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PERFORMANCE OF SOME TESTS FOR BIVARIATE INDEPENDENCE,
INTERCHANGEABILITY, AND EQUALITY OF DI3TRIBUTIONS OF RATIOS

I. 1INTRODUCTION

Statistical analyses for bivariate, or more generally multi-
variate, continuous data have not been developed very completely
except for multivariate normal models. Transformations, such as
logarithmic and square root, are frequently applied to non-normal
data so that normal-theory analyses may be justified. One difficulty
commonly encountered is that the transformations required to obtain
exact marginal normality may depend on unknown parameters. Moreover,
even if the transformed variables have marginal normal distributions,
the joint distributions need not be multivariate normal. 1In analyses
of non-normal data, asymptotic distribution theory is often applied
to statistics on which the inference procedures are based. 1In
certain small sample size cases the asymptotic theory approximations
may be quite poor; for example, normal approximations to the distri-
bution of sample means can be quite inaccurate when the sampling is
from skewed distributions.

This thesis is concerned with some inference problems for
bivariate (BV) distributions which permit marginal distributions of
specified forms. Since BV distributions are not uniquely determined
from the marginal distributions, several different procedures for
constructing BV distributions with specified marginals have been
proposed. We consider the Morgenstern [24], Plackett [247, and

Moran [19] forms which are described in Chapter II. Each of these



three forms has the convenient property that the BV cumulative
distribution function (c.d.f.) H(x,y) depends on x and y only
through the marginal c.d.f.'s F(x) , G(y) and one unknown parameter
6 ; that is, H(x,y) = Q[F(x) , G(y) ; 8] for some function Q . This
property may be used in developing certain inference procedures which
are distribution free relative to the marginal c.d.f.'s F and G .
We are particularly interested in BV distributions for positive
random variables X and Y with skewed marginal distributions,
including the gamma, Weibull and lognormal families,

This study was motivated, in part, by inference problems
arising from rain-making experiments. Cloud seeding with silver
iodide smoke is used to increase the ice crystals in the clouds in
order to increase the rainfall. Measurable precipitation data,

X > 0 , have been found [23] to be fit quite well by gamma distribu-
tions with shape parameter less than unity. The X and Y measure=~
ments may represent, respectively, precipitations resulting from
unseeded and seeded‘clouds. If these X and Y measurements are
taken near the same location at approximately the same time, X and
Y will in general be dependent random variables. In addition to
rain~-making experiments, the BV models and inference procedures
studied in this thesis should have application in other

areas of research, including reliability and medical studies.

In Chepter II, the BV distribution are described and compared.
Conditional distributions of Y{x are also studied for the

Morgenstern and Plackett BV distributions. In Chapter III, the




problem of testing indepeundence, Ho : H{x,y) = F(x) G(y) , in the
Morgenstern, Plackett, and Mcran distributions is considered.
Asymptotic optimal parametric C(w) tests and locally most powerful
rank tests are derived and compared. Asymptotic relative efficiency,
ARE, comparisons of the tests for independence are also made .in
Chapter IIIL.

In Chapter IV, some nonparametric tests for interchangeability,
Ho : H(x,y) = H(y,x) , are studied. Sen [25] developed conditional
permutation tests for Ho based on linear rank statistics. We
consider the Wilcoxon (W ), sum of squared rank (SSR), and Savage
(S ) statistics. Also using Sen's general asymptotic theory results,
ARE comparisons of the three rank tests are made for gamma scale
alternatives, Ga(Y) = Fa(x/e) for some 6% 1 and common shape
parameter ¢ , in the Morgenstern and Moran BV families.

In Chapter V, the Wilcoxon statistic, the symmetric squared
rank statistic [17] and normal score statistic are used for comparing
ratios Y/X from two bivariate samples. The applications of these
tests in two different designs used in rain-making experiments are
discussed. ARE's among the Wilcoxon, the symmetric squared rank
test and normal score test are also evaluated for the Morgenstern
BV gamma distribution scale alternatives with common shape parameter

oa=1,2 and 3 .




IT BIVARIATE DISTRIBUTIONS

Consider positive random variables X and Y with joint proba-

bility density function (p.d.f.) h(x,y) and marginal p.d.f.'s

f(x)

and g(y). As indicated earlier, we let H(x,y), F(x) and G(y) denote
the c.d.f.'s corresponding to p.d.f.'s h(x,y), £(x) and g(y). The
following five types of BV distributions have been considered by

others.

(L) Morgenstern’[5,24]:

hix,y) = £(e) |1 ﬂ(zF(x)-l)(zc(y)-l)]

H(x,y) = FEOCE) | 1 H3EE)-1)CG)-D) |
where

-l1<y<1l.

(2) Plackett[24,26]:

vie [ (¥-1) (F+G-2FG)+1I

h(x3Y) = y
| [1+(~1) (F4G) ]2-4¢(¢-1)FG] 3/2
S - (sz - w(sb-l)FG)l/z
H(x,y) =
2(¢-1)
where
0<y<o , and S = I+ F(x)+G(y)] W-1)



(3) Moran [19]:

1 ('Az-szB+Bz)

2
= 1 2(1-p7)
h(x,y) = ———5—575 ¢
212y L2

A= LE)
B =+ l(a@y))

¢-1 is the inverse function of unit
normal c.d.f. .

(4) Gumbel's [7] BV exponential distributions:

h(x,y) = ((1+6x) (L+sy)-1)e ~X7Y™8XY (2.6)

loe " ¥og Ve XY XY , (2.7)

H(x,y)

where

0<é<l, £(x) = e, and g(y) = e7 for O<x<w,0<y<w.
(5) Lancaster [11]:

h(x,y) = £Ge(y) (1+3p x Py 1)) (2.8)

where x(l), y(l) are certain sets of orthonormal functions and Pi
are the "canonical correlations'.
Distribution types 1, 2, 3, and 5 can be used for any random

variables X and Y which have absolutely continuous c.d.f.'s F and

G. We see that use of relations



lnx-p
F(x) -(ﬁé-———-——)

(2.9)

Iny y=M

G(y) = 4»(———1)
Y

in equation (2.5) gives the classical BV lognormal distributions.

o
1
For positive parameters a.,®,,8;,and B,, transformatiens X=(—*)
1°272°M1 2 Bi
%
and y = ( can be used in Gumbel's BV exponential distributions

to give BV Weibull distributions. Marshall and Olkin [16] and
Downton [3] have also considered different BV exponential and

Weibull distributions which are useful in reliability studies.

tions of X, given Y=y, for BV distributions with gamma or exponential
marginals. Attention is restricted to only the Morgentern, Plackett,
and Moran BV distributions because they are the underlying distribu-

tions used in the next two chapters.

2.1 Morgenstern's BV Distribution

It is instructive to investigate the conditional distribu-
The BV distribution, equation (2.1), has been extended to a

more general form by Farlie [5],

J[FAF)] - 3[C B(C)]
f(x)g(y){1+Y s (2.10)
OF oG

h(x,y)

H(x,y) = F(x)G(y)[HYA(F(x)) B(G(¥))] ,

where




A(F(x))—>0 as F(x)—>1, B(G(y))—>9 as G(y)—>1,
and A(F(x)) and B(G(¥)) are bounded and have bounded first order

derivatives in thejr arguments F(x) and G(y).

The regression curve of X on y, as derived in [5], is given

by

h(x,y)
Xly) = . d
; Iy fx g(y) :

(2.11)
d[G°B(G)]

=# -*-.-Ko'yﬁ
x dG

where
J[F-A(F)]
K =:/;: — dx .
. JF

Gumbel [7] studied the conditional distributions for the
Morgenstern type BV distributions with exponential marginals in
addition to the BV exponential distribution of equation (2.6). The
following analysis of the Morgenstern BV gamma distributions
generalizes Gumbel's work since an exponential density is a special
case of a gamma density with shape parameters equal to unity.

Densities

1 1 Bl 1
f(x;0,,8,) = —— * —— e (& (2.12)
1°M1 r(al) Bl ﬁl

where

0 <u« O<Bl,0<x<oo

1’




and

-1
1 y %2~ ]
1 ) e 2 R (2.13)

Flay) 8y 8,

8(y;2,,8,) =

where

0<a2,0<62,0<y<cn

are used in equation (2.1) for the Morgenstern BV distribution. For
integer o, c.d.f.'s corresponding to equations (2.12) and (2.13)

can be written as

i -=
a-l e A
1 B .
1
F(x;p,B8)) =1 - > — , (2.14)
il
i=0
and
;-
@, -1 ( ) e 62
G(y;2,,8,) . (2.15)
i=0 i
The conditional p.d.f. of X, given y, is
f(x|y) = f(x;al,Bl)[1+72F(x;al,61)-1’IZG(y;az,Bz)-II] ; (2.16)
The boundary p.d.f. of ¥ given y is
- =
a1 1 (3 ) e 61
£(x|0) = £(x30,,8 )[1+ Y2y —— - 1] (2.17)

i=0




where

2.1.1. The Regression Curves

Using equation (2.16), the nonlinear regression curve of X on

y can be expressed in the form

EE|y) =ﬁf(x,y)dx
(2.18)

= #th +y IZG(y;Q’Z’BZ)-II] -731{2G(y;0’2’62)-1 ‘ K(Q’l) >

where

= alﬁl is mean of X

o,=1 .
1 F(a1+1+1) 1

(2.19)

K(a.) . -
1 . iy o, i
j=0 I(epdr@+l) 71

The symmetry relation
/2[5, @]y + B, &[] =4, = a8

is easily found from equation (2.18).

For the case where o = 1, equation (2.18) reduces to

Ey(x]w

=68, [1+V{2G(Y;a2,32)-1}- %

2G(3'§Q2:62)'1 ] M

Graphs of equation (2.20) forY= -1, 0, and 1, and oy = 1/2,
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1, and 2 are given in Figure 1. When o= = 1, Figure 1 corre-
sponds to Gumbel's Graph 2 in [7,p.705].
2.1.2. The Conditional Variance
Using equation (2.16), we obtain
2
E(X %)
al'l (2.21)

r (Q'1+i+2) 1

]

2
= BI,ai+a1+7[26(y;aé,62)-l] [ai+a1- 2:
. .
1=0 F(al)F(l+l) 2a'1+1 1

Moreover,

1/2 [E-W(XZ,Y)+E7(XZIY)] = ai@i + alﬁi - Ex? .

Thus, from equations (2.20 ard (2.21), we have the conditional variance

p 2

X}y

al-l

_ a2 . - -
= Bl a1+7[26(y,aéﬂz) 17 [ a1+a1 2: : '
.4 I'(a,)T(E+]) o +itl

i=1 1 2 1

r (a1+i+2) 1

(2.22)
ar+1
I‘(al+i+1) 1 2 2
+ o 1 - v 126(y30,8,)-1]"
. D T(it]l) @ +it+l
i=0 1 2 1
a.=1 .., .y 1n o, -1 .
1 I' (o  #itl) 1 1 © [(a +itl) 1
2 1 - 1 2
[al-al > ~ — + ( > ' - ) ]I~
i=1 F(ql)F\r+l) al+1*1 1=0 [(al)f(1+1) a1+1

2 2
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E(x]y)

0.3 -_— . y=1

0.2 e — Y=O
0.1 —— e Y=—1
0
0 1 2 3 4 5 6
y
/B
2

Figure 1. Regression curves for Morgenstern BV gamma distributions
with X~ gamma (a1=1,81) and Y gamma (a2,82).
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2.1.3. Correlations of X-and Y

The correlation ratio U(X‘y), as defined in [7 , equation

(1.9)], reduces in our case to equation (2.23).

! 2 1/2
7I(X|y) =l6_2'ﬁE(X)_‘E(XlY)] 8(y32,8,)dy
y
(2.23)
2 2 M2 v
=,—-—§ (o8, - B, K ()] I = g [ = K]

30232 v'3 9%

As in [7], we now show that‘n(X,y) is a multiple of the
coefficient of correlation p. By and using definition (2.19),

we find
EQY) = 8,8y ey +7 [y Riey)] [oyR()T)
which gives

EXY) - EX)E(Y)
g

g

X y

(2.24)

v Loy - K(e)] [e, - K(a,)]

v VvV

The inequalityl‘ylg 1 implies

o] = =
P *v/&IEE

[op-R(ep) ] Lo, K(a,y)]

Using equations (2.23) and (2.24) yields



2.1.4. Conditional Median of X Given y

From equation (2.1), the conditional c.d.f. of X, given y,

is found:
F(xly) = F(x) +YF(x) [1-F(x)] [1-2G(y)] . (2.26)
The conditional median MXIY is defined by

F(Mxlyly) =1/2 . (2.27)

Solving equation (2.27), we obtain

=1-7(1-26)+#/T 147 (i- 26) 1° + 2(2G-1)
FM ) = = Q_(G) (2.28)
Xy 2(2G6-1) K

and

_ -1
Mxly =F (QW(G)) . (2.29)

For the case where a1=1, equation (2.29) reduces to

Mx'y = -Blln[“r Q.Y(G)] . (2.30)

Notice that F(x’y) and consequently M x!y’ depends on x and y only
throggh F and G. Graphs of equations (i.28) are given in Figure 2
for Y= -1, 0, 1. Using expression (2.14) for F with a1=1 and a

table of chi-square distributions with dagrees of freedom 1, 2, and

"
L

4 for evaluation cof G, graphs of equation (2.30) are given in
() N v



Figure 2.

= Plackett BV distribution

Morgenstern BV distribution

Regression curves of F on G for Plackett and
Morgenstern BV distributions.
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x|y

4.0

~—— == — Plackett BV gamma distribution 2

=————— Morgenstern BV gamma distribution

Figure 3. Median regression curves for two BV gamma distributions

with X gamma (a1=l, 81) and y gamma (a2=0.5, 82).
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= == Plackett BV gamma distribution 2

Morgenstern BV gamma distribution

Figure 4, Median regression curves for two BV gamma distributions
with X zamma (a1=l,81) and y gamma (a2=l,82).
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—
N
(93]
~
w
[«))

— «—=== Plackett BV gamma distribution 2

Morgenstern BV gamma distribution

Figure 5. Median regression curves for two BV gamma distributions
with x gamma (a1=1,81) and y gamma (a2=2,82).
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Figures 3, 4, and 5 for the case ®, = 1/2, 1, and 2 respectively.

2.2 Plackett's BV Distribution

Let ¢y be an arbitrary positive number. Plackett constructed
the joint c.d.f. H(x,y) (equation 2.4) as the root of the quadratic

equation

H(x,y)* [1-F(x) - G(y) + H(x,y)]
¥ = (2.31)
[F(x)-H(x,y)] [G6(y) - H(x,y)]

Mardia [14] showed that onl& one of the two roots of equation (2.31)

satisfies Frechet inequality

Max(0, F(x) + G(y)-1) < H(x,y) < Min(F(x),G(y)) . (2.32)

When H(x,y) = Max(O,F(x)+G(y)-l), the entire BV distributicn lies on
the line F(x)+G(y)=l. From equation (2.31), we see that this is true
when ¥=0. When H(x,y) = Min(F(x),G(y)), the entire BV distribution
lies on the F(x)=G(y), corresponding to ¥=w .in equation (2.31).

Notice that equation (2.31) can be written in terms of proba-

bilities as

P(X<x,Y<y)P(X>3>x,¥Y>y)

V= (2.33)
P(X<x,Y>y)P(X>x,Y¥Y<y)

The Plackett distribution has been called [14] a contingency type
BV distribution. Plackett [24] considered y as a measure of
association in a four-fold contingency table. ¢ = 0 implies the

independence of X and Y.
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2.2.1. Conditional Median of X Given v

Plackett determined the conditional c.d.f. of X, given Y=y,

oH(x,y)

F(X,y) =
9G(y)

(2.34)
F(x) ¥ - H(x,y) (¥-1)

1+ [F(x) + G(y) - 2H(x,y)] (4-1)

The conditional mean of X, given Y=y, is usually not of simple

form; therefore Plackett considers the conditional median of X,

given Y=y,
-1 1 ~
M o=F (= 1+ ¢-D G ), (2.35)
J ¥+l
or correspondingly,
1
FM ) = — (1 + (¥-1) G(y)) =W, (G) . (2.36)
x|y ¥+ 4

Equation (2.36) is graphed in Figure 2 for ¥=0, 1, and ©.

Using equations (2.14), (2.15), and (2.35) for the gamma marginals

with oy = 1, we obtain

i
i
. oyl (%;) e B,
My, = -BInfl - — [+E-1DA- T — )] (2.37)
xy ' ¥l ~0 i.
i=

Equation (2.37) is graphed for ¥=0, 1, and ® in Figures 3, 4, and 5

for a, = 1/2, 1, and 2, respectively. For o = 1/2, the evaluation

2




20

of G(y) is found by using the table of chi-square distribution with

1 degree of freedom,

2.2.2. The Correlation Coefficient

According to Mardia [14], the correlation coefficient of X
and Y based on contingency type BV distribution can be expreésed

in the form

pa,b’c’d(w) 0102.[./ (H-FG)dxdy (2.38)

where di = Var(X) and 02 = Var(Y).

2

In [14, p.239] Py d(\L) is shown to have a limit P(y) as

a,c —> ~wand b,d —> o under the following conditions:

M) Uy x[Fx|y) - T

(2) y}_;tinmy (B-FG] =

(3) J:

where I(y) is an integrable function of Y. Mardia [14] and

Fx|y)-F(x)|dx < 1(y)

Plackett [24] further establishes the relations

0<PH) <1 if 1 <¢¥<o s
PH) =0 if =1 s
-l1<p@) <0 if 0<¥<1 .

Moreover, the correlation coefficient PF G(¢) of random variables
E

F(X) and G(Y) is given

P @ = WHl-20m9) / @1’ (2.39)
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2.3. Moran's BV Distribution

Motivated by analysis of rainfall data, Moran [19] constructed
BV distributions equation (2.5) with gamma marginals. Moran [19]
and Mardia [13] showed that equation (2.5) satisfies the Frechet
inequality -

Max( F(x) + G(y) - 1,0) < H(x,y) <Min(F(x),G(y))

Moran also discussed an iterative procedure for obtaining
the maximum likelihood estimators for the gamma parameters o
Ay s Bl, 62’ and the parameter P. Moreover a test for equal scale
parameters based on maximum likelihood estimators is discussed for
rain-making experiments.

These BV gamma distributions are constructed as follows:
Let (W,2) follow a standard unit BV normal distribution with cor-

relation coefficient P,
1 2 2
— (W =20wz+z")

1 2(1-p%)
d(w,z) = e
zﬂ(l_pz)l/z
w 1 - t2/2

with marginal c.d.f's b(w) = J/. e de ,
_m;/ZW

and
z 1 - t2/2

d(2) e dt

i
3

-0

Let X and Y each have p.d.f.'s given by equations (2.12) and (2.13).

Equating,

P (w) = F(x) and ®(z) = G(y)
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gives
-1 -1
w =P (F(x)) and z =3¢ (G(y)) ,

and the resulting p.d.f.

h(x,y) = o(F E@), 2 CEINT F dxdy

1 2 £ -1 -1 -2

-———[PTd T(FX))-2Pd "(F(x)) (G))*+P GW)]
__t 2(1-p%)
-
(1-p7)
- G+ a,-1 a,-1
1 2

. L S e Bl 62 - A &) . i_ . E_ dxdy .

Among the Morgenstern, Plackett and Moran BV distributions,
the first gives the simplest form. However the Morgenstern distribu-
tion does not attain  the Frechet inequality [7, 14, 24], whereas

the other two do. For these three BV distributions, H(x,y) and

h(x,y)
£(x) g(y)

forms are utilized for the nonparametric consideration in the follow~

depend on X and Y only through F(x) and G(y). The special

ing two chapters. For the Morgenstern and Plackett distributions,
H(x,y) have explicit forms in F(x) and G(y); however, two variable

numerical intergration is needed to evaluate H(x,y) for the Moran

distribution.
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ITII  TESTS FOR INDEPENDENCE

For testing the null hypothesis of independence of random
variables X and Y, asymptotically optimal C(a) tests and 1océlly
most powerful rank tests (l.m.p.r.t.'s) are considered for the
Morgenstern, Plackett and Moran BV distributions. The general class
of C(w) tests was developed by Neyman [21], who used locally root-n
consistent estimators for nuisance parameters. We compare the forms
of these two kinds of test statistics and their asymptotic relative
efficiency. ARE comparisons are also made with other tests for

independence.

3.1. locally Asymptotically Optimal C(a) Tests

First, the general development of optimal C(w) tests is
summarized.
| Suppose a sample (XI’XZ""’Xh) is taken from a population
with p.d.f. £(x;{,0) where Q;(el,...,er). The observations Xi may
be vector values. For testing the null hypothesis HO:E=EO, against
the alternatives H1:E>£o (or £<£0) or H2:E¥£O with unknown nuisance

parameters §, Neyman [21] considered tests based on the statistics

o . A
. ¢ (xj 3 Q)-Zai%i(xj_;_fo,ﬁ)
A 1 i=1
, zn(x’io’ﬁ) = e— Z ’ (3 1)
n . o
j=1 0
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‘ where
dInf(x, ;¢,0)
£ ,8) = N 3.2)
¢E(Xj’£os_) O\E E EO ( .
A
8= 86
olnf(x,;¢,8)
r 0) = — ’ - 3.3
¢0.(xj’£0’-) 80 E_EO ’ ( . )
t i A
0-=86
‘ - -
|

o, e .
and the ai s are chosen so as to minimize the variance of

r
A ) A . ..
¢E(xj, Eo ,8) - Z a; ¢0.(>§,£o,g) undgr Ho" The resulting minimum

i=1

A
variance is denoted by 0%2 . The estimators 6 = (Qi,...,s;) are

assumed to be either locally root-n consistent or root-n consistent
for § . Neyman [21] defines an estimator ejn to be locally root-n
consistent for Bj if there exists a number Aj # 0, such that as

A
n——>m, the product Bjn - oj - Aj (E-%Q /0 remains bounded in

probability for all ¢ and § . 1If lé}n - le‘/n remains bounded in

A
probability as n—>w, Ojn is said to be root-n consistent for Oj.
The p.d.f. £(x;¢{,0) is also assumed to satisfy Cramer-type regularity

conditiens [21,p.215].

The statistic of equation (3.1) has also been shown to have a
limiting unit normal distribution under Ho’ The optimal symmetric

C(w) tests based on equation (3.1) for two-sided alternatives

HZ:E¥ Eo has critical regions Sz(a) =’ z, :l Zn[ > za/%} where 2,79
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is such that

2
o« 1 - t7/2

d/ﬁ — e dt = /2 .
; V2
af2

For optimal one-tailed C(a) tests of Hb:£‘= Eo against Hl:E > Eo
the critical region is Sl(a) ={ Zn : Zn > z, ’ .

Moran [ 18] indicates that zZ is asymptotically equivalent to
tests using the maximum likelihood estimator (MLE) E of £ , and to

the likelihood ratio test based on the statistic

n n
j=1 j=1

where ? and_g are MLE's and E; are MLE's under the null hypothesis.
An advantage of the C(a) test over the other two types of tests is
that the C{w) tests are frequently easier to compute.

Now we consider optimal C(a) tests for independence.
Suppose (X,Y) follows a certain BV distribution with p.d.f. h(x,y;¢,6)
where ¢ is a parameter indicating the association between X and Y.
That is, h(x,y;¢,8) = £(x;8)g(y:8) if, and only if, for some number
EO,E=E0. For the Morgenstern, Plackett, and Moran distributions,
the null hypothesis of independence is given by ¥=0,¥ =1, and P=0,
respectively, in equations (2.1), (2.3) and (2.5).

The C(«) test statistics of independence for the Morgenstern,
Plackett, and Moran distributions will now be shown to be a function

of‘bE only. This result will follow from the fact that ¢, and ¢6 s
i

3

i=1l,...,r, are uncorrelated under the null hypothesis, which gives
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al= ... = az = 0 . By using the p.d.f.'s of equations (2.1),
(2.3), and (2.5) in equations (3.2) and (3.3), it may be seen that for

appropriate functions K(U), 0 <U <1, ¢£ can be expressed in the

|
i form

¢ = K(FE)IKE()) , BEREND
i and

dlnf  Jlng

| ¢o = + j=1l,...,r . (3.5)
‘ I de, e,
| 3 3

Under Hd: £ = Eo , the relations

E ¢, = E[REFE)KEW)] = E[KEF®)] EK(EX)]
= [EFE)I* = 0

imply that
E[R(F(X))] = E[R(G(¥Y))] = 0 . (3.6)

Using relation (3.5) and the fact that E ¢9 =0, we have, for

i
j=1,...,r
cov(d>E,d>6-) = E(¢£-<b0.)
J J
51nf(X5£o,Q) alng(Ygﬁo,ﬁ)
= E[K(F(x))-K(G(Y))-[ + —— J]
d% a%

- E[K(F(x»-K(e(Y))- O 1ar(x; s, ,gﬂ +E[K(F<x>>-x(c(wz))--@-—lng(Y; so,g)]

36 :
j 0

=0
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Hence, the asymptotic optimal C(a) test for independence, Hd:€=Eo,
is based on

n
A
Z ¢€ (xi ’yi’EO ’_6_)
1 i=1

= —— s (3.7)
Tom %E

t

where @ are any locally root-n consistent or simply root-n consistent
estimators of § and 63)& is the variance of ¢E (x,y;go,é\_).

Now consider estimation of the parameters (al,az,Bl,Bz) of
both the gamma and Weibull distributions. For the case where there
are no linear restrictions on the parameters, any estimators,
&1(§),&2(X),31(§),82CZ), which are functions of only one of the
variates X or Y, and are root-n consistent with respect to the
corresponding marginal distributions, such as MLE's and moment
estimators, will be root-n consistent with respect to the bivariate
distributions. Under the assumption of common shape parameter,

@ =a,=q, any linear function 01&1(§)+02&2(g), with positive coeffi-
cients C1 and C2 satisfying C1+C2=1, of root-n consistent estimators

&1(§) and &2(1) will be root-n consistent since
A A A A
/1 ICla1(§)+C2a2 (Z)-alfpf/nlyl(g) a,+szﬁ1a2(X)-al .
The optimal C(w) test statistics of equation (3.7) are

easily evaluated for the Morgenstern, Plackett, and Moran BV distri-

butions, and are given below. Using densities of equation (2,3)

in equation (3.2) gives

K@U) = 2u-1 (3.8)
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in equation (3.4) for both the Morgenstern and the Plackett altern-

atives.

Using the additional result

02 =02 = 1/9
1) ¢
Y ¥

in equation (3.7) then gives

3

[2F (x;38)-1] (2663 1]
1

n
t =
n

n .
1

Similarly, for Moran alternative

=1 :
K@) =% ") ,
and
2
o =1
°
yields
1 n
- A =1 A
=== X T RG] 07 ey 5D)]
n
i=1

3.2 Locally Most Powerful Rank Tests

In this section, we consider l.m.p.r.t.'s for the null

( 3.9)

(3.10)

(3.11)

hypothesis of independence in the Morgenstern, Plackett and Moran

families of distributions.

The l.m.p.r.t.'s for independence are derived in general

as follows. For a random sample of size n from any BV distribution
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with p.d.f. h(x,y),(X(l),Y(le,..., (X(n)’Y(Rn)) is a sufficient

reduction of data, where X

| (n

ranks of the corresponding Y's among Y

<X ce.<X and R, ,R R are
(2) (n) 1

93 n

1""’Yn' The joint p.d.f.

for this sufficient statistic (x(l)’Y(Rl))"'"(x(n)’Y(Rn)) is

n

n! I h(x,,,,y ) .
Gy Yw))

i=l

The problem of testing H : H(x,y)=F(x)G(y) against H1:H(x,y)#F(x)G(y)

for some (x,y) in each of the Morgenstern, Plackett, and Moran
distributions is invariant under the group of function transforma-
tions G with elements
= X, Y seeas (X Y )
Bop:0, = 80,0, LR T @) Einy g )]
(3.12)
T O 0Ty ) 8T )

where ¢1 and ¢2 are any continuous increasing functions from the

real line onto the real line. The induced group of function trans-

formations G on the parameter space has elements

- -1 -1
g =g (F,G,t) = (Fo, ,Go, ,¢) (3.13)
1% % 2

where § is the parameter associated with independence of X and Y.

In particular, § = Y,¢, and p respectively for Morgenstern,

Plackett and Moran distributions.
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A maximal invariant statistic for the group of transforma-
tion is (Rl,...,Rn) and the probability function for (Rl,...,Rn)
is given by

n

- ! r
RN n.f iglh(xi,)i)dxidyi , O (3.14)
S

= .o H < ,... i
where S (Xl,le), ’(Xn’an)’ X1 , , < Xn and r, is the rank
of the Y-observation corresponding to Xi among the Y-samplej, The

l.m.p.r.t. of H : §¢ = Eo against H1:£>Eo rejects H for

-9 :
T = St 1nP(r1,...,rn) _ > K . (3.15)
£=¢
o
The tests which reject H : £ = Eo for
7| >« (3.16)

may be used for the two-sided alternatives H2 : & F Eo .

Using the relation

n
n ) 1nhg (x;,¥;)
I hf (xi,yi) = e i=1

i=1

and (3.1) for the Morgenstern, Plackett, and Moran distributions,

we obtain
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a n n a n
= W h(x.,y.) Sp 1ohy Geyuyy) 1Ty Grpuy,)
9f =1 274 Lle=¢ 2; ok i=1 {=¢
(o] = (o]
(3.17)
n n
=[ 2:¢2(xi’yi)J M £(x;)ely;)
i=1 i=1

From equations (3.14) and (3.15), we then evaluate the l.m.p.r.t.

n n
3 d
T = —InP o n——-ﬂh(x,y)ndxdy
el - —{ O 4o i=1 £ =t
0
n n
= ﬂz ¢£ (x ,Y. )] n f( )g(y )y I dx dv (3.18)
i=1 i=1
n
i=1

For the Morgenstern and Plackett distributions, using equations

(3.4) and (3.8) in equation (3.18), we obtain
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n
T#*= E[2F(X,,\)-1] - E[2G6(Y -1
2. BL2FG(;))=1] - E[26(Y, )-1]
i=1 :
n .
i ry
= 3 [2— -1][2—-1] (3.19)
. ntl n+l
i=1
n(n-1) 12 % ni+1 ntl
= 1/3 [ i-— ), -—)]=1/322D. 4
3 i n+l s
ntl n -n , 2 2
i=1
n
= 12 ;. btl oty ' -
where YS 3 2: (i 3 )(ri 2 )} is Spearman's rank correla
D= 3(nt1)
tion coefficient.’ ﬁence, the test which rejects H for y > K ——=&
Y s =  n(n-1)

is equivalent to rejection of H  for T* > K. Therefore, the one-tailed
test based on YS is a l.m.p.r.t. for both the Morgenstern and
Plackett distributions. Kendall [9,p.76] shows the asymptotic
normality of VS and has the table of probability function of g
Farlie [5] shows that the tests based on v, are asymptotically
efficient with respect to tests using the MLE Q for the correlation
index 7 for the Morgenstern distributions.

For the Moran distributions, using equations (3.4) and (3.10),

equation (3.18) gives the Fisher-Yates rank correlation coefficient

n n n
2 -1 3\ -1 2
T* r = ) b
2 12,1 = Z el )] [F(Y(ri))]]/ L 5G]
n n (3.20)
_ 2
-z Ez(nEZ(ri)/ 2 (524
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where Z(k) is the kth order statistic from the unit normal distri-
bution. The l.m.p.r.t.'s for Moran alte;natives can also be obtained
from the previous work of Hajek and Sidak (8,p.112] who showed that
l.m.p.r.t.'s of independence against the BV normal alternatives
P > 0 can be based on the Fisher-Yates rank correlation coefficient.
Since rank tests are distributed independently of F(x) and G(y),
any l.m.p.r.t. of independence against BV normal alternatives will
also be a l.m.p.r.t. against Moran alternatives. Hence the Fisher=-
Yates rank correlation coefficient gives a l.m.p.r.t. of independence
against the Moran distribution with P > 0.

Using the approximate scores d;l(i/(n+1)) in place of EZ(i)

in equation (3.20) gives the Van der Waerden correlation coefficient

n - r- I
et e e/ Lrelglp .21

i=1 i=1

Hajék and Siddk [8,p.112] have showed the asymptotic equivalence of
test statistics (3.20) and (3.21).

It is interesting to note a relation between the optimal
C(a) tests of independence, equations (3.9) and (3.11), and the
corresponding l.m.p.r.t.'s. Replacing‘F(Xi;a) and G(Yi;g) by
F(Xi)=i/(n+1) and G(Yi)=ri/(n+l), respectively, in equations (3.9)
and (3.11) yields statistics which are proportional to the cor-
responding Spearman and Van der Waerden correlation coefficients
given in equations (3.19) and (3.21).

In the next section we will show that l.m.p.r.t.'s are
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asymptotically efficient with respect to the corresponding C(w)
tests. Unless F and G have simple forms, the rank tests may be
much easier to compute than the corresponding C(y) tests.
3.3. Asymptotic Relative Efficiency of Nonparametric Tests with
Respect to Optimal C(x) Tests

In this section we compute the ARE of tests based on the
Spearman correlation coefficient and the Fisher~Yates (ﬁormal
scores) correlation coefficient with respect to the asymptotically
optimal C(w) tests of equation (3.7) for the three distributions
under consideration.

The general form for the efficacy of C(a) tests is derived
as follows. Letting Mg denote the asymptotic mean of the statistic
t in equation (3.7), we find

n
3 Egdy (X;,Y;58,,6)
My = —_i=1
VvV n C&k
E£¢{(X,Y;§O,Q)
=/ (3.22)
O’d){
v/ Eg[R(F(X)IK(G(Y))]
O EER)
where a‘é = Ecbi - (E(I')z)2 . Using equation (3.4), we obtain
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o&f = EKZF(X)'EGZ(Y) = [ek%F(0)7°
£

Differentiation of equation (3.22) then gives

VB K EX)- E KA EM)
(&} (o)

L E{KZ(F(X))

£
o o

Paal
]

- E%KZ (©(1) =/ E, K FE)).
o

Using the result that tn has asymptotic unit variance under the null

hypothesis, we have for the efficacy

|
|
| (aEf(tn)) 2
3t E=t
lim e (t_) = lim
n—>o n—>® n Var ()
¢ n
o
6“5 2 (3.23)
BTN
£=£°
= [ K*FE)I :

For the Morgenstern and Plackett distributions, the efficacy of the

optimal C(a) tests is, from equations (3.8) and (3.23),

[Ek? (7)1

lim e(t )
p—>o o
(3.24)

[(E(zF-1)27% = 1/9
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For the Moran distributions, using equations (3.10) and (3.23),

we obtain

il

lim e(t.) = [E@ L(5))%7°
n—> o n

(3.25)

The efficacy of Spearman rank correlation coefficient s
for the Morgenstern and Plackett distributions is calculated as
follows. The term ’é in equation (3.19) can be written as

4n . r,
i

[%Z(ﬁ";l—)]-n

(3.26)

where

Computing the efficacy of Sn is sufficient to compute Y In terms

of the empirical distribution functions

n
F () =23 I, <x)
i =1
‘ n
=1
6, =7 L 14, <)
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n
C IX, <x, Y,

i ; 5Y) ,

=P

H (x,y) =

i=1
where I(A) is the indicator function of the set A.
Sn may be written as

n

Sn = E F (x(l))G (Y(r ))
Ti=1

Y ARCIROLINCRS

The asymptotic mean of Sn is given by

r:[/.F(x)G(Y)dHE(X’y)

]

(3.27)
’:fF(X)G(}’>HE(x,}’)d>d"
Using equation (3.4), we find
ap.E dh,(x,y) 1 B ( ' yaxd
F . X,
3 j] ARy hpGry) | g YIE
£=t
o
=60 (27 (0-1) (6 () -DeE G ()
= 1/36
The exact variance of Sn under the null hypothesis, as given in
[8,p.114], is
(n+1)% (n-1)
Var(S_ ) = (3.28)
n 144 o
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Hence, the efficacy of ‘2 and Sn is
)
[F‘SE‘ H flz £=¢
lim e(7) = lim e(8) = lim — 0
n—> © 5 e B p—>e n Var (Sn)
(3.29)
&)
= lim —225 = 1/9
n—>c¢o n(n+l) (n-1)
144 n4

Evaluation of the efficacy of 75 for the Moran distributions
is similar to that of the Morgenstern and Plackett distributions.

Using equation (3.27), we obtain

au _ )
lin —r =f ﬁ<x>c<y>¢> L) L6 ())ar (x)de(y)

3P
n—>e p=o

- [frs Ee)Eem

= [_ﬁ(W)wdcb(w}]z

= (1/2 x 0.56419)2 = .079524

(3.30)

The last equality follows from the fact that E/;¢(w)d¢(w) is the
expectation of the minimum of two independent unit normal random

variables. From equations (3.30) and (3.28), we obtain

li

lim e(7v) 1im e(Sn)
r>e ° pe>c

(172 x 0.56419)%
i 1/164 -3

9(0.56419)4 = .91169

i




39

We will now calculate the efficacy of the statistic

n
_1
T n Z n+1)‘b (n+1 (3.32)

which is % times the numerator of the Van der Waerden correlation
coefficient (expression 3.21) and is asymptotically equivalent to
the Fisher-Yates correlation coefficient equation (3.20). The

statistic T; has asymptotic mean

u =ffb—1(F(x))¢'1(G(y))hg(x,y)dxdy

Then for the Morgenstern and Plackett distributions, we have

a#& f -1 s ._ " ahé (‘{ Y) 1
YS =— ¢ (Fx))e F(y)) Y: hE(x,y) hg(x,y)dxdy )
E=t £=¢

)4 )9 6 () 8,9 £ (5) dxdy

(3.33)
=f &7 (7 (x))07 1 (6 (y) ) [2F (x) ~17[ 26 (y) -1 J4F (x)dG ()

= E/@'l(F(x))(ZF(x)-DdF(X)]2

P/;q[ 2b(w) ~1]db(w) ]2

4yw¢<w>d¢<w>]2 ,

and

Var(T ) = ___.[ Z (@ -1(n;1 2 (3.34)
i=1
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Using equations (3.33) and (3.34) we obtain the efficacy
212
[4[ wd(w)ddb(w) ] ’
lim e(T') = 1lim "
e Tome i (2
il b ep)
i=1
2 (3.35)
16)|:/'W<b(w)d<b(w)]

[f[¢'1<F<x>>12dF<x>12

16[ wd(w)dd%w)]4 = 0.1012999

For Moran distributions, using equation (3.10) we can reduce equation

(3.33) to

a#p

lim

Y =fﬁ-1(F)“’-l(G)‘b'l(F)‘b'l(G)dFdG
n—> P=0

=[E22]2 = 1 . (3.36)

Then equations (3.34) and (3.36) give the efficacy

1
lim e(T') =
n .2
n-> co E/;-l (F)dF]z

= 1 . (3.37)

The ARE's of the nonparametric tests relative to the C(a) tests are

computed by taking the appropriate ratios of efficacies.
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TABLE 1. THE ARE'S OF NONPARAMETRIC TESTS FOR INDEPENDENCE BASED ON
THE SPEARMAN AND FISHER-YATES (VAN DER WAERDEN) STATISTICS
REIATIVE TO THE ASYMPTOTIC OPTIMAL C(«) TESTS

BV distributions
Morgenstern Moran

Test and Plackett
statistics

Spearman
correlation 1 .91169
coefficient

Fisher-~Yates

(Van der Waerden)
correlation
coefficient

.91169 1

3.4, ARE's of Two Other Tests of Independence Relative to the C(w)

Test for the Plackett Distribution

Plackett [24] considered the consistent eStimator

where a,b,c and d are defined as the frequencies of pairs (Xi’Yi)
respectively in the quadrants (X <h, Y <k), X <h, Y >k), X>h,
Y <k) and (X >h, Y > k).
Mardia [14] considered the consistent estimator'¢: which is
the solution of the equation
=P,

where

P = Corr (F(),6() = (¥ -1-24109) /¢ -1)° ,

and ¥ is the Pearson product moment correlation of (Fi,Gi) =
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A A
(%, ,8),6(7,,8)), i = 1,....0.

Mardia also evaluated the efficacies

lim e($:) =1/9

n—>

and

lim e(¢:) = 1/16.

n—>

%
Hence from equation (3.24), the ARE's of|L: andx#n relative to

asymptotically optimal C(a) tests are respectively 9/16 to 1.
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Iv. COMPARISON OF NONPARAMETRIC TESTS

FOR BIVARIATE INTERCHANGEABILITY

Given a random sample (Xl,Yl),...,(Xn,Yn) from a BV absolutely
continuous c.d.f. H(x,y), we consider rank tests for the null hypoth-
esis of interchangeability, Ho: H(x,y) = H(y,x). Three linear rank
test statistics, Wilcoxon (WN), sum of squared ranks (SSRN), and
Savage (SN)’ are described in section 4.1. In section 4.2, ARE
comparisons of the three types of tests are made for Morgenstern and
Moran BV alternatives with marginal distributions satisfying G(x) =
F(x/g) for some 6 # 1. Both gamma and lognormal marginal distribu-

tions are used.

4.1. Description of the Test Statistics

Let Z(;y <209y S +v0 S 20y

order statistics of the combined sample of X's and Y's. Define

with N = 2n, represent the

Cy. 12+ Oy y O

1 if Z,, ., is an X-observation
(1)

N,i

0 if Z is a Y-observation.

(i)

Sen [25] studied linear rank statistics

TS ZEN,iCN’i , (4.1)

where the coefficients By = JN(i/(N+1)), i=1,...,N, are specified.
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The coefficients for the three tests under consideration are defined

by

Wy JN(i/(N+1)) = J(L/(N+1)) = i/(N+1) R 4.2)
SSR. : J (i/(W1)) = J(1/(W1)) = /a2 (4.3)
i
Syt J(i/(+1)) = > 1/(N-j+1)
j=1
2 -1n(l-i/(¥+1))-1 = J(i/(+1)). (4.4)

Sen considered permutation tests based on TN. A summary of
Sen's development of the permutation tests is included here for

completion. Define the 2xn mwatrix AN as

X.X....X
A=) V2 n (4.5)

Y1Y2...Yn

and define rank matrix RN as

RXII{Xz...RXn
RN = : (4.6)

where RX and RY are the ranks of Xi and Yi in the combined sample
. i )

(Zl""’ZN)'

Also, define the set S(RN) as
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% % . ) .
S(RN) = RN: RN can be obtained from RN by permutations
of two rank elements within each columnm.
There are 2 possible rank matrices in é(RN)- S(RN) is called the
permutation set of RN. Under 1 : H(x,y) = H(y,X).
== | s el fer el es B
PRy | S®) m o for all Ry €5®) @.7)

Thus, the conditional distribution of TN given RN = R;, under Hj
can be obtained from equation (4.7). It should be pointed out that
the unconditional distribution of RN’ and consequently of TN’ does
depend on H(x,y) under H,. Hence, an unconditional test based on
TN would not be distribution free.

Calculation of the level of the conditional Wilcoxon test is
now illuétrated by the following example. Consider five BV obser-

vations given in the data matrix form of equation (4.5)

_ 3 10 7 13 6
Ao =
4 9 5 11 2}

Using the ordered combined sample

(Z(1)°2(2)°2(3) "2 (4) >2(5)*2(6)*2(7) *2(8) 2 (9) *%(10)

(YS ’Xl ,yl ’Y3 ’XS ,X3 ’y2 ’XZ 9}74 ’xl")

(2,3,4,5,6,7,9,10,11,13)

the rank matrix RlO is evaluated.

[286105]
R:
10 37 4 9 1

Using equation (4.2) in (4.1), we obtain
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1 2+8+6+10+5 31
5 11 55
- * da ’
The following three R10 elements of S(Rlo) also have T10 greater

o
than or equal to T10'

3 8 6 10 5 3 7 6 10 5 3 8 6 9 5
s ] and [ ]

2 7 4 91 2 8 4 9 1 2 7 4 10 1
%

The other 28 R

o
10 elements of S(Rlo) have T, . less than T_...

10 10

Therefore,

, o ~ )
P(T1g2 Tip SRy ) = 4/32 = .125.

o
The conditional significance level of the test statistic T10 is

0 —
then equal to 2P(T10 > T10 ) .25 .

Under suitable conditions on the coefficients EN,i’ Sen
[25, Th.5.1] establishes the asymptotic normality of the conditional
distributions of the test statistics. The three statistics under
consideration satisfy Sen's conditions. Now, for the example, we

compare the normal approximation with the exact tail probability for

o ]

T 10 °

10T

The conditional expection and conditional variance of TN

are

N
2By (4.8)

i=1

ZIH

E(Ty|S®) =
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n
_ 1 2
var (TNIS(RN)) v E:‘l (EN’RLk - EN’RZ.k) (4.9)

where R.

5.k denotes the rank of the jth element of kth pair, j = 1,2 .

In our example,

BTy, |s®Ry)) = 1/2

23
var (?10\3@10)) = 12100

and

(o]
o Tio = ETo[s®;p) _ !

[Var(r  |s@, >  v&3

= 1.49 .

. . ‘ o
For the normal approximation to P(Tlo > TlOIS(Rlo))’ we have

P(z > z°) = .068 s
where Z ~ N ( 0, 1 ) . Using the correction for continuity improves

the approximation to P (Z > 1.08) = .100

4.2. ARE's for Morgenstern and Moran BV Gamma Distributions

The ARE's of the Wilcoxon, sum of squared ranks, and Savage
tests are now evaluated for the Morgenstern and Moran BV gamma
distributions with common shape parameter ¢ = 1/2,1,2,3,...,16 and
the BV lognormal distribution.

The general form for the asymptotic efficacy of conditional
tests for interchangeability based on linear rank order statistics
with the alternatives satisfying G(y) = F(YIB) with 8 # 1 was found

by Sen [25]:
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OEq (T, )]
56 1971
lim e(T,)) = lim
N—> co N—>wo N Var0=1(TN)
(4.10)
1/4 ¢2@F,T)
1/2 AZ(J)[I-B(H,J)]
where
1 1 2
A2@) = sz(U)dU - [/J(U)cm] (4.11)
o o
Jf IEEIE))A(x,Y) - [f s@yan’
- 4.12)
423
C(F,J) = fo'(F(x))f(x)dF(x) (4.13)
and

J@) = lim JN(U) for 0<UK<1
N—> o0

Concerning the constants A, B, and C, notice that A is independent
of distributions, B depends on the BV distribution form and is equal
to zero for the case of independence, whereas C depends on the BV
distribution only through the marginals. The quantities in Equa-
tions (4.10), (4.11), (4.12) and (4.13) are evaluated below.

First we consider the case of the Morgenstern BV gamma dis-

| tributions with common shape parameter a.
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For the Wilcoxon test statistic (WN) with J@U) = U, 0<U <1
2 .
AT(J) = 1/12 (4.14)

Evaluation of B(H,J) requires the integration:

ffJ(F(X))J(F(y))dH(x,y)
=/ﬁ‘(X)F(y)f(X)f(g)[1+7(2F(X)-1)(ZF(Y)-l)]dxdy (4.15)

= 1/4 +7 /36

For C(F,J), we find

I (20)

2
C(F,J) = Ixf"(x)dx = 54— (4.16)
Zza[l"(oz) ]2
Hence,
3 { ree |2
lim e(W. ) = 1/2 - (4.17)
N>eo N 1- § 22“[r(a)]2}

For the sum of squared ranks test statistic (SSRN) with J(U) = U2,

0 <U <1, we have

2%y = 4/as (4.18)

f JHESIIOIETER
- fp2<x>F2<y>f<x)f<g>£1+v<2F<x>-1><2F<y>-1>dedy (4.19)

=  1/9+ 7/36

3



Using equations (4.19) and (4.18) in (4.12), we have

The

and

B(H,J) = 57/16 .

term
o«
2
C(F,J) = J/EXF(x)f (x)dx
reduces to °
© g1 i -x _a-1 -x
X e X e 2
C(F,J) = ﬁx(l-z ) [ 1 ax
o) . it I'(e)
=0
a=-1 "
r'2o) I (i+2a)
2 [——— - _ ——] for integer o
l,(O[')Z.ziZoz i i![r(a)]2.31+2a
to
=X - -1 =
®© X y %0 y X 1e 2x
C(¥,J) = J{)f 2x dydx
0”0 v T
© x =% -y -2x ©® © -% -y
y ‘e’e - y ‘e
2 /:/ dydx f f 2e ¥y dy
00 w3/2 oy 13/2
- =L .
me3y 2 V3
dy = — for o =1/2
o 3/2 3w
w

Using equations (4.18), (4.20), (4.21) and (4.22) in (4.10), we

have

50

(4.20)

(4.21)

(4.22)
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2
ree) %'t
2| ————— - -
, r@?2*  J r(a)-it-3te
* for integer o.
4/45 - /36 (4.23)
lim e(SSR.) = J
N-> oo g

_ L for o = 1/2.
: 6‘”2(4/45 - 1/367) (4.24)

For Savage test statistics (SN) with J(U) = -In(1-U)-1, we have
2
AT =1 (4.25)
and

f f J(F(x))I(F(¥))dH(x,¥)

1,1
ff J(U)I (V[ 1+v(2u-1) (2v-1) Jdudv (4.26)
0o 0

= 7/4

where U = F(x) and V = F(y).

Using equations (4.26) and (4.25) in equation {4.12), we obtain
B(H,J) = 7Y/&. (4.27)

The term

C(F,I) = v £ (x)dx (4.28)

o 1-F(x)

reduces to




(=]

2(1/-1 -
J—* -
200-1 . dx

O[F(a/)]z Z % for integer « , (4.29)
i=o
C(F,J) -]
* -2x
.}f xe dx for o = 1/2 , (4.30)

° [1-E, (1w

where expressions (4.29) and (4.30) are approximated by 32 point

<o 32
quadrature numerical integration ﬁc(x)e-xdx = Z k(xi)Ai .
o
i=1

Tables of X, and Ai given in [9,p.352] were used.

Using equations (4.25), (4.27), (4.29) and (4.30) in equation (4.10),

we have
2
@ X2<1/-1 -
) -[ v * e “dx
en i
(T(a)“ 2 _g
i=0 ** for integer « , (4.31)
2 (1-7/4)
Lim e(S) =9
N-> oo
2
fo 1 xe-zx ]
o for ¢ = 1/2 . (4.32)
2 (1-74)

The ARE's for the Wilcoxon, Savage and SSR tests are tabulated

in Tables II-IV for the Morgenstern BV gamma distributions with common



shape parameter o« = 1/2,1,2,3,...,16 and parameter ¥ = -1(.1)1.

For the case of independence {7Y= 0), our results of the ARE of WN

relative to SSRN for all integer o's, and the ARE of WN relative

to SN for o = 1 agree to four decimal places with those of Duran
and Mielke [4]. Also for ¥ = 0, the ARE of SSRy relative to Sy
agrees with that of Mielke [4] to three decimal places. 1In figure
values of o and 7Y for which each of the three tests is most effi-

cient are indicated. The Savage test is seen to be best among the

three tests for negative Y . For positive Y , either the Wilcoxon
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or

the sum of squared ranks test is preferred to the Savage test depend-

ing on the combination of o and 7 .

For computing ARE's for Moran BV gamma distributions with
common shape parameter « , we only need to evaluate B(H,J) since
A(J) and C(¥,J) do not depend on the form of the BV distribution.
We use the following transformations

F(x) =P (w)

F(y) =4 (2)
and

H(x,y) = (w,z) ,
where (W,Z) are BV unit normal random vzriables with correlation
coefficient P ,

For the Wilcoxon statistic WN then,

f ﬁ(F(x))J(F(y))dH(x,w

!

PU <W,V<2) ,

fﬁ @ W) T (P(2))dP(w. z) (4.33)
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Figure 6.

Wilcoxon

Savage

Regions of the most efficient tests for the
Morgenstern BV distribution
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TABLE I1I.

H(%,y)=H(y,x) AGAINST ALTERNATIVES G(y)=F(y/6),6¥1,FOR THE MORGENSTERN BV DISTRIBUTION

ASYMPTOTIC RELATIVE EFFICIENCY OF THE WILCOXON TEST RELATIVE TO THE SAVAGE TEST OF H :

a‘Y -1 -9 -8 =7 -6 =5 -4 -3 -.2 -.1 0 .1 .2 .3 4 .5 .6 .7 .8 .9 1
112703 707 711 715 719 723 728 733 .738 744 750 757 763 771 779 788 797 807 818 830 .844
‘2 1803 807 811 816 821 B826 831 837 843 850 857 864 872 880 889 899 910 922 934 948 964
3 | 851 855 860 865 870 875 881 887 894 901 908 916 924 933 943 953 965 977 990 1005 1021
4 | 881 885 890 895 .900 906 912 918 925 932 940 948 .956 966 976 987 998 1011 1025 1040 1057
5 1 902 906 211 916 922 928 934 940 947 954 962 970 979 989 999 1010 1022 1035 1050 1065 1082
6 | 917 922 927 932 938 944 950 956 963 971 979 .987 996 L006 1016 1027 1040 1053 1068 1083 1101
7 |1 930 935 940 945 950 956 963 969 976 984 992 L1000 1009 1019 1030 1041 1054 1067 1082 1098 1116
g8 | 940 945 950 955 961 967 973 980 987 994 1002 1011 1020 L030 1041 1053 1065 1079 1094 1110 1128
9 | 948 953 .58 964 969 975 982 988 .996 1003 1011l 1020 1029 1039 1050 1062 1075 1088 1103 1120 1038
10 |1 955 960 965 971 977 .983 989 996 1003 LOL11l L019 L1028 1037 L047 1058 1070 1083 1097 1112 1128 1146
11 | 962 966 972 977 983 .989 995 1002 1010 1017 1026 1034 LO44 1054 1065 1077 1090 1104 1119 1136 1154
12 | 967 972 977 983 .988 .995 1001 L0OO08 LO15 L1023 L1031 LO40 LO50 1060 1071 1083 1096 1110 1125 L142 1160
13 {972 977 982 .988 .993 1000 1006 1013 1020 L028 1037 1046 1055 L065 1076 1088 1101 1115 1131 1148 1166
14 | 976 981 .986 .992 .998 1004 1011 1018 1025 L033 1041 LO50 1060 1070 1081 1093 1106 1120 1136 1153 1171
15 | 980 .985 .990 996 1002 1008 1015 1022 1029 L1037 1045 L054 1064 L1074 1086 1098 1111 1125 1140 L1157 1176
16 | 984 989 .994 .999 1005 1012 1018 1025 1033 LO41 1049 L0O58 1068 L078 1089 1102 1115 1129 1144 1161 1180

w
w




TABLE III,

ASYMPTOTIC REIATIVE EFFICIENCY OF THE SUM OF SQUARED RANKS TEST REIATIVE TO THE SAVAGE
TEST OF H_: H(x,y)=H(y,x) AGAINST ALTERNATIVES G(y)=F(y/e),

#1, FOR THE MORGENSTERN BV DISTRIBUTION

a -1 -9 -8 -7 -6 -5 -4 -3 -2 -.1 0 .1 .2 .3 b .5 .6 .7 .8 .9 1
1 827 .830 .833 837 .841 .845 .849 -.853 858 B863 868 874 880 886 893 900 908 917 926 936 947
2 889 892 .896 .900 .904 .908 .913 .917 923 928 934 939 946 953 960 968 977 986 996 1007 1018
3 17 920 924 .928 932 .937 .941 946 951 957 963 969 976 983 990 988 1007 1017 1027 1038 1.050
4 934 937 941 945 949 .954 958 .963 969 974 980 987 993 1001 1008 1017 1025 1035 1046 1057 1070
5 945 949 953 957 961 .965 .970 .975 981 986 992 999 1006 1013 1021 1029 1038 1048 1058 1070 1082
6 954 957 961 .965 .970 .974 .979 .984 990 995 1001 1008 1015 1022 1030 1038 1047 1057 1068 1.08C 1092
7 960 964 968 972 976 981 .986 991 .996 1002 1008 1015 1022 1029 1037 1045 1055 1065 1075 1087 1100
8 966 .969 .973 .977 .982 .986 .991 .996 1002 1008 1014 1020 1027 1035 1043 1051 L1061 1071 1081 1093 1106
9 970 974 978 982 .986 .991 .996 1001 1006 1012 1018 1025 1032 1039 1048 1056 1065 1075 1086 1098 1111
10 974 978 .982 986 .990 .995 1000 1005 1010 1016 1022 1029 1036 1044 1052 1060 L070 1080 1091 1102 1115
11 977 981 .985 .989 .993 .998 1003 1008 1014 1020 1026 L1032 1039 1047 1055 1064 1073 1083 1094 1106 1119
12 980 .984 .988 .992 .996 1001 1006 1011 1017 1023 1029 1035 1043 1050 1058 1067 L1076 1086 1097 1109 1122
13 D82 986 .990 .994 .999 1004 1008 1014 1019 1025 1031 1038 1045 1052 1061 1070 1079 1089 1100 1112 1125
14 985 .988 .992 .997 1001 1006 1011 1016 1022 1028 1034 1040 1048 1055 1063 1072 1081 1092 1103 1115 1128
15 987 .990 .994 999 1003 L1008 1013 1018 1024 1030 1036 1043 1050 1057 1065 1074 1084 1094 1105 1117 1130
16 988 .992 .996 .1001 1005 1010 1015 1020 1026 1032 1038 1045 1052 L1059 1067 1076 1086 1096 1107 1119 L1132

9¢



TABLE IV, ASYMPTOTIC RELATIVE EFFICIENCY OF THE WILCOXON. TEST RELATIVE TO THE SUM OF SQUARED RANKS
TEST OF H : H(x,y)=H(y,x) AGAINST ALTERNATIVES G(y)=F(y/6),6+1, FOR THE MORGENSTERN BV DISTRIBUTION

@)

-1 -9 -8 =7 -6 =5 =4 -3 -2 -,1 0 .1 .2 .3 4 .5 .6 .7 .8 .9 1

788 789 790 791 792 793 794 796 .797 798 800 .802 .804 .806 .808 810 813 815 818 821 825
851 852 853 854 855 856 858 .859 861 862 .864 .866 .868 .870 .872 875 878 880 884 887 .891
903 904 906 .907 908 909 911 912 914 916 .918 .920 .922 .924 926 929 932 935 938 942 .946
928 929 931 932 933 935 936 .938 .939 941 .943 .945 .947 950 .952 955 958 961 964 968 973
944 945 946 947 949 950 952 953 .955 .957 .959 .961 .963 .965 .968 971 974 977 980 984 989
954 955 957 958 959 961 962 964 966 967 .969 .971 .974 976 .979 982 985 988 991 .995 1000
962 963 965 966 .967 .969 970 972 974 975 977 .980 .982 .984 .987 990 993 996 1000 1004 1008
968 970 971 972 974 975 977 978 980 .982 .984 .986 .988 .991 .993 .996 999 1002 1006 1010 1014
973 975 976 977 979 980 982 .983 .985 .987 .989 .991 .993 .996 .998 1001 1004 1008 1011 1015 1019
978 979 980 982 983 984 986 .987 .989 .991 .993 .995 .998 1000 1003 1006 1009 10i2 1016 1020 1024
10| .981 .982 984 985 986 .,988 989 .991 .993 .995 .997 .999 1001 L1004 1006 1009 1012 1016 1019 1023 1028
11 | .984 .985 .987 .988 .,989 991 993 .994 .996 .998 1000 1002 1004 1007 1009 L012 1016 1019 1023 1027 1031
12 1 987 988 .989 991 992 994 995 .997 .999 1001 1003 1005 1007 1010 1012 1015 1018 1022 1025 1029 1034
13§ .989 991 992 993 995 996 .,998 .999 1001 L1003 1005 1007 1010 1012 1015 1018 1021 1024 1028 1032 1036
14 | 991 993 .994 995 997 .,998 1000 1001 1003 L1005 1007 1009 1012 1014 1017 1020 1023 1026 1030 1034 1039
154 .993 995 996 .997 .999 L000 1002 1003 1005 L1007 1009 L1011l 1014 1016 1019 1022 1025 1028 1032 1036 1041
16 | 995 .996 .998 .999 1000 1002 1003 1005 L1007 1009 1011 1013 1015 L1018 1021 L1024 1027 1030 1034 1038 1043

OO0~ WN =W R

(%]
~
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where U and V are independent unit normal random variables which are
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also independent of W and Z. Let

W-U) N2

1

and

s, = (Z-V)NZ ,

with second order moments

var(s;) = 1/2(var(W) + var(V))

]
-t
-

var(Sz) = 1/2(var(z) + var(V))

]
-
-

and

cov(Sl,Sz) =1/2 covW,Z) = 1/2 p

Equation (4.33) then is equal to

P(0 < §,,0 <S,) = 1/4 + 1/(2m) sin'(0/2) . (4.34)

1’

The equality of equation (4.34) was established in [2,p.290].
Therefore, from equations (4.12), (4.14), (4.33) and (4.34) we

have
B(H,J) = (6/x) sin L (p/2) ) (4.35)

Using equations (4.14), (4.35) and (4.16) in equation (4.10) gives
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I (Cw) ]2
[ F(a)2.22a
for integer o , (4.36)
2[1/12 - 1er)sin”" (0/2) ]
lim e(W ) =
N>o0 N
3
for o = 1/2 . (4.37)
202 [1 - 6/ sin” "(P/2)]
For the sum of squared ranks test statistic (SSRN),
S[3@e)3@e)amey)
=ffJ(¢(w))~K<b(z))d<b(w,z)
" (4.38)

= ﬂ P(U1< w,U2< W, V1< z,V2< z)dd(w,z)

=_/:/;2(w>¢?(z>d¢«w,z>
\
\

where Ul’ U2’ V1 and V2 are independent unit normal random variables

which are also independent of W and Z. Let
8; = W-UK2, S, = (-UNAKZ, S5 = (2VINE, and S, = ZV)AZ,

so that (Sl’ SZ’ S3, S4) has a quadrivariate normal distribution

with zero mean vector and covariance matrix.

L1 P 8
5 3 3
1, PP
2 2 2 (4.39)
LA ;1
7 3 3
pop 1,
| 2 2 2 J
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Then equation (4.38) may be written as

P(0<S,,0<s,, 0< S3, 0 < S4 )

1’ 2

= 1/16 +[sin'1(1/2)+2 sin'l(g)]/47r+[[sin'l(llz)]'2-2[sin'1(§)]2]/47r2

oy Teeos™ @Iz [0, 16 cos™ /)| 1P

= L(P) (4.40)

Equation (4.40) was derived in [1,p.153] with Li (x) and Li (r,6)
2 2

i representing logarithm functions given in [11].

i Hence, from equations (4.12), (4.18), (4.38) and (4.40) we have

L) - 1/9
B(H,J) = —m8M88— (4.41)
4/45

Using equations (4.18), (4.41), (4.21) and (4.22) in equation (4.10)

gives
a-1 2
I'(2a) r{it2a)
oy - .
2 .2 2, .it2
M@ 2™ T it37 (4.42)
2 [1/5 - L(PM] -
for integer o ,
lim e(S ) =
N—> 0 SRN

1 _
| 5 (4.43)
6" [1/5 - L(P)]

for o = 1/2
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For Savage test statistics (SN) we have
3@,9) =f [3000)I@()d00,2)
T}C/in(l«b(w))1n(1-4%z))¢(w,z)dwdz -1 (4.44)
2
(1-phz (w-p2)”
1 " 2a1-p%) C2a-p)
:1:—————3—; In(l-d(z))e J/ﬁln(l-diw))e dwi{dz - 1
2w(1-p7)"
Using the transformation
W-pz z
S = =, T = —
VvV 2(1-P%) Vo2
and letting
hy (s,t) = [ 1-#¢/2(1-p%) - § +//2P )] ,
h, (t) = In[1 - /2 £)] ,
equation (4.44) may be written as
1 -2 P
B(H,3) = ——[ hy(t)fh, (s,t)e Sdse- dt -1 (4.45)

The double integral in equation (4.45) is approximated by

20 20
> hZ(ti)[ > hl(si,ti)Aj]Ai
i=1 j=1

where the t, =g and Ai were taken from [9,p.343-346].
Using equations {4.25), (4.44), (4.29) and (4.30) in equation (4.10),

we obtain
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r xza-l - 2
1/2 =1 e “dxj| .

Y -1
r@P > %
i-0

1 _ w2-2Dwz+z2
Z-ﬁn[l-Cb(W)]ln[l-‘b(Z)]——z—;, e 2(1-92) - dwdz
2m(1-p%)*

for integer o , (4.46)

lim e(WN) =
N—>eo
2
° 1 xe-2X
1/2 dx
o 1-F(x)
) w2-29wz+z2
-—
2‘/~]'1n[1-¢(w)]1n[1-¢(z)] 2(1-P7) dwdz .
21r(1-p )

for o = 1/2 . (4.47)

The ARE's for the Wilcoxon, Savage, and SSR tests are tabulated
in Tables V, VI and VIT for the Moran BV gamma distributions with
common shape parameter o = 1/2, 1, 2, 3,...,16. The correlation
coefficients P's are chosen so that sin-l(p/Z) = -30° (+5°) 30°
(see equation 4.40). When P = 0, the results agree with those in Tables

iI - IV. Figure 7, similar to Figure 6, graphs in o - P space those

regions in which each of the three tests is most efficient.

4.3 ARE's for the BV Lognormal Distribution

For the case of the BV lognormal distributions, we need only
to compute the constant C(F,J) in equation (4.13) since the evaluation

of AZ(J) and B(H,J) are the same as those obtained for the Moran BV




TABLE V.  ASYMPTOTIC RELATIVE EFFICIENCY OF THE WILCOXON TEST RELATIVE TO THE SAVAGE TEST OF H_:
H(x,y)=H(y,x) AGAINST ALTERNATIVES G(y)=F(y/6),0#1, FOR THE MORAN BV DISTRIBUTION

\\\ﬁ -.8452  -,6840 =.5176 -.3472 -.1744 0 L1744 .3472 .5176 .6840 .8452
[8 4
% .3638 4247 4767 .5245 L5714 .6223 .6855 7779 .9407  1.3003  2.5190
1 L4384 .5118 .5746 .6321 .6888 .7500 .8261 .9377  1.1338 1.5673  3.0366
2 .5007 .5845 .6561 .7218 .7865 .8565 9434 1.0708  1.2947 1.7898  3.4677
3 .5306 .6195 .6954 7651 .8336 .9078 .9999  1.1349 1.3723  1.8970  3.6755
4 L5492 L6412 .7198  .7919 .8628 .9396  1.0349  1.1747  1.4203 1.9635 3.8041
5 .5622 . 6564 .7368 .8106 .8833 .9618  1.0594  1.2024  1.4540  2.0099  3.8942
6 .5720 .6678 .7496 .8247 .8986 .9785 -~ 1.0778 1.2233  1.4792 2.0448 3.9618
7 .5796 .6767 .7597 .8358 .9107 .9917  1.0922  1.2398  1.4991 2.0723 4.0151
8 .5859 .6841 .7679 . 8448 9205  1.0024  1.1040 1.2532  1.5153  2.0947  4.0584
9 .5912 .6902 7748 .8524 .9287  1.0113  1.1139  1.2644 1.5288  2.1134  4.0947
10 .5956 .6954 .7806 .8588 9357 1.0190 1.1223 1.2739 1.5404 2.1293  4.1256
11 .5995 .6999 .7857 . 8644 .9418  1.0256 1.1296 1.2822 1.5504 2.1432  4.1523
12 .6029 .7038 .7901 .8693 .9471  1.0314 1.1360 1.2894 1.5591 2.1553 4.1758
13 .6059 7074 L7940  .8736 .9518  1.0365 1.1416 1.2959 1.5669 2.1660 4.1966
14 .6086 .7105 .7976 .8775 .9561  1.0411 1.1467 1.3016 1.5738 2.1756 4.2152
15 .6110 .7133 .8007 .8810 .9559  1.0453 1.1513 1.3068 1.5801 2.1843  4.2320
16 .6132 .7159 .8036 .8841 .9633  1.0490 1.1554 1.3115 1.5858 2.1922  4.2473

[2))
w



TABLE VI. ASYMPTOTIC RELATIVE EFFICIENCY OF THE SUM OF SQUARED RANKS TEST RELATIVE TO THE SAVAGE TEST
OF H,: H(x,y)=H(y,x) AGAINST ALTERNATIVES G(y)=F(y/6),0¥1l, FOR THE MORAN BV DISTRIBUTION

, -.8452 -.6840 =-.5176 =.3472 -,1744 0 1744 .3472 .5176 .6840 .8452

a
% .4852 .5626 .6237 .6751 .7241 .7778 .8473 .9510 1.1361 1.5487 2.9531
1 .5416 .6277 .€958 .7535 .8077 .8681 .9460 11,0613 1.2673 1.7273  3.2922
2 .5823 .6751 .7482 .8102 .8686 .9335 1.0172 1.1412 1.3628 1.8574  3.5400
3 .6006 .6962 L7716 .8356 .8958 .9627 1.0491 1.1770 1.4055 1.9155 3.6510
4 .6115 .7089 .7857 .8509 .9121 .9802 1.0682 1.1985 1.4311  1.9504 3.7174
5 .6190 .7176 .7953 .8613 .9233 .9922 1.0813 1.2131 1.4486 1.9743  3.7630
6 .6246 .7240 .8025 .8691 .9315 1.0011 1.0910 1.2240 1.4616 1.9921  3.7968
7 .6289 .7290 .8081 .8751 .9380 1.0081 1.0986 1.2325 1.4718 2.0059  3.8232
8 .6324 .7331 .8125 .8800 L9432 1.0137 1.1047 1.239 1.4800 2.0171  3.8445
9 .6354 .7365 .8163 .8840 .9476 1.0184 1.1098  1.2451 1.4868 2.0264  3.8622
10 .6378 .7394 .8195 .8874 .9513 1.0223 1.1141 1.2500 1.4926 2.0343 3.8773
11 .6400 L7418 .8222 .8904 .9544 1.0258 1.1179 1.2541 1.4976  2.0411  3.8902
12 .6418 .7440 .8245 .8930 .9572 1.0287 1.1211 1.2578 1.5019 2.0470 3.9015
13 .6435 L7459 .8267 .8953 .9597 1.0314 1.1240 1.2610 1.,5058 2,0522 3,9115
14 .6449 L7476 .8286 .8973 .9619  1.0337 1.1265 1.2639 1.5092  2.0569 3.9204
15 .6463 L7491 .8303 .8992 .9638 1.0358 1.1288 1.2665 1.5123 2.0611 3.9284
16 L6474 .7505 .8318 .9008 . 9656 1.0378 1.1309 1.2688 - 1.5151 2.0649  3.9357

[=))]
S~




TABLE VII. ASYMPTOTIC RELATIVE EFFICIENCY OF THE SUM OF SQUARED RANKS TEST REIATIVE TO THE WILCOXON
TEXT OF H,: H(x,y)=H(y,x) against alternatives G(y)=F(y/6), 8#1, FOR THE MORAN BV DISTRIBUTION

P -.8452 ~.6840 =-.5176 -.3472 ~.1744 0 1744 .3472 .5176 .6840 .8452

a
% 1.3340 1.3246  1.3082 1.2870 1.2672 1.2498 1.2361  1.2225 1,2078 1.1910 1.1723
1 1.2354 1.2265 1.2110 1.,1921 1.1728 1.1574  1.,1452 1.1319 1.1178 1.1021 1.0842
2 1.1632 1.1549 1.1403 1.1225 1.1043 1.0898 1.0783 1.0658 1.0525 1.0377 1.0209
3 1.1319 1,1238 1.1096 1.0922 1.0745 1.0605 1.0493 1.0371 1.0242 1.0098 .9933
4 1.1135 1.1055 1.0916 1.0745 1.0571 1.0432 1.0322 1.0202 1.0075 .9934 .9772
5 1.1011 1.0932 1.079  1.0625 1.0453 1.0316 1.0207 1.0089 .9963 .9823 .9663
6 1.0920 1.0842 1.0705 1.0538 1.0367 1.0231 1.0123 1.0006 . 9881 L9742 .9584
7 1.0850 1.0773 1.0637 1.0470 1.0300 1.0166 1.0058 . 9942 .9818 . .9680 ..9522
3 1.0794 1.0717 1.0582 1.0416 1.0247 1.0113 1.0006 .9890 . 9767 L9630 L9473
) 1.0748 1.0671 1.0536 1.0371 1.0203 1.0070 .9963 .9848 .9725 .9588 .9432
10 1.0709 1.0632 1.0498 1.0333 1.0166 1.0033 .9927 .9812 . 9690 . 9554 .9398
11 1.0675 1.0599 1.0465 1.0301 1.0134 11,0002 .9896 .9781 .9569 .9524 .9369
12 1.0646 1.0570 1.0436 1.0273 1.0107 .9974 .9869 .9754 .9633 . 9498 .9343
13 1.0620 1.0545 1.0411 1.0248 1.0082 .9950 . 9845 .9731 .9610 .9475 .9321
14 1.0598 1.0522 1.0389 1.0226 1.0061 .9929 . 9824 .9710 .9589 . 9454 .9301
H 1.0577 1.0502 1.0369 1.0206 1.0041 .9910 .9805 .9691 . 9571 . 9436 .9283
15 1.0559 1.0483 1.0351 1.0189 1.0024 .9892 .9788 L9674 .9554 .9420 .9266

(=)
W




Wilcoxon

Figure 7. Regions for the most efficient tests for the
Moran BV distribution.
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distributions.

For the Wilcoxon test statistic (WN)

C(F,J) = xfz(x)dx
2

2
=/x[ 1 e~ 1/2(1nx) ] ax
x\/2m

2
L 1, -()"

—m

2’ x ’

which, by the transformation y = lnx, reduces to

2
1 -y -1
C(F,J = = dy = == . 4.48
(F,3) 2.”._/.e Y ( )

Using equations (4.14), (4.35) and (4.48) in equation (4.10), we

have
1
1im e('WN) = " . (4.49)
N—>eo 4w [ 1/6 - 1/mrsin = (=) ]
2
For sum of squared ranks test (SSR.N)
C(F,T) =v/;xF(x)f2(x)dx
1 - 2
=f2x<b(1nx) 5 e (Inx) dx
X 27
which by the transformation y = 1lnx reduces to
1 - 2
=f2 d(y) —e 7 dy
2T
(4.50)
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Using equations (4.18), (4.41) and (4.50) in equation (4.10), we
have
1
lim e(SSRN) (4.51)
N—> o 8m(1l/5 - L(P))
Similarly, for Savage test statistic (SN)
1
C(F,J) =fx £ (x)dx
~-F(x)
1 2 1 (4.52)
=/‘ (1nx) dx
X 27 1-¢(1nx)
1 1 2
= f e dy
2m 1-d(y)
equation (4.52) is approximated by 20 point quadrature numerical
integration, ﬁc(x)e x d zk(x )A . Tables of xi’Ai given in
[9,p.343-346] are used.
Using equations (4.26), (4.44) and (4.52) in equation (4.10), we
obtain
2
| 2
‘ 1 -y
— e’ d
) [ ./ L-a(y) y]
lim e(SN) =
N> oo
1
- (w Y. —
2 -
[ fﬁn(l () ) In(L=dp(2) Yt 05
2m(1-p )2
(4.53)
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The ARE's for the Wilcoxon, Savage, and SSR tests are tabulated
in Table VIII for the BV lognormal distributions. The entry of the
ARE of SSR relative to Wy for P = 0 agrees with that of [4,p.343]

to three decimal places.



TABLE VIII. ASSYMPTOTIC EFFICIENCY COMPARISONS
OF H_:H(x,y)=H(y,x) AGAINST G(y)=F(y/6),6¥1, FOR THE BV LOGNORMAL DISTRIBUTION

P| -.8452 -.6840 =.5176 =.3472 =.1744 O. 1744 .3472 .5176 .6840 .8452

WN relative to SN .6844 .7990 .8968 .9867 1.0750 1.1705 1.2895 1.4637 1.7695 2.4473 4.7400
SSRN relative to SN .6846 .7936 .8799 .9525 1.0217 1.0973 1.1956 1.3419 1.6028 2.1851 4.1664
SSRN relative to wN 1.0005 .9935 .9812 .9653 .9504 .9374 .9272 .9168 .9158 .8932 .8790

Note: Wy, SSRy and S represent statistics of the Wilcoxon test, sum of squared ranks test and the

Savagé test, réspectively.

~
o
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V. COMPARISON OF TWO-SAMPLE NONPARAMETRIC TESTS
FOR RATIOS OF BIVARIATE OBSERVATIONS

Given two independent BV samples (X11,Y11),...,(X1m,Y1m)

and (X ), let

21272100 s Ry 5 Yo

> (5.1)

=]

=1,...,m and sz = Y2j[x2j’ j=1l,...,

N=m+n. (5.2)

Let Fl(z) and F,(z) represent, respectively, c.d.f.'s for the Z1
and Z2 variables. We are interested in nonparametric tests for
H : Fl(z)=F2(z) against H,: Fl(z)#Fz(z). This is a standard two
sample problem with respect to the Z1 and 22 variables.

The power functions of nonparametric tests of Ho: Fl(z)=F2(z)

against H (z)#F,(z) will depend on the forms of the c.d.f.'s
& 2
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Fl(z) and Fz(z). These c.d.f.'s depend on the joint c.d.f. H(x,y)

of the X and Y variables. ARE comparisons among the Wilcoxon, normal
score, and symmetric squared rank tests are made below in section 5.2
for Morgenstern BV gamma scale alternatives for X and Y

G(x) = F(x/A\), r#1 ,

where F and G have common shape parameter « .
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5.1 Rain-making experiments

In rain-making experiments, it is commonly assumed that the
seeding effect is multiplicative [23] with the precipitation following
gamma distributions [4,19]. Let X and Y denote nonseeded and seeded
precipitations respectively.G(y)=F(y/§) where 8 #1 indicates a seeding

effect. Two designs for rain-making experiments will now be discussed.

5.1.1. Design I

This design, introduced by Neymen and Scott [22], includes
one target area and s control areas. The cloud seeding is conducted
over the target area. The control areas are chosen such that their
precipitation is highly correlated with that of target area. Moreover,
the control areas are somewhat isolated from the target area so that
their precipitation is not affected by the cloud seeding. When a
storm is approaching, if it is seedable as determined by a meteorolo-
gist, a random scheme is used to determine whether or not to seed the
target area. For instance, a fair coin may be tossed and if it comes
up heads, the target area will be seeded. Precipitation measurements
are then taken over both the target and the control areas. Comparison
between the precipitation measurements of seeded and nonseeded "seed-
able" storms is made in order to judge the effect of seeding.

Neyman and Scott formulate the problem of testing for a
seeding effect in the following way: Let Y and X = (Xl,...,XS) be
the precipitations in the target and s coantrol areas. The distribu-
tion of Y depends on the value of X and some parameters ¥(9) where
6#1 denotes the seeding effect. The conditional p.d.f. of Y given

X=x can be written as g(y|x,0(68)). The p.d.f. of X, £(»), is rather




o
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arbitrary. If the nonseeded conditional expected precipitation in
the target is 7 (x), then the seeded conditional expectation is assumed
to be 7(x)8 . 6 =1 implies no seeding effect. Since the distributions
of Y and X are found to be far from normal, Neyman and Scott use a
square root transformation on Y, i.e. T =v/§: and assume the condi-

tional p.d.f. of T for given X = x is normal with constant variance,

1 S
2 2
p(t|x,9(8))=———— exp | -(t-a (§)~ a _(68)x,)" /20(6)
l U 0_(0)\/2"_ l o ]-E:l i 1 ]

where 3(8) = (0(8), ao(ﬁ), i=0,1,2,...,s).

Both p(trg 39(8)) and f(x) should satisfy Cramér conditions [21].
For testing the null hypothesis § =1, Neyman and Scott construct an
optimal C(o) test.

We formulate the problem of testing for a seeding effect as
follows: Let the random variables UAand UB denote unseeded rainfalls
in the control area A and target area B respectively. To simplify
the problem, only one control area is used . Let W = UB / UA .

Let there be m occasions when area B is seeded and n occasions
when area B is not seeded. Assuming a multiplicative effect for
seeding, let (X1i , Yli) = (UAi,BUBi), i=1l,...,m, represent observed
rainfalls for the m occasions where area B is seeded, and (ij, Y2j)
= (UAj’ UBj)’ j=1,...,n for the n occasions when area B is not seeded.

Then ratios of the X and Y variables may be expressed in terms of the

W variables

Z.=Y./X.=6U./U.=6Wi, i=1,...,m (5.3)

/[ X,,=0_. /U . =W, j=i,...,n . (5.4)




74

The c.d.f.'s Fl(z) and Fz(z) for the Z1 and 22 variables, respectively,

are then scale alternatives,

Fl(z) = Fz(z/ﬂ) . (5.5)

5.1.2. Design II.

This is so-called cross-over design [20]. There are two
areas which are so close to each other that there is a high correla-
tion between their unseeded precipitations, yet the areas are far
enough apart that seeding in one area does not influence the precipi-
tation in the other area. When a storm approaches, we randomly (e.g.
flip a fair coin) select one of the two areas as the target area and
the other as the control. Moran [20] has shown that this design is
better than the previous one provided that contamination between the
two areas is of little consequence. We will also show this is true
in section 5.2. Moran's statistical theory is based on the assumption
that the logarithmic transformation of precipitation follows a normal
distribution. Mielke [17] introduced a symmetric squared rank test
to test the seeding effect for this design. He prefers the symmetric
squared rank test over the Wilcoxon test because the symmetric
squared rank test gives greater weight to large precipitation ratios
Y/X. We now formulate Design II similar to the formulation of Design I.

Let U, and UB denote the unseeded rainfalls in area A and

A

/U . Let there be m occasions

area B respectively, and W = U A

B
when area A is seeded and area B is not seeded. N =n+m .
lim —— =p ,0 < p<1. Again, a multiplicative effect for seeding

N—> eo
is assumed. Let (Xli’ Yli) = (UAi,GUBi), i=l,...,m, represent




observed rainfalls for the m occasions when area B is seeded,‘and
(ij, YZj) = (OUAj, UBj)’ j=1,...,n, for‘the n occasions when area A
is seeded. The ratios of the X and Y variables may be expressed in

terms of the W variables

Z,; = Yli/x1i =6rUBi /UAi =6W;, i=l,...,m s (5.6)
Z,. =Y, . /X, =U_ /U . ==w. . j=1 n (5.7)
2j 2523 Bj'  Aj 6 "y ITiseeenm :

The c.d.f.'s Fl(z) and FZ(Z) for the Zl and Z2 variables, respectively,

then are scale alternatives,

F,(2) = Fz(z/ez) . (5.8)

5.2. ARE's for Morgenstern BV gamma alternatives

For Morgenstern alternatives, we compute the efficiency for
three nonparametric tests for Ho: Fl(z) = FZ(Z) against le Fl(z) =
FZ(Z/A). Notice that this formulation holds for both designs, since
A= 60 for Design I and A=02 for Design II.

Recall that the efficacy of the rank statistic TN =

1 N i 1 if it is Zl-observation
- 2: J(EIE)CN,i where CN,i=
i=1

0 of it is Zz-observation .
with weight function J(U) is
2
o)
[ a)\E)\(TN, A 1]
Ni;n; o) = 1, 1 2 -9
1/2[ fJ (U)dU-[f J(U)du] ]
0 o

Notice that equation (5.9) is a special case of equation (4.10).
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Evaluation of equation (5.9) requires the p.d.f. of Z where Z=Y/X.
In the rain-making experiments, Z=AW for A =1, 6 and 92. Therefore it
is sufficient to derive the p.d.f. f(w) :;md c.d.f. F(w) for W. Using
the Morgenstern p.d.f. equation (2.1) possessing common gamma marginal

distributions with integer shape parameter o« , we find

o - 1 rea Wt [4 ‘; ;1 I (2a+i+]) Wil
w) = (1+7) + v —
[r@7* (14 10 jo0 [T@171131 [2(4w) )2
*1 p(2at) Wt yrrisl
-2 g (5.10)
Eo [T 1% (2ot (2w+1)2°’*1]

and

2c=-k=-1

1 % pek-1) @71 }
M) oy Tla-k) (Lo

F(w) = (1+‘Y)[1 -

[ @b ol b iotiyrets) HL o) r(2atitktl) wOTETITE
+vl4 Z — -
2 20+t 2oHi+j-k-1
i=0 j=0 (P(x)]7it3'2 orkit] =0 [ (itok) (1+4w) otitj-k
(5.11)
a-1

a-1 1 (i) S FQatj-k-1) w217k

-2 -
2 ., [ o3 - 2a»+j-k-1]

J-=O[I‘(oz)] it o2 o T (k) (2+w)

-l rei)r(@  Clr (et )reeri-k-1) wrHi-lk J
-2 , - : : ] .

=0 [(@)-i! 2%t 0 [ (otiee) -2 (2ue1y2otizk-l

for '7'51 ,0<w<e , a=1,2,...
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From equations (5.1) and (5.2) for Design I, the asymptotic mean of

TN is given by

By = iR Fle) + (- B Fanlare)
with

3Ee(Ty)

Y I = —‘I’q—‘—/‘; I F () £ (w)du . (5.12)

0=1
Assuming m/N —> p in probability, 0 < p < 1, we have

lim 9 Eg (Ty,)

= -13/,:7 J'(F (w))fz(w)dw . (5.13)
N—>¢eo

0=1

Similarly for Design II, we have

Eg(Ty) éﬁ[—‘Nﬂ- F/0) +(1- —‘1\‘;—) F{®w) Jef(0w)dw (5.14)
with
JE5(T,)
0
o=1

s _/ [w JE@- - £l B)£(0) JE@IH F @) LEG)+E) ]| aw

L}

(i-2 __xﬁn___) W J’(F(w))fz(w)dwﬁ J’(F(w))fz(w)dw (5.15)

L}

-2 —%—wa'(F(w))fz(w)dw ,
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and

9E o(Ty) 2
lim ——— = <2p fwI'(F(w)) £ (w)dw . (5.16)
N—>@ d4

6=1

Using equation (5.13) in equation (5.9), we have the efficacy of any

rank test (TN) for Design I as

o2 [f3 ) Pad’
lim e, (‘I‘N) =

(5.17)
N> 1/2‘ﬁ2(U)dU - E/:I(U)dUJZ'

Similarly, using equation (5.16) in equation (5.9), we get the effi=-

cacy of any rank test (‘I‘N) for Design II as

w5 @ Gy yawl’ . (5.18)

lim e, (‘I‘N) =
N> 1/2 [3%wyav - Eﬁ(u)du]zj

Since the ARE of test f[‘1 with respect to test ‘1‘2 is defined as the

ratio of their efficacies, i.e.

lim e (Tl)
N-> 0
e (Tl’TZ) sz —_— R (5.19)

lim e (T

)
N> 2

from equations (5.17), (5.18) and (5.19), it is easily seen that the
ARE of i[‘1 with respect to ‘1‘2 for Design I is identical to that of
Design 1I.

Also, for any particular rank test {TN), Design II is more

powerful than Design I, since equation (5.18) is greater than
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equation (5.17) for a given test.
The weighting functions for the Van de Waerden (asymptot-
ically equivalent to normal score) and symmetric squared rank tests

are

J(U) = 4>'1(U) 0<U<1 , (5.20)

and

-(U—‘/z)z for 0 <U < 1/2

J(U) (5.21)

w-1)* for 1/2 <U <1

Notice that the J function in equation (5.21) is symmetric about
U = 1/2. The weighting function for the Wilcoxon test is given
in‘ééuation (4.2).

Using Simpson's rule, we compute the ARE's for o = 1,2,3,
which are presented in Tables IX, X and XI. The entries for Y= 0
agree to at least two decimal places with those obtained by direct
integration. Among the three tests, the Wilcoxon test is the best
for small « and/or positive correlation. The symmetric squared
rank test is best for ¥ = -1 and the combination of Y= -.8 and
a = 2,3. The normal score test is the best for large o . Figure 8
indicates the values of « and ¥ for which each of the three tests

is most efficient.

For the case Y= 0 and o = 1, In(w) has a logistic distri-

bution. 1In this case the Wilcoxon test is known to be asymptotically




efficient. Similarly for Y= 0 and ¢ >« , ln(w)A/x is asymp-
totically normally distributed. Consequently, the normal score
test would be nearly asymptotically efficient for Y= 0 and large

o .
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TABLE IX. ASYMPTOTIC RELATIVE EFFICIENCIES OF THE SYMMETRIC SQUARED RANK TEST WITH RESPECT TO
WILCOXON TEST FOR EQUALITY OF RATIOS FROM MORGENSTERN BV GAMMA DISTRIBUTIONS

¥ -1.0 -0.8 -0.6 -0.4 -0.2 -0.0 0.2 0.4 0.6 0.8 1.0
a —
1 1.019 .997 .978 .961 . 947 .936 . 929 .924 .922 .923 .927
2 1.065 1,041 1.020 1.002 .988 .978 .969 .964 .963 . 965 .980
3 1.082 1.057 1.036 1.018 1.003 .992 .984 .980 .978 .980 .986

o]
et




TABIE X. ASYMPTOTIC REIATIVE EFFICIENCIES OF THE SYMMETRIC SQUARED RANK TEST WITH RESPECT TO NORMAL
SCORE RANK TEST FOR EQUALITY OF RATIOS FROM MORGENSTERN BV GAMMA DISTRIBUTIONS

Yy -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 . 0.6 0.8 1.0
@
1 1.057 1.043 1.031 1.020 1.012 1.006 1.002 .999 .998 .997 .998
2 1.013 1.004 .996 .991 .987 .985 .984 .985 .987 .989 .990
3 1.009 1.001 .9% .989 .986 .984 .984 .984 .986 .988 .989

o]
et



TABLE

XI. ASYMPTOTIC RELATIVE EFFICIENCIES OF THE WILCOXON TEST WITH RESPECT TO NORMAL SCORE RANK TEST

FOR EQUALITY OF RATIOS FOR MORGENSTERN BV GAMMA DISTRIBUTIONS

¥ -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
a
1 1.038 1.046 1.054 1.062 1.069 1.074 1.079 1.081 1.082 1.081 1.077
2 .951 . 964 .977 .988 .999 1.008 1.016 1.021 1.024 1.025 1.022
3 .933 . 947 .960 .972 .983 .992 1.000 1.005 1.008 1.007 1.003

£8
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Figure

Regions of the most efficient tests for the
equality of ratios of Morgenstern gamma BV
observations for the common shape parameter
a=1, 2 and 3.
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VI, SUMMARY AND CONCLUSIONS

In the previous chapters, three BV statistical inference
problems have been discussed. We have shown that optimal C(«) tests
and l.m.p.r.t.'s are asymptotically equivalent for the tests of
independence when any of the three BV distributions, Morgenstern,
Plackett and Moran, are used as alternatives. The l.m.p.r.t.'s
are usually easier to compute than C(o) tests. As to the tests for
interchangeability‘of gamma bivariates from either BV Morgenstern
or Moran distributions, comparisons of three nonparametric tests
show that the Wilcoxon test is the best for positive correlations
and large shape parameters o , the Savage test should be used for
negative correlations and sum of squared rank test is good for some
combinations of shape parameter and correlations. Finally, for the
tests of equivalence of ratios from two BV Morgenstern gamma samples,
three nonparametric tests, Wilcoxon, norﬁal score énd symmetric
squared rank test, are considered for two designs of rain-making
experiments. Among them, the Wilcoxon test is the best for small
shape parameters o and/or large correlation; normal score test should
be used for large o; and symmetric squared rank test is good for
correlation index Y=-1 and combinations of ¥=-.8 and =2 and 3.
Since the distributions of rainfall data of two close areas have
small shape parameters and their rainfall is highly correlated, the
Wilcoxon test seems to be the best of the three tests when BV

Morgenstern gamma distribution is used as the underlying distribution.
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In this paper, three types of BV distributions and five
nonparametric tests are used. Other types of BV distributions and
other nonparametric tests could be considered. The techniques and
results of this paper could be generalized to handle multivariate
distributions so as to broaden the range of applications. An empirical
test of the results of this papef could be performed to see whether

the models fit real-world data.
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