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purpose simulator as well as a microprogram simulator are given
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REGTRAN AND MICRO, THE IMPLEMENTATION OF
TWO DIGITAL SYSTEM SIMULATORS

I. INTRODUCTION

In computer science curricula, the hardware and software

engineering appear as almost completely separate and independent

disciplines because of conventional teaching methods. As a conse-

quence of this, the student will have a poor understanding of hardware

and software interaction. If a "user -reorganizable" laboratory

computer is provided to the student, then he will be able to generate

wiring diagrams and fabricate the machine. Not many universities,

not even the few affluent ones in these days of shortage, can afford

to build machines for teaching and experimenting purposes. By using

a hardware description language with a simulator, it is possible for

the students to learn design techniques. They could analyze and

evaluate some performance aspects as well as proceed with software

development in the pre-prototype stages of design.

An attempt is made to implement a hardware description

language REGTRAN and a simulator for that language SYSSIM to

KRONOS operating system. REGTRAN and SYSSIM are used for

teaching a course in digital system design at the University of Texas

at Austin. The same usage is anticipated at Oregon State University.

Using REGRAN and SYSSIM, a wide variety of synchronous digital
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systems can be successfully simulated. The simulation of micro-

instructions or a microprogrammable computer can not be done by

REGTRAN and SYSSIM. For this purpose another simulator MICRO

is created. MICRO can be used as a microprogram simulator as well

as a general purpose computer simulator at machine language level.

Using REGTRAN, SYSSIM and MICRO, the student technicians can

learn better design techniques.

1. 1. Hardware Description Languages

Hardware description languages are of considerable importance

in the development of advanced design automation techniques for

digital machines. They offer the designer a convenient means for

expressing his ideas in a form which can be easily read and under-

stood by another designer.

A digital system can be described at several levels.

1. The highest level is the algorithmic level which specifies

only the algorithm to be used for solving design problems.

2. The PMS (Processor, Memory, Switch) level.

3. The instruction level describes the instructions of a computer.

4. The register transfer or microinstruction level describes

operations among registers.

5. The logic level expresses network in terms of gates and

flip-flops.
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6. The lowest level is the circuit level which implements gates

and flip-flops by circuit elements such as transistors,

registers etc.

By using Hardware Description Language along with a hardware

simulator a much wider set of design alternatives can be quickly

explored prior to the actual bread boarding of a prototype unit. It is

much easier to change a line of code than it is to modify a breadboard

circuit and its associated drawings and documents. The former one

even saves the cost and time also in modifying the system. The main

advantage of an HDL is the self documenting feature. The bene-

ficiaries of this simulation approach would be the architectural

designers in industry and the students in universities. They could

analyze and evaluate some performance aspects as well as proceed

with software development in the pre-prototype stages of design.

1. 2. Requirements of Description Languages and Review
of Different Languages Available

Languages for describing digital systems must provide sufficient

information about the system behavior and about the system structure

to show how it might be constructed. A system description language

should allow easy and precise description of digital system behavior.

A number of high level languages have been reported during

recent years. While many languages can be used at several levels,
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each language is especially convenient for certain levels. Register

transfer languages were created to meet the need for computer hard-

ware description at a stage higher than the conventional gate level

design. As languages they should satisfy some requirements; be

amenable to simulation on a computer; and in an integrated and total

design automation, and above all serve as a means of documentation

and communication for computer engineers.

Reed's register transfer language [1-3] has received wider

distribution. It is easily learned, generally applicable and its state-

ments associate directly with hardware. But it is limited in applica-

tion because it lacks means for describing complex, iterative

networks, no provisions exist for partitioning the system and the

small vocabulary of the language necessitates the use of many symbols.

Determining the sequence of events which are to take place in a system

from the Reed's language description may not be an easy task.

Schorr s register transfer language is [4] with more options

such as notations for indirect addressing, decoding, addition, sub-

traction and complementation and for identifying subregisters. It

deals with flip-flops, gates, delays fan-in and fan-out requirements.

It is a universal language, but is also a low-level language which

requires many statements for a complex system.

Iverson's APL [5-7] (A Programming Language) has adequate

high level operators for operating on arrays of data. The language is
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broad in scope, having been developed for and applied effectively in

such diverse areas as microprogramming, switching theory,

operational research and so many more. The programs are

sequences of statements. A mjaor disadvantage is its lack of means

for describing parallel activities. It has no direct way of declaring

dimensions and requires that its data be homogeneous. It has only

a few primitive concepts and their use is consistent. However, its

compact encoding of operators require the development of some

reading skills.

Hill and Peterson's language AHPL [8] provides a complete

description of sequential network or digital system. Only those APL

operators which satisfy the constraints imposed by available hardware

are included in AHPL. AHPL description will be translated directly

into a wiring list or fan-in-list. The AHPL description itself then

becomes the principle vehicle for communications about the network.

This is beneficial in itself in that the control sequence, conventionally

displays timing information, not at all evident in the schematic

diagram.

Yohan Chu's language CDL [9-13] is a non procedural language,

meaning that it attached no significance to the lexecographical order-

ing of statements, describing the operator of the system. Statements

are associated with some sort of "label" defining the condition for

execution. Sequencing is performed by modifying the control



variables used in the labels. A program written in CDL may be

translated with little trouble into the language REGTRAN described

in this report.

LOGAL by Lund, J. [14] is a modified register transfer

language providing some additional properties not found in the

original RTL such as partitioning information, new operations etc.

LOTIS by Schlaeppi, H.P. [15] describes the machine in two

parts, declaration and procedures. Procedures may be written in

turn in either sequences or functions. The behavior elements of

6

LOTIS are register-to-register transfers. The main features of a

hardware oriented notation have been presented, which is believed

to be suitable for formally describing the relevant properties of the

logical structures of digital machines and their internal timing and

sequence.

APDL (Algorithmic Processor Description Language) [16-22]

is structured as that of ALGOL; i. e. , a set of blocks, each with its

own declarations and statements. Blocks can be nested to any depth,

providing a simple scheme to organize a description in a hierarchical

fashion. It has additional (as compared to ALGOL) features to handle

timing and register variables. It requires a large number of

reserved key words and uses too many types of registers and arrays.

It provides a high degree of flexibility in the organization and partition

of the description to reflect the machine organization at several levels



of details and timing. Parnas [16] lays the ground for such a language.

The actual structure of the language is well defined in [17], [18], and

[19]. Reference [20] contains nice facilities in addition to those of

APDL for describing a system as a network of subsystems.

ISP (Instruction Set Processor) [23-27] describes the primitives

at the programming level of design. It can handle concurrency and

sequencing of activities and provides an adequate set of data and con-

trol operators. Descriptions follow the block structure of ALGOL and

can be named and used as independent processes or as parts of larger

units. These descriptions are by a fixed format composed of

declarations and actions. Declarations include memory, data types,

data operations and instruction formats. Actions consist of an

interpreter for fetching, coding, execution and specific instructions

from a set.

LALSD (Language for Automated Logic and System Design)

[28, 29] views a digital system in two parts: The structure and the

control. The structure part performs the logical and arithmetic

operations. The control part commands the behavior of the system.

This separation makes it possible for the control part to be imple-

mented either as hardware, firmware software, or any combination.

Using techniques of this language, a complete system can be inte-

grated from independently designed subsystems. LALSD is suitable

for time sharing, interactive environment. It allows parallel
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operations and can be used in designing synchronous, asynchronous,

or mixed systems.

DDL (A Digital System Design Language) [30-32] by Duley and

Dietmaya is easily understood as it is written in boolean-type

equations, yet it covers a wide spectrum of digital system design.

DDL's conciseness facilitates expressing, analyzing, modifying, and

in general, dealing with large digital systems in an organized manner.

The language is mnemonic and fundamental in concept to facilitate

design and enhance readability. The organization of a document can

parallel the block structure of the anticipated hardward. The language

permits a specification of sufficient precision so that a hardware

realization of the system's logic can be obtained using programmable

algorithms.

REGTRAN (REGister TRANsfer) [33] by Edward Peet, Jr. , is a

modification of DDL. The major modifications were to the method of

writing equations, as REGTRAN is designed to be used either on the

CDC 6600 computer or by a teletype interfacing with this computer.

Therefore, a symbol set had to be chosen compatible to both the

teletype and the card reading system of the 6600. This encluded many

of DDL's symbols, but substitutes were obtained when they seemed

necessary. The DDL's delay declaration was not included in

REGTRAN. The syntax of the <ST> statement was modified to permit

easier and more versatile specification of conditional register
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transfers. Basically, any synchronous digital system which can be

described in DDL can be described in REGTRAN. However,

asynchronous systems are difficult to describe in REGTRAN because

of the unit delay restriction. A detailed version of this language is

given in Chapter II.

l 3. Educational Values

A comparison between conventional hardware and software

engineering shows structural versus procedural philosophies. That is

why in computer science curricula these two disciplines appear as

almost completely separate and independent. The consequences of

this methodological segregation are well known: bad cooperation

between hardware and software engineering, waste of time in educa-

tion when introducing data processing principles, bad common under-

standing of hardware and software interaction.

Not many universities--not even the few affluent ones in these

days of shortage--can afford to build machines for teaching and

experimenting. A complex structure such as a multiprocessor may

be described using HDL and yet simple enough that it can be done by

one student in one quarter. This is the only possible alternative to

teaching by qualitative argumentation. There should be simple,

unequivocal simulators along with HDL.
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A "user-reorganizable" laboratory computer has been designed

at the University of Arizona in terms of AHPL. Student technicians

were able to generate wiring diagrams and fabricate the machine

directly from the AHPL description. This design language has been

the principal means of communication between members of the design

team as changes have been made in and features added to the system.

The language description of the machine has greatly eased the docu-

mentation problem. There has been no pressure to produce detailed

English language discussion of every aspect of the machine. As

student technicians leave and are replaced by new students, the AHPL

description will ensure a minimum of discontinuity in the ability

to diagnose and repair failures in the machine.

APL is used in the ALERT system developed in IBM to be

used as a front end for their design automation system.

REGTRAN and SYSSIM have been used teaching a course in

digital system design at the University of Texas at Austin and con-

tinued use for this purpose is anticipated. Both of these programs

provide a unit delay simulation, they are most useful for simulating

clocked synchronous systems for which gate and wiring delays can be

neglected. Simulation of asynchronous systems with gate and wiring

delay would be awkward because each delay would have to be simu-

lated by multiple cascaded delays. The REGTRAN language is fairly

easy to learn for anyone who is familiar with FORTRAN or a similar
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high level language. The REGTRAN and SYSSIM programs have been

successfully used to simulate a wide variety of synchronous digital

systems. Some examples are twelve-bit parallel Adder,-Subtractor,

Sequence Detector, State Table Simulator, Serial Multiplier,

General-Purpose Computer and an Associative Processor.

Both of these programs are modified to run under the Kronos

System at the Oregon State University. These programs are hoped

to be useful in teaching digital system design.

The REGTRAN and SYSSIM programs have been successfully

used to simulate very complex systems but they fail in simulating a

MICRO PROCESSOR as the microinstruction formats can vary from a

single encoded micro-operation field and an address field to a format

where each field corresponds to a single control gate. In order to

overcome this problem MICRO, a simulator for a simple micro-

programmable computer, is developed which will simulate the micro

instructions. More detailed version about MICRO is discussed

in Chapter III. Using this simulator any microprogrammable machine

can be simulated without trouble. This program is easy to use and is

very useful tool: simulation of PDP-8 is given as an example. Both

REGTRAN with SYSSIM and MICRO are hoped to be useful in teach-

ing digital computer design and microprogramming.
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II. IMPLEMENTATION OF REGTRAN AND SYSSIM

2.1. Introduction

REGTRAN [33] was originally developed by Charles E. Peet, Jr.

at the University of Texas at Austin and was to run on CDC -6400-

6600 TAURUS time-sharing system in an interactive mode. It is used

in the preliminary design process to specify a system in terms of

register transfers and logic equations. The user specifies system

structure, using register transfers associated with each state of the

system. A special simulation program SYSSIM, is used to simulate

and debug the system by supplying inputs described by the user and

printing results.

The REGTRAN program reads a source deck written in the

REGTRAN design language and generates a Fortran source file which

is then compiled by the FORTRAN compiler.

The block diagram of the simulated system is shown in Figure

2.1 in which the description is done by REGTRAN and then it is

simulated under the control of SYSSIM.

Each major subdivision of the digital system to be simulated

is converted into a separate FORTRAN subroutine, which is used to

simulate the networks.

SYSSIM is an interactive FORTRAN program which obtains

information from the user on the method of simulation. Then the
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SIMULATED SYSTEM DESCRIBED

BY REGTRAN

> COMB .

INPUT >NETWORK

SET

CLEAR

OUT

PUTS

INPUT
REGIST .
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CLOCK I OUTPUTS

SYSSIM SIMULATOR PROGRAM

SYSSIM

COMMANDS

INPUT

DA TA

V
PRINTED

OUTPUT

Figure 2.1. Block diagram of simulated system.
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Fortran subroutines were called at the proper times to execute the

simulation.

Both these programs (REGTRAN, SYSSIM) are provided with a

large number of different errors in both description and simulation of

the digital system. REGTRAN can print 64 unique error messages

and SYSSIM contains 36 error messages. Although error and diagnos-

tic messages are provided for the reasons given, REGTRAN and

SYSSIM can not determine if the design objectives are met. This part

is left to the operator.

Examples of the types of systems which can be described and

simulated are: a combinational networks with a counter to cycle

through all input states, sequential networks, arithmetic units (fixed

or floating point) and special and general purpose computers.

In Figure 2.1 the combinatorial network responds immediately

when an input terminal is changed. The logic equations for the

combinatorial network and the conditions under which register trans-

fers can occur are specified in REGTRAN. External set and clear

signals, external inputs to the system, and dock pulses are supplied

by SYSSIM when the simulation is running.

More detailed versions of the syntax and semantics of the

description language REGTRAN and of the simulation language

SYSSIM can be found in Reference [33]. Here in this chapter, a brief

survey of conventions, statements, SYSSIM commands, memory
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operations and a few other details will be discussed.

2.2. Description of REGTRAN

2.2.1. Registers, Terminals, Clocks and Memories

All registers, terminals, clocks and memories must be given

alphanumonic names which may be up to seven characters in length

and start with a letter. Automata must also be named with an alpha

numeric identifier of three or less characters.

A register is defined as a group of bits which are updated

according to a register transfer equation on specified clock pulse.

A terminal is defined as a group of bits which are updated continuously

according to a boolean equation.

2. 2. 2. Number s Representation.

Three types of numbers may be used in REGTRANdecimal,

octal, and binary. The default type is decimal, that is, any number

not followed by a letter is decimal. B, L are the letters that repre-

sent octal and binary.

2. 2.3. Expressions and Statements

Expressions are composed of operations performed on

memories, registars, terminals, or numbers. Table 2.2.1 gives the
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different logical, arithmetic and relational or concatenation- The

operations 12-15 are bit-by-bit logical operations. Numbers 6-11 are

relational operations which result in all 'TO' H for false and all Ill'sTifor

true. Numbers 2-5 are arithmetic operations which use the CDC

6600 fixed point hardware. The operations are listed in the order of

their hierarchy.

Table 2.2.1. REGTRAN operations.

1. Concatenation
2. Multiplication
3. Division
4. Addition
5. Subtraction
6. Equal EQ
7. Not equal .NF.
8. Greater than .GT
9. Less than . LT.

10. Greater than or equal .GE.
11. Less than or equal .LE.
12. Not . N. OR .NOT
13. And . A. OR . AND
14. Or .0. OR .OR
15. Exclusive-or .E. OR FOR

If the symbol '#' is placed in 1st column then
Exclusive -or
Or
And
Not

Expressions are evaluated as follows: each term of the

expression is placed right justified in the CDC 6600 sixty bit word

with zero fill. The operations are then performed in the order indi-

cated, placing each result right jusitified in the sixty bit word and may
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be truncated so that it will be with-in-58 bits in length.

Table 2.2.2 summarizes the types of statements used in

REGTRAN. < SY>, < RE>, < TE>, < ME> and < TI> statements are

used to declare system, register, terminal, memory and clock names.

The equation in the < BO> statements are used to define the combina-

tional part of the digital system. < OP> together with <PA> and <BO>

may be used to define a combinational subnetwork as an operator.

Sequential subnetworks (automata) are defined by using <AU> state-

ments. Each automation may have a state sequencing register and

one or two conditional registers defined in the <SS> and <CO> state-

ments. The next state and the register transfers associated with each

state are specified in an <ST> statement. IF clauses are used to

specify the conditions under which the register transfers occur.

2.2.4. Predefined Operators

REGTRAN contains three predefined operatorsMOD, JKFF

and DECODER. MOD (A, B) is a 48 bit function with two inputs, A

and B, and is equal to the remainder when A is divided by B.

JKFF (Q, J, K) is a one bit function with three inputs Q, J, and

K, and is defined as

JKFF = J.AND..NOT.Q.OR.Q.AND..NOT. K.

This function may be used to simulate a clocked J-K-flip-flop when
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Table 2.2.2. Summary of REGTRAN statements.

Statement Purpose Remarks

<SY> name:

<RE> name( a),
name(a:b),
name

<TE> name( a),
name(a:b),
name

<ME> name( a, b)

<TI> name(a),
name(a, b)

<BO >x = expression,
y(a:b) = expression,
Z(a) = expression

<OP> name:

<PA> name,
name(a),
name( a:b)

<AU> name:

<SS> name
or

<SS> name (i)

<CO> name
or

<CO> name, name

<AS> name = number
name = number

<ST> (see
Table 2 .2 .3)

<LO> name = list,
name(i) = list,
name(i:j) = list

<EN>

defines REGTRAN system name

defines register names and number
of bits

defines terminal names and number
of bits

defines memory names, number of
bits, and number of words

defines clock names, period, and
offset from time zero

contains Boolean equations defining
terminals

defines an operational subsystem

defines the dummy input parameters
for each operational subsystem

defines an automaton

defines the state sequencing register
(SSR) and number of bits (i)

defines the conditional registers

assigns numeric values to alphanumeric
state names

defines the register transfers

loads a memory or a series of
memory locations

ends the REGTRAN program

must be the first statement of the
program

must precede all <OP> and <AU>
statements

must precede all <BO> statements
(except those under other <OP>
statements)

must be the statement immedi-
ately following the operational
subsystem name

must contain one <ST> statement

optional in the <AU> statement

optional in the <AU> statement

optional in the <AU> statement

must be the last statement of the
<AU> statement

if used, must immediately precede
<EN>
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the J and K inputs are specified. If J1 and K1 have been defined in a

<BO> statement, the register transfer statement

Q1 <--- JKFF (Q1, J1, Kl)

will set Q1 to the proper next state.

DECODER (M, N) is a variable length function with two inputs,

M and N, and is defined by the equation

DECODER = 2**(N-M-1)

where ';":' denotes exponentiation.

The DECODER operator decodes a register, or terminal M into

a N-bit terminal. For example, if T is an -8 bit terminal and U is a

3-bit register, then

T = DECODER (U, 8)

defines a 3-bit to 8-bit decoder. If U = i, then bit i of T is set to

1. For example if U = 010 then T = 28-2-1 = 00100000 and if

U = 111, T = 00000001.

2.2.5 Register and Terminal Declaration

They are declared by the following statements:

<RE> namel, name
2

, , name

<TE> namel, name 2' .. , name
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If the name is simple alphanumeric name, it is only one bit.

Multiple-bit registers and terminal may have from 1 to 58 bits. As

many names as desired may follow <RE> and <TE>; they must be

separated by commas.

2. 2.6. Memory Declaration

Memories are declared in the following manner:

<ME> name <W,S> where W is the number of words in the

memory (1 < W < 8192) and S is the number of bits in each word

(1 < S < 58). Upt to 5 memories may be declared with each name

being separated by commas. A memory may be loaded during

running of the simulation using a SYSSIM SET command, or it may be

loaded in advance by using the REGTRAN <LO> command. The later

is particularly useful for a read-only memory where the memory

contents is really part of the system description and is not normally

changed during running of the simulation. If <LO> statement is used,

it must be the last statement in the REGTRAN system description

immediately preceding the <EN> statement.

2. 2. 7. Timing Elements (Clocks)

The periodic clocks which are to control the automata are

declared in the following manner:
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<TI>namel(pl, ol), name (p o2),

where name, is an alphanumeric name as for registers. pi is the

period of the clock and is expressed as a positive integer. oi is

the offset of the clock from time "0"; it is a positive integer less than

p. but may be omitted, in which case the default value is zero.

2.2.8. Boolean Equations

The <BO> statement is a series of equations which defines

each terminal as a function of registers, memory words, numbers and

other terminals.

<BO> name
1

= expression 1,
name

2
= expression2,

2.2.9. Operations on Registers and Terminals of Different
Lengths

When an operation occurs which would fill a register or terminal

with more bits than were reserved for it, the leftmost excess bits are

lost. This applies to both boolean statements and register transfers.

2.2.10. Operational Subsystems

The "OPERATOR?' represents a group of gates with inputs and

an output. It is defined once and then maybe used any number of

timbes by specifying only its name and its inputs.
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2.2.11. Automata

Each automation has associated with it a clock, a state-

sequencing register, a optional set of conditional registers and

internal registers and terminals. The operation is defined in terms

of register transfers.

A maximum of 20 automata may be declared in a REGTRAN

program, but none need to declared. Every automata must have one

<ST> statement and it must be the last statement of the automata

declaration. The state sequencing register (SSR) controls the state

of the automation and is limited to a maximum of eight bits, thereby

limiting the maximum number of possible states to 256. It is

advisable to declare the SSR of the minimum length necessary to save

compiler space.

The syntax of the <ST> statement is given in Table 2.2.3.

A conditional register is one which is tested at various times to

determine if certain register transfers should take place. It is used

in the conditional IF clauses.

2.2.12 Re tster Transfer Statements

The register transfer equation describes the new contents to be

entered into the register when it is clocked. Unless the register is

clocked, its contents will not change. The register transfers are
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Table 2 .2.3. Syntax of the <ST> statement.

REGTRAN Coding Remarks

<ST> list of unconditional register transfers

[IF clause] list of register transfers

[conditional) (list of register transfers

[IF clause) list of register transfers

state list:

list of unconditional register transfers

[IF clause] list of register transfers

[conditional (list of register transfers

[IF clause

state list: etc.

see Note 1 below

repeat this line as required

repeat these lines as required
repeat this line as required
see Note 4 below
see Note 2 below

repeat this line as required

repeat these lines as required
list of register transfers -4 repeat this line as required

see Note 4 below
repeat above for each state list

Notes:

1. Register transfers specified before the first state list take place independently of the state
of the automaton.

2. A state list consist of one or more state numbers or state names separated by commas
(e .g., 2, 3, 8, S4, SS) . The state list must be followed by a colon.

3. Parentheses are required enclosing the register transfers which follow a "conditional" as
shown above. In addition, any list of register transfers may be enclosed in parentheses.

4. The lists of register transfers associated with each state list must be terminated with ";" .
(The final ";" at the end of the <ST> statement may be omitted.)

5. Register transfers in a list must be separated by commas.
6 . Format is free field and the end of line is not significant.
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specified in the <ST> statement. It contains a list of states with each

state name followed by the register transfers to occur during that

state. All register transfers in a list of register transfers must be

separated by commas.

The register transfer statements are of the form

(1) Register name < expression

(2) Sf(r, n)

where Sf is the shift function, is the name of the register to be

shifted and n is the number of places to be shifted.

2.2.13. IF Clauses

In conditional IF clause, during each state of the SSR, the

contents of the conditional registers may be tested and if they are

equal to some specified values, the specified register transfer takes

place; otherwise they will not. The conditional IF clause is composed

of numbers, either single or sequence for each conditional register.

Regular IF clauses may be included to test any register,

terminal or memory elements. The register transfers are executed

depending on the value of the expression is 0 or not zero.

REGTRAN is a free-field language; that is, each card is a

continuation of the previous card. Columns are not distinguished but

only the first 72 columns may be used. If an IT*" appears in column 1

of any card, that card will be listed and ignored.
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2.3. Description of SYSSIM

SYSSIM is a language used to control the simulation of a system

described by REGTRAN A series of SYSSIM commands are executed

in sequence to control input and output to the simulation and to set

conditions for starting and stopping the simulation. The system

described by REGTRAN is normally idle with no clock being supplied

to it. All registers, terminals, and memories are initially set to

zero. The CLEAR, SET, READ, and INPUT commands are used to

set registers, memories or terminals to specified values. These

values are held until changed by the REGTRAN system or by another

SYSSIM command. The PRINT, DISPLAY and HEADER commands

are used to specify the desired simulator output. The RUN, STEP

and ASTEP commands are used to supply clock pulses to the simula-

tion. After every clock pulse, all affected registers are updated

simultaneously, and then all terminals are updated using the new

registers value. The PRINT or DISPLAY commands are then

executed if required. At each time step during the simulation, a

reserved register labeled TIME is automatically incremented by 1.

SYSSIM uses a free field input format with the restrictionthat each

command must be placed on a separate line. To indicate that a com-

mand is continued on the next line, 4" is placed in any column.
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REGTRAN reads an input deck composed of source input and

generates a FORTRAN source program to describe the system to be

simulated. Upon the successful compilation of the source input by

REGTRAN, the CDC 6600 FORTRAN compiler is called to compile the

FORTRAN just generated. This FORTRAN contains only subroutines

and functions which are called from SYSSIM The subprograms

generated are grouped into three functional groups;

1. Boolean Equation Evaluation--This set of subroutines

calculates and updates the values for all the terminals in the

system.

2. Register Transfers --This set of subroutines calculates the

values to which the registers will be set upon the application

of the next clock pulse.

3. Memory Manipulation--SYSSIM does not have direct access

to the memory words because it has no previous knowledge

of the size of the memories. A set of subprograms is there

fore provided to allow memory manipulation. The memory

manipulation subroutines are called by SYSSIM when the SET,

CLEAR, and PRINT commands which reference memory are

used.

Table 2.3.1 consists of a list of the subprograms generated

by RETRAN and their functions.
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Table 2.3.1. FORTRAN subprograms generated by REGTRAN.

Subprogram
Name

COMBOOL

Subprogram
Type Purpose

SUBROUTINE Stores all boolean equations declared
in common (<BO> statements before
all <AU> statements)

Named after automaton SUBROUTINE Stores all register transfer equations
for the automaton after which it
was named

Named after automaton
except followed by
"ENT"

entry point of
above subroutine

CONTROL Subroutine

BOOLEAN

REGSET

Stores all boolean equations
declared in the automaton after
which it was named

Called from SYSSIM simulator once
each time step to update all
registers and terminals. Uses the
above three types of subprograms to
accomplish this

entry point of Called from SYSSIM to update all
CONTROL terminal contents

SUBROUTINE Contains DATA statements to pass
register and terminal names and the
number of bits in each through
COMMON to SYSSIM

MDA TA SUBROUTINE Contains DATA statements to pass
information concerning memories,
including data entered in an <LO>
statement

MSET SUBROUTINE Called from SYSSIM to set one word,
in memory. Input parameters specify
which memory, which word, and the
data to be entered in that word.

MPRT FUNCTION Used to return to SYSSIM the contents
of one memory word. Input param-
eters specify which memory and which
word.
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The controller, CONTROL is called from SYSSIM once per time

unit. It is the responsibility of this subroutine to calculate the states

of all clocks declared in the REGTRAN source input as well as the

system clock, CLK.

However, it is the responsibility of each automation

subroutine to determine, when called by this controlling subroutine,

whether its controlling clock is in the proper state. If not, no calcu-

lations are performed. Upon calculating clock values, various sub-

programs are called by CONTROL to perform register transfer cal-

culations and terminal updates. CONTROL also contains an entry

point, BOOLEAN, which will only update the terminals without affect-

ing the registers.

The flow chart for the CONTROL is given in Figure 2.2.

The conversion of the REGTRAN source program in Fortran

subprograms is done by the use of an interpreter, a set of Floyd-

Evans productions, a "Last-in-First out" stack, a lexical scanner,

an error printing subroutine and an executive subroutine. The

interpreter checks the syntax of the input program and controls the

other elements listed. The lexical scanner is used to scan the sym-

bols from the input source and convert them into recognizable

elements such as number, alphanumeric identifiers, symbols, and

reserved words. Each time the scanner is called, it places the new

element into the top of the "last-in-first-out" stack.
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START ( ENTRY
BOOLEAN

CALCULATE
VALUES OF
CLO CKS

INCREMENT
LOOP

COUNTER
SET LOOP
COUNTER TO
ZERO

CCOD*
OFF LOOP

COUNT TOO
ARGE

YE

SET LOOP
COUNTER TO
ZERO

YES
CHNG

FLAG SET

RESET "STEADY
STATE" FLAG

(CHNG)

NO

RESET "STEADY
STATE" FLAG
(CHNG)

UPDATE ALL
TERMINALS

ONCE

V
UPDATE ALL
TERMINALS
ONCE

CALL ALL

AU TOM A TON

SUB ROU TINES

UPDATE
REGISTER
CON TEN TS

IN

LOOP
COUNTER

* CCOD is the flag which indicates that a SET or CLEAR command has been executed since the

previous simulation,

Figure 2.2. Flow chart for CONTROL.
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Figure 2.2. Continued.
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The interpreter uses the stack along with the Floyd -Evans

productions to determine if the input syntax is correct and to initiate

any action necessary as a result of the input. The executive routine

is used to generate the FORTRAN subprograms which will be linked

with SYSSIM. All bookkeeping is also performed by the subroutine.

The flow chart for REG IRAN is given in Figure 2.3.

REGTRAN contains TRACE feature, which is used to trace

the progress of the interpreter. It is turned on by placing the sym-

bol "if" in column 1, 2, and 3 of an input card. Auxilary trace is

turned on by "el in column 1, 2 and 4. The main and auxilary trace

features can be turned on simultaneously by placing the symbol "#"

in columns 1, 2, 3 and 4 and can be turned off by "#" in columns 1,

land 5.

The main program, SYSSIM acts as a command decoder, its

flow chart is given in Figure 2.5 and the sequence of operations for

the SYSSIM simulator are shown in Figure 2.4.

2.4. Implementation of REGTRAN and SYSSIM for KRONOS

REGTRAN and SYSSIM were written to run under the TAURUS

operating system at the University of Texas at Austin. These two

programs are implemented for KRONOS system at Oregon State

University at Corvallis, Oregon. During this process, a lot of prob-

lems were faced and they will be discussed in detail in this section.
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START

CALL LOADER

Figure 2.3 Flow chart for REGTRAN
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NO

(RUN OR STEP)

PRINT
HEADERS IF
NECESSARY

YES

UPDATE

TERMINALS

NO

CHECK AND
EXECUTE READ,
INPUT, SET, &
CLEAR

IF CLAUSES*

YES

ERROR
MESSAGE

NO

YES

RETURN TO
COMMAND PROCESSOR

* Each of these IF Clause commands can be executed only once per RUN or STEP command.

Figure 2.4. Sequence of operations for the SYSSIM simulator.



UPDATE

TERMINALS

CHECK AND
EXECUTE READ,
INPUT, SET,
& CLEAR

IF CLAUSES*

YES

UPDATE
REGISTERS
AND

TERMINALS

YES

NO

CHECK AND
EXECUTE PRINT
AND DISPLAY
IF CLAUSES

OFF

ON

* Each of these IF Clause commands may be executed only once
per time step.

Figure 2.4. Continued.
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PRINT

HEADING
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OFF

TURN
TELETYPE
FLAG ON

SET
TAURUS INPUT
INDICATOR
TO "?"

STORE LABEL

IN COMMON

CALL IRUN(8)

CALL IRUN(1)

CALL ISTEP(1)

* These characters refer to the first alphanumeric characters in the input record.

Figure 2.5. Flow chart for SYSSIM.
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* These characters refer to the first two alphanumeric characters in the input record.

Figure 2.5. Continued.
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* These characters refer to the first two alphanumeric characters in the input record.

Figure 2.5. Continued.
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/PRINT
ERROR

MESSAGE

* These characters refer to the first two alphanumeric characters in the input record.

Figure 2.5. Continued.
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TAURUS is the operating system which is written by the

University of Texas computer center staff to run on a CDC 6400

computer. KRONOS is the operating system supplied by the CDC

corporation to run on CYBER-73. CYBER-73 is a new version of the

CDC-6400 with some hardware differences. TAURUS is basically

derived from the CDC SCOPE operating system, as was KRONOS,

with some features added and some features being removed. ASCII

code differences exist between KRONOS and TAURUS. The library

routines are the same with some name differences. For example

LSHIFT in TAURUS performs the same shift operation as SHIFT in

KRONOS. Both the operating systems use SCOPE loader. The

loader at TAURUS operating system has the added feature of loading

multiple files. KRONOS has two types of loaders, LINK and LOAD.

Neither of these can load multiple files. In order to achieve this, the

files have to be made library files by using LIBGEN command. The

control language is different for KRONOS and TAURUS. For example

"LABEL" is not allowed in KRONOS.

TAURUS uses RUN compiler and KRONOS uses FTN compiler.

In the RUN compiler, logical and non logical mixed operations are

allowed. In the FTN compiler, these types of mixed operations are

identified as "FATAL ERROR" and the successful compilation of the

program is stopped. RUN compiler allows DATA statement anywhere,

before an entry point of the program, but the FTN compiler imposes a
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condition that the DATA statement has to be only after the declarative

statements and before the entry point of the program, otherwise it will

be identified as FATAL ERROR, which interferes with the successful

compilation of the program.

The two problems encountered are the differences between the

two operating systems and the insufficient documentation available

about REGTRAN and SYSSIM. KRONOS as well as these two pro-

grams were new and some time was spent in studying the programs

as well as learning how to use KRONOS.

REGTRAN uses a Floyd-Evans production table, for the

purpose of stack manipulation in the process of compiling equivalent

FORTRAN from the REGTRAN statements. REGTRAN uses various

ASCII code comparisons. SYSSIM also does the same thing. In both

these programs such comparisons are changed to the equivalent

ASCII of KRONOS system. All the library routine calls of TAURUS

are changed to the equivalent library calls of KRONOS. Some of the

TAURUS calls were also changed.

The problem of mixed operation error is taken care of by

refraining the description of the problem in REGTRAN language such

that mixed operations will not be generated in the corresponding

FORTRAN generated by REGTRAN. This required the REGTRAN

syntax to be somewhat more restrictive.
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The problem of the DATA statement was taken care of by writing

another program RTEST. This program scans through the FORTRAN

generated by REGTRAN and removes the DATA statement that occur

between the header of the program and the declarative statements and

inserts them after the declarative statements and before the executable

statements. Flow chart for RTEST is given in Figure 2.7.

REGTRAN and SYSSIM can be run ONLINE or OFFLINE

Subroutines IONLINE and IOFFLINE in SYSSIM are used to execute

the ONLINE and OFFLINE commands respectively. IONLINE sets

the teletype flag to make it ONLINE.

In order to run this on KRONOS, different methods were tried.

First, the binary object files of SYSSIM and the binary files of the

compiles FORTRAN file generated by REGTRAN were loaded.

Unfortunately, the optimization feature of the KRONOS FTN compiler,

seems to drop off subroutines which do not contain any active or

executable statements from the FORTRAN produced by REGTRAN.

When SYSSIM refers to these dropped subroutines, it will not be able

to find them and the load error "unsatisfied external references"

stops the execution of the program.

The second method tried, consists of joining the FORTRAN

generated by REGTRAN at the end of the FORTRAN source program of

SYSSIM by using ''MERGE" command in EDIT mode. Then the final

file which is created, is compiled using FTN compiler. This method
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seems to successfully execute the program, but it is very expensive

and inefficient. Every time a new problem will be tried, the SYSSIM

needs to be joined with the FORTRAN of the problem and then com-

piled. So the total time needed to compile and execute will be an

average of 20 to 25 CP seconds for a moderately simple problem.

This method is obviously inefficient and expensive.

The third method is using a KRONOS control language macro

call. The name of the macro is REGRUN. A listing of the REGRUN

is given in Figure 2.6. This consists of a set of system commands,

that call the REGTRAN and SYSSIM programs binary files along with

the other necessary files such as the production table. From the

generation and compiling of Fortran to execution of the compiled binary

file with the SYSSIM commands, all can be done just by using

REGRUN. This macro can be called both ONLINE and OFFLINE also

and depending upon the setting of the starting point, this REGRUN will

start execution online or offline. For example: To run REGTRAN

and SYSSIM is shown in the following sections.



SET (R1=0)
3, GET, TAPE2/UN=80035.
GET, BREG/UN=80035.
OFFSW, 2.
REWIND, RFOR, TAPE2.
IF (R1=1) GO TO, 2.
1, RFL, 100000.
BREG, RIN, ROUT, RFOR, TAPE2.
REWIND, RFOR, RB.
FTN, I=RFOR, L=RL, B=RB.
GET, BSYS/UN=80035.
LIBGEN, F=RB, P=ULIB, N=ULIB.
REWIND, BSYS, ULIB.
LOAD, BSYS, ULIB.
EXECUTE.
GOTO, 5.
2, REWIND, RIN, RFOR, TAPE2.
ONSW, 2.
GOTO, 1.
4TTY, SET (R1=1)
GOTO, 3.
5, OFFSW, 2.

Figure 2. 6. Listing of REGRUN

2.4.1. ONLINE

43

With the account number and password assigned, the user logs

on the KRONOS and the system responds by "READY" appearing on

the terminal. The user has to type

/GET, REGRUN, UN= * , PW=

*User number and password for REGRUN file, allows user to

obtain a read -only copy.

The system responds with
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/WRITE
ON

OUTPUT

Figure 2.7. Flow chart for RTEST.



/CALL, REGRUN, C, S=4TTY, RENAME, RIN=TEST,

ROUT=OUTPUT

where

45

C clears all pointer and renames

S - starting point, which starts at lable no. 4 in REGRUN

RIN name used in REGRUN for input file

Test name of the input file

ROUT REGTRAN output which consists of test and error messages

given by REGTRAN, if there were any.

After the successful execution of this macro REGRUN, the system

responds with header printout as "SYSSIM SIMULATION PROGRAM"

and with a " ? " mark and waits for SYSSIM commands. After issuing

the right SYSSIM commands, the answeres will be printed.

RIN =INPUT (allows REGTRAN program to be entered on line).

2.4.2. OFFLINE

JOBIDEN, CM55000, T100

ACCOUNT, [USER NUMBER], [USER PASSWORD]

GET, REGRUN/UN=80035.

CALL, REGRUN, C, RENAME, RIN=INPUT, ROUT=OUTPUT.

789

REGTRAN INPUT.
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SYSSIM COMMANDS which should have OFFLINE as first

command

67
89
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Using macro call to run the program, requires 2 to 3 seconds

of CP time. Since SYSSIM does not need to be compiled for every

example individually. Hence this method seems to be more efficient

and inexpensive.

The REGTRAN and SYSSIM programs are totally dependent on

the Floyd-Evans production table. As a consequence of the ordered

set of rules for the creation of FORTRAN from REGTRAN language,

even a minute mistake in the creation of source file causes syntax

error and wipes off all the FORTRAN thus generated. Because of

the ASCII differences, the same example problem that ran on

TAURUS gave trouble on KRONOS. TRACE feature in both of these

programs helped to understand and analyze this problem. If these

two programs were rewritten that would have been easier than going

through someone elses logic with insufficient documentation.

In the following paragraphs, an example will be shown

completely.
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2.4.3. Examples

Twelve-Bit Parallel Adder -Subtractor. This example

demonstrates the simulation of a combinational network. No automa-

tion is defined, and therefore no registers are declared. This has two

twelve-bit inputs, A and X, which are added or subtracted to form the

twelve bit sum, S. Another input K is set to 0 or 1 to subtract A

from X. A one-bit-output, OVERFLO, is used to indicate overflow.

A complete listing consisting of the description of parallel adder

subtractor in REGTRAN, the FORTRAN generated and the SYSSIM

commands along with the TRACE features demonstrations and the

results are shown in Appendix A.

Sequence Detector. Another example shown is the sequence

detector. This used J-K flip-flops (A, B and C). It has one input,

X, and one output, Z, which is 1 whenever the input sequence 101 or

0110 is detected. A complete listing of the example is also shown in

Appendix A. The simulator output shows the simulation results for

14-bit input sequences.
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III. IMPLEMENTATION OF MICRO

3. 1. Introduction

Microprogramming was first introduced by M. W. Wilkes to

overcome the difficulty of designing the control unit of a complex

computer system as a sequential network. Microprogramming can

be defined as

. . . a technique for designing and implementing the
control function of a data processing system as a sequence
of control signals, to interpret fixed or dynamically
changeable data processing functions. These control
signals, organized on a word basis and stored in a fixed
or dynamically changeable control memory, represent
the states of the signals which control the flow of informa-
tion between the executing functions and the orderly
transition between these signal states.

In the past decade, microprogramming has changed from a

machine implementation process for large computing devices to a

widespread design practice covering the full spectrum of machines as

measured by their size, performance and cost. The flexibility and

ease of change of microprogrammed machines allows the designer to

delay commitment to a particular control process until much later in

the design process than had previously been the case. This same

flexibility has significantly reduced the design time and installation

cost of engineering changes. Readily implemented control sequences

give the designer an opportunity to consider a much richer repetoire

of instructions and commands directed toward efficient solutions to
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the problems for which computation is being done. The solutions can

be less heavily dependent on the exact hardware on which processing

is to take place.

While the initial applications of microprogramming were a

fairly straightforward replacement of "random" control logic with a

control storage element, an immediate expansion has occurred into

the areas of better hardware diagnosis tools. Simultaneously, the

emulation of predecessor machines on newer technology emerged as

an important practice --one which has grown today into a major

microprogramming application.

A microprogram consists of a collection of microinstruction.

These fields correspond to one or more micro-operations. Micro-

operations are the fundamental operations of the hardware and include

the following:

1. Activating a data path

2. Initiating an arithmetic operation

3. Initiating a data transfer

4. Testing a condition

Microinstructions and opperations are intimately tied to the

system timing. Micro instruction formats can vary from a single

encoded micro-operation field and an address field to a format where

each field corresponds to a single control gate. The former format

is essentially similar to decoding a machine instruction. Many



50

microinstructions would be required to implement a given operation

with only a few encoded micro-operation fields. This type of format

is often called vertical microprogramming in reference to the length

of the microprograms. The cycle time would be short since only a

few micro-operations can be performed with a single microinstruction.

In the other extreme, all possible micro-operations can be specified

with a single microinstruction. This is called horizontal micro-

programming due to the width of the microinstructions. Here, the

major cycle time is much longer since each microinstruction must

be sequenced with minor cycles to avoid conflicts. Wilkes scheme is

an example of horizontal microprogramming. Most implementation

of microprogramming lie somewhere in between the extremes.

Mutually exclusive micro operations are grouped in one encoded

micro-operation field.

Microprogramming can be implemented with a decoding tree

and plugboards or diode arrays as in Wilkes scheme, however, semi-

conductor Read Only Memeories are in present use.

In this chapter we will be considering a computer system which

is shown in Figure 3. 1. The simulator for this system "MICRO";

is written in FORTRAN. The control section uses ROM. The current

contents of the instruction register (IR) will be decoded by decoder,

these are used by the address logic to calculate the next micro

instruction address. The address is stored into the ROM address
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register (ROMAR) and the next micro instruction is read into the

ROM buffer (ROMBR). The micro operation fields are decoded and

sent to the control points of the system.

3.2. Description of MICRO

MICRO (a simulator for a simple microprogrammable

computer) is a FORTRAN program, written to run under the system

KRONOS at Oregon State University.

MICRO can be used as a simulator at two levels. (1) As

micro instruction formats can be a single encoded micro-operation

field and address field, the micro instructions can be direct. The

encoded micro instructions can be used to simulate a microprogram.

MICRO can be a simulator for microprogram. (2) MICRO simulates

any microprogrammable processor, using ROM control logic and

DECODER logic. This consists of three major sections; main

memory, ALU and control storage. The dimensions of the main

memory can be specified by the user according to his need and

requirement of the machine he is trying to simulate. But the number

of bits in a main memory word can not exceed more than 60 bits as

KRONOS will allow only 60 bits. It has six associated registers,

memory address register (MBAR), a memory buffer register (MBBR),

a program counter (PC), an instruction register (IR), a stack pointer

(SP) and an address bus register (ABUS)
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The size of all the six registers is not fixed and can be specified

to the requirement of the user. ALU consists of an accumulator

(ACC) and a temporary data bus register (DBUS) and a set of general

purpose registers. The control section contains a "Read-Only-

Memory" of 15 bit word length and the number of words is not fixed

and can be specified by the user, along with an address (ROMAR)

and buffer (ROMBR) registers. In this system the size of the

accumulator, general purpose registers and other temporary

registers are not fixed sizes, in order to provide this system with a

flexibility, with which the user can easily set up the sizes, fitting to

his requirements and need not worry of the complexity of his

machine adjusting to this system. It provides ease and less problems

in simulation of other microprogrammable machines on the simulator.

3 . 2. 1. Microinstructions

The microinstructions are divided into two groups. Group (1)

microinstructions manipulate the contents of the accumulator. These

instructions can not be combined with the other instructions of group

(1). Group (1) also does the input, output operations.

3. 2. 1. 1. Group (1). The group (1) microinstruction format

is shown in Figure 3.2 and the microinstructions are explained in the

succeeding paragraphs.
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k OPERATION * ID * REGISTER

Figure 3. 2. Group (1) format.

Operation Codes. The ROM word consists of five octal-digits,

occupying a total of 15 bits. The first two digits denote the operation

code.

1. No Operation (NO OP)

Octal code: 00

Operation: This command causes a 1-cycle delay in the pro-

gram before the next sequential instruction is

initiated. This command is used to add execution

time to a program. The NOP also provides the

programmer with a convenient means of removing

an instruction.

2. Subtract From the Accumulator (SUB)

Octal code: 01

Operation: The contents of the temporary register are

subtracted from the accumulators and the result is

left in the accumulator and the original contents of
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the accumulator are lost.

3. Subtract the Accumulator (SUB)

Octal code: 02

Operation: This operation is the same as the previous one

except in this the contents of the accumulator are

subtracted from the temporary register's contents.

4. Addition (ADD)

Octal code: 03

Operation: The contents of the temporary register are added to

the contents of the accumulator. The result of this

addition is held in the accumulator, the original

contents of the accumulator are lost.

5. Complement Accumulator (CMA)

Octal code: 04

Operation: The contents of the ACC are changed to the two's

complement of the current contents of the ACC.

6. Increment Accumulator (INCA)

Octal code: 05

Operation: The contents of the accumulator are incremented

by one.
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7. Increment Temporary (INCT)

Octal code: 06

Operation: The contents of the temporary register are incre-

mented by one

8. Increment Programcounter (INC PC)

Octal code: 07

Operation: The contents of the program counter are incre-

mented by one.

9 . AND

Octal code: 11

Operation: The AND operation is performed between the

contents of the accumulator and the contents of the

register denoted by the address field. This instruc-

tion is often called extract or mask, can be con-

sidered as a bit-by-bit multiplication.

10. OR

Octal code: 12

Operation: Same as above, except the operation performed will

be OR

11. EXCLUSIVE OR

Octal code: 13

Operation: The operation here will be exclusive OR.
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12. COMPLEMENT

Octal code: 14

Operation: The contents of the address in the address field are

complemented.

13. Right Shift (RS)

Octal code: 15

Operation: The contents of the accumulator will be shifted to

the right one binary position and overflow flag is set

if there occur any.

14. Left Shift (LS)

Octal code: 16

Operation: The contents of the accumulator are shifted to the

left one binary position. Left overflow flag is set,

if there occurs any.

15. READ (Memory Refference Instruction)

Octal code: 21

Operation: Information from main memory can be read in this

operation.

16. WRITE (Memory Refference Instruction)

Octal code: 22

Operation: Information can be stored in the main memory using

this operation.
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17. Clear the Accumulator (CLA)

Octal code: 31

Operation: The contents of each bit of the AC is cleared

(made equal to 0).

18. Change the Signbit of Accumulator

Octal code: 32

Operation: The sign of the accumulator will be changed.

19. Clear Right Overflow Flag

Octal code: 33

Operation: Clears the right overflow flag.

20. Clear Left Overflow Flag

Octal code: 34

Operation: Clears the left overflow flag.

The third digit in the ROM word is the identification digit which

indicates whether the operation is right or left justified, whether the

temporary location is a data bus or a address bus and whether the

operation is on bus or off bus. Table 3. 2- 1 shows a summary of the

action of W3, the identification digit.

register number.

The last two digits indicate the
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Table 3.2.1. Significance of identification digit.

W3

ID Bits
Position Significance

000 On Bus, Data, Right Justified
001 On Bus, Data, Left Justified
010 On Bus, Addr, Right Justified
011 On Bus, Addr, Left Justified
100 Off Bus, Data, Right Justified
101 Off Bus, Data, Left Justified
110 Off Bus, Addr, Right Justified
111 Off Bus, Addr, Left Justified

In addition to the above 8 registers, there are general purpose

registers, a maximum of 24, which will be denoted by W4W5 from 09

to 32. Table 3.2.2 shows the registers and their names which will

be used in the MICRO.

Table 3.2.2. Register names in MICRO.

W4W5

In Octal Register They Indicate

00 Instruction IR
01 Accumulator ACC
02 Memory Buffer MBBR
03 Memory Address MBAR
04 Data Temp DBUS
05 Address Temp ABUS
06 Stack Pointer SP
07 Program Counter PC
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One example of this type of instruction format is given below.

W1W2W3W4W5

0 3 0 17

3 . 2. 1. 2.

This can be translated as the addition of the

contents of the general purpose register 7 with the

contents of the accumulator and the temporary

register used for this is data register and the

transfer is right justified. In conclusion

[GP7] > TEMP

[TEMP] + [ACC] > ACC

Group (2) Microinstruction Format. The group (2)

format is shown below in Figure 3.3.

10P CODE iCONDITION

1 1

ADDRESS

Figure 3. 3. Group (2) format.

In this the first digit W1 determines the kind of operation to be

performed and W2 determines the condition that needs to be satisfied

in order for the operation to take place and W
3

W
4

W
5

constitute the

address of the ROM location, which will be used by the operation.

The various conditions of W2 are listed in Table 3.2.3.
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Table 3.2.3. Conditions indicated by conditional
digits W2.

W2

In Octal Condition Indicated

0 Unconditional
1 Right overflow
2 Left overflow
3 Sign positive
4 Zero
5 Index
6 Indirect
7 Sign negative

The various operations are listed in the following paragraphs.

1. JUMP

Octal code: 4

Operation: Jump is the address indicated by the address field

when the accumulator satisfies the condition indicated

by the conditional bit.

2. SUBJUMP

Octal code: 5

Operation: SUBROUTINE JUMP, stores the present address of

the operation and jumps to the address indicated by

address field.

3. RETURN

Octal code: 6

Operation: Return to the address indicated by the address field.
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4. JUMPT

Octal code: 7

Operation: Jump to the address indicated by the address field

when the temporary register satisfies the condition

indicated by the conditional bits.

One example of group (2) type of microinstruction is

"43132" JUMP ON [ACC] > 0 to ROM LOCATION 1328. Table 3.2.4

gives a summarized form of all the micro operations.

3.2.2. Description of Operation

The flow chart for MICRO is given in Figure 3.4. The control

section consists of 15 bit ROM, a ROM buffer (ROMBR), address

logic, and a ROM address register (ROMAR)

In the initializing process the size of the ROM and the contents

of ROM, the decoder values, (more detailed version of the decoder

and its importance will be discussed in the following paragraphs), the

size and number of general purpose registers, and the sizes of

instruction register, accumulator, main memory buffer, main

memory address register, temporary data register, temporary

address register, stack pointer of the ROM and program counter of

ROM will be read in. Also, the size of main memory and the contents

of main memory will be read in. Then the parameter for TIME, RUN,
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Table 3.2.4. Summary of microinstructions.

Octal
Code Type Description

Operation
Called

W1 W2

00 1 NO OPERATION EXEC (1)

01 1 SUB [-T+ACC>ACC] EXEC (2)

02 1 SUB - [T-ACC>ACC] EXEC (3)

03 1 ADD [T+ACC>ACC] EXEC (4)

04 1 ?COMP [ACC>ACC] EXEC (5)

05 1 INCA [ACC+1>ACC] EXEC (6)

06 1 INCT [T+1>T] EXEC (7)

07 1 INCPC [PC-I-1>PC] EXEC (8)

11 1 AND [T. AND. ACC>ACC] EXEC (9)

12 1 OR [T.OR.ACC>ACC] EXEC (10)

13 1 XOR [T. EOR. ACC>ACC] EXEC (11)

14 1 COMP [ACC>ACC] EXEC (12)

15 1 RS [RIGHT SHIFT ACC BY ONE BIT] EXEC (13)

16 1 LS [LEFT SHIFT ACC ONE BIT] EXEC (14)

21 1 READ EXEC (18)

22 1 WRITE EXEC (19)

31 1 CLA [0>ACC] EXEC (26)

32 1 SB>SB [SIGN OF ACC IS
COMPLEMENTED] EXEC (27)

33 1 0> RO EXEC (28)

34 1 0>L0 EXEC (29)

W
1

4 2 JUMP NONE

5 2 SUBJUMP NONE

6 2 RETURN NONE

7 2 TJUMP NONE
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Figure 3.4. Flow chart for MICRO,
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Figure 3.4. Continued.



Figure 3 . 4 . Continued .
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RETURN=

. TRUE .

Figure 3 .4. Continued .
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PRINT will be read in and corresponding flags are set. Then

SUBROUTINE GETMIC will be called to fetch the instruction.

The flow chart for GETMIC is given in Figure 3. 5. In this

subroutine, the IFETCH flag is checked to see if the instruction

register already has the main memory instruction loaded in it, in

which case the subroutine DECODER will be called to calculate the

address of ROM instruction and will be placed in ROMAR. If IFETCH

is not set, then the fact whether it might be one of the group (2)

instructions is verified. In case of JUMP instruction, the address

of the microinstruction to where the jump operation need to take

place will be placed in ROMAR In case of SUBJUMP instruction, the

contents of the program counter will be saved and the address of the

ROM location to where the SUBJUMP need to take place will be loaded

into ROMAR. In case of RETURN instruction, the contents of STACK

which are previously saved by SUBJUMP will be loaded into the

ROMAR.

Once ROMAR contains the address of the ROM instructions to

be performed next, the instruction will be read into ROMBR and it

will be decoded into five octal digits- The control returns back to

MICRO with these five octal digits.

Hence, once an instruction from ROM is fetched in, the left most

two digits are used to determine whether the instruction is HALT or

GROUP (1) or GROUP (2). In case of HALT the program prints out
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Figure 3.5. Flow chart for GETMIC.
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the results depending upon the type of printout desired by the user

(more details about this will be discussed later) and then stops. In

group (1) microinstruction, the left most two digits indicate the type

of operation to be performed and the third digit indicates the right

or left justification, the type of temporary register to be used and

direction of flow of information. The right most two digits constitute

the address of the register to be used to perform the operation. In

this type of microinstruction set, all operations are performed

through temporary registers. For example, in this particular micro-

instruction "21603" information is first transferred from temporary

address register to memory address register and the transfer is right

justified, then the contents of the address stored in memory address

register are loaded in to the main memory buffer by the execute sub-

routine.

In summary

21603 ± J ADR TEMP --> MBAR

> MBBR
MMBAR

L
All the operations in Group (1) microinstructions are performed

by the EXECUTE SUBROUTINE.

In this subroutine the first two digits are used to calculate the

operation number and it will be executed and the control returns back

to micro. After performing group (1) operation, the results are
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printed according to the wish of the user and the next microinstruction

will be fetched in by the subroutine GETMIC if it is a FREE run. If

it is a STEP run, the control waits for the command by the user to

proceed further.

In case of Group (2) microinstructions, the first digit from the

left denotes the operation to be performed and the second from the left

denotes the condition to be satisfied in order for the operation to take

place and the right most three digits constitute the address that will

be used in performing the operation. Once group (2) operation is

performed, the results are printed according to the instructions of the

user and the control returns back to GETMIC subroutine if the instruc-

tion is a FREE RUN or waits for the proceed command if it is other-

wise.

3 . 2 . 3 . Decoder

Unlike the other kinds of microinstruction simulators, this

MICRO does not assume the instruction formation of the emulated

machine. The user is at liberty to use any kind of format he wishes

to. In the initializing routine which takes place in the beginning of the

program, the values which denote the number of bits from left, that

constitute the operation code in the instruction format DN, the offset

parameters Dl and D2, with which the programmer wishes to locate

his microinstruction in ROM, the index, indirect and page bits and
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the size of the address field IAD will be read in.

The flow chart for DECODER SUBROUTINE is given in Figure

3.6. The function of this subroutine is to calculate the address of the

microinstruction in ROM from the main memory instruction which is

in the INSTRUCTION register IR, using the parameters DN, D1, D2

and with the operation code of the instruction in IR. The address

field of the IR is used along with index, indirect and page bits to

calculate the address in the main memory where the instructions

store or retrieve data, and this address is stored in the temporary

address register.

3.2.4. Free Run and Single Step Run

MICRO can be run either in FREE RUN or in SINGLE STEPRUN

In case of FREE RUN, the program will be executing the instructions

from the main memory using the ROM microinstructions until it

comes acorss one of the following three conditions.

1. When it finds a HALT in the ROM's microinstructions which

is indicated by the left most two digits of the microinstruc-

tion equal to 77.

2. When the clock, which is set in the beginning of the program

to certain value, exceeds that value,

3. When it finds a HALT instruction in the main memory and

executes that using ROM microinstructions, in which case
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SET

IDENTIFIERS

Figure 3 .6 . Flow chart for DECODER.
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the microinstruction HALT will be met.

In case of SINGLE STEP RUN, the program will execute every

microinstruction from ROM and will wait for the proceed command

from the user, which is done by typing 'Pr. If it does not get the

proceed "P" command, the program stops execution. The other

times the program comes to a stop is when the clock time limit

expires or when it sees a HALT in ROM microinstructions. SINGLE

STE RUN is very useful, when the user wants to examine the actions

performed by each microinstruction on line before he does nest one,

which is generally done while debugging. The FREERUN is useful

when he is not running on line and when he is running his data and the

program in the input form of card deck or when he wants the program

to run for certain clock pulses.

To set the run of the program for either FREE or SINGLE STEP

the following procedure is followed. In the initializing routine after

reading in ROM size and contents, decoder values, size and number

of general purpose registers, sizes of other main registers and size

and contents of main memory, the following parameters will be

requested by the program.

TX The number of clock pulses, the program needs to run

(sets clock The default value of the clock is 50.

value)
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Fl By setting this equal to zero, the program will have

(sets the FREE run. Any thing more than zero the program will

run flag) have SINGLE STEP run. If no value given, the system

will have FREE RUN.

R1 By setting this equal to zero, the values of the registers

(sets the will be printed for every ROM's micro instruction. By

print flag) setting this to any other value than zero, the values of

the registers will be printed for every main memory's

instruction. If no value is given the print out will be

for every ROM microinstruction.

The clock is updated after every ROM's instruction.

If each ROM's instruction execution is considered as one minor

cycle and each main memory's instruction execution is considered as

one major cycle, then the system's clock is updated for every minor

cycle. Every major cycle consists of two parts, EXECUTION and

FETCH. FETCH consists of four minor cycles and EXECUTION

consists of more than one minor cycle. So for every machine's

instruction, the system goes through a maximum of one major and

minimum of six minor cycles. If the clock is set to 40, the program

goes through 40 minor cycles and if PRINT FLAG is set TRUE by

setting R1=0, then the print out will be for every minor cycle other-

wise it will be for every major cycle. Minor cycles consist of two

pulses and they are shown below for Group (1).
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TO

T
1

R -> TELIP(i)

TEMP 1 (i) > R

I DATA (T .OPERATION. ACC -> ACC)

I ADDR (READ/WRITE)

ONE MINOR
CYCLE

Figure 3.7. Time pulses for group (1) microinstructions.

Every minor cycle consists of three pulses for group (2). They

are shown below in Figure 3. 8.

LOAD ROMBR
R -> TEMP
TEMP -> R

TEST CONDITIONS

SET ROMAR

.T2

ONE MINOR CYCLE

Figure 3. 8. Time pulses for group (2) microinstructions.

3. 2. 5. Trace Feature

The MICRO is provided with a trace feature which allows for

easy troubleshooting of the program. This feature produces output of

considerable amount and should be used only if necessary and should

be used with the knowledge of what that printout means. This prints
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series of information as it processes every ROM instruction

regarding the HALT test, the register number that will be used for

the transfer of data, the kind of justification, the type of execution to

be performed etc. A copy of the trace printout is given in

Appendix B.

3.2.6. How to Use MICRO

MICRO can be used online or offline.

3.2.6.1. Online Operation. Every user will be provided with

a user number, password. Using these he can log on the KRONOS

system, the system will respond by the message "READY".

He can use the EDIT and edit his two input files, one consisting

of all the information regarding ROM, all registers and decoder values

and the other containing of main memory information. Let us say the

first file is on TAPE1, and second file is on TAPE2. Using the GET

or OLD command he had to call the BMIC (Binary coded MICRO) and

then the following commands will be given.

/BATCH, 50000

The system responds with

/RFL$50000

The user types
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ROM, DECODER, REG
MAIN MEM

>ROM PRINTOUT
TRACE PRINTOUT

/BMIC, , TAPE', TAPE2, TAPE3 , TAPE4

Here the output will be the terminal itself.

Then the system prints out the main memory contents in both

octal and decimal and comes back with a question mark for the

parameters TIME, TYPE OF RUN, TYPE OF PRINTOUT.

The user types

?frt40,8,0

The time is a four integer variable so it needs to have four

characters and hence the blanks are included, the type of run is STEP

run and the printout is for every minor cycle. So the program will

wait for letter `P' after every ROM execution and printout. If a

carriage return is given instead of 'P' the program terminates. Here

the clock value is 40.

3.2.6.2. Offline Operation. The JOB DECK set up will be the

following.

JOBIDEN, C1V155000, T100

ACCONT, [USER NUMBER], [USER PASSWORD].

GET, BMIC .

BMIC, ,TAPE5 , .
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[TAPE1]

[T APE 2]

[TX,Fl,RI]
67

89

3.3. Example- -Emulation of PDP -8

The level of microprogramming used in this MICRO is the

same as that of the "user microprogrammable" minicomputers and

micro processors. Actually the only distinction between this level

microprograms and machine language lies in the fact that the instruc-

tions reside in a separate control memory (ROM) and can not be

loaded with the data as one usually does with machine instruction.

As an example, a partial emulation of DEC-PDP-8 is shown. A

general block diagram of simplified PDP-8 is given in Figure 3. 9.

The PDP has a 3 bit op code field. Six of the 8 possible

op codes correspond to the memory reference which store or retrieve

data from the core memory such as: Logical AND (AND), two's

complement Addition (TAD), Increment the Memory Location and Skip

on Zero (ISZ), Deposit and Clear Accumulator (DCA), Subroutine

Jump (JMS) and Unconditional Jump (JMP). The remaining two op

codes correspond to an I/O instruction and two "microinstruction".



M = M1, M2' . M
4096

(M
i
<0 11>)

MBBR <0, 11> IR <0, 2>

MAIN MEM

L <0>

D <0> > CONTROL

e 4 V

A CC<O, 11>

2's COMP .ADD

Figure 3 .9 . DEC-PDP-8 systems block diagram .

SHIFTER

80
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The PDP-8 basic processor is a simple address, fixed word

length, parallel transfer computer using 12-bit, 2's complement

arithmetic. This consists of 3 major cycles: Fetch, Defer and

Execute. Each major cycle is divided into 3 minor cycles. The defer

cycle handles one level of indirect addressing. The "microinstruc-

tions?' consist of instructions which can be executed in one minor

cycle (e. g. , complement accumulator, etc. ) and hence can be over-

lapped within one execution major cycle.

The PDP-8 in Figure 3.9 has 4096 words of memory. The

instruction format is shown in Figure 3.10.

OP CODE I ADDRESS

0 1 2 3 4 5 6 7 8 10 11

(a) Memory reference

1 1 1 0 CLA CLL CMA CML RAR 0/1 0/1 IAC

(b) Type (1) MICRO instruction

SKIP FIELD

I CLA OSR HLT 0

0 1 2 3 4 5 6 8 10 11

(c) Type (2) MICRO instruction

Figure 3.10. PDP -8 instruction format.
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As an example we will microprogram a simulator for the PDP-8.

Only a partial simulation will be shown as an example. In this case

we have to set up the DECODER parameters as

DN=3 The number of bits that represent the op code.

D1 =5
D2 =5 The offset parameters

IAD=9 The number of bits that represent the instruction

register.

The index, indirect and page bits are set to zero values in order to

simplify the simulation process but otherwise they can be used too.

That operations that we emulate are listed in Table 3.3.1. The

octal ROM locations for example for TAD is = 1 x Dl + D2 = 10. At

10th ROM location the execution of TAD will start.

Table 3.3.1. Operations emulated.

IR Operation

000 AND
001 TAD
002 ISZ
003 D CA
004 JMS
005 JMP
006 p.-INS
007 HALT

The sizes of the necessary registers such as ACC etc are set to

12 bit each and they are denoted as follows in Table 3.3.2.



83

Table 3.3.2. Notation of registers.

Register
Number Type of Register Size Name

00 Instruction 12 IR
01 Accumulator 12 ACC
02 Main memory buffer 12 MBBR
03 Main memory address 12 MBAR
04 Data temp 12 DBUS
05 Address temp 12 ABUS
06 Stack pointer 12 SP
07 Program counter 12 PC

Table 3.3.3 shows different operations of PDP-8 that are

emulated using MICRO and the contents of various ROM locations

that process the operations. Only partial emulation is shown here.

The details omitted include the setting of page, index, and indirect

bits. At present they were set to zero.

Only the memory reference and housekeeping instructions were

shown, the rest of augu.mented instructions are omitted for the

present example. The input/output instructions that allow the

program to converse with peripherals, i e. , external communication,

is omitted.

Using the ROM shown in Table 3.3.3, a small addition of two

signed numbers is done and the output with trace feature is attached

in Appendix B,
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Table 3.3.3. ROM for [DPD-8].

ROM ROM
Location in Octal

Register Transfer
of Emulation

Operation
of PDP-8

1

2

3

4

5

6

7

10

11

12

13

14

15

0 7 2 0 7

2 1 6 0 3

0 0 0 0 2

0 0 4 0 0

2 1 6 0 3

1 1 0 0 2

4 0 0 0 0

2 1 6 0 3

0 3 0 0 2

4 0 0 0 0

0 0 0 0 0

0 0 0 0 0

2 1 6 0 3

PC > ABUS, PC+1 --> PC
ABUS --> MBAR

> MBBR
MBAR

MBBR >DBUS
DBUS --> IR

ABUS --> MBAR
MBBR>

MMBAR
MBBR >DBUS
D BUS .AND .ACC > AC C

JUMP TO FETCH

ABUS p MBAR
MMBAR

MBBR

MBBR >DBUS
DBUS+ACC --> ACC

JUMP TO FETCH

ABUS MBAR
MBBR-->

MMBAR

16 0 6 0 0 2 MBBR >DBUS,
DBUS+1 >DBUS

17 2 2 4 0 2 DBUS >MBBR
MBBR --> MMBAR

18 7 4 0 4 3 IF DBUS=0, JUMP TO
35 location in ROM

19 4 0 0 0 0 JUMP TO FETCH

FETCH

AND

1 TAD

ISZ
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Table 3.3.3. Continued.

ROM
Location

20

21

22

23

24

25

26

27

28

29

ROM
in Octal

Register Transfer Operation
of Emulation of PDP-8

3 1 0 0 1 ACC > DBUS, 0 > ACC
0 0 4 0 2 DBUS > MBBR
2 2 6 0 3 ABUS > MBAR DCA

MBBR > M[MBAR]

4 0 0 0 0 JUMP TO FETCH

0 0 0 0 0

0 0 0 0 7 PC >DBUS
0 0 4 0 2 DBUS >MBBR
2 2 6 0 3 ABUS > MBAR

MBBR > M[MBAR]
JMS

0 6 0 0 5 ABUS >DBUS
DBUS+1 >DBUS

4 0 0 4 5 JUMP TO 458=37th location
in ROM

30 0 0 0 0 5 ABUS -->DBUS

31 0 0 4 0 7 DBUS > PC
32 4 0 0 0 0 JUMP TO FETCH

33 0 0 0 0 0

34 0 0 0 0 0

35 0 7 0 0 0 PC+1 > PC
36 4 0 0 0 0 JUMP TO FETCH

37 0 0 4 0 7

38 4 0 0 0 0

39 0 0 0 0 0

DBUS > PC
JUMP TO FETCH

JMP

Rest of the
operation
of ISZ

IRest of the
operation
of JMS

40 7 7 0 0 0 HALT HALT
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3. 4. Conclusion

Using MICRO any general purpose computer can be simulated.

Also any microprogram can be simulated. The user can easily study

the performance of a number of systems. As he becomes more

familiar with better usage of this, he can change his system with no

more trouble than editing his data file.

If MICRO were to be rewritten the following changes are

suggested.

1. At present the interactive feature of MICRO is poor. There

has to be some statements included in the printout to make

the user aware of what is expected to be entered in, if the

user is ONLINE. For example, in the very beginning of the

program, the data needs to be entered is "ROM SIZE", which

should be printed by the terminal. But right now this is not

included and it will be nice if it is added. In essence, more

information needs to be included in the output.

2. External communication -MICRO does not contain any

means to specify which peripheral the program wants. It

will be better if there is any means along with the I/O

interupt incorporated along with it.

3. MICRO is currently capable of only single address instruction

with modifiers.
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MICRO's output prints every register in a fixed format,

which is a little awkward. It will show better if the leading

zeros are suppressed.
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IV. CONCLUSION

The REGTRAN language is fairly easy to learn for anyone who

is familiar with FORTRAN or a similar high level language. The

interactive capability of SYSSIM provides an efficient way for the

digital system designer to debug his design before working out the

detailed logic design. These two programs can be used in teaching a

course in digital system design. A student of logic design, can

debug his network with little effort by simulating it using these two

programs. To learn design techniques, digital systems ranging in

complexity, may be described and simulated. As the student becomes

more familiar with better techniques, he can change his system with

no more trouble than editing his data file.

The present version limits the number of bits per word to 58,

the numbered memory words to 8192 per memory, and the total

number of registers and terminal names to 500. Conversion to run on

a computer other than the CDC 6600, requires some changes in the

production tables symbols and the ASCII comparison of the symbols

in the REGTRAN and SYSSIM programs. Also other several changes

have to be made because the programs make extensive use of the

60-bit word length. Transfer to a computer with a shorter word

length would reduce the permissible length of registers, terminals

and memory words Alphanumeric characters are also packed ten per
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word, so conversion to another computer would involve a change in

many FORMAT statements. Many out put routines require the use of

variable FORMATS, so another method would be needed, such as

multiple FORMAT statements, if variable FORMAT was not available.

If the programs were to be rewritten, several changes would

probably be made, which were given at the end of Chapter II.

REGTRAN language is easy to learn but the generation of FORTRAN

by REGTRAN is such a complex process, that it will not allow not even

a single mistake in the creation of the source file in REGTRAN

language. A single error in the source file can completely wipe off

the FORTRAN thus generated, which causes termination of the whole

process of execution. So in creating the source file the user has to

be very observant, not to make a minute error. Also, they have to

frame their problem and describe in a way so that mixed operation

logical and nonlogical statements will not be generated. As described

in Chapter II, this problem happens due to the'change of compiler

from RUN compiler to FTN compiler. REGTRAN and SYSSIM are

functional at present but can be made more efficient, if more flow

charting and explanation of some routines were available.

MICROa simulator for a simple microprogrammable computer

is very useful as REGTRAN and SYSSIM can not simulate any micro-

instruction, thus this is achieved by MICRO. The microinstructions,

which are simulated by MICRO are similar to machine language
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instructions. This level microprogramming is typical of that used in

"user microprogrammable" minicomputer and microprocessors.

Actually the only distinction between this level microprogram and

machine language lies in the fact that the instructions reside in a

separate control memory (ROM) and can not be loaded with the data

as one usually does with machine instructions. To demonstrate the

features of MICRO, a partial simulation of DEC PDP-8 is shown as

an example. Unlike some of the other simulators, that existed so far

for the simulation of microprogrammable computers, the MICRO will

not assume the FORMAT specification of the machine, which it will

be simulating. This provides the user with a flexibility of assigning

the FORMAT specification fitting to his own problem. The size of

ROM, main memory, all the eight system registers, the general pur-

pose registers are all left to have flexible dimension for the same

reason. Other options in creating the main memory include features

such that an input format of one card can control the rest of the main

memory. A star t*t in the input field will clear the rest of the

memory locations.

The method to use the MICRO is very easy and is flexible in its

application. Adding a new register, arithmetic or a test condition

etc. can be done without any difficulty and can be done by adding one

more routine to EXEC subroutine and very little changes in the main

program are needed.
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A tradeoff exists between the various levels of microprogram-

ming. The higher the level, the easier it is for the microprogrammer.

The decode and timing logic becomes more complex as the language

used moves from direct to encoded to high level.

If MICRO were to be rewritten then the changes that would be

made include ( 1 ) better interactive feature which allows the user to

change his files, whenever he wises. (2) A better print out which

gives more information than at present. (3) The input/output

interrupt feature incorporated with user specified devices.

In conclusion MICRO can simulate successfully the specified

machine but it can be made more efficient.
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PARALLEL ADOF2SU6TR.ACTE
<TE> (12),Y(121,C113).S(1?),A11?), v,(1?),CVE'7FLO

4" "<SY) _ _
4041FEYSTEM NAME MISSING

<179> Y= ASK + A'* (K) ,
C (12) = (11)

O(01111 =X.A.Y .0 .X..C(1112) 0.Y.A.C( 1(12)9_
= X.E.Y.E.O(1112).

Ovp.PF = X (0)!Y( 0)*-3( 0) + X( 01cY(0)1'S (1)

TIME TO CCMFILE REGTRAN PROGRAr = 1.160 SE:OON05

SUP?CUTINE CONTROL
WRITE (7,1)

lFORMAT (5 X,47H*****SYST,74 OMKNO CONTAINED A FATAL ERRCP
RE TOP-1(

END

4VIF4 )

PARALLEL A ODERSU?TR AO TER
<SY> PAS

<T5? X (12),Y (12 ( 13 1 7.111211_A (12)_,<T12).LOVERFLO
4 <q0 A*K + As (K)

_012) = K111
(0111) =X.A.Y .0 .X.A.C(1 (12) . .Y.A.O(1112),

_.._.__S_ =_ X.F.Y.I.O(1:12),
4 1 OIL70FLO = x (o)*y(n) vs co) x (0)*7,e(0)*'s )

(EN>

TIME TO CCPPILE rEGT),..AN RROG;RAt, = 1.1814 SECONOS



SYSTEM SIMULATICN PROGRAM

...kONLIME
)12PRINTITSTCP(0101) DrC(S),OVERFLO
*****L4ST NUMPFR TN TSTEP T3 ?FRO

>ispRINT(TETE0(0,1)) 01'.O(S),OVERFLO

i3tRUN(TIYE.E0.4)
READ X A

17,28,0
S = 45 OVE0FLO=0

READ X fi

1,1,4095
S =4094 OVCPFLO=C

REAL X A

2045,1,41°5
FUNFER OF LOOPS rXCFrOS.......

S =2047 OVF;FLO=1
?LOCP 50. _

RPAO X A

2048,1,4095
S =2047 OVF0FLC=1

READ X A

4094,401410
7--

S =4092 OVERFLO=0
.TRACF,;=G
****ccYNTAX ERROR

?TRACE RTG

N RAF:7SM CCN1 7NTS
1 TImr_ 00000000000100700704
E X: 00000000010100117775
7 Y 0001005000U10117776
a C 00100010010001117774
9 S 000000100011C0117774

10 A 00000000031000117776
Il K onoqopolloonuomml
12 OVERFLY 01000000000000000001

rtRA:F CN
?RUNCITYr.F0.51
*--TYPE=1.,PHRAE=TIMF

__.*--TYPE=4,1114/V7F=.F0.
4,--TypE=4,,nppAs7=

*--TYFF=?,FHL!AF=.
4,TYPC=3,PPRASFT)
...LA9EL = 3

READ X

TRACE CFF
*--TYPE=1,rPRASF=TRACEOFF
"*"TRY AGAIN
1,3,1

1.7.-TYPE=?IrPRASE=
*--TYPE=3,PPRAST7=,
4---TYPF=R,THRA!3F=
---TYPE=3,FAsp=,
*--TYPE=2,PHRA;F=
41.--TYPE=3,PFRASF=

= 4 OVErFLO=0
..TRACE OFF

5

10

1
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SU3ROUTIN7 CC4910L
INTES7R.uKFp
INT1:C7R 07000ER
INTEGER 'P,RT
LOGICAL CHrGISSRERR,L
COliON/RFG/NAmESI 5...);;),N9t

tOCOO
C01104/TEMP/J(21"),L(21^.)
RTt 61 =RP( 7) .A10.:;;L.:0:(:0101021030Ci8
IFt2P( 6) .NE.RT( 6) ) CHNG=.TRUE.
RP( 6) =RT( 6)

RETURN
END

SU32ONTINFE CONTROL
LOGICAL CHrGISSRERR,COR,CCOO
TNTIGER RP,RT

----0A40N/3EG/NANES( 5.121,49( 5,14),R§t 53)),RTt 563GNON,CHNG,StRERR,
R0000
GOTION/AAIN/KAROt311140RI::?,CON7Rp,TELE,KHAR,pHRASr_,TYPE,TRO,LOOPS
RPt 2)=MOO(RP(1) -1, 4)

ilt 2)=RP( 2)
IF t.MOT.CC001 GO To 7
CCOD=.FALSF.
NLO^p.o

6 CH1G=.FALSE.
CALL COmBOOL
NLOOP=1LC3P+1
IF tNLOOF.GT.mLoOPS1 GO TO 2C
IF (CHNG1 GO TO 6

7 CONTINU;,.
DO 1J I=1,NON

10 RP(T)=RT(I)
ENVY E0oLEAN
COOO=.FALSE.
NLY,P=0

15 CH4G=.FALSE9
---CALL cclepeL

NLOOP=NLoo1 +1
IF (NLO1F.GT.mLOOPS) G3 TO 21-4
IF tCHNS) GO TO 15
RETURN

20 CALL ERRN(36,31NLO3PS)
RETURN
ENO

SUliOUTINE REGSET
LOGICAL SSREiR
004404/REG/NAmES(

SCO10
COMMON/4EN/MENNA(6),NEiNe(6),MCiSI7A6),NOM

510)0,1(

401/ 3/
NCN/ 7/

5r.3),PPt 5001,R1( 5L1),NONICHNG,SSRERR,

DATA
DATA NAIF3t t 11143( 1)/11HTTAU 21/

DATA NAlEs( 21,411 21/17H 1/_

DATA NAILS( 31,41( 3)/1:H , 48/

4AmtSt 41,43( 4)/1"4 t 1/_DATA
DATA NANES( 5)01( 5)/1:N 48/

DATA ;JANES( 6) ,13( 6) /1'Nx 1/

DATA NAILS( 7),431 7)/1'NY 1/

RETURN
END

98
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FUNITIOq MF),T(MEI,NWOR3)
COAMOA/MEN/MEmNA(i)tmEMA3(6),MOSIZ(6),Nem
COMMON/lAIN/KARI(31),NCR,,<P,COMERR,TELE,KHAR,PHRAS,TYPE,TRO'LOOPS
LOGICAL TELE

13 mPRT=1
R`.TURN
ENO

SUBROUTINE MSET(M7:1,NWPO,MOAT)
C01104/MEN/lEMAA(6),MEM11(6),MEASIZ(610Cm

1( RETURN
EN3

SUBROUTINE: M1ATA
UTURN
END



SYSTEM SIMULATICN PROGUM
.---+--- -

_ICNIANE
211NPUItTS1E°(D,1)) IY=00,1,114,1,10.01,00,1011)

_1'2:DISPLAY, Y,A,8,C,2
?3:RUN(TIPE.T'.1,3)

1-nnonn
x-onxvn
A-. 1.

1- 1. 1 i n

1-.0 1 c n 1

1- 1 e 1. 0 1

1- 1 1 1 1 P

1-11con
1 1 1 0 0

1- 0 1 1 0

1- n 1 9

1- 0 1 1 1 0

1- 10101
1-1111n
1- 1100

___!csy> SEODDT
(TE> 7.11-121X,MX,KIJC,JC1,Z
<RE
<ec>

loc=-A,

4 21=-1-X*A*-3),
4 Z2= -00-11*0*-C),
4 Z=.-121*221,

)0=-1-Y4-A+-C)
j0f=-;Cf',x),

_4 x-7,=-(At1C1.)

<AU A9C
:A=JIUT t A x,mx

B=1KFF(9,1,KR1,

<EN>
_ _

TIME TO (;CXPTLE "UGTRAN P7:0W4AN 1..346 St.-.00f0S

100
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SUDRCUTIN- CO'ADOOL
TilTrGFR JKFF
INTF.Gc.-F OrronFR
INT.'"Cf:P RP,RT
LOCIett, ('NNG,SS°1TRP,1
C01.TICI'VrEGJNAM.'S ( :3110) 03( 503) 'RD ( 500) .RT ( 500) ,hONICHN6.SSRFRR,
urn
CON'1CN/TP.P/J(20 0) 4_ (2 )

J( 11= .MOT.Rn( 3) . A'10. CACr1(13PA 011031301CM '3
RT ( --c--J( 1) . AND, one° oi^o oloollivinnV3
IF (RP( P) . .RT( 9) )

RP( ci =RT( 5)
J( )z .NOT.Rr)( ) AND. C0010l)(1301RIDOC(10001E3
J( I )-=J( 1) R0( 1'4)

J( 2 )=.110T.PD( 151 .AND. c`11)100(107)D001)0000019
J( )=J( 11 .AN 3, J( DI
J( 1)=.110T.J ( 11 .5110.1116113910103101301t10913
RT ( F1 =1( 11 .4.40. C90003 CO(10900913001101B
IF (DP( 6) .'41--.RT( 6) C1416= .TRUE.
RP( 6) =PT( 6)
J( 1)=.NCT.RP( 141 .ANC.0001CC00910311°10001B
J( 1)=RP( '3) .AND. J( 1)

1)=J( 1) .AN9. RP( 151

J( 2)=.NCi.RR( 16) .ANe.c00000M0ul000on0ie
J( 1)=J( 1) .AND. ,I( ?)
J( 1 )=. .11CT.JI 11 . AND. 0991 f10011030009HC0319
RT ( 7) 11 . A90. 00 C.11',110(10100(19000301

IF (°P( 7) .NE.RT( 7) 1 CH'16=.TRUE.
RP( 7) =RT ( 7)
J( i)=R2) 6)

J( )=.40T.J1
( 13) =.1( 1) .A40.

IF(RF( 11) .NE.RT(
RP( 13) =PT( 11)
J( 1)=.N0T.DF.( )

R?( 7)
. AND. 01000110993951)30000013

G103(11 (100110000030101D
11) I CF'91 = MIJE.

AND. 001111101300901010'100018
J( .NOT if+ ) .11N 0. CO 031000001100:10109018
J( 1)=J( 1) .0R. Ji ?I
J( 2 ),.."10T.RD( .16) . AND. CC009001101000011.100011
J( 1 )=J( 1) .0R. Ji 2)
J( 1):-.NOT.J( 1) . AND. DOU'300000000000000013



RT t 11) =J t 11 .AND.000000000000000000010
_____TP.P.P( 10) .NE.R1A_ 11) ) ,CH4C= . TRUE.

RP( 10) =RTt 101

______J ).= CA 00.0'1 00.001090.00_000.D0111

J( 1)=PP) 151 ,OR. J( 11

J(... 1)= .NCT .J ( 1) ANC. (00101iC1011101C00011B
RT t 121 =J( 1) .A40.0000000000000000'01013
_IF p.0( 12) .4E.RT) 12) ) CW4G=.TRUE.
RP( 12) =RT ( 12)
J_( 1 )=.Rp( 14) .OR. RP( 12)

J( 11= .NOT .J ( 1) .440.010000000001000000019
RTC 11) =J( 11 . A47. 00 CO CO coononlloonOola__
IF (RP( 111 .NE .0 T ( 111 1 CHNC= . TRUE.

__RP( 11) _FRTt _11 1 _

Pc TURN
ENO
suerzeuTr,:E ABC
INIFGF JKFF
IN7GER OFCOOFR
INTEGER RP,RT
LOGICAL CHNG,SSRERR,L
COM1CN/REG/NAm=7S ( 500)_LT-1( 5011)1 510) ,RT ( 5001 ,NON SSRERR,_

TCCO3
COv1C-N/T F.,1P/J ( 2011 ,L (201)

IF U2Pt 2I.NE.
GO IC 257
ENTRY AFICENT
RF TU9'N

257 CONY !NUE
Jt 1)=J-KrF (PP( 1:4-) .,RF( R ,RP( 91

S)
R7 t 14) =J( 1) 0142.-0303C1000100110001C13
J( 11=0000000000901131110112
J( 1 )=JKFF (RP( 151 ,J( 1) ( 101

RTC 15) =J( 11 .ANO. co go cc 01 °nolo!) on on

11=JKFF (RP( 16) ,RP( 11) , RP ( 14)

it I

R7 C 1E) =J( 11 . ANO. 001:n101000001000101B
29S RETUPv

1 RETURV
2 RETURN

29e CALL CFRPR (33, 2, 3H ABC)
SSRERR=. TRUE.

297 RETURN

SURPCUTINF REGSET

102

0 /RETURN

LOGICAL
1;01 4CN/REG/NAM7S

q_CCer1

COPPICA/PFN/MEmNA
. DA.1

S'17.27RT

( 500) ,N2( 501), RR ( 500) ,R T ( 500) ,NONICHNG,SERERP,

(61, NEMN3 (El ,MEMSIZ( 6) ,NCM
0/

-1CN/ 1T/OAT4
__DATA

DATA
tNAM,F1 ( 1) oti(
vAmst 2)01(

1)/10 HT IMF
24/10.E

....
21/__

1/

NAMrS( 3)09( 31/10N _4 g/ __________DATA
DATA NAMES( 4) ,ND( 41/11H if

Wit NAmF7; ( 5),N9( 51/11H 48/

DATA TAMES( 61 0)( 61/111,21 1/

DATA NAMES( 73,41( 71/10),22
DATA LAmFS( 3) ,N1( 11/10MX 1/

DATA LAMES( 1),))r)( q1/101INY
DATA t AmFS 1 10) Itta( 101/1011C0 1/
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DATA NAMGS(
__DATA NAPI7S(

DATA VfimFS(

11)1M3( 111/10FJC
12)09( 12)/1OHJC1
13),MD( 1T)/19H7

1/

I_ 1/.

1/

----DATA_NPMES(-10?(..-110/.1'114A
15)03( 15)/101-4NAMES(.DATA

DATA NAm73( 15)09( 15)/10PC 1/

DATA NAmrS( 17)09( 17)/10HACCSSR 1/

__RETURN
FMR

______SV97C131.T.NE. CONTROL__
LOGICAL CNNGISIRFRR,C01:ERR,CCOD

P.DIRT _ .

COP4CM/REG/mAmr_s( 500),13( 5nn),Rpi 500),RT( 510),NON,CNNGISSRERR,
___$CCC1

COPMCN/MAIN/KV(G0(3)0C-2,KP,CORRITiLE,KHARIPHRASE,TYPGITR,V.LCCFS
RPt 2)=4001"11)-1,
RTC 2)=RP( 2)
IF (.NCT.CCOD) Co To 7
CCC9=.FALSE.
KLC1F=0

E CHNG=.FALSE.
CALL _CCYGOOL
CALL ACT
NLC1P=NLOnP+1
IF INLCCP.GT.NLOOPS) G3 TO ?()
Ic (FFNG1 GO Ti

7 COkTIN-ur
CALL AGC
no 10 I=1,NOM

_10 RP(I)=7",l(I)
ENT7Y POOLEAM
CCIO=.FALSE.
NICOP=p
ctinG=.FAL!;r--.

CALL CC'.47_)00L

CALL ACCGP4T
NLCIP=NLCOPfl
IF thLC0c.6T.MLOOPS1 GO TO 20
IF (CFNG) co TO 15
RFTURN

20 CALL FPPriR(36,3;!`"COOPS)---------------------------------
RrTURN
EMC
SUf!RCUTING MSET(M7m,N140?0,43AT)
COvmCN/HEM/MENNA(6),',EMAI(G),MEISIZ(6),NOM

10 RETURN
END
FUNCTICN 4PRT(47),,m4C1)

,, _

COv4C:.,./MFM/lUmNA(6)0,E441(E),NTMS17.(6),NCti
COm4CN/lATM/VAROIR0)0(:?,KF,CON,7RRITELEIKHAR,PHRASEITYPE,TRIPLCOPS

.
.

.

LOGICAL TELE
VFIRT=0

ENO
SUPROUIINE MDATA
grrilmv.

. -

ENO



104

APPENDIX B



105

LINE NO.
1
2
3
4
5

7

9
10
11
12
13
/4
15
16
17

19

ROM HORD
07207
21603
00002
00400
00000
21603
11002
600:30
00000
21603
03002
40900
00000
00000
21593
06012
22402
74043
40900

29 3/ 001
21 00402
22 22603
23 40000
24 00010
25 00007
26 00402
27 22603
25! 06005
29 40045
30 00005
31 00407
32 40000'
33 09000
34 00000
35 07000
36 40010
37 00407
3 I 40 onn-
39 00000
40 -77000



MEMORY SI7F I./PLIES 4BIT 43AR
4E4(I),OCTAL .4E4(I) 0FOI4AL

0000690000000091913 523
2 000.99000/1000000t1114 524
3 0011C10109000u1G:1015 1549
4 0009i19000000e0007009 3544
5 0090009010000000P119 0

6 00000300100000900000 0

7 00000unAnnu0o9cp000
oono01000o00copon303

s 000ncooninnwiloc300 0

10 009n0100 n000on9atinap
11 nool0oo0090q00n0009n
12 00009^^0000000000112 10
13 77777777777777777771 4'
14 000910000001009f-000n 0

15 00000000000000090000 0

16 000nel0007nann300001
ROM 3UFr=:R CONTAINS= 0 7 7 0 7

ROM 0UFFE2 ColTAINS= 2 1 6 9 3

--ROM 9uFFFc CONTAINS= 0 0 0 9 2

ROM 9UFFE CONTAINS= 0 9 4 9 0

106

Af TIME T= 4

ACC 93US 4338
00000010000009090000 00000003000000001013 000090000000000010130CTAL

0 523 52306CIHAL
SP= 00000000900090000000
PC IR 43AR

00000000090000000001 00000000000009031013 00000000000000000000



--MEMIRY SIZF IMPLIES 4IIT 43AR--
I MFM(I),OCTAL lEm(I),DECImAL
1 00(1111901010300301113 . 523
2 00019000090000101914. 524
T00010000000300303115 1549
4 000n00000001000a7000 3554
5 ooocnnoonnoonoonon
6 poonnnoononoconnnonn
7 000000001Pn001790100
B 00000000000990900009

00000300000900000039
10 0000000003000300099 o

00000000000]00300010 0

12 000009^0000100000012 10
13 77777777777/77777773 4
14 000Qc00090000q0009n

90 OD 0100 Oa 00 00

16 00.000003000000109099
RomnR= 1 POmPC= 1 FOm STACK=
ROM BUFF CONTAINS= 0 7 2 0 7

AT TIME T= 1

ACC DINS MB3R
. .00000000000000303000 00003dd-0-000000000000 100005000000100300000CIAL

ODECIMAL
SP= 00000000000003300030 7

PC IR mIAR
00000000000000000001 00000101000900000000 00000000004000000000

RomAR= 2 F0 C= 2 Rn. STACK= 0

ROM SUFFER CONTAINS= 2 1 6 0 3

AT TIMF T= 2
ACC >14US MB3'

00000000000000000000 noormnr00000nonnon 900000000000000010130CTAL
0 0 523DECIMAL

SP= 00000000000009000000
PC IR M3AR

00000000000000000001 00309000000000000000 300n1000000000000000
ROMAR= 3 POITC= 3 RO" STACK= 0

- ROM 1UFF,7-R CONTAINS= 0 0 0 0 2

--AT TIME T= 3

ACC 91US 493R
00000000000000000900 00001390000003901013 000000003000000010130CTAL

0 523 523OECIMAL
SP= 00000000900003100000
PC IR MBAR

0000001000000000000f00009101000003000003 00001000000000000000
ROmAR= 4 ROMPC= 4 PWA STA'.:K= 0

--r-0(iFf-0UFFER CONTAP'S= 0 0 4 3 0

Al TIME 1= 4

ACC °BUS M39R
000100000)0000000000 00009000000000001013 000000000000000010130CTAL

0 523 523DECIMAL
SP= 00000000009000009000
PC . IR 4.3AR

00000000000000000001 00000001000000001013 000000000.00000000000
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CROSSED HALT TEST
307
RA1OR= &ABOUT TO CALL TRANS
REACHE1 TRANS

BEECRE TRANSEER=0101030000000000000
RIJI BEFORE FINAL MASK 03030000000000010
FINISHE1 R.J SAC< T0 MICRO

RIJI= 0000000000001090000,
R GOING 10 EXEC
8

2 1 6
CROSSE) HALT TEST
703
RADOR= 4Ar3DUT TO CALL TRANS
REACHER TRANS

BFFCRF TANSFER=00033190001000001000
RID BEFORE FINAL MASK 00001000000000000000
FINISED R.J 31CK TO MICRO

RIJI= 00100000000000001001
18 GONG TO EXEC
18
Nq 1M!'lv(N4) 0000000300011101313R(33) 0003000000000000100
REACHED TRANS

BEFCRE TRANSFER=0000011000000301013-
RtJ) BEFORE FINAL MASK 00003000.100000001013
FINISHED R.J BACK TO MICRO

RCA= 00000000000000001313
0 C 0 0 2

CROSSED HALT TEST
102
RAD1R= 3ABOUT TO CALL TRANS

---REACHEO TRANS
R(I) 3EFGOE TRANSFI:R=10000000000000301013

MASK 01131311303000001013
FINISHED R.J BACK TO MICRO

Rtj) 0000000001CC9001013
1 GOING TO EXEC

--no=1)Tom TEST

3

0

SOO
-RADOR= tAROUT JO CALL TRANS

REACHED TRANS
REF(NE TRANSE::Rr--00101010003000001013

RtJ) BEFORE FINAL ""ASK 09J1110010010001013
R.J RACK T9 MICRO

ROI= 003000000001001013
---1 -GOING TO EXEC

1
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