-e), S +/2770] ,

h
2
(t) = ln[l -( /2t)] ,

equation (4.44) may be written as

-2 -t
2

B(H,J) = lfh
2
(tyla

1
(s

'

s
et)e ds dt - 1

The double integral in equation (4.45) is approximated by

20 20

E h2(tdi

i=1 j=1

(4.45)

wherethet.=.s.andA.were taken from [9,p.343-346].

Using equations (4.25), (4.44), (4.29) and (4.30) in equation (4.10),

we obtain



lim e(Wm) =
N>00

x2(Y-1
e
-x

d ]1 2V
a-1

--, i

[r(a)12 \\ T --1

L....4 1.

i-0

2

1
w
2
-2,0wz+z

2

21/In[1-01)(w)]ln[1-4)(z)] 2(1-p2) dwdz
27r( 1-P2 3)

for integer a , (4.46)
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2

1 xe
-2X

1/2 dx.]
7r

0 1-F(x)

w
2
-215wz+z

2

25671n[1-4(w)]ln[1-4(z) ]
1

dwdz
27r.(1-/32

e
2(1 -P2)

)

for a = 1/2 . (4.47)

The ARE's for the Wilcoxon, Savage, and SSR tests are tabulated

in Tables V, VI and VII for the Moran BV gamma distributions with

common shape parameter a = 1/2, 1, 2, 3,...,16. The correlation

coefficients P's are chosen so that sin
-1

(P/2) = -30° ( +50) 300

(see equation 4.40). When P= 0, the results agree with those in Tables

Figure 7, similar to Figure 6, graphs in a - P space those.

regions in which each of the three tests is most efficient.

4.3 ARE's for the BV Lognormal Distribution

For the case of the BV lognormal distributions, we need only

to compute the constant C(F,J) in equation (4.13) since the evaluation

of A
2
(J) and B(H,J) are the same as those obtained for the Moran BV



TABLE V. ASYMPTOTIC RELATIVE EFFICIENCY OF THE WILCOXON TEST RELATIVE TO THE SAVAGE TEST OF Ho:
H(x,y)=H(y,x) AGAINST ALTERNATIVES G(y)=F(y/0),041, FOR THE MORAN BV DISTRIBUTION

\\P -.8452

1/2 .3638
1 .4384
2 .5007
3 .5306
4 .5492
5 .5622
6 .5720
7 .5796
8 .5859
9 .5912

10 .5956
11 .5995
12 .6029
13 .6059
14 .6086
15 .6110
16 .6132

-.6840 -.5176 -.3472 -.1744 0 .1744 .3472 .5176 .6840 .8452

.4247 .4767 .5245 .5714 .6223 .6855 .7779 .9407 1.3003 2.5190

.5118 .5746 .6321 .6888 .7500 .8261 .9377 1.1338 1.5673 3.0366

.5845 .6561 .7218 .7865 .8565 .9434 1.0708 1.2947 1.7898 3.4677

.6195 .6954 .7651 .8336 .9078 .9999 1.1349 1.3723 1.8970 3.6755

.6412 .7198 .7919 .8628 .9396 1.0349 1.1747 1.4203 1.9635 3.8041

.6564 .7368 .8106 .8833 .9618 1.0594 1.2024 1.4540 2.0099 3.8942

.6678 .7496 .8247 .8986 .9785 1.0778 1.2233 1.4792 2.0448 3.9618

.6767 .7597 .8358 .9107 .9917 1.0922 1.2398 1.4991 2.0723 4.0151

.6841 .7679 .8448 .9205 1.0024 1.1040 1.2532 1.5153 2.0947 4.0584

.6902 .7748 .8524 .9287 1.0113 1.1139 1.2644 1.5288 2.1134 4.0947

.6954 .7806 .8588 .9357 1.0190 1.1223 1.2739 1.5404 2.1293 4.1256

.6999 .7857 .8644 .9418 1.0256 1.1296 1.2822 1.5504 2.1432 4.1523

.7038 .7901 .8693 .9471 1.0314 1.1360 1.2894 1.5591 2.1553 4.1758

.7074 .7940 .8736 .9518 1.0365 1.1416 1.2959 1.5669 2.1660 4.1966

.7105 .7976 .8775 .9561 1.0411 1.1467 1.3016 1.5738 2.1756 4.2152

.7133 .8007 .8810 .9559 1.0453 1.1513 1.3068 1.5801 2.1843 4.2320

.7159 .8036 .8841 .9633 1.0490 1.1554 1.3115 1.5858 2.1922 4.2473



TABLE VI. ASYMPTOTIC RELATIVE EFFICIENCY OF THE SUM OF SQUARED RANKS TEST RELATIVE TO THE SAVAGE TEST
OF H : H(x,y)=H(y,x) AGAINST ALTERNATIVES G(y)=F(y/0),011, FOR THE MORAN BV DISTRIBUTION

-.8452

1/2 .4852
1 .5416
2 .5823
3 .6006
4 .6115
5 .6190
6 .6246
7 .6289
8 .6324
9 .6354

10 .6378
11 .6400
12 .6418
13 .6435
14 .6449
15 .6463
16 .6474

-.6840 -.5176 -.3472 -.1744 0 .1744 .3472 .5176 .6840 .8452

.5626 .6237 .6751 .7241 .7778 .8473 .9510 1.1361 1.5487 2.9531

.6277 .6958 .7535 .8077 .8681 .9460 1.0613 1.2673 1.7273 3.2922

.6751 .7482 .8102 .8686 .9335 1.0172 1.1412 1.3628 1.8574 3.5400

.6962 .7716 .8356 .8958 .9627 1.0491 1.1770 1.4055 1.9155 3.6510

.7089 .7857 .8509 .9121 .9802 1.0682 1.1985 1.4311 1.9504 3.7174

.7176 .7953 .8613 .9233 .9922 1.0813 1.2131 1.4486 1.9743 3.7630

.7240 .8025 .8691 .9315 1.0011 1.0910 1.2240 1.4616 1.9921 3.7968

.7290 .8081 .8751 .9380 1.0081 1.0986 1.2325 1.4718 2.0059 3.8232

.7331 .8125 .8800 .9432 1.0137 1.1047 1.2394 1.4800 2.0171 3.8445

.7365 .8163 .8840 .9476 1.0184 1.1098 1.2451 1.4868 2.0264 3.8622

.7394 .8195 .8874 .9513 1.0223 1.1141 1.2500 1.4926 2.0343 3.8773

.7418 .8222 .8904 .9544 1.0258 1.1179 1.2541 1.4976 2.0411 3.8902

.7440 .8246 .8930 .9572 1.0287 1.1211 1.2578 1.5019 2.0470 3.9015

.7459 .8267 .8953 .9597 1.0314 1.1240 1.2610 1.5058 2.0522 3.9115

.7476 .8286 .8973 .9619 1.0337 1.1265 1.2639 1.5092 2.0569 3.9204

.7491 .8303 .8992 .9638 1.0358 1.1288 1.2665 1.5123 2.0611 3.9284

.7505 .8318 .9008 .9656 1.0378 1.1309 1.2688 1.5151 2.0649 3.9357



TABLE VII. ASYMPTOTIC RELATIVE EFFICIENCY OF THE SUM OF SQUARED RANKS TEST RELATIVE TO THE WILCOXON
TEXT OF Ho: H(x,y)=H(y,x) against alternatives G(y)=F(y/0), 01, FOR THE MORAN BV DISTRIBUTION

-.8452 -.6840 -.5176 -.3472

1.3340 1.3246 1.3082 1.2870
1 1.2354 1.2265 1.2110 1.1921
2 1.1632 1.1549 1.1403 1.1225
3 1.1319 1.1238 1.1096 1.0922
4 1.1135 1.1055 1.0916 1.0745
5 1.1011 1.0932 1.0794 1.0625
6 1.0920 1.0842 1.0705 1.0538
7 1.0850 1.0773 1.0637 1.0470
8 1.0794 1.0717 1.0582 1.0416
9 1.0748 1.0671 1.0536 1.0371

10 1.0709 1.0632 1.0498 1.0333
11 1.0675 1.0599 1.0465 1.0301
12 1.0646 1.0570 1.0436 1.0273
13 1.0620 1.0545 1.0411 1.0248
14 1.0598 1.0522 1.0389 1.0226
15 1.0577 1.0502 1.0369 1.0206
16 1.0559 1.0483 1.0351 1,0189

-.1744 0 .1744 .3472 .5176 .6840 .8452

1.2672 1.2498 1.2361 1.2225 1.2078 1.1910 1.1723
1.1728 1.1574 1.1452 1.1319 1.1178 1.1021 1.0842
1.1043 1.0898 1.0783 1.0658 1.0525 1.0377 1.0209
1.0745 1.0605 1.0493 1.0371 1.0242 1.0098 .9933
1.0571 1.0432 1.0322 1.0202 1.0075 .9934 .9772
1.0453 1.0316 1.0207 1.0089 .9963 .9823 .9663
1.0367 1.0231 1.0123 1.0006 .9881 .9742 .9584
1.0300 1.0166 1.0058 .9942 .9818 .9680 _9522
1.0247 1.0113 1.0006 .9890 .9767 .9630 .9473
1.0203 1.0070 .9963 .9848 .9725 .9588 .9432
1.0166 1.0033 .9927 .9812 .9690 .9554 .9398
1.0134 1.0002 .9896 .9781 .9569 .9524 .9369
1.0107 .9974 .9869 .9754 .9633 .9498 .9343
1.0082 .9950 .9845 .9731 .9610 .9475 .9321
1.0061 .9929 .9824 .9710 .9589 .9454 .9301
1.0041 .9910 .9805 .9691 .9571 .9436 .9283
1.0024 .9892 .9788 .9674 .9554 .9420 .9266
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Figure 7. Regions for the most efficient tests for the
Moran BV distribution.
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distributions.

For the Wilcoxon test statistic (WN)

C(F,J) =fxf2(x)dx

2.fx[ 1 - 1/2(lnx)
2

] dx

_1 r1e-anx)2
dx

x 2

which, by the transformation y = lnx, reduces to

2

C(F,J) L fe-y d,
2v*-

27r

67

(4.48)

Using equations (4.14), (4.35) and (4.48) in equation (4.10), we

have

1

lim Odd
N > 4 r [ 1/6 - 1/7r sin-1 ( ) ]

2

For sum of squared ranks test (SSRN)

C(F,J) =fixF(x)f2(x)dx

1 -(1nx)2
=fix4(lnx) e dx

x 2r

which by the transformation y = lnx reduces to

2

-y=f2 4) (y) 1 e dy

27r

(4.49)

(4.50)



Using equations (4.18), (4.41) and (4.50) in equation (4.10), we

have

68

1

lim e(SSRN) (4.51)
N-> co 871-(1/5 - L(P))

Similarly, for Savage test statistic (SN)

1
2

C(F,J) fx f (x)dx
1 -F(x)

1 1 (4.52)

x-27r

-(1nx)
2

dx
1-4(lnx)

1 1 2

2 r J(' 1-4(Y)

e-Y dy

equation (4.52) is approximated by 20 point quadrature numerical

integration, /1.((x)e - 2xdx
20

i=1

k(xi)Ai . Tables of xi,Ai given in

[9,p.343-346] are used.

Using equations (4.26), (4.44) and (4.52) in equation (4.10), we

obtain

lim e(SN)
W-> 00

2
2

fl-4(y)
e-Y dy]

1
2 2
-2,0wz+z

812 2)(fin(1 -40))1n(1 -4)(z)) 2 3- e dwdx

1
2(

2
1-P)

2r(1-p ) 2
(4.53)
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The ARE's for the Wilcoxon, Savage, and SSR tests are tabulated

in Table VIII for the BV lognormal distributions. The entry of the

ARE of SSRN relative to WN for P = 0 agrees with that of [4,p.343]

to three decimal places.



TABLE VIII. ASSYMPTOTIC EFFICIENCY COMPARISONS
OF H

o
fil(x

'
y)..H(y,x) AGAINST G(y)=F(y/0),61, FOR THE BV LOGNORMAL DISTRIBUTION

W
N

relative to S
N

SSRN relative to S
N

SSRN relative to W
N

-.8452 -.6840 -.5176 -.3472 -.1744 O. .1744 .3472 .5176 .6840 .8452

.6844 .7990 .8968 .9867 1.0750 1.1705 1.2895 1.4637 1.7695 2.4473 4.7400

.6846 .7936 .8799 .9525 1.0217 1.0973 1.1956 1.3419 1.6028 2.1851 4.1664

1.0005 .9935 .9812 .9653 .9504 .9374 .9272 .9168 .9158 .8932 .8790

Note: WN, SSR
N

and S
N represent statistics of the Wilcoxon test, sum of squared ranks test and the

Savage test, respectively.

O



V. COMPARISON OF TWO-SAMPLE NONPARAMETRIC TESTS
FOR RATIOS OF BIVARIATE OBSERVATIONS

Given two independent BV samples (X11,Y

and (K Y ),...,(X ,Y ), let
21' 21 2n 2n

70CheYind

Zlj = Yij / Xlj , j=1,...,m and Z2j = Y2j/X2i, j=1,...,n

and

71

(5.1)

N = m + n . (5.2)

Let F
1
(z) and F,(z) represent, respectively, c.d.f.'s for the Z

1

and Z
2

variables. We are interested in nonparametric tests for

H
o
: F

1
(z)=F

2
(z) against H

1
: F

1
(z)iF

2
(z). This is a standard two

sample problem with respect to the Z1 and Z2 variables.

The power functions of nonparametric tests of H
o

F
1
(z)=F

2
(z)

against H1:F1(z)3F2(z) will depend on the forms of the c.d.f.'s

F
1
(z) and F

2
(z). These c.d.f.'s depend on the joint c.d.f. H(x,y)

of the X and Y variables. ARE comparisons among the Wilcoxon, normal

score, and symmetric squared rank tests are made below in section 5.2

for Morgenstern BV gamma scale alternatives for X and Y

G(x) = F(x/A), A41 ,

where F and G have common shape parameter a .
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5.1 Rain-making experiments

In rain-making experiments, it is commonly assumed that the

seeding effect is multiplicative [23] with the precipitation following

gamma distributions [4,19]. Let X and Y denote nonseeded and seeded

precipitations respectively.G(y)=F(y/0) where 041 indicates a seeding

effect. Two designs for rain-making experiments will now be discussed.

5.1.1. Design I

This design, introduced by Neymen and Scott [22], includes

one target area and s control areas. The cloud seeding is conducted

over the target area. The control areas are chosen such that their

precipitation is highly correlated with that of target area. Moreover,

the control areas are somewhat isolated from the target area so that

their precipitation is not affected by the cloud seeding. When a

storm is approaching, if it is seedable as determined by a meteorolo-

gist, a random scheme is used to determine whether or not to seed the

target area. For instance, a fair coin may be tossed and if it comes

up heads, the target area will be seeded. Precipitation measurements

are then taken over both the target and the control areas. Comparison

between the precipitation measurements of seeded and nonseeded "seed-

able" storms is made in order to judge the effect of seeding.

Neyman and Scott formulate the problem of testing for a

seeding effect in the following way: Let Y and X = (K1,...,Xs) be

the precipitations in the target and s control areas. The distribu-

tion of Y depends on the value of X and some parameters ow where

041 denotes the seeding effect. The conditional p.d.f. of Y given

X=x can be written as eylx,0(0)). The p.d.f. of X, f(10, is rather
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arbitrary. If the nonseeded conditional expected precipitation in

the target is n (x), then the seeded conditional expectation is assumed

to be n(x)0 . 0 =1 implies no seeding effect. Since the distributions

of Y and X are found to be far from normal, Neyman and Scott use a

square root transformation on Y, i.e. T =1./T., and assume the condi-

tional p.d.f. of T for given X = x is normal with constant variance,

1

p(tlx,0(0))= exp -(t-a0(0)- .5- a
i
(0)x.)2/2a(0)2]a (0)1/2-7i

i=1

where 0(0) = 07(0), ao(0), i=0,1,2,...,$).

Both p(tlx 0(0)) and f(x) should satisfy Cramer conditions [21].

For testing the null hypothesis 0=1, Neyman and Scott construct an

optimal C(a) test.

We formulate the problem of testing for a seeding effect as

follows: Let the random variables U
A
and U

B
denote unseeded rainfalls

in the control area A and target area B respectively. To simplify

the problem, only one control area is used . Let W = UB / UA .

Let there be m occasions when area B is seeded and n occasions

when area B is not seeded. Assuming a multiplicatixie effect for

seeding, let (XII , = (UAi,OUBi), i=1,...,m, represent observed

rainfalls for the m occasions where area B is seeded, and (X Y2.)
23 23

= (UAJ, UBJ), j=1,...,n for the n occasions when area B is not seeded.

Then ratios of the X and Y variables may be expressed in terms of the

W variables

=.0um./um=0W.,Zia Yli

Z2. =Y2 . / X2. = UBj /UAj
=W

j'
j=1 n"

(5.3)

(5.4)
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The c.d.f.'s F
1
(z) and F

2
(z) for the Z

1
and Z

2
variables, respectively,

are then scale alternatives,

F
1
(z) = F

2
(z/6) (5.5)

5.1.2. Design II.

This is so-called cross-over design [20]. There are two

areas which are so close to each other that there is a high correla-

tion between their unseeded precipitations, yet the areas are far

enough apart that seeding in one area does not influence the precipi-

tation in the other area. When a storm approaches, we randomly (e.g.

flip a fair coin) select one of the two areas as the target area and

the other as the control. Moran [20] has shown that this design is

better than the previous one provided that contamination between the

two areas is of little consequence. We will also show this is true

in section 5.2. Moran's statistical theory is based on the assumption

that the logarithmic transformation of precipitation follows a normal

distribution. Mielke [17] introduced a symmetric squared rank test

to test the seeding effect for this design. He prefers the symmetric

squared rank test over the Wilcoxon test because the symmetric

squared rank test gives greater weight to large precipitation ratios

Y/X. We now formulate Design II similar to the formulation of Design I.

Let U
A

and U
B

denote the unseeded rainfalls in area A and

area B respectively, and W = UB / UA . Let there be m occasions

when area A is seeded and area B is not seeded. N = n + m .

lim =p ,0 < p < 1. Again, a multiplicative effect for seeding
N> co
is assumed. Let (X..

'

Y
11
.) = (U

Ai'
. 6U

Bi '

) i=1,...,m, represent
1.1
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observed rainfalls for the m occasions when area B is seeded, and

(X2j, Y2j) = (011.Eij , UB.), j=1,...,n, for the n occasions when area A

is seeded. The ratios of the X and Y variables may be expressed in

terms of the W variables

Zli = Yli/Xli =OUBi/bAi = OWi, i=1,...,m

Z2j = Y2j/X2j = UBj/OUAj = Wj, j=1,...,n

(5.6)

(5.7)

The c.d.f.'s F1(z) and F2(z) for the ZI and Z2 variables, respectively,

then are scale alternatives,

F1(z) = F
2
(z/O

2
) .

5.2. ARE's for Morgenstern By gamma alternatives

(5.8)

For Morgenstern alternatives, we compute the efficiency for

three nonparametric tests for H
o

F
1
(z) = F

2
(z) against H1: F

1
(z) =

F
2
(z/X). Notice that this formulation holds for both designs, since

X= 0 for Design I and X=0
2

for Design II.

Recall that the efficacy of the rank statistic TN =

N
1 i 1 if it is Z

1
-observation

V
m J(---N+1 0C

N
.

.

where CN

i=1

.4.,

'1 0 of it is Z
2
-observation .

with weight function J(u) is

2

x
(T
N
)IA=11

lim e(TN) =
1 1

N> co 1/2 f J"(U)dU-[f J(U)dU]
2

Notice that equation (5.9) is a special case of equation (4.10).

(5.9)
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Evaluation of equation (5.9) requires the p.d.f. of Z where Z=Y/X.

In the rain-making experiments, Z=AW forN =1,0 and 0
2

. Therefore it

is sufficient to derive the p.d.f. f(w) and c.d.f. F(w) for W. Using

the Morgenstern p.d.f. equation (2.1) possessing common gamma marginal

distributions with integer shape parameter a , we find

r(2a) w
a-1 a-1 a-1

r(2a+i+j) wa+i-1

f(w) = (1+7) +7 1-4 1] 1]
[r(a)]

2
(l+w)

2a
i=0 j=0

[r(a)]
2
i!j! [2(1+0]

2
a+

i+j

a-1
r(2a+i) w

a-1 a+i-1

- 2 +rria)j2i, (24)2a+i
(2w+1)-4a+'

,

i=0 L

and

F(w) = (1+7) 1 -
1

a-1
r(2a-k-1) w

a-k-1

r(a) r(a-k) (l+u)
2a-k-1

(5.10)

a-1 a-1
r(a+i)r(a+j)

a+1+1
r(a+i)r(2a+i+k+1) wa+

i-l-k

+7 [4 12
2 2a+i+j /2

(1 )
2a+i+j-k-1r(i+ak)

O
j=0

[r(a)] i!j!2
k=0

-

(5.11)
a-1

a-1
1 [ f(a+j) r(2a+j-k-1) w

« -l-k

- 2
[r(a)]2.j!I 2

j 2a+j -k-1 1r (ce-k)
J k=0

a-1 a+i-1
1 r(a+i) r(ce) r(o+1)11Za+i-k-1) w

a+i-l-k

-2 E
I ,

k=0
a+i /2 k+1

1)
2a+i-k-

4
i=0

r(a)i! r(a+i-k).2

for NI < 1 , 0 <w <co , a= 1,2,... .
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From equations (5.1) and (5.2) for Design I, the asymptotic mean of

T
N

is given by

E (T
N
) = F(w/e)

N

with

3E0(TN)

0
0 =1

) F(w)]dF(w) ,

m J'(F(w))f2(w)dw (5.12)

Assuming m/N -> p in probability, 0 < p < 1, we have

a 6 N
lim E (T )1 = -pfa J (F (w))f2(w)dw

0 =1

Similarly for Design II, we have

E
e
(T
N N

) Ajt;[-E WO +(l-

with

E0(TN)

ae
e =1

J (F (w))[°

N ) F(9w) ]Of(Ow)dw

(5.13)

(5.14)

f(w)+(1- 11--)f(w)]f(w)+J(F(w))Efi(w)+f(w)jldw

= (1-2 11-)irw J (F(w))E2(w)dw-fw..T(F(w))f2(w)dw

-2 ---j-wJ'(F(w))x. (w) dw
3

(5.15)



and

3E (T )
6'

lim = -2p)(WV(F(w))f 2 (w)dw
N->co icet 0=1
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(5.16)

Using equation (5.13) in equation (5.9), we have the efficacy of any

rank test (T
N
) for Design I as

lim e
1

(T
N
)

>co 1/21fi 2 (U)dU - [6(U)dU]
N-

P2 [fit(FM)f2(w)clwi
2

2 1

(5.17)

Similarly, using equation (5.16) in equation (5.9), we get the effi-

cacy of any rank test (TN) for Design II as

lim e
2

(T
N

)

1/2111; 2 (U)dU - [f(U)dU]21

4p
2

[P(F(Of2(w)dw]
2

(5.18)

Since the ARE of test T
1
with respect to test T

2
is defined as the

ratio of their efficacies, i.e.

e (T1,T2)

lim e (T1)
N->m

lim e (T2)
N-> co

(5.19)

from equations (5.17),(5.18) and (5.19), it is easily seen that the

ARE of T
1
with respect to T

2
for Design I is identical to that of

Design II.

Also, for any particular rank test (TN), Design II is more

powerful than Design I, since equation (5.18) is greater than
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equation (5.17) for a given test.

The weighting functions for the Van de Waerden (asymptot-

ically equivalent to normal score) and symmetric squared rank tests

are

3(U) = (1)-1(U) 0 <U < 1 (5.20)

and

-(U-1/2)2 for 0 <U < 1/2

3(0=1 (5.21)

(U-1/2)2 for 1/2 < U < 1 .

Notice that the S function in equation (5.21) is symmetric about

U = 1/2. The weighting function for the Wilcoxon test is given

in equation (4.2).

Using Simpson's rule, we compute the ARE's for a = 1,2,3,

which are presented in Tables IX, X and XI. The entries for Y = 0

agree to at least two decimal places with those obtained by direct

integration. Among the three tests, the Wilcoxon test is the best

for small a and/or positive correlation. The symmetric squared

rank test is best for 7 = -1 and the combination of 7= -.8 and

a = 2,3. The normal score test is the best for large a . Figure 8

indicates the values of a and Y for which each of the three tests

is most efficient.

For the case 7= 0 and a = 1, ln(w) has a logistic distri-

bution. In this case the Wilcoxon test is known to be asymptotically
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efficient. Similarly for 7= 0 and a .>ao , ln(w)A/g'is asymp-

totically normally distributed. Consequently, the normal score

test would be nearly asymptotically efficient for 7= 0 and large

a.



TABLE IX. ASYMPTOTIC RELATIVE EFFICIENCIES OF THE SYMMETRIC SQUARED RANK TEST WITH RESPECT TO
WILCOXON TEST FOR EQUALITY OF RATIOS FROM MORGENSTERN BV GAMMA DISTRIBUTIONS

-1.0 -0.8 -0.6 -0.4 -0.2 -0.0 0.2 0.4 0.6 0.8 1.0

1 1.019 .997 .978 .961 .947 .936 .929 .924 .922 .923 .927

2 1.065 1.041 1.020 1.002 .988 .978 .969 .964 .963 .965 .980

3 1.082 1.057 1.036 1.018 1.003 .992 .984 .980 .978 .980 .986



TABLE X. ASYMPTOTIC RELATIVE EFFICIENCIES OF THE SYMMETRIC SQUARED RANK TEST WITH RESPECT TO NORMAL
SCORE RANK TEST FOR EQUALITY OF RATIOS FROM MORGENSTERN BV GAMMA DISTRIBUTIONS

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

1.057 1.043 1.031 1.020 1.012 1.006 1.002 .999 .998 .997 .998

1.013 1.004 .996 .991 .987 .985 .984 .985 .987 .989 .990

1.009 1.001 .994 .989 .986 .984 .984 .984 .986 .988 .989



TABLE XI. ASYMPTOTIC RELATIVE EFFICIENCIES OF THE WILCOXON TEST WITH RESPECT TO NORMAL SCORE RANK TEST
FOR EQUALITY OF RATIOS FOR MORGENSTERN BV GAMMA DISTRIBUTIONS

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

1.038 1.046 1.054 1.062 1.069 1.074 1.079 1.081 1.082 1.081 1.077

.951 .964 .977 .988 .999 1.008 1.016 1.021 1.024 1.025 1.022

.933 .947 .960 .972 .983 .992 1.000 1.005 1.008 1.007 1.003
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-1.0 -.6 -.2 0 .2 .4 .6 .8 1.0

Figure 8. Regions of the most efficient tests for the
equality of ratios of Morgenstern gamma BV
observations for the common shape parameter
a - 1, 2 and 3.
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VI. SUMMARY AND CONCLUSIONS

In the previous chapters, three BV statistical inference

problems have been discussed. We have shown that optimal C(a) tests

and l.m.p.r.t.'s are asymptotically equivalent for the tests of

independence when any of the three BV distributions, Morgenstern,

Plackett and Moran, are used as alternatives. The l.m.p.r.t.'s

are usually easier to compute than C(a) tests. As to the tests for

interchangeability of gamma bivariates from either BV Morgenstern

or Moran distributions, comparisons of three nonparametric tests

show that the Wilcoxon test is the best for positive correlations

and large shape parameters a , the Savage test should be used for

negative correlations and sum of squared rank test is good for some

combinations of shape parameter and correlations. Finally, for the

tests of equivalence of ratios from two BV Morgenstern gamma samples,

three nonparametric tests, Wilcoxon, normal score and symmetric

squared rank test, are considered for two designs of rain-making

experiments. Among them, the Wilcoxon test is the best for small

shape parameters a and/or large correlation; normal score test should

be used for large a; and symmetric squared rank test is good for

correlation index 7=-1 and combinations of 7=-.8 and a=2 and 3.

Since the distributions of rainfall data of two close areas have

small shape parameters and their rainfall is highly correlated, the

Wilcoxon test seems to be the best of the three tests when BV

Morgenstern gamma distribution is used as the underlying distribution.
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In this paper, three types of BV distributions and five

nonparametric tests are used. Other types of BV distributions and

other nonparametric tests could be considered. The techniques and

results of this paper could be generalized to handle multivariate

distributions so as to broaden the range of applications. An empirical

test of the results of this paper could be performed to see whether

the models fit real-world data.
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