

The purpose of this thesis is to derive and compare asymptotic performances of certain tests of independence, interchangeability and equality of the distributions of ratios Y / X for positive variates \bar{X} and Y with joint c.d.f. $H(x, y)$ of particular forms. Three bivariate families, Morgenstern, Plackett, and Moran, are considered which permit marginal c.d.f.'s $F(x)$ and $G(y)$ of specified forms.

For testing independence of X and Y, asymptotic locally optimal parametric tests are derived for bivariate gamma and Weibull distributions for each of three families. Locally most powerful nonparametric tests are also derived for each of the three bivariate families, and asymptotic relative efficiency comparisons are made among the various tests of independence.

Nonparametric tests for interchangeability of X and Y , based on the Wilcoxon, symmetric squared ranks, and Savage statistics are considered. Asymptotic relative efficiency comparisons of the nonparametric tests are made for scale alternatives in the Morgenstern
and Moran bivariate gamua distributions and bivariate lognormal distributions. Wilcoxon, symmetric squared ranks, and normal score tests are considered for testing equality of two distributions of ratios Y / X. Asymptotic relative efficiency comparisons of the nonparametric tests are made for scale alternatives in some Morgenstern bivariate gamma distributions.

The techniques and results of this study may have application in the analysis of data from rain-making experiments, reliability studies and medical research.

Performance of Some Tests for Bivariate Independence, Interchangeability, and Equality of Distributions of Ratios

by

Nancy Lo Ferguson

A THESIS
submitted to
Oregon State University

in partial fulfillment of
the requirements for the
degree of
Doctor of Philosophy
June 1973

APPROVED:

Redacted for Privacy

Assistant Professor of Statistics
Redacted for Privacy ${ }^{\text {tn charge of major }}$

Chairman of Department of Statistics

Redacted for Privacy

Dean of Graduate School

Date thesis is presented
May 5, 1972

Typed by Elsie Hirscher for

ACKNOWLEDGEMENT

The author wishes to thank Dr. David Thomas for his guidance and constant help. In addition, her gratitudes go to her mother and her husband, John, for their encouragement through the writing of this thesis.

TABIE OF CONIENTS
Chapter Page
I. INTRODUCTION 1
II. BIVARIATE DISTRIBUTIONS 4
Morgenstern's BV Distribution 6
Plackett's BV Distribution
18
18
Moran's BV Distribution 21
III. TESTS FOR INDEPENDENCE 23
Locally Asymptotically Optimal C(α) Tests 23
Locally Most Powerful Rank Tests 28
Asymptotic Relative Efficiency of Nonparametric Tests with Respect to Optimal C(α) Tests 34
ARE's of Two Other Tests of Independence Relative to the $\mathrm{C}(\alpha)$ Test for the Plackett Distribution 41
IV. COMPARISON OF NONPARAMETRIC TESTS FOR BIVARIATE INTERCHANGEABILITY 43
Description of the Test Statistics 43
ARE's for Morgenstern and Moran BV Gamma Distributions 47
ARE's for the BV Lognormal Distribution 62
V. COMPARISON OF TWO-SAMPLE NONPARAMETRIC TESTS FOR RATIOS OF BIVARIATE OBSERVATIONS 71
Rain-Making Experiments 72
ARE's for Morgenstern EV Gamma Alternatives 75
VI. SUMMARY AND CONCLUSIONS 85

PERFORMANCE OF SOME TESTS FOR BIVARIATE INDEPENDENCE, INTERCHANGEABILITY, AND EQUALITY OF DISTRIDÜTIONS OF RATIOS

I. INTRODUCTION

Statistical analyses for bivariate, or more generally multivariate, continuous data have not been developed very completely except for multivariate normal models. Transformations, such as logarithmic and square root, are frequently applied to non-normal data so that normal-theory analyses may be justified. One difficulty commonly encountered is that the transformations required to obtain exact marginal normality may depend on unknown parameters. Moreover, even if the transformed variables have marginal normal distributions, the joint distributions need not be multivariate normal. In analyses of non-normal data; asymptotic distribution theory is often applied to statistics on which the inference procedures are based. In certain small sample size cases the asymptotic theory approximations may be quite poor; for example, normal approximations to the distribution of sample means can be quite inaccurate when the sampling is from skewed distributions.

This thesis is concerned with some inference problems for bivariate (BV) distributions which permit marginal distributions of specified forms. Since BV distributions are not uniquely determined from the marginal distributions, several different procedures for constructing $B V$ distributions with specified marginals have been proposed. We consider the Morgenstern [24], Plackett [24], and Moran [19] forms which are described in Chapter II. Each of these
three forms has the convenient property that the BV cumulative distribution function (c.d.f.) $H(x, y)$ depends on x and y only through the marginal c.d.f.'s $F(x), G(y)$ and one unknown parameter θ; that is, $H(x, y)=Q[F(x), G(y) ; \theta]$ for some function Q. This property may be used in developing certain inference procedures which are distribution free relative to the marginal c.d.f.'s F and G. We are particularly interested in BV distributions for positive random variables X and Y with skewed marginal distributions, including the gamma, Weibull and lognormal families.

This study was motivated, in part, by inference problems arising from rain-making experiments. Cloud seeding with silver iodide smoke is used to increase the ice crystals in the clouds in order to increase the rainfall. Measurable precipitation data, $\mathrm{X}>0$, have been found [23] to be fit quite well by gamma distributions with shape parameter less than unity. The X and Y measurements may represent, respectively, precipitations resulting from unseeded and seeded clouds. If these X and Y measurements are taken near the same location at approximately the same time, X and Y will in general be dependent random variables. In addition to rain-making experiments, the BV models and inference procedures studied in this thesis should have application in other areas of research, including reliability and medical studies.

In Chapter II, the BV distribution are described and compared. Conditional distributions of $Y \mid x$ are also studied for the Morgenstern and Plackett BV distributions. In Chapter III, the
problem of testing indeperderice, $H_{o}: H(x, y)=F(x) G(y)$, in the Morgenstern, Plackett, and Moran distributions is considered. Asymptotic optimal parametric $C(\alpha)$ tests and locally most powerful rank tests are derived and compared. Asymptotic relative efficiency, ARE, comparisons of the tests for independence are also made in Chapter III.

In Chapter IV, some nonparametric tests for interchangeability, $H_{0}: H(x, y)=H(y, x)$, are studied. Sen [25] developed conditional permutation tests for H_{o} based on linear rank statistics. We consider the Wilcoxon (W), sum of squared rank (SSR), and Savage (S) statistics. Also using Sen's general asymptotic theory results, ARE comparisons of the three rank tests are made for gamma scale alternatives, $G_{\alpha}(y)=\mathrm{F}_{\alpha^{\prime}}(\mathrm{x} / \theta)$ for some $\theta \neq 1$ and common shape parameter α, in the Morgenstern and Moran BV families.

In Chapter V, the Wilcoxon statistic, the symmetric squared rank statistic [17] and normal score statistic are used for comparing ratios Y / X from two bivariate samples. The applications of these tests in two different designs used in rain-making experiments are discussed. ARE's among the Wilcoxon, the symmetric squared rank test and normal score test are also evaluated for the Morgenstern BV gamma distribution scale alternatives with common shape parameter $\alpha=1,2$ and 3.

II BIVARIATE DISTRIBUTIONS

Consider positive random variables X and Y with joint probability density function (p.d.f.) $h(x, y)$ and marginal p.d.f.'s $f(x)$ and $g(y)$. As indicated earlier, we let $H(x, y), F(x)$ and $G(y)$ denote the c.d.f.'s corresponding to p.d.f.'s $h(x, y), f(x)$ and $g(y)$. The following five types of BV distributions have been considered by others.
(1) Morgenstern $[5,24]$:

$$
\begin{align*}
& h(x, y)=f(x) g(y)[1+\gamma(2 F(x)-1)(2 G(y)-1)] \tag{2.1}\\
& H(x, y)=F(x) C(y)[1+\gamma(F(x)-1)(G(y)-1)] \tag{2.2}
\end{align*}
$$

where

$$
-1 \leq \gamma \leq 1
$$

(2) Plackett $[24,26]:$

$$
\begin{align*}
& h(x, y)=\frac{\psi f g|(\psi-1)(F+G-2 F G)+1|}{\left\{[1+(\psi-1)(F+G)]^{2}-4 \psi(\psi-1) F G\right\}^{3 / 2}} \tag{2.3}\\
& H(x, y)=\frac{S-\left(s^{2}-4 \psi(\psi-1) F G\right)^{1 / 2}}{2(\psi-1)} \tag{2.4}
\end{align*}
$$

where

$$
0 \leq \psi<\infty \quad \text { and } \quad S=1+[F(x)+G(y)](\psi-1) \quad .
$$

(3) Moran [19]:

$$
\begin{equation*}
h(x, y)=\frac{1}{2 \pi\left(1-\rho^{2}\right)^{1 / 2}} e^{-\frac{1}{2\left(1-\rho^{2}\right)}\left(A^{2}-2 \rho_{A B}+B^{2}\right)} \frac{d A}{d x} \frac{d B}{d y} \tag{2.5}
\end{equation*}
$$

where

$$
\begin{aligned}
& A=\Phi^{-1}(F(x)) \\
& B=\Phi^{-1}(G(y)) \\
& \Phi^{-1} \text { is the inverse function of unit } \\
& \text { normal c.d.f. . }
\end{aligned}
$$

(4) Gumbel's [7] BV exponential distributions:

$$
\begin{align*}
& h(x, y)=((1+\delta x)(1+\delta y)-1) e^{-x-y-\delta x y} \tag{2.6}\\
& H(x, y)=1-e^{-x}-e^{-y}+e^{-x-y-\delta x y} \tag{2.7}
\end{align*}
$$

where

$$
0<\delta<1, f(x)=e^{-x}, \text { and } g(y)=e^{-y} \text { for } 0 \leq x<\infty, 0 \leq y<\infty
$$

(5) Lancaster [11]:

$$
\begin{equation*}
h(x, y)=f(x) g(y)\left(1+\sum_{0}^{\infty} \rho_{i} x^{(i)} y^{(i)}\right) \tag{2.8}
\end{equation*}
$$

where $x^{(i)}, y^{(i)}$ are certain sets of orthonormal functions and ρ_{i} are the "canonical correlations".

Distribution types $1,2,3$, and 5 can be used for any random variables X and Y which have absolutely continuous c.d.f.'s F and G. We see that use of relations

$$
F(x)=\phi\left(\frac{\ln x-\mu_{x}}{\sigma_{x}}\right)
$$

and

$$
\begin{equation*}
G(y)=\Phi\left(\frac{\ln y-\mu_{y}}{\sigma_{y}}\right) \tag{2.9}
\end{equation*}
$$

in equation (2.5) gives the classical BV lognormal distributions. For positive parameters $\alpha_{1}, \alpha_{2}, \beta_{1}$, and β_{2}, transformations $x=\left(\frac{\mathrm{U}}{\beta_{1}}\right)^{\alpha_{1}}$ and $\mathrm{y}=\left(\frac{\mathrm{V}}{\beta_{2}}\right)^{\alpha}$ can be used in Gumbel's BV exponential distributions to give BV Weibull distributions. Marsha11 and 01kin [16] and Downton [3] have also considered different BV exponential and Weibull distributions which are useful in reliability studies.

It is instructive to investigate the conditional distributions of X, given $Y=y$, for $B V$ distributions with gamma or exponential marginals. Attention is restricted to only the Morgentern, Plackett, and Moran BV distributions because they are the underlying distributions used in the next two chapters.

2.1 Morgenstern's BV Distribution

The BV distribution, equation (2.1), has been extended to a more general form by Farlie [5],

$$
\begin{align*}
& h(x, y)=f(x) g(y)\left\{1+\gamma \frac{\partial[F \cdot A(F)]}{\partial F} \cdot \frac{\partial[G \cdot B(G)]}{\partial G}\right\}, \tag{2,10}\\
& H(x, y)=F(x) G(y)[1+\gamma A(F(x)) B(G(y))],
\end{align*}
$$

where

$$
A(F(x)) \longrightarrow 0 \text { as } F(x) \longrightarrow 1, B(G(y)) \rightarrow 0 \text { as } G(y) \rightarrow 1
$$

and $A(F(x))$ and $B(G(y))$ are bounded and have bounded first order derivatives in their arguments $F(x)$ and $G(y)$.

The regression curve of X on y, as derived in [5], is given by

$$
\begin{align*}
& E(x \mid y)=\int x \cdot \frac{h(x, y)}{g(y)} d x \tag{2.11}\\
& =\mu_{x}+K \cdot \gamma \cdot \frac{\partial\left[G^{\bullet} B(G)\right]}{\partial G}
\end{align*}
$$

where

$$
K=\int x \frac{\partial[F \cdot A(F)]}{\partial F} d x
$$

Gumbel [7] studied the conditional distributions for the Morgenstern type $B V$ distributions with exponential marginals in addition to the BV exponential distribution of equation (2.6). The following analysis of the Morgenstern BV gamma distributions generalizes Gumbe1's work since an exponential density is a special case of a gamma density with shape parameters equal to unity. Densities

$$
\begin{equation*}
f\left(x ; \alpha_{1}, \beta_{1}\right)=\frac{1}{\Gamma\left(\alpha_{1}\right)} \cdot \frac{1}{\beta_{1}} e^{-\frac{x}{\beta_{1}}} \cdot\left(\frac{x}{\beta_{1}}\right)^{\alpha_{1}-1} \tag{2.12}
\end{equation*}
$$

where

$$
0<\alpha_{1}, 0<\beta_{1}, 0<x<\infty
$$

and

$$
\begin{equation*}
g\left(y ; \alpha_{2}, \beta_{2}\right)=\frac{1}{\Gamma\left(\alpha_{2}\right)} \frac{1}{\beta_{2}}\left(\frac{\left.y^{\alpha_{2}}\right)^{-1}}{\beta_{2}} e^{-\frac{y}{\beta_{2}}}\right. \tag{2.13}
\end{equation*}
$$

where

$$
0<\alpha_{2}, 0<\beta_{2}, 0<y<\infty
$$

are used in equation (2.1) for the Morgenstern BV distribution. For integer α, c.d.f.'s corresponding to equations (2.12) and (2.13) can be written as

$$
\begin{equation*}
F\left(x ; \alpha_{1}, \beta_{1}\right)=1-\sum_{i=0}^{\alpha_{1}-1} \frac{\left(\frac{x}{\beta_{1}}\right)^{i-\frac{x}{\beta_{1}}}}{i!}, \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
G\left(y ; \alpha_{2}, \beta_{2}\right)=1-\sum_{i=0}^{\alpha_{2}-1\left(\frac{y}{\beta_{2}}\right)^{i-\frac{y}{\beta_{2}}}} \frac{i!}{} . \tag{2.15}
\end{equation*}
$$

The conditional p.d.f. of X , given y , is

$$
\begin{equation*}
\left.\left.f(x \mid y)=f\left(x ; \alpha_{1}, \beta_{1}\right)\left[1+\gamma \mid 2 \mathrm{~F}\left(x ; \alpha_{1}, \beta_{1}\right)-1\right\} \mid 2 G\left(y ; \alpha_{2}, \beta_{2}\right)-1\right\}\right] \tag{2.16}
\end{equation*}
$$

The boundary p.d.f. of X given y is

$$
\begin{equation*}
\left.2 \sum_{i=0}^{\alpha_{1}-1} \frac{\left(\frac{x}{\beta_{1}}\right)^{i} e^{-\frac{x}{\beta_{1}}}}{i!}-1\right] \mid \tag{2.17}
\end{equation*}
$$

where

$$
\alpha_{1}=1,2,3, . . . \quad 0<\beta_{1}
$$

2.1.1. The Regression Curves

Using equation (2.16), the nonlinear regression curve of X on y can be expressed in the form

$$
\begin{gather*}
E(X \mid y)=\int x f(x \mid y) d x \\
=\mu_{x}\left[1+\gamma\left|2 G\left(y ; \alpha_{2}, \beta_{2}\right)-1\right|\right]-\gamma \beta_{1}\left|2 G\left(y ; \alpha_{2}, \beta_{2}\right)-1\right| \cdot K\left(\alpha_{1}\right) \tag{2.18}
\end{gather*}
$$

where

$$
\mu_{x}=\alpha_{1} \beta_{1} \text { is mean of } x
$$

and

$$
\begin{equation*}
K\left(\alpha_{1}\right)=\sum_{i=0}^{\alpha_{1}-1} \frac{\Gamma\left(\alpha_{1}+i+1\right)}{\Gamma\left(\alpha_{1}\right) \Gamma(i+1)} \cdot \frac{1}{2_{2}^{\alpha_{1}+i}} \tag{2.19}
\end{equation*}
$$

The symmetry relation

$$
\left.1 / 2 \mid E_{-\gamma}(x \mid y)+E_{\gamma}(x \mid y)\right]=\mu_{x}=\alpha_{1} \beta_{1}
$$

is easily found from equation (2.18).
For the case where $\alpha_{1}=1$, equation (2.18) reduces to

$$
\begin{align*}
& \underset{\gamma}{\mathrm{E}}(\mathrm{X} \mid \mathrm{y}) \\
& \left.=\beta_{1}\left[1+\gamma \mid 2 \mathrm{G}\left(\mathrm{y} ; \alpha_{2}, \beta_{2}\right)-1\right\}-\frac{\gamma}{2}\left\{2 \mathrm{G}\left(\mathrm{y} ; \alpha_{2}, \beta_{2}\right)-1\right\}\right] \tag{2.20}
\end{align*}
$$

Graphs of equation (2.20) for $\gamma=-1,0$, and 1 , and $\alpha_{2}=1 / 2$,

1 , and 2 are given in Figure 1 . When $\alpha_{1}=\alpha_{2}=1$, Figure 1 corresponds to Gumbel's Graph 2 in [7,p.705].

2.1.2. The Conditional Variance

Using equation (2.16), we obtain
$E\left(x^{2} \mid y\right)$
$=\beta_{1}^{2}\left\{\alpha_{1}^{2}+\alpha_{1}+\gamma\left[2 G\left(y ; \alpha_{2}, \beta_{2}\right)-1\right]\left[\alpha_{1}^{2}+\alpha_{1}-\sum_{i=0}^{\alpha_{1}-1} \frac{\Gamma\left(\alpha_{1}+i+2\right)}{\Gamma\left(\alpha_{1}\right) \Gamma(i+1)} \frac{1}{\alpha_{2}+i+1}\right]\right\}$

Moreover,

$$
1 / 2\left[E_{-\gamma}\left(x^{2} \mid y\right)+E_{\gamma}\left(x^{2} \mid y\right)\right]=\alpha_{1}^{2} \beta_{1}^{2}+\alpha_{1} \beta_{1}^{2}=E X^{2} .
$$

Thus, from equations (2.20 and (2.21), we have the conditional variance

$$
\sigma_{X \mid Y}^{2}
$$

$$
=\beta_{1}^{2}\left\{\alpha_{1}+\gamma\left[2 G\left(y ; \alpha_{2} \beta_{2}\right)-1\right]\left[-\alpha_{1}^{2}+\alpha_{1}-\sum_{i=1}^{\alpha_{1}-1} \frac{\Gamma\left(\alpha_{1}+i+2\right)}{\Gamma\left(\alpha_{1}\right) \Gamma(i+1)} \frac{1}{\alpha_{2}+i+1}\right.\right.
$$

$$
\begin{equation*}
\left.+\alpha_{1} \sum_{i=0}^{\alpha_{1}^{+1}} \frac{\Gamma\left(\alpha_{1}+i+1\right)}{\Gamma\left(\alpha_{1}\right) \Gamma(i+1)} \frac{1}{\alpha_{2}+i+1}\right]-\gamma^{2}\left[2 G\left(y ; \alpha_{2} \beta_{2}\right)-1\right]^{2} . \tag{2.22}
\end{equation*}
$$

$$
\left.\left[\alpha_{1}^{2}-\alpha_{1} \sum_{i=1}^{\alpha_{1}-1} \frac{\Gamma\left(\alpha_{1}+i+1\right)}{\Gamma\left(\alpha_{1}\right) \Gamma(i+1)} \frac{1}{2_{2}^{\alpha_{1}+i-1}}+\left(\sum_{i=0}^{\alpha_{1}-1} \frac{\Gamma\left(\alpha_{1}+i+1\right)}{\left[\left(\alpha_{1}\right) \Gamma(i+1)\right.}-\frac{1}{\alpha_{2}+i}\right)^{2}\right]\right)
$$

Figure 1. Regression curves for Morgenstern $B V$ garma distributions with X gama $\left(\alpha_{1}=1, \beta_{1}\right)$ and Y gamma (α_{2}, β_{2}).

2.1.3. Correlations of X and Y

The correlation ratio $\eta(x \mid y)$, as defined in [7, equation (1.9)], reduces in our case to equation (2.23).

$$
\begin{align*}
& \eta(\mathrm{x} \mid \mathrm{y})=\left\{\left.\frac{1}{\sigma_{\mathrm{y}}^{2}} \int[\mathrm{E}(\mathrm{X})-\mathrm{E}(\mathrm{x} \mid \mathrm{y})]^{2} \mathrm{~g}\left(\mathrm{y} ; \alpha_{2} \beta_{2}\right) \mathrm{dy}\right|^{1 / 2}\right. \tag{2.23}\\
& =\left\{\left.\frac{\gamma^{2}}{3 \alpha_{2} \beta_{2}^{2}}\left[\alpha_{1} \beta_{1}-\beta_{1} \mathrm{~K}\left(\alpha_{1}\right)\right]^{2}\right|^{1 / 2}=\frac{\gamma \beta_{1}}{\sqrt{3} \sigma_{\mathrm{y}}}\left[\alpha_{1}-\mathrm{K}\left(\alpha_{1}\right)\right] .\right.
\end{align*}
$$

As in [7], we now show that $\eta(x \mid y)$ is a multiple of the coefficient of correlation ρ. By and using definition (2.19), we find

$$
E(X Y)=\beta_{1} \beta_{2}\left\{\alpha_{1} \alpha_{2}+\gamma\left[\alpha_{1}-K\left(\alpha_{1}\right)\right]\left[\alpha_{2}-K\left(\alpha_{2}\right)\right]\right\},
$$

which gives

$$
\begin{gather*}
\rho=\frac{\mathrm{E}(\mathrm{XY})-\mathrm{E}(\mathrm{X}) \mathrm{E}(\mathrm{Y})}{\sigma_{\mathrm{X}} \sigma_{\mathrm{y}}} \tag{2.24}\\
=\frac{\gamma\left[\alpha_{1}-\mathrm{K}\left(\alpha_{1}\right)\right]\left[\alpha_{2}-\mathrm{K}\left(\alpha_{2}\right)\right]}{\sqrt{\alpha_{1}} \sqrt{\alpha_{2}}}
\end{gather*}
$$

The inequality $|\gamma| \leq 1$ implies

$$
|p| \leq \frac{1}{\sqrt{\alpha_{1} \alpha_{2}}}\left[\alpha_{1}-K\left(\alpha_{1}\right)\right]\left[\alpha_{2}-K\left(\alpha_{2}\right)\right]
$$

Using equations (2.23) and (2.24) yields

$$
\begin{equation*}
\eta(x \mid y)=\rho \cdot \frac{\sqrt{\alpha_{1}} \cdot \beta_{1}}{\sqrt{3}\left[\alpha_{2}-k\left(\alpha_{2}\right)\right]} \tag{2.25}
\end{equation*}
$$

2.1.4. Conditional Median of X Given Y

From equation (2.1), the conditional c.d.f. of X, given y,
is found:

$$
\begin{equation*}
F(x \mid y)=F(x)+\gamma F(x)[1-F(x)][1-2 G(y)] \tag{2.26}
\end{equation*}
$$

The conditional median $M_{x \mid y}$ is defined by

$$
\begin{equation*}
F\left(M_{x \mid y} \mid y\right)=1 / 2 \tag{2.27}
\end{equation*}
$$

Solving equation (2.27), we obtain

$$
\begin{equation*}
F\left(M_{x \mid y}\right)=\frac{-1-\gamma(1-2 G) \pm \sqrt{[1+\gamma(i-2 G)]^{2}+2(2 G-1)}}{2(2 G-1)}=Q_{\gamma}(G) \tag{2.28}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{x \mid y}=F^{-1}\left(Q_{\gamma}(G)\right) \tag{2.29}
\end{equation*}
$$

For the case where $\alpha_{1}=1$, equation (2.29) reduces to

$$
\begin{equation*}
M_{x \mid y}=-\beta_{1} \ln \left[\gamma Q_{\gamma}(G)\right] \tag{2.30}
\end{equation*}
$$

Notice that $F(x \mid y)$ and consequently $M y$, depends on x and y only through F and G. Graphs of equations (2.28) are given in Figure 2 for $\gamma=-1,0,1$. Using expression (2.14) for F with $\alpha_{1}=1$ and a table of chi-square distributions with degrees of freedom 1, 2, and 4 for evaluation of 6 , graphs of equation (2.30) are given in

Figure 2. Regression curves of F on G for Plackett and Morgenstern BV distributions.

Figure 3. Median regression curves for two $B V$ gamma distributions with X gamma $\left(\alpha_{1}=1, \beta_{1}\right)$ and y gama ($\alpha_{2}=0.5, \beta_{2}$).

Figure 4. Median regression curves for two $B V$ gamma distributions with x gamma $\left(\alpha_{1}=1, \beta_{1}\right)$ and y gamma $\left(\alpha_{2}=1, \beta_{2}\right)$.

Figure 5. Median regression curves for two BV gamma distributions with x ganma ($\alpha_{1}=1, \beta_{1}$) and y ganma ($\alpha_{2}=2, \beta_{2}$).

Figures 3, 4, and 5 for the case $\alpha_{2}=1 / 2,1$, and 2 respectively.

2.2 Plackett's BV Distribution

Let ψ be an arbitrary positive number. Plackett constructed the joint c.d.f. $H(x, y)$ (equation 2.4) as the root of the quadratic equation

$$
\begin{equation*}
\psi=\frac{H(x, y) \cdot[1-F(x)-G(y)+H(x, y)]}{[F(x)-H(x, y)][G(y)-H(x, y)]} \tag{2.31}
\end{equation*}
$$

Mardia [14] showed that only one of the two roots of equation (2.31) satisfies Frechet inequality

$$
\begin{equation*}
\operatorname{Max}(0, F(x)+G(y)-1) \leq H(x, y) \leq \operatorname{Min}(F(x), G(y)) . \tag{2.32}
\end{equation*}
$$

When $H(x, y)=\operatorname{Max}(0, F(x)+C(y)-1)$, the entire $B V$ distribution lies on the line $F(x)+G(y)=1$. From equation (2.31), we see that this is true when $\psi=0$. When $H(x, y)=\operatorname{Min}(F(x), G(y))$, the entire $B V$ distribution lies on the $F(x)=G(y)$, corresponding to $\psi=\infty$. in equation (2.31).

Notice that equation (2.31) can be written in terms of probabilities as

$$
\begin{equation*}
\psi=\frac{P(X<x, Y<y) P(X>x, Y>y)}{P(X<x, Y>y) P(X>x, Y<y)} \tag{2.33}
\end{equation*}
$$

The Plackett distribution has been called [14] a contingency type BV distribution. Plackett [24] considered ψ as a measure of association in a four-fold contingency table. $\quad \psi=0$ implies the independence of X and Y.

2.2.1. Conditional Median of x Given y

Plackett determined the conditional c.d.f. of X, given $Y=y$,

$$
\begin{align*}
F(x \mid y) & =\frac{\partial H(x, y)}{\partial G(y)} \\
& =\frac{F(x) \psi-H(x, y)(\not-1)}{1+[F(x)+G(y)-2 H(x, y)](\psi-1)} \tag{2.34}
\end{align*}
$$

The conditional mean of X, given $Y=y$, is usually not of simple form; therefore Plackett considers the conditional median of X , given $Y=y$,

$$
\begin{equation*}
M_{x \mid y}=F^{-1}\left(\frac{1}{\psi+1}(1+(\psi-1) G(y))\right) \tag{2.35}
\end{equation*}
$$

or correspondingly,

$$
\begin{equation*}
F\left(M_{x \mid y}\right)=\frac{1}{\psi+1}(1+(\psi-1) G(y))=W_{\psi}(G) \tag{2.36}
\end{equation*}
$$

Equation (2.36) is graphed in Figure 2 for $\psi=0,1$, and ∞. Using equations (2.14), (2.15), and (2.35) for the gamma marginals wi.th $\alpha_{1}=1$, we obtain

$$
\begin{equation*}
M_{x \mid y}=-\beta \ln \left\{1-\frac{1}{\psi+1}\left[1+(\psi-1)\left(1-\sum_{i=0}^{\alpha_{2}-1} \frac{\left(\frac{y}{\beta_{2}}\right)^{i} e^{-\frac{y}{\beta_{2}}}}{i!}\right)\right]\right\} \tag{2.37}
\end{equation*}
$$

Equation (2.37) is graphed for $\psi=0,1$, and ∞ in Figures 3, 4, and 5 for $\alpha_{2}=1 / 2,1$, and 2, respectively. For $\alpha_{2}=1 / 2$, the evaluation
of $G(y)$ is found by using the table of chi-square distribution with 1 degree of freedom.

2.2.2. The Correlation Coefficient

According to Mardia [14], the correlation coefficient of X and Y based on contingency type BV distribution can be expressed in the form

$$
\begin{equation*}
\rho_{a, b, c, d}(\psi)=\frac{1}{\sigma_{1} \sigma_{2}} \int_{a}^{b} \int_{c}^{d}(H-F G) d x d y \tag{2.38}
\end{equation*}
$$

where $\sigma_{1}^{2}=\operatorname{Var}(\mathrm{X})$ and $\sigma_{2}^{2}=\operatorname{Var}(\mathrm{Y})$.
In [14, p.239] $\rho_{a, b, c, d}(\psi)$ is shown to have a $\operatorname{limit} \rho(\psi)$ as $\mathrm{a}, \mathrm{c} \longrightarrow-\infty$ and $\mathrm{b}, \mathrm{d} \longrightarrow \infty$ under the following conditions:
(1) $\underset{x \rightarrow \sum_{\infty}}{1 \lim _{\infty}[F(x \mid y)-F(x)]=0, ~}$
(2) $\lim _{y \rightarrow \pm \infty} y[H-F G]=0$,
(3) $\int_{-\infty}^{\infty}|F(x \mid y)-F(x)| d x<I(y)$
where $I(y)$ is an integrable function of Y. Mardia [14] and Plackett [24] further establishes the relations

$$
\begin{array}{lll}
0<\rho(\psi) \leq 1 & \text { if } & 1<\psi \leq \infty \\
\rho(\psi)=0 & \text { if } & \psi=1 \\
-1 \leq \rho(\psi)<0 & \text { if } & 0 \leq \psi<1
\end{array}
$$

Moreover, the correlation coefficient $\rho_{F, G}(\psi)$ of random variables $F(X)$ and $G(Y)$ is given

$$
\begin{equation*}
\rho_{F, G}(\psi)=\left(\psi^{2}-1-2 \psi \ln \psi\right) /(\psi-1)^{2} \tag{2.39}
\end{equation*}
$$

2.3. Moran's BV Distribution

Motivated by analysis of rainfall data, Moran [19] constructed BV distributions equation (2.5) with gama marginals. Moran [19] and Mardia [13] showed that equation (2.5) satisfies the Frechet inequality

$$
\operatorname{Max}(F(x)+G(y)-1,0) \leq H(x, y) \leq \operatorname{Min}(F(x), G(y))
$$

Moran also discussed an iterative procedure for obtaining the maximum likelihood estimators for the gamma parameters α_{1}, $\alpha_{2}, \beta_{1}, \beta_{2}$, and the parameter ρ. Moreover a test for equal scale parameters based on maximum likelihood estimators is discussed for rain-making experiments.

These BV gamma distributions are constructed as follows:
Let (W,Z) follow a standard unit BV normal distribution with correlation coefficient ρ,

$$
\phi(w, z)=\frac{1}{2 \pi\left(1-\rho^{2}\right)^{1 / 2}} e^{-\frac{1}{2\left(1-\rho^{2}\right)}\left(w^{2}-2 \rho_{w z+} z^{2}\right)}
$$

with marginal c.d.f's $\Phi(w)=\int_{-\infty}^{w} \frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2} d t \quad$, and

$$
\Phi(z)=\int_{-\infty}^{z} \frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2} d t
$$

Let X and Y each have p.d.f.'s given by equations (2.12) and (2.13). Equating,

$$
\Phi(w)=F(x) \quad \text { and } \quad \Phi(z)=G(y)
$$

gives

$$
w=\Phi^{-1}(F(x)) \quad \text { and } \quad z=\Phi^{-1}(G(y))
$$

and the resulting p.d.f.

$$
\begin{aligned}
& h(x, y)=\phi\left(\Phi^{-1}(F(x)), \Phi^{-1}(G(y))\right) \frac{d w}{d x} \frac{d z}{d y} d x d y \\
& =\frac{1}{\left(1-\rho^{2}\right)^{\frac{3}{2}}} e^{-\frac{1}{2\left(1-\rho^{2}\right)}\left[\rho^{2} \Phi^{-1}(F(x))-2 \rho_{\Phi}^{-1}(F(x))^{-1}(G(y))+\Phi^{-1}(G(y))\right]} \\
& \frac{1}{\Gamma\left(\alpha_{1}\right)} \cdot \frac{1}{\Gamma\left(\alpha_{2}\right)} e^{-\left(\frac{x}{\beta_{1}}+\frac{y}{\beta_{2}}\right)} \cdot\left(\frac{x}{\beta_{1}}\right)^{\alpha_{1}-1}\left(\frac{y}{\beta_{2}}\right)^{\alpha_{2}^{-1}} \cdot \frac{1}{\beta_{1}} \cdot \frac{1}{\beta_{2}} d x d y \quad .
\end{aligned}
$$

Among the Morgenstern, P1ackett and Moran BV distributions, the first gives the simplest form. However the Morgenstern distribution does not attain the Frechet inequality [7, 14, 24], whereas the other two do. For these three BV distributions, $H(x, y)$ and $\frac{h(x, y)}{f(x) g(y)}$ depend on X and Y only through $F(x)$ and $G(y)$. The special forms are utilized for the nonparametric consideration in the following two chapters. For the Morgenstern and Plackett distributions, $H(x, y)$ have explicit forms in $F(x)$ and $G(y)$; however, two variable numerical intergration is needed to evaluate $H(x, y)$ for the Moran distribution.

III TESTS FOR INDEPENDENCE

For testing the null hypothesis of independence of random variables X and Y , asymptotically optimal $\mathrm{C}(\alpha)$ tests and locally most powerful rank tests (1.m.p.r.t.'s) are considered for the Morgenstern, Plackett and Moran BV distributions. The general class of $C(\alpha)$ tests was developed by Neyman [21], who used locally root-n consistent estimators for nuisance parameters. We compare the forms of these two kinds of test statistics and their asymptotic relative efficiency. ARE comparisons are also made with other tests for independence.

3.1. Locally Asymptotically Optimal C(α) Tests

First, the general development of optimal C(α) tests is summarized.

Suppose a sample ($X_{1}, X_{2}, \ldots, X_{n}$) is taken from a population with p.d.f. $f(x ; \xi, \underline{\theta})$ where $\underline{\theta}=\left(\theta_{1}, \ldots, \theta_{r}\right)$. The observations X_{i} may be vector values. For testing the null hypothesis $H_{0}: \xi=\xi_{0}$, against the alternatives $\mathrm{H}_{1}: \xi>\xi_{0}$ (or $\xi\left\langle\xi_{0}\right.$) or $\mathrm{H}_{2}: \xi \neq \xi_{0}$ with unknown nuisance parameters $\underline{\theta}$, Neyman [21] considered tests based on the statisiics

$$
\begin{equation*}
Z_{n}\left(X_{\sim} ; \xi_{0}, \underline{\hat{\theta}}\right)=\frac{1}{\sqrt{n}} \sum_{j=1}^{n} \frac{\phi_{\xi}\left(x_{j} ; \xi_{0}, \underline{\hat{\theta}}\right)-\sum_{i=1}^{r} a_{i}^{o} \phi_{\theta_{i}}\left(x_{j} ; \xi_{o}, \underline{\hat{\theta}}\right)}{\sigma_{\underline{\theta}}} \tag{3.1}
\end{equation*}
$$

where

$$
\begin{align*}
& \left.\phi_{\xi}\left(x_{j} ; \xi_{o}, \underline{\hat{\theta}}\right)=\frac{\partial \ln f\left(x_{j} ; \xi, \underline{\theta}\right)}{\partial \xi} \right\rvert\, \begin{array}{r}
\xi=\xi_{o} \\
\underline{\theta}=\underline{\hat{\theta}}
\end{array} \tag{3.2}\\
& \left.\phi_{\theta_{i}}\left(x_{j} ; \xi_{o}, \underline{\hat{\theta}}\right)=\frac{\partial \operatorname{lnf}\left(x_{j} ; \xi, \underline{\theta}\right)}{\partial \theta_{i}} \right\rvert\, \begin{array}{l}
\xi=\xi_{0} \\
\underline{\theta}=\underline{\hat{\theta}}
\end{array}, \tag{3.3}
\end{align*}
$$

and the a_{i}^{0} 's are chosen so as to minimize the variance of $\phi_{\xi}\left(x_{j} ; \xi_{0}, \underline{\hat{\theta}}\right)-\sum_{i=1}^{r} a_{i}^{o} \phi_{\theta_{i}}\left(x_{j} ; \xi_{o}, \underline{\hat{\theta}}\right)$ under H_{o}. The resulting minimum variance is denoted by $\underline{\sigma}_{\underline{\theta}}^{2}$. The estimators $\underline{\hat{\theta}}=\left(\hat{\theta}_{1}, \ldots, \hat{\theta}_{\mathbf{r}}\right)$ are assumed to be either locally root-n consistent or root-n consistent for $\underline{\theta}$. Neyman [21] defines an estimator $\hat{\theta}_{j n}$ to be locally root-n consistent for θ_{j} if there exists a number $A_{j} \neq 0$, such that as $n \longrightarrow \infty$, the product $\left|\hat{\theta}_{j n}-\theta_{j}-A_{j}\left(\xi-\xi_{0}\right)\right| \sqrt{n}$ remains bounded in probability for all ξ and θ. If $\left|\hat{\theta}_{\mathrm{jn}}-\theta_{\mathrm{j}}\right| \sqrt{\mathrm{n}}$ remains bounded in probability as $n \longrightarrow \infty, \hat{\theta}_{j n}$ is said to be root-n consistent for θ_{j}. The p.d.f. $f(x ; \xi, \underline{\theta})$ is also assumed to satisfy Cramér-type regularity conditions [21,p.215].

The statistic of equation (3.1) has also been shown to have a limiting unit normal distribution under H_{0}. The optimal symmetric $\mathcal{C}(\alpha)$ tests based on equation (3.1) for two-sided alternatives $H_{2}: \xi \neq \xi_{0}$ has critical regions $S_{2}(\alpha)=\left\{z_{n}:\left|z_{n}\right|>z_{\alpha / 2}\right\}$, where $z_{\alpha / 2}$
is such that

$$
\int_{z_{\alpha / 2}}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2} d t=\alpha / 2
$$

For optimal one-tailed $C(\alpha)$ tests of $H_{o}: \xi=\xi_{0}$ against $H_{1}: \xi>\xi_{o}$ the critical region is $S_{1}(\alpha)=\left\{Z_{n}: Z_{n} \geq z_{\alpha}\right\}$.

Moran [18] indicates that Z_{n} is asymptotically equivalent to tests using the maximum likelihood estimator (MLE) $\tilde{\xi}$ of ξ, and to the likelihood ratio test based on the statistic

$$
2\left\{\sum_{j=1}^{n} \ln f\left(x_{j} ; \tilde{\xi}, \tilde{\theta}\right)-\sum_{j=1}^{n} \ln f\left(x_{j} ; \xi_{0}, \tilde{\theta}\right)\right\}
$$

where $\tilde{\xi}$ and $\underline{\tilde{\theta}}$ are MLE's and $\underline{\tilde{\theta}}_{0}$ are MLE's under the null hypothesis. An advantage of the $C(\alpha)$ test over the other two types of tests is that the $\mathbf{C}(\alpha)$ tests are frequently easier to compute.

Now we consider optimal $\mathrm{C}(\alpha)$ tests for independence. Suppose (X,Y) follows a certain BV distribution with p.d.f. $\mathrm{h}(\mathrm{x}, \mathrm{y} ; \xi, \underline{\theta})$ where ξ is a parameter indicating the association between X and Y. That is, $h(x, y ; \xi, \underline{\theta})=f(x ; \underline{\theta}) g(y ; \underline{\theta})$ if, and only if, for some number $\xi_{0}, \xi=\xi_{0}$. For the Morgenstern, Plackett, and Moran distributions, the null hypothesis of independence is given by $\gamma=0, \psi=1$, and $\rho=0$, respectively, in equations (2.1), (2.3) and (2.5).

The $C(\alpha)$ test statistics of independence for the Morgenstern, Plackett, and Moran distributions will now be shown to be a function of ϕ_{ξ} only. This result will follow from the fact that ϕ_{ξ} and $\phi_{\theta_{i}}$, $i=1, \ldots, r$, are uncorrelated under the null hypothesis, which gives
$a_{1}^{0}=\ldots=a_{r}^{0}=0$. By using the p.d.f.'s of equations (2.1), (2.3), and (2.5) in equations (3.2) and (3.3), it may be seen that for appropriate functions $K(U), 0 \leq U \leq 1, \phi_{\xi}$ can be expressed in the form

$$
\begin{equation*}
\phi_{\xi}=K(F(x)) K(G(y)) \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi_{\theta_{\mathbf{j}}}=\frac{\partial \ln f}{\partial \theta_{\mathbf{j}}}+\frac{\partial \ln g}{\partial \theta_{\mathbf{j}}} \quad \mathbf{j}=1, \ldots, \mathbf{r} \tag{3.5}
\end{equation*}
$$

Under $H_{o}: \xi=\xi_{0}$, the relations

$$
\begin{aligned}
E \phi_{\xi} & =E[K(F(X)) K(G(Y))]=E[K(F(X))] E[K(G(Y))] \\
& =[E(F(X))]^{2}=0
\end{aligned}
$$

imply that

$$
\begin{equation*}
E[K(F(X))]=E[K(G(Y))]=0 \tag{3.6}
\end{equation*}
$$

Using relation (3.5) and the fact that $E \phi_{\theta_{j}}=0$, we have, for $j=1, \ldots, r$

$$
\begin{aligned}
& \operatorname{cov}\left(\phi_{\xi}, \phi_{\theta_{j}}\right)=E\left(\phi_{\xi} \cdot \phi_{\theta_{j}}\right) \\
& =E\left[K(F(X)) \cdot K(G(Y)) \cdot\left[\frac{\partial \ln f\left(X ; \xi_{0}, \underline{\theta}\right)}{\partial \theta_{j}}+\frac{\partial \operatorname{lng}\left(Y ; \xi_{0}, \underline{\theta}\right)}{\partial \theta_{j}}\right]\right] \\
& =E\left[K(F(X)) \cdot K(G(Y)) \cdot \frac{\partial}{\partial \theta_{j}} \operatorname{lnf}\left(X ; \xi_{0}, \underline{\theta}\right)\right]+E\left[K(F(X)) \cdot K(G(Y)) \cdot \frac{\partial}{\partial \theta_{j}} \operatorname{lng}\left(Y ; \xi_{0}, \underline{\theta}\right)\right] \\
& =0
\end{aligned}
$$

Hence, the asymptotic optimal $\mathrm{C}(\alpha)$ test for independence, $\mathrm{H}_{0}: \xi=\xi_{0}$, is based on

$$
t_{n}=\frac{1}{\sqrt{n}} \frac{\sum_{i=1}^{n} \phi_{\xi}\left(x_{i}, y_{i} ; \xi_{o}, \underline{\hat{\theta}}\right)}{\sigma_{\phi_{\xi}}}
$$

where $\hat{\hat{\theta}}$ are any locally root-n consistent or simply root-n consistent estimators of $\underline{\theta}$ and σ_{ξ}^{2} is the variance of $\phi_{\xi}\left(x, y ; \xi_{0}, \underline{\hat{\theta}}\right)$.

Now consider estimation of the parameters ($\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$) of both the gamma and Weibull distributions. For the case where there are no linear restrictions on the parameters, any estimators, $\hat{\alpha}_{1}(\underline{X}), \hat{\alpha}_{2}(\underline{Y}), \hat{\beta}_{1}(\underline{X}), \hat{\beta}_{2}(\underline{Y})$, which are functions of only one of the variates \underline{X} or \underline{Y}, and are root-n consistent with respect to the corresponding marginal distributions, such as MLE's and moment estimators, will be root-n consistent with respect to the bivariate distributions. Under the assumption of common shape parameter, $\alpha_{1}=\alpha_{2}=\alpha$, any linear function $C_{1} \hat{\alpha}_{1}(\underline{X})+C_{2} \hat{\alpha}_{2}(\underline{Y})$, with positive coefficients C_{1} and C_{2} satisfying $C_{1}+C_{2}=1$, of root-n consistent estimators $\hat{\alpha}_{1}(\underline{X})$ and $\hat{\alpha}_{2}(\underline{Y})$ will be root-n consistent since

$$
\sqrt{n}\left|C_{1} \hat{\alpha}_{1}(\underline{X})+C_{2} \hat{\alpha}_{2}(\underline{Y})-\alpha\right| \leq C_{1} \sqrt{n}\left|\hat{\alpha}_{1}(\underline{X})-\alpha\right|+C_{2} \sqrt{n}\left|\hat{\alpha}_{2}(\underline{Y})-\alpha\right| .
$$

The optimal $\mathrm{C}(\alpha)$ test statistics of equation (3.7) are easily evaluated for the Morgenstern, Plackett, and Moran BV distributions, and are given below. Using densities of equation (2.3) in equation (3.2) gives

$$
\begin{equation*}
K(U)=2 U-1 \tag{3.8}
\end{equation*}
$$

in equation (3.4) for both the Morgenstern and the Plackett alternatives.

Using the additional result

$$
\sigma_{\phi_{\gamma}}^{2}=\sigma_{\phi_{\psi}}^{2}=1 / 9
$$

in equation (3.7) then gives

$$
\begin{equation*}
t_{n}=\frac{3}{\sqrt{n}} \sum_{i=1}^{n}\left[2 F\left(x_{i} ; \hat{\theta}\right)-1\right]\left[2 G\left(y_{i} ; \hat{\hat{\theta}}\right)-1\right] \tag{3.9}
\end{equation*}
$$

Similarly, for Moran alternative

$$
\begin{equation*}
K(U)=\Phi^{-1}(U) \tag{3.10}
\end{equation*}
$$

and

$$
\sigma_{\phi_{\xi}}^{2}=1
$$

yields

$$
\begin{equation*}
t_{n}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \Phi^{-1}\left[F\left(x_{i} ; \hat{\theta}\right)\right] \Phi^{-1}\left[G\left(y_{i} ; \hat{\theta}\right)\right] \tag{3.11}
\end{equation*}
$$

3.2 Locally Most Powerful Rank Tests

In this section, we consider 1.m.p.r.t.'s for the null hypothesis of independence in the Morgenstern, Plackett and Moran families of distributions.

The 1.m.p.r.t.'s for independence are derived in general as follows. For a random sample of size n from any $B V$ distribution
with p.d.f. $h(x, y),\left(X_{(1)}, Y_{\left(\mathbb{R}_{1}\right)}\right), \ldots,\left(X_{(n)}, Y_{\left(R_{n}\right)}\right)$ is a sufficient reduction of data, where $X_{(1)}<X_{(2)} \ldots<X_{(n)}$ and $R_{1}, R_{2}, \ldots, R_{n}$ are ranks of the corresponding Y^{\prime} s among Y_{1}, \ldots, Y_{n}. The joint p.d.f. for this sufficient statistic $\left(X_{(1)}, Y_{\left(R_{1}\right)}\right), \ldots,\left(X_{(n)}, Y_{\left(R_{n}\right)}\right)$ is

$$
n!\prod_{i=1}^{n} h\left(x_{(i)}, y_{\left(R_{i}\right)}\right)
$$

The problem of testing $H_{0}: H(x, y)=F(x) G(y)$ against $H_{1}: H(x, y) \neq F(x) G(y)$ for some (x, y) in each of the Morgenstern, Plackett, and Moran distributions is invariant under the group of function transformations G with elements

$$
\begin{align*}
& \mathrm{g}_{\phi_{1}, \phi_{2}}=\mathrm{g}_{\phi_{1}, \phi_{2}}\left[\left(\mathrm{X}_{(\mathrm{I})}, \mathrm{Y}_{\left(\mathrm{R}_{1}\right)}\right), \ldots,\left(\mathrm{X}_{(\mathrm{n})}, \mathrm{Y}_{\left(\mathrm{R}_{\mathrm{n}}\right)}\right)\right] \tag{3.12}\\
= & \left(\phi_{1}\left(\mathrm{X}_{(1)}\right), \phi_{2}\left(Y_{\left(R_{1}\right)}\right)\right), \ldots,\left(\phi_{1}\left(\mathrm{X}_{(\mathrm{n})}\right), \phi_{2}\left(Y_{\left(R_{n}\right)}\right)\right),
\end{align*}
$$

where ϕ_{1} and ϕ_{2} are any continuous increasing functions from the real line onto the real line. The induced group of function transformations \bar{G} on the parameter space has elements

$$
\begin{equation*}
\overline{\mathrm{g}}_{\phi_{1}, \phi_{2}}=\overline{\mathrm{g}}_{\phi_{1}, \phi_{2}}(\mathrm{~F}, \mathrm{G}, \xi)=\left(\mathrm{F} \Phi_{1}^{-1}, \mathrm{G} \phi_{2}^{-1}, \xi\right) \tag{3.13}
\end{equation*}
$$

where ξ is the parameter associated with independence of X and Y. In particular, $\xi=\gamma, \psi$, and ρ respectively for Morgenstern, Plackett and Moran distributions.

A maximal invariant statistic for the group of transformation is (R_{1}, \ldots, R_{n}) and the probability function for (R_{1}, \ldots, R_{n}) is given by

$$
\begin{equation*}
P_{\xi}\left(r_{1}, \ldots, r_{n}\right)=n^{\prime} \cdot \int_{S} \prod_{i=1}^{n} h\left(x_{i}, y_{i}\right) d x_{i} d y_{i} \tag{3.14}
\end{equation*}
$$

where $S=\left\{\left(X_{1}, Y_{r_{1}}\right), \ldots,\left(X_{n}, Y_{r_{n}}\right) ; X_{1}<, \ldots,<X_{n}\right.$ and r_{i} is the rank of the Y-observation corresponding to X_{i} among the Y-sample\}. The l.m.p.r.t. of $H_{0}: \xi=\xi$ against $H_{1}: \xi>\xi_{0}$ rejects H_{0} for

$$
\begin{equation*}
T=\left.\frac{\partial}{\partial \xi} \operatorname{lnP}\left(r_{1}, \ldots, r_{n}\right)\right|_{\xi=\xi_{0}}>K \tag{3.15}
\end{equation*}
$$

The tests which reject $H_{0}: \xi=\xi$ for

$$
\begin{equation*}
|T|>K \tag{3.16}
\end{equation*}
$$

may be used for the two-sided alternatives $H_{2}: \xi \neq \xi{ }_{o}$. Using the relation

$$
\sum_{i=1}^{n} \quad h_{\xi}\left(x_{i}, y_{i}\right)=e^{\sum_{i=1}^{n} \operatorname{lnh}_{\xi}\left(x_{i}, y_{i}\right)}
$$

and (3.1) for the Morgenstern, plackett, and Moran distributions, we obtain

$$
\begin{align*}
& \frac{\partial}{\partial \xi}{\left.\underset{i=1}{n} h_{\xi}\left(x_{i}, y_{i}\right)\right|_{\xi=\xi_{0}}=\left.\sum_{i=1}^{n} \frac{\partial}{\partial \xi} 1 \operatorname{nh}_{\xi}\left(x_{i}, y_{i}\right) \prod_{i=1}^{n} h_{\xi}\left(x_{i}, y_{i}\right)\right|_{\xi=\xi_{0}}}^{\quad=\left[\sum_{i=1}^{n} \phi_{\xi}\left(x_{i}, y_{i}\right)\right]_{i=1}^{n} f\left(x_{i}\right) g\left(y_{i}\right)} \tag{3.17}
\end{align*}
$$

From equations (3.14) and (3.15), we then evaluate the l.m.p.r.t.

$$
T=\left.\left.\frac{\partial}{\partial \xi} \ln P\right|_{\xi=\xi_{0}} \propto \int_{S} n!\frac{\partial}{\partial \xi} \prod_{i=1}^{n} h_{\xi}\left(x_{i}, y_{i}\right) \prod_{i=1}^{n} d x_{i} d y_{i}\right|_{\xi=\xi_{0}}
$$

$$
=n!\int\left[\sum_{i=1}^{n} \phi_{i}\left(x_{i}, y_{i}\right)\right] \prod_{i=1}^{n} f\left(x_{i}\right) g\left(y_{i}\right) \prod_{i=1}^{n} d x_{i} d y_{i}
$$

S

$$
=\sum_{i=1}^{n} E_{\xi_{0}} \phi_{\xi}\left(X_{(i)}, Y\left(r_{i}\right)=T^{*}\right.
$$

For the Morgenstern and Plackett distributions, using equations (3.4) and (3.8) in equation (3.18), we obtain

$$
\begin{align*}
T^{*} & =\sum_{i=1}^{n} E[2 F(X(i))-1] \cdot E\left[2 G\left(Y\left(r_{i}\right)^{-1}\right]\right. \\
& =\sum_{i=1}^{n}\left[2 \frac{i}{n+1}-1\right]\left[2 \frac{r_{i}}{n+1}-1\right] \tag{3.19}\\
& =1 / 3 \frac{n(n-1)}{n+1}\left[\frac{12}{n^{3}-n} \sum_{i=1}^{n}\left(i-\frac{n+1}{2}\right)\left(r_{i}-\frac{n+1}{2}\right)\right]=1 / 3 \frac{n(n-1)}{n+1} \cdot \gamma_{s}
\end{align*}
$$

n
where $\gamma_{s}=\frac{12}{n^{3}-n} \sum_{i=1}\left(i-\frac{n+1}{2}\right)\left(r_{i}-\frac{n+1}{2}\right)$ is Spearman's rank correlation coefficient. $i=\frac{1}{H e n c e, ~ t h e ~ t e s t ~ w h i c h ~ r e j e c t s ~} H_{o}$ for $\gamma_{s} \geq K \frac{3(n+1)}{n(n-1)}$ is equivalent to rejection of H_{0} for $T^{*} \geq K$. Therefore, the one-tailed test based on γ_{s} is a 1.m.p.r.t. for both the Morgenstern and Plackett distributions. Kenda11 [9,p.76] shows the asymptotic normality of γ_{s} and has the table of probability function of γ_{s}. Farlie [5] shows that the tests based on γ_{s} are asymptotically efficient with respect to tests using the MLE $\hat{\gamma}$ for the correlation index γ for the Morgenstern distributions.

For the Moran distributions, using equations (3.4) and (3.10), equation (3.18) gives the Fisher-Yates rank correlation coefficient

$$
\begin{gather*}
T^{*} / \sum_{i=1}^{n}\left[E Z_{(i)}\right]^{2}=\sum_{i=1}^{n} E\left[\Phi^{-1}\left[F\left(X_{(i)}\right)\right] \mid E\left[\Phi^{-1}\left[F\left(Y_{\left(r_{i}\right)}\right)\right]\right] / \sum_{i=1}^{n}\left[E(Z(i)]^{2}\right.\right. \\
=\sum_{i=1}^{n} E Z(i)^{E Z}\left(r_{i}\right) / \sum_{i=1 .}^{n}[E Z(i)]^{2}
\end{gather*}
$$

where $Z_{(k)}$ is the kth order statistic from the unit normal distribution. The 1.m.p.r.t.'s for Moran alternatives can also be obtained from the previous work of Hajěk and Šidák [8,p.112] who showed that 1.m.p.r.t.'s of independence against the $B V$ normal alternatives $\rho>0$ can be based on the Fisher-Yates rank correlation coefficient. Since rank tests are distributed independently of $F(x)$ and $G(y)$, any l.m.p.r.t. of independence against BV normal alternatives will also be a l.m.p.r.t. against Moran alternatives. Hence the FisherYates rank correlation coefficient gives a l.m.p.r.t. of independence against the Moran distribution with $\rho>0$.

Using the approximate scores $\Phi^{-1}(i /(n+1))$ in place of EZ (i) in equation (3.20) gives the Van der Waerden correlation coefficient

$$
\begin{equation*}
\sum_{i=1}^{n} \Phi^{-1}\left(\frac{i}{n+1}\right) \Phi^{-1}\left(\frac{r}{n+1}\right) / \sum_{i=1}^{n}\left[\Phi^{-1}\left(\frac{i}{n+1}\right)\right]^{2} \text {. } \tag{3.21}
\end{equation*}
$$

Hajěk and Šidák [8,p.112] have showed the asymptotic equivalence of test statistics (3.20) and (3.21).

It is interesting to note a relation between the optimal $C(\alpha)$ tests of independence, equations (3.9) and (3.11), and the corresponding 1.m.p.r.t.'s. Replacing $F\left(X_{i} ; \hat{\theta}\right)$ and $G\left(Y_{i} ; \hat{\theta}\right)$ by $F\left(X_{i}\right)=i /(n+1)$ and $G\left(Y_{i}\right)=r_{i} /(n+1)$, respectively, in equations (3.9) and (3.11) yields statistics which are proportional to the corresponding Spearman and Van der Waerden correlation coefficients given in equations (3.19) and (3.21).

In the next section we will show that 1.m.p.r.t.'s are
asymptotically efficient with respect to the corresponding $\mathrm{C}(\alpha)$ tests. Unless F and G have simple forms, the rank tests may be much easier to compute than the corresponding $\mathrm{C}(\alpha)$ tests.

3.3. Asymptotic Relative Efficiency of Nonparametric Tests with

Respect to Optimal C(α) Tests

In this section we compute the ARE of tests based on the Spearman correlation coefficient and the Fisher-Yates (normal scores) correlation coefficient with respect to the asymptotically optimal $\mathrm{C}(\alpha)$ tests of equation (3.7) for the three distributions under consideration.

The general form for the efficacy of $\mathrm{C}(\alpha)$ tests is derived as follows. Letting μ_{ζ} denote the asymptotic mean of the statistic t_{n} in equation (3.7), we find

$$
\begin{align*}
\mu_{\xi} & =\frac{1}{\sqrt{n}} \frac{\sum_{i=1}^{n} E_{\xi} \phi_{\xi}\left(X_{i}, Y_{i} ; \xi_{o}, \theta\right)}{\sigma_{\phi_{\xi}}} \\
& =\sqrt{\mathrm{n}} \frac{\mathrm{E}_{\xi} \phi_{\xi}\left(\mathrm{X}, \mathrm{Y} ; \xi_{0}, \underline{\theta}\right)}{\sigma_{\phi_{\xi}}} \tag{3.22}\\
& =\frac{\sqrt{\mathrm{n}} \mathrm{E}_{\xi}[K(F(X)) K(G(Y))]}{E_{K}^{2(F(X))}}
\end{align*}
$$

where $\sigma_{\phi_{\xi}}^{2}=E \phi_{\xi}^{2}-\left(E \Phi_{\xi}\right)^{2}$. Using equation (3.4), we obtain

$$
\sigma_{\phi_{Y}}^{2}=E K^{2} F(X) \cdot E C^{2}(X)=\left[E K^{2} F(X)\right]^{2}
$$

Differentiation of equation (3.22) then gives

$$
\begin{aligned}
& \left.\frac{\partial \mu_{\xi}}{\partial \xi}\right|_{\xi=\xi_{0}}=\frac{\sqrt{\mathrm{n}} \mathrm{E}_{\xi_{0}} K^{2}(\mathrm{~F}(\mathrm{X})) \cdot \mathrm{E}_{\xi} \mathrm{K}^{2}(\mathrm{G}(\mathrm{Y}))}{\mathrm{E}_{\xi_{0} K^{2}(\mathrm{~F}(\mathrm{X}))}} \\
& =\sqrt{\mathrm{n}} \mathrm{E}_{\xi_{0}} K^{2}(\mathrm{G}(\mathrm{Y}))=\sqrt{\mathrm{n}} \mathrm{E}_{\xi} K_{0}^{2}(\mathrm{~F}(\mathrm{X})) .
\end{aligned}
$$

Using the result that t_{n} has asymptotic unit variance under the null hypothesis, we have for the efficacy

$$
\begin{align*}
\lim _{n \rightarrow \infty} e\left(t_{n}\right) & =\left.\lim _{n \rightarrow \infty} \frac{\left(\frac{\partial E_{\xi}\left(t_{n}\right)}{\partial \xi}\right)}{n \operatorname{Var}_{\xi_{0}}\left(t_{n}\right)}\right|_{\xi=\xi_{0}} \\
& =\left.\left(\frac{\partial \mu_{\xi}}{\partial \xi}\right)\right|_{\xi=\xi_{0}} ^{2} \tag{3.23}\\
& =\left[E K^{2}(F(X))\right]^{2}
\end{align*}
$$

For the Morgenstern and Plackett distributions, the efficacy of the optimal C(α) tests is, from equations (3.8) and (3.23),

$$
\begin{align*}
\lim _{n \rightarrow \infty} e\left(t_{n}\right) & =\left[E K^{2}(F)\right]^{2} \tag{3.24}\\
& =\left[E(2 F-1)^{2}\right]^{2}=1 / 9
\end{align*}
$$

For the Moran distributions, using equations (3.10) and (3.23), we obtain

$$
\begin{aligned}
\lim _{n \rightarrow \infty} e\left(t_{n}\right) & =\left[E\left(\Phi^{-1}(F)\right)^{2}\right]^{2} \\
& =1
\end{aligned}
$$

The efficacy of Spearman rank correlation coefficient γ_{s} for the Morgenstern and Plackett distributions is calculated as follows. The term γ_{s} in equation (3.19) can be written as

$$
\begin{align*}
\gamma_{s} & =\frac{4 n^{3}}{(n+1)^{2}}\left[\frac{1}{n} \sum_{i=1}^{n}\left(\frac{i}{n} \cdot \frac{r_{i}}{n}\right)\right]-n \\
& =\frac{4 n^{3}}{(n+1)^{2}} S_{n}-n \tag{3.26}
\end{align*}
$$

where

$$
S_{n}=\frac{1}{n} \sum_{i=1}^{n} \frac{i}{n} \cdot \frac{r_{i}}{n}
$$

Computing the efficacy of S_{n} is sufficient to compute $\boldsymbol{\gamma}_{s}$. In terms of the empirical distribution functions

$$
\begin{aligned}
& F_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} I\left(X_{i} \leq x\right) \\
& G_{n}(y)=\frac{1}{n} \sum_{i=1}^{n} I\left(Y_{i} \leq y\right)
\end{aligned}
$$

$$
H_{n}(x, y)=\frac{1}{n} \sum_{i=1}^{n} i\left(X_{i} \leq x, Y_{i} \leq y\right)
$$

where $I(A)$ is the indicator function of the set A.
S_{n} may be written as

$$
\begin{aligned}
S_{n} & =\frac{1}{n} \sum_{i=1}^{n} F_{n}\left(x_{(i)}\right) G_{n}\left(y_{\left(r_{i}\right)}\right) \\
& =\iint F_{n}(x) G_{n}(y) d H_{n}(x, y)
\end{aligned}
$$

The asymptotic mean of S_{n} is given by

$$
\begin{align*}
\mu_{\xi} & =\iint F(x) G(y) d H_{\xi}(x, y) \\
& =\iint F(x) G(y) h_{\xi}(x, y) d x d y \tag{3.27}
\end{align*}
$$

Using equation (3.4), we find

$$
\begin{aligned}
\left.\frac{\partial \mu_{\xi}}{\partial \xi}\right|_{\xi=} & =\left.\iint F(x) G(y) \frac{\partial h_{\xi}(x, y)}{\partial \xi} \frac{1}{h_{\xi}(x, y)} \cdot h_{\xi}(x, y) d x d y\right|_{\xi=\xi_{0}} \\
& =\iint F(x) G(y)(2 F(x)-1)(2 G(y)-1) d F(x) d G(y) \\
& =1 / 36
\end{aligned}
$$

The exact variance of S_{n} under the null hypothesis, as given in [8,p.114], is

$$
\begin{equation*}
\operatorname{Var}\left(S_{n}\right)=\frac{(n+1)^{2}(n-1)}{144 n^{4}} \tag{3.28}
\end{equation*}
$$

Hence, the efficacy of γ_{s} and S_{n} is

$$
\begin{align*}
\lim _{n \rightarrow \infty} e\left(\gamma_{s}\right) & =\lim _{n \rightarrow \infty} e\left(S_{n}\right)=\lim _{n \rightarrow \infty} \frac{\left[\left.\left.\frac{\partial}{\partial \xi} \mu_{\xi}\right|^{2}\right|_{\xi=\xi_{0}}\right.}{n \operatorname{Var}\left(S_{n}\right)} \\
& =\lim _{n \rightarrow \infty} \frac{\left[\left.\frac{1}{36}\right|^{2}\right.}{\frac{n(n+1)^{2}(n-1)}{144 n^{4}}}=1 / 9 \tag{3.29}
\end{align*}
$$

Evaluation of the efficacy of γ_{s} for the Moran distributions is similar to that of the Morgenstern and Plackett distributions. Using equation (3.27), we obtain

$$
\begin{align*}
\left.\lim _{n \rightarrow \infty} \frac{\partial \mu_{\rho}}{\partial \rho}\right|_{\rho=0} & =\iint F(x) G(y) \Phi^{-1}(F(x)) \Phi^{-1}(G(y)) d F(x) d G(y) \\
& =\left[\int F(x) \Phi^{-1}(F(x)) d F(x)\right]^{2} \\
& =\left[\int \Phi(w) w d \Phi(w)\right]^{2} \tag{3.30}\\
& =(1 / 2 \times 0.56419)^{2}=.079524
\end{align*}
$$

The last equality follows from the fact that $2 \int w \Phi(w) d \Phi(w)$ is the expectation of the minimum of two independent unit normal random variables. From equations (3.30) and (3.28), we obtain

$$
\begin{align*}
\lim _{n \rightarrow \infty} e\left(\gamma_{s}\right) & =\lim _{n \rightarrow \infty} e\left(S_{n}\right) \\
& =\frac{(1 / 2 \times 0.56419)^{4}}{1 / 144} \tag{3.31}\\
& =9(0.56419)^{4}=.91169
\end{align*}
$$

We will now calculate the efficacy of the statistic

$$
\begin{equation*}
T_{n}^{\prime}=\frac{1}{n} \sum_{i=1}^{n} \Phi^{-1}\left(\frac{i}{n+1}\right) \Phi^{-1}\left(\frac{{ }^{i}}{n+1}\right) \tag{3.32}
\end{equation*}
$$

which is $\frac{1}{n}$ times the numerator of the Van der Waerden correlation coefficient (expression 3.21) and is asymptotically equivalent to the Fisher-Yates correlation coefficient equation (3.20). The statistic T_{n}^{\prime} has asymptotic mean

$$
\mu^{\prime}=\iint \Phi^{-1}(F(x)) \Phi^{-1}(G(y)) h_{\xi}(x, y) d x d y
$$

Then for the Morgenstern and Plackett distributions, we have

$$
\begin{align*}
\left.\frac{\partial \mu_{\xi}}{\partial \xi}\right|_{\xi=\xi}= & \left.\iint \Phi_{0}^{-1}(F(x)) \Phi^{-1}(F(y)) \frac{\partial h_{\xi}(x, y)}{\partial \xi} \frac{1}{h_{\xi}(x, y)} h_{\xi}(x, y) d x d y\right|_{\xi=\xi_{0}} \\
& =\iint \Phi^{-1}(F(x)) \Phi^{-1}(G(y)) \phi(x, y) f(x) g(y) d x d y \\
& =\iint \Phi^{-1}(F(x)) \Phi^{-1}(G(y))[2 F(x)-1][2 G(y)-1] d F(x) d G(y) \tag{3.33}\\
& =\left[\int \Phi^{-1}(F(x))(2 F(x)-1) d F(x)\right]^{2} \\
& =\left[\int w[2 \Phi(w)-1] d \Phi(w)\right]^{2} \\
& =4\left[\int w \Phi(w) d \Phi(w)\right]^{2}
\end{align*}
$$

and

$$
\begin{equation*}
\operatorname{Var}\left(T_{n}^{\prime}\right)=\frac{1}{n-1}\left[\frac{1}{n} \sum_{i=1}^{n}\left[\Phi^{-1}\left(\frac{i}{n+1}\right)\right]^{2}\right]^{2} \tag{3.34}
\end{equation*}
$$

Using equations (3.33) and (3.34) we obtain the efficacy

$$
\begin{align*}
\lim _{n \rightarrow \infty} e\left(T_{n}^{\prime}\right) & =\lim _{n \rightarrow \infty} \frac{\left[\left.4\left[\int \Phi(w) d \Phi(w)\right]^{2}\right|^{2}\right.}{\frac{n}{n-1}\left[\frac{1}{n} \sum_{i=1}^{n}\left(\Phi^{-1}\left(\frac{i}{n+1}\right)\right)^{2}\right]^{2}} \\
& =\frac{16\left[\int w \Phi(w) d \Phi(w)\right]^{2}}{\left[\int\left[\Phi^{-1}(F(x))\right]^{2} d F(x)\right]^{2}} \tag{3.35}\\
& =16\left[\int w \Phi(w) d \Phi(w)\right]^{4}=0.1012999
\end{align*}
$$

For Moran distributions, using equation (3.10) we can reduce equation (3.33) to

$$
\begin{align*}
\left.\lim _{n \rightarrow \infty} \frac{\partial \mu_{\rho}^{\prime}}{\partial \rho}\right|_{\rho=0} & =\iint \Phi^{-1}(F) \Phi^{-1}(G) \Phi^{-1}(F) \Phi^{-1}(G) \mathrm{dFdG} \\
& =\left[E z^{2}\right]^{2}=1 \tag{3.36}
\end{align*}
$$

Then equations (3.34) and (3.36) give the efficacy

$$
\begin{equation*}
\lim _{n \rightarrow \infty} e\left(T_{n}^{\prime}\right)=\frac{1}{\left[\int_{\Phi^{-i}}(F) d F\right]^{2}}=1 \tag{3.37}
\end{equation*}
$$

The ARE's of the nonparametric tests relative to the $C(\alpha)$ tests are computed by taking the appropriate ratios of efficacies.

TABLE 1. THE ARE'S OF NONPARAMETRIC TESTS FOR INDEPENDENCE BASED ON THE SPEARMAN AND FISHER-YATES (VAN DER WAERDEN) STATISTICS RELATIVE TO THE ASYMPTOTIC OPTIMAL C (α) TESTS

Test distributions	Morgenstern and Plackett	Moran
Spearman correlation coefficient	1	.91169
Fisher-Yates (Van der Waerden) correlation coefficient	.91169	1

3.4. ARE's of Two Other Tests of Independence Relative to the $C(\alpha)$

Test for the Plackett Distribution

Plackett [24] considered the consistent estimator

$$
\psi_{\mathrm{n}}^{+}=\frac{\mathrm{ad}}{\mathrm{bc}}
$$

where a, b, c and d are defined as the frequencies of pairs (X_{i}, Y_{i}) respectively in the quadrants $(\mathrm{X} \leq \mathrm{h}, \mathrm{Y} \leq \mathrm{k}),(\mathrm{X} \leq \mathrm{h}, \mathrm{Y}>\mathrm{k}),(\mathrm{X}>\mathrm{h}$, $\mathrm{Y} \leq \mathrm{k})$ and ($\mathrm{X}>\mathrm{h}, \mathrm{Y}>\mathrm{k})$.

Mardia [14] considered the consistent estimator ψ_{n}^{*} which is the solution of the equation

$$
\overline{\mathrm{r}}=\rho_{\mathrm{U}}(\psi),
$$

where

$$
\rho_{U}(\psi)=\operatorname{Corr}(F(x), G(y))=\left(\psi^{2}-1-2 \psi \operatorname{In} \psi\right) /(\psi-1)^{2}
$$

and $\overline{\boldsymbol{F}}$ is the Pearson product moment correlation of $\left(F_{i}, G_{i}\right)=$
$\left(F\left(X_{i}, \underline{\hat{\theta}}\right), G\left(Y_{i}, \underline{\hat{\theta}}\right)\right), i=1, \ldots, n$.
Mardia also evaluated the efficacies

$$
\lim _{n \rightarrow \infty} e\left(\psi_{n}^{*}\right)=1 / 9
$$

and

$$
\lim _{n \rightarrow \infty} e\left(\psi_{n}^{+}\right)=1 / 16
$$

Hence from equation (3.24), the ARE's of ψ_{n}^{+}and ψ_{n}^{*} relative to asymptotically optimal $C(\alpha)$ tests are respectively $9 / 16$ to 1.

IV. COMPARISON OF NONPARAMETRIC TESTS
 FOR BIVARIATE INTERCHANGEABILITY

Given a random sample $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ from a $B V$ absolutely continuous c.d.f. $H(x, y)$, we consider rank tests for the null hypothesis of interchangeability, $H_{o}: H(x, y)=H(y, x)$. Three linear rank test statistics, Wilcoxon $\left(W_{N}\right)$, sum of squared ranks $\left(\operatorname{SSR}_{N}\right)$, and Savage $\left(\mathrm{S}_{\mathrm{N}}\right)$, are described in section 4.1. In section 4.2, ARE comparisons of the three types of tests are made for Morgenstern and Moran BV alternatives with marginal distributions satisfying $G(x)=$ $F(x / \theta)$ for some $\theta \neq 1$. Both gamma and lognormal marginal distributions are used.

4.1. Description of the Test Statistics

Let $Z_{(1)} \leq Z_{(2)} \leq \cdots \leq Z_{(N)}$, with $N=2 n$, represent the order statistics of the combined sample of $X^{\prime} s$ and $Y^{\prime} s$. Define $\mathrm{C}_{\mathrm{N}, 1}, \ldots, \mathrm{C}_{\mathrm{N}, \mathrm{N}}$ by

$$
C_{N, i}= \begin{cases}1 & \text { if } Z_{(i)} \\ 0 & \text { is an } X \text {-observation } \\ Z_{(i)} & \text { is a Y-observation }\end{cases}
$$

Sen [25] studied linear rank statistics

$$
\begin{equation*}
T_{N}=\frac{1}{n} \sum_{i=1}^{N} E_{N, i} C_{N, i} \tag{4.1}
\end{equation*}
$$

where the coefficients $E_{N, i}=J_{N}(i /(N+1))$, $i=1, \ldots, N$, are specified.

The coefficients for the three tests under consideration are defined by

$$
\begin{gather*}
W_{N}: J_{N}(i /(N+1))=J(i /(N+1))=i /(N+1), \tag{4.2}\\
S S R_{N}: J_{N}(i /(N+1))=J(i /(N+1))=(i /(N+1))^{2}, \tag{4.3}\\
S_{N}: J_{N}(i /(N+1))=\sum_{j=1}^{i} 1 /(N-j+1) \\
\quad \doteq-\ln (1-i /(N+1))-1 \quad=J(i /(N+1)) \tag{4.4}
\end{gather*}
$$

Sen considered permutation tests based on T_{N}. A summary of Sen's development of the permutation tests is included here for completion. Define the $2 x n$ matrix A_{N} as

$$
A_{N}=\left[\begin{array}{l}
x_{1} x_{2} \ldots x_{n} \tag{4.5}\\
Y_{1} Y_{2} \ldots Y_{n}
\end{array}\right]
$$

and define rank matrix R_{N} as

$$
R_{N}=\left[\begin{array}{lll}
R_{X_{1}} R_{X_{2}} & \cdots R_{X_{n}} \tag{4.6}\\
R_{Y_{1}} R_{Y_{2}} & \ldots R_{Y_{n}}
\end{array}\right] .
$$

where $R_{X_{i}}$ and $R_{Y_{i}}$ are the ranks of X_{i} and Y_{i} in the combined sample $\left(z_{1}, \ldots, z_{N}\right)$.

Also, define the set $S\left(R_{N}\right)$ as

$$
S\left(R_{N}\right)=\left\{\begin{array}{l}
R_{N}^{*}: R_{N}^{*} \text { can be obtained from } R_{N} \text { by permutations } \\
\text { of two rank elements within each column. }
\end{array}\right\}
$$

There are 2^{n} possible rank matrices in $\dot{S}\left(R_{N}\right) \cdot S\left(R_{N}\right)$ is called the permutation set of R_{N}. Under $H_{0}: H(x, y)=H(y, x)$.

$$
\begin{equation*}
P\left(R_{N}=R_{N}^{*} \mid S\left(R_{N}\right)\right)=\frac{1}{2^{n}} \quad \text { for all } R_{N}^{*} \in S\left(R_{N}\right) \tag{4.7}
\end{equation*}
$$

Thus, the conditional distribution of T_{N} given $R_{N}=R_{N}^{*}$, under H_{o} can be obtained from equation (4.7). It should be pointed out that the unconditional distribution of R_{N}, and consequently of T_{N}, does depend on $H(x, y)$ under H_{0}. Hence, an unconditional test based on T_{N} would not be distribution free.

Calculation of the level of the conditional Wilcoxon test is now illustrated by the foilowing example. Consider five BV observations given in the data matrix form of equation (4.5)

$$
A_{10}=\left[\begin{array}{rrrrr}
3 & 10 & 7 & 13 & 6 \\
4 & 9 & 5 & 11 & 2
\end{array}\right]
$$

Using the ordered combined sample

$$
\begin{aligned}
& \left(z_{(1)}, z_{(2)}, z_{(3)}, z_{(4)}, z_{(5)},{ }^{z}(6),{ }^{z}(7),{ }^{z}(8),{ }^{z}(9),{ }^{z}(10)\right) \\
= & \left(y_{5}, x_{1}, y_{1}, y_{3}, x_{5}, x_{3}, y_{2}, x_{2}, y_{4}, x_{4}\right) \\
= & (2,3,4,5,6,7,9,10,11,13)
\end{aligned}
$$

the rank matrix R_{10} is evaluated.

$$
R_{10}=\left[\begin{array}{rrrrr}
2 & 8 & 6 & 10 & 5 \\
3 & 7 & 4 & 9 & 1
\end{array}\right]
$$

Using equation (4.2) in (4.1), we obtain

$$
\mathrm{T}_{10}^{\mathrm{o}}=\frac{1}{5} \frac{2+8+6+10+5}{11}=\frac{31}{55} .
$$

The following three R_{10}^{*} elenents of $S\left(R_{10}\right)$ al so have T_{10} greater than or equal to $\mathrm{T}_{10}^{\mathrm{o}}$:
$\left[\begin{array}{lllll}3 & 8 & 6 & 10 & 5 \\ 2 & 7 & 4 & 9 & 1\end{array}\right],\left[\begin{array}{rrrrr}3 & 7 & 6 & 10 & 5 \\ 2 & 8 & 4 & 9 & 1\end{array}\right]$ and $\left[\begin{array}{rrrrr}3 & 8 & 6 & 9 & 5 \\ 2 & 7 & 4 & 10 & 1\end{array}\right]$. The other $28 \mathrm{R}_{10}^{*}$ elements of $\mathrm{S}\left(\mathrm{R}_{10}\right)$ have T_{10} less than T_{10}°. Therefore,

$$
P\left(T_{10} \geq T_{10}^{\mathrm{o}} \mid \mathrm{S}\left(\mathrm{R}_{10}\right)\right)=4 / 32=.125
$$

The conditional significance level of the test statistic $\mathrm{T}_{10}^{\mathrm{o}}$ is then equal to $2 \mathrm{P}\left(\mathrm{T}_{10} \geq \mathrm{T}_{10}^{\mathrm{o}}\right)=.25$.

Under suitable conditions on the coefficients $\mathrm{E}_{\mathrm{N}, \mathrm{i}}$, Sen [25, Th.5.1] establishes the asymptotic normality of the conditional distributions of the test statistics. The three statistics under consideration satisfy Sen's conditions. Now, for the example, we compare the normal approximation with the exact tail probability for $\mathrm{T}_{10} \geq \mathrm{T}_{10}^{\mathrm{o}}$.

The conditional expection and conditional variance of T_{N} are

$$
\begin{equation*}
E\left(T_{N} \mid S\left(R_{N}\right)\right)=\frac{1}{N} \sum_{i=1}^{N} E_{N, i} \tag{4.8}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{n} \tag{4.9}
\end{equation*}
$$

where $R_{j . k}$ denotes the rank of the j th element of kth pair, $j=1,2$. In our example,

$$
\begin{aligned}
E\left(\mathrm{~T}_{10} \mid S\left(R_{10}\right)\right) & =1 / 2 \\
\operatorname{var}\left(\mathrm{~T}_{10} \mid S\left(R_{10}\right)\right) & =\frac{23}{12100}
\end{aligned}
$$

and

$$
\mathrm{z}^{\mathrm{o}}=\frac{\mathrm{T}_{10}^{\mathrm{o}}-\mathrm{E}\left(\mathrm{~T}_{10} \mid \mathrm{S}\left(\mathrm{R}_{10}\right)\right)}{\left[\operatorname{Var}\left(\mathrm{T}_{10} \mid \mathrm{S}\left(\mathrm{R}_{10}\right)\right)\right]^{\frac{1}{2}}}=\frac{7}{\sqrt{23}}=1.49
$$

For the normal approximation to $P\left(T_{10} \geq T_{10}^{\circ} \mid S\left(R_{10}\right)\right)$, we have

$$
P\left(Z \geq z^{o}\right)=.068
$$

where $Z \sim N(0,1)$. Using the correction for continuity improves the approximation to $P(Z \geq 1.08)=.100$

4.2. ARE's for Morgenstern and Moran BV Gamma Distributions

The ARE's of the Wilcoxon, sum of squared ranks, and Savage tests are now evaluated for the Morgenstern and Moran BV gamma distributions with common shape parameter $\alpha=1 / 2,1,2,3, \ldots, 16$ and the BV lognormal distribution.

The general form for the asymptotic efficacy of conditional tests for interchangeability based on linear rank order statistics with the alternatives satisfying $G(y)=F(y \mid \theta)$ with $\theta \neq 1$ was found by Sen [25]:

$$
\lim _{N \rightarrow \infty} e\left(T_{N}\right)=\lim _{N \rightarrow \infty} \frac{\left[\frac{\partial E_{\theta}\left(T_{N}\right)}{\partial \theta}\right]^{2} \theta=1}{\operatorname{Var}_{\theta=1}\left(T_{N}\right)}
$$

$$
\begin{equation*}
=\frac{1 / 4 C^{2}(F, J)}{1 / 2 A^{2}(J)[1-B(H, J)]} \tag{4.10}
\end{equation*}
$$

where

$$
\begin{align*}
& A^{2}(J)=\int_{0}^{1} J^{2}(U) d U-\left[\int_{0}^{1} J(U) d U\right]^{2} \tag{4.11}\\
& B(H, J)=\frac{-\infty}{A_{-\infty}^{\infty} \int^{2} J(F(x)) J(F(y)) d H(x, y)-\left[\int_{0}^{1} J(U) d U\right]^{2}} \tag{4.12}\\
& C(F, J)=\int_{-\infty}^{\infty} x J^{\prime}(F(x)) f(x) d F(x) \tag{4.13}
\end{align*}
$$

and

$$
J(U)=\lim _{N \rightarrow \infty} J_{N}(U) \quad \text { for } \quad 0<U<1
$$

Concerning the constants A, B, and C, notice that A is independent of distributions, B depends on the BV distribution form and is equal to zero for the case of independence, whereas C depends on the $B V$ distribution only through the marginals. The quantities in Equations (4.10), (4.11), (4.12) and (4.13) are evaluated below.

First we consider the case of the Morgenstern BV gamma distributions with common shape parameter α.

For the Wilcoxon test statistic $\left(W_{N}\right)$ with $J(U)=U, 0<U<1$,

$$
\begin{equation*}
A^{2}(J)=1 / 12 \tag{4.14}
\end{equation*}
$$

Evaluation of $B(H, J)$ requires the integration:

$$
\begin{align*}
& \iint_{J(F(x)) J(F(y)) d H(x, y)} \\
= & \iint_{F(x) F(y) f(x) f(g)[1+\gamma(2 F(x)-1)(2 F(y)-1)] d x d y} \tag{4.15}\\
= & 1 / 4+\gamma / 36
\end{align*}
$$

For $C(F, J)$, we find

$$
\begin{equation*}
\mathrm{C}(\mathrm{~F}, \mathrm{~J})=\int \mathrm{xf}^{2}(\mathrm{x}) \mathrm{dx}=\frac{\Gamma(2 \alpha)}{2^{2 \alpha}[\Gamma(\alpha)]^{2}} \tag{4.16}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\lim _{N \rightarrow \infty} e\left(W_{N}\right)=1 / 2 \cdot \frac{3}{1-\frac{\gamma}{3}}\left\{\frac{\Gamma(2 \alpha)}{\left.2^{2 \alpha_{[\Gamma}}[\alpha)\right]^{2}}\right\}^{2} \tag{4.17}
\end{equation*}
$$

For the sum of squared ranks test statistic $\left(\operatorname{SSR}_{N}\right)$ with $J(U)=U^{2}$, $0<\mathrm{U}<1$, we have

$$
\begin{equation*}
A^{2}(J)=4 / 45 \tag{4.18}
\end{equation*}
$$

$$
\begin{align*}
& \iint J(F(x)) J(F(y)) d H(x, y) \\
& =\iint F^{2}(x) F^{2}(y) f(x) f(g)[1+\gamma(2 F(x)-1)(2 F(y)-1)] d x d y \tag{4.19}\\
& =1 / 9+\gamma / 36
\end{align*}
$$

Using equations (4.19) and (4.18) in (4.12), we have

$$
\begin{equation*}
B(H, J)=5 \gamma / 16 . \tag{4.20}
\end{equation*}
$$

The term

$$
C(F, J)=\int_{0}^{\infty} 2 x F(x) f^{2}(x) d x
$$

reduces to

$$
\begin{equation*}
C(F, J)=\int_{0}^{\infty} 2 x\left(1-\sum_{i=0}^{\alpha-1} \frac{x^{i} e^{-x}}{i!}\right)\left[\frac{x^{\alpha-1} e^{-x}}{\Gamma(\alpha)}\right]^{2} d x \tag{4.21}
\end{equation*}
$$

$=2 \cdot\left[\frac{\Gamma(2 \alpha)}{\Gamma(\alpha)^{2} \cdot 2^{2 \alpha}}-\sum_{i=0}^{\alpha-1} \frac{\Gamma(i+2 \alpha)}{i![\Gamma(\alpha)]^{2} \cdot 3^{i+2 \alpha}}\right]$ for integer α
and to

$$
\begin{gather*}
C(F, J)=\int_{0}^{\infty} \int_{0}^{x} 2 x \frac{y^{-\frac{1}{2}} e^{-y}}{\sqrt{\pi}} \cdot \frac{x^{-1} e^{-2 x}}{\pi} d y d x \\
=2 \int_{0}^{\infty} \int_{0}^{x} \frac{y^{-\frac{1}{2}} e^{-y} e^{-2 x}}{\pi^{3 / 2}} d y d x=\int_{0}^{\infty} \int_{y}^{\infty} 2 e^{-2 x} d x \frac{y^{-\frac{1}{2}} e^{-y}}{\pi^{3 / 2}} d y \tag{4.22}\\
=\int_{0}^{\infty} \frac{e^{-3 y} y^{-\frac{1}{2}}}{\pi^{3 / 2}} d y=\frac{\sqrt{3}}{3 \pi} \quad \text { for } \alpha=1 / 2
\end{gather*}
$$

Using equations (4.18), (4.20), (4.21) and (4.22) in (4.10), we have
$\lim _{N \rightarrow \infty} e\left(\operatorname{SSR}_{N}\right)= \begin{cases}\frac{2\left[\frac{\Gamma(2 \alpha)}{\Gamma(\alpha)^{2} \cdot 2^{2 \alpha}}-\sum_{i=0}^{\alpha-1} \frac{\Gamma(i+2 \alpha)}{\Gamma(\alpha) \cdot i!\cdot 3^{i+2 \alpha}}\right]^{2}}{4 / 45-\gamma / 36} \text { for integer } \alpha . \\ \frac{1}{6 \pi^{2}(4 / 45-1 / 36 \gamma)} & \text { for } \alpha=1 / 2 .\end{cases}$

For Savage test statistics $\left(S_{N}\right)$ with $J(U)=-\ln (1-U)-1$, we have

$$
\begin{equation*}
A^{2}(J)=1 \tag{4.25}
\end{equation*}
$$

and

$$
\begin{aligned}
& \iint J(F(x)) J(F(y)) d H(x, y) \\
= & \int_{0}^{1} \int_{0}^{1} J(U) J(V)[1+\gamma(2 U-1)(2 V-1)] d U d V \\
= & \gamma / 4
\end{aligned}
$$

where $U=F(x)$ and $V=F(y)$.
Using equations (4.26) and (4.25) in equation (4.12), we obtain

$$
\begin{equation*}
B(H, J)=\gamma / 4 . \tag{4.27}
\end{equation*}
$$

The term

$$
\begin{equation*}
C(F, J)=\int_{0}^{\infty} \frac{x}{1-F(x)} \cdot f^{2}(x) d x \tag{4.28}
\end{equation*}
$$

reduces to

$$
C(F, J)= \begin{cases}\int_{0}^{\infty} \frac{x^{2 \alpha-1} e^{-x}}{[\Gamma(\alpha)]^{2 \alpha-1} \sum_{i=0}^{i} \frac{x^{i}}{i!}} d x & \text { for integer } \alpha, \tag{4.29}\\ \int_{0}^{\infty} \frac{x^{-2 x}}{\left[1-F_{\alpha}(x)\right] \pi} d x & \text { for } \alpha=1 / 2,\end{cases}
$$

where expressions (4.29) and (4.30) are approximated by 32 point quadrature numerical integration $\int_{0}^{\infty} k(x) e^{-x_{d x}}=\sum_{i=1}^{32} k\left(x_{i}\right) A_{i}$.

Tables of x_{i} and A_{i} given in [9,p.352] were used. Using equations (4.25), (4.27), (4.29) and (4.30) in equation (4.10), we have

The ARE's for the Wilcoxon, Savage and SSR tests are tabulated in Tables II-IV for the Morgenstern BV gamma distributions with common
shape parameter $\alpha=1 / 2,1,2,3, \ldots, 16$ and parameter $\gamma=-1(.1) 1$. For the case of independence $(\gamma=0)$, our results of the ARE of W_{N} relative to $\operatorname{SSR}_{\mathrm{N}}$ for all integer $\alpha^{\prime} \mathrm{s}$, and the ARE of W_{N} relative to S_{N} for $\alpha=1$ agree to four decimal places with those of Duran and Mielke [4]. Also for $\gamma=0$, the ARE of $S S R_{N}$ relative to S_{N} agrees with that of Mielke [4] to three decimal places. In figure 6, values of α and γ for which each of the three tests is most efficient are indicated. The Savage test is seen to be best among the three tests for negative $\boldsymbol{\gamma}$. For positive $\boldsymbol{\gamma}$, either the Wilcoxon or the sum of squared ranks test is preferred to the Savage test depending on the combination of α and γ.

For computing ARE's for Moran BV gamma distributions with common shape parameter α, we only need to evaluate $B(H, J)$ since $A(J)$ and $C(F, J)$ do not depend on the form of the $B V$ distribution. We use the following transformations

$$
\begin{aligned}
& F(x)=\Phi(w) \\
& F(y)=\Phi(z)
\end{aligned}
$$

and

$$
H(x, y)=\Phi(w, z),
$$

where (W, Z) are $B V$ unit normal random veriables with correlation coefficient ρ.

For the Wilcoxon statistic W_{N} then,

$$
\begin{align*}
& \iint J(F(x)) J(F(y)) d H(x, y) \\
= & \iint J(\Phi(w)) J(\Phi(z)) d \Phi(w, z) \tag{4.33}\\
= & P(U<W, V<z)
\end{align*}
$$

Figure 6. Regions of the most efficient tests for the Morgenstern BV distribution

TABLE II. ASYMPTOTIC REIATIVE EFFICIENCY OF THE WILCOXON TEST RELATIVE TO THE SAVAGE TEST OF H_{0} : $\mathrm{H}(\dot{\mathrm{x}}, \mathrm{y})=\mathrm{H}(\mathrm{y}, \mathrm{x})$ AGAINST: ALTERNATIVES $\mathrm{G}(\mathrm{y})=\mathrm{F}(\mathrm{y} / \theta), \theta \neq 1$, FOR THE MORGENSTERN BV DISTRIBUTION

			-. 8	-. 7	. 6	. 5	-. 4	. 3	-. 2	. 1	0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9	1
1	J03	. 70	. 711	. 715		. 723		. 733	. 738		750	. 757	. 763	. 771	779	788	797	807	818	830	. 844
2	:803	. 807	811	16	821	826	331	837	84	. 850	857	. 864	872	88	88	899	91	92	934	948	64
3	851	855	860	865	870	875	881	. 887	894	. 901	908	. 916	. 924	. 933	. 943	953	965	977	. 990	1005	1021
4	881	885	890	895	. 900	. 906	. 912	. 918	. 925	. 932	. 940	. 948	. 956	. 966	976	. 987	. 998	1011	1025	04	057
5	. 902	. 906	. 911	. 916	. 922	. 928	. 934	. 940	. 947	. 954	962	. 970	. 979	. 989	. 99	1.010	1022	. 03	1.050	1.065	082
6	. 917	. 922	. 9	. 93	. 938	. 944	. 950	. 956	. 953	7	. 979	. 987	. 9	.	101	102	1040	1.053	1068	1.083	1101
7	. 9	. 935	. 940	. 945	. 950	. 956	. 963	. 969	. 976	. 984	. 992	1000	1.00	1019	1030	1.04	105	1.067	1.082	1.098	1116
8	. 940	. 945	. 950	. 955	. 961	. 967	73	. 980	. 987	. 994	1.002	1011	1.020	1030	1.041	1.053	1065	1.079	1.094	1.110	128
9	. 948	. 953	. 958	. 964	. 969	. 975	. 982	. 988	. 996	1003	1011	1020	1.029	1039	1050	1.062	1075	1.088	1.103	1120	38
10	. 955	. 960	. 965	. 971	. 977	. 983	. 989	. 996	1003	1011	1019	1028	1.037	1047	1058	1.070	1.083	1097	1.112	1128	2146
11	. 962	. 956	. 972	. 977	. 983	. 989	. 995	1002	1010	1017	102	1034	1.044	1054	1065	1.077	1090	1.104	1.119	113	15
12	. 967	. 972	. 977	. 983	. 988	. 995	1001	1008	1015	1023	1031	1040	1.050	1060	1071	1083	1.096	1.110	1.125	1.142	1160
13	. 97	. 977	. 982	. 988	. 993	1.000	1.006	1013	1.020	1028	1.037	1046	1.055	1065	1076	1.088	1.101	1.115	1.131	1.148	166
14	. 976	. 981	. 986	. 992	. 998	1.004	1.011	1018	1.025	1033	1.041	1050	1.060	1070	1.081	1.093	1.106	1.120	1.136	1.153	1171
15	. 980	. 985	. 990	. 996	1.002	1.008	1.015	1022	1.029	1037	1.045	1054	1.064	1074	1086	1.098	1.111	1.125	1.140	1157	1.176
	. 984	. 989	. 994	. 999	1.005	1.012	1.018	1025	1033	1041	1.049	1058	1.068	1078	1089	1.102	1.115	1.129	1.144	1.161	1180

TABLE III. ASYMPTOTIC RELATIVE EFFICIENCY OF THE SUM OF SQUARED RANKS TEST RELATIVE TO THE SAVAGE TEST OF $H_{0}: ~ H(x, y)=H(y, x)$ AGAINST ALTERNATIVES $G(y)=F(y / \theta), \neq 1$, FOR THE MORGENSTERN BV DISTRIBUTION

			-. 8	-..7	-. 6	-. 5	. 4				0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	9	
1			. 833		. 841																
2	. 889	. 892	96	00	. 904	. 908	. 913	917	. 923	28	34	. 93	. 946	53	. 960	968	. 97	. 98	. 996	.007	18
3	. 917	. 920	. 924	28	32	. 937	. 941	946	. 951	. 957	. 963	. 96	976	. 983	. 990	988	1.00	1.017	202	. 038	1.050
4	. 934	. 937	. 941	. 945	. 949	. 954	. 958	. 963	. 969	97	98	. 98	. 99	100	1.00	101	1025	1.035	1046	. 057	. 070
5	. 945	. 949	. 953	. 957	61	65	. 97	. 97	. 981	. 986	. 992	. 99	100	1013	1.021	1029	1038	1048	1.058	1.070	1.082
6	. 954	. 957	. 9	. 965	. 970	. 974	. 979	. 984	. 990	. 995	100	100	1.015	1022	1030	1038	10	1.057	1068	1.080	1.092
7	. 960	. 96	. 968	. 9	. 976	. 981	. 98	91	. 996	1.00	100	1015	102	1029	1037	1.045	205	1065	1.07	08	. 10
8	. 966	. 969	. 973	. 977	. 982	. 986	. 991	. 996	1002	1.008	1014	1.020	102	1.035	1043	1051	1061	1.071	108	093	. 1
9		. 974	88	. 982	. 986	. 991	. 996	1.001	1006	1.012	1.018	1.025	1.032	1039	1.048	105	1.065	1.07	1.08	1098	1.111
	. 974	. 978	. 982	. 986	. 990	. 995	1000	1.005	1010	1.016	1022	102	103	104	1.05	106	107	108	1.09	1.102	1.115
	. 977	. 981	. 985	. 989	. 993	. 998	1003	1.008	101	1,02	102	103	103	1047	105	1064	1.073	1083	1.094		
	. 980	. 984	. 988	. 992	. 996	1001	100	1011	1017	1.023	102				1058	1067	076	086	1097	1109	
	. 982	. 9	. 9	. 994	. 999	1004	1008	1.014	1.019	1.025	1031	103	104	1052	1061	1070	1.079	1.089	1.100	112	.125
	. 985	. 988	. 992	. 997	1001	1006	1011	1016	1.022	1.028	1.034	1040	1.048	1055	1063	1072	1081	1092	1103	1115	1128
	. 987	. 990	. 994	. 999	1003	1008	1013	1.018	1.024	1.030	1036	1043	1050	1057	1065	1.074	1084	1094	1.105	2117	1.130
	. 988	. 992	. 996	. 1001	1005	1010	1.015	1.020	1.026	1.032	1038	1045	1052	1.059	1.067	1076	1086	109	1107	111	

TABLE IV. ASYMPTOTIC RELATIVE EFFICIENCY OF THE WILCOXON. TEST RELATIVE TO THE SUM OF SQUARED RANKS TEST OF $H_{0}: H(x, y)=H(y, x)$ AGAINST ALTERNATIVES $G(y)=F(y / \theta), \theta \neq 1$, FOR THE MORGENSTERN BV DISTRIBUTION

俉		-. 9	-. 8	-. 7	-. 6	5	-. 4	-. 3	2	-. 1	0	. 1	2	3	. 4	5	6	. 7	. 8	. 9	
$\frac{3}{2}$. 78					. 793			. 797	798	300	802	. 804	. 806	80	810	813	815	818	321	825
1	. 851	. 852	. 853	. 854	55	. 856	. 858	. 859	861	862	. 864	. 866	. 868	. 870	. 872	87	. 878	880	. 884	887	891
2	. 903	. 904	. 906	. 907	. 908	. 909	. 911	. 912	. 914	. 916	. 918	. 920	. 922	. 924	. 926	. 929	. 932	. 935	938	94	46
3	. 928	. 929	. 931	. 932	. 933	. 935	. 936	. 938	. 939	. 941	. 943	. 945	. 947	. 950	. 952	. 955	. 958	. 961	964	68	73
4	. 944	. 945	. 946	. 947	. 949	. 950	. 952	. 953	. 955	. 957	. 959	. 961	. 963	. 965	. 968	. 971	. 974	. 977	980	984	. 989
5	. 954	. 955	. 957	. 958	. 959	. 961	. 962	. 964	. 966	. 967	. 969	. 971	97	. 976	. 979	. 982	. 985	. 988	. 991	995	1.000
6	. 962	. 963	. 965	. 966	. 967	69	. 97	. 972	74	. 975	. 977	. 980	. 982	. 984	. 987	. 990	. 99	. 9	100	1004	1008
7	. 9	. 970	71	. 972	. 974	. 975	. 9	. 978	. 980	. 982	. 984	. 986	. 988	. 99	. 993	. 996	. 999	1002	1006	1010	1.014
8	. 97	. 975	. 9	. 9	. 97	. 980	. 982	983	985	. 987	. 989	. 991	. 993	. 996	. 998	1001	1004	1008	1011	1015	1.019
9	. 978	. 979	. 980	. 982	. 983	. 984	. 986	987	89	. 991	. 993	. 995	. 998	1000	1003	1006	1009	1012	1016	102	024
0	. 981	. 982	. 984	. 985	. 986	. 988	. 989	. 991	993	. 995	. 997	. 999	100	1004	1006	100	101	1016	101	1.023	28
1	. 984	. 985	. 987	. 988	. 989	. 991	. 993	. 994	. 996	. 998	1000	1002	100	100	100	101	101	1019	023	027	31
1	. 987	. 988	. 989	. 991	. 992	. 994	. 995	. 997	. 999	1001	1003	100	100	101	101	101	1018	1022	1025	1029	1.034
13	. 989	. 991	. 992	. 993	. 995	. 996	. 998	. 999	1001	1003	1005	1007	1010	1012	1015	1018	1021	1024	1028	1032	1.036
14	. 991	. 993	. 994	. 995	. 997	. 998	1,000	1001	1003	1005	1.007	1009	1.012	1014	1017	1020	1023	1026	1030	1034	1.039
15	. 993	. 995	. 996	. 997	. 999	1.000	1002	1003	1005	1007	1009	1011	1.014	1016	1019	1022	1025	1028	1032	1036	1.041
16	. 995	. 996	. 998	. 999	1000	1.002	1003	1005	1007	1009	1011	1.013	1015	1018	1021	1024	1027	1030	1034	038	

where U and V are independent unit normal random variables which are also independent of W and Z. Let

$$
S_{1}=(W-U) / \sqrt{2}
$$

and

$$
s_{2}=(z-v) / \sqrt{2}
$$

with second order moments

$$
\begin{aligned}
& \operatorname{var}\left(\mathrm{S}_{1}\right)=1 / 2(\operatorname{var}(\mathrm{~W})+\operatorname{var}(\mathrm{U}))=1 \\
& \operatorname{var}\left(\mathrm{~S}_{2}\right)=1 / 2(\operatorname{var}(\mathrm{Z})+\operatorname{var}(\mathrm{V}))=1
\end{aligned}
$$

and

$$
\operatorname{cov}\left(S_{1}, S_{2}\right)=1 / 2 \operatorname{cov}(W, Z)=1 / 2 \rho
$$

Equation (4.33) then is equal to

$$
\begin{equation*}
P\left(0<S_{1}, 0<S_{2}\right)=1 / 4+1 /(2 \pi) \sin ^{-1}(\rho / 2) \tag{4.34}
\end{equation*}
$$

The equality of equation (4.34) was established in [2, p.290]. Therefore, from equations (4.12), (4.14), (4.33) and (4.34) we have

$$
\begin{equation*}
B(H, J)=(6 / \pi) \sin ^{-1}(\rho / 2) \tag{4.35}
\end{equation*}
$$

Using equations (4.14), (4.35) and (4.16) in equation (4.10) gives

$$
\lim _{N \rightarrow \infty} e\left(W_{N}\right)=\left\{\begin{array}{l}
\frac{\left[\frac{\Gamma(2 \alpha)}{\Gamma(\alpha)^{2} \cdot 2^{2 \alpha}}\right]^{2}}{2\left[1 / 12-1 /(2 \pi) \sin ^{-1}(\rho / 2)\right]} \text { for integer } \alpha, \\
\frac{3}{2 \pi^{2}\left[1-6 / \pi \sin ^{-1}(\rho / 2)\right]} \text { for } \alpha=1 / 2 \tag{4.36}
\end{array}\right.
$$

For the sum of squared ranks test statistic $\left(\mathrm{SSR}_{\mathrm{N}}\right)$,

$$
\begin{align*}
& \iint J(F(x)) J(F(y)) d H(x, y) \\
& =\iint J(\Phi(w)) J(\Phi(z)) d \Phi(w, z) \\
& =\iint \Phi^{2}(w) \Phi^{2}(z) d \Phi(w, z) \tag{4.38}\\
& =\iint P\left(U_{1}<w, U_{2}<w, v_{1}<z, V_{2}<z\right) d \Phi(w, z)
\end{align*}
$$

where U_{1}, U_{2}, V_{1} and V_{2} are independent unit normal random variables which are also independent of W and Z. Let

$$
\mathrm{S}_{1}=\left(\mathrm{W}-\mathrm{U}_{1}\right) / \sqrt{2}, \mathrm{~S}_{2}=\left(\mathrm{W}_{2}-\mathrm{U}_{2}\right) / \sqrt{2,} \mathrm{~S}_{3}=\left(\mathrm{z}-\mathrm{V}_{1}\right) / \sqrt{2}, \text { and } \mathrm{S}_{4}=\left(\mathrm{z}-\mathrm{V}_{2}\right) / \sqrt{2},
$$

so that $\left(S_{1}, S_{2}, S_{3}, S_{4}\right)$ has a quadrivariate normal distribution with zero mean vector and covariance matrix.

$$
\left[\begin{array}{llll}
1 & \frac{1}{2} & \frac{\rho}{2} & \frac{\rho}{2} \tag{4.39}\\
\frac{1}{2} & 1 & \frac{\rho}{2} & \frac{\rho}{2} \\
\frac{\rho}{2} & \frac{\rho}{2} & 1 & \frac{1}{2} \\
\frac{\rho}{2} & \frac{\rho}{2} & \frac{1}{2} & 1
\end{array}\right]
$$

Then equation (4.38) may be written as

$$
\begin{align*}
& P\left(0<S_{1}, 0<S_{2}, 0<S_{3}, 0<S_{4}\right) \\
= & 1 / 16+\left[\sin ^{-1}(1 / 2)+2 \sin ^{-1}\left(\frac{\rho}{2}\right)\right] / 4 \pi+\left[\left[\sin ^{-1}(1 / 2)\right]^{-2}-2\left[\sin ^{-1}\left(\frac{\rho}{2}\right)\right]^{2}\right] / 4 \pi^{2} \\
& +\left[2 L_{i_{2}}\left[f, \cos ^{-1}\left(\frac{\rho}{2}\right)\right]+1 / 2 \mathrm{~L}_{i_{2}}\left[-f^{2}\right]-\mathrm{L}_{\mathrm{i}_{2}}\left[\mathrm{f}^{2}, \cos ^{-1}(1 / 2)\right]\right] / \pi^{2} \\
= & \mathrm{L}(\rho) \tag{4.40}
\end{align*}
$$

Equation (4.40) was derived in [1,p.153] with $\mathrm{L}_{\mathrm{i}_{2}}(\mathrm{x})$ and $\mathrm{L}_{\mathrm{i}_{2}}(\mathrm{r}, \theta)$ representing logarithm functions given in [11].

Hence, from equations (4.12), (4.18), (4.38) and (4.40) we have

$$
\begin{equation*}
B(H, J)=\frac{L(0)-1 / 9}{4 / 45} \tag{4.41}
\end{equation*}
$$

Using equations (4.18), (4.41), (4.21) and (4.22) in equation (4.10) gives

$$
\lim _{N \rightarrow \infty} e\left(\mathrm{SSR}_{N}\right)= \begin{cases}\frac{2\left[\frac{\Gamma(2 \alpha)}{\Gamma(\alpha)^{2} \cdot 2^{2 \alpha}}-\sum_{i=0}^{\alpha-1} \frac{\Gamma(i+2 \alpha)}{\Gamma(\alpha)^{2} \cdot i!\cdot 3^{i+2 \alpha}}\right\}^{2[1 / 5-L(\rho)]}}{} \\ \frac{1}{6 \pi^{2}[1 / 5-L(\rho)]} & \text { for integer } \alpha, \tag{4.43}\\ & \text { for } \alpha=1 / 2\end{cases}
$$

For Savage test statistics (S_{N}) we have

$$
\begin{align*}
& B(H, J)=\iint J(\Phi(w)) J(\Phi(z)) d \Phi(w, z) \\
& =\iint \ln (1-\Phi(w)) \ln (1-\Phi(z)) \phi(w, z) d w d z-1 \tag{4.44}
\end{align*}
$$

$=\int \frac{1}{2 \pi\left(1-\rho^{2}\right)^{\frac{3}{2}}} \ln (1-\Phi(z)) e^{-\frac{\left(1-\rho^{2}\right)^{2}}{2\left(1-\rho^{2}\right)}}\left[\int \ln (1-\Phi(w)) e^{-\frac{(w-\rho z)^{2}}{2\left(1-\rho^{2}\right)}} d w\right] d z-1$

Using the transformation

$$
S=\frac{W-\rho Z}{\sqrt{2\left(1-\rho^{2}\right)}}, T=\frac{Z}{\sqrt{2}}
$$

and letting

$$
\begin{aligned}
& h_{1}(s, t)=\ln \left[1-\Phi\left(\sqrt{2\left(1-\rho^{2}\right)} \cdot s+\sqrt{2 \rho} t\right)\right] \\
& h_{2}(t)=\ln [1-\Phi(\sqrt{2} t)]
\end{aligned}
$$

equation (4.44) may be written as

$$
\begin{equation*}
B(H, J)=\frac{1}{\pi} \int h_{2}(t) \int h_{1}(s, t) e^{-s^{2}} d s e^{-t^{2}} d t-1 \tag{4.45}
\end{equation*}
$$

The double integra1 in equation (4.45) is approximated by

$$
\sum_{i=1}^{20} h_{2}\left(t_{i}\right)\left[\sum_{j=1}^{20} h_{1}\left(s_{i}, t_{i}\right) A_{j}\right] A_{i}
$$

where the $t_{i}=s_{i}$ and A_{i} were taken from [$\left.9, p .343-346\right]$.
Using equations (4.25), (4.44), (4.29) and (4.30) in equation (4.10), we obtain

$$
\begin{aligned}
& 1 / 2\left[\frac{x^{2 \alpha-1}}{[\Gamma(\alpha)]^{2} \sum_{i=0}^{\alpha-1} \frac{x^{i}}{i!}} e^{-x_{d x}}\right]^{2} . \\
& 2-\iint \ln [1-\Phi(w)] \ln [1-\Phi(z)] \frac{1}{2 \pi\left(1-\rho^{2}\right)^{\frac{3}{2}}} e^{-\frac{w^{2}-2 \rho_{w z}+z^{2}}{2\left(1-\rho^{2}\right)} \cdot d w d z} \\
& \text { for integer } \alpha \text {, (4.46) } \\
& \lim _{N \rightarrow \infty} e\left(W_{N}\right)= \\
& 1 / 2\left[\int_{0}^{\infty} \frac{1}{1-F(x)} \frac{x e^{-2 x}}{\pi} d x\right]^{2} \\
& 2-\iint \ln [1-\Phi(w)] \ln [1-\Phi(z)] \frac{1}{2 \pi\left(1-\rho^{2}\right)^{\frac{1}{2}}} e^{-\frac{w^{2}-2 \rho_{w z+z}}{2\left(1-\rho^{2}\right)}} d w d z \\
& \text { for } \alpha=1 / 2 \text {. (4.47) }
\end{aligned}
$$

The ARE's for the Wilcoxon, Savage, and SSR tests are tabulated in Tables V, VI and VII for the Moran BV gamma distributions with common shape parameter $\alpha=1 / 2,1,2,3, \ldots, 16$. The correlation coefficients ρ^{\prime} s are chosen so that $\sin ^{-1}(\rho / 2)=-30^{\circ}\left(+5^{\circ}\right) 30^{\circ}$ (see equation 4.40). When $\rho=0$, the results agree with those in Tables II - IV. Figure 7, similar to Figure 6, graphs in α - ρ space those. regions in which each of the three tests is most efficient.

4.3 ARE's for the BV Lognormal Distribution

For the case of the $B V$ lognormal distributions, we need only to compute the constant $C(F, J)$ in equation (4.13) since the evaluation of $A^{2}(J)$ and $B(H, J)$ are the same as those obtained for the Moran $B V$

TABLE V. ASYMPTOTIC RELATIVE EFFICIENCY OF THE WILCOXON TEST RELATIVE TO THE SAVAGE TEST OF H_{0} : $\mathrm{H}(\mathrm{x}, \mathrm{y})=\mathrm{H}(\mathrm{y}, \mathrm{x})$ AGAINST ALTERNATIVES $\mathrm{G}(\mathrm{y})=\mathrm{F}(\mathrm{y} / \theta), \theta \neq 1$, FOR THE MORAN BV DISTRIBUTION

Σ^{ρ}	-. 8452	-. 6840	-. 5176	-. 3472	-. 1744	0	. 1744	. 3472	. 5176	. 6840	. 8452
$\frac{1}{2}$. 3638	. 4247	. 4767	. 5245	. 5714	. 6223	. 6855	. 7779	. 9407	. 3003	2.5190
1	. 4384	. 5118	. 5746	. 6321	. 6888	. 7500	. 8261	. 9377	1.1338	567	3.0366
2	. 5007	. 5845	. 6561	. 7218	. 7865	. 8565	. 9434	1.0708	1.2947	1.7898	3.4677
3	. 5306	. 6195	. 6954	. 7651	. 8336	. 9078	. 9999	1.1349	1.3723	1.8970	3.6755
4	. 5492	. 6412	. 7198	. 7919	. 8628	. 9396	1.0349	1.1747	1.4203	1.9635	3.8041
5	. 5622	. 6564	. 7368	. 8106	. 8833	. 9618	1.0594	1.2024	1.4540	2.0099	3.8942
6	. 5720	. 6678	. 7496	. 8247	. 8986	. 9785	1.0778	1.2233	1.4792	2.0448	3.9618
7	. 5796	. 6767	. 7597	. 8358	. 9107	. 9917	1.0922	1.2398	1.4991	2.0723	4.0151
8	. 5859	. 6841	. 7679	. 8448	. 9205	1.0024	1.1040	1.2532	1.5153	2.0947	4.0584
9	. 5912	. 6902	. 7748	. 8524	. 9287	1.0113	1.1139	1.2644	1.5288	2.1134	4.0947
10	. 5956	. 6954	. 7806	. 8588	. 9357	1.0190	1.1223	1.2739	1.5404	2.1293	4.1256
11	. 5995	. 6999	. 7857	. 8644	. 9418	1.0256	1.1296	1.2822	1.5504	2.1432	4.1523
12	. 6029	. 7038	. 7901	. 8693	. 9471	1.0314	1.1360	1.2894	1.5591	2.1553	4.1758
13	. 6059	. 7074	. 7940	. 8736	. 9518	1.0365	1.1416	1.2959	1.5669	2.1660	4.1966
14	. 6086	. 7105	. 7976	. 8775	. 9561	1.0411	1.1467	1.3016	1.5738	2.1756	4.2152
15	. 6110	. 7133	. 8007	. 8810	. 9559	1.0453	1.1513	1.3068	1.5801	2.1843	4.2320
16	. 6132	. 7159	. 8036	. 8841	. 9633	1.0490	1.1554	1.3115	1.5858	2.1922	4.2473

table vi. ASYMPTOTIC RELATIVE EFFICIENCY OF THE SUM OF SQUARED RANKS TEST RELATIVE TO THE SAVAGE TEST OF $H_{o}: H(x, y)=H(y, x)$ AGAINST ALTERNATIVES $G(y)=F(y / \theta), \theta \neq 1$, FOR THE MORAN BV DISTRIBUTION

	-. 8452	-. 6840	-. 5176	-. 3472	-. 1744	0	. 1744	. 3472	. 5176	. 6840	. 8452
$\frac{1}{2}$. 4852	. 5626	. 6237	. 6751	. 7241	. 7778	. 8473	. 9510	1.1361	1.5487	2.9531
1	. 5416	. 6277	. 6958	. 7535	. 8077	. 8681	. 9460	1.0613	1.2673	1.7273	3.2922
2	. 5823	. 6751	. 7482	. 8102	. 8686	. 9335	1.0172	1.1412	1.3628	1.8574	3.5400
3	. 6006	. 6962	. 7716	. 8356	. 8958	. 9627	1.0491	1.1770	1.4055	1.9155	3.6510
4	. 6115	. 7089	. 7857	. 8509	. 9121	. 9802	1.0682	1.1985	1.4311	1.9504	3.7174
5	. 6190	. 7176	. 7953	. 8613	. 9233	. 9922	1.0813	1.2131	1.4486	1.9743	3.7630
6	. 6246	. 7240	. 8025	. 8691	. 9315	1.0011	1.0910	1.2240	1.4616	1.9921	3.7968
7	. 62.89	. 7290	. 8081	. 8751	. 9380	1.0081	1.0986	1.2325	1.4718	2.0059	3.8232
8	. 6324	. 7331	. 8125	. 8800	. 9432	1.0137	1.1047	1.2394	1.4800	2.0171	3.8445
9	. 6354	. 7365	. 8163	. 8840	. 9476	1.0184	1.1098	1.2451	1.4868	2.0264	3.8622
10	. 6378	. 7394	. 8195	. 8874	. 9513	1.0223	1.1141	1.2500	1.4926	2.0343	3.8773
11	. 6400	. 7418	. 8222	. 8904	. 9544	1.0258	1.1179	1.2541	1.4976	2.0411	3.8902
12	. 6418	. 7440	. 8246	. 8930	. 9572	1.0287	1.1211	1.2578	1.5019	2.0470	3.9015
13	. 6435	.7459	. 8267	. 8953	. 9597	1.0314	1.1240	1.2610	1.5058	2.0522	3.9115
$1 / 4$. 6449	. 7476	. 8286	. 8973	. 9619	1.0337	1.1265	1.2639	1.5092	2.0569	3.9204
15	. 6463	. 7491	. 8303	. 8992	. 9638	1.0358	1.1288	1.2665	1.5123	2.0611	3.9284
16	. 6474	. 7505	. 8318	. 9008	. 9656	1.0378	1.1309	1.2688	1.5151	2.0649	3.9357

TABLE VII. ASYMPTOTIC RELATIVE EFFICIENCY OF THE SUM OF SQUARED RANKS TEST REIATIVE TO THE WILCOXON TEXT OF $H_{0}: H(x, y)=H(y, x)$ against alternatives $G(y)=F(y / \theta), \theta \neq 1$, FOR THE MORAN BV DISTRIBUTION

$\alpha{ }^{\rho}$	-. 8452	-. 6840	-. 5176	-. 3472	-. 1744	0	. 1744	. 3472	. 5176	. 6840	. 8452
$\frac{1}{2}$	1.3340	1.3246	1.3082	1.2870	1.2672	1.2498	1.2361	1.2225	1.2078	1.1910	1.1723
1.	1.2354	1.2265	1.2110	1.1921	1.1728	1.1574	1.1452	1.1319	1.1178	1.1021	1.0842
2	1.1632	1.1549	1.1403	1.1225	1.1043	1.0898	1.0783	1.0658	1.0525	1.0377	1.0209
3	1.1319	1.1238	1.1096	1.0922	1.0745	1.0605	1.0493	1.0371	1.0242	1.0098	. 9933
4	1.1135	1.1055	1.0916	1.0745	1.0571	1.0432	1.0322	1.0202	1.0075	. 9934	. 9772
5	1.1011	1.0932	1.0794	1.0625	1.0453	1.0316	1.0207	1.0089	. 9963	. 9823	. 9663
6	1.0920	1.0842	1.0705	1.0538	1.0367	1.0231	1.0123	1.0006	. 9881	. 9742	. 9584
7	1.0850	1.0773	1.0637	1.0470	1.0300	1.0166	1.0058	. 9942	. 9818	. 9680	. 9522
8	1.0794	1.0717	1.0582	1.0416	1.0247	1.0113	1.0006	. 9890	. 9767	. 96330	. 9473
9	1.0748	1.0671	1.0536	1.0371	1.0203	1.0070	. 9963	. 9848	. 9725	. 9588	. 9432
10	1.0709	1.0632	1.0498	1.0333	1.0166	1.0033	. 9927	. 9812	. 9690	. 9554	. 9398
11	1.0675	1.0599	1.0465	1.0301	1.0134	1.0002	. 9896	. 9781	. 9569	. 9524	. 9369
12	1.0646	1.0570	1.0436	1.0273	1.0107	. 9974	. 9869	. 9754	. 9633	. 9498	. 9343
13	1.0620	1.0545	1.0411	1.0248	1.0082	. 9950	. 9845	. 9731	. 9610	. 9475	. 9321
14	1.0598	1.0522	1.0389	1.0226	1.0061	. 9929	. 9824	. 9710	. 9589	. 9454	. 9301
15	1.0577	1.0502	1.0369	1.0206	1.0041	. 9910	. 9805	. 9691	. 9571	. 9436	. 9283
16	1.0559	1.0483	1.0351	1.0189	1.0024	. 9892	. 9788	. 9674	. 9554	. 9420	. 9266

Figure 7. Regions for the most efficient tests for the Moran BV distribution.
distributions.
For the Wilcoxon test statistic (W_{N})

$$
\begin{aligned}
C(F, J) & =\int x f^{2}(x) d x \\
& =\int x\left[\frac{1}{x \sqrt{2 \pi}} e^{-1 / 2(\ln x)^{2}}\right] d x \\
& =\frac{1}{2 \pi} \int \frac{1}{x} e^{-(1 n x)^{2}} d x
\end{aligned}
$$

which, by the transformation $\mathrm{y}=1 \mathrm{nx}$, reduces to

$$
\begin{equation*}
C(F, J)=\frac{1}{2 \pi} \int \mathrm{e}^{-y^{2}} \mathrm{dy}=\frac{1}{2 \sqrt{\pi}} \tag{4.48}
\end{equation*}
$$

Using equations (4.14), (4.35) and (4.48) in equation (4.10), we have

$$
\begin{equation*}
\lim _{N \rightarrow \infty} e\left(W_{N}\right)=\frac{1}{4 \pi\left[1 / 6-1 / \pi \sin ^{-1}\left(\frac{\rho}{2}\right)\right]} \tag{4.49}
\end{equation*}
$$

For sum of squared ranks test $\left(\mathrm{SSR}_{\mathrm{N}}\right)$

$$
\begin{aligned}
C(F, J) & =\int 2 x F(x) f^{2}(x) d x \\
& =\int 2 x \Phi(\ln x) \frac{1}{x^{2} \cdot 2 \pi} e^{-(\ln x)^{2}} d x
\end{aligned}
$$

which by the transformation $\mathrm{y}=1 \mathrm{nx}$ reduces to

$$
\begin{align*}
& =\int 2 \Phi(y) \frac{1}{2 \pi} e^{-y^{2}} d y \\
& =\frac{1}{2 \sqrt{\pi}} \tag{4.50}
\end{align*}
$$

Using equations (4.18), (4.41) and (4.50) in equation (4.10), we have

$$
\begin{equation*}
\lim _{N \rightarrow \infty} e\left(S S R_{N}\right)=\frac{1}{8 \pi(1 / 5-L(\rho))} \tag{4.51}
\end{equation*}
$$

Similarly, for Savage test statistic (S_{N})

$$
\begin{align*}
C(F, J) & =\int x \frac{1}{1-F(x)} f^{2}(x) d x \\
& =\int \frac{1}{x \cdot 2 \pi} e^{-(\ln x)^{2}} \frac{1}{1-\Phi(1 n x)} d x \tag{4.52}\\
& =\frac{1}{2 \pi} \int \frac{1}{1-\Phi(y)} e^{-y^{2}} d y
\end{align*}
$$

equation (4.52) is approximated by 20 point quadrature numerical integration, $\int k(x) e^{-x^{2}} d x \doteq \sum_{i=1}^{20} k\left(x_{i}\right) A_{i}$. Tables of x_{i}, A_{i} given in [9,p.343-346] are used.

Using equations (4.26), (4.44) and (4.52) in equation (4.10), we obtain
$\left.\lim _{N \rightarrow \infty} e\left(S_{N}\right)=\frac{\left[\int \frac{1}{1-\phi(y)} e^{-y^{2}} d y\right]^{2}}{8 \pi^{2}\left[2-\iint \ln (1-\phi(w)) \ln (1-\phi(z)) \frac{1}{2 \pi\left(1-\rho^{2}\right)^{\frac{1}{2}}} e^{-\frac{1}{2\left(1-\rho^{2}\right)}\left(w^{2}-2 \rho \omega z+z^{2}\right)} d w d x\right.}\right]$

The ARE's for the Wilcoxon, Savage, and SSR tests are tabulated in Table VIII for the BV lognormal distributions. The entry of the ARE of $\operatorname{SSR}_{\mathrm{N}}$ relative to W_{N} for $\rho=0$ agrees with that of [4,p.343] to three decimal places.

TABLE VIII. ASSYMPTOTIC EFFICIENCY COMPARISONS OF $H_{0}: H(x, y)=H(y, x)$ AGAINST $G(y)=F(y / \theta), \theta \neq 1$, FOR THE BV LOGNORMAL DISTRIBUTION

	-. 8452	-. 6840	-. 5176	-. 3472	-. 1744	0.	. 1744	. 3472	. 5176	. 6840	. 8452
W_{N} relative to S_{N}	. 6844	. 7990	. 8968	. 9867	1.0750	1.1705	1.2895	1.4637	1.7695	2.4473	4.7400
$\mathrm{SSR}_{\mathrm{N}}$ relative to S_{N}	. 6846	. 7936	. 8799	. 9525	1.0217	1.0973	1.1956	1.3419	1.6028	2.1851	4.1664
$\mathrm{SSR}_{\mathrm{N}}$ relative to W_{N}	1.0005	. 9935	. 9812	. 9653	. 9504	. 9374	. 9272	. 9168	. 9158	. 8932	. 8790

Note: $W_{N}, S S R{ }_{N}$ and S_{N} represent statistics of the $W i l$ coxon test, sum of squared ranks test and the Savage test, respectively.
V. COMPARISON OF TWO-SAMPLE NONPARAMETRIC TESTS

FOR RATIOS OF BIVARIATE OBSERVATIONS

Given two independent $B V$ samples $\left(X_{11}, Y_{11}\right), \ldots,\left(X_{1 m}, Y_{1 m}\right)$ and $\left(X_{21}, Y_{21}\right), \ldots,\left(X_{2 n}, Y_{2 n}\right)$, let

$$
\begin{equation*}
Z_{1 j}=Y_{1 j} / X_{1 j}, j=1, \ldots, m \text { and } z_{2 j}=Y_{2 j} / X_{2 j}, j=1, \ldots, n \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{N}=\mathrm{m}+\mathrm{n} . \tag{5.2}
\end{equation*}
$$

Let $F_{1}(z)$ and $F_{2}(z)$ represent, respective $1 y$, c.d.f.'s for the Z_{1} and Z_{2} variables. We are interested in nonparametric tests for $H_{o}: F_{1}(z)=F_{2}(z)$ against $H_{1}: F_{1}(z) \neq F_{2}(z)$. This is a standard two sample problem with respect to the Z_{1} and Z_{2} variables.

The power functions of nonparametric tests of $H_{0}: F_{1}(z)=F_{2}(z)$ against $H_{1}: F_{1}(z) \neq F_{2}(z)$ will depend on the forms of the c.d.f.'s $F_{1}(z)$ and $F_{2}(z)$. These c.d.f.'s depend on the joint c.d.f. $H(x, y)$ of the X and Y variables. ARE comparisons among the Wilcoxon, normal score, and symmetric squared rank tests are made below in section 5.2 for Morgenstern BV gamma scale alternatives for X and Y

$$
G(x)=F(x / \lambda), \lambda \neq 1,
$$

where F and G have common shape parameter α.

5.1 Rain-making experiments

In rain-making experiments, it is commonly assumed that the seeding effect is multiplicative [23] with the precipitation following gamma distributions $[4,19]$. Let X and Y denote nonseeded and seeded precipitations respectively. $G(y)=F(y / \theta)$ where $\theta \neq 1$ indicates a seeding effect. Two designs for rain-making experiments will now be discussed.

5.1.1. Design I

This design, introduced by Neymen and Scott [22], includes one target area and s control areas. The cloud seeding is conducted over the target area. The control areas are chosen such that their precipitation is highly correlated with that of target area. Moreover, the control areas are somewhat isolated from the target area so that their precipitation is not affected by the cloud seeding. When a storm is approaching, if it is seedable as determined by a meteorologist, a random scheme is used to determine whether or not to seed the target area. For instance, a fair coin may be tossed and if it comes up heads, the target area will be seeded. Precipitation measurements are then taken over both the target and the control areas. Comparison between the precipitation measurements of seeded and nonseeded "seedable" storms is made in order to judge the effect of seeding.

Neyman and Scott formulate the problem of testing for a seeding effect in the following way: Let Y and $\underline{X}=\left(X_{1}, \ldots, X_{s}\right)$ be the precipitations in the target and s control areas. The distribution of Y depends on the value of X and some parameters $\vartheta(\theta)$ where $\boldsymbol{\theta} \neq \mathbf{1}$ denotes the seeding effect. The conditional p.d.f. of Y given $\underline{X}=\underline{x}$ can be written as $g(y \mid \underline{x}, \vartheta(\theta))$. The p.d.f. of $\underline{X}, f(\underline{x})$, is rather
arbitrary. If the nonseeded conditional expected precipitation in the target is $\eta(\underline{x})$, then the seeded conditional expectation is assumed to be $\eta(\underline{x}) \theta . \theta=1$ implies no seeding effect. Since the distributions of Y and \underline{X} are found to be far from normal, Neyman and Scott use a square root transformation on Y, i.e. $T=\sqrt{Y}$, and assume the conditional p.d.f. of T for given $\underline{X}=\underline{x}$ is normal with constant variance,

$$
p(t \mid \underline{x}, \vartheta(\theta))=\frac{1}{\sigma(\theta) \sqrt{2 \pi}} \exp \left[-\left(t-a_{o}(\theta)-\sum_{i=1}^{s} a_{i}(\theta) x_{i}\right)^{2} / 2 \sigma(\theta)^{2}\right]
$$

where $\vartheta(\theta)=\left(\sigma(\theta), a_{o}(\theta), i=0,1,2, \ldots, s\right)$.
Both $p(t \mid \underline{x} \vartheta(\theta))$ and $f(\underline{x})$ should satisfy Cramér conditions [21]. For testing the null hypothesis $\theta=1$, Neyman and Scott construct an optimal $\mathrm{C}(\alpha)$ test.

We formulate the problem of testing for a seeding effect as follows: Let the random variables U_{A} and U_{B} denote unseeded rainfalls in the control area A and target area B respectively. To simplify the problem, only one control area is used. Let $W=U_{B} / U_{A}$. Let there be m occasions when area B is seeded and n occasions when area B is not seeded. Assuming a multiplicative effect for seeding, let $\left(X_{1 i}, Y_{1 i}\right)=\left(U_{A i}, \theta U_{B i}\right), i=1, \ldots, m$, represent observed rainfalls for the m occasions where area B is seeded, and $\left(X_{2 j}, Y_{2 j}\right)$ $=\left(U_{A j}, U_{B j}\right), j=1, \ldots, n$ for the n occasions when area B is not seeded. Then ratios of the X and Y variables may be expressed in terms of the W variables

$$
\begin{align*}
& Z_{1 i}=Y_{1 i} / X_{1 i}=\theta U_{B i} / U_{A i}=\theta W_{i}, i=1, \ldots, m \tag{5.3}\\
& Z_{2 j}=Y_{2 j} / X_{2 j}=U_{B j} / U_{A j}=W_{j}, j=1, \ldots, n . \tag{5.4}
\end{align*}
$$

The c.d.f.'s $F_{1}(z)$ and $F_{2}(z)$ for the Z_{1} and Z_{2} variables, respectively, are then scale alternatives,

$$
\begin{equation*}
F_{1}(z)=F_{2}(z / \theta) \tag{5.5}
\end{equation*}
$$

5.1.2. Design II.

This is so-called cross-over design [20]. There are two areas which are so close to each other that there is a high correlation between their unseeded precipitations, yet the areas are far enough apart that seeding in one area does not influence the precipitation in the other area. When a storm approaches, we randomly (e.g. flip a fair coin) select one of the two areas as the target area and the other as the control. Morarı [20] has shown that this design is better than the previous one provided that contamination between the two areas is of little consequence. We will also show this is true in section 5.2. Moran's statistical theory is based on the assumption that the logarithmic transformation of precipitation follows a normal distribution. Mielke [17] introduced a symmetric squared rank test to test the seeding effect for this design. He prefers the symmetric squared rank test over the Wilcoxon test because the symmetric squared rank test gives greater weight to large precipitation ratios Y / X. We now formulate Design II similar to the formulation of Design I.

Let U_{A} and U_{B} denote the unseeded rainfalls in area A and area B respectively, and $W=U_{B} / U_{A}$. Let there be m occasions when area A is seeded and area B is not seeded. $N=n+m$.
$\lim _{N \rightarrow \infty} \frac{m}{N}=p, 0<p<1$. Again, a multiplicative effect for seeding is assumed. Let $\left(X_{1 i}, Y_{1 i}\right)=\left(U_{A i}, \theta U_{B i}\right)$, $i=1, \ldots, m$, represent
observed rainfalls for the m occasions when area B is seeded, and $\left(X_{2 j}, Y_{2 j}\right)=\left(\theta U_{A j}, U_{B j}\right), j=1, \ldots, n$, for the n occasions when area A is seeded. The ratios of the X and Y variables may be expressed in terms of the W variables

$$
\begin{align*}
& Z_{1 i}=Y_{1 i} / X_{l i}=\theta U_{B i} / U_{A i}=\theta W_{i}, i=1, \ldots, m \tag{5.6}\\
& Z_{2 j}=Y_{2 j} / X_{2 j}=U_{B j} / \theta U_{A j}=\frac{1}{\theta} W_{j}, j=1, \ldots, n, \tag{5.7}
\end{align*}
$$

The c.d.f.'s $F_{1}(z)$ and $F_{2}(z)$ for the Z_{1} and Z_{2} variables, respectively, then are scale alternatives,

$$
\begin{equation*}
F_{1}(z)=F_{2}\left(z / \theta^{2}\right) \tag{5.8}
\end{equation*}
$$

5.2. ARE's for Morgenstern BV gamma alternatives

For Morgenstern alternatives, we compute the efficiency for three nonparametric tests for $H_{o}: F_{1}(z)=F_{2}(z)$ against $H_{1}: F_{1}(z)=$ $\mathrm{F}_{2}(z / \lambda)$. Notice that this formulation holds for both designs, since $\lambda=\theta$ for Design I and $\lambda=\theta^{2}$ for Design II.

Recall that the efficacy of the rank statistic $T_{N}=$ $\frac{1}{m} \sum_{i=1}^{N} J\left(\frac{i}{N+1}\right) C_{N, i}$ where $C_{N, i}=\left\{\begin{array}{l}1 \text { if it is } Z_{1} \text {-observation } \\ 0 \text { of it is } Z_{2} \text {-observation. }\end{array}\right.$ with weight function $J(U)$ is

$$
\begin{equation*}
\lim _{N \rightarrow \infty} e\left(T_{N}\right)=\frac{\left[\left.\frac{\partial}{\partial \lambda} E_{\lambda}\left(T_{N}\right) \right\rvert\, \lambda=1\right]^{2}}{1 / 2\left[\int_{0}^{1} J^{2}(U) d U-\left[\int_{0}^{1} J(U) d U\right]^{2}\right]} \tag{5.9}
\end{equation*}
$$

Notice that equation (5.9) is a special case of equation (4.10).

Evaluation of equation (5.9) requires the p.d.f. of Z where $Z=Y / X$. In the rain-making experiments, $Z=\lambda W$ for $\lambda=1, \theta$ and θ^{2}. Therefore it is sufficient to derive the p.d.f. $f(w)$ and c.d.f. $F(w)$ for W. Using the Morgenstern p.d.f. equation (2.1) possessing common gamma marginal distributions with integer shape parameter α, we find

$$
\begin{align*}
& f(w)=(1+\gamma) \frac{\Gamma(2 \alpha)}{[\Gamma(\alpha)]^{2}} \frac{w^{\alpha-1}}{(1+w)^{2 \alpha}}+\gamma\left[4 \sum_{i=0}^{\alpha-1} \sum_{j=0}^{\alpha-1} \frac{\Gamma(2 \alpha+i+j)}{[\Gamma(\alpha)]^{2} i!j!} \frac{w^{\alpha+i-1}}{[2(1+w)]^{2 \alpha+i+j}}\right. \\
&\left.-2 \sum_{i=0}^{\alpha-1} \frac{\Gamma(2 \alpha+i)}{[\Gamma(\alpha)]^{2} i!} \frac{w^{\alpha-1}}{(2+w)^{2 \alpha+i}}+\frac{w^{\alpha+i-1}}{(2 w+1)^{2 \alpha+1}}\right] \tag{5.10}
\end{align*}
$$

and

$$
\begin{aligned}
& F(w)=(1+\gamma)\left[1-\frac{1}{\Gamma(\alpha)} \sum_{k=0}^{\alpha-1} \frac{\Gamma(2 \alpha-k-1)}{\Gamma(\alpha-k)} \frac{w^{\alpha-k-1}}{(1+w)^{2 \alpha-k-1}}\right] \\
& +\gamma\left[4 \sum_{i=0}^{\alpha-1} \sum_{j=0}^{\alpha-1} \frac{\Gamma(\alpha+i) \Gamma(\alpha+j)}{[\Gamma(\alpha)]^{2}!j!2^{2 \alpha+i+j}}-\sum_{k=0}^{\alpha+i+1} \frac{\Gamma(\alpha+i) \Gamma(2 \alpha+i+k+1)}{\Gamma(i+\alpha-k)} \frac{w^{\alpha+i-1-k}}{(1+w)^{2 \alpha+i+j-k-1}}\right. \\
& -2 \sum_{j=0}^{\alpha-1} \frac{1}{[\Gamma(\alpha)]^{2} \cdot j!}\left[\frac{\Gamma(\alpha+j)}{2^{\alpha+j}}-\sum_{k=0}^{\alpha-1} \frac{\Gamma(2 \alpha+j-k-1)}{\Gamma(\alpha-k)} \frac{w^{\alpha-1-k}}{(2+w)^{2 \alpha+j-k-1}}\right] \\
& \left.-2 \sum_{i=0}^{\alpha-1} \frac{1}{\Gamma(\alpha) \cdot i!}\left[\frac{\Gamma(\alpha+i) \Gamma(\alpha)}{2^{\alpha+i}}-\sum_{k=0}^{\alpha+i-1} \frac{\Gamma(\alpha+i) \Gamma(2 \alpha+i-k-1)}{\Gamma(\alpha+i-k) \cdot 2^{k+1}} \cdot \frac{w^{\alpha+i-1-k}}{(2 w+1)^{2 \alpha+i-k-1}}\right]\right] \\
& \text { for }|\gamma| \leq 1,0<\omega<\infty, \alpha=1,2, \ldots \text {. }
\end{aligned}
$$

From equations (5.1) and (5.2) for Design I, the asymptotic mean of T_{N} is given by

$$
E_{\theta}\left(T_{N}\right)=\int J\left[\frac{m}{N} F(w / \theta)+\left(1-\frac{m}{N}\right) F(w)\right] d F(w)
$$

with

$$
\begin{equation*}
\left.\frac{\partial \mathrm{E}_{\theta}\left(\mathrm{T}_{\mathrm{N}}\right)}{\partial \theta}\right|_{\theta=1} \simeq-\frac{\mathrm{m}}{\mathrm{~N}} \int \mathrm{w} J_{(F(w)) \mathrm{f}^{2}(w) \mathrm{dw}} \tag{5.12}
\end{equation*}
$$

Assuming $\mathrm{m} / \mathrm{N} \rightarrow \mathrm{p}$ in probability, $0<\mathrm{p}<1$, we have

$$
\begin{equation*}
\left.\lim _{N \rightarrow \infty} \frac{\partial}{\partial \theta} E_{\theta}\left(T_{N}\right)\right|_{\theta=1}=-p \int \mathrm{w}^{\prime}(F(w)) f^{2}(w) d w \tag{5.13}
\end{equation*}
$$

Similarly for Design II, we have

$$
\begin{equation*}
E_{\theta}\left(T_{N}\right) \doteq \int J\left[\frac{\mathrm{~m}}{\mathrm{~N}} \mathrm{~F}(\mathrm{v} / \theta)+\left(1-\frac{\mathrm{m}}{\mathrm{~N}}\right) \mathrm{F}\left(\theta_{\mathrm{w}}\right) \quad\right]_{\theta \mathrm{f}}(\theta \mathrm{w}) \mathrm{dw} \tag{5.14}
\end{equation*}
$$

with

$$
\begin{align*}
& \left.\frac{\partial E_{\theta}\left(T_{N}\right)}{\partial \theta}\right|_{\theta=1} \\
& \doteq \int\left[w J^{\prime}(F(w))\left[-\frac{m}{N} f(w)+\left(1-\frac{m}{N}\right) f(w)\right] f(w)+J(F(w))\left[f^{\prime}(w)+f(w)\right]\right] d w \\
& =\left(1-2 \frac{m}{N}\right) \int w J^{\prime}(F(w)) f^{2}(w) d w-\int w J^{\prime}(F(w)) f^{2}(w) d w \tag{5.15}\\
& =-2 \frac{m}{N} \int w J^{\prime}(F(w)) f^{2}(w) d w
\end{align*}
$$

and

$$
\begin{equation*}
\left.\lim _{N \rightarrow \infty} \frac{\partial E_{\theta}\left(T_{N}\right)}{\partial \theta}\right|_{\theta=1}=-2 p \int w J^{\prime}(F(w)) f^{2}(w) d w \tag{5.16}
\end{equation*}
$$

Using equation (5.13) in equation (5.9), we have the efficacy of any rank test $\left(T_{N}\right)$ for Design I as

$$
\begin{equation*}
\lim _{N \rightarrow \infty} e_{1}\left(T_{N}\right)=\frac{p^{2}\left[\int J^{\prime}(F(w)) f^{2}(w) d w\right]^{2}}{1 / 2\left\{\int J^{2}(U) d U-\left[\int J(U) d U\right]^{2}\right\}} \tag{5.17}
\end{equation*}
$$

Similarly, using equation (5.16) in equation (5.9), we get the efficacy of any rank test (T_{N}) for Design II as

$$
\begin{equation*}
\lim _{N \rightarrow \infty} e_{2}\left(T_{N}\right)=\frac{4 p^{2}\left[\int J^{\prime}(F(w)) \dot{I}^{2}(w) d w\right]^{2}}{1 / 2\left\{\int J^{2}(U) d U-\left[\int J(U) d U\right]^{2}\right\}} \tag{5.18}
\end{equation*}
$$

Since the ARE of test T_{1} with respect to test T_{2} is defined as the ratio of their efficacies, i.e.

$$
\begin{equation*}
e\left(T_{1}, T_{2}\right)=\frac{\lim _{N \rightarrow \infty} e\left(T_{1}\right)}{\lim _{N \rightarrow \infty} e\left(T_{2}\right)} \tag{5.19}
\end{equation*}
$$

from equations (5.17), (5.18) and (5.19), it is easily seen that the ARE of T_{1} with respect to T_{2} for Design I is identical to that of Design II.

Also, for any particular rank test (T_{N}), Design II is more powerful than Design I, since equation (5.18) is gxeater than
equation (5.17) for a given test.
The weighting functions for the Van de Waerden (asymptotically equivalent to normal score) and symmetric squared rank tests are

$$
\begin{equation*}
J(U)=\Phi^{-1}(U) \quad 0<U<1 \tag{5.20}
\end{equation*}
$$

and

$$
J(U)=\left\{\begin{array}{ll}
-\left(U-\frac{1}{2}\right)^{2} & \text { for } 0<U<1 / 2 \tag{5.21}\\
\left(U-\frac{1}{2}\right)^{2} & \text { for } 1 / 2 \leq U \leq 1
\end{array} .\right.
$$

Notice that the J function in equation (5.21) is symmetric about $\mathrm{U}=1 / 2$. The weighting function for the Wilcoxon test is given in equation (4.2).

Using Simpson's rule, we compute the ARE's for $\alpha=1,2,3$, which are presented in Tables IX, X and XI. The entries for $\gamma=0$ agree to at least two decimal places with those obtained by direct integration. Among the three tests, the Wilcoxon test is the best for small α and/or positive correlation. The symmetric squared rank test is best for $\gamma=-1$ and the combination of $\gamma=-.8$ and $\alpha=2,3$. The normal score test is the best for large α. Figure 8 indicates the values of α and γ for which each of the three tests is most efficient.

For the case $\gamma=0$ and $\alpha=1, \ln (w)$ nas a logistic distribution. In this case the Wilcoxon test is known to be asymptotically
efficient. Similarly for $\gamma=0$ and $\alpha \rightarrow \infty, \ln (\mathrm{w}) / \sqrt{\alpha}$ is asymptotically normally distributed. Consequently, the normal score test would be nearly asymptotically efficient for $\gamma=0$ and large α.

TABLE IX. ASYMPTOTIC RELATIVE EFFICIENCIES OF THE SYMMETRIC SQUARED RANK TEST WITH RESPECT TO WILCOXON TEST FOR EQUALITY OF RATIOS FROM MORGENSTERN BV GAMMA DISTRIBUTIONS

$\boldsymbol{\gamma}$	-1.0	-0.8	-0.6	-0.4	-0.2	-0.0	0.2	0.4	0.6	0.8	1.0
1	1.019	.997	.978	.961	.947	.936	.929	.924	.922	.923	.927
2	1.065	1.041	1.020	1.002	.988	.978	.969	.964	.963	.965	.980
3	1.082	1.057	1.036	1.018	1.003	.992	.984	.980	.978	.980	.986

TABLE X. ASYMPTOTIC RELATIVE EFFICIENCIES OF THE SYMMETRIC SQUARED RANK TEST WITH RESPECT TO NORMAL SCORE RANK TEST FOR EQUALITY OF RATIOS FROM MORGENSTERN BV GAMMA DISTRIBUTIONS

γ	-1.0	-0.8	-0.6	-0.4	-0.2	0.0	0.2	0.4	0.6	0.8	1.0
1	1.057	1.043	1.031	1.020	1.012	1.006	1.002	.999	.998	.997	.998
2	1.013	1.004	.996	.991	.987	.985	.984	.985	.987	.989	.990
3	1.009	1.001	.994	.989	.986	.984	.984	.984	.986	.988	.989

table XI. ASYMPTOTIC RELATIVE EFFICIENCIES OF THE WILCOXON TEST WITH RESPECT TO NORMAL SCORE RANK TEST FOR EQUALITY OF RATIOS FOR MORGENSTERN BV GAMMA DISTRIBUTIONS

γ	-1.0	-0.8	-0.6	-0.4	-0.2	0.0	0.2	0.4	0.6	0.8	1.0
α											

Figure 8. Regions of the most efficient tests for the equality of ratios of Morgenstern gamma BV observations for the common shape parameter $\alpha-1,2$ and 3 .

VI. SUMMARY AND CONCLUSIONS

In the previous chapters, three BV statistical inference problems have been discussed. We have shown that optimal $\mathrm{C}(\alpha)$ tests and $1 . m . p . r . t . ' s$ are asymptotically equivalent for the tests of independence when any of the three BV distributions, Morgenstern, Plackett and Moran, are used as alternatives. The 1.m.p.r.t.'s are usually easier to compute than $C(\alpha)$ tests. As to the tests for interchangeability of gamma bivariates from either BV Morgenstern or Moran distributions, comparisons of three nonparametric tests show that the Wilcoxon test is the best for positive correlations and large shape parameters α, the Savage test should be used for negative correlations and sum of squared rank test is good for some combinations of shape parameter and correlations. Finally, for the tests of equivalence of ratios from two BV Morgenstern gamma samples, three nonparametric tests, Wilcoxon, normal score and symmetric squared rank test, are considered for two designs of rain-making experiments. Among them, the Wilcoxon test is the best for small shape parameters α and/or large correlation; normal score test should be used for large α; and symmetric squared rank test is good for correlation index $\gamma=-1$ and combinations of $\gamma=-.8$ and $\alpha=2$ and 3. Since the distributions of rainfall data of two close areas have small shape parameters and their rainfall is highly correlated, the Wilcoxon test seems to be the best of the three tests when BV Morgenstern gamma distribution is used as the underlying distribution.

In this paper, three types of BV distributions and five nonparametric tests are used. Other types of $B V$ distributions and other nonparametric tests could be considered. The techniques and results of this paper could be generalized to handle multivariate distributions so as to broaden the range of applications. An empirical test of the results of this paper could be performed to see whether the models fit real-world data.

BIBLIOGRAPHY

1. Cheng, M.C. The orthant probabilities of four Gaussian variates. Annals of Mathematical Statistics 40:152-161. 1969.
2. Cramér, Harold. Mathematical methods of statistics. Princeton, Princeton University Press, 1946. 575 p.
3. Downton, F. Bivariate exponential distribution in reliability theory. Journal of the Royal Statistical Society, ser. B, 32: 408-417. 1970.
4. Duran, Benjamin S. and Paul W. Mielke, Jr. Robustness of sum of squared ranks tests. Journal of American Statistical Association 63:338-344. 1968.
5. Farlie, D. J. G. The performance of some correlation coefficients for a general bivariate distribution. Biometrika 47:307-323. 1960.
6. Fraser, Donald Alexander Stuart. Nonparametric methods in statistics. New York, John Wiley and Sons, 1957. 299 p.
7. Gumbel, Emil J. Bivariate exponential distributions. Journal of American Statistical Association 56:698-707. 1961.
8. Hajěk, Jaroslav and Zbynek Šidák. Theory of rank tests. New York, Academic Press, 1967. 297 p.
9. Kendall, Maurice George. Rank correlation methods. 3d ed. New York, Hafner, 1962. 199 p.
10. Krylov, Vladimir Ivanovich. Approximate calculation of integrals. New York, MacMillan, 1962. 357 p.
11. Lancaster, H. O. Correlation and canonical forms of bivariate distribution. Annals of Mathematical Statistics 34:532-538. 1963.
12. Lewin, L. Dilogarithms and associated functions. London, MacDonald Press, 1958. 353 p.
13. Mardia, K. V. A transiation family of bivariate distribution and Frechet's bounds. Sankhya, ser A, 32, part 1:119-122. 1970.
14. Mardia, K. V. Some contributions to contingency-type bivariate distributions. Biometrika 54:235-249. 1967.
15. Mardia, K. V. Some problems of fitting for contingency-type bivariate distribution. Journal of the Royal Statistical Society, ser. B, 32:254-264. 1970.
16. Marshall, Albert W. and Ingram 01din. A multivariate exponential distribution. Journal of American Statistical Association 62: 30-44. 1967.
17. Mielke, Paul W., Jr. Squared rank type test appropriate to weather modification cross-over design. To be appearing in Technometrics.
18. Moran, P. A. P. On asymptoticaliy optimal tests of composite hypotheses. Biometrika 57:47-55. 1970.
19. Moran, P. A. P. Statistical inference with bivariate gamma distributions. Biometrika 56:627-634. 1969.
20. Moran, P. A. P. The power of a cross-over test for the artificial stimulation of rain. Australian Journal of Statistics 1:47-52.
21. Neyman, Jerzy. Optimal asymptotic tests of composite statistical hypotheses. In: Probability and Statistics, ed. by Ulf Grenander, New York, Wiley, 1959. p.212-234.
22. Neyman, Jerzy and Elizabeth L. Scott. Asymptotically optimal tests of composite hypotheses for randomized experimonts with noncontrolled predictor variables. Journal of American Statistical Association 60:699-721. 1965.
23. Neyman, Jerzy, Elizabeth L. Scott, and M. A. Wells. Statistics in meteorology. Review of the International Statistical Institute 37:119-148. 1969.
24. Plackett, R. L. A class of bivariate distributions. Journal of American Statistical Association 60:516-522. 1965.
25. Sen, Pranab Kumar. Nonparametric tests for multivariate interchangeability, part 1: problems of location and scale in bivariate distributions. Sankhyā, ser. A, 29:351-372. 1967.
26. Steck, G. P. A note on contingency-type bivariate distribution. Biometrika 55:262-264. 1968.
