AN ABSTRACT OF THE THESIS OF

Padma R. Baheti for the degree of Master of Science

Electrical and Computer

in Engineering presented on %MJ&Q} /?/25”

Titlee REGTRAN AND MICRO, THE IMPLEMENTATION OF TWO

DIGITAL SYSTEM SIMULATORS.

Redacted for privacy

Abstract approved:

———cntne

W. R. Adrion

REGTRAN (REGister TRANsfer), a hardware description
language and SYSSIM (SYStems SIMulation), a simulator for the
system described by REGTRAN were originally developed by Edw.ard
Pett, Jr [33] at the University of Texas at Austin. These two pro-
grams are successfully used to simulate many digital systems of
complex nature. It is the primary purpose of this paper to describe
the implementation of these two programs for KRONOS at Oregon
State University. In this process, various problems, due to the dif-
ferences in the operating systems, were faced. These problems are
discussed in detail and the changes that were made are included.
REGTRAN and SYSSIM are not capable of simulating microinstructions
or amicroprocessor. For this reason, another simulator MICRO is
developed. Detailed description of MICRO and its use as a general

purpose simulator as well as a microprogram simulator are given

in detail. As an example, partial emulation of DEC PDP-8 is shown.
Suggestions for the improvement of MICRO, REGTRAN and SYSSIM

are mentioned.

REGTRAN and MICRO, The Implementation of
Two Digital System Simulators

by

Padma R. Baheti

A THESIS
submitted to

Oregon State University

in partial fulfillment of
the requirements for the
degree of

Master of Science

June 1976

APPROVED:

Redacted for privacy

‘A\s’sfgtant Professor of Electrical and Computer
Engineering
in charge of major

Redacted for privacy

Head of Department of Electrical and Computer
Engineering

Redacted for privacy

o Dean of Graduate’School

Eﬁm Oclobe, s

Date thesis is presented

Typed by Clover Redfern for Padma R. Baheti

Chapter

I.

II.

III.

TABLE OF CONTENTS

INTRODUCTION

1.1. Hardware Description Languages

1.2. Requirements of Description Languages and Review
of Different Languages Available

1.3. Educational Values

IMPLEMENTATION OF REGTRAN AND SYSSII\//'
2.1. Introduction
2.2. Description of REGTRAN

2.

2.
2

NIV IVIVIVIVIVIV

2
2
2.
2
D

[SSIN A S oV

2.

VDNV VDIV DY

2.

1.

O oo~No U h W

. 10.
.11,
.12,
.2.13.
3. Description of SYSSIM

4. Implementation of REGTRAN and SYSSIM for

Registers, Terminals, Clocks and Memories

. Numbers Representation
. Expressions and Statements
. Predefined Operators

Register and Terminal Declaration
Memory Declaration
Timing Elements (Clocks)

. Boolean Equations
. Operations on Registers and Terminals of

Different Lengths
Operational Subsystems
Automata
Register Transfer Statements
IF Clauses

KRONOS
2.4.1.

2.4.2. OFFLINE
2.4.3. Examples

ONLINE

IMPLEMENTATION OF MICRO

3.1. Introduction

3.2. Description of MICRO
3.2.1.

W W w w

[NSI NS \S I AN
Ou W W v

Microinstructions
3.2.1.1. Group (1)
3.2.1.2. Group (2)

- Description of Operation
. Decoder
. Free Run and Single Step Run

Trace Feature

12
12
15
15
15
15
17
19
20
20
21

21
21
22
22
24
25

31
43
45
47

48
48
52
53
53
60
62
71
72
76

Chapter

Iv.

3.2.6. How to Use MICRO
3.2.6.1. Online Operation
3.2.6.2. Offline Operation

3.3. Example--Emulation of PDP-8
3.4. Conclusion

CONCLUSION
BIBLIOGRAPHY
APPENDICES

Appendix A
Appendix B

Page

17
77
78
79
86

88
92
95

95
104

1IST OF FIGURES

. Block diagram of simulated system.
. Flow chart for CONTROL.

- Flow chart for REGTRAN-

. Sequence of operations for the SYSSIM simulator.
. Flow chart for SYSSIM.

. Listing of REGRUN.

. Flow chart for RTEST .

. Computer system under consideration.

. Group (1) format.

. Group (2) format.

. Flow chart for MICRO.

. Flow chart for GETMIC.

. Flow chart for DECODER.

. Time pulses for group (l) microinstructions.
. Time pulses for group (2) microinstructions.

. DEC-PDP-8 system s block diagram.

3.10. PDP -8 instruction format.

32

33

35

43

44

51

54

60

64

69

73

76

76

80

81

LIST OF TABLES

. REGTR AN operations.

. Summary of REGTRAN statements.

. Syntax of the <ST> statement.

. FORTRAN subprograms generated by REGTRAN.
. Significance of identification digit.

. Register names in MICRO.

. Conditions indicated by conditional digits WZ-

. Summary of microinstructions.

. Operations emulated.

. Notation of registers.

. ROM for [PDP-8].

23

27

59

59

61

63

82

83

84

REGTRAN AND MICRO, THE IMPLEMENTATION OF
TWO DIGITAL SYSTEM SIMULATORS

I. INTRODUCTION

In computer science curricula, the hardware and software
engineering appear as almost completely separate and independent
disciplines because of conventional teaching methods. As a conse-
quence of this, the student will have a poor understanding of hardware
and software interaction. If a "user-reorganizable'' laboratory
computer is provided to the student, then he will be able to generate
wiring diagrams and fabricate the machine. Not many universities,
not even the few affluent ones in these days of shortage, can afford
to build machines for teaching and experimenting purposes. By using
a hardware description language with a simulator, it is possible for
the students to learn design techniques. They could analyze and
evaluate some performance aspects as well as proceed with software
development in the pre-prototype stages of design.

An attempt is made to implement a hardware description
language REGTRAN and a simulator for that language SYSSIM to
KRONOS operating system. REGTRAN and SYSSIM are used for
teaching a course in digital system design at the University of Texas
at Austin. The same usage is anticipated at Oregon State University.

Using REGRAN and SYSSIM, a wide variety of synchronous digital

systems can be successfully simulated. The simulation of micro-

- instructions or a microprogrammable computer can not be done by
REGTRAN and SYSSIM. For this purpose another simulator MICRO
is created. MICRO can be used as a microprogram simulator as well
as a general purpose computer simulator at machine language level.
Using REGTRAN, SYSSIM and MICRO, the student technicians can

learn better design techniques.

1.1. Hardware Description Languages

Hardware description languages are of considerable importance
in the development of advanced design automation techniques for
digital machines. They offer the designer a convenient means for
expressing his ideas in a form which can be easily read and under-
stood by another designer.

A digital system can be described at several levels.

1. The highest level is the algorithmic level which specifies

only the algorithm to be used for solving design problems.

2. The PMS (Processor, Memory, Switch) level.

3. The instruction level describes the instructions of a computer-

4. The register transfer or microinstruction level describes

operations among registers.

5. The logic level expresses network in terms of gates and

flip-flops.

6. The lowest level is the circuit level which implements gates
and flip-flops by circuit elements such as transistors,
registers etc.

By using Hardware Description Language along with a hardware
simulator a much wider set of design alternatives can be quickly
explored prior to the actual bread boarding of a prototype unit. It is
much easier to change a line of code than it is to modify a breadboard
circuit and its associated drawings and documents. The former one
even saves the cost and time also in modifying the system. The main
advantage of an HDL is the self documenting feature. The bene-
ficiaries of this simulation approach would be the architectural
designers in industfy and the students in universities. They could
analyze and evaluate some performance aspects as well as proceed
with software development in the pre-prototype stages of design.

1.2. Requirements of Description Languages and Review
of Different Languages Available

Languages for describing digital systems must provide sufficient
information about the system behavior and about the system structure
to show how it might be constructed. A system description language
should allow easy and precise description of digital system behavior.

A number of high level languages have been reported during

recent years. While many languages can be used at several levels,

each language is especially convenient for certain levels. Register
transfer languages were created to meet the need for computer hard -
ware description at a stage higher than the conventional gate level
design. As languages they should satisfy some requirements; be
amenable to simulation on a2 computer; and in an integrated and total
design automation, and above all serve as a means of documentation
and communication for computer engineers.

Reed's register transfer language [l -3] has received wider
distribution. It is easily learned, generally applicable and its state-
ments associate directly with hardware. But it is limited in applica-
tion because it lacks means for describing complex. iterative
networks, no provisions exist for partitioning the system and the
small vocabulary of the language necessitates the use of many symbols.
Determining the sequence of events which are to take place in a system
from the Reed's language description may not be an easy task.

Schor's register transfer language is [4] with more options
such as notations for indirect addressing, decoding, addition, sub-
traction and complementation and for identifying subregisters. It
deals with flip-flops, gates, delays fan-in and fan-out requirements.
It is 2 universal language, but is also a low-level language which
requires many statements for a complex system.

Iverson's APL [5-7] (A Programming Language) has adequate

high level operators for operating on arrays of data. The language is

broad in scope, having been developed for and applied effectively in
such diverse areas as microprogramming, switching theory,
operational research and so many more. The programs are
sequences of statements. A mjaor disadvantage is its lack of means
for describing parallel activities. It has no direct way of declaring
dimensions and requires that its data be homogeneous. It has only
a few primitive concepts and their use is consistent. However, its
compact encoding of operators require the development of some
reading skills.

Hill and Peterson's language AHPL [8] provides a complete
description of sequential network or digital system. Only those APL
operators which satisfy the constraints imposed by available hardware
are included in AHPL. AHPL description will be translated directly
into a wiring list or fan-in-list. The AHPL description itself then
becomes the principle vehicle for communications about the network.
This is beneficial in itself in that the control sequence, conventionally
displays timing information, not at all evident in the schematic
diagram.

Yohan Chu's language CDL [9-13] is a non procedural language,
meaning that it attached no significance fo the lexecographical order -
ing of statements, describing the operator of the system. Statements
are associated with some sort of 'label' defining the condition for

execution. Sequencing is performed by modifying the control

variables used in the labels. A program written in CDL may be
translated with little trouble into the language REGTRAN described
in this report.

LOGAL by Lund, J. [14] is a modified register transfer
language providing some additional properties not found in the
original RTL such as partitioning information, new operations etc.

LOTIS by Schlaeppi, H.P. [15] describes the machine in two
parts, declaration and procedures. Procedures may be written in
turn in either sequences or functions. The behavior elements of
LOTIS are register-to-register transfers. The main features of a
hardware oriented notation have been presented, which is believed
to be suitable for formally describing the relevant properties of the
logical structures of digital machines and their internal timing and
sequence.

APDL (Algorithmic Processor Description Language) [16-22]
is structured as that of ALGOL; i.e., a set of blocks, each with its
own declarations and statements. Blocks can be nested to any depth,
providing a simple scheme to organize a description in a hierarchical
fashion. It has additional (as compared to ALGOL) features to handle
timing and register variables. It requires a large number of
reserved key words and uses too many types of registers and arrays.
It provides a high degree of flexibility in the organization and partition

of the description to reflect the machine organization at several levels

7
of details and timing. Parnas [16] lays the ground for such a language.
The actual structure of the language is well defined in [17], [18], and
[19]. Reference [20] contains nice facilities in addition to those of
APDL for describing a system as a network of subsystems.

ISP (Instruction Set Processor) [23—27] describes the primitives
at the programming level of design. It can handle concurrency and
sequencing of activities and provides an adequate set of data and con-
trol operators. Descriptions follow the block structure of ALGOL and
can be named and used as independent processes or as parts of larger
units. These descriptions are by a fixed format composed of
declarations and actions. Declarations include memory, data types.,
data operations and instruction formats. Actions consist of an
interpreter for fetching, coding, execution and specific instructions
from a set.

LALSD (Language for Automated Logic and System Design)
[28,29] views a digital system in two parts: Thé structure and the
control. The structure part performs the logical and arithmetic
operations. The control part commands the behavior of the system.
This separation makes it possible for the control part to be imple-
mented either as hardware, firmware software, or any combination.
Using techniques of this language, a complete system canbe inte-
grated from independently designed subsystems. LALSD is suitable

for time sharing, interactive environment. It allows parallel

operations and can be used in designing synchronous, asynchronous,
or mixed systems.

DDL (A Digital System Design Language) [30-32] by Duley and
Dietmaya is easily understood as it is written in boolean-type
equations, yet it covers a wide spectrum of digital system design.
DDL's conciseness facilitates expressing, analyzing, modifying, and
in general, dealing with large digital systems in an organized manner-
The language is mnemonic and fundamental in concept to facilitate
design and enhance readability. The organization of 2 document can
parallel the block structure of the anticipated hardward. The language
permits a specification of sufficient precision so that 2 hardware
realization of the system's logic can be obtained using programmable
algorithms.

REGTRAN (REGister TRANsfer) [33] by Edward Peet, Jr., is a
modification of DDL. The major modifications were to the method of
writing equations, as REGTRAN is designed to be used either on the
CDC 6600 computer or by a teletype interfacing with this computer.
Therefore, a symbol set had to be chosen compatible to both the
teletype and the card reading system of the 6600. This ehcluded many
of DDL's symbols, but substitutes were obtained when they seemed
necessary. The DDL's delay declaration was not included in
REGTRAN. The syntax of the <ST> statement was modified to permit

easier and more versatile specification of conditional register

transfers. Basically, any synchronous digital system which can be
described in DDL can be described in REGTRAN. However,
asynchronous systems are difficult to describe in REGTRAN because
of the unit delay restriction. A detailed version of this language is

given in Chapter II.

1.3. Educational Values

A comparison between conventional hardware and software
engineering shows structural versus procedural philosophies. That is
why in computer science curricula these two disciplines appear as
almost completely separate and independent. The consequences of
this methodological segregation are well known: bad cooperation
between hardware and software engineering, waste of time in educa-
tion when introducing data processing principles, bad common under-
standing of hardware and software interaction.

Not many universities--not even the few affluent ones in these
days of shortage--can afford to build machines for teaching and
experimenting. A complex structure such as a multiprocessor may
be described using HDL and yet simple enough that it can be done by
one student in one quarter. This is the only possible alternative to
teaching by qualitative argumentation. There should be simple,

unequivocal simulators along with HDL.

10

A "user-reorganizable'' laboratory computer has been designed
at the University of Arizona in terms of AHPL. Student technicians
were able to generate wiring diagrams and fabricate the machine
directly from the AHPL description. This design language has been
the principal means of communication between members of the design
team as changes have been made in and features added to the system.
The language description of the machine has greatly eased the docu-
mentation problem. There has been no pressure to produce detailed
English language discussion of every aspect of the machine. As
student technicians leave and are replaced by new students, the AHPL
description will ensure a. minimum of discontinuity in the ability
to diagnose and repair failures in the machine.

APL is used in the ALERT system developed in IBM to be
used as a front end for their design automation system.

REGTRAN and SYSSIM have been used teaching a course in
digital system design at the University of Texas at Austin and con-
tinued use for this purpose is anticipated. Both of these programs
provide a unit delay simulation, they are most useful for simulating
clocked synchronous systems for which gate and wiring delays can be
neglected. Simulation of asynchronous systems with gate and wiring
delay would be awkward because each delay would have to be simu-
lated by multiple cascaded delays. The REGTRAN language is fairly

easy to learn for anyone who is familiar with FORTRAN or a similar

11

high level language. The REGTRAN and SYSSIM programs have been
successfully used to simulate a wide variety of synchronous digital
systems. Some examples are twelve-bit parallel Adder -Subtractor,
Sequence Detector, State Table Simulator, Serial Multiplier,
General-Purpose Computer and an Associative Processor.

Both of these programs are modified to run under the Kronos
System at the Oregon State University. These programs are hoped
to be useful in teaching digital system design.

The REGTRAN and SYSSIM programs have been successfully
used to simulate very complex systems but they fail in simulating a
MICRO PROCESSOR as the microinstruction formats can vary from a
single encoded micro-operation field and an address field to a format
where each field corresponds to a single control gate. In order to
overcome this problem MICRO, a simulator for a simple micro-
programmable computer, is developed which will simulate the micro
instructions. More detailed version about MICRO is discussed .
in Chapter III. Using this simulator any microprogrammable machine
can be simulated without trouble. This program is easy to use and is
very useful tool: simulation of PDP-8 is given as an example. Both
REGTRAN with SYSSIM and MICRO are hoped to be useful in teach-

ing digital computer design and microprogramming.

12

II. IMPLEMENTATION OF REGTRAN AND SYSSIM

2.1. Introduction

REGTRAN [33] was originally developed by Charles E. Peet, Jr.
at the University of Texas at Austin and was to run on CDC-6400-
6600 TAURUS time-sharing system in an interactive mode. It is used
in the preliminary design process to specify a system in terms of
register transfers and logic equations. The user specifies system
structure, using register transfers associated with each state of the
system. A special simulation program SYSSIM, is used to simulate
and debug the system by supplying inputs described by the user and
printing results.

The REGTRAN program reads a source deck written in the
REGTRAN design language and generates a Fortran source file which
is then compiled by the FORTRAN compiler.

The block diagram of the simulated system is shown in Figure
2.1 in which the description is done by REGTRAN and then it is
simulated under the control of SYSSIM.

Each major subdivision of the digital system to be simulated
is converted into a separate FORTRAN subroutine, which is used to
simulate the networks.

SYSSIM is an interactive FORTRAN program which obtains

information from the user on the method of simulation. Then the

SIMULATED SYSTEM DES CRIBED‘—[

| BY REGTRAN '
| |
| |
‘ COMB, |
REGIST.
INPUT NETWORK INPUT . '
[________ N / l
SET ouT SET CLOCK| OUTPUTS
CLEAR | PUTS CLEAR

SYSSIM SIMULATOR PROGRAM

SYSSIM INPUT PRINTED
COMMANDS DATA OUTPUT

Figure 2.1. Block diagram of simulated system.

13

14

Fortran subroutines were called at the proper times to execute the
simulation.

Both these programs (REGTRAN, SYSSIM) are provided with a
large number of different errors in both description and simulation of
the digital system. REGTRAN can print 64 unique error messages
and SYSSIM contains 36 error messages. Althdugh error and diagnos-
tic messages are provided for the reasons given, REGTRAN and
SYSSIM can not determine if the design objectives are met. This part
is left to the operator.

Examples of the types of systems which can be described and
simulated are: a combinational networks with a counter to cycle
through all input states, sequential networks, arithmetic units (fixed
or floating point) and special and general purpose computers.

In Figure 2.1 the combinatorial network responds immediately
when an input terminal is changed. The logic equations for the
combinatorial network and the conditions under which register trans-
fers can occur are specified in REGTRAN. External set and clear
signals, external inputs to the system, and dock pulses are supplied
by SYSSIM when the simulation is running.

More detailed versions of the syntax and semantics of the
description language REGTRAN and of the simulation language
SYSSIM can be found in Reference [33]- Here in this chapter, a brief

survey of conventions, statements, SYSSIM commands, memory

15

operations and a few other details will be discussed.

2.2. Description of REGTRAN

2.2.1. Registers, Terminals, Clocks and Memories

All registers, terminals, clocks and memories must be given
alphanumonic names which may be up to seven characters in length
and start with a letter. Automata must also be named with an alpha-
numeric identifier of three or less characters.

A register is defined as a group of bits which are updated
according to a register transfer equation on specified clock pulse.

A terminal is defined as a group of bits which are updated continuously

according to a boolean equation-

2.2.2. Numbers Representation.

Three types of numbers may be used in REGTRAN--decimal,
octal, and binary. The default type is decimal, that is, any number
not followed by a letter is decimal. B, L are the letters that repre-

sent octal and binary. .

2.2.3. Expressions and Statements

Expressions are composed of operations performed on

memories, registars, terminals, or numbers. Table 2.2.1 gives the

16
different logical, arithmetic and relational or concatenation. The
operations 12-15 are bit-by-bit logical operations. Numbers 6-11 are
relational operations which result in all ""0's" for false and all ''l's'" for
true. Numbers 2-5 are arithmetic operations which use the CDC
6600 fixed point hardware. The operations are listed in the order of

their hierarchy.

Table 2.2.1. REGTRAN operations.

1. Concatenation $

2. Multiplication x

3. Division /

4. Addition +

5. Subtraction -

6. Equal EQ.

7. Not equal .NF.

8. Greater than .QGT.

9. Less than : .LT.

10. Greater than or equal -GE.

11. Less than or equal -LE.

12. Not .N. OR .NOT
13. And .A. OR . AND
14. Or .0. OR .OR
15. Exclusive-or .E. OR .EOR.

If the symbol '#' is placed in 1st column then

Exclusive-or /
Or +
And *
Not -

Expressions are evaluated as follows: each term of the
expression is placed right justified in the CDC 6600 sixty bit word
with zero fill. The operations are then performed in the order indi-

cated, placing each result right jusitified in the sixty bit word and may

17
be truncated so that it will be with-in-58 bits in length.

Table 2.2.2 summarizes the types of statements used in
REGTRAN. <8Y>, <RE>, <TE>, <ME>and < TI> statements are
used to declare system, register, terminal, memory and clock names-
The equation in the < BO> statements are used to define the combina-
tional part of the digital system. <OP>together with <PA>and <BO>
may be used to define a combinational subnetwork as an operator.
Sequential subnetworks (automata) are defined by using <AU> state-
ments. Each automation may have a state sequencing register and
one or two conditional registers defined in the <SS>and <CO> state-
ments. The next state and the register transfers associated with each
state are specified in an <ST> statement. IF clauses are used to

specify the conditions under which the register transfers occur.

2.2.4. Predefined Operators

REGTRAN contains three predefined operators--MOD, JKFF
and DECODER. MOD (A, B) is a 48 bit function with two inputs, A
and B, and is equal to the remainder when A is divided by B.

JKFF (Q,J,K) is a one bit function with three inputs Q, J, and

K, and is defined as

JKFF = J.AND. .NOT.Q.OR-Q.AND. .NOT. K.

This function may be used to simulate a clocked J-K-flip-flop when

Table 2.2.2. Summary of REGTRAN statements.

18

Statement

Purpose

Remarks

<SY? name:

<RE> name(a),
name(a:b),
name

<TE”> name(a),
name(a:b),

name

<ME” name(a, b)

<TI> name(a),
name(a, b)
<BO>x = expression,
y(a:b) = expression,

Z(a) = expression

<QP? name:

<PA> name,
name(a),
name(a:b)

<AU?> name:

<8S> name
or
<882 name (i)
<CO” name
or

<CO? name, name

<AS> name = number

name = number

<8T> (see
Table 2.2.3)
<LO~ name = list,
name(i) = list,
name(isj) = list

<EN-

defines REGTRAN gsystem name

defines register names and number
of bits

defines terminal names and number
of bits

defines memory names, number of
bits, and number of words

defines clock names, period, and
offset from time zero

contains Boolean equations defining
terminals

defines an operational subsystem

defines the dummy input parameters
for each operational subsystem

defines an automaton
defines the state sequencing register

(SSR) and number of bits (i)

defines the conditional registers

assigns numeric values to alphanumeric

state names

defines the register transfers

loads a memory or a series of
memory locations

ends the REGTRAN program

must be the first statement of the
program

must precede all <QOP> and <AU>
statements

must precede all' <BO> statements
{except those under other <OP>
statements)

must be the statement immedi-
ately following the operational
subsystem name

must contain one <ST? statement

optional in the <AU?> statement

optional in the <AU? statement

optional in the <AU> statement

must be the last statement of the
<AU> statement

if used, must immediately precede
<EN>

19
the J and K inputs are specified. If J1 and Kl have been defined in a

<BO> statement. the register transfer statement
Ql <— JKFF (Ql,J1,Kl)

will set Ql to the proper next state.
DECODER (M, N) is a variable length function with two inputs,

M and N, and is defined by the equation
DECODER = 2#*¥N-M-1)

where *% denotes exponentiation.
The DECODER operator decodes a register, or terminal M into
" a N-bit terminal. For example, if T is an -8 bit terminal and U is a

3-bit register, then

T = DECODER (U, 8)

defines a 3-bit to 8-bit decoder. If U =i, thenbit i of T is setto
. 8-2-1 .
1. For example if U =010 then T = 2 = 00100000 and if

U =111, T =00000001.

2.2.5. Register and Terminal Declaration

They are declared by the following statements:

<RE > name ., name

1 2,--~v-,name

<TE> name . ,name

1 . yname

277

20
If the name is simple alphanumeric name, it is only one bit.
Multiple -bit registers and terminal may have from 1 to 58 bits. As
many names as desired may follow <RE>and <TE>; they must be

separated by commas.

2.2.6. Memory Declaration

Memories are declared in the following manner:

<ME> name <WS> where W is the number of words in the
memory (1 < W < 8192) and S is the number of bits in each word ‘
(1 <S < 58). Uptto 5 memories may be declared with each name
being separated by commas. A memory may be loaded during
running of the simulation using a SYSSIM SET command, or it may be
loaded in advance by using the REGTRAN <LO> command. The later
is particularly useful for a read-only memory where the memory
contents is really part of the system description and is not normally
changed during running of the simulation. If <LO> statement is used,
it must be the last statement in the REGTRAN system description

immediately preceding the <EN> statement.

2.2.7. Timing Elements (Clocks)

The periodic clocks which are to control the automata are

declared in the following manner:

21

<TI>name1(p1, ol),namez(pz,oz)(,

where name, is an alphanumeric name as for registers. P, is the
period of the clock and is expressed as a positive integer. o, is
the offset of the clock from time ''0'; it is a positive integer less than

P; but may be omitted, in which case the default value is zero.

2.2.8. Boolean Equations

The <BO> statement is a series of equations which defines
each terminal as a function of registers, memory words, numbers and

other terminals.

<BO>name, = expression = expression

1 y hame

1 2 2’

2.2.9. Operations on Registers and Terminals of Different

Lengths

When an operation occurs which would fill a register or terminal
with more bits than were reserved for it, the leftmost excess bits are

lost. This applies to both boolean statements and register transfers.

2.2.10. Operational Subsystems

The "OPERATOR' represents a group of gates with inputs and
an output. It is defined once and then maybe used any number of

timbes by specifying only its name and its inputs.

22

2.2.11. Automata

Each automation has associated with it a clock, a state-
sequencing register, a optional set of conditional registers and
internal registers and terminals. The operation is defined in terms
of register transfers.

A maximum of 20 automata may be declared in a REGTRAN
program, but none need to declared. Every automata must have one
<ST> statement and it must be the last statement of the automata
declaration. The state sequencing register (SSR) controls the state
of the automation and is limited to a maximum of eight bits, thereby
limiting the maximum number of possible states to 256. It is
advisable to declare the SSR of the minimum length necessary to save
compiler space.

The syntax of the <ST> statement is given in Table 2.2.3.

A conditional register is one which is tested at various times to
determine if certain register transfers should take place. It is used

in the conditional IF clauses.

2.2.12. Register Transfer Statements

The register transfer equation describes the new contents to be
entered into the register when it is clocked. Unless the register is

clocked, its contents will not change. The register transfers are

23

Table 2.2.3. Syntax of the <ST? statement.

REGTRAN Coding Remarks
<S8T~ list of unconditional register transfers see Note 1 below
[IF clause] list of register transfers repeat this line as required

[conditional] (list of register transfers
repeat these lines as required
[IF clause| list of register transfers) ~¢—— repeat this line as required

H see Note 4 below
state list: see Note 2 below

list of unconditional register transfers
[IF clause] list of register transfers «4———— repeat this line as required

[conditional] (list of register transfers

<}——— repeat these lines as required
[IF clause} 1list of register transfers) €}~ repeat this line as required
H see Note 4 below
state list: etc. repeat above for each state list

Notes:

1. Register transfers specified before the first state list take place independently of the state
of the automaton.

2. A state list consists of one or more state numbers or state names separated by commas
(e.g., 2,3,8,54,S85). The state list must be followed by a colon.

3. Parentheses are required enclosing the register transfers which follow a "conditional” as
shown above. In addition, any list of register transfers may be enclosed in parentheses.

4. The lists of register transfers associated with each state list must be terminated with ";".
(The final ";" at the end of the <ST> statement may be omitted.)

5. Register transfers in a list must be separated by commas.

6. Format is free field and the end of line is not significant.

24
specified in the <ST> statement. It contains a list of states with each
state name followed by the register transfers to occur during that
state. All register transfers in a list of register transfers must be
separated by commas.

The register transfer statements are of the form
(1) Register name <— expression
(2) Sf(r, n)
where Sf is the shift function, r is the name of the register to be

shifted and n is the number of places to be shifted.

2.2.13.1IF Clauses

In conditional IF clause, during each state of the SSR, the
contents of the conditional registers may be tested and if they are
equal to some specified values, the specified register transfer takes
place; otherwise they will not. The conditional IF clause is composed
of numbers, either single or sequence for each conditional register.

Regular IF clauses may be included to test any register,
terminal or memory elements. The register transfers are executed
depending on the value of the expression is 0 or not zero.

REGTRAN is a free-field language; that is, each card is a
continuation of the previous card. Columns are not distinguished but
only the first 72 columns may be used. If an '*' appears in column 1

of any card, that card will be listed and ignored.

25

2.3. Description of SYSSIM

SYSSIM is a language used to control the simulation of a system
described by REGTRAN. A series of SYSSIM commands are executed
in sequence to control input and output to the simulation and to set
conditions for starting and stoppir;g the simulation. The system
described by REGTRAN is normally idle with no clock being supplied
to it. All registers, terminals, and memories are initially set to
zero. The CLEAR, SET, READ, and INPUT commands are used to
set registers, memories or terminals to specified values. These
values are held until changed by the REGTRAN system or by another
SYSSIM command. The PRINT, DISPLAY and HEADER commands
are used to specify the desired simulator output. The RUN, STEP
and ASTEP commands are used to supply clock pulses to the simula-
tion. After every clock pulse, all affected registers are updated
simultaneously, and then all terminals are updated using the new
registers value. The PRINT or DISPLAY commands are then
executed if required. At each time step during the simulation, a
reserved register labeled TIME is automatically incremented by 1.

SYSSIM uses a free field input format with the restrictionthat each
command must be placed on a separate line. To indicate that a com-

mand is continued on the next line, "#' is placed in any column.

26

REGTRAN reads an input deck composed of source input and
generates a FORTRAN source program to describe the system to be
simulated. Upon the successful compilation of the source input by
REGTRAN, the CDC 6600 FORTRAN compiler is called to compile the
FORTRAN just generated. Th.is FORTRAN contains only subroutines
and functions which are called from SYSSIM. The subprograms
generated are grouped into three functional groups:

1. Boolean Equation Evaluation--This set of subroutines
calculates and updates the values for all the terminals in the
system.

2. Register Transfers--This set of subroutines calculates the
values to which the registers will be set upon the applicatian
of the next clock pulse.

3. Memory Manipulation--SYSSIM does not have direct access
to the memory words because it has no previous knowledge
of the size of the memories. A set of subprograms is there-
fore provided to allow memory manipulation. The memory
manipulation subroutines are called by SYSSIM when the SET,
CLEAR, and PRINT commands which reference memory are
used.

Table 2.3.1 consists of a list of the subprograms generated

by RETRAN and their functions.

27

Table 2.3.1., FORTRAN subprograms generated by REGTRAN,

Subprogram Subprogram
Name Type Purpose
COMBOOL SUBROUTINE Stores all boolean equations declared
in common (<BO> statements before
all <AU? statements)
Named after automaton SUBROUTINE Stores all register transfer equations

Named after automaton
except followed by
|IENTII

CONTROL

BOOLEAN

REGSET

MDATA

MSET

MPRT

entry point of
above subroutine

Subroutine

entry point of
CONTROL

SUBROUTINE

SUBROUTINE

SUBROUTINE

FUNCTION

for the automaton after which it

was named

Stores all boolean equations
declared in the automaton after
which it was named

Called from SYSSIM simulator once
each time step to update all
registers and terminals. Uses the
above three types of subprograms to
accomplish this

Called from SYSSIM to update all
terminal contents

Contains DATA statements to pass
register and terminal names and the
number of bits in each through
COMMON to SYSSIM

Contains DATA statements to pass
information concerning memories,
including data entered in an <LO>
statement

Called from SYSSIM to set one word,

in memory, Input parameters specify
which memory, which word, and the

data to be entered in that word.

Used to return to SYSSIM the contents
of one memory word. Input param-
eters specify which memory and which

word.

28

The controller, CONTROL is called from SYSSIM once per time
unit. It is the responsibility of this subroutine to calculate the states
of all clocks declared in the REGTRAN source input as well aé the
system clock, CLK.

However, it is the responsibility of each automation
subroutine to determine, when called by this controlling subroutine,
whether its controlling clock is in the proper state. If not, no calcu-
lations are performed. Upon calculating clock values, various sub-
programs are called by CONTROL to perform register transfer cal-
culations and terminal updates. CONTROL also contains an entry
point, BOOLEAN, which will only update the terminals without affect-
ing the registers.

The flow chart for the CONTROL is given in Figure 2. 2.

The conversion of the REGTRAN source program in Fortran
subprograms is done by the use of an interpreter, a set of Floyd-
Evans productions, a ''Last-in-First out' stack, a lexical scanner,
an error printing subroutine and an executive subroutine. The
interpreter checks the syntax of the input program and controls the
other elements listed. The lexical scanner is used to scan the sym-
bols from the input source and convert them into recognizable
elements such as number, alphanumeric identifiers, symbols, and
reserved words. Each time the scanner is called, it places the new

element into the top of the 'last-in-first-out'' stack.

(START >

CALCULATE INCREMENT C) ;
VALUES OF LOOP
CLOCKS COUNTER
SET LOOP
COUNTER TO
ZERO
oN @
SET LOOP RESET "STEADY
COUNTER TO CHNG STATE" FLAG
YES (CHNG)
ZERO FLAG SET
NO \
RESET "STEADY (:) ; UPDATE ALL
TERMINALS
STATE" FLAG T
(CHNG) \
CALL ALL
AUTOMATON \ /
\ SUBROU TINES
NCREMENT
UPDATE ALL ioop
TERMINALS
COUNTER
ONCE \ 0
UPDATE
REGISTER
CONTENTS

% CCOD is the flag which indicates that a SET or CLEAR command has been executed since the
previous simulation.

Figure 2,2. Flow chart for CONTROL.

PRINT
ERROR
MESSAGE

RETURN

Figure 2.2. Continued.

30

31

The interpreter uses the stack along with the Floyd -Evans
productions to determine if the input syntax is correct and to initiate
any action necessary as a result of the input. The executive routine
is used to generate the FORTRAN subprograms which will be linked
with SYSSIM. All bookkeeping is also performed by the subroutine.
The flow chart for REGTRAN is given in Figure 2.3.

REGTRAN contains TRACE feature, which is used to trace
the progress of the interpreter. It is turned on by placing the sym-
bol "#'" in column 1, 2, and 3 of an input card. Auxilary trace is
turned on by "#'" in column 1, 2 and 4. The main and auxilary trace
features can be turned on simultaneously by placing the symbol "#"
in columns 1, 2, 3 and 4 and can be turned off by "#' in columns 1,
2 and 5.

The main program, SYSSIM acts as a command decoder, its
flow chart is given in Figure 2.5 and the sequence of operations for

the SYSSIM simulator are shown in Figure 2. 4.

2.-4. Implementation of REGTRAN and SYSSIM for KRONOS

REGTRAN and SYSSIM were written to run under the TAURUS
operating system at the University of Texas at Austin. These two
programs are implemented for KRONOS system at Oregon State
Univer sity at Corvallis, Oregon. During this process, a lot of prob-

lems were faced and they will be discussed in detail in this section.

< START >

CALL LOADER

CALL INTERP

ERASE
GENERATED
FORTRAN

CALL ABORT

pd
o~

Figure 2.3 Flow chart for REGTRAN,

32

RUN OR STEP

PRINT
HEADERS IF
NECESSARY

UPDATE
TERMINALS

N
e

\/

CHECK AND

EXECUTE READ
INPUT, SET, &
CLEAR | \
IF CLAUSES*

’

N

PRINT
ERROR
MESSAGE

NO

RETURN TO
COMMAND PROCESSOR

* Each of these IF Clause commands can be executed only once per RUN or STEP command.

Figure 2.4. Sequence of operations for the SYSSIM simulator.

33

&

VALUE OF =0 UPDATE

TH\V TERMINALS

£0
5 (> 7
8 Q
' \
N CHECK AND
EXECUTE READ,
INCREMENT INPUT, SET,
TIME & CLEAR
IF CLAUSES*

EXECUTIONS

UPDATE
REGISTERS \V4
AND CHECK AND
TERMINALS EXECUTE PRINT
' AND DISPLAY
IF CLAUSES
ON

* Each of these IF Clause commands may be executed only once
per time step.

Figure 2.4. Continued.

34

(START ’

N4

PRINT
HEADING

STORE LABEL
IN COMMON
TURN
TELETYPE
FLAG ON CALL IRUN(8)
A
SET
TAURUS INPUT
INDICATOR
— CALL IRUN(1)
0 7S
READ CALL ISTEP(1)
INPUT

* These characters refer to the first alphanumeric characters in the input record.

Figure 2.5, Flow chart for SYSSIM .

CALL ICANCEL

NO

CALL ISET(2)

CALL IDISP

* These characters refer to the first two alphanumeric characters in the input record.

Figure 2.5. Continued.

36

| CALL IHEADER

' CALL [INPUT

L

CALL ILOOP

|

CALL IOFFLIN

—

" CALL IONLINE

* These characters refer to the first two alphanumeric characters in the input record.

Figure 2,5, Continued.

37

CALL IPRINT

b CALL IREAD
CALL IRUN(6)

N

CALL ISET(7)

CALL ITRACE

5
2

PRINT
ERROR
MESSAGE

CALL ISTEP(8)

* These characters refer to the first two alphanumeric characters in the input record.

Figure 2.5. Contimied.

38

39

TAURUS is the operating system which is written by the
University of Texas computer center staff to run on a CDC 6400
computer. KRONOS is the operating system supplied by the CDC
corporation to run on CYBER-73. CYBER-73 is a new version of the
CDC-6400 with some hardware differences. TAURUS is basically
derived from the CDC SCOPE operating system, as was KRONOS,
with some features added and some features being removed. ASCIll
code differences exist between KRONOS and TAURUS. The library
routines are the same with some name differences. For example
LSHIFT in TAURUS performs the same shift operation as SHIFT in
KRONOS. Both the operating systems use SCOPE loader. The
loader at TAURUS operating system has the added feature of loading
multiple files. KRONOS has two types of loaders, LINK and LOAD.
Neither of these can load multiple files. In order to achieve this, the
files have to be made library files by using LIBGEN command. The
control language is different for KRONOS and TAURUS. For example
"LABEL" is not allowed in KRONOS.

TAURUS uses RUN compiler and KRONOS uses FTN compiler.
In the RUN compiler, logical and non logical mixed operations are
allowed. In the FTN compiler, these types of mixed operations are
identified as "FATAL ERROR' and the successful compilation of the
program is stopped. RUN compiler allows DATA statement anywhere,

before an entry point of the program, but the FTN compiler imposes a

40
condition that the DAT A statement has to be only after the declarative
statements and before the entry point of the program, otherwise it will
be identified as FATAL ERROR, which interferes with the successful
compilation of the program.

The two problems encountered are the differences between the
two operating systems and the insufficient documentation available
about REGTRAN and SYSSIM. KRONOS as well as these two pro-
grams were new and some time was spent in studying the programs
as well as learning how to use KRONOS.

REGTRAN uses a Floyd -Evans production table, for the
purpose of stack manipulation in the process of compiling equivalent
FORTRAN from the REGTRAN statements. REGTRAN ‘uses various
ASCII code comparisons. SYSSIM also does the same thing. In both
these programs such comparisons are changed to the equivalent
ASCII of KRONOS system. All the library routine calls of TAURUS
are changed to the equivalent library calls of KRONOS. Some of the
TAURUS calls were also changed.

The problem of mixed operation error is taken care of by
reframing the description of the problem in REGTRAN language such
that mixed operations will not be generated in the corresponding
FORTRAN generated by REGTRAN. This required the REGTRAN

syntax to be somewhat more restrictive.

41

The problem of the DATA statement was taken care of by writing
another program RTEST. This program scans through the FORTRAN
generated by REGTRAN and removes the DATA statement that occur
between the header of the program and the declarative statements and
inserts them after the declarative statements and before the executable
statements. Flow chart for RTEST is given in Figure 2.7.

REGTRAN and SYSSIM can be run ONLINE or OFFLINE.
Subroutines IONLINE and IOFFLINE in SYSSIM are used to execute
the ONLINE and OFFLINE commands respectively. IONLINE sets
the teletype flag to make it ONLINE .

In order to run this on KRONOS, different methods were tried.
First, the binary object files of SYSSIM and the binary files of the
compiles FORTRAN file generated by REGTRAN were 1oaded.
Unfortunately, the optimization feature of the KRONOS FTN compiler,
seems to drop off subroutines which do not contain any active or
executable statements from the FORTRAN produced by REGTRAN.
When SYSSIM refers to these dropped subroutines, it will not be able
to find them and the load error ''unsatisfied external references"
stops the execution of the program.

The second method tried, consists of joining the FORTRAN
generated by REGTRAN at the end of the FORTRAN source program of
SYSSIM by using "MERGE'" command in EDIT mode. Then the final

file which is created, is compiled using FTN compiler. This method

42

seems to successfully execute the program, but it is very expensive
and inefficient. Every time a new problem will be tried, the SYSSIM
needs to be joined with the FORTRAN of the problem and then com-
piled. So the total time needed to compile and execute will be an
average of 20 to 25 CP seconds for a moderately simple problem.
This method is obviously inefficient and expensive.

The third method is using a KRONOS control language macro
call. The name of the macro is REGRUN. A listing of the REGRUN
is given in Figure 2.6. This consists of a set of system commands,
that call the REGTRAN and SYSSIM programs binary files along with
the other necessary files such as the production table. From the
generation and compiling of Fortran to execution of the compiled binary
file with the SYSSIM commands, all can be done just by using
REGRUN. This macro can be called both ONLINE and OFFLINE also
and depending upon the setting of the starting point, this REGRUN will
start execution online or offline. For example: To run REGTRAN

and SYSSIM is shown in the following sections.

43

SET (R1=0)

3,GET, TAPE2/UN=80035.
GET, BREG/UN=80035.
OFFSW, 2.

REWIND, RFOR, TAPEZ2.
IF(R1=1) GO TO, 2.

1, RFL, 100000.

BREG, RIN, ROUT, RFOR, TAPEZ.
REWIND, RFOR, RB.
FTN,I=RFOR, L=RL, B=RB.
GET, BSYS/UN=80035.
LIBGEN, F=RB, P=ULIB,N=ULIB.
REWIND, BSYS, ULIB.
-LOAD, BSYS, ULIB.

EXECUTE.

GOTO, 5.

2, REWIND, RIN, RFOR, TAPEZ.
ONSW, 2.

GOTO, 1.

4TTY,SET (R1=1)

GOTO, 3.

5, OFFSW, 2.

Figure 2.6. Listing of REGRUN

2.4.1. ONLINE

With the account number and password assigned, the user logs
on the KRONOS and the system responds by "READY'' appearing on
the terminal. The user has to type

/GET, REGRUN, UN= * , PW=

*User number and password for REGRUN file, allows user to
obtain a read-only copy.

The system responds with

START

I=1

READ
INPUT FILE

WRITE
ON
OUTPUT

I=I+1

Figure 2.7. Flow chart for RTEST,

44

45

/CALL, REGRUN, C,S=4TTY, RENAME, RIN=TEST,
ROUT=0UTPUT

where

Q

clears all pointer and renames

wn
1

starting point, which starts at lable no. 4 in REGRUN

RIN - name used in REGRUN for input file

Test - name of the input file

ROUT - REGTRAN output which consists of test and error messages

given by REGTRAN, if there were any.

After the successful execution of this macro REGRUN, the system
responds with header printout as '"SYSSIM SIMULATION PROGRAM"
and with a '"'?'' mark and waits for SYSSIM commands. After issuing
the right SYSSIM commands, the answeres will be printed.‘

RIN:=INPUT (allows REGTRAN program to be entered on line).

2.4.2. OFFLINE

JOBIDEN, CM55000, T100
ACCOUNT, [USER NUMBER], [USER PASSWORD]
GET, REGRUN/UN=80035.

CALL, REGRUN, C, RENAME, RIN=INPUT, ROUT=OUTPUT.

7
89

REGTRAN INPUT.

46

7
8
9
SYSSIM COMMANDS which should have OFFLINE as first

command

Using macro call to run the program, requires 2 to 3 seconds
of CP time. Since SYSSIM does not need to be compiled for every
example individually. Hence this method seems to be more efficient
and inexpensive.

The REGTRAN and SYSSIM programs are totally dependent on
the Floyd -Evans production table. As a consequence of the ordered
set of rules for the creation of FORTRAN from REGTRAN language,
even a minute mistake in the creation of source file causes syntax
error and wipes off all the FORTRAN thus generated. Because of
the ASCII differences, the same example problem that ran on
TAURUS gave trouble on KRONOS. TRACE feature in both of these
programs helped to understand and analyze this problem. If these
two programs were rewritten that would have been easier than going
through someone elses logic with insufficient documentation.

In the following paragraphs, an example will be shown

completely.

47

2.4.3. Examples

Twelve-Bit Parallel Adder -Subtractor. This example

demonstrates the simulation of a combinational network. No automa -
tion is defined, and therefore no registers are declared. This has two
twelve -bit inputs, A and X, which are added or subtracted to form the
twelve bit sum, S. Another input K is set to 0 or 1 to subtract A
from X. A one-bit-output, OVERFLO, is used to indicate overflow.

A complete listing consisting of the description of parallel adder -
subtractor in REGTRAN, the FORTRAN generated and the SYSSIM
commands along with the TRACE features demonstrations and the
results are shown in Appendix A.

Sequence Detector. Another example shown is the sequence

detector. This used J-K flip-flops (A, B and C). It has one input,
X, and one output, Z, which is 1 whenever the input sequence 101 or
0110 is detected. A complete listing of the example is also shown in
Appendix A. The simulator output shows the simulation results for

14-bit input sequences.

48

II1. IMPLEMENTATION OF MICRO

3.1. Introduction

Microprogramming was first introduced by M. W. Wilkes to
overcome the difficulty of designing the control unit of a complex
computer system as a sequential network. Microprogramming can
be defined as

. a technique for designing and implementing the

control function of a data processing system as a sequence

of control signals, to interpret fixed or dynamically

changeable data processing functions. These control

signals, organized on a word basis and stored in a fixed

or dynamically changeable control memory, represent

the states of the signals which control the flow of informa-

tion between the executing functions and the orderly

transition between these signal states.

In the past decade, microprogramming has changed from a
machine implementation process for large computing devices to a
widespread design practice covering the full spectrum of machines as
measured by their size, performance and cost.- The flexibility and
ease of change of microprogrammed machines allows the designer to
delay commitment to a particular control process until much later in
the design process than had previously been the case. This same
flexibility has significantly reduced the design time and installation
cost of engineering changes. Readily implemented control sequences

give the designer an oppo rtunity to consider a much richer repetoire

of instructions and commands directed toward efficient solutions to

49
the problems for which computation is being done. The solutions can
be less heavily dependent on the exact hardware on which processing
is to take place.

While the initial applications of microprogramming were a
fairly straightforward replacement of ''random'' control logic with a
control storage element, an immediate expansion has occurred into
the areas of better hardware diagnosis tools. Simultaneously, the
emulation of predecessor machines on newer technology emerged as
an important practice--one which has grown today into a major
microprogramming application.

A microprogram consists of a collection of microinstruction.
These fields correspond to one or more micro-operations. Micro-
operations are the fundamental operations of the hardware and include
the following:

1. Activating a data path

2. Initiating an arithmetic operation

3. Initiating a data transfer

4. Testing a condition

Microinstructions and opperations are intimately tied to the
system timing. Micro instruction formats can vary from a single
encoded micro-operation field and an address field to a format where
each field corresponds to a single control gate. The former format

is essentially similar to decoding a machine instruction. Many

50
microinstructions would be required to implement a given operation
with only a few encoded micro-operation fields. This type of format
is often called vertical microprogramming in reference to the length
of the microprograms. The cycle time would be short since only a
few micro-operations can be performed with a single microinstruction.
In the other extreme, all possible micro-operations can be specified
with a single microinstruction. This is called horizontal micro-
programming due to the width of the microinstructions.. Here, the
major cycle time is much longer since each microinstruction must
be sequenced with minor cycles to avoid conflicts. Wilkes scheme is
an example of horizontal microprogramming. Most implementation
of microprogramming lie somewhere in between the extremes.
Mutually exclusive micro operations are grouped in one encoded
micro-operation field.

Microprogramming can be implemented with a decoding tree
and plugboards or diode arrays as in Wilkes scheme, however, semi-
conductor Read Only Memeories are in present use.

In this chapter we will be considering a computer system which
is shown in Figure 3.1. The simulator for this system "MICRO'};
is written in FORTRAN. The control section uses ROM. The current
contents of the instruction register (IR) will be decoded by decoder,
these are used by the address logic to calculate the next micro

instruction address. The address is stored into the ROM address

51

< 1/0 I
DEVICE
2z
=3 MAIN
MHV[. @
- MBBR
ADDRESS M
BUS
\ INTERNAL DATA BUS
\ EJL_{(_] -
SP PC [IR
1]
&3 GPO 2
< GP1 i
N oy
7 A DECDR
B
P u
S GPN =>4 < S
. /
; == LOGIC
M
: B
A
R
'ROMAR
INTERRUPT
READ COMPLETE ROM
7 :
ROMBR]

TO CONTROL POINTS

Figure 3.1, Computer system under consideration.

52
register (ROMAR) and the next micro instruction is read into the
ROM buffer (ROMBR). The micro operation fields are decoded and

sent to the control points of the system.

3.2. Description of MICRO

MICRO (a simulator for a simple microprogrammable
computer) is a FORTRAN program, written to run under the system
KRONOS at Oregon State University.

MICRO can be used as a simulator at two levels. (1) As
micro instruction formats can be a single encoded micro-operation
field and address field, the micro instructions can be direct. The
encoded micro instructions can be used to simulate a microprogram.
MICRO can be a simulator for microprogram. (2) MICRO simulates
any microprogrammable processor, using ROM control logic and
DECODER logic. This consists of three major sections; main
memory, ALU and control storage. The dimensions of the main
memory can be specified by the user according to his need and
requirement of the machine he is trying to simulate. But the number
of bits in a main memory word can not exceed more than 60 bits as
KRONOS will allow only 60 bits. It has six associated registers,
memory address register (MBAR), a memory buffer register (MBBR),
a program counter (PC), an instruction register (IR), a stack pointer

(SP) and an address bus register (ABUS).

53

The size of all the six registers is not fixed and can be specified
to the requirement of the user. ALU consists of an accumulator
(ACC) and a temporary data bus register (DBUS) and a set of general
purpose registers. The control section contains a ""Read -Only-
Memory' of 15 bit word length and the number of words is not fixed
and can be specified by the user, along with an address (ROMAR)
and buffer (ROMBR) registers. In this system the size of the
accumulator, general purpose registers and other temporary
registers are not fixed sizes, in order to provide this system with a
flexibility, with which the user can easily set up the sizes, fitting to
his requirements and need not worry of the complexity of his
machine adjusting to this system. It provides ease and less problems

in simulation of other microprogrammable machines on the simulator.

3.2.1. Microinstructions

The microinstructions are divided into two groups. Group (1)
microinstructions manipulate the contents of the accumulator. These
instructions can not be combined with the other instructions of group
(1). Group (1) also does the input, output operations.

3.2.1.1. Group (1). The group (1) microinstruction format

is shown in Figure 3.2 and the microinstructions are explained in the

succeeding paragraphs.

54

|<~— OPERATION—>|é— 1D~——3|~e— REGISTER ———34

Figure 3.2. Group (1) format.

Operation Codes. The ROM word consists of five octal-digits,
occupying a total of 15 bits. The first two digits denote the operation

code.

1. No Operation (NO OP)
Octal code: 00
Operation: This command causes a l-cycle delay in the pro-
gram before the next sequential instruction is
initiated. This command is used to add execution
time to a program. The NOP also provides the
programmer with a convenient means of removing
an instruction.
2. Subtract From the Accumulator (SUB)
Octal code: 01
Operation: The contents of the temporary register are
subtracted from the accumulators and thg result is

left in the accumulator and the original contents of

3.

6.

55

the accumulator are lost.

Subtract the Accumulator (SUB)

Octal code: 02

Operation: This operation is the same as the previous one
except in this the contents of the accumulator are
subtracted from the temporary register's contents.

Addition (ADD)

Octal code: 03

Operation: The contents of the temporary register are added to
the contents of the accumulator. The result of this
addition is held in the accumulaﬁo r, the original
contents of the accumulator are lost.

Complement Accumulator (CMA)

Octal code: 04

Operation: The contents of the ACC are changed to the two's
complement of the current contents of the ACC.

Increment Accumulator (INCA)

Octal code: 05

Operation: The contents of the accumulator are incremented

by one.

10.

11.

56

Increment Temporary (INCT)

Octal code: 06

Operation: The contents of the temporary register are incre-
mented by one.

Increment Programcounter (INC PC)

Octal code: 07

Operation: The contents of the program counter are incre-
mented by one.

AND

Octal code: 11

Operation: The AND operation is performed between the
contents of the accumulator and the contents of the
register denoted by the address field. This instruc-
tion is often called extract or mask, can be con-
sidered as a bit-by-bit multiplication.

OR

Octal code: 12

Operation: Same as above, except the operation performed will
be OR.

EXCLUSIVE OR

Octal code: 13

Operation: The operation here will be exclusive OR.

12.

13.

14.

15.

16.

57

COMPLEMENT

Octal code: 14

Operation: The contents of the address in the address field are
complemented .

Right Shift (RS)

Octal code: 15

Operation: The contents of the accumulator will be shifted to
the right one binary position and overflow flag is set
if there occur any-

Left Shift (LS)

Octal code: 16

Operation: The contents of the accumulator are shifted to the
left one binary position. Left overflow flag is sct,
if there occurs any-

READ (Memory Refference Instruction)

Octal code: 21

Operation: Information from main memory can be read in this
operation-

WRITE (Memory Refference Instruction)

Octal code: 22

Operation: Information can be stored in the main memory using

this operation.

17.

18.

19.

20.

Clear the Accumulator (CLA)

Octal code: 31

Operation: The contents of each bit of the AC is cleared
(made equal to 0).

Change the Signbit of Accumulator

Octal code: 32

Operation: The sign of the accumulator will be changed.

Clear Right Overflow Flag

Octal code: 33

Operation: Clears the right overflow flag.
Clear Left Overflow Flag

Octal code: 34

Operation: Clears the left overflow flag.

58

The third digit in the ROM word is the identification digit which

indicates whether the operation is right or left justified, whether the

temporary location is a data bus or a address bus and whether the

operation is on bus or off bus.

Table 3.2.1 shows a summary of the

action of W, the identification digit. The last two digits indicate the

3

register number.

59

Table 3.2.1. Significance of identification digit.

W3

ID Bits
Position

Significance

000
001
010
011
100
101
110
111

On Bus, Data, Right Justified
On Bus, Data, Left Justified
On Bus, Addr, Right Justified
On Bus, Addr, Left Justified
Off Bus, Data, Right Justified
Off Bus, Data, Left Justified
Off Bus, Addr, Right Justified
Off Bus, Addr, Left Justified

In addition to the above 8 registers, there are general purpose

registers, a maximum of 24, which will be denoted by W W _ from 09

4 5

to 32. Table 3.2.2 shows the registers and their names which will

be used in the MICRO.

Table 3.2.2.

Register names in MICRO.

WaWs

In Octal

Register They Indicate

00
01
02
03
04
05
06
07

Instruction
Accumulator
Memory Buffer
Memory Address
Data Temp
Address Temp
Stack Pointer
Program Counter

IR
ACC
MBBR
MBAR
DBUS
ABUS
SP

PC

60

One example of this type of instruction format is given below.

W, W,W,W, W, This can be translated as the addition of the

0 3 0 17 contents of the general purpose register 7 with the
contents of the accumulator and the temporary
register used for this is data register and the
transfer is right justified. In conclusion
[GP7] — TEMP

[TEMP] + [ACC] —> ACC

3.2.1.2. Group (2) Microinstruction Format. The group (2)

format is shown below in Figure 3.3.

|OP CODE |CONDITION j¢———— ADDRESS ——————>

Figure 3.3. Group (2) format.

In this the first digit W1 determines the kind of operation to be

performed and W_ determines the condition that needs to be satisfied

2
in order for the operation to take place and W3W4W5 constitute the

address of the ROM location, which will be used by the operation.

The various conditions of W2 are listed in Table 3.2.3.

1.

61

Table 3.2.3. Conditions indicated by conditional

digits WZ.

A

2

In Octal Condition Indicated

~N O~ WY = O

Unconditional
Right overflow
Left overflow
Sign positive
Zero

Index

Indirect

Sign negative

The various operations are listed in the following paragraphs.

JUMP

Octal code:

Operation:

. SUBJUMP

QOctal code:

Operation:

- RETURN

Octal code:

Operation:

4
Jump is the address indicated by the address field

when the accumulator satisfies the condition indicated

by the conditional bit.

SUBROUTINE JUMP, stores the present address of
the operation and jumps to the address indicated by

address field.

6

Return to the address indicated by the address field.

62
4. JUMPT
Octal code: 7
Operation: Jump to the address indicated by the address field
when the temporary register satisfies the condition

indicated by the conditional bits.

One example of group (2) type of microinstruction is
"43132" JUMP ON [ACC]> 0 to ROM LOCATION 132,. Table 3.2. 4

gives a summarized form of all the micro operations.

3.2.2. Description of Operation

The flow chart for MICRO is given in Figure 3.4. The control
section consists of 15 bit ROM, a ROM buffer (ROMBR), address
logic, and a ROM address register (ROMAR).

In the initializing process the size of the ROM and the contents
of ROM, the decoder values, (more detailed version of the decoder
and its importance will be discussed in the following paragraphs), the
size and number of general purpose registers, and the sizes of
instruction register, accumulator, main memory buffer, main
memory address register, temporary data register, temporary
address register, stack pointer of the ROM and program counter of
ROM will be read in. Also, the size of main memory and the contents

of main memory will be read in. Then the parameter for TIME, RUN,

63

Table 3.2.4. Summary of microinstructions.
Octal Operation
Code Type Description Called
WiW,

00 1 NO OPERATION EXEC (1)
01 1 SUB - [-T+ACC—ACC] EXEC (2)
02 1 SUB - [T-ACC—ACC] EXEC (3)
03 1 ADD - [T+ACC—>ACC] EXEC (4)
04 1 2’COMP [AC C->ACC] EXEC (5)
05 1 INCA [ACC+1=>ACC] EXEC (6)
06 1 INCT [T+1=>T] EXEC (7)
07 1 INCPC [PC+1=>PC] EXEC (8)
11 1 AND [T.AND.ACC—>ACC] EXEC (9)
12 1 OR [T.OR.ACC—ACC] EXEC (10)
13 1 XOR [T.EOR. ACC—>ACC] EXEC (11)
14 1 COMP [ACC—>ACC] EXEC (12)
15 1 RS [RIGHT SHIFT ACC BY ONE BIT] EXEC (13)
16 1 LS [LEFT SHIFT ACC ONE BIT] EXEC (14)
21 1 READ EXEC (18)
22 1 WRITE EXEC (19)
31 1 CLA [0=>ACC] EXEC (26)
32 1 SB—>SB [SIGN OF ACC IS

COMPLEMENTED | EXEC (27)

33 1 0—> RO EXEC (28)
34 1 0—>LO EXEC (29)
Wy

4 2 JUMP NONE

5 2 SUBJUMP NONE

6 2 RETURN NONE

7 2 TJUMP NONE

(START >

INITIALIZE

=

CALL
GETMIC

OF INSTR,

YES
PROCEED? 7
NO

STOP >

Figure 3.4. Flow chart for MICRO,

64

NO

ABUS > R
L.J

YES

NO
NO YES
YES YE
NO W<s S
3
DBUS-> R DBUS = R
L] R.J
ABUS => R
R.J
CALL
EXEC

Figure 3.4. Continued.

65

R —>BUS
R.J
R —> DBUS
L]
NO
t R —> ABUS
L]
YES
/

R-> ABUS

.

TEST TEST
CONDITION CONDITION
SJUMP=
.TRUE,
> =
6 ,| FJUMP=, TRUE,

ADDR

=WW W
3

Figure 3.4, Continued.

66

TEST
CONDITION

RETURN=
. TRUE,

v

JUMP= ., TRUE,

Figure 3.4. Continued.

i~

67

68

PRINT will be read in and corresponding flags are set. Then
SUBROUTINE GETMIC will be called to fetch the instruction.

The flow chart for GETMIC is given in Figure 3.5. In this
subroutine, the IFETCH flag is checked to see if the instruction
register already has the main memory instruction loaded in it, in
which case the subroutine DECODER will be called to calculate the
address of ROM instruction and will be placed in ROMAR. If IFETCH
is not set, then the fact whether it might be one of the group (2)
instructions is verified. In case of JUMP instruction, the address
of the microinstruction to where the jump operation need to take
place will be placed in ROMAR. In case of SUBJUMP instruction, the
contents of the program counter will be saved and the address of the
ROM location to where the SUBJUMP need to take place will be loaded
into ROMAR. In case of RETURN instruction, the contents of STACK
which are previously saved by SUBJUMP will be loaded into the
ROMAR.

Once ROMAR contains the address of the ROM instructions to
be performed next, the instruction will be read into ROMBR and it
will be decoded into five octal digits. The control returns back to
MICRO with these five octal digits.

Hence, once an instruction from ROM is fetched in, the left most
two digits are used to determine whether the instruction is HALT or

GROUP (1) or GROUP (2). In case of HALT the program prints out

STACK=ROMPC

SJUMP=FALSE.

CALL DECDR

N°<>ES
RETURN [
\4

ROMPC=STACK

FJUMP=_FALSE.

ROMAR=ROMPC+1
————>1ROM [ROMR] = ;<__®
WWWWW

123 45

RETURN

Figure 3.5. Flow chart for GETMIC.

69

70

the results depending upon the type of printout desired by the user
(more details about this will be discussed later) and then stops. In
group (1) microinstruction, the left most two digits indicate the type
of operation to be performed and the third digit indicates the right
or left justification, the type of temporary register to be used and
direction of flow of information. The right most two digits constitute
the address of the register to be used to perform the operation. In
this type of microinstruction set, all operations are performed
through temporary registers. For example, in this particular micro-
instruction ''21603'" information is first transferred from temporary
address register to memory address register and the transfer is right
justified, then the contents of the address stored in memory address
register are loaded in to the main memory buffer by the execute sub-
routine.

In summary —

21603 —» | ADR TEMP —> MBAR

—
MMBAR MBBR

| NS,

All the operations in Group (1) microinstructions are performed
by the EXECUTE SUBROUTINE.

In this subroutine the first two digits are used to calculate the
operation number and it will be executed and the control returns back

to micro. After performing group (1) operation, the results are

71
printed according to the wish of the user and the next microinstruction
will be fetched in by the subroutine GETMIC if it is a FREE run. If
it is a STEP run, the control waits for the command by the user to
proceed further.

In case of Group (2) microinstructions, the first digit from the
left denotes the operation to be performed and the second from the left
denotes the condition to be satisfied in order for the operation to take
place and the right most three digits constitute the address that will
be used in performing the operation. Once group (2) operation is
performed, the results are printed according to the instructions of the
user and the control returns back to GETMIC subroutine if the instruc-
tion is a FREE RUN or waits for the proceed command if it is other-

wise .

3.2.3. Decoder

Unlike the other kinds of microinstruction simulators, this
MICRO does not assume the instruction formation of the emulated
machine. The user is at liberty to use any kind of format he wishes
to. In the initializing routine which takes place in the beginning of the
program, the values which denote the number of bits from left, that
constitute the operation code in the instruction format DN, the offset
parameters D1 and D2, with which the programmer wishes to locate

his microinstruction in ROM, the index, indirect and page bits and

72

the size of the address field IAD will be read in.

The flow chart for DECODER SUBROUTINE is given in Figure
3.6. The function of this subroutine is to calculate the address of the
microinstruction in ROM from the main memory instruction which is
in the INSTRUCTION register IR, using the parameters DN, D1, D2
and with the operation code of the instruction in IR. The address
field of the IR is used along with index, indirect and page bits to
calculate the address in the main memory where the instructions
store or retrieve data, and this address is stored in the temporary

address register.

3.2.4. Free Run and Single Step Run

MICRO can be run either in FREE RUN or in SINGLE STEPRUN.
In case of FREE RUN, the program will be executing the instructions
from the main memory using the ROM microinstructions until it
comes acorss one of the following three conditions.
1. When it finds a HALT in the ROM's microinstructions which
is indicated by the left most two digits of the microinstruc-
tion equal to 77.
2. When the clock, which is set in the beginning of the program
to certain value, exceeds that value-
3. When it finds a HALT instruction in the main memory and

executes that using ROM microinstructions, in which case

START

GET
OPCODE
FROM IR

ADDR=
OPCODE*D14D2

SET
IDENTIFIERS

RETURN

Figure 3.6. Flow chart for DECODER,

73

74

the microinstruction HALT will be met.

In case of SINGLE STEP RUN, the program will execute every
microinstruction from ROM and will wait for the proceed command
from the user, which is done by typing 'P'. If it does not get the
proceed '"P'" command, the program stops execution. The other
times the program comes to a stop is when the clock time limit
expires or when it sees a HALT in ROM microinstructions. SINGLE
STE RUN is very useful, when the user wants to examine the actions
performed by each microinstruction on line before he does nest one,
which is generally done while debugging. The FREERUN is useful
when he is not running on line and when he is running his data and the
program in the input form of card deck or when he wants the program
to run for certain clock pulses.

To set the run of the program for either FREE or SINGLE STEP
the following procedure is followed. In the initializing routine after
reading in ROM size and contents, decoder values, size and number
of general purpose registers, sizes of other main registers and size
and contents of main memory, the following parameters will be
requested by the program.

TX The number of clock pulses, the program needs to run-.
(sets clock The default value of the clock is 50.

value)

75
F1 By setting this equal to zero, the program will have
(sets the FREE run. Any thing more than zero the program will
run flag) have SINGLE STEP run. If no value given, the system
will have FREE RUN.
R1 By setting this equal to zero, the values of the registers
(sets the will be printed for every ROM's micro instruction. By
print flag) setting this to any other value than zero, the values of
the registers will be printed for every main memory's
instruction. If no value is given the print out will be
for every ROM microinstruction.

The clock is updated after every ROM's instruction.

If each ROM's instruction execution is considered as one minor
cycle and each main memory's instruction execution is considered as
one major cycle, then the system's clock is updated for every minor
cycle. Every major cycle consists of two parts, EXECUTION and
FETCH. FETCH consists of four minor cycles and EXECUTION
consists of more than one minor cycle. So for every machine's
instruction, the system goes through a maximum of one major and
minimum of six minor cycles. If the clock is set to 40, the program
goes through 40 minor cycles and if PRINT FLAG is set TRUE by
setting R1=0, then the print out will be for every minor cycle other-
wise it will be for every major cycle. Minor cycles consist of two

pulses and they are shown below for Group (1).

76

R~ TE.}\/IP(i)

!
[
I
| TEMP [(i) < R
T, | e
' ’ | DATA (T .OPERATION. ACC -> ACC)
' I
| | ADDR (READ/WRITE)
T T T
1 ONE MINOR l
' cvcLE

!

Figure 3.7. Time pulses for group (1) microinstructions.

Every minor cycle consists of three pulses for group (2). They

are shown below in Figure 3. 8.

ONE MINOR CYCLE

[
|
| LOAD ROMBR !
I R ~> TEMP |
TEMP—> R
T ' l
0]
l %
| TEST CONDITIONS
|
\ ‘
T, ;
| |
[| SET ROMAR
}
T " S
2 { !
[|

Figure 3.8. Time pulses for group (2) microinstructions.

3.2.5. Trace Feature

The MICRO is provided with a trace feature which allows for
easy troubleshooting of the program. This feature produces output of
considerable amount and should be used only if necessary and should

be used with the knowledge of what that printout means. This prints

77
series of information as it processes every ROM instruction
regarding the HALT test, the register number that will be used for
the transfer of data, the kind of justification, the type of execution to
be performed etc. A copy of the trace printout is given in

Appendix B.

3.2.6. How to Use MICRO)
N

MICRO can be used online or offline.

3.2.6.1. Online Cperation. Every user will be provided with

a user number, password. Using these he can log on the KRONOS
system, the system will respond by the message "READY"".

He can use the EDIT and edit his two input files, one consisting
of all the information regarding ROM, all registers and decoder values
and the other containing of main memory information. Let us say the
first file is on TAPEl, and second file is on TAPE2. Usingthe GET
or OLD command he had to call the BMIC (Binary coded MICRO) and
then the following commands will be given.

/BAT CH, 50000
The system responds with

/RFL$50000

The user types

78

> ROM,DECODER, REG
MAIN MEM
ROM PRINTOUT
TRACE PRINTOUT

/BMIC, , , TAPEL, TAPEZ, TAPE3, TAPE4
Here the output will be the terminal itself.

Then the system prints out the main memory contents in both
octal and decimal and comes back with a question mark for the
parameters TIME, TYPE OF RUN, TYPE OF PRINTOUT-

The user types

? $540,8,0

The time is a four integer variable so it needs to have four
characters and hence the blanks are included, the type of run is STEP
run and the printout is for every minor cycle. So the program will
wait for letter 'P' after every ROM execution and pr‘intout. If a
carriage return is given instead of 'P' the program terminates. Here
the clock value is 40. |

3.2.6.2. Offline Operation. The JOB DECK set up will be the

following.
JOBIDEN, CM55000,T100-
ACCONT, [USER NUMBER], [USER PASSWORD|.
GET,BMIC.
BMIC, ,TAPES,,,,, -
7

%

79
[TAPE1]
[TAPE2]
[TX,F1,R1]
6

%

3.3. Example--Emulation of PDP-8

The level of microprogramming used in this MICRO is the
same as that of the ''user microprogrammable' minicomputers and
micro processors. Actually the only distinction between this level
microprograms and machine language lies in the fact that the instruc-
tions reside in a separate control memory (ROM) and can not be
loaded with the data as one usually does with machine instruction.

As an example, a partial emulation of DE’C—PD'P~8 is shown. A
general block diagram of simplified PDP-8 is given in Figure 3.9.

The PDP has a 3 bit op code field. Six of the 8 possible
op codes correspond to the memory reference which store or retrieve
data from the core memory such as: Logical AND (AND), two's
complement Addition (TAD), Increment the Memory Location and Skip
on Zero (ISZ), Deposit and Clear Accumulator (DCA), Subroutine'
Jump (IMS) and Unconditional Jump (JMP). The remaining two O'I')

codes correspond to an I/O instruction and two 'microinstruction'’.

MBBR<0, 11> IR<0, 2>
[CONTROL
— : D<0> =

N _\—E :ﬁ

M=M,M_,.. ,M <0, 11>
1’ 2’ H 4096(Mi 0’ 11)
MAIN MEM
<
MAR<Q, 11>
PC<0, 11>

e

, Acc<o, 11>

]

12's COMP,ADD

p———— SHIFTER

Figure 3,9, DEC-PDP-8 systems block diagram.

80

81
The PDP-8 basic processor is a simple address, fixed word
length, parallel transfer computer using 12-bit, 2's complement
arithmetic. This consists of 3 major cycles: Fetch, Defer and
Execute. Each major cycle is divided into 3 minor cycles. The defer
cycle handles one level of indirect addressing. The ''microinstruc-

" consist of instructions which can be executed in one minor

tions'
cycle (e. g., complement accumulator, etc.) and hence can be over-
lapped within one execution major cycle.

The PDP-8 in Figure 3.9 has 4096 words of memory. The

instruction format is shown in Figure 3.10.

OP CODE I P ADDRESS

0 1 2 3 4 5 6 7 8 9 10 11
(a) Memory reference

o1 1 1| 0 |CLA|CLL{CMA]|CML |RARO/1 |0/1 |IAC

(b) Type (1) MICRO instruction

SKIP FIELD

1)1 11 1 lcLa ' OSR |HLT | ©

0 1 2 3 4 5 6 7 8 9 10 11

(c) Type (2) MICRO instruction

Figure 3.10. PDP-8 instruction format.

82
As an example we will microprogram a simulator for the PDP-8.
Only a partial simulation will be shown as an example. Inthis case

we have to set up the DECODER parameters as

DN=3 The number of bits that represent the op code.

D1=5
D2 =5

The offset parameters
IAD=9 The number of bits that represent the instruction
register.
The index, indirect and page bits are set to zero values in order to
simplify the simulation process but otherwise they can be used too.
That operations that we emulate are listed in Table 3.3.1. The
octal ROM locations for example for TAD is = 1 x D1 +D2 = 10. At

h
lOt ROM location the execution of TAD will start.

Table 3.3.1. Operations emulated.

IR Operation
000 AND

001 T AD

002 ISz

003 DCA
004 JMS

005 JMP
006 p~INS
007 HALT

The sizes of the necessary registers such as ACC etc are set to

12 bit each and they are denoted as follows in Table 3.3.2.

83

Table 3.3.2. Notation of registers.

Register

Number Type of Register Size Name
00 Instruction 12 IR
01 Accumulator 12 ACC
02 Main memory buffer 12 MBBR
03 Main memory address 12 MBAR
04 Data temp 12 DBUS
05 Address temp 12 ABUS
06 Stack pointer 12 SP
07 Program counter 12 PC

Table 3.3.3 shows different operations of PDP-8 that are
emulated using MICRO and the contents of various ROM locations
that process the operations. Only partial emulation is shown here-
The details omitted include the setting of page, index, and indirect
bits. At present they were set to zero.

Only the memory reference and housekeeping instructions were
shown, the rest of augumented instructions are omitted for the
present example. The input/output instructions that allow the
program to converse with peripherals, i-e., external communication,
is omitted.

Using the ROM shown in Table 3.3.3, a small addition of two
signed numbers is done and the output with trace feature is attached

in Appendix B.

84

Table 3.3.3. ROM for [DPD-8].

ROM ROM Register Transfer Operation
Location in Octal of Emulation of PDP-8
1 07207 PC —> ABUS, PC+l —>PC
2 riens mws—wman o
3 00002 MBBR —> DBUS
4 00400 DBUS —> IR J
5 21603 ABUS —> MBAR]
M, pag —> MBBR
6 11002 MBBR —> DBUS AND
DBUS.AND.ACC—>ACC
7 40000 JUMP TO FETCH J
10 21603 ABUS —> MBAR)
M, g ag > MBBR
11 03002 MBBR —> DBUS ¢ TAD
DBUS+ACC —> ACC
12 40000 JUMP TO FETCH |
13 00000
14 00000 N
15 21603 ABUS — MBAR
Mg ag —> MBBR
16 06002 MBBR —> DBUS,
DBUS+1 —> DBUS
17 22402 DBUS —> MBBR } ISZ
MBBR —> M, o, o
18 74043 IF DBUS=0, JUMP TO
35 location in ROM
19 40000 JUMP TO FETCH)

85

Table 3.3.3. Continued.

ROM ROM Register Transfer Operation
Location in Octal of Emulation of PDP-8
20 31001 ACC —> DBUS, 0 —> ACC)

21 00402 DBUS —> MBBR
22 22603 ABUS —> MBAR ' DCA
MBBR ~> M/ p
23 40000 JUMP TO FETCH B
24 00000
25 00007 PC —> DBUS)
26 00402 DBUS —> MBBR
27 22603 ABUS —> MBAR
MBBR —> M\ /5 ¢ s
28 06005 ABUS —> DBUS
DBUS+1 —> DBUS
29 40045 JUMP TO 458=37th location
in ROM J
30 00005 ' ABUS —> DBUS
31 00407 DBUS —> PC \ IMP
32 40000 JUMP TO FETCH
33 00000 J
34 00000
35 07000 PC+l — PC Rest of the
36 40000 JUMP TO FETCH pr‘;;;tion
37 00407 DBUS —> PC 1 Rest of the
38 40000 JUMP TO FETCH | pr‘}rl\zgon
39 00000 |

40 77000 HALT HALT

86

3.4. Conclusion

Using MICRO any general purpose computer can be simulated.

Also any microprogram can be simulated. The user can easily study

the performance of a number of systems. As he becomes more

familiar with better usage of this, he can change his system with no

more trouble than editing his data file.

If MICRO were to be rewritten the following changes are

suggested.

1.

At present the interactive feature of MICRO is poor. There
has to be some statements included in the printout to make
the user aware of what is expected to be entered in, if the
user is ONLINE. For example, in the very beginning of the
program, the data needs to be eﬁtered is "ROM SIZE'", which
should be printed by the terminal. But right now this is not
included and it will be nice if it is added. In essence, more

information needs to be included in the output.

. External communication--MICRO does not contain any

means to specify which peripheral the program wants. It
will be better if there is any means along with the I/O

interupt incorporated along with it.

. MICRO is currently capable of only single address instruction

with modifiers.

4. MICRO's output prints every register in a fixed format,
which is a little awkward. It will show better if the leading

zeros are suppressed.

87

88

IVv. CONCLUSION

The REGTRAN language is fairly easy to learn for anyone who
is familiar with FORTRAN or a similar high level language. The
interactive capability of SYSSIM provides an efficient way for the
digital system designer to debug his design before working out the
detailed logic design. These two programs can be used in teaching a
course in digital system design. A student of logic design, can
debug his network with little effort by simulating it using these two
programs- To learn design techniques, digital systems ranging in
complexity, may be described and simulated. As the student becomes
more familiar with better techniques, he can change his system with
no more trouble than editing his data file. .

The present version limits the number of bits per word to 58,
the numbered memory words to 8192 per memory, and the total
number of registers and terminal names to 500. Conversion to run on
a computer other than the CDC 6600, requires some changes in the
production tables symbols and the ASCII comparison of the symbols
in the REGTRAN and SYSSIM programs. Also other several changes
have to be made because the programs make extensive use of the
60-bit word length. Transfer to a computer with a shorter word
length would reduce the permissible length of registers, terminals

and memory words Alphanumeric characters are also packed ten per

89
word, so conversion to another computer would involve a change in
many FORMAT statements. Many out put routines require the use of
variable FORMATS, so another method would be needed, such as
multiple FORMAT statements, if variable FORMAT was not available.

If the programs were to be rewritten, several changes would
probably be made, which were given at the end of Chapter II.
REGTRAN language is easy to learn but the generation of FORTRAN
by REGTRAN is such a complex process, that it will not allow not even
a single mistake in the creation of the source file in REGTRAN
language. A single error in the source file can completely wipe off
the FORTRAN thus generated, which causes termination of the whole
process of execution. So in creating the source file the user has to
be very observant, not to make a minute error. Also, they have to
frame their problem and describe in a way so that mixed operation
logical and nonlogical statements will not be generated. As described
in Chapter II, this problem happens due to the'change of compiler
from RUN compiler to FTN compiler. REGTRAN and SYSSIM are
functional at present but can be made more efficient, if more flow
charting and explanation of some routines were available.

MICRO --a simulator for a simple microprogrammable computer
is very useful as REGTRAN and SYSSIM can not simulate any micro-
instruction, thus this is achieved by MICRO. The microinstructions,

which are simulated by MICRO are similar to machine language

90
instructions. This level microprogramming is typical of that used in
"user microprogrammable' minicomputer and microprocessors.
Actually the only distinction between this level microprogram and
machine language lies in the fact that the instructions reside in a
separate control memory (ROM) and can not be loaded with the data
as one usually does with machine instructions. To demonstrate the
features of MICRO, a partial simulation of DEC PDP-8 is shown as
an example. Unlike some of the other simulators, that existed so far
for the simulation of microprogrammable computers, the MICRO will
not assume the FORMAT specification of the machine, which it will
be simulating. This provides the user with a flexibility of assigning
the FORMAT specification fitting to his own problem. The size of
ROM, main memory, all the eight system registers, the general pur-
pose registers are all left to have flexible dimension for the same
reason. Other options in creating the main memory include features
such that an input format of one card can control the rest of the main
memory. A star '*' in the input field will clear the rest of the
memory locations.

The method to use the MICRO is very easy and is flexible in its
application. Adding a new register, arithmetic or a test condition
etc. can be done without any difficulty and can be done by adding one
more routine to EXEC subroutine and very little changes in the main

program are needed.

91

A tradeoff exists between the various levels of microprogram-
ming. The higher the level, the easier it is for the microprogrammer.
The decode and timing logic becomes more complex as the language
used moves from direct to encoded to high level.

If MICRO were to be rewritten then the changes that would be
made include (1) better interactive feature which allows the user to
change his files, whenever he wises. (2) A better print out which
gives more information than at present- (3) The input/output
interrupt feature incorporated with user specified devices.

In conclusion MICRO can simulate successfully the specified

machine but it can be made more efficient.

10.

11.

12.

92

BIBLIOGRAPHY

I.S. Reed, Symbolic Design Techniques Applied to Generalized
Computer, M.I.T. Lincoln Lab., Lexington, Mass., TR No.
141, Jan. 3, 1957.

I.S. Reed, T.C. Bartee and I.L. Lebow, Theory and Design of
Digital Systems, The McGraw-Hill Book Co., Inc. N.Y., N.Y.
1962.

I.S. Reed, Symbolic Synthesis of Digital Computers, Proc. ACM,
Sept. 1952. PP 90-94.

H. Schorr, Gomputer Aided Digital System Design and Analysis
Using a Register Transfer Language, IEEE Transactions on
Electronic Computers, Vol. EC-13, Dec. 1964, pp. 730-737.

K.E. Iverson, A Programming Language, Proc. of 1962 SJCC.

K.E. Iverson, A Common Language for Hardware, Software and
Applications, Proc. of 1962 FJCC.

K.E. Iverson, Programming Notations in System Design, IBM
Systems Journal, June 1963.

F.J. Hill and G.R. Peterson, Digital Systems: Hardware
Organization and Design, Wiley, N.Y. 1973.

Y. Chu, Computer Organization and Microprogramming,
Prentice-Hall, Englewood -Cliffs, N.Y. 1972.

Y. Chu, Design Automation by the Computer Design Language,
Technical Report 69-86, Computer Science Center, University of
Maryland, March 1968.

Y. Chu, A Higher-Order Language for Describing Micropro -
grammed Computers, Technical report 68-78, Computer Science
Center, University of Maryland, Sept. 1968.

Y. Chu, Structure of CDL Programs, Technical Note 74-58,
Department of Computer Science, University of Maryland, May,
1974.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

93

Y. Chu, An ALGOL Like Computer Design Language,
Communications of ACM, Oct. 1965, pp. 607-615.

J Lund, LOGAL-Logic Algorithmic Language, Univac Tech.
Memo A00317, March 5, 1973, Reseville, Minnesota.

H.P. Schleppi; A Formal Language for Describing Machine
Logic, Timing and Sequencing (LOTIS), IEEE Trans. on
Electronic Computers. Vol. Ec-13, Aug. 64. pp. 439-448.

D.L. Parnas, System Function Description ALGOL, Ph.D.
Thesis, Carnegie-Mellon, Univ. Pittsburgh, Pennsylvania, Feb.
1965, Dept. of Elec. Eng.

J. A. Darringer, The Description, Simulation and Automatic
Implementation of Digital Computer Processors, Ph.D. Thesis,
Carnegie-Mellon Univ., May 1969.

J.A. Darringer, A Language for the Description of Digital
Computer Processors. Proc. of the Design, Automation Work-
shop, 1968. pp. 15-1 to 15-8.

J.A. Darringer and D. L. Parnas, More on Simulation Languages
and Design Methodology for Computer Systems. Proc. Spring
Joint Computer Conference, 1969.

J.A. Darringer and D. L. Parnas, SODAS and a Methodology of
Systems Design, Proc. FJCC, 1967.

J.A. Wilber, A Language for Describing Digital Computers.
MS Thesis, Dept. of CS, Univ. of Illinois, Urbana, Feb. 1966.

A Giese, HARGOL - A Hardware Oriented Algol Language,
Copenhagen, Denmark, A/S Regenecentralen, Feb. 1969.

C.G. Bell and Newell, Computer Structures: Readings and
Examples, McGraw-Hill, 1971.

C.G. Bell and Newell, Register Transfer Design: Computers
and Digital Systems Using the PDP-16, Digital Press, 1972.

M.B. Barbacci and D.P. Siewiorek, Automated Exploration of
the Design Space for Register Transfer Systems. Proc. of the
lst Annual Symposium on Computer Architecture, Gainesville,
Florida, December 1973.

26.

27.

28.

29.

30.

31.

32.

33.

94

C.G. Bell and A. Newell, The PMS and ISP Descriptive
Systems for Computer Structures. Proc. of 1970 SJCC.

M.J. Knudsen, PML - An Interactive Language for System-
Level Description and Analysis of Computer Structures. Ph.D.
Thesis. Dept. of CS. Carnegie-Mellon Univ.

M.B. Bany and S- Y.-H. Su, A Digital System Modeling and Design
Language. Proc. of the 8th Annual Design Automation Workshop,
1971.

S.Y.H. Su, A Language for Automated Logic and System Design.
Workshop on Computer Descriptive Language. Rutgers Univ.,
New Brunswick, N.J. Sept. 6-7, 1973.

D.L. Dietmayer and R.L. Arndt, DDLSIM - A Digital Design
Language Simulator. Proc. of NEC, Vol. 26, Dec. 1970.
pp- 116-118.

J.R. Duley, DDL - A Digital System Design Language, Ph.D.
dissertation, University of Wisconsin, Madison, 1967.

J.R. Duley and D.L. Dietmeyer, A Digital System Design
Language, IEEE Trans. on Computers. Vol. C-17, Sept. 1968,
pp. 850-861.

C. E. Peet, Jr., A Register Transfer Simulator for
Digital System Design. M.S. Thesis at the University of Texas
at Austin, 1973.

APPENDICES

APPENDIX A

95

' PARALLEL ANNFA=-SUGTRACTER S . -
<TE> X (12), Y(i?"r‘td).S(i’)'Ati’in {12)4CVERFLC
yrEFN<cSY> MISSIMG

TUNYEERSYSTEN Name MISssTNg T
LA &R0 Y= —ARK O A% (-K), e e
ClL2) = %14y,
L BM0T11Y =XeAeY (0.XJACLI1D) SO Y ALCURYE2),,
S = X.E.Y.E.C(1€12)'
P OVERFLO = XC01EYLI0M) =300 ¢ -X(0)*-Y()*S(N)

TIME TO CCMEILE REGTRAN PROGRAM = 1,160 SECONTS

CSURACUTINE CONTROL 7 7
HRITE(7,1) !
1 FORMAT(SX,L7HE¥F¥E3SYSTSH <UNKNC CONTAINEC A FATAL ERRCP®¥¥*¥)

TRETUAN

ENe . —

1
R O PAQALL‘L ABDER SU“T?ACTE? o et i e
7 <SY> PAS
. e STRD> X12),Y(129,C013),3(12),A0182),K(12),0VERFLO
¢ <05 Y= -p%¥K & ¥ (<K,

Lo 2y =y, -
0(0'11) =XeNe Y «0XeACILL2) 00 Y A C(i‘i?)y

Fv}‘F.Y-ﬁ.C(iti?)' - .

VOOVECFLO = X(O)*Y (M ¥~5(0) + =X00) - Y(D)*\(ﬂ)

N

TIME TO CCMPILT REGTRAN PRNGRAM = 1,184 SECONDS

T S yg TEM STMULATICN PROGRAM T -
_2CNLINE

TYIPRINTLISTIEZ (B, 1))
>2tGrAD(YQTFF(091))X Av

>11PRINT(TSTFPLO,0Y) DEG(S) ,OVERFLO
¥uexx(4ST NUMEFR TN TSTEP 15 25RO

£LS),QVERFLO

PIIRUNLTIME LECL U)
READ X A X B e
17,28,0
S = 45 DQVESFLO=D e
READ X A K
Lodad,bnes e e e oo
S =ho9L T OVERFLO=C
_READ X A K e
2048,1,4005
B "”»"‘UPF [OF LO(‘PC rych‘]vac“.v‘ 1UA
s =2047? OVERFLO=1
>LOCP 50
TUIRUN T
READ X [4)) R
2048,1,40695 =
S | =2047 - OVEPFLO=1)
_ READ X h K
T 40C%4,4091, S
e -unoz TOVERFLG=0)
»TRACELRTG

i
i
!

.

¥¥EETESYNTAX ERROR

*TROCE REG

OB NN D

AGe0dddonoaro0andany

CCNIENTS

- pB0eA0NENI0I0DINTT TS

ana3n0p0as035nrIRs177706
0aNo0NaC0d000NNL77 74

T pnp000NecRINCRNTITY

700000000000 I0239909

pONNGA0003N90NNN7778

12 CVERFLC 070000000000 G00030000
2TRAGE CM

'”r-~1Y¢E=3,cvnass=)

}

F2ITYPE=*,0pOAS

C2RUNCTINE JFC,5)Y e
¥ TYPESL W PHIBSE=TIME
¥ <o TYPE=h FHR AT

®enJYRE=2 FHRACE= 5

evoLABEL =
READ X
TRBGE CFF

TTHLSYYPE: 1.rw?Aqr YRACEOFF

3 e anna
A K

FEXERTIY PGAIN

T14340

Le-TYPE=2,PRRASES

enTYPEZZ ,PHRASES,
¥o=TYPE =2 (FHRASF= 3

CILTYPEE3, PPRASES
_#==T1YPE=2,FHRASF= 0
oo TYPE=3 ,PERASES

IR

S =

TYTRACE OFF

JOVEFFLC=0

97

SU3IDUTINT CC43INL

__INTZGER DECONER

INTESGT R UKFF

INTEGIR RP4RT
_LOGICAL CHMG,SSRERUL

TTEO4AONs FEC/NAMES (5300 aNB(53301 sRP (U 5A0)4RT(500) 4NON,CHNG(SSRERP,
€CCOD

COAIOM/ZTEMPZ L2, L1207
RTC &) =RPL") JANBL 2200 ["Q‘O"OLOGJJCLB N

IF (B 6) WNZ.RTC "6)) CHYG=.TRUE.
RP(6) =RTIU 6)

RETURN : .
END

SU3CUTINT CONTROL

LOSICAL CHMG,SSREIRR,CAMT2R,CC0O0
INTZGER RO,LRT

COON /3EG /4 AHES T BT AT G iT1 RBT 331 RTC 5357, NON, CHNG, SSRERR,
$cCco9

CONONZ AATN/KARD(37) L NCA,XP ¢ COMIRR,TELE 4 KHAR, PHAASE, TYPE TR, ¥LOOPS

WP { 2)=0D(RP(1)~-1, 1)

RTH <y =3Pt 2)
IF (.NOT.CCOD) GO TI 7

TTEEN=UFALSEL
NL 37P=0

§ CHIG=.FALSE.,

CALL £OMBOOL

7

NLJ3JP=ML.COP+L
IF _(NLOJPLGT.MLNOOPS) 63 TOQ 20

IF (CHNG)Y GO TO 6
CONT INUS

12

nH 1) I=1,N0N
WLTI=RT (1)

ENTXY BOCLEAN
CCID=,FALSE.

i5

NL), P=8
CHNG=.FALSE,

cALL cCueont
NLOOP=NLCNH+1

IF (NLOIP.GT MLOOPS) 60 T2 2¢
IF (CHNG) GO 10 15

20

RETURN *
CALL ZRROR(3543, MLODPS)

RETURN
END

SU3INUTINS AEGSET

LOGICAL LHSKERR

COWWO”/{EG/HAMCS(578N SCQ)Aagiwﬁﬂc),RT(SCG"NCNJQEHQL§§E§3&1
T8ccIn

rOWVON/“fV/MEHNA(ﬁ)gM ANBIB) 4 M C'SI?(G),”OW

TTTRAYA MO/ b4

DATA NC'/ 7/

DATA MAAES(1) 4N3(L)/LHTINE

y 21/

LUDAFA MAMES(204NIC 2V/1H v A/
DATA NAMESH 31 4 NI 3V/iCH, [} “5/

_DATA NAMESE 6D 4N3C 40 /17 , 1/
DATA “AMES(5) 413(5Y/1°H . L8/
DATA HANES 6§13 ") /1 7HX) i/ *
OATA NAYMESH 7Y N3 7)/17HY ’ b ¥4

RETURN

END

98

FUNTTION APAT(MEMNWORD)

COMMONSACN/MEMUA [5) , M1 3 () dMEMSIZ (B s HCH
_COMMONZAATM/KARD (37) 4NG2 4 <P, COMIRR, TEL
LOSTICAL TELS) T - -
1) vp2A=2

KHAR y PHRASE , TYPE 2TRLMLO0PS

REFURM
£ND

SUIRNITINE MSET(HMIM, NWD20D,MNAT)

COMMON/MEN/MEMNA (3) yMEMHLR) 4 MEASIZ (6 4NCH
10 RETURN

END

SU3VYTING MDATA
RE TURN
END

99

o SYSTEM SIMULATICH PROGRAM
L2CNLINE

>1SIlPUT(T91‘”(D 1)) (= G 0 1 1 ﬂ 111 1,1,010 1, s 1)
O X2tDUSPLAY X 8304 Cy 7 . e e
- DISRUNITIVE (ENL16)

i-x b B C Y . —
vvvvv i- 00800 ~ : ;

i- 001 1090

i-.1 06110 B R . i

j- 111 10D

4- 01001 - .

i- 1 0101

1- 11110) o

i- 112001

i~31 11008 N e

i- 011010
1= 0p 100 -

i- 1031 19

i- 01411090

i- 10101
T IS S

i-11¢0¢00
2END I
_«SY> SEQORNT U
<TE> 71,[?,X,“X‘K JC,J\1 Z

_SRE> A,3,C - - .
<RC>

4 NXT=X, o S e
¢ 2i=-{-N*A¥- 3).

8 Z2= = (XY-AXEBR-C)y R R
4 T=-(Z21%22),

b KRz =X -A4=Cl,y -
4 JCi"‘.(p"’ XYy

4 Jn=E-1ARJC1) . -

<AU> ASG

 <ST> ATJKFFUA, X NYD U

BzJKFF(B,14KRY,
L= JKFF (L,)G A) —— et wompat o

<EN

TIME YO CCMPILE RFGTIR

AN PR0GRAM = 1,346 STLONDS

100

SUSRCUTING COMB0OL
THTCGER JKFF
INTEGE® DECNNER
INTZCER RP,RT
LOGICLL CHNG,SSRERP

COMMCH ZREG/NAMES (5R M) 13T

ceen

sl

COMMCN/TEMP/S(200) ,L(200)

Jt 11=,MOT.ROL

3y LAMO,COE0G0RAG00I03000001R

BT\ RO T S007 sRTC 5000 ,RONsCHNG, SSRERR,

RT (@1 =4t 1) JAND,000003235005998969013

TFIRPC . 9) W NELRTC 9y) CuGE.TAVE._

rRe(€l =RTC 9y ’

JU 41=.NOTLRPL 8) L AND.CABT0C0D00AICNG00001D .
JU 11=4t 1) JBND. ROC 493

JU 21=,NM0T.&>(15) LAND.£20700002000000000018 o)
JU 1=t 1Y JANT, Jt)

SU_ $)=.M0To gt 1) _4340.07090990800200€020043 e

RTC &Y =34 £ JAND.CD00COCO0000000000018

IF(2PL 6) WNELRTC 6)) CHAG=WTRUE. .

RPL E£) =RT(&)

JU 112, NCT.RPL 143 ,ANC.000700000008000980048 . .
JU T 11=3PC 8) LAND. Jt 1)

JO_ Av=Jg0 %) WAND. RPU 151 i

T2 = NCTLRA(16) L AND.000300890007000030048

JU =4t 1) JAND. 2) : e
JO 7 11=.H0T I 11 L AND.0509000003000060C0013

RYL 71 " =J(1) L AND.00CREIN00700000003013 il
IFP(71 JNELRTL 7)) CHNG=.TRUE,

RP(__ .70 =RTL 71

Jt 1)1=RP(6) JAND, k2 (7
JU f)y=NOTout 1) . ANG. £080060000030%0000018 T
RTU 13 =JyU 1 JAND. G3000N000NN000020001B
CIFLRREC 1) .Nﬁ.QT(-.13);:[”CPNG?51RUE.>“” :
RP{ 13) =2T7C 1) e
30 %) ,ANC,.000210000302060080018
JU) L ANDLCDO0D00000003080700018
Jeoo ORe 2y s
J(2)=NOTRP(«16) ,AND, CCODOOBN0R00000UNDA0LA
JO o 1=t 1) JOR. NE 2}

JU = aNoT It

1) CANG. 000ON00006000000000018

101

102

RTE 1) =3¢ 1) LAND.0DOONN00DOCONN000NO0LD
__IFtRPL 40) JMELRTO _1N)) _CHMG=.TRUE. . —
RPE . 10) =T 10) .)

,.,ﬂ,Jlmﬂ_ll?-NOTJRRA_»mﬁ)"vLQNClOQOQOQOUJOOQQQQOQDHLQ
. Jt $3=PP(15). J0OR. Jt 1)
3t 4Y=MCTLJ . 1) L AND,CEO0O0GCNANANOOCHO0NEB .
RYC 12y =4(1} LA40,00006000672000008000013
TR0 12) JHELRTU 12)) CHNG=,TRUE, et e e e
RPL 12) =RT(42}
e 1)=RP(18) WORe_ ReC 12y
Jt 112 .N0T o I 1) AND. 00 D0000ID000000000018
ORYE 11y =34 11 JANDL00C0G0CH urononnonaoxaA"Wm
IFE2PL 11} JNS.PTU 11)) CHMG=,TRUE
. RPC 1) =RTL A1) e — ~ .
RT YHRK
o ENO e
SUBROUTINE ABC
~ INTEGER JKFF o) =
INTEGER DFCODFR
CINFEGER RP,RT _ _ L s
LOCICAL CHMG,SSRERR,L

“scced

_ COYRLK/TENP/J(200), L(ZUG)

IF (P
GO YT 257
ENTRY
RETUSN

2h.Ml.

aRgeENT

01RETURN

COMACNIREG/NAMES (5000 4MC ﬁUﬂ),?D(502 ,RT 500) g NONCHRGy SSRERR,y

T257 €CNTINLE

Lot Y= IREF
$)

) =30 1)

11=6009000000 190

13 =JKEFE (rRet

tre (.

1Y) GRFLU . B)Y HRP(9N

LAND,0363670690006020009013

209800018

1%) A 11 sRPU

45)
19= JKFF

=J(_

1)
RGER

RTC del St T 0

_29% RETUSY

L AND.£00000C880000709017018

16) JRP{ 11) HRPL 104}

L AND.DOCDLN006080020007018

1 RETYRN
2 RETURN

T29%8 CALL FFERNO(33,2,3HA3C0)

SSRERRA =, TRUE,

"297 RETUSM
ENE

SURPTUTINS REGSET
__LOEICAL SS2ERR

"COMMONIREG/NAMES [50
sccon

COPHCh/VﬂN/MF“Nf(G)v

B, N2 503),hP(500),QT(

5001 o NON,CHNG, SSRERRy

PFMNB(E),”(WCIZ(6)gNCM

e DATA NCM/ O/
CATA NN/ A7/
. DAYA NBMES(13N
DAFA RAMES(2),N3(
_DATA NAMFST 3D 4M3C
CATA NBMTS(4) 4NB(

DATA NAMFS(51 4NSI

DATA NAMFS(RREL
____DATA NAMTS(7)eNO

CATA tAMESH 8) 4N
_____DAYA NS¥ES(. 9) MBI

DATA NAMES(10) ML

AVZIO0RTIME s 2V - -
2)/710¢ N RY
2 V2 11T T 3.7 S
ISPALLY , 1/
_____ 5)/710H) has__ e

5)/10H23 ' 17

S 7V/10822 ’ A/ e e
23/ 10HX N 1/

C9Y/Z10MNY 1 1/ —— e
10)/719HKE N 1/

BATA NEMES(11),M30 11)/710+3C ’ 1/
oo BATA ROMES O 12) 4M3C 12} 710HJCH ST SIS I SUU, e mmm it et o o
DATA KNAMES(13) 080 13)/10HK7 ’ 1/
e DATA NAMES O 36) M2 0 __t63 21008 s A
CDATA HAMES T 15) 4,420 15)/710K2 ’ 17
L DATA NAMES L 1R) M8 18V /730KT R T ¥ S SR
DATA NAMTS(47) 48930 17)/710HAECSSR) 17
e RETURN e o e e e ot e e
ENP

e SUERCHTTING CONMTRNL

LOGICAL NHNG,SSRERR, COHZRR 000D

L INTEGER ROGRTY

COMACN/REG/NAMES (5000 443 L SBD) /P (5000 ,2T(

.. tgcon

CIF UJNCT.CCODY

COMMCNZHATN/ KA N (371 41T 4KPy CONI AR TELE
RPL

L2hENCO P =, 1)
2)=’80 2)
t0 10 7

RT(

CCCO=,FALSE,
NLCOF=10

€ CHRG=.FALSE.,

_CALL CoManoy

SKHER,

5001 ,NON,CHKG s SSRERR,

PHRASE s TYRE, T2, PLCCPS

TALL ABGENT

C ONLCIPEALSNPE]

. T
S 7 CONTINUT
LAt aec

IF (NLCCP.GTMLOOPS)
(CERS) 60 T €

63 To ?n”mw,“”m s

N0 10 I=1,NOM

40 RP(I)=RT(I)

15 CHNG=.FALSE,

20

10 MPRT=D

T END

ENTRY POQLEAN
. CCNDi=«FAaLSE,
NLCOP=D

CALL CCe2a0L
CALL ApCEMTY

NLCOP=ALOOP+1

IF (NLCQOR.GT MLOORS)
IF (CENG)Y GO TN 15

RE TURN o

G 15 20 .

CALL SFRNR(36,3,ML0CT
RETURN

ENC
SUBRCUTING

HSET (MTM, KHOD, MIAT)

TEOMMONZHENZMEMNA (A)y EMNBLRY LHE4ST 26 Noy T
A0 RETURKN !

END i
FUNCTICHN MPRUT (M7 M, NHORD)

COVIACH/ZMEN/MEMNA (5 4 FEHNTLE) ZYENSLZIH) ¢NCH
 COMMCK/ZARTI/KARD (R0) NG KFyCOMI ARy TELE 1 KHOR yPHRAST s TYPE TRy FLCOPS

1LOGICHL TELE\

sEywen” T
END)
SURROUTINE “DATA
RETURN

103

104

APPENDIX B

105

TTUEINE NOLT T ROM WORD

A erant
2 21703
- 3 00002
4 00400
o5 _.fGo00N -
€ T T21603
v 31002 -
5 0030 -
9 30000
10 21603
a1t bsmp2
12 40000
.43 onooC .
14 poo0d
15 21603
16 06002
I X4 22402
R T raney T
19 40000
0 TTT3r00t T
21 goune
27 22603
23 INLLE]
o T
.25 9noov
25 TTooun? T
27 22603
PR T TTTEg 008
70 40045
30777 Tgegas T
31 00407
et 1 1 T i
33 an000
34 N8 a00
_ 35 a700n
_,,.4_35, _A_l“ﬂuqn,_.. -
_ 37 paun?
e TP PP E
39 08000

wh 77000

MENJRY SIZF IMPLIES

1 MEM(I),OCTAL

.2 nNjnonoonnnnnnloLinty

S A3IY v3AR

EMID) ZOESTIMAL

1 000UCG303000066971013

523"

524

106

T 37 8ANNT0YAN0D00 G0 TR
4 0009%300080000D0T000

TTROM BUFFSR CONTATINS= 0
ROM UFFER CONTAINS= 2
TTROM AUFFIR CONTAINSE G
ROM BUFFIT GOMTAT'IS= @

TTRT TIME 1= 4

5 0090330090CNCOBGRI90
6 000NN300000B00N0000N
"7 000009030200009CNE 0D
8 00N0070630006300E000 _
€ D0ANET 673000 EI 00
10 900NGINCAANOONAINDON
11 900300039900000000 10
_ 12 00°039N°CONE0G000RN12
T 43 777207279777V ATY
14 09UN26HITN030D0C DO AN

1€ 00402103C2NGNCA00000

O D ke N
¥

1T gogncehrngogngsonde0n

:::mnw
Q‘O‘o o

1549

3534

]

t
i

i
i
i

tire

R

ovorooocooo

O MW

ACr

[- D
Sp=
PC

n3us

B0000006000003000000

IR

523

B Msaq N N . . —— .
T800009000020090000G0 00000302020000001013 900000000000000010130CTAL
_S230ECIMAL

M3AR

00000009080 000000001 00 d0d000000000001013 0030000000000

00000000

107

TTMEVARY STIZE IMPLIES T LRIV MRAR T
1 MEM(I),0CTAL _AEMUT) 4DECIMAL
1 80P0056509090060901043 . 523
20007191 00000008001N01¢4 524
000)0R0000020603I03715 1549
_ooonnnn0gognencazeen 3584
00£30CN0N20700300000
~60D0NK000NNDANDT0000
0000 UDDNANNGATIT0T 9T
_001006000600000000000
e 00N NINanANICNAGOn o
11 000200N003CNTOIGNNAN
11 0000000G0003CCO00NAN
12 0002000°0000900000012
13 7777717777770 RTIE
14 000N1063200000I00000
TS 0800089000 090C0080 00
16 00.000803020200903090 -
"ROMAR= 1 R0MPC= 1 ROM STACK= 0
RON 3JUFFFR CONTAINS= 0 7 2 10 7
_“A‘[[IME T= .1 TTTTmTT omn e s
ACC : n3ys ¥B3IR
T 000000ACEROEO0IN3 000 nR06d0 000000670000 0N 00000“OGOuOOWOGJOUUOOCTAL
n 0 _ DBDECIMAL
TSPz T 00000006900000000000 - -
» PC IR) MBAR R
0090000200 00900000004 20000903760690080000C 0N0COCIN00D00CV00000
ROVAR= 2 ROMPC= 2 &O™ STACK=. O

ROM BUFFER CCONTAINS= 2 1 6 0 3

o-ﬂb“ut:-w

i
i
i
{
1
1
i
i
i

i
{
i
i
i
§
}
i

t e

ooofooooonoo

i
{

AT TIME 1= 2 .
- Y ¥ o L TV MEIR
_00000070000005000000_00041927£00009000999 3000 0000000300010130CTAL
- o 0 52302CIMAL
SP=__008006000000007000000
e TR MIAR

07900000000020000001 07203900090003000909 90007070000000200000
TROMAR= 3 o0MPC= 3 ROV STACK= 0

. _ROM USFER CONTAINS= 0 0 0 0 2 :
TTAT TIME 1= T3 T - .

ACC 0a¢s . M83R
60000000066 n0U0N0000 60001130000000001013 006000399000000010139CTAL
0 523 5230ECIMAL
TSR T 00000000900003000030 L
pC IR M3AR -

7090600090001000000008017000NIN0000GOCI000003 00H07C30000000000008
ROMAR= 4 ROMPC= 4 RO STASK: 0
ROM JUFFER COATATHS=E 0 1 47370

AY TIME T= 4
T T e P T T — Ty
00010000ﬂ00000000000 000004000000000010643 0000030000000000010130CTAL .
0 §23° © 523DECIMAL
SP= 00000000000 R000B00000
PC . IR ©OMJAR

00000000003000000001 0“000000000000001013 000000000»00000000000_

108

f 7 2 9 7
_CROSSED HALT TEST
307
_RANDR= BA3QUT _TO CALL TRANS
REACHED TRANS
_R(I) BEFCR: TRANSFER=02017003ANQ0000D00000 .
R{J) NSFCRT FINAL MESK 038390000€0030000900
FINISHEN 2,J BACK T3 HICRD
R(JV= 0000003000000 3C0000
__B__GOING 10 SXEC
8

- S VU S 3

CROSSED HALT TEST o ’

703 S
T RADNR= T4 A3AUT TO CALL TRANS o

__ REACHE) TRANS
ROIY BEFCRs TRENSFZE=006331900090000000060 ‘
RUJ) BEFQRE FINAL “ASK 0p0003000000050008000
TFINISHTD 2.4 3£CK TO MICRO ' N
"REJY= 0000CO0ND0G00BONI0NN -
748 GOING Tn EXEC T
18
TRETI{MPIVINIY D3000603 900000003 314R(33) 600d00065000000001013
REACHF) TRANS -
TRUIY BEFCRE TRANSFEOS=00000970080070001013
RU{J) REFORE FINAL MASK 000520003(2000001013
TFINISHED R.JBACK -TO MIcRa T T T
R(JY= 0NN0ND00000UDAN0LDL3

i] 1]] 2
CROSSFD HALT TEST -
e I
RADDR= TABOUT TO CALL TRANS
TTREACHED TRANS T T i
RUI) 3EFCPT TRAMSFIR=010000000000006301013
TWIH T ASFCRE FINAL MESK AR IAT0065600001013 -
FINISHID R.J BAGK TO MIGRD '
REJ)= 000QuOGANONGCANGLNL 3~
1 GDING 10 EXEC
g) e .
n i} 4 2 0
TCROSSE O HALT TEST
500

TTRADD R T AY00T . TO TALL TRANST
REACHEN TRANS

TREIY PALFO<ETIRANSE =000 06010000000001013
RUJ) QEFORF FIMAL MASK 13099900009070001013

TFINTSHED TR, IACK TA MIERD

R(JI= 0030000000000A001NL3 ')

T4 GOTING TO EXZC I o
1 .

