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Chapter 1: Introduction
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With increasing need for real-time awareness in the grid, power supply companies

are deploying what is known as Phasor Measurement Units (PMUs)1. These devices

monitor the status of the grid by measuring electrical waveforms at their location at a

given rate, typically very fast. Capable of being synchronized across multiple PMUs,

they provide operators with a wide-area view of the grid’s status [1–3].

PMUs today have become extremely sophisticated allowing up to 4000 measurements

per second in recent commercial devices. Once the data has been collected by the PMU it

is sent to what is known as a Phasor Data Concentrator (PDC). Once collected the PDC

synchronizes the data points into a single tuple by joining the PMU measurements on

their timestamps. This compensates for the latency in the network and the variable ar-

rival time of packets. The tuples are then written to large, non-volatile storage, e.g. hard

disks. With a fast rate of measurement coupled with a high volume of PMUs placed at

various locations the database grows to enormous sizes. The size of the database and

location it is stored prohibits certain techniques of data querying. To accommodate this

issue a bitmap index has been built over the data.

Due to the variety of locations that PMUs can be located, a distinct feature of PMUs

is that they make use of global positioning systems (GPS) time signal in order to gain

extremely accurate time-stamping of the power system information. PMUs have several

advantages, one of which is being able to monitor data at a high rate of speed. This

allows for dynamic events to be detected and the operator to respond appropriately [4].

The amount of data produced by PMUs continually increases, presenting a problem

from a database management viewpoint. For this data to be e↵ective and notifying

operators of the grids health it often needs to be queried in an e�cient manner. A

portion of this work will provide an e�cient and scalable query system based upon

bitmap indexing.

One data structure, known as a bitmap index [5], has become popular for manag-

ing large amounts of data in the context of scientific applications [6–8], network tra�c

monitoring [9], and data storage [10, 11]. A bitmap B is an m ⇥ n matrix where the

n columns represent range-bins, and the rows correspond to the m records (e.g., PMU

measurements). To represent data as a bitmap, each attribute is first partitioned into

bins that denote either a value or a range of values. A bit bi,j = 1, if the ith record falls

into the specified value/range of the jth bin, and bi,j = 0, otherwise.

1
Also known as synchrophasors, we refer to them as PMUs throughout this work.
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Records Bins
X Y

x1 x2 ... x50 y1 y2 y3

t1 0 1 ... 0 0 0 1
t2 0 0 ... 0 0 1 0
t3 0 0 ... 1 0 0 1
... ... ... ... ... ... ... ...

Table 1.1: An Example Bitmap Index

Consider the bitmap in the Table 1.1. Suppose this example dataset has two at-

tributes, X and Y , and the values of X are known to be integers in the range (0, 50]

and that the values of Y can be any real number. Due to its small cardinality2, we can

generate a bin xj for each possible value of X. Because the values of Y are continuous

and unbounded, we must discretize its values, i.e., decide on an appropriate cardinality

of bins to represent Y , and select the range of values associated with each bin. In our

example, we chose to use only three bins, y1 = (�1,�5], y2 = (�5, 5), and y3 = [5,1).

Suppose we want to retrieve all records from disk where X < 25 and Y = 0. We can

identify the candidate records by computing the following boolean expression,

vR = (x1 _ ... _ x24) ^ y2 (1.1)

vR is a bit-vector, and the value of the ith bit denotes whether the ith record in the file

is promising. Therefore, the bits with a value of 1 in vR corresponds the set of candidate

records on disk,

R = {t | (t[X] < 25) ^ (�5 < t[Y ] < 5)} (1.2)

Intuitively, there could be false positives in R, which requires checking, but only the

records {ri} 2 R with a corresponding bit vR[i] = 1 must be retrieved from disk and

examined to ensure they meet the selection criteria. All records ri with a corresponding

bit vR[i] = 0 are pruned immediately and do not require retrieval from disk. Because a

well-designed bitmap is sparse and compressible, it can be stored in core-memory, which

is orders of magnitude faster than disk.

As we can see, bitmaps can help reduce disk accesses when properly discretized, re-

2
Domain of possible values within attribute.
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sulting in a space/accuracy tradeo↵. In this example, more precise pruning may have

been possible had we split the attribute Y into even more, finer-grained, bins. However,

each additional bin e↵ectively adds an entire dimension, increasing the bitmap index’s

size, challenging its ability to fit in core-memory. Furthermore, appropriate range as-

signment of the bins will also a↵ect accuracy.

The following experiments are the first time that bitmap indexes have been imple-

mented and tested for the PMU dataset. All improvements to the bitmap index are made

specifically for PMU datasets, but can be extended to other similar datasets containing

frequently updated tuples. Parallel compression can be applied to any bitmap index,

regardless of the data type it is built over.
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1.1 Background

This work uses various methods and technologies to achieve its goals. This section

introduces the compression methods commonly used, parallel computing algorithms,

and hardware utilized. Word Aligned Hybrid and Variable Aligned Length are the two

compression techniques that are used most often in this work. Work Sharing and Work

Stealing are two parallel programming techniques commonly used to distribute work

among simultaneous threads of execution. Phasor Measurement Units and Phasor Data

Concentrators are receiving increased use throughout the world to monitor the status of

the electrical grid by collecting information both at transmission and distribution levels.

These are the technologies in the energy systems domain where we develop, analyze, and

improve bitmap indexing methodologies.

1.1.1 Word Aligned Hybrid

Several specialized bitmap compression schemes have been introduced that allow for fast

query execution directly over the compressed bitmap codes. The Word Aligned Hybrid

code (WAH) [12] is one such e�cient bitmap compression and querying scheme. In

WAH sequences of bits in the bitmap are grouped into words, which are defined by the

hardware (e.g., w = 32 bits). Each size w word contains either a fill or literal encoding

of w�1 bits. A fill-word is used to represent a run of either 1’s or 0’s. The structure of a

fill-word is (flag-bit, fill-bit, length). The flag-bit indicates whether the word is a fill or a

literal (1 or 0, respectively). The fill-bit represents the value of the run. The remaining

bits represent the number of size w�1 runs of the fill-bit there are. In contrast, a literal-

word is encoded with (flag, exact encoding). The flag-bit 0, signifies that the word is a

literal. This is then followed by the exact encoding, which is the literal translation of

the (w � 1) bits. In this work, we assume that word size w = 32.

Fig. 1.1 illustrates an example of compressing a bit vector using a 32-bit word. The

example in Fig. 1.1 shows the compression of a bit vector that is 1155 bits long. Com-

pressing with WAH using 32-bit words gives a compression ratio of approximately 18

times, resulting in a bit vector containing only 64 bits.

Logical operations between bit vectors occur by performing a bitwise operator be-

tween them. Performing these operations on compressed bit vectors happens at the level
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1011110111111111111111100000001  11111111111111...1

15x31

Uncompressed Bit Vector (1155 bits)

WAH Compressed Bit Vector (32 bits)

01011110111111111111111100000001 11000000000000000000000000101111

31

Figure 1.1: WAH compression example

of a single word. One important aspect during bitwise operations is the alignment of the

words, i.e., that each bit is operated on against its respective bit in another bit vector.

This is already done through the design of WAH, since each word represents an equal

sets of bits, w � 1 = 31 in our case, for words of size 32 bits. These words can either

contain a single set of 31 bits or many, depending on whether they are literals or fills

respectively.

When performing operations between each bit vector, a variable active word is created

for each bit vector. The active word keeps track of the word that is being operated on

in that bit vector, starting with the first. When the bitwise operation is applied to all

the encoded bits in the active word, it then moves onto the next word in that bit vector.

Three scenarios can occur when performing bitwise operations between two active words:

Fill Word vs. Fill Word: In this scenario, if both active word variables are en-

coding the same number bits, then the bitwise operation can be performed without

extracting any additional sets of bits. That is, for a word of size 32, only that many

bits need to be operated on, allowing for queries to take place without decompres-

sion. In the case where the active words do not encode the same number of bits,

consider the following. Given two words, X and Y where X encodes more bits

than Y , the equal number of bits are operated on, reducing the length of X to the

di↵erence and exhausting the bits encoded in Y . The active word that represented

Y reads the next word while X remains with a reduced run length.

Literal Word vs. Fill Word: With a literal and a fill, a single set is again

subtracted from the fill and compared with the literal set of bits encoded in the

literal word. Then the active word moves to the next word in the respective bit

vector. If there are no more bits encoded in the fill, then the active word moves to
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101111011111111  11111111111111...1  00000000000...0  111111110000000

0110           

15x32

Uncompressed Bit Vector (1155 bits)

VAL Compressed Bit Vector (s=15) (64 bits)

101111011111111 100000000100000 111111110000000..

15 15x43 15

Figure 1.2: VAL Encoding Example

the next word in its respective bit vector.

Literal Word vs. Literal Word: The bitwise operations between two literals is

performed normally on the encoded bits.

There is a direct correlation between how compressed a bit vector is with how fast queries

can be performed. The more compressed a bit vector is, the faster the query will occur.

This is because of how operations occur between fill words amortizes the cost of applying

the logical operation between two bit vectors. This is rarely the case however as often

dirty bits interrupt what would otherwise be a long run of bits. A dirty bit is one that

is di↵erent from the surrounding bits and is in a place that prevents a longer run from

occurring. Often the frequency of dirty bits depends on the domain the bitmap index is

applied to.

1.1.2 Variable Aligned Length

In general, word-aligned bitmap compression schemes have a trade o↵ between higher

compression ratio and short query times. VAL minimizes this trade o↵ by analyzing

the bit vector to be compressed, looking at the distribution of bits and run lengths,

then chooses an appropriate segment length and encoding algorithm. Like WAH, the bit

vector is compressed by VAL into words, which are limited by hardware constraints. The

significant di↵erence is that VAL can specify a segment length, or how many segments the

word is broken up into. These words are then compressed using the specified compression

method, determined by VAL during the analysis of the bit vector [13].

Consider the following example where WAH will be used as the compression method
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and the segment length will be set to 157 with a word size of 6432, represented in Figure

1.2. The uncompressed bit vector consists of a literal, a run of ones, a run of zeros, and

another literal. Each word in the VAL compressed bit vector will have a header of 4

bits representing whether the respective segment is a fill or a literal, reducing some of

the overhead from decompression during queries. The first and last segments are literals

and are encoded as such. The next two are fills and are encoded such that the first bit is

their fill bit and the remaining bitsnext six are the number of segments contained in that

fill. When VAL has the same segment and word length as WAH, then the compression

ratio is equivalent. VAL benefits from being able to change the segment length for each

bit vector if necessary.

Since the bit vectors are compressed into words, the more words that are compressed

the longer it takes to perform a query due to the decoding that takes place. If bit vectors

are compressed e�ciently, then it is possible to reduce these times.

Due to the variable segment length that can occur across all bit vectors, it is necessary

to align the bits appropriately before performing logical operations on them. Given V1.s

and V1.s where V is a compressed bit vector and s is the segment length used on that

vector, there are two scenarios: the segment length of each word is the same or they are

di↵erent. If the segment length is the same, V1.15 and V2.15 for example, then the bit

vectors are already aligned and the logical operation can proceed normally. When the

segment length di↵ers, V1.15 and V2.30 for example, then the segment lengths need to be

changed so that the bits are aligned. This happens on the fly during query execution

time and these changes to segment length are not reflected in the bitmap.

There are two methods that VAL uses to adjust the segment length of a bit vector,

decode down and decode up this consists in, increasing or decreasing the segment length

of one vector to match that of the other. When decoding down there are two cases that

can happen, either the block that is being decoded is a fill or a literal. If the block

is a fill, then a segment with the same fill value is added to the word with the same

value representing the number of segments in that fill. Figure 1.3 shows an example

where the bits representing the number of segments represented can not translate into a

single segment when decoding down from 60 to 15. Thus two segments are created such

that when summed together they represent the same number of zeros in the bit vector.

A literal segment is decoded down by dividing it into the smaller segment length and

appending it onto the word. In this case a literal with segment 60 would be broken down
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with segment 15 into four literals.

Decode up consists of more cases than decode down. One needs an additional data

structure called the alignedBlock which stores intermediate data such as remainder bits

or partial words. There are four scenarios when decoding down:

The activeBlock is a fill and the alignedBlock is empty The activeBlock

is added to the currentWord with the number of segments being a fraction of the

new segment length with any remaining bits being appended to the aligned block

as a literal.

The activeBlock is a literal and the alignedBlock is empty The literal is

appended to the alighedBlock.

The alignedBlock is not empty and activeBlock is a literal. The aligned-

Block is then filled with bits from the literal in activeBlock until it is full, that is

the size of the new segment length.

The alignedBlock is not empty and activeBlock is a fill This is the example

that is presented in Figure 1.4. The fill is expanded to fill the alignedBlock, in this

case it happens to be the same size as the word, and then adds the alignedBlock

to the word. If there are any remaining bits in the activeBlock, they are added to

activeWord as a fill.

1.1.3 Caching

Caching is a process that is used to keep data that will be used frequently closer to the

CPU. All of the data that gets pulled from memory is first read into di↵erent levels of

the cache, as to increase access times. As storage gets closer to the CPU, there is less of

it at the given level and access times are much faster. Typically the CPU checks each

level in cache, memory, and non-volatile storage, in that order, with the last having the

highest capacity and slowest access times. In most CPU architectures there are three

levels of cache. Each core on the CPU has 2 independent levels of cache, with the second

level being larger and slower than the first. These are only available to that specific

core. The last level of cache or the lower level cache is shared by all of the cores, ergo
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000000000000000000000000...000000000001000000000011101000

VAL (s=60)

11111111111111 00000000001111

1100    

VAL (s=15)
011111111111111 000000000001111 ……

Figure 1.3: Decode Down

011011100110010111111111111111111111111111111111111111111111

0100    

VAL (s=15)
011011100110010 100000000000011 ……

0000

VAL (s=60)

011011100110010 111111111111111111111111111111111111111111111

Figure 1.4: Decode Up

all of the threads. Since all cores have access to this level they are allowed to access and

manipulate data that another core has read in.

1.1.4 Work Sharing

Work sharing is a commonly used method for distributing work. Work sharing stems

from the concept that there are tasks that need to be done and workers to do them. The

workers are either multiple threads on the same machine, nodes in a distributed cloud,

or both. To organize this work sharing introduces the concept of a queue of tasks, also

commonly known as a bag of tasks. When a task is ready to compute, it will be inserted

into the queue. Workers then grab jobs from the queue when they become available.

Since all the workers share the same queue, the queue has to become mutually exclusive,

only allowing a single worker to access it at a time. This method is often paired with the

Manager-Worker paradigm. The manager would create or gather tasks that need to be

done then insert them into the queue while the workers continue working on the tasks.

This centralizes the whole process of adding tasks to the queue [14,15].
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1.1.5 Work Stealing

Work stealing is a method for parallelizing a set of tasks. Similar to Work Sharing,

jobs are all grouped together into a queue also commonly called a “bag of jobs”, that

workers grab from. The main di↵erence from Work Sharing is that each worker gets

its own queue of tasks that it has to work on. Once a workers’ queue is empty, then it

will begin to steal jobs from other worker’s queues, hence the name “Work Stealing”.

The reason why this is sometimes more beneficial for some applications compared to the

Work Sharing method is because the queues are all atomic, meaning that only a single

worker can access it at a time. If there are many workers all accessing the same queue

very quickly, then the overhead and waiting to get into the queue will slow things down.

By giving each worker its own queue of tasks, then these workers can get jobs without

needing to compete with other workers. The stealing from other queues is to ensure that

even if one worker finishes before another, it won’t be sitting idle when there are tasks

still waiting to be done. The amount of workers accessing the same queue is therefore

reduced. It can be reduced even more by algorithms that choose specific queues to steal

from, or a di↵erent distribution of tasks into the worker queues [14, 16,17].
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1.2 Related Works

1.2.1 Bitmap Reordering

One way to improve how fast and small a bitmap index can be compressed is by leveraging

reordering techniques. Either rows or columns can be reordered. Reordering one e↵ects

how well the other is compressed. Row reordering is most common since a lot of the

compression techniques are based upon column compression. When reordering, the entire

column or row must be moved to maintain the integrity of the data, as specific tuple

are usually associated with an entire row. Grey Code is a common reordering method

that is used to reorder a bit vector to increase the amount of 1’s and 0’s that occur in

sequence. Often an expensive operation, this method often helps improve query times

and the overhead an index can have. This is especially helpful for compression methods

that perform exceptionally well on long sequences of 1’s or 0’s, for example WAH. Of the

experiments that use reordering techniques, Grey Code is the method chosen [18,19].

1.2.2 Binning Methods

Goyal, et al. present a method for binning where the ranges are completely dependent on

the frequency of queries [20]. The bins are chosen such that the more a specific attribute

is queried, the smaller range the bin that contains it will have. This continues to the

point where if a specific attribute is queried enough, it will be in an exact bin. This

method also works for any type of query, one sided, two sided or equality. The goal of

this is to reduce the amount of candidate checks. The overlapping of bins can lead to

queries being answered using more than one set of bins, a fact that can be exploited to

further optimize the amount of candidate checks. At the end of this paper an additional

research question was asked, can this method be done dynamically. That is, can the

range of bins be optimized as more data on the frequencies of di↵erent queries comes

in [20]?

Rotem, et al. present an algorithm for optimizing the number of bins, with emphasis

on minimizing candidate checks [21]. Their approach is to change the range the bins

cover so that the fewest amount of edge queries happen. Edge queries are the case when

a specific query crosses over two bins, having at most two edges. The query can cover

an entire bin and then cross over one or both edges. This means that for the other bins
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where the query only needs a portion of the values represented by that bin, candidate

checks have to be performed. To minimize the amount of edge queries, they propose an

optimization of bins, thereby modifying the ranges that the bins cover. According to

their experiments this approach leads to much faster query times when compared with

bins that use equi-width and equi-depth binning strategies [21].

Sinha, et al. propose a multiresolution bitmap index [22]. This method greatly

improves query performance, at the cost of additional space required to store the bitmap

index. It not only reduces the amount of time it takes to process a query, but it also

reduces the portion of the data that has to be loaded into memory. This is done by

creating bitmaps using generic binning strategies, such as equi-width. Sinha, et al.

describes each level as being structured with di↵erent resolutions. Resolution in this

case means how many attributes each bin contains. The higher the resolution the less

attributes the bins will contain down to the highest resolution containing a bin for each

attribute possible. The bins follow normal binning protocols for handling floating point

numbers, that is at the highest resolution bitmap containing variables with attributes

being floating point numbers, only have bins with accuracy matching the queries that will

be used on this bitmap. This provides a bound on what would otherwise be unbounded

bins for floating point attributes [22].

Sinha, et al. also proposed an innovative way of accessing the bitmap index using a

caching method [23]. Using di↵erent levels of bitmaps coupled with the multilevel and

caching system they are able to reduce the amount of candidate checks needed for bitmap

indexes with ranges. They also propose using a projection index or PI that consists of

<objectID, attributeValue>. This will also be partially cached in memory for fast

look up. The list of PI is sorted on attribute value allowing for easy checks to see if a

specific objectID has the attribute of the query without doing a candidate check [23].

1.2.3 Compression Methods

Fusco, et al. propose to compress bitmaps in a way that is unique this data set [24].

There are two di↵erent areas where compression takes place, the incoming flow of data

and the index. The related topic is with regards to the index, i.e., bitmap. The method

proposed is dubbed COMPAX. It is similar in nature to the common compression method

called WAH, in fact builds upon it. In addition to the literal and fill word types that
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WAH uses, they propose two additional word types called LFL and FLF. These two

are an additional compression of 3 words, Literal-0-Fill-Literal and 0-Fill-Literal-0-Fill

respectively. The compression performed takes a Literal or a Fill with only one dirty

bit, the dirty bit being in position 0 for the 0-fill word and compresses 3 words into

1. The COMPAX compression method compressed the bitmaps up to half of what

the traditional WAH method could. The query times also decreased by more than

40 percent. This is related in that they customized the compression to be specifically

tailored to the dataset. They did this through observation and began to notice patterns

of words that could easily be compressed even more without e↵ecting the performance

or functionality of the compressed index. The compression method also deals with very

fast data streams [24].

Deliege, et al. devise a method that builds upon WAH [25]. Compression takes

place according to WAH’s algorithm. Once compressed PLWAH, or Position List Word

Aligned Hybrid, attempts to merge fills with literals. This is done by looking at words

adjacent to fills. If these adjacent words are literals and are nearly identical, then the

two words are merged into one. Nearly identical is defined in the work as the maximum

number of bits di↵ering set by some threshold, which is defined in the work. To merge

the two words, a portion of the fill word will be used to represent the literal word. This

only occurs if there are enough unset bits in the fill word. The number of bits available

in the fill word is determined by how many fills it is currently representing. This leads

to higher initial compression values, but on average 20% faster query times [25].

1.2.4 Visualization

Cu↵, et al. introduce a novel way of visualizing empiric power systems [25]. They propose

a 2-D model using electrical distance and colors to define the electrical connectivity

and structure. To assist in visualization matrices are also created containing various

measurements from the power system and are color coded to match the associated graphs.

Their goal is to allow operators to easily determine the systems connectivity by improving

upon the single line graphs commonly used today [26].
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Chapter 2: Bitmap Indexing Applied to PMU Datasets
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2.1 System Design

Given a user query that selects a subset of records from the PMU data archive, the näıve

approach to respond to the query would be to perform a linear scan of the database,

comparing each record for selection, and then returning the matching records. For a

real-time application that depends on the power operators’ situation awareness, this

operation would be too expensive because disk I/O operations are slow. Our PMU data

management system, depicted in Fig. 2.1, has multiple software components allowing the

user to build a bitmap index over raw data, and to e�ciently query records that match

specifications.

The Bitmap Creator inputs the raw PMU data and generates a bitmap using the

binning strategy specified in Section 2.2. When new files are added to the database,

these records will simply be appended onto the index. Once the bitmap is created, the

Compressor will compress the index using WAH. After compression, the system is ready

to receive queries from the user. These queries will give selection conditions on values

of particular attributes the user is interested in. The Query Engine then translates the

query into boolean operations over the specified bins in the compressed index. This will

produce a Result Bit Vector vR, which contains information on which records we need

to retrieve from disk.

While vR holds the selected record information (all bits with a value of 1), it is the

actual data on disk that must be returned. An intermediate data structure, the File

Map, was created to facilitate this role. The File Map is an intermediate data structure

that holds metadata on the files and how many tuples1 they each contain. There are two

values per File Map entry: totalRowCount and filePointer. The totalRowCount contains

the total number of tuples up to and including that particular file. The filePointer holds

a pointer to the corresponding file on disk that contains the next set of tuples. To retrieve

files with this method, the result bit vector is first scanned and a count is kept for the

number of bits that have been read. For each hit, the count is hashed to its corresponding

index in the File Map. This is an upper-bound hash, meaning that the count value is

hashed to the closest totalRowCount value, without being greater than it. This will give

the corresponding file that is desired. This allows us to scan the result bit-vector and

only access disk when a record needs to be retrieved, significantly reducing the amount

1
An entry (or record) in the database
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Figure 2.1: PMU Data Management System Architecture
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Figure 2.2: File Map Structure

Fig. 2.2 illustrates a small example of a bit vector and where the bits hash to the

filemap. Bits one through three are hashed to the first row in the File Map structure.

Bits 4 and 5 are hashed to the second row since these bits represent tuples 4 and 5, which

are stored in fileB. With the upper bound hash, bits 4 and 5 hash to totalRowCount 6,

since they are both greater than 3 but less than or equal to 6. Bits 60, 62, and 63 are

not hashed since they are not hits. Only bits in the bit vector that have value one will

be hashed. This leads to improved performance when there are long stretches of zeroes

in the bit vector.
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2.2 Characterizing PMU Data for Bitmap Indexing

We obtained 950 GB of data from a number of PMUs within the Bonneville Power Ad-

ministration’s (BPA) operating region from August 2012 to August 2013. At each PMU,

a phasor measurement is sampled every 1/60 sec. Each measurement is represented by

a date-time and a phasor, which is a pair of values: the phase angle � and the voltage

magnitude V . The phasors from 20 PMUs are combined, resulting in 2⇥ 20 PMUs = 40

attributes. The phase angle � is a time-varying real number that oscillates within the

range of [�180, 180]. The voltage, on the other hand, is a non-negative real number. In

order to define the bitmap ranges, we examined � and V ’s distributions. We analyzed

the distribution of � and V over a sample size of 30 days (155, 520, 000 measurements).

To optimize for speed, the design of the bitmap must be informed by the queries

that will be frequently executed. For frequently queried values in bitmap structures, a

crippling factor in response time is the candidacy checks to identify true positives, which

require disk access. Due to imperfect discretization, bins will often contain bits that

indicate more than one value. It is therefore necessary to check whether that bit is an

indication of the correct value. For example, if a bin has the range of five possible values

then that means each bit in that bin is one of five di↵erent values. Performing this check,

called a candidacy check, ensures that the tuple contains the desired value for the query.

Choosing the correct binning strategy can therefore potentially improve our query times

by reducing candidacy checks among values that were expected to be queried.

From discussions with power systems experts at BPA, queries typically comprise

a specific range of dates, voltage magnitude V , phase angle �, or any combination of

these attributes. When generating the bitmap, the binning (discretization) strategy can

minimize candidate record checks and provide fast query response times. Due to the

low cardinality of the date-time attribute, the generation of bins is simple: 60 bins each

for second and minute, 24 bins for hour, 31 bins for day, etc. with the exception of the

year. In this case we used 11 bins for the year, ranging from year 2010 to 2020. Since

there were no range bins, no candidacy checks were necessary when performing queries

on the dates. Because � and V are real values, we discretize based on their distribution.

In order to find the distributions of both � and V , the cumulative distribution function

(CDF) plots are constructed. These distributions determined what binning strategies

were used.
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Fig. 2.3 illustrates the phase angle � distribution. From this graph we can see that

� follows a uniform distribution. Because � is also bounded, we apply an equal-width

binning strategy over �, meaning the range of each bin is equivalent. We designed the

bitmap creator in such a way that this range can be assigned by the user before creation

of the bitmap. For our experiments we set this value to 10, leaving 36 bins for each PMU

attribute. Fig. 2.4 represents the phase angle values that were assigned to each bin.

Figure 2.3: Normal Phase Angle CDF

-180 -170 -160 -150 -140 -130 -120 -110 -100 -90 110… 120 130 140 150 160 170 180

Figure 2.4: Phase Angle Bins

Fig. 2.5 illustrates the distribution for normal operation of a PMU’s voltage magni-

tude. The majority of the values occur between [535...545]. For this attribute, we used

a binning strategy which attempts to minimize candidacy checks for the values that are

most likely to be queried. We assume the majority of queries from the user will pertain

to some anomaly, that is values that are not apart of normal operations. Therefore, a

bin with range [535...545] can be created to contain the regularly occurring values. Since
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the range of the bin is quite large, and it spans the values which occur most frequently,

then the majority of tuples which fall into this category will require candidacy checks.

However, our assumption is that queries will occur for values outside the normal range.

This leads to a specific strategy for binning: There are ten bins on either side of the cen-

tral bin representing the normal operational range. Each of these outer bins is capable

of containing a value with a range of one. Fig. 2.6 represents the binning distribution

for voltage magnitude. There is an additional bin for the value zero, since this is an

indication of a data event at a PMU site. This strategy generates bins of small ranges

for values of V that will be queried frequently and very large bins for those that aren’t.

Figure 2.5: Normal Voltage Magnitude CDF-180 -170 -160 -150 -140 -130 -120 -110 -100 -90 110… 120 130 140 150 160 170 180

0 1 … 547 548 549 553 554555546 … 552526 527 528525 533 534 535532

Figure 2.6: Voltage Magnitude Binning

In addition to the aforementioned attributes, we also introduced an attribute �,

which represents the displacement between phase angles from the previous time-stamp,

i.e., �t = |�t � �t�1|. We bin � with smaller ranges, reducing the number of candidacy
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ID Selection Criteria Linear Scan
(sec)

Bitmap
(sec)

Tuples Re-
trieved

1 Find all tuples where PMU1 has a mag-
nitude Voltage Magnitude of 533.

25.859666 0.379387 160

2 Find all tuples that happened on exactly
June 24, 2013 at 21:05 hours.

25.350993 0.854952 7204

3 Find all tuples that happened on exactly
June 24, 2013 at 21:06 hours.

28.001001 0.922941 7204

4 Find all tuples that happened on exactly
June 24, 2013 at 21:07 hours.

26.133607 0.785588 7204

5 Find all tuples that happened on exactly
June 24, 2013 at 21:06 hours with PMU
having a Voltage Magnitude of 533.

28.019449 0.001772 0

6 Find all tuples in 2012. 26.720291 0.0000601 0

Table 2.1: Query Performance

checks. Listed below are the bins that we used for each attribute. The total is 9,768

bins for each row in the bitmap index.

• Year: 11

• Month: 12

• Day: 31

• Hour: 24

• Minute: 60

• Second: 60

• Millisecond: 10

• � (23 for each PMU): 40⇥ 36

• V (36 for each PMU): 40⇥ 23

• � (180 for each PMU): 40⇥ 180
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2.3 Results

Queries were ran over the database to demonstrate the performance gains from analyzing

and creating a bitmap index over the data. For these experiments, 4 million rows from

the database were queried. File Map retrieved the tuples from the database once a query

has been serviced. The bitmap results are compared against the common linear scan that

is performed when searching a database.

Table 2.1 shows results from six queries that were run. Query ID 1 is an example of

a query where the user wishes to find when a specific PMU had a voltage magnitude of

533. An example of when this might happen is if the Correlation Visualization indicates

there is an event occurring when that PMU has a voltage magnitude of 533. The exact

same query to the bitmap engine provide a 68⇥ speed up on retrieval. Query IDs 2-4

demonstrate examples of requests for tuples at specific dates. These demonstrate that

performing multiple queries with small adjustments does not require much additional

time. Query IDs 5 and 6 shows queries for tuples that do not exist in this data set. Since

the bitmap engine able to look at the bit vector results without every going to disk to

see if the desired tuples are in the database, the speedup is many orders of magnitude

greater. The bitmap query ID 5 takes slightly more time than ID 6 because ID 5 has

to perform bitwise ANDs between each column, while ID 6 is simply checking a single

column. There is very little time di↵erence between the linear scan in ID 5 and 6.

The linear scan times are so similar because no matter the query given, it is necessary

to scan the entire data set to ensure accuracy. Bitmap index query times can vary and

primarily depend on how many columns need to be compared and how many tuples

need to be pulled from disk. In fact the majority of the time spent for the bitmap index

queries is simply retrieving the tuples from disk, making I/O the limiting factor.
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2.4 Future Work

The methods presented produced results that prove promising when retrieving this data.

Presented below is the direction we plan to take the methods we currently have, making

them scalable and more e�cient.

Given large data sets, it is necessary to add additional methods of indexing for faster

navigation and for queries to be returned in reasonable amounts of time. One such

method that could be applied is sampling. This adds tiers of bitmaps, i.e., bitmap

indices for progressively more precise bitmaps, each one at a lower resolution of the

data. For small amounts of data this is simply wasted space and too much overhead.

When bit data such as this is introduced the sampling overhead begins to diminish as

access times to the data doesn’t scale up with the amount of data as quickly.
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2.5 Conclusions

In conclusion, we have shown that our bitmapping database minimizes data driven bot-

tlenecks that are typically associated with data sets of this size. Specifically, compression

of the data minimizes the space overhead required for indexing, allowing it to be oper-

ated on within memory. Query response times are also minimized due to the utilization

of indexing coupled with the FileMap structure. This results in the ability to perform

frequent queries leading to better analysis of the data.

This system is ideal to be coupled with other PMU analysis tools in order to better

understand the data. One such tool that this system has already been coupled with is a

correlation algorithm that is used to detect events occurring within the power system [27].

The combination of these two systems allow for fast retrieval of data in order identify

anomalies among other events.
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Chapter 3: Parallel Bitmap Compression
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Data collection and generation devices such as sensors have become incredibly pop-

ular and capable of storing large amounts of data. Due to this massive rise in data

collection rates, bitmap indexes can quickly grow out-of-core without compression. Ma-

chines have continued to gain computational power, more recently with the addition

of parallel architectures (e.g., multi-core CPUs), enabling users to use symmetric mul-

tiprocessing (SMP) for computational tasks. Parallelizing bitmap compression is the

logical next step to improve run times. The two di↵erent parallel methods are compared

against each other initially. What occurs is neither perform as expected, leading to

further investigation into possible causes for the poor performance.

3.1 Work Distribution

Bitmap compression takes place by columns, and each column is compressed indepen-

dently from each other. Therefore, we have n independent tasks (for the n columns

of the bitmap), distributed to a number of threads using the Work Sharing and Work

Stealing methods.

Core 1

L1 Cache

L2 Cache

Core 2

L1 Cache

L2 Cache

Core 3

L1 Cache

L2 Cache

Core 4

L1 Cache

L2 Cache

L3 Cache

Figure 3.1: CPU cache for test implemented

The following experiments were run in the Java environment. Workers refer to an

individual thread and a task represents a column that needs to be compressed. Two
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di↵erent schemes are used when parallelizing the compression, Work Sharing and Work

Stealing, introduced earlier in this work.

These experiments were tested on a machine that had an architecture with four cores.

Figure 3.1 illustrates a simple example of the di↵erent levels of caching that this specific

CPU implements.
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3.2 Results

The experiments comparing work sharing and work stealing were run on two di↵erent

bitmaps, each with di↵erent properties: (1) in the uniform bitmap, the 1’s are distributed

out evenly. It consists of only 100 columns and 10000 rows, which means the tasks are

small. (2) The second bitmap used for evaluation is known as HEP, which consists of

122 columns and 2.2 million rows. The tasks, which consists of compressing a single

column, will be much larger. We run our experiments on an OSX Mavericks machine

running Intel Core i5 Quad Core (2.5GHz) with 8 GB memory. Table 3.1 contains the

specifications on the machine these tests were performed. The performance graphs are

based upon how much of an improvement the parallelization made when compared to

the sequential execution. The Y axis is times speedup based upon 1 being the sequential

version of the compression.

Operating System Mac OSX Mavericks
Processor Intel Core i5 Quad Core (2.5GHz)
Memory 8 GB, 1333 MHz, DDR3

Table 3.1: System Specifications

We first focus on the results for the uniform bitmap, shown in Figure 3.3. Both Work

Stealing and Work Sharing have similar speedup times. At three threads Work Stealing

appears to start gaining some performance above Work Sharing, but then it tapers o↵.

Figure 3.2 shows how the Work Stealing and Work Sharing methods perform on the

Hep bitmap index. Again the two are relatively similar in speedup time relative to the

sequential version. In both results the Work Stealing model does not perform better

than Work Sharing. This is because threads are completing their tasks at relatively the

same speed with little to no stealing occurring.

As we saw in our results, the expected speedup is not achieved. We suspect the cause

of the bottleneck being attributed to the last-level (L3) cache misses. In the CPU used

in our experimental study, the L3 cache is shared among all the processors. We used

Intel VTune Amplifier XE to analyze cache misses for each thread count. Figure 3.4

illustrates the cache misses on increasing number of threads. As we can see, there

is indeed an increase in L3 misses when four threads are used. We believe these are

due to conflict misses, i.e., prematurely evicting necessary data from L3 that another
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Figure 3.2: HEP Bitmap Index

Figure 3.3: Uniform Bitmap Index
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thread eventually requires. When space is needed by another core, other data it deems

unnecessary will be evicted out of L3.

Figure 3.4: Cache Misses per Thread Count
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3.3 Future Work

There are still other ways that compression could be made parallel. Instead of having

the threads write the compressed bit vector to a file themselves, they could assign this

to a new set of threads. This new set would only have the purpose of writing to files and

won’t actually do any computation. Whether this would actually increase performance

or not would still have to be tested, but it may decrease the amount of workers needed to

do the computation since none of them will be performing I/O. The compression would

probably happen faster, but the computer will still be performing I/O which will a↵ect

scheduling and therefore performance.

Tests should also be run on bitmaps of much larger size. This could be tested on a

distributed system where instead of using threads the di↵erent parallel methods would

use nodes in a cloud. This could drastically improve the performance of compression

because then each node would have its own memory, CPU, hard disk, etc. and wouldn’t

have to compete with the other workers for resources. Communication between nodes for

Work Stealing may slow things down slightly, due to the need to talk to other workers in

the system and steal tasks from their queues. This option would negate the drawbacks

of parallization on a single machine. There should be very minimal L3 cache misses,

leading to a speedup closer to what is expected.

One possible way to improve parallel operation on a single machine would be specify-

ing the blocks that each thread should read into the CPU cache. In this case, each thread

could read in a portion of data that each thread needs, leaving its block containing data

for all the threads. This could minimize evictions since threads first have to check to

see if the data the data is present in the L3 cache before retrieving it from memory,

essentially allowing threads to share blocks of data and help with the retrieval.
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3.4 Conclusion

Our preliminary results show there was not a salient di↵erence in performance between

work stealing and work sharing in parallel. Interestingly, we also showed that neither

achieved the expected speedup over our simple SMP, and we believe that this is due to

the amount of conflict misses that occur in the L3 cache with an increasing number of

threads. This causes additional overhead that inhibits the performance increases that

can be gained from parallelization.

For future work, we will design and evaluate a cache-friendly compression framework.

In this design, we will interleave data elements that each thread needs such that when

a single block is read into the cache it will contain data elements for all threads. Cache

blocks will contain data elements for all threads instead of a single thread. With this

design, the number of conflict misses should be reduced as data that other threads need

would already be in the L3 cache since it was brought in by another thread, leading

to reduced reads from memory. Since the threads are completing tasks at relatively

the same speed, when blocks are evicted from cache the data contained therein will

have already been operated on where before blocks could be evicted that contained data

another thread needed causing it to be read in again.
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Chapter 4: Dynamic Bitmap Operations
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4.1 Methodology

This section is separated into two subsections and illustrates the experiments that will

be run for this research. The first type of experiment will be performing various queries

on the bitmaps that have been compressed using the methods described next. Query

performance in a bitmap index depends on the compression ratio of said index. For most

word aligned hybrid models, better compression means faster queries since the queries

can take place without decompression. The second types of experiments that will be run

will be a comparison of size. Bitmaps usually compress better with long vectors of bits.

There is a trade o↵ between how often we compress and how good our compression ratio

is. These experiments utilize two di↵erent compression methods, WAH and PLWAH.

WAH uses both 32 and 64 bit word sizes while PLWAH uses only 64 bit word sizes.

4.1.1 Dynamic Compression

As is mentioned in Section 1.1, PMUs update their datasets frequently and the data

they produce can grow large rather quickly. Our PMUs are gathering data at a rate of

60 measurements per second, still capable of generating large amounts of data in a short

period of time.

Normally bitmap indexes are applied to large static databases due to their inability

to inherently update. Traditional means of updating a bitmap consist of a complete

decompression, adding new bitmap index data, and then performing compression over

the entire index again. This can be slow and time consuming given the large datasets

indexes are usually built over. We propose that the bitmap can be updated at certain

intervals allowing for recent data to be queried. The updates will be fast since they

will not require the entire bitmap index to be decompressed, only that the new data is

compressed and appended onto the existing index.

Figure 4.1 depicts an example of how the files are broken up to simulate the time

intervals at which the bitmap is compressed. The bitmap index is created over a large

PMU dataset. For the initial experiments we took a 100MB subsection of that index to

obtain some preliminary results and construct the experiments. Additional experiments

were run on a bitmap index of size 3GB. Each file is broken up the same way in the same

intervals. As depicted in the figure, 25 percent is relative to the size of the bitmap index
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Figure 4.1: Bitmap separation example

being broken up. In a real system implementation this value would be some threshold

that when met, the new data would be compressed and appended. For this example, the

threshold is 0.75GB, meaning that when the new bitmap index built over the live data

meets this size, it will be compressed and appended onto the already compressed bitmap

index. The compression ratio of the dynamic compression will be compared to what is

considered to be the optimal compression for this bitmap index, the unbroken bitmap of

either 100MB or 3GB.

4.1.2 Queries

All queries performed on bitmap indexes are bitwise operations between at least two

compressed bit vectors. Neither compression method used requires any alignment, since

the word size is static throughout all the bit vectors. Currently only point queries

between two columns are implemented. In the future range queries and multiple column

queries will be available.

Two di↵erent variations will be used when constructing which queries should be run.

The first variation is to change which columns are queried. This is important because we

can estimate the length of runs in a given column based upon our knowledge of the data

and how that column is binned. For example, the voltage magnitude bin of [335...346]

consists of all the data points that happen during normal operation for our PMUs. That

is to say that the majority of the tuples will have a hit in this column resulting in long
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sequences of 1’s which compress very nicely. We suspect these bins will be a↵ected the

most by dynamic compression. On the other hand the millisecond bin will be an even

mixture of 1’s and 0’s resulting in very poor compression. Knowing this we can perform

queries on this bin knowing that even if given the entire dataset to compress, it would

be no better then compressing in real time and adding to the index.

The second query variation we can construct would be to perform di↵erent queries

that contain di↵erent bit operations between columns that are full of runs and those full

of literals. We expect that the more frequently the bitmap is compressed in real time,

the worse these results will be since the runs will get smaller and increase the chance for

literals to occur. The more bits in a bit vector increase the amount of time it takes to

solve a query due to the increased number of bit operations that need to be applied.

When measuring the query response times, the amount of time it takes to retrieve the

tuple from disk will be neglected. The queries will all have the same result, regardless

of how well they are compressed, leaving this factor to be considered a constant time

necessary for any query. Instead the determining metric when measuring how long a

query takes when compared to another would be the di↵erence it bit operations between

the two. The query itself that is resolved through bitwise operations will be faster the

more compressed the bit vector is.

Query ID Description

1 Find all tuples that occur in 2014 on the 22nd of each month
2 Find all tuples in 2014 that have voltage magnitude of 0-1
3 Find all tuples with voltage 0-1 on the 22nd of each month
4 Find all tuples in 2014 with voltage magnitude 525-526

Table 4.1: List of Queries

Table 4.1 lists the queries that will be run on the dataset. Query 1 is a simple

selection of dates. The year column will be evenly populated while the day column will

be sparsely populated. Queries 2 and 3 look for a particular voltage measurement at

specific times. The voltage value will be even more sparsely populated than the 22nd

column, as it isn’t regular. This will lead to more dirty bits and a worse compression

ratio. Query 4 seeks another voltage reading, this one more popular as it is closer to the

nominal operating range of a PMU. This column should have the most even ratio of 0



38

to 1 bits in the selected columns.

These queries were selected to highlight one of the benefits of bitmapping that dy-

namic updating may impair, compression ratio. When a column such as 2014 is com-

pressed, its compression ratio will be very near the maximum a particular column can

be compressed, since it will either a small run of 1s with the remaining tuples containing

all 0s, leaving longs runs to be compressed. Dynamically compressing columns like this

will impair the long runs, interrupting them requiring the use of another word. Dirty

columns such as the voltage magnitude of [525...526] won’t be a↵ected by the dynamic

compression as much, since there won’t be many runs being broken up.
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4.2 Results

Bitmap indexes of both 100MB and 3GB in size are used for the compression experiments.

The query results use the 3GB bitmap, as the 100MB bitmap was too small to show any

significant results and the query times were hardly measurable. In these experiments we

assume the optimal compression ratio is a compression of the entire dataset. The benefit

of compressing dynamically is that you can update the bitmap. In practice the bitmap

would not be updated like this, but would instead be decompressed and compressed

again with the additional data. We propose that this is more time consuming than

doing it dynamically, to a point. The speed benefit isn’t worth the time to decompress

and recompress the index when the additional data reaches a critical point in which

query times would be far faster with a stand recompression of the entire index.

4.2.1 Compression Results

Tables 4.2 and 4.3 illustrate the compression results from our initial experiments. The

Type column indicates how the file is broken up. Columns two and three represent the

size of the resulting bitmap after compression using 32 and 64 bit words respectively.

We start with the original file which is 100MB in size. This is assumed to be the optimal

compression of the dataset when compressed as a whole. Once compressed you can see

that the final bitmap only takes up approximately one quarter of a megabyte.

The next step is breaking the file in half. In this scenario the initial bitmap would

be half the size of the entire dataset. To simulate the dynamic compression we set our

compress point to 50 percent. This means that when the live datastream reaches a

certain size, in this case 50 percent of the entire test dataset, we compress it and add it

to the initial compressed bitmap.

For the second compression experiment we did a similar thing, except we set the

threshold for compression to be 25 percent of the original dataset. In this case that is

when the new bitmap is 25MB large it is compressed. This continues for the rest of the

test data. The 50-25-25 case compresses almost as well as the 50-50 case. This result

is probably the most telling. It may be that compressing a larger chunk as the initial

bitmap then compressing live data when it reaches a reasonable size. This will become

clearer with the future experiments.
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Similar steps are taken for the remaining experiments. It is interesting to note that

Wah 64 performs worse than Wah 32 in all cases. This is due to the fact that when a

compression method is forced to use larger words, it is more likely that a dirty bit will be

included in the set, therefor increasing the number of literals in the compressed bitmap.

Larger words are best used to compress bit vectors containing mostly runs. As Table 4.2

and 4.3 depicts, when the entire bitmap is compressed it is smaller in size. Most of the

time this also carries the correlation that queries will be faster as well.

Type Wah 32 (MB) Wah 64(MB)

Original 0.267239 0.294951
50-50 0.272918 0.300886

25-25-25-25 0.28398 0.312926
50-10-10-10-10-10 0.29557 0.34722

50-25-25 0.278525 0.306997

Table 4.2: Compression Results - 100MB

Type Wah32 (MB) Wah64 (MB)

Original 0 0
50-50 .021% Larger .020% Larger

50-25-25 .042% Larger .041% Larger
50-10-10-10-10-10 .106% Larger .177% Larger

25-25-25-25 .063% Larger .061% Larger

Table 4.3: Compression Results - 100MB Percentage

Tables 4.4 and 4.5 depict the compression results when the same file thresholds

were used on the 3GB bitmap. When the experiments were first setup we expected

the size di↵erence to be even more pronounced then the 100MB file, but the opposite

is true. WAH32 hardly changes with PLWAH being the least e↵ected by the dynamic

compression strategies employed. The initial size of PLWAH is much larger than that of

WAH, but it shows promise for not being impacted much by the dynamic compression

strategies.

Both of the compression experiments indicate that no matter the threshold, compres-

sion will indeed be worse then optimal. We propose that this fact doesn’t outweigh the

benefits of being able to update the bitmap without the traditional method. PLWAH32
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Type Wah32 (MB) Wah64 (MB) PLWAH32 (MB)

Original 8.635359 9.728087 23.084176
50-50 8.64011 9.733774 23.089032

50-25-25 8.645861 9.739549 23.093984
50-10-10-10-10-10 8.663218 9.758658 23.10972

25-25-25-25 8.651532 9.755668 23.092744

Table 4.4: Compression Results - 3GB

Type Wah32 (MB) Wah64 (MB) PLWAH32 (MB)

Original 0 0 0
50-50 .0010% Larger .0010% Larger .0002% Larger

50-25-25 .0012% Larger .0012% Larger .0004% Larger
50-10-10-10-10-10 .0012% Larger .0031% Larger .0011% Larger

25-25-25-25 .0012% Larger .0028% Larger .0004% Larger

Table 4.5: Compression Results - 3GB Percentage

particularly showed the least impact by this. The di↵erence in size between the optimally

compressed bitmap and the dynamic compression at thresholds is negligible. We further

minimized the di↵erence when the same experiments were tested on a larger bitmap than

the initial index. This may not hold with further testing into larger bitmaps.

4.2.2 Query Results

The queries discussed in Section 4.1 were all run together and timed. The group of 4

queries was run 4 times after an initial run to load into memory and load some into

CPU cache with the average taken of all 4 runs. The times shown in Table 4.6 are in

milliseconds. Since the compressed bitmaps that were appended to each other use the

same word size for each compression method they are always aligned.

As expected, PLWAH has a lower query time when compare to WAH when the

bitmap is compressed optimally. As the file gets broken up even more we can see that

the query times for WAH32 increase quickly. WAH64 starts o↵ slower than PLWAH,

but eventually catches up. They are both still competitive and do not di↵er much, but

WAH64 seems to overtake PLWAH and perform better when the bitmap is compressed
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Type Wah32 (ms) Wah64 (ms) PLWAH32 (ms)

Original 0.401408 0.402005 0.328192
50-50 0.507563 0.414464 0.379136

50-25-25 0.583766 0.397568 0.45056
50-10-10-10-10-10 0.926891 0.471381 0.49314

25-25-25-25 0.674133 0.414123 0.447403

Table 4.6: Query Results - 3GB

dynamically.
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4.3 Future Work

There are multiple experiments that can be run in addition to the work that has already

been performed. One such experiment would be to test on a larger bitmap index. The

compression di↵erences became less apparent between the 100MB and 3GB bitmaps

indicating that running similar tests on a larger bitmap could produce di↵erent results

as well.

Another aspect that could be researched is running the experiments with a much

smaller threshold over more data. For example, the threshold could be set at 100MB for

a large bitmap and then receive data for a few hundred gigabytes. This method could

be extended by keeping the threshold that was used in the experiments, but running it

over more data. This might make the results that were presented in this project more

apparent.

A final extension would be to use di↵erent compression methods. PLWAH with 64

bit words for example would be the logical next step. A requirement of any additional

compression method used would be that the word size would have to be static, removing

the possibility of dynamic word size compression methods such as VAL.
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4.4 Conclusion

In summary, we have tested multiple thresholds for when compression should occur with

the live data. These tests were compared on two levels, the compression ratio and the

query times, with the optimal method respectively.

The compression results indicate that PLWAH would be a good candidate for dy-

namic compression of live data. The initial size of the compressed bitmap is larger than

WAH, but PLWAH shows little to no impact when the bitmap is dynamically updated

with respect to the compression ratio. WAH shows little change as well, but the change

it does show is larger than that of PLWAH indicating that if the compression were to

continue in the respective manner it would pass PLWAH in size and perform worse.

The query results lead us to conclude that WAH32 performs worse then both the

other two methods of compression. WAH64 is comparable with PLWAH in many of the

threshold configurations leaving us to choose which would be better.

Given the conclusions above and the experiments that were run we recommend that

PLWAH be used for this type of dynamic compression of live data. Due to the minimal

impact that the dynamic compression has to both the initial size of the bitmap and the

comparable query times to other methods, this is the best fit.

The dynamic compression eventually will eventually lose its benefit, at which point

it would be more beneficial to simply decompress all the bitmap parts and recompress

to the optimal size. With this approach the bitmap index can be updated frequently

allowing for recent data to be queried with the use of traditional means which can be

time consuming.
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Chapter 5: Conclusion



46

5.1 Conclusion

In summary, bitmap indexes are an e�cient way to query large databases. This research

has shown that when applied to the datasets generated by PMUs, they perform exceed-

ingly well. The bottlenecks associated with large databases are minimized by performing

query operations and storing the required overhead in memory. The FileMap structure

that was created minimized disk access, increasing query times even further by reducing

the I/O required to return tuples to the user.

Testing on a single machine suggested that parallelization will provide a small per-

formance increase. Often when parallelization is implemented, performance gains are

typically higher then were seen in these experiments. Further investigation led to the

conclusion that the L3 cache is restricting performance increases that could otherwise

be obtained by the parallel architectures. All threads using the same cache can cause

data to be evicted when the thread using it wasn’t finished, causing performance to slow

down.

Bitmap indexes are known to be used on large static databases. The PMU database

is indeed extremely large, but it is dynamic since it is continuously being updated. We

defined a possible solution to creating bitmaps over dynamic databases while minimiz-

ing the performance drawbacks that are usually associated. There is little impact to

the performance of both queries and compression when PLWAH is used. Overall this

minimizes the amount of time that needs to be spent decompressing the entire bitmap

index, updating it, and recompressing.

The contribution of this research is to demonstrate a framework for the PMU database

system using bitmap indexing. When built upon this database, special considerations

need to be realized, such as the frequently updated data that PMUs produce. To ac-

commodate this, an model has been built and tested that shows minor impact on perfor-

mance. Improvements have also been made to bitmap indexing to decrease compression

times.

5.2 Future Work

Further analysis of the bitmap index built over the PMU dataset will allow for further

study into its performance. One promising method is bitmap sampling, where bitmaps
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are built upon other bitmaps. Even with additional overhead, this method might bring

further improvements to the access times of the dataset as well as increasing scalability.

The study of parallelization over bitmap compression has suggested additional re-

search into reducing cache misses in the L3 cache. Building the same algorithm on a

computer cluster may reduce theses misses. Manually controlling what each thread reads

into the CPU cache may provide additional benefits, as threads can assist one another

in operations, reducing the need to evict data to make room.

Extending the research of building bitmaps over dynamic databases by testing the

algorithm on larger datasets will allow for further feasibility testing. Testing di↵erent

compression algorithms will allow users to have a variety of options when updating

bitmap indexes.



48

Bibliography

[1] T.-C. Lin, P.-Y. Lin, and C.-W. Liu, “An Algorithm for Locating Faults in Three-
Terminal Multisection Nonhomogeneous Transmission Lines Using Synchrophasor
Measurements,” 2014.

[2] M. Gol and A. Abur, “LAV Based Robust State Estimation for Systems Measured
by PMUs,”

[3] V. Salehi, A. Mohamed, A. Mazloomzadeh, and O. A. Mohammed, “Laboratory-
based smart power system, part II: Control, monitoring, and protection,” IEEE
Transactions on Smart Grid, vol. 3, no. 3, pp. 1405–1417, 2012.

[4] D. G. Hart, D. Uy, V. Gharpure, D. Novosel, D. Karlsson, and M. Kaba, “Pmus- a
new approach to power network monitoring,” ABB Review, vol. 1, pp. 58–61, 2001.

[5] P. E. O’Neil, “Model 204 architecture and performance,” in Proceedings of the 2nd
International Workshop on High Performance Transaction Systems, (London, UK),
pp. 40–59, Springer-Verlag, 1989.

[6] R. R. Sinha and M. Winslett, “Multi-resolution bitmap indexes for scientific data,”
ACM Transactions on Database Systems, vol. 32, p. 2007.

[7] A. Romosan, A. Shoshani, K. Wu, V. M. Markowitz, and K. Mavrommatis, “Accel-
erating gene context analysis using bitmaps,” in SSDBM, p. 26, 2013.

[8] Y. S. et al., “Taming massive distributed datasets: data sampling using bitmap
indices,” in HPDC, pp. 13–24, 2013.

[9] F. Fusco, M. P. Stoecklin, and M. Vlachos, “Net-fli: On-the-fly compression, archiv-
ing and indexing of streaming network tra�c,” PVLDB, vol. 3, no. 2, pp. 1382–1393,
2010.

[10] K. Stockinger and K. Wu, “Bitmap indices for data warehouses,” in In Data Ware-
houses and OLAP. 2007. IRM, Press, 2006.

[11] “Apache Hive Project, http://hive.apache.org.”

[12] K. Wu, E. J. Otoo, and A. Shoshani, “An e�cient compression scheme for bitmap
indices,” 2004.



49

[13] R. Slechta, J. Sawin, B. McCamish, D. Chiu, and G. Canahuate, “Optimizing query
execution for variable-aligned length compression of bitmap indices,” in Proceedings
of the 18th International Database Engineering & Applications Symposium, pp. 217–
226, ACM, 2014.

[14] D. L. Eager, E. D. Lazowska, and J. Zahorjan, “A comparison of receiver-initiated
and sender-initiated adaptive load sharing,” Performance Evaluation, vol. 6, no. 1,
1986.

[15] D. Neill and A. Wierman, “On the benefits of work stealing in shared-memory
multiprocessors,”

[16] L. Rudolph, M. Slivkin-Allalouf, and E. Upfal, “A simple load balancing scheme for
task allocation in parallel machines,” in SPAA’91, pp. 237–245, ACM, 1991.

[17] P. Berenbrink, T. Friedetzky, and L. Goldberg, “The natural work-stealing algo-
rithm is stable,” SIAM Journal on Computing, vol. 32, no. 5, pp. 1260–1279, 2003.

[18] D. Lemire, O. Kaser, and K. Aouiche, “Sorting improves word-aligned bitmap in-
dexes,” Data and Knowledge Engineering, vol. 69, no. 1, pp. 3 – 28, 2010. Including
Special Section: 11th {ACM} International Workshop on Data Warehousing and
{OLAP} (DOLAP08) - Five selected and extended papers.
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