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Chapter 1 – Introduction

In large, complex systems, the control of any individual component can be decep-

tively complicated to perform efficiently. First, controlling any one component may have

downstream effects on different parts of the system, which may not be fully realized un-

til some amount of time has passed. Second, controlling an individual component to

maximize some locally available measure may have detrimental effects on the system

at large, as the component may — in simply seeking to perform its task well — make

the tasks of other components more difficult. Finally, simply attempting to control all

of the components from one central location is often infeasible, due to constraints on

communication, latency, or simply the massive computation time that may be involved

with trying to manage the operation of every component in a system simultaneously.

As one example, consider the prospect of autonomous, self-driving cars. A regula-

tory body wants to ensure public safety, maximize the throughput of the available traffic

infrastructure, and minimize emissions. The customers want the to ensure their per-

sonal safety, and have the cheapest, most luxurious, lowest maintenance transportation

experience possible. The car companies want to maximize their profit, maximize their

market share, and minimize the regulations that are imposed on them. All of these in-

terests are then intermingled with concerns from disciplines as varied as robust control,

automotive engineering, computer vision, material science, economics, legal/policy, and

human–robot interaction. This is a complex, distributed, multiagent cyber-physical sys-
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tem with multiple priorities shared among many people and entities.

In addition, oftentimes these problems begin to outstrip the human ability to under-

stand the dynamics of the system as a whole. It is circumstances like these where a

decentralized “multiagent” approach — using locally available information, on-board

computation, and making decisions based on measures that are formulated with respect

to the team’s interest (instead of the individual components) — can offer significant

benefits.

Cooperative multiagent systems focuses on producing a set of autonomous agents

to achieve a system-level goal [121]. Multiagent frameworks have been used to study

complex, real-world systems like air traffic [106], teams of satellites [29], and extra-

planetary rover exploration [3]. In each case, the goal is to optimize a single, well-

defined objective function.

But, in many of these cases, the problems lend themselves more naturally to multiple

objectives: for example, air travel should be as expedient as possible while minimizing

the congestion in the airspace, and each carrier wants to maximize their profits. Satellites

may need to make observations for multiple separate institutions. Extra-planetary rovers

should acquire multiple different types of scientific data. However, most research in

multiagent systems does not take a multi-objective viewpoint: they typically seek to find

a single usable solution, without considering the tradeoffs between potential alternatives

that would increase one objective’ s value at the cost of another.

Having multiple criteria or objectives that each of these solutions are being evaluated

on makes a fundamentally difficult problem: the solutions cannot be ranked in a simple

manner, and some form of higher reasoning must be used. These sorting mechanisms



3

can be as simple as a linear combination of the objectives, which comes with various

well-documented advantages and drawbacks, or as complex as an algorithm that takes

the objective evaluations for many candidate solutions and compares them all pairwise

against each other before creating a multi-stage ranking system. No matter the method

used for calculating how good an individual solution is, the goal is for a set of solutions

as a whole to accurately embody the optimal tradeoffs between the objectives. These

tradeoff solutions, which form the Pareto front, are a key solution concept in multi-

objective problems. A Pareto optimal solution is one in which the evaluation of one

objective cannot be improved without worsening the evaluation on at least one other

objective. Within the setting of autonomous agents, the goal is to create an algorithm

which develops polices that achieve these points of Pareto optimal performance without

requiring much knowledge of the system being optimized.

Developing successful agent policies in multiagent systems can be challenging. One

successful approach is to use adaptive agents with tools like reinforcement learning or

evolutionary algorithms. Each agent seeks to maximize its own reward or evaluation;

with a properly designed reward signal, the whole system will attain desirable behaviors.

This is the science of credit assignment: determining the contribution each agent had to

the system as a whole. Clearly quantifying this contribution on a per-agent level is

essential to multiagent learning. This is an issue that has not been studied within the

context of multiple objectives. In this work we address the challenges that arise when

multiagent systems are combined with multi-objective problems.

The primary challenge in designing adaptive agents suited for multiagent, multi-

objective problems is the incorporation of credit assignment into algorithms that handle
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the tradeoffs between multiple objectives in a way that generates a wide spread of so-

lutions along the Pareto front. We consider two classes of multi-objective methods to

achieve this. First, a priori methods explicitly define what makes any solution more

or less desirable than another solution before the optimization process begins. Second,

a posteriori methods do not explicitly define what makes solutions desirable before-

hand, and instead seek to create a wide variety of solutions that accurately represent the

tradeoffs between the different objectives.

Within these two classes, there are a wide variety of different methods that have been

developed, and integrating credit assignment into these algorithms, at this time, must be

done on a case-by-case basis. In this work, we focus on one sub-class of algorithms

within each: for a priori methods we use aggregation methods, where the objective

evaluations are combined into a single scalar value to be optimized. For a posteriori

methods, we focus on Pareto-based multi-objective evolutionary algorithms (MOEAs),

which generate (at least) one population of solutions and compare each of these solu-

tions to every other in order to generate a ranking of solutions within the population.

When altering each of these methods for use inside multiagent systems, we identify

weaknesses of each approach, and later in this work, develop an approach that circum-

vents both the weaknesses of aggregation methods and the weaknesses of MOEAs. It is

important to note that there are many other different types of both a priori and a pos-

teriori methods, which are not discussed in this work. Developing these algorithms for

use with multiagent systems is deferred to later work.
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Contributions This dissertation sits firmly at the intersections of the fields of au-

tonomous agents, multiagent systems, and multi-objective problems, and addresses the

issues that arise when these fields are combined. The specific contributions of this dis-

sertation are to:

• derive methods for automatically assigning credit for a team’s success or failure

to members of that team in the presence of multiple objectives (Chapter 3)

• derive effective multiagent equivalents to state-of-the-art multi-objective algo-

rithms (Chapter 4)

• develop a fast, effective multi-objective algorithm that outperforms state-of the art

MOEAs in as little as one tenth of the computation time (Chapter 5)

• theoretically prove that this fast multi-objective algorithm will produce Pareto

optimal results that cover the entire Pareto front to an arbitrarily fine resolution

(Chapter 5–6)

• develop a framework for integrating this fast multi-objective algorithm into mul-

tiagent systems (Chapter 7)

Roadmap In the remainder of this introduction, we briefly discuss the contents of

each of the chapters to follow. In Chapter 2, we introduce all necessary background

and definitions of multiagent systems, credit assignment, and multi-objective problems.

Because each chapter beyond this uses a different portion of the background provided in

this chapter, in each following chapter we explicitly identify the sections of background

that are necessary for a complete understanding of that chapter.
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In Chapter 3, we first examine the use of a multi-objective aggregation within a

multiagent reinforcement learning context [125]. We show that the use of credit assign-

ment in multi-objective, multiagent systems is of paramount importance, but also that

the method of multi-objective aggregation is an important factor in system performance

as well. To achieve the best possible performance, both credit assignment and the cor-

rect choice of aggregation is necessary, but the use of credit assignment boosts system

performance even when a sub-optimal aggregation is used.

Chapter 4 develops the concept of credit assignment for use in the popular MOEA

NSGA-II [128]. We show that NSGA-II is ill-defined for use in multiagent systems,

and develop an equivalent ranking scheme that works well with credit assignment. We

compare the use of NSGA-II to the use of aggregation methods, and show that NSGA-

II provides powerful performance benefits when paired with proper credit assignment

techniques. However, we identify that the run-time of NSGA-II in a multiagent system

is prohibitively slow.

In Chapter 5, we draw a concept from the origins of multi-objective optimization,

that of indifference, and develop a single-parameter transformation that allows us to use

this concept to create a search space that is biased in favor of aggregation methods [126].

The optimization in the transformed space then does not have the computational slow-

down of MOEAs, and does not bear the weaknesses of the aggregation methods without

the transformation. We also offer theoretical proofs that state that the solutions dis-

covered in this transformed space will be Pareto optimal in the original space, even in

portions of the Pareto front that would not be discovered by the aggregation methods in

the original space.
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In Chapter 6, we offer three extensions for the transformation developed in Chap-

ter 5, which provide various benefits allowing the system designer to specify additional

parameters to control the behavior of the transformation to better suit an individual prob-

lem instance [127]. One of these extensions also allows us to offer a proof that the

complete Pareto front will be discovered to an arbitrarily fine resolution, which is also

provided in this chapter.

In Chapter 7 we discuss the incorporation of the transformation from Chapter 5 into

a multiagent system. We identify a problem that arises when the original transforma-

tion is used in a multiagent system related to the concept of Nash Equilibria [81], and

provide a simple method for circumventing this problem. We compare our results to the

multiagent NSGA-II developed in Chapter 4.

Finally, in Chapter 8, we draw the conclusion of this work and identify avenues for

future research in this area.
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Chapter 2 – Background

In this chapter we introduce concepts from adaptive autonomous agents (Section 2.1), mul-

tiagent systems and credit assignment (Section 2.2), we provide definitions related to

multi-objective problems (Section 2.3), and discuss established multi-objective meth-

ods (Section 2.4).

In the beginning of each chapter to follow, we briefly overview the relevant back-

ground, as well as specifically identifying the sections of this background chapter that

are necessary for a full understanding of that chapter.

2.1 Adaptive autonomous agents

Adaptive autonomous agents require four properties: they must be able to sense

information about their environment, reason based on that information, act upon the

environment, and receive some form of feedback from the environment regarding their

actions. This feedback is typically designed by a human system designer, who specifies

a function that, when maximized, achieves the goals that the system designer seeks to

achieve through the autonomous agent. This goal may be simple or complex, but the

agent will myopically seek to increase that evaluation, forsaking all else.

Many methods exist for developing the policies by which the agent maps its sensory

information to the actions it will take on the environment. In this dissertation, we work



9

with two: reinforcement learning (RL) and evolutionary algorithms (EA). When mul-

tiple agents are performing evolutionary algorithms cooperatively and simultaneously,

this process is called a cooperative coevolutionary algorithm (CCEA).

These different communities have different terminology for a measure of perfor-

mance. In reinforcement learning, an agent is provided with a reward measuring its

impact toward achieving a goal during a time step. In evolutionary algorithms, an agent

is provided with an fitness evaluation of its entire policy. In game theory, this measure is

known as a payoff. Finally, in multi-objective problems, these are known as objectives.

In this work, we refer to the system-level team performance as an objective, and the

value given to the individual agent as a reward (reinforcement learning) or evaluation

(evolutionary algorithms). When speaking in general terms, we refer to these concepts

as an evaluation.

In both RL and EAs, each autonomous agent performs four processes in order, at

each timestep. This process is described in Algorithm 2.1. First, the agent gathers

sensory data about where its body is in the environment (sense(B,E)). Next, the agent

uses its policy, π, and the previously gathered sensory information to reason about what

action it should take (decide(π)). Third, it takes the action that it decided upon in the pre-

vious step, which affects its body and the environment (act(B,E,π)). Finally, it receives

some feedback from the environment based on how its action affected its body and the

environment around it (react(B,E,π)). How this feedback is incorporated to change the

agent’s policy differs between RL and EAs, which we discuss below.
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Algorithm 2.1: Typical adaptive autonomous agent algorithm
Input: Initial agent policy π0, agent body B, environment E

1 foreach timestep t do
2 sense(B,E) // gather information about the environment

3 decide(π) // reason about the information gathered

4 act(B,E,π) // take action

5 react(B,E,π) // update policy (RL) or gather partial evaluation

(EA)

6 end
Output: Updated policy πT (RL) or fitness evaluation F (EA)

2.1.1 Reinforcement learning

One common approach to producing effective solutions in single- or multiagent

problems is the use of reinforcement learning: An agent uses trial and error to learn how

to increase the reward signal that it receives based on the actions it takes [102]. With a

properly designed reward signal, the agent will learn to perform a task in a way that is

desirable to the system designer. The goal of a reinforcement learner is to maximize the

long-term expected payoff of the actions that it takes, and it records values which it as-

sociates with actions as it receives feedback from the environment. By usually choosing

the action with the maximum reward (exploitation) but occasionally choosing an action

with a lower-perceived reward (exploration), an agent can simultaneously achieve high

performance while also improving the accuracy of its value function. One method of

doing this is through the use of Q-learners, which use the update [102]:

Qps, aq Ð Qps, aq ` αrR ` γ Qmaxa1ps
1, a1q ´Qps, aqs (2.1)
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to update their estimation of the expected long-term reward of taking action a while

in state s, where Qps, aq is the Q-value for the state-action pair ps, aq, γ is the discount

factor, andQmaxa1ps1, a1q returns the maximumQ value over all actions available to the

next state-action pair [64]. In cases where only a single state exists, γ may be set to zero,

and the Q-learner reduces to an action-value learner [102]. In the case of a multiagent

system, multiple independent Q-tables can be maintained, one corresponding to each

agent. The state and action then correspond to the individual agent’s state and action,

instead of the system’s joint state and action.

2.1.2 Evolutionary algorithms

Algorithm 2.2 describes a typical evolutionary algorithm, which are a biologically-

inspired computational technique in which a population of agent policies is first ran-

domly generated (Input line), and then tested in some domain (Line 4). After calculat-

ing a scalar evaluation of an agent’s “fitness” for each agent (Line 4), those with lower

fitness are removed from the population (Line 6), and replaced with slightly-altered

copies of their higher-fitness counterparts (Line 2). Through this random alteration and

intelligent selection, system performance increases as the agents adapt to the domain to

maximize their fitness evaluation calculation.

An evolutionary algorithm is defined by the number of individuals in the population

at maximum and minimum size (before and after selection), whether members from the

previous generation can survive into the new generation, and four operators: initializa-

tion, mutation, evaluation, and selection. Initialization describes how the population is
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Algorithm 2.2: Typical evolutionary algorithm
Input: Initialize population of k policies ~π

1 foreach generation g P 1 : G do
2 replenish(~π) // add k mutated copies of solutions to ~π

3 foreach πi P ~π do
4 evaluate(πi) // Simulate policy (Alg. 2.1)

5 end
6 select(~π) // Remove lower-performing policies

7 end
Output: Final solution population ~πG

built in the beginning. Mutation describes how new population members are created

from surviving policies. Evaluation describes the methods by which a policy is eval-

uated. Selection describes how the lower-performing policies are selected for removal

from the population. These four operators fully describe an evolutionary algorithm.

In this work, we focus on the evaluation step, and how creating a bespoke evaluation

specifically for multiagent, multi-objective processes can boost performance over a less-

reasoned approach.

2.2 Multiagent systems

In a large, complex system where a high level of coordination between different

elements of the system is necessary, there are two paradigms that may be used to develop

policies to control the system.

First, consider a centralized system in which one centralized authority is making all

necessary decisions for the entire system as a whole, and all components in the system

are merely following orders. The advantages here are that perfect coordination is pos-
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sible, and the pieces of the system as a whole will cooperate to increase system perfor-

mance. This typically works well for small systems consisting of just a few agents [102].

However, such a centralized system can fall prey to complexities such as communica-

tion restrictions, component failures — especially where a single point of failure can

stop the entire system — and simply the difficulty of simultaneously solving a problem

for hundreds or thousands of agents simultaneously [124].

Second, consider a decentralized approach such that many independent elements are

each attempting to solve a smaller piece of the problem. These elements then, working

in tandem, could achieve a system level goal through cooperation. This paradigm does

not guarantee that this central point of failure will not exist, but a decentralized solution

concept may not have a centralized point of failure, while a centralized controller always

will.

However, in a sufficiently complex system, the question of exactly what tasks each of

the elements should be seeking to perform becomes very difficult to determine. Simply

specifying an overarching system-level goal is often not sufficient to achieve that goal

through adaptive autonomy, and additional steps must be taken to allow the system to

succeed.

2.2.1 Evaluation shaping

A multiagent learning system depends on a way to measure the value of each agent’s

behavior. This measurement is called an evaluation function, and changing what form

the evaluation function takes is the science of “reward shaping” [17,51,59,74,101,110].
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An agent will seek to solely increase its evaluation function, forsaking all other concerns,

so it is important that it has two specific properties.

First, the evaluation function must be “sensitive” to the actions of the agent [119].

An agent taking good actions should receive a high evaluation, and an agent taking poor

actions should receive a lower evaluation. In an unpredictable, stochastic, or multiagent

environment, there are other factors affecting the evaluation that the agent will receive.

An ill-developed evaluation function will allow these random factors to insert a large

amount of “noise” into the “signal” offered by the evaluation function, and as the signal-

to-noise ratio decreases, so does the agent’s performance.

Second, the evaluation function must be “aligned” with the overall mission that the

agent team must achieve [119]. That is, an agent that increases its own evaluation should

simultaneously be increasing the system performance. A lack of alignment can lead to

situations such as the Tragedy of the Commons [27, 52], wherein a group of rationally

self-concerned agents lead to a drop in system performance due to working at cross-

purposes. That is, agent A does what it perceives in its own best interest, as does agent

B; in some way, their actions deplete their shared environment, and lead to both agents

being worse off than they would be had they cooperated for the communal good.

Both of these properties — sensitivity and alignment — are critical to multiagent

systems. An agent must be able to clearly discern what it has done to earn a high

evaluation, and continuing to earn that high evaluation or improving upon that evaluation

must be in the best interest of the system as a whole [124].
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2.2.2 Credit assignment

A local evaluation function (Li) is the evaluation based on the part of the system

that an agent i can directly observe. Using this reward signal often encourages “self-

ish” behavior, in which the agent may act at cross-purposes with other agents while

blindly increasing its own evaluation, causing poor overall system performance. A local

evaluation will be highly sensitive, but will often lack alignment.

The global evaluation function (G) is the system performance of the team as a

whole. Training on this signal encourages the agent to act in the system’s interest, but

includes a large amount of noise from other agents acting simultaneously. The global

evaluation will be perfectly aligned, but lack sensitivity.

The difference evaluation function (Di) is a shaped reward signal that helps an

agent quickly learn the consequences of its actions on the system [4]. It is defined as:

Dipzq “ Gpzq ´Gpz´iq (2.2)

where Gpzq is the global system performance for the system considering the joint state-

action z, and Gpz´iq is Gpzq for a theoretical system without the contribution of agent i.

Any action taken to increase Di simultaneously increases G, while agent i’s impact on

its own reward is much higher than its relative impact on G [4]. Difference evaluations,

then, have high sensitivity and alignment.

Difference evaluations have seen a wide variety of applications, such as data rout-

ing over a telecommunication network [113], multiagent gridworld [110], conges-



16

tion games such as traffic toll lanes [40, 111, 112, 119], distributed product market-

ing [109], creativity evaluation in product design [92], rover coordination [68], and

urban road traffic management [115], and optimization problems such as bin pack-

ing [120], and faulty device selection [107].

Additionally, difference evaluations offer proven performance benefits over using a

global evaluation: in difficult domains, difference evaluations provide a higher proba-

bility of selecting the optimal action after training, while in simple domains, difference

evaluations provide at least an equal probability of selecting the optimal action com-

pared to training with the global evaluation [26].

2.2.3 Cooperative coevolutionary algorithms

Cooperative coevolutionary algorithms leverage the concept of evolutionary algo-

rithms for team-based domains. Algorithm 2.3 describes a typical cooperative coevo-

lutionary algorithm. In coevolutionary algorithms, multiple separate populations are

maintained, and are used in a shared simulation environment, where their fitness is eval-

uated based on how well they perform an assigned task as a member of a team made

up of members from each population. An evolutionary algorithm is carried out on each

population individually, such that the populations eventually produce agent policies that

are well-suited in the team-based environment, to maximize the team’s calculated fit-

ness.

Coevolutionary algorithms have the potential to speed up a search through a complex

space, but can often lead to a suboptimal area of the search space [83, 89]. This can be
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Algorithm 2.3: Typical cooperative coevolutionary algorithm

Input: Initialize n populations of k policies: ~Π0 “ t ~π1, ~π2 ¨ ¨ ¨ ~πnu
1 foreach generation g P 1 : G do
2 foreach population ~πi P ~Πg do
3 replenish(~πi) // add k mutated copies of policies to ~πi

4 end
5 foreach i P 1 : sizep~πq do

// form random teams

6 randomly select one policy p (no replacement) from each population: πi,p
7 add πi,p to team Ti
8 evaluate(Ti) // Simulate team, assign fitness to members

9 end
10 foreach population ~πgi P ~Π

g do
11 ~πg`1

i Ð select( ~πgi ) // Remove lower-performing policies

12 end
13 end

Output: Final solution populations ~ΠG

due to the agents learning to take a conservative strategy, being able to cooperate with a

broader range of teammates [83, 84].

2.3 Multi-objective terminology

A multi-objective problem, also known as vector optimization, is a problem in which

the quantity to be optimized takes the form of a vector instead of a scalar. In these

problems, there are multiple objectives to be optimized simultaneously, and the goal is

to find the best solutions for each objectives individually, as well as the many solutions

that describe the optimal tradeoffs between the objectives, the Pareto front.

Multi-objective problems appear in an extremely wide variety of different engineer-
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ing domains, including evacuation planning [69], traffic-based route planning [65], hy-

drologic modeling [123], air traffic management [15], nurse scheduling [12], sup-

ply chain networks [18], the design of high-speed transport planes [76], the design of

trusses [24], job shop scheduling [130], urban planning [10], and greywater reuse [87].

Within the multi-objective community, the convention for optimization is minimiza-

tion. This conflicts with the convention within the multiagent community, and because

we combine concepts from the two communities, this convention does change internally

in this dissertation. In this chapter, we assume (without loss of generality) pure mini-

mization of k objectives Λ P Rk through the control of the n design variables Ω P Rn.

Multi-objective spaces: Ω P Rn is the design variable space (domain). Λ P Rk is

objective space (range or codomain) [117]. The mapping from ΩÑ Λ is unknown, and

must be determined through simulation.

Domination A solution u dominates another solution v (u ă v) if it scores lower on

all criteria (objectives c P Λ): @c P Λrfcpuq ă fcpvqs. A solution u weakly dominates

another solution v (u ĺ v) if it scores equal on some objectives, but less on others:

@c P Λrfcpuq ď fcpvqs ^ Dj P Λrfjpuq ă fjpvqs [117].

Pareto Front A solution which is not dominated by any other feasible solution is part

of the Pareto front P˚. As an incomplete optimizer solves a problem, it will approxi-

mate P˚ with a Pareto approximation P ˚I at iteration I . P ˚I is the subset of solutions

discovered by an incomplete optimizer during training which are not dominated by any

other point discovered before iteration I . This is a distinct concept from the true Pareto
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Algorithm 2.4: Maintaining an estimate of the Pareto front, P ˚I
Input: v, P ˚I
// attained vector v, previous Pareto front estimate P˚

I

1 foreach vector u P P ˚I do
// Does u dominate v?

2 if u ă v then
// If yes, P˚

I is unchanged

3 return P ˚I`1 Ð P ˚I ;
4 end

// If no, P˚
I may change

5 end
6 foreach vector u P P ˚I do

// Does v dominate any u?

7 if v ă u then
// If so, remove u

8 P ˚I Ð P ˚I zu;
9 end

10 end
11 P ˚I Ð P ˚I Y v;
12 P ˚I`1 Ð P ˚I ;

Output: P ˚I`1

front, as many points in P ˚I in the early stages of training will be found to be dominated

at later iterations. The true Pareto front is always on the border of the attainable and

unattainable space [42].

Utopia and nadir vectors Two important concepts in multi-objective problems are

the utopia and nadir points. The utopia point takes on the best possible value for each

objective, minus some small amount so that it is always infeasible. This point is difficult

to find, requiring an optimization for each objective individually. Instead, we approxi-
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mate:

û˝pcq “ minpP ˚I pcqq ´∆ (2.3)

where û˝pcq is the cth element in the estimated utopia vector, minpP ˚I pcqq is the mini-

mum cth element of any vector in P ˚I , and ∆ is a small value [33]. The nadir point takes

the worst value for each objective in the Pareto optimal set [75], which we approximate:

û‚pcq “ maxpP ˚I pcqq (2.4)

These approximations are computationally very cheap, and offer no guarantees of

accuracy. They also vary over time: as P ˚I is refined to be a closer approximation of P˚,

these approximations will be closer to the true utopia and nadir point, but their accuracy

is completely dependent on the accuracy of P ˚I .

Empirical attainment functions Empirical attainment functions (EAFs) are a method

for statistical analysis of multi-objective methods, developed by Fonseca et al. [49].

EAFs show the area of the objective space that a solution concept being analyzed “at-

tains” (dominates) over a number of statistical runs. They typically show contour lines

that correspond to points in the solution space which are attained once, in 50% of cases,

and in all cases, though they may show contour lines for any percent of attainment. Fig-

ure 2.1 shows an example EAF. The median attainment line is the most reliable way to

compare multiple solution methods, as it represents the portion of the objective space

that will be attained by a typical single statistical run. The worst- and best-case con-

tours, by definition, describe extremes. For problems with more than two objectives,
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EAFs become increasingly difficult to calculate and represent visually [49].

Figure 2.1: Empirical Attainment Function (EAF) example.

2.4 Established multi-objective methods

In this work we consider two categories of multi-objective methods: a priori meth-

ods, where the preferred tradeoffs between the objectives is defined before the opti-

mization begins, and a posteriori methods, those which seek to provide a large array

of tradeoff solutions, for decision-making by a concerned party after the optimization

process is completed [72]. A priori methods typically function on some form of aggre-
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gation, where the vector is reduced to a scalar value through a calculation. A posteriori

methods typically function by identifying the non-dominated set from a population of

solutions, and conduct a number of calculations based on this metric and some form

of “crowding” metric to determine which solutions are in sparser areas of the objective

space. Most a posteriori methods are Pareto-based multi-objective evolutionary algo-

rithms (MOEAs).

2.4.1 A priori aggregation methods

Within the class of a priori methods for multi-objective problems, there are many

different ways to scalarize the objectives into a single evaluation. Three popular solu-

tions are a linear combination, reference point methods, and a dominated hypervolume

calculation. These methods have well-studied and theoretically provable properties, and

different strengths and weaknesses. There are many different types of a priori methods,

but the pattern tends to be that they do well in problems with certain properties, and

struggle with problems that have a different set of properties.

For robust performance, it is often necessary to normalize the two objective values

before conducting additional calculations. If normalization is not done, the contribution

of one objective to a scalar calculation can easily dwarf the contribution of the other

objectives, simply based on the scale of the numbers involved.

Normalization Objectives may be transformed in many ways to make their contribu-

tion to a scalarization function more consistent with respect to the other objectives that
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also contribute to the function. One method that is robust to objectives on vastly dif-

ferent scales while also not requiring any input from the system designer is to use the

maximum and minimum value for each objective individually and use these limits to

normalize by:

Fnorm “
F ´ Fmin

Fmax ´ Fmin
(2.5)

where Fnorm is the normalized vector, F is vector being normalized, and Fmin and

Fmax are the minimum and maximum values. The exact definitions of Fmin and Fmax

can vary, and can change both the computational efficiency and the accuracy of the

normalization [72].

In this work, when we normalize we use a computationally cheap approximation of

this normalization that changes as the optimization proceeds. We define Fmin ” û˝. We

define Fmax ” û‚. This approximation is extremely simple to calculate, but necessarily

means that the normalization will change as the optimization process proceeds. This

normalization then takes the form:

vnorm
pcq “

vpcq ´ û˝pcq

û‚pcq ´ û˝pcq
(2.6)

In this normalization, all components of members of the Pareto approximation P ˚I

take on values in the range [0:1], and the normalization changes as P ˚I updates through-

out the training process.
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Linear combination One simple metric that is sufficient, but not necessary, for finding

Pareto optimal points is a linear combination of objectives [72]:

LCpw, vq “
ÿ

c

wpcqvpcq (2.7)

where LCpw, vq is the linear combination evaluation or L1 norm of vector v, vpcq is the

evaluation of vector v on the cth objective, w is the vector of weights, and wpcq is the

weight for the cth objective.

This method is computationally cheap when paired with typical optimizers like an

evolutionary algorithm [116], but presents three primary problems. First, as the number

of objectives increases, the choice of weights can become difficult. Second, this method

is incapable of finding certain areas of the Pareto front, those that are non-convex [23,

63, 67, 116] (this drawback has been very well-studied, and additional examples can be

found in [2, 7, 22, 45, 47, 71, 82, 86, 94, 114]). Third, incrementing the weights evenly to

converge to different parts of the Pareto front does not necessarily lead to evenly-spaced

solutions along the front [31].

Reference point methods Reference point methods seek to insert system designer

preferences or previous system knowledge into the problem to discover points in the

solution space near a specific point, the reference point [36, 78]. This requires that a

reference point ref is defined before the optimization process occurs. The evaluation in

this case is:

RP pw, vq “
ÿ

c

wpcq ¨ |vpcq ´ refpcq| (2.8)
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Reference point methods are sufficient to find Pareto optimal solutions if the refer-

ence point is chosen in an unattainable portion of the objective space [42]. The solutions

generated will tend to be as close to the reference point as possible, and therefore will

not spread across the entire Pareto front.

Dominated hypervolume Another metric that does not have the same problems with

concave areas of the Pareto front is taking the product of the objective values. This

measures the amount of hypervolume that is dominated by a particular solution (which

equates to the dominated area in two objectives, or volume in three objectives). It also

requires the use of a reference point, which indirectly affects the types of solutions that

are attained. This reference point must be dominated by the entirety of the Pareto front

to avoid any negative vpcq values [13]. Any negative vpc) values can result in a positive

or negative evaluation, depending on the quantity of negative vpcq values, which creates

an unstable evaluation. In contrast to reference point methods, the reference point in a

hypervolume calculation is not typically manipulated to change the types of solutions

that are generated.

The weighted dominated hypervolume calculate takes the form:

HV pw, vq “
ź

c

prefpcq ´ vpcqqwpcq (2.9)

Measuring the dominated hypervolume tends to produce solutions which are roughly

equally spaced away from the reference point on each objective.
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2.4.2 Multi-objective evolutionary algorithms (MOEAs)

MOEAs are a form of evolutionary algorithm that are designed specifically to work

with multiple simultaneous objectives. There are many MOEAs, which each have their

own mechanisms for the selection process, by which the population is first reduced in

size, and then replenished [23,103]. Many modern successful MOEAs are Pareto-based

methods, where the dominance relations between each of the members of the population

are used to develop the surface on which their fitness will be measured. This creates a

constantly changing fitness surface that, when designed properly, encourages solutions

to tend toward the Pareto frontier, and to spread out along this Pareto frontier.

Two of the most successful and popular MOEAs are the Nondominated Sorting

Genetic Algorithm-II, (NSGA-II) and the Strength-Pareto Evolutionary Algorithm-2

(SPEA2), which we discuss in the following sections.

2.4.3 NSGA-II

NSGA-II functions on a two-stage sorting operator. For each point it calculates

a “non-domination rank” based on the points which dominate it, and a “crowding dis-

tance”, based on its proximity to other points with the same non-domination rank. Points

are sorted first by non-domination rank, and secondarily by crowding distance [34].

It has been used in a wide variety of applications including chemical reaction engi-

neering [80], facial recognition [100], HIV therapy [55], mechanical design [35], elec-

trical power planning and dispatching [62, 91], rain water reuse [66], reservoir manage-
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Figure 2.2: Illustration of the NSGA-II process for N “ 20 points on a maximization
problem. NSGA-II ranks these points in the order denoted by the number. The non-
dominated fronts are identified in turn (first non-dominated front has dotted outline;
second has solid outline). Crowding distance is calculated as the total L1 distance be-
tween the two neighboring points on the front: e.g. Point 3 has a crowding distance of
c1 ` c2. X is not selected because the population is full, and its crowding distance is
low. Unlabeled points are not selected because they have a high non-domination rank.

ment [93], telecommunication [60], and water distribution [8].

NSGA-II assigns a fitness evaluation to each member of its population of solutions

in three sequential steps (See Figure 2.2):

1. At each step, the non-dominated front is identified, and these solutions are as-
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signed a rank of 1 and temporarily removed from the pool. Then, the non-

dominated front is identified from the remaining solutions, and these are assigned

a ranking of 2. This repeats until all solutions are ranked [34].

2. It then estimates the local density of the points along each non-dominated front,

by taking the total length of the sides of the cuboid (rectangle in two dimensions)

anchored on the nearest neighboring points, that contains no other solutions of the

same domination rank [34].

3. Solutions are preferentially selected based first upon their domination rank, and

then based on the local Pareto Front density near that solution [34].

NSGA-II provides a total ordering of solutions, but does not directly calculate a fit-

ness or how much a given solution would be preferred over another. Because developing

a multiagent-compatible version of NSGA-II is the central focus of Chapter 4, we defer

a complete algorithm to the background section of that chapter for the convenience of

the reader.

2.4.4 SPEA2

SPEA2 [132,133] is an evolutionary algorithm which assigns each vector a “strength”

equal to the number of vectors in the current population it dominates. Each vector then

sums the strengths of all vectors which dominate it, and this forms a raw fitness eval-

uation. This is altered by a local k-nearest neighbor density calculation, and the best

solutions survive.
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SPEA2 has been very successful in real-world applications, including air traffic

control [56], diesel engine optimization [57], step voltage regulators in power sys-

tems [129], stock picking [53], and wind power generation [131].

SPEA2 works as follows:

• The strength Si of solution i is calculated as the number of solutions which the

solution dominates.

Si “ sizeptj|ui ľ ujuq (2.10)

• Non-dominated solutions are assigned a raw fitness of 0. Solutions that are dom-

inated by any solutions take on a fitness value that is the sum of the strengths of

all of those solutions that dominate it.

Ri “
ÿ

@jľi

Sj (2.11)

• The local density Di is estimated as the inverse of the euclidian distance between

the solution and the kth nearest neighbor, where k is typically set to the square

root of the population size:

Di “
1

σki ` 2
(2.12)

Two is added to the denominator to ensure that the local density is always a posi-

tive value less than one.

• The fitness of the solution (which in this algorithm is to be minimized) is the sum
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of the local density and raw fitness.

Fi “ Ri `Di (2.13)

This process sorts solutions first based on their raw fitness (a scalar value), and

then by the density metric (a decimal value always less than one). Thus, it provides a

total ordering of solutions as well as a true fitness evaluation, though this fitness land-

scape is very discontinuous, as each solution that dominates a point (or which that point

dominates) changes the raw fitness evaluation, which thereby changes the total fitness

evaluation drastically, compared to any change that the crowding metric may make).

SPEA2 is highly effective in 2- and 3-objective problems, but is known to suffer

performance degradation in higher numbers of objectives [118]. We use SPEA2 in this

work as a baseline algorithm with which to compare performance of the algorithms we

developed.
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Chapter 3 – Multi-Objective Aggregation in Multiagent Systems

As a first step toward integrating multiagent systems with multi-objective problems,

this chapter examines the class of multi-objective methods known as a priori meth-

ods (Section 2.4.1), specifically scalarization. We incorporate credit assignment (Sec-

tion 2.2.2), and examine the effects that two scalarizations have on the Pareto front

approximation (Section 2.3) that is attained: a linear combination of objectives and a

hypervolume measure, in a multiagent problem. We use two multiagent domains that

have previously been studied as single-objective problems, with a second objective that

adds to each, keeping in the spirit of the original problems.

The necessary background for this chapter includes evolutionary algorithms (Sec-

tion 2.1.2), Pareto optimality, utopia and nadir vectors, (Section 2.3), and normalization

and scalarization (Section 2.4.1).

3.1 Scalarization of objectives

Within the class of a priori methods for multi-objective problems, there are many

different ways to scalarize the objectives into a single reward signal. In this chapter we

examine two: a linear combination and a hypervolume calculation. In each case we

normalize the objectives to the range [0:1] before combining them in one of two ways:
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a linear combination of objectives

R` “
ÿ

cPC

wcf
norm
c (3.1)

or a hypervolume measure,

Rλ “
ź

cPC

f norm
c (3.2)

where R` is the linear combination reward delivered to the reinforcement learner, Rλ is

the hypervolume reward delivered to the reinforcement learner, C is the set of all criteria

or objectives, and f norm
c is the normalized score on objective c. In each case we give all

agents either R` or Rλ, but never any combination of the two. The form which f norm
c

takes varies depending on the credit assignment schema used, which is discussed in the

following section. Other types of scalarizations do exist, like an exponentially weighted

set of objectives or distance from a target point, but we limit the scope of this chapter to

consider only these two.

3.2 Multiobjective bar problem (MOBP)

The first domain we consider in this work is an extension of the El Farol Bar Problem

originally introduced by Arthur [6]. In this extension, a group of agents A are each

assigned a static type m or f and must independently choose to attend one of several

bars. There are multiple objectives: first, the agents wish to attend a bar that is not too

crowded, and not too empty. Second, the agents wish to attend a bar with an even mixing

of agents of type m and f .
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The first “capacity” objective for each bar is modeled as a smooth curve that takes

on a value of 0 with no agents attending, near 0 with many agents attending, and a

maximum at the ideal capacity ψ. This models the enjoyment of the agents (of quantity

xb) attending bar b. The second “mixture” objective for each bar is maximized when

Mb “ Fb, where these are the number of agents of type m and f attending bar b,

regardless of the number of agents at the bar. Formally:

Lcapb “ xb ¨ e
´xb
ψ

ˇ

ˇ

ˇ

ˇ

Lmixb “
minpMb, Fbq

pMb ` FbqW
(3.3)

where W is the number of bars available for the agents to choose from. Lmixb evaluates

to 0 if the agents are all of the same type, and 0.5{W if there is an equal mixture of

types. The number of bars, W , is a constant (and therefore does not change the rein-

forcement learning process), and serves to limit Gmix to values in the range [0:0.5] for

easier interpretation of results.

The global rewards for each of these objectives are simply the sum of the local

rewards across all bars:

Gcap “
ÿ

bPB

Lcapb

ˇ

ˇ

ˇ

ˇ

Gmix “
ÿ

bPB

Lmixb (3.4)

And the Difference rewards for each are calculated by Equation 2.2 as the global reward

minus the global reward in a fictional world had agent i never attended any of the bars:

Dcapi “ xa ¨ e
´xa
ψ ´ pxa ´ 1q ¨ e

´pxa´1q
ψ (3.5)
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Dmixi “

$

’

’

’

’

&

’

’

’

’

%

minpMa,Faq

pMa`FaqW

minpMa,Faq

pMa`FaqW

´

´

minppMa´1q,Faq

pMa`Fa´1qW
: i P m

minpMa,pFa´1qq
pMa`Fa´1qW

: i P f

(3.6)

where xa is the attendance in the bar attended by agent i, and Ma and Fa are the number

of agents of types m or f respectively that attended the same bar as agent i. Dmixi

depends on the type of the agent; the second term represents the system with agent i

removed from bar b.

Procedure The procedure for running the MOBP is simple. Each agent simultane-

ously selects a bar to attend based on no sensory information. The local rewards Lcapb

and Lmixb are calculated for each bar b. Then the global rewardsGcap andGmix are calcu-

lated. Finally, Dcapi and Dmixi are calculated for each agent i. Once these are calculated,

the selected reward type (local, global, or difference) is normalized and put through

Equation 3.1 or 3.2 depending on the desired scalarization. The result is then provided

to the agent as the reward R, calculated with a value of γ “ 0, because the problem is

only a single step.

Tradeoffs and independence of objectives We take measures to prevent a trivial so-

lution for either objective, or a single dominating solution:

• Gcap: There are many more agents (100) than capacity across all bars (a capacity

of 5 for 7 bars).

• Gmix: Agent types are 70% type m, 30% type f .
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• Tradeoff : Lcapi is maximized at 5 agents; Lmixi is maximized only when an even

number of agents attend a bar.

• Tradeoff : A maximum Gmix case involves many bars with one agent of each type

and the rest attending a single bar, which conflicts with Gcap.

We calculate the coefficient of determination (R2) value for the correlation between

the two objectives across 106 random Monte Carlo trials using a linear, exponential, and

polynomial fit. The maximum value was the linear fit at 0.0034, which reinforces that

the objectives are distinct, though they are coupled through the actions of the agents.

3.2.1 MOBP results

To exhibit the benefits of Difference rewards in multi-objective problems, we exam-

ine 4 types of results:

• Average system performance on both system objectives (Figure 3.1)

• Dominance and Pareto front approximation (Figure 3.2)

• Impact of training time (Figure 3.2)

• Robustness to disturbances (Figure 3.3)

Simulation information We execute 30 statistical runs of the MOBP for seven inde-

pendent experiments: training all agents on each structure-scalarization combination in

turn (D+, Dλ, G+, Gλ, L+, Lλ), and on a random policy (rand).
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Figure 3.1: Performance on Gcap (left) and Gmix (right), for agents trained on the lin-
ear scalarization (+,top) and hypervolume calculation (λ,bottom) of the three reward
structures (D,G,L) and the random baseline (rand). Each of these objectives is to be
maximized.

Each agent selects an action using an ε-greedy mechanism, with an initial ε = 0.05

for local and difference rewards, and ε = 0.1 for global rewards1 (both multiplied by a

factor of 0.999 every episode to reduce exploration), with a learning rate α = 0.10.

We performed a full sweep through wc values, but due to the large effect each agent

has on the overall system performance near the Pareto front, we found that an even

weight, combined with the natural exploration, resulted in a spread of solutions discov-

ered along the Pareto front.

In Fig. 3.1, a 100-episode moving average (across 30 statistical runs) of system

1These values were chosen through a parameter sweep to create the best performance for each reward,
though the results are not very sensitive to ε or α values.
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performance was used. Error bars report the error in the mean, calculated as σ?
N

, where

N is the number of statistical trials. We identify the Pareto front approximation for

each structure-scalarization combination (e.g. “Hypervolume of Global Reward”, Gλ),

across all 30 statistical runs, and aggregate these into a single non-dominated set, for

clarity [48].

3.2.2 Average performance on system objectives

It is informative to look at the performance of the system on each objective individu-

ally (Figure 3.1), as this performance drives the behavior of the non-dominated set. For

both the linear combination and hypervolume scalarization, the local reward (L+,Lλ)

performs poorly; the agents work at cross-purposes, undermining each other’s efforts by

all trying to attend low-attendance days. This leads to low performance, and will never

lead to good system behavior, even with an extreme amount of training time. The global

reward (G+,Gλ) does learn, slowly. For the hypervolume scalarization, Dλ increases

system performance at a slightly higher rate than Gλ. The linear combination of differ-

ence rewards, D+, performs at a very high level very quickly, and reaches near its final

performance after only 1500 episodes.

3.2.3 Pareto front approximation and training time

In addition to performing well on the individual objectives, solutions produced by

D+ or Dλ produce superior Pareto front approximations compared to the global and
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Figure 3.2: The set of non-dominated episodes created over the entire training process
through using hypervolume (λ) or a linear combination p`q; dotted lines show the Pareto
front approximation after 1500 learning episodes; solid lines, the Pareto front approxi-
mation after 15,000 episodes. Agents trained on D(+) peak in performance before 1500
episodes, so both D(+) Pareto front approximations are identical.

local rewards with the same scalarization. The Pareto front approximations are shown in

Figure 3.2. In fact, every solution produced by the local or global rewards is dominated

by a solution produced by the difference reward.

The dotted lines in Figure 3.2 represent the Pareto front approximation produced in

the first 1500 episodes (10% of the training). In all cases the Pareto front approximation

improve between 1500 and 15000 episodes, except D+, which has already produced

its best episodes (dominating all other credit assignment/scalarization combinations).

Solutions produced by Dλ dominate the solutions produced by other methods in the

same time, except D+.
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Figure 3.3: The Pareto front approximation produced in the 5000 training episodes after
the conversion of 20% of agents to “selfish” behavior. Compare with solid lines in Fig-
ure 3.2: D+ and Dλ recover well; G` and Gλ suffer a disastrous drop in performance.

3.2.4 Robustness to disturbances

To model outside disturbances, after 15000 episodes 14 agents of type m and 6 of

type f “fail”. They have their Q-table reset to zero values and continue learning using

the local reward policy regardless of the learning signal they were using previously

(acting selfishly). The remaining 80 agents continue learning using the same signal they

were using previously. Additional exploration was found to be necessary in this case, so

we reset ε to initial values. All agents continue the learning process as before.

Figure 3.3 shows that D+ maintains its dominant Pareto front approximation. G+

and Gλ are affected catastrophically by the selfish agents, while D+ loses 98.4% less

dominated hypervolume. Dλ only loses performance on Gmix.
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3.3 Collective transport domain

We additionally performed experiments in a collective transport domain, modeled

after [95], in which a team of small robots must cooperate to transport an item (which

we also refer to as a body or load) across a surface in much the same way that ants

transport objects.

We formulate this as a time-extended, stateful reinforcement learning problem in

which the robot agents try to (i) collectively transport the object as quickly as possible

to the goal, while (ii) expending minimum effort.

Each robot is given discretized state information about the load’s position and ve-

locity, and is allowed to take one of nine actions, applying a force to the load in a car-

dinal direction (N,S,E,W), an intermediate direction (NE,SE,SW,NW), or no force. The

robots are assumed to be attached to the object, and receive discretized state information

based on the object’s current location and speed.

The body’s acceleration (acc), velocity (vel), position (pos) at time t are found with

particle kinetics:

accptq “
ÿ

iPA

rFxpiq̂is `
ÿ

iPA

rFypiqĵs ´ Ff f̂ (3.7)

velptq “ velpt´ 1q ` accptq ¨ tstep (3.8)

posptq “ pospt´ 1q ` velptq ¨ tstep (3.9)

where A is the set of all agents, Fxpiq is the force applied by agent i in the î direction,

Fypiq is the force applied by agent i in the ĵ direction, and Ff is the force of friction,

which acts in the f̂ direction, which points opposite the direction of motion of the body.
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We omit mass from this calculation of Newton’s second law because we assume the

mass of the body and transporting robots to be 1 unit total. In this context a local reward

loses meaning as all agents are collectively acting to move the same object, so we only

look at global and difference reward in this case.

The first objective (proximity) is to move the load close to the goal as quickly as

possible. This takes the form:

Gproxptq “ ´Tdistptq (3.10)

Dproxiptq “ ´Tdistptq ` Tdist´iptq (3.11)

where Tdistpq is a function that returns the body’s Euclidian distance from the target at

time t, and Tdist´ipq returns the distance from the target if agent i took no action during

timestep t.

The second objective is to minimize the effort exerted by the team to move the load

to the desired target location:

Geffortptq “
ÿ

iPA

r1´ Ei,ts (3.12)

Deffortiptq “ 1´ Ei,t (3.13)

where Ei,t is 1 if the agent applied a force to the object at time t, and 0 if the agent did

not apply a force.

We perform a Q-update at every time step. To visualize the performance, we aggre-

gate these into one point for each time the load reaches the goal state. For the purpose of
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learning, however, we use the distance to the goal state after each time step, as this pro-

vides a smoother gradient for learning [64]. The process for conducting this experiment

is described in Algorithm 3.1. For each credit assignment schema and scalarization

combination, step 19 would use the proper evaluation (one of G or Di), and use the

desired scalarization from Equation 3.1 or 3.2.

In this domain the two objectives are in conflict with one another: minimizing the

time to deliver the load will maximize the effort required, and minimizing effort will

lead to a longer time.
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Algorithm 3.1: Collective Transport Domain using Difference Reward of Domi-
nated Hypervolume (Dλ)
1 initialize Q-values to zero: Qps, aq “ 0 @ s, a ;
2 initialize body position to starting location ;
3 initialize velocity and acceleration to ~0 ;
4 foreach timestep “ 1 Ñ max timesteps do
5 foreach i “ 1 Ñ total agents do
6 choose an action with ε-greedy selection:

{none,N,NE,E,SE,S,SW,W,NW} ;
7 add force contribution to body (Fxpiq,Fypiq);
8 end
9 evaluate body acceleration (Equation 3.7);

10 evaluate body velocity (Equation 3.8);
11 evaluate body position (Equation 3.9);
12 if body position is out of bounds then
13 set body position to nearest in-bounds position;
14 set body velocity to ~0;
15 end
16 evaluate global reward (Equations 3.10, 3.12);
17 for i “ 1 Ñ total agents do
18 evaluate difference rewards (Equations 3.11, 3.13);
19 evaluate RÐ Rλ (Equation 3.2);
20 update Qps, aq values ;
21 end
22 if body is in goal state then
23 set body to starting location;
24 set velocity and acceleration to ~0;
25 end
26 reduce ε;
27 end
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3.3.1 CTD results

In the collective transport domain, we examine two types of results:

• Dominance and Pareto front approximations (Figure 3.4, Left)

• Impact of training time (Figure 3.4, Right)

Simulation Information We perform 4 different trials following Algorithm 3.1; one

each for G+, Gλ, D+, and Dλ. For each, we conduct 30 statistical runs of 5000 time

steps for teams of 50 agents attempting to transport a load across a surface with maxi-

mum static force of friction Ff “ 8 units and kinetic force of friction of Ff “ 2 units.

The body’s starting state is initialized as px, yq “ p1, 1q, with the goal as a square at

txmin, xmax, ymin, ymaxu = t900, 1000, 900, 1000u. The boundaries are a larger square at
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Figure 3.4: (Left) Collective Transport Domain results. D(λ) creates solutions that dom-
inate all other methods (solutions below and to the left are superior in this domain). D+
outperforms G+, and creates an overlapping Pareto front with G(λ). (Right) Dotted lines
denote early system performance after 500 time steps. The denoted highlighted area is
the range of the figure on the left.
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txmin, xmax, ymin, ymaxu = t0, 1000, 0, 1000u. Though the calculations of the body’s ve-

locity and position are continuous, we us an approximation via tile coding [102] and

discretize into 10 states each for pxvel, yvel, xpos, yposq creating 10,000 states. In this do-

main, we find the best performance when we vary the weights for the objectives as a

function of learning step, starting by with a value of twprox, weffortu “ t1, 0u changing

linearly to t0, 1u at the final learning step. This produces policies which do find the

goal state, and learn to reduce effort over time. This produces better initial performance

and a spread of solutions. Initial weights favoring the effort objective led to policies of

inaction, never reaching the goal.

3.3.2 Dominance and Pareto front approximation

Figure 3.4 shows the final Pareto front approximation for each method. The teams of

agents trained on the scalarizations of the difference reward (D+, Dλ) outperform their

global counterparts in the final produced Pareto front approximation. In this domain,

however, the hypervolume calculations (λ) perform better than the linear combinations

(`). We find nearly equivalent performance between Gλ and D+, suggesting that us-

ing the proper multi-objective scalarization is as important as proper multiagent credit

assignment. The Dλ result shows that these benefits can be symbiotic.
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3.3.3 Impact of training time

We also identify the Pareto front approximation produced by each solution after

10% of the training time in Figure 3.4. Again, the difference reward using the prefer-

able scalarization attains performance close to its final performance very quickly, while

the global methods are not as near their final performance values. Dλ dominates all

solutions formed by other scalarizations.

Additionally, in this domain we noticed that the performance of the global reward

signals was sensitive to the learning parameters, while the difference reward signals

were robust to these changes. In additional trials we found the agents trained with

the difference reward to be robust to noisy actuators, noisy sensors, failing agents, and

unmodeled disturbances (externally applied forces) as well.

3.4 Conclusion

Multiagent systems are a powerful concept for dealing with complex systems. Many

multiagent systems are intrinsically multi-objective, but this has received scant attention.

In this chapter we explicitly addressed one of the key concerns in multiagent systems

— credit assignment — under the conditions of a multi-objective problem. We found

that credit assignment is important under multi-objective conditions: our results show

(i) a 10x increase in learning speed, (ii) a 98.4% increase in robustness to unmodeled

disturbances, and (iii) the production of solutions which dominate all solutions found

by a traditional global reward. These results show that proper credit assignment is of
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paramount importance in a multiagent multi-objective system. However, the choice

of multi-objective algorithm is still extremely important. Difference rewards boosted

performance in both domains, for both scalarizations. The gains from credit assignment

through difference rewards were independent of the scalarization used and the domain.
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Chapter 4 – Adapting NSGA-II for Multiagent Systems

In the previous chapter (Chapter 3), we developed the concept of credit assignment

for use in reinforcement learning with a scalarized objective function. We identified

that credit assignment is at least as important as the type of multi-objective algorithm

used. In this chapter, we introduce credit assignment into the Pareto-based MOEA,

NSGA-II (Non-dominated Sorting Genetic Algorithm-II). We first have to modify the

internal structure of NSGA-II to provide a real-valued evaluation, before incorporating

difference evaluations. We discover that the order of operations in this process is of

paramount importance, and identify the reasons that this occurs.

For this chapter, it is therefore necessary to be familiar with cooperative coevolution-

ary algorithms (Section 2.2.3) , and the concepts of Pareto optimality (Section 2.3), and

credit assignment (Section 2.2.2). We use empirical attainment functions (Section 2.3)

to compare performance between this modification and a normalized linear combina-

tion (Section 2.4.1). Because we do direct modifications to the NSGA-II algorithm, the

initial background section on NSGA-II (Section 2.4.3) is also recommended for an in-

tuition on how NSGA-II functions. In this chapter we also offer a complete algorithm

section describing the mechanisms employed by NSGA-II.

We compare the performance of the linear combination and NSGA-II using a global

evaluation and the difference evaluation — in various combinations and with various

orders of operation — on a multi-objective rover domain, in which different points of
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interest have one of two different types of data to gather, creating the two distinct and

competing objectives.

4.1 Contributions

NSGA-II is an accomplished algorithm for solving multi-objective problems in widely

varying domains, including facial recognition [100], HIV therapy [55], rain water reuse [66],

and telecommunications [60]. Though it has been successful in such domains, NSGA-II

is explicitly created as a centralized solution generator, and does not incorporate multi-

agent concepts.

Difference evaluations have been studied in a wide variety of single-objective do-

mains, including data routing over a telecommunication network [113], congestion games [40],

multiple robot coordination [3], and air traffic control [108]. Though it has been suc-

cessful in such domains, it has only been studied briefly in the context of multiple ob-

jectives [125]. As many interesting problems involve both multiple agents and multiple

objectives, it is critical to develop approaches tuned to the intersection of these two

paradigms. In this chapter we reformulate NSGA-II such that it may incorporate differ-

ence evaluations more readily, and study the benefits offered by NSGA-II using a global

or difference evaluation compared to a linear combination of objectives using a global

or difference evaluation.

The key contributions of this chapter are:

• derive real-valued NSGA-II, allowing additional operations to shape the fitness

for each agent in a multiagent system.
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• derive a modified difference evaluation function that is compatible with the NSGA-

II framework and produces good solution quality

• provide an intuitive understanding of why naive, but seemingly reasonable com-

binations of NSGA-II and difference evaluations lead to poor solutions.

To demonstrate both the subtle interaction between the multiagent and multi-objective

paradigms, we use the conceptually simple, but operationally complex domain of mul-

tiple robots exploring an unknown landscape as a running example. In this problem,

multiple robots must collect as much data of various types (seismographic, radiological,

atmospheric, electromagnetic, or soil analysis, to name a few possibilities) as they can,

but the points of interest (POIs) that they must observe may only contain one type of

data. As a team, they must maximize the amount of each type of data that they observe.

When there are no obvious, linear tradeoffs between the types of data, this problem be-

comes a multiagent, multi-objective optimization problem, providing a rich environment

to develop and test the proposed approach.

This chapter is organized as follows: Section 4.2 describes the necessary specific

background for this chapter. Section 4.3 describes the proposed algorithms. Section 4.4

describes the multi-objective continuous rover exploration problem used in this chapter.

Section 4.5 shows the results of our experiments. Finally, Section 4.6 concludes the

chapter.
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Figure 4.1: Illustration of the NSGA-II process for N“20 points. NSGA-II ranks these
points in the order denoted by the number. The non-dominated fronts are identified in
turn (first non-dominated front has dotted outline; second has solid outline). Crowding
distance is calculated as the total L1 distance between the two neighboring points on the
front: e.g. Point 3 has a crowding distance of c1 ` c2. X is not selected because the
population is full, and its crowding distance is low. Unlabeled points are not selected
because they have a high non-domination rank.

4.2 NSGA-II Algorithm

The Elitist Non-Dominated Sorting Genetic Algorithm, NSGA-II [34], is one of the

standard benchmark multi-objective methods by which many other methods measure

themselves. It is an evolutionary algorithm that works in three sequential steps:

1. At each step, the non-dominated front is identified, and these solutions are as-

signed a rank of 1 and temporarily removed from the pool. Then, the non-
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dominated front is identified from the remaining solutions, and these are assigned

a ranking of 2. This repeats until all solutions are ranked.

2. It then estimates the local density of the points along the non-dominated front, by

taking the total length of the sides of the cuboid (rectangle in two dimensions)

anchored on the nearest neighboring points, that contains no other solutions of the

same domination rank.

3. Solutions are preferentially selected based first upon their domination rank, and

then based on the local Pareto Front density near that solution.

Because it functions solely based on pairwise comparisons between the population

members, and there is no absolute gradient to the function, a larger population size gives

a finer-grained feedback signal of the fitness landscape. NSGA-II does not explicitly

give a decimal fitness value for each population member.

Algorithm 4.1: NSGA-II Base Algorithm
Data: input set of solutions St

1 F Ð fast-nondominated-sortpStq // [34]

2 while |St`1 ă N | do
3 crowding-distance-assignment(Fi) // [34]

4 St`1 Ð St`1 Y Fi
5 iÐ i` 1

6 end
7 sort(St`1,ěn) // [34]

8 St`1 Ð St`1r0 : N{2s // select first N{2 members

9 St`1 Ð expand-pop(St`1) // [34]

Result: St`1
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Each of the methods in Algorithm 4.1 are defined in [34], but we give the intuition

for them here, and illustrate them in Figure 4.1.

• F Ð fast-nondominated-sortpStq: Takes St, and sorts it into non-dominated

fronts, Fi. After a non-dominated front Fi is identified, it is temporarily removed

from St so that the next front may be identified.

• crowding-distance-assignment(Fi): For one non-dominated front, Fi,

calculates the crowding distance (L1 distance between immediate neighbors) for

each point in that front. Extreme points are assigned infinite crowding distance.

• sort(St`1,ěn): Sorts St`1 first on non-dominated ranking, and breaks ties with

crowding distance.

• St`1 Ð expand-pop(St`1): Creates N{2 new population members through the

mutation operator, adds them to St`1.

4.2.1 Multiagent Background

To solve larger, more complex problems, two routes exist: first, a single agent can be

made to solve the problem, at the cost of more and more computational time or power;

second, multiple simpler agents can be made to cooperate to solve the problem based

on locally available information, with the solution arising from the interaction between

the agents. The second option offers many benefits from an exploration or resource

gathering standpoint. If one rover out of a team ventures into a dangerous area, the loss
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of that rover does not cripple the team, allowing for potentially more dangerous missions

to be considered.

Beyond the disposability of the individual team members, there are other benefits

to this team-based approach. Savings can be realized in construction, as each rover can

be designed with parts from a lower-cost parts portion of the reliability curve. Similar

savings are available in the design process, as a new team of rovers can be formed with

some members that have been previously designed.

In addition, a team of rovers can have capabilities that a single monolithic rover can-

not, like having presence in multiple locations at once, which is incredibly useful for

planetary exploration. Ephemeral events can be simultaneously observed from separate

locations [46], even from the ground and from orbit simultaneously [20], which can

make interpreting the situation significantly easier. Construction tasks that might be im-

possible for a single rover with limited degrees of freedom become much easier. Teams

can survey areas separated by impassible terrain and share long-range communication

resources [19].

However, with multiple team members, the question quickly becomes how the team

members may coordinate such that their actions lead to desirable system-level perfor-

mance. The concept of adaptive agents allows the team members to use an algorithm

that searches through the space of available policies, biasing the search to more favor-

able areas of the search space. This work is addressed in Section 2.1 and 2.2.3.

The interactions between the team members may still result in agents working at

cross-purposes, where two agents unintentionally perform redundant tasks, or worse,

undo the efforts of another rover. To combat this phenomenon, the study of shaping
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seeks to create functions that, when maximized on an agent-level, will lead to good

performance on the system-level.

When conducted properly, such shaping techniques can promote coordination and

improve the robustness of the learning process [73, 104]. One shaping technique that

has been successful in a wide variety of domains is the difference evaluation function,

which we discuss in depth in Section 2.2.2. In this chapter we offer a brief overview in

Section 4.2.3

4.2.2 Policy Search

A key issue in multiagent problems is that the policies which the agents should fol-

low are not always obvious, and “optimality” is almost impossible to achieve. Thus,

there are a number of methods that exist for intelligently searching through the parame-

ter space of agent policies (analogous to Ω in the multi-objective problem formulation)

that have been widely successful. In this chapter we use cooperative coevolutionary

algorithms, a multiagent implementation of evolutionary algorithms.

4.2.3 Difference Evaluation Functions

The global evaluation function (G) is the system performance of the team as a

whole. This encourages the agent to act in the system’s interest, but includes a large

amount of noise from other agents acting simultaneously. An agent’s own contribution

to the global reward may be dwarfed by the contribution of many other agents, resulting
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in a low “signal to noise ratio”.

The difference evaluation function (Dr) is a shaped reward signal that helps an

agent learn the consequences of its actions on the system objective by removing a large

amount of the noise created by the actions of other agents in the system [119]. It is

defined as:

Drpzq “ Gpzq ´Gpz´rq (4.1)

where Gpzq is the global system performance for the system considering the joint state-

action z, and Gpz´rq is Gpzq for a theoretical system without the contribution of agent

r. Any action taken to increase Dr simultaneously increases G, while agent r’s impact

on its own reward is much higher than its relative impact on G [119].

For difference evaluations to be effective, it is important that a significant change in

an agent’s actions leads to a change in the global evaluation. In the event that a change

in action results in no change in global evaluation, the difference evaluation does not

offer a mechanism to prefer one action over the other.

4.2.4 Gap in current understanding

Previous work in multi-objective multiagent systems has shown that credit assign-

ment is very important in policy iteration reinforcement learning using aggregation func-

tions [125]. A technique has not been developed for incorporating credit assignment into

Pareto-based MOEAs for multiagent systems. There are a number of questions that have

not been answered, that this chapter addresses:

• does NSGA-II possess properties that naturally subsume credit assignment?
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• how does the order of the multiagent credit assignment and multi-objective eval-

uation affect system performance?

• Is system performance affected by performing a centralized NSGA-II calculation

(thereby increasing the relative population size)?

In this work we create experiments to answer each of these questions in turn (Sec-

tion 4.5).

4.3 Algorithms

This section describes the novel contributions of this work, in which we derive

NSGA-II for multiagent systems. We first establish a real-valued fitness assignment

mechanism which gives equivalent total ordering of solutions to NSGA-II. Then, be-

cause it is not immediately apparent how multiagent systems and NSGA-II should best

be combined, we do so in a number of different ways.

4.3.1 Real Valued NSGA-II

In order to be able to take a difference evaluation on NSGA-II calculations, it is

important that there be a real-valued fitness associated with each population member.

While NSGA-II does create a complete ordering of individuals, it does not explicitly

create a real scalar value that can be compared to show how much one solution is pre-

ferred over another.

Other MOEAs do perform this kind of real-valued total ordering. Here, we adapt the
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technique from SPEA2 [132], which performs a real-valued total ordering, to NSGA-II’s

fitness calculation. The result is Algorithm 4.2, which uses the same functions from [34]

as Algorithm 4.1, but produces a real-valued total ranking that is precisely equivalent to

the ranking produced by Algorithm 4.1.

Solutions on the first non-dominated front will take onR values in the range [0:1); on

the second non-dominated front, [1:2); and so forth. After Algorithm 4.2, solutions can

be sorted by R values, and a purely greedy selection (minimizing Ri,j) always selects

the same solutions as NSGA-II.

4.3.2 Multiagent NSGA-II

In creating a multiagent implementation of NSGA-II, there are many options to con-

sider:

Algorithm 4.2: Real-Valued NSGA-II Fitness Assignment: R Ð

RVNSGA-II(Vt)
Data: Set of solutions Vt

1 F Ð fast-nondominated-sortpVtq ;
2 foreach i P F do
3 foreach j P Fi do
4 Ri,j “ i´ Ci,j{maxpCiq;
5 end
6 end

Result: R
7 :: Since we divide by maximum crowding distance in line 4, extreme points are

given a large, non-infinite Ci value;
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Figure 4.2: Two agents’ policy populations (light, dark) that lead to different NSGA-II
fitnesses depending on centralization. If centralized, the circles attain a Pareto ranking
of 1, and will be preferentially selected over the squares. If decentralized, the squares
will have a Pareto ranking of 1 also, and different members will be maintained from
each population.

• Centralized vs. Decentralized: In the case of the decentralized implementation,

we have each agent run an NSGA-II algorithm independent of each other agent.

In the case of a centralized implementation, we run one single NSGA-II algo-

rithm for fitness assignment, but still select policies to survive as a cooperative

co-evolutionary algorithm. This can make a difference in which policies survive

from each population, as is shown in Figure 4.2.

• Global vs. Difference: Which evaluation that we use in tandem with the NSGA-

II algorithm. In the case of the global evaluation, all agents in one trial receive the

same team evaluation. In the case of the difference evaluation, each agent receives

its own difference evaluation (Equation 4.1).
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• Prior vs. Post: When NSGA-II is conducted, with respect to the difference eval-

uation. In the case of prior, the evaluation the agent receives is a “difference of

NSGA-II-based evaluations”. In post, the agent receives an “NSGA-II evaluation

on difference evaluations”.

This creates a total of 8 different NSGA-II evaluations that can be performed. In this

section we provide algorithms for two formulations, and the others may be constructed

similarly. In these algorithms, a pair of lower-case indices pa, nq refers to an individual

agent a’s nth policy. Capital indices refer to a whole population: pa,Nq referring to

agent a’s entire population of policies; pA,Nq referring to all agents’ populations of

policies. Last, an index of ´a refers to a value not considering the contribution of agent

a.

Centralized Global NSGA-II Algorithm 4.3 describes a centralized NSGA-II cal-

culation on the global evaluation. The function simulate-all(St,A,N ) conducts a

series of trials, one for every n P N , with the different agents randomly drawing poli-

cies (no replacement) for each simulation, so that each policy receives one global fitness

vector ~G (of length k, the number of objectives), and one counterfactual vector, ~G´a (of

length k). The function select(St,a,N , Ra) then selects survivors for t ` 1 from the

population St,a,N based on their real-valued fitness Ra,N .

Decentralized Difference NSGA-II, Prior Algorithm 4.4 describes a decentralized

difference of NSGA-II values calculation, with NSGA-II fitness assignment happening

before difference evaluation. The functions used in Algorithm 4.4 are the same as those
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Algorithm 4.3: Centralized Global NSGA-II Fitness Assignment
Data: Evolutionary time t
Data: Populations of solutions St,a,n@a P A, @n P N

1 t~GA,N , ~G
´a
A,Nu Ð simulate-allpSt,A,Nq ;

2 RA,N Ð RVNSGA-II(~GA,N ) // Alg. 4.2 ;
3 St`1,A,N Ð select(St,A,N , DA,N ) ;

Algorithm 4.4: Decentralized Difference NSGA-II, Prior Fitness Assignment
Data: Evolutionary time t
Data: Populations of solutions St,a,n@a P A, @n P N

1 Ra,N Ð RVNSGA-II(~Ga,N ) // Alg. 4.2 ;
2 R1a,N Ð RVNSGA-II(~G´a

a,N ) // Alg. 4.2;
3 Da,N Ð Ra,N ´R

1
a,N // Eq. 4.1;

4 St`1,a,N Ð select(St,a,N , Da,N );

used within Algorithm 4.3.

Computational Complexity The base NSGA-II algorithm has a known computa-

tional complexity that is in the average case OpkN2q, where k is the number of ob-

jectives and N is the population size.

Calculating the difference evaluation and conducting the NSGA-II calculation before

or after difference rewards are calculated make no difference in the overall complexity.

Though they can change the computation time required, they do not scale differently

than the base NSGA-II algorithm.

Decentralization leads to no change in the computational complexity, as each agent

can conduct their search in parallel. Centralized calculations use the joint population of

size A¨N , resulting in a complexity of OpkA2N2q, a factor of A2 worse.
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4.4 Experimental Domain

We perform a series of experiments with the different algorithms in a continuous

rover domain. In this domain, a team of 10 rovers must work together to observe a set of

50 heterogeneous points of interest (POIs) on a 100 x 100 Euclidian plane, which have

vector-valued importance ~V of length k “ 2 objectives. Each of the elements of this

vector represents a type of scientific data that the rovers may collect from a POI, which

acts as an objective. We desire to maximize the system (global) performance vector ~G.

Rover Motion Each rover policy selects a series of waypoints (µx, µy), which are then

sent to a low-level planner that determines the path the rover should take to reach that

waypoint. After that waypoint is reached (with some variance σx and σy), the rover takes

an observation of any POIs that it can observe, before proceeding to the next waypoint.

We assume the rovers can localize en route, so variance from the intended waypoints

does not increase with time or distance travelled.

Observations The quality of the observations created by the rovers is a function of the

Euclidian distance at which they observe the POI, δ:

δpx, yq “ maxt}x´ y}2, d2
u (4.2)

where x is the location of one object, y is the location of a second object, and d is the

minimum observation distance (to prevent singularity, we use d “ 1). This then allows

us to calculate the vector of global evaluations ~G based on rover locations LR and POI
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locations LP :

~G “
ÿ

p

~Vp
minr δpLP,p, LR,rq

(4.3)

where “minr δpLP,p, LR,rq” is the minimum distance between any rover and POI p. Ap-

plying Equation 4.1 directly to Equation 4.3, we can calculate the difference evaluation

vector ~Dr for rover r:

~Dr “
ÿ

p

~Vp
minr δpLP,p, LR,rq

´
ÿ

p

~Vp
minr1‰r δpLP,p, LR,r1q

(4.4)

Note, only when rover r is the rover whose observation of a POI is used in the global

reward will ~Dr be non-zero.

Cooperative co-evolutionary algorithm We use a coevolutionary algorithm as out-

lined in Section 2.2.3. For each rover we maintain a population of 100 solutions. We

calculate fitness in many different combinations of difference evaluations and NSGA-II

calculations, as outlined in Section 4.3.2.

• Initialization: We initialize 100 solution policies for each rover. They are initial-

ized randomly through the space.

• Fitness Calculation: Each policy is simulated with a team of randomly-selected

policies from the other rovers. Raw global fitness vectors (~G) and counterfactual

vectors (~G´a) are returned and used in various combinations of NSGA-II and

difference evaluations, as outlined in Section 4.3.

• Selection: Binary tournament selection [50]. Two policies are randomly selected
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with replacement, and the one with the highest fitness is placed in the survivor

population, continuing until the population is full.

• Mutation: For all waypoints, we perform the following mutation: tµx, µyu Ð

tµx, µyu ` tN p0, 5q,N p0, 5qu, where N pµ, σq returns a random number drawn

from a normal distribution of mean µ and standard deviation σ.

4.5 Results

For each experiment, we report the empirical attainment function (EAF) of the

team’s performance over 100 statistical trials [49]. These plots, Figures 4.3–4.9, show

the best case attainment surface (points which were dominated at least once in the 100

trials), median attainment surface (points which were dominated in at least 50 of the

100 trials), and worst case attainment surface (points which were dominated in all 100

trials). Note that the best and worst cases are extremes, and comparing medians is the

most reliable comparison between different methods.

4.5.1 Global LC aggregation vs. MOEAs

In our first experiment, we examine whether MOEAs provide a boost in performance

over a simple linear combination of objectives in a multiagent continuous rover prob-

lem. Figures 4.3 and 4.4 show the resulting EAFs. It is clear that the performance is

similar, with NSGA-II failing to produce significant gains without considering credit

assignment.



65

Figure 4.3: Global Linear Combination EAF; Decentralized.

Figure 4.4: Global NSGA-II EAF; Decentralized.

4.5.2 Credit assignment with difference evaluations

Next, consider Figure 4.5. It is readily apparent that the difference evaluation makes

a very large difference in system performance, with median performance using the dif-

ference evaluation in a linear combination taking on a similar profile to best-case per-

formance compared to either the LC or NSGA-II using a global evaluation.

However, when NSGA-II is used in tandem with difference evaluations (decen-

tralized, before), once again a large boost in performance is seen (Figure 4.6). Be-
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Figure 4.5: Linear Combination of Difference Evaluation EAF; Decentralized

Figure 4.6: NSGA-II Calculation of Difference Evaluation EAF; Decentralized

cause NSGA-II and difference evaluations are solving fundamentally different problems

(NSGA-II assigns value to each objective based on others within the same population,

while difference evaluations assign value to each agent based on others within the same

simulation), their benefits are complementary and may be combined. In this case we

see worst case performance that is comparable to median performance with the linear

combination.
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Figure 4.7: Global NSGA-II EAF; Centralized

4.5.3 Centralization of Fitness Calculation

While centralization of the NSGA-II process provides a less discretized version of

the fitness space, it also produces a noticeable slowdown over the decentralized version

(as an additional time complexity factor of A2, where A is the number of agents is

included in the fitness assignment steps).

Additionally, it tends to force the global system performance toward the center trade-

off solutions of the Pareto front (Figures 4.7–4.8). This is because of the phenomenon

illustrated in Figure 4.2, in which each agent’s population will tend toward extreme solu-

tions. On average, then, the tradeoff solutions will be developed, at the cost of solutions

near the single-objective optimals.
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Figure 4.8: Difference Evaluation NSGA-II EAF; Centralized
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Figure 4.9: Difference of NSGA-II calculations EAF; Prior; Decentralized

4.5.4 Order of Operations

Finally, we examine the possible order of operations between the NSGA-II oper-

ation and the difference evaluation. Figure 4.6 shows that in the case of difference

evaluations first (“Post”), the calculation becomes a “NSGA-II calculation of difference

evaluations”, which leads to extremely high performance.

In the case of NSGA-II first (“Prior”), however, the calculation becomes a “differ-
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Figure 4.10: The lack of gradient information available in NSGA-II. Point X can move
anywhere in Region 2, and will receive no change in evaluation. It can only surely im-
prove its evaluation by moving to Region 1, or surely decrease its evaluation by moving
to Region 3. Regions 4, 5, and 6 depend on the positions of neighbors. Total order of
Regions: 3 ! 5 ă 2 ă 4 ă 6 ! 1. The difference evaluation of RVNSGA-II is only
nonzero for agent a in trial X when X´a is in a different region than X .

ence of NSGA-II evaluations”, which leads to extremely poor performance (Figure 4.9).

This is because the calculation of the NSGA-II fitness is not affected by fine-grained ad-

justments to the vector itself. The crowding distance is not a function of the position

of vector, but only its neighbors on the non-dominated front (Figure 4.10). Thus, a

small move produces zero change in NSGA-II evaluation, creating a zero difference

evaluation. The only way an agent can “make a difference” is by changing the system

performance enough to dominate a point that wasn’t previously dominated. This is in-

credibly uninformative, and leads to poor system performance: an agent can improve
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system performance on all objectives, and attain the same difference reward (in this

formulation) as an agent who decreases system performance on all objectives. Thus,

our recommendation is to perform a decentralized NSGA-II calculation of difference

rewards: this attains high performance (Figure 4.6) at low computational effort.

4.6 Conclusion

In this chapter we have presented a novel method for integrating the successful

multi-objective algorithm NSGA-II into multiagent systems. We first derived a real-

valued fitness assignment method that provides an equivalent total ordering of policies

to NSGA-II for use with additional calculations. Our experimental results confirm that

credit assignment is vital in multiagent, multi-objective systems, and without consider-

ing credit assignment, NSGA-II performs only slightly better than a linear combination

of objectives when both use a global evaluation.

Using difference evaluations for credit assignment improves the performance of lin-

ear combinations, confirming the results in other domains from the previous chapter.

Using a decentralized NSGA-II calculation in tandem with difference evaluations re-

sults in the best performance, since they address different sides of the problem: dif-

ference evaluations assign credit to individual agents, while NSGA-II determines the

relative importance of improvements in each individual objective. We also determined

that a centralized NSGA-II calculation offers no additional benefits over the decentral-

ized calculation, despite the additional computation time (OpAgents2q) and increased

resolution on the fitness space. This formulation tends to push system performance to-
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ward tradeoff solutions in the middle of the Pareto front, ignoring the extremes. Finally,

we determined that calculating the “difference of NSGA-II fitness” is a destructive fit-

ness function, and discovered that this was caused by a lack of gradient information due

to NSGA-II’s formulation.
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Chapter 5 – The Pareto Concavity Elimination Transformation: PaCcET

In the previous two chapters, we have developed the concept of credit assignment for

use in reinforcement learning with a scalarized objective function (Chapter 3), and intro-

duced credit assignment into NSGA-II (Chapter 4). However, each of these have draw-

backs associated with them: a priori scalarization has a number of well-documented

flaws [31], including an inability to discover Pareto fronts with certain properties. NSGA-

II, while capable of discovering arbitrary Pareto fronts, requires orders of magnitude

more computation, which may be prohibitive to deploy in a multiagent setting with lim-

ited computation.

In this chapter, we develop a computationally-inexpensive alternative for multi-

objective optimization. In this chapter, we only consider a centralized solution concept

(a single agent), and address multiagent concerns in later chapters. At the core of this

method is the concept of indifference [44, 85]: a tradeoff for which an agent should be

willing to accept either alternative with no preference between the two.

The necessary background for this chapter includes evolutionary algorithms (Sec-

tion 2.1.2), Pareto optimality, utopia and nadir vectors, (Section 2.3), and normalization

and scalarization (Section 2.4.1). Among other comparisons, we look at empirical at-

tainment functions (Section 2.3) to compare the performance of the algorithm we de-

velop against NSGA-II (Section 2.4.3) and SPEA2 (Section 2.4.4) on multi-objective

benchmark problems [37, 70].
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5.1 Contributions

The primary contribution of this chapter is to present the Pareto Concavity Elimitation

Transformation (PaCcET), a novel, optimizer-independent, iterative multi-objective trans-

formation. It transforms the objective space so that the Pareto Front is convex, and re-

quires only a single user-defined parameter. This allows an linear combination with unit

weights (in the transformed objective space) to find concave areas of the Pareto front (in

the original objective space), removing the major drawbacks of a linear combination,

and allowing a simple linear combination to be used instead of more computationally

expensive multi-objective evolutionary algorithms, and produce similar results. We fur-

thermore provide a theoretical proof that the true solution to the PaCcET optimization

problem is always Pareto optimal, and will find Pareto optimal points even in concave

areas of the Pareto frontier. Finally, we test PaCcET and its associated extensions on a

10-objective problem, and compare performance to NSGA-II and SPEA2.

PaCcET Intuition Intuitively, the purpose of the PaCcET transformation is to make

the current Pareto approximate set equally valuable, as we are indifferent between these

solutions [44]. One way to do this is to register the Pareto approximation (P ˚I ) on to

points on the normalized utopia hyperplane [77]. This can be achieved through a non-

rigid registration [21], which forms the core of the transformation.

PaCcET generalizes to k objectives, but for the intuition, consider two objectives.

PaCcET can be seen as radially expanding or contracting the scaling of the space, cen-

tered on û˝,norm, with the scaling changing with the angle θ from the x-axis (See Fig-



74

ure 5.1). In locations where P ˚I is concave, that scaling factor will be ă 1, contracting

the space along that vector until that point in P ˚I is on the utopia hyperplane. Where P ˚I

is convex, that scaling factor will be ą 1, expanding the space so that the P ˚I point is

on the utopia hyperplane. The normalized utopia hyperplane is equally valuable to an

unweighted linear combination of objectives (See Figure 5.5). This guarantees that all

points in P ˚I have the same linear combination evaluation.
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Figure 5.1: Intuition for the PaCcET process in a two-objective problem (PaCcET gen-
eralizes to k objectives). Grey points in P ˚I are scaled radially (centered on the approxi-
mate utopia point) away if they are in front of the utopia hyperplane, and scaled radially
closer if they are behind the utopia hyperplane. All points in P ˚I then have the same
unweighted linear combination.
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Moreover, PaCcET takes a conservative approach to interpolating between the points,

always using the upper bound of the non-dominated hyperspace (ΛB, see Figure 5.3) for

determining what the scaling factor should be between points in P ˚I . This means that

points that are not dominated by P ˚I will have a linear combination ofă LCpP ˚I q, while

points that are dominated by P ˚I will have a linear combination of ą LCpP ˚I q. Thus,

non-dominated solutions are preferred, and will be discovered during optimization.

5.2 Pareto Concavity Elimination Transformation (PaCcET)

If we consider the goal of multi-objective optimization to make our approximation

of the Pareto front, P ˚I as close as possible to the true Pareto front P˚, then since P ˚I

serves as an upper bound (for minimization problems) of the Pareto front, it follows that

we should prefer to discover solutions that lie between our current P ˚I and P˚. However,

since we have no knowledge in general of the form of P˚, we cannot arbitrarily hope

to improve on every objective from any point in the objective space Λ, as when part of

P ˚I approaches P˚, it will necessarily be approaching the edge of the attainable space.

Instead of arbitrarily placing a scalar value function over Λ, then, we take the approach

of forming the value function based on our current P ˚I , and as this approximation im-

proves over time, our value function will form to the contours of P˚. How we achieve

this effect is described in the remainder of this section.

Each point in the current Pareto-approximate set, P ˚I represents a tradeoff between

which we are indifferent [44]. PaCcET makes each solution on ΛB (including P ˚I )

equally valuable to a linear combination in Λτ through a two step transformation, which
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first transforms from Λ to Λnorm, and then transforms from Λnorm to Λτ , where the τ

superscript on any space or set denotes the transformed space or set. This means that

any Pareto-approximate solution will have a linear combination evaluation of pk ´ 1q

when all weights are set to 1. All solutions in Λτ
N (the non-dominated hyperspace) will

have a linear combination evaluation ă pk ´ 1q, and all solutions in Λτ
D (the dominated

hyperspace) will have a linear combination evaluation ą pk ´ 1q.

Algorithm: To determine the transformed evaluation for a given solution vector v, we

require the current Pareto approximate set P ˚I , from which we can calculate the approx-

imate utopia point û˝ based on P ˚I (Eq. 2.3), and the matching nadir approximation û‚

(Eq. 2.4). The first step is to normalize the target vector v such that each objective takes

Algorithm 5.1: PaCcET for iteration I
Data: Set of solutions V
Data: Pareto Approximate Set P ˚I

1 Find û˝, û‚ (Eq. 2.3–2.4) ;
2 @c wc “ 1 ;
3 forall the Solutions i P V do
4 Find vnorm

i (Eq. 5.1);
5 Find ~r (Eq. 5.2);
6 Find ||vnorm||1 (Eq. 5.3);
7 Find ||v||B (Eq. 5.4);
8 Find ||v||hp (Eq. 5.5);
9 Find dτ (Eq. 5.6);

10 Find vτi (Eq. 5.7);
11 FitPaCcETpviq “ LCpvτi q (Eq. 2.7);
12 end
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Figure 5.2: Visualization of the partitions in the multi-objective space. Green dots cor-
respond to vectors in P ˚,norm

I (which form the border, ΛB, between the non-dominated
hyperspace ΛN and the dominated hyperspace, ΛD).

on a value not less than 0, transforming Λ to Λnorm [33, 72]:

vnorm
pcq “

vpcq ´ û˝pcq

û‚pcq ´ û˝pcq
(5.1)

By definition û‚,norm ” 1 and û˝,norm ” 0, and each element of a member of P ˚I will

be in the range [0:1].

The second step is to perform the transformation from Λnorm to Λτ . Within this

process, we use the unit vector ~r that points from û˝,norm toward vnorm:

~r “
vnorm

|vnorm|
(5.2)

All distance measurements in the transformation process are taken along the direc-
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to vectors in P ˚,norm

I . Red correspond to their transformations in P ˚τI . All measurements
are Manhattan Distance (L1 norm) along ~r.

tion of ~r. We measure three distances for use in PaCcET:

• L1 distance (linear combination or Manhattan Distance) from û˝,norm to vnorm:

||vnorm
||1 “

ÿ

i

vnorm
i (5.3)

• L1 distance from û˝,norm to the normalized dominated border Λnorm
B along ~r:

||v||B “ minpγq Q γ~r ľ P ˚I (5.4)
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• L1 distance from û˝,norm to the normalized utopia hyperplane Λτ
B [77] along ~r:

||v||hp “ β Q
ÿ

i

β~ri “ pk ´ 1q (5.5)

We then calculate dτ , which determines where vτ is located:

dτ “ ||v||hp
||vnorm||1

||v||B
(5.6)

And finally we determine the location of vτ , enclosing the whole process:

vτ “ dτ~r “ PaCcET pvq (5.7)

Choosing the Maximum Size of P ˚I , the Pareto approximate set: P ˚I is maintained

in the same way as any Pareto optimality calculation. However, for computation and

memory concerns, its size must be limited. The size of P ˚I is the only user-defined

parameter in PaCcET, and corresponds directly to the granularity of the Pareto front

estimation. In our experiments we use 250 as the size. We ran tests with a size as small

as 50, in which the algorithm still functions, but provides a very coarse approximation

of the true Pareto front. Once over the chosen size, we used random elimination of

non-extreme elements. We also tested with nearest-neighbor elimination and k-nearest

neighbor elimination, the performance of PaCcET was not sensitive.
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5.3 Theoretical Properties of PaCcET

In this section we provide two theorems which together prove that PaCcET finds

Pareto optimal solutions, even in concave areas of the Pareto front. We begin by assum-

ing:

Assumption A1. The system designer specifies k points that are incomparable to the

Pareto front, which describe a hyper-prism that completely bounds the Pareto front.

Assumption A2. Optimizer Ξ solves the PaCcET problem exactly in a single iteration.

Assumption A3. The feasible region has no solutions that are weakly dominated by the

Pareto front.

Assumption A4. The Pareto front is continuous.

A1 provides us vectors with which we seed P ˚I , and assures PaCcET is calculable in

the whole feasible objective space. A2 allows us to use the exact solution to the PaCcET

minimization problem to determine how P ˚I changes over iterations. A3 and A4 allow

us to draw conclusions in k-objective space without any other restrictions on the shape

of the Pareto front.

In practice, Assumptions A2 and A3 are rarely met, and Assumption A4 is met only

in some types of problems, but whether or not it is met is not known before optimiza-

tion. Assumption A1 requires some external knowledge of the environment that can be

provided by a system expert, and is also not always available. We use these assump-

tions for the below proofs, but in the experiments that follow, we relax all four of these

assumptions and find that we still achieve favorable performance.
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Theorem T1. The solution to the PaCcET optimization problem will be Pareto Optimal.

Proof. There exists an infinite number of possible rays ~r P ~R (where ~R is the set of all

rays originating from 0) on which the true solution may exist. This solution exists only

along one of those rays, which must pass through the feasible space. We do not seek to

determine which ~r it lies on. For any individual ~r, the PaCcET optimization problem

takes the form (Eq. 5.6, reorganized):

minpdτ q “ min

ˆ

||v||hp
||vnorm||1

||v||B

˙

(5.8)

And for a constant ~r, ||v||B and ||v||hp are constant on a given iteration:

minpdτ q “ minpα||vnorm
||1q (5.9)

where α is some positive constant. ||vnorm||1 increases monotonically as distance from

the origin increases, therefore dτ does as well. The minimum of dτ , then, will be on

the border of the feasible space, a Pareto Optimal Solution or a weakly dominated solu-

tion [72]. By A3 and A4, this is a Pareto optimal solution. This can also be assured by

the same logic as [31], since it is equivalent to a scaled linear combination.

Theorem T2. PaCcET finds solutions in concave areas of the Pareto front.

Proof. Assume a globally concave search space. By theorem T1, in the worst case, the

solution to the PaCcET optimization problem will lead to the k anchor points (single

objective extremes) in the first k iterations. By A4, we know additional Pareto optimal

points exist. We show that the dτ calculations for those points in the current P ˚I is
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greater than those in ΛN (super/sub-scripts denoting the calculation for a member of the

set named in the super/sub-script):

dτP˚I
ą dτΛN

(5.10)

||v||
P˚I
hp

||vnorm
P˚I
||1

||v||
P˚I
B

ą ||v||ΛN
hp

||vnorm
ΛN
||1

||v||ΛN
B

(5.11)

pk ´ 1q
||vnorm

P˚I
||1

||v||
P˚I
B

ą pk ´ 1q
||vnorm

ΛN
||1

||v||ΛN
B

(5.12)

By definition ||v||P
˚
I

hp “ pk ´ 1q. Also,
||vnorm
P˚
I

||1

||v||
P˚
I

B

“ 1 because ||vnorm
P˚I
||1 “ ||v||

P˚I
B ,

and the quantity
||vnorm

ΛN
||1

||v||
ΛN
B

P r0 : 1q, because it is in the non-dominated subspace (so

||vnorm
ΛN
||1 ă ||v||ΛN

B ), and the inequality in Eq. 5.12 holds. Because of Theorem T1,

we know that the solution will be Pareto optimal, and because of the globally concave

assumption, we know this point is on a concave region of the Pareto front.

Implications: The significance of these two theorems is as follows: the true solution

to the PaCcET problem will always be a Pareto optimal solution, and PaCcET will be

able to find concave areas of the Pareto front. Because the assumptions used to generate

these conclusions are restrictive, in the following empirical results sections, we take

steps to violate each of the assumptions categorically, and PaCcET is still able to find

good coverage over concave Pareto fronts.
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Figure 5.4: Visualization of PaCcET procedure over iterations. The left column is the
normalized objective space Λnorm. The right column is the transformed objective space,
Λτ . The rows show, in turn, the optimizer working at the 1st, 2nd, 3rd, and 200th itera-
tion. In the left column, Black points are candidate solutions. Red points are solutions
in P ˚I , the Pareto approximate set. The green solid line denotes Λnorm

B The blue square
denotes the true solution to the PaCcET optimization problem at that iteration. The blue
dashed line is the level curve of the PaCcET evaluation on which all solutions are as
valuable as the discovered solution. In the right column, the colors and symbols map to
the transformed versions of the same points as described previously, in Λτ .
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5.4 Experiment: KUR

As a first experimental domain, we use a test problem (KUR) from multi-objective

optimization with a discontinuous and locally concave Pareto front (which breaks A4) [33]:

f1pxq “

2
ÿ

i“1

”

´10 exp
´

p´0.2q
b

x2
i ` x

2
i`1

¯ı

(5.13)

f2pxq “

3
ÿ

i“1

“

|xi|
0.8
` 5 sinpxiq

3
‰

(5.14)

Where f1 and f2 are to be minimized by controlling the decision variables:

xi P r´5, 5s ; i P t1, 2, 3u (5.15)

A vector x is evaluated:

FitLCpxq “ w1f1 ` w2f2 (5.16)

where altering the weights can lead to different portions of the Pareto front being cov-

ered. For PaCcET:

FitPaCcETpxq “ f τ1 ` f
τ
2 (5.17)

where f τ1 and f τ2 represent the transformed objectives, within Λτ , calculated as:

tf τ1 , f
τ
2 u “ PaCcET ptf1, f2uq (5.18)

As the optimizer Ξ, we use an evolutionary algorithm (which breaks A2), in which
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the population members are vectors of length 3 that meet the criteria set forth in Eq. 5.15.

We maintain a population of 100 solutions, with the 50 worst-performing solutions re-

moved after each generation, replaced by copies of the winner of 50 binary tournaments,

with each element of the vector changed by a random number chosen by a normal dis-

tribution centered around 0 with standard deviation 0.25. We do not seed P ˚I (which

breaks A1).

Figure 5.6 shows the Empirical Attainment Function (EAF) [49] for each method,

respectively. It shows PaCcET’s worst performance exceeds that of the linear combina-

tion’s median performance, and PaCcET’s worst performance exceeds NSGA-II’s worst

performance. SPEA2 and PaCcET perform comparably after 5000 generations.

Figure 5.7 shows the percent of dominated hypervolume by PaCcET and two suc-

cessful multi-objective methods, SPEA2 and NSGA-II, as a function of number of indi-
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Figure 5.5: A grid of points in Λ (Left) and Λτ (Right). After many iterations, cyan
points are dominated by the red set P ˚I . Nondominated points shown in black. PaCcET
distorts the objective space such that a linear combination in the transformed space is a
complex non-linear combination in the un-transformed space.
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vidual fitness evaluations. PaCcET proceeds faster than the other two methods toward

the Pareto front. All methods shown eventually converge to a good approximation of

the Pareto front, and dominate a similar amount of hypervolume.

Figure 5.6: KUR Empirical Attainment Functions, shown in Λ.
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5.5 Experiment: DTLZ2

As a second experimental domain, we use one of the test problems out of the bat-

tery developed by Deb, Thiele, Laumanns and Zitzler, DTLZ2 [37, 38]. A solution is

described by a vector (x “ tx1, x2,xMu) of length 12, where 2 elements (x1, x2) deter-

mine at what angles in the 3 dimensional objective space evaluation v will lie and the

remaining 10 elements pxMq determine the distance from the origin at which v will lie.

The three functions to be minimized are:

f1pxq “ p1` gpxMqq cos
´

x1
π

2

¯

cos
´

x2
π

2

¯

(5.19)

f2pxq “ p1` gpxMqq cos
´

x1
π

2

¯

sin
´

x2
π

2

¯

(5.20)

f3pxq “ p1` gpxMqq sin
´

x1
π

2

¯

(5.21)

subject to each element of x remaining in the range [0:1], and the evaluation gpxMq

calculated as:

gpxMq “
ÿ

xiPxM

pxi ´ 0.5q2 (5.22)

This results in a known Pareto front that can be described by the octant of a sphere

of radius 1 for which f1, f2, and f3 are all positive. The feasible space has a large area

that is weakly dominated by the Pareto front (which breaks A3).

The fitness of a vector x is calculated as:

FitLCpxq “ w1f
norm
1 ` w2f

norm
2 ` w3f

norm
3 (5.23)
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and for PaCcET,

FitPaCcETpxq “ f τ1 ` f
τ
2 ` f

τ
3 (5.24)

where f τ1 , f τ2 , and f τ3 represent the transformed objectives, within Λτ , calculated as:

tf τ1 , f
τ
2 , f

τ
3 u “ PaCcET ptf1, f2, f3uq (5.25)
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We use the same optimizer Ξ for DTLZ2 as for KUR (which breaks A2), except

members are vectors of length 12 with each element in the range [0:1], and the mutation

operator alters each element by a random number drawn from a normal distribution

centered around 0 with standard deviation 0.05. We do not seed P ˚I (which breaks A1).

Figure 5.8 shows the results on DTLZ2 for a typical experimental run of 5000 gener-

ations for each method (simulated annealing allowed the same number of global function

calls as the EAs), reporting the non-dominated points found through the entire experi-

mental run (Note that this is distinct from P ˚I , which was kept at a size of 250). SPEA2

and PaCcET using an evolutionary algorithm (PaCcET – EA) both find a similar num-

ber of solutions spread all across the Pareto front. PaCcET using simulated annealing

(PaCcET – SA) is slightly less successful but still generates good coverage, even though

it is not using a population-based optimizer. NSGA-II produces fewer Pareto optimal

points, but still maintains coverage. The linear combination (not shown) converges to

one of the extremes very quickly, producing very poor coverage, regardless of the choice

of weights.

5.6 Empirical Runtime Study

To examine the properties of PaCcET’s run time, we performed a series of exper-

iments in which we had SPEA2, NSGA-II, and PaCcET perform their evaluations for

every member in a population of solutions, and report the number of CPU ticks required

for each to complete. Specifically, these times only include the time to run each respec-

tive algorithm, and do not include the time to evaluate from Ω Ñ Λ. Including these
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evaluations would add a constant to each computation time.

Figure 5.9 shows that in a 3-objective problem with a low population size (less than

40), NSGA-II has the lowest computation time of the three algorithms, but with a larger

population scales very poorly. SPEA2 starts with a higher computation burden, but

scales more gracefully as the population size is increased. PaCcET performs more than

an order of magnitude better than either of the other methods at high population sizes. In

highly complex problems, a large population size can be desirable to maintain diverse

sets of solutions, so being able to evaluate these populations quickly is a benefit of

PaCcET.
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5.7 Discussion and Conclusion

In this work we have presented a low computational cost way to improve the perfor-

mance of a linear combination in multi-objective problems. PaCcET convexities con-

cave regions of the Pareto front for the sake of training, and allows for solutions in these

areas to be found by an optimizer using a linear combination of transformed objectives.

The primary benefits of PaCcET displayed in this work are:

1. It allows a linear combination of transformed objectives to find concave areas of

the Pareto front in the original objective space.

2. It acts independently of the chosen optimizer.

3. It creates a wide spread of solutions along the Pareto front on concave or discon-

tinuous fronts.

4. It removes the need for the system designer to choose weights.

5. It functions in higher-than-two objective problems.

The first benefit (1) allows a simple linear combination to be applied to a much broader

class of multi-objective problems than it could be otherwise. Benefit (2) means that opti-

mizers like evolutionary algorithms, A* search, simulated annealing, or particle swarm

optimization can be applied to multi-objective problems through PaCcET with little

alteration; it also means that future developments in single-objective optimizers are im-

mediately useful to a large class of multi-objective problem, but comes at the cost that

PaCcET is limited by the quality of the optimizer. Benefit (3) reinforces (1): Even on
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challenging Pareto fronts, PaCcET develops a desirable array of solutions to choose

between. Benefits (4,5) remove one of the primary challenges in using a linear combi-

nation on more-than-two objective problems.

PaCcET offers a fundamentally different possible avenue for multi-objective re-

search: the elimination of concavity as opposed to the development of methods that deal

well with concave Pareto fronts. Future work in this area includes testing the PaCcET

on a large testbed of multi-objective problems.
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Chapter 6 – Extending PaCcET for Complete Coverage and Steerability

In the previous chapter, we developed the PaCcET Transformation (Chapter 5),

which transforms the objective space such that it favors the use of a linear combination

of objective values. We identified that it executes quickly and provides good solution

quality in the single-agent case, but there are also a number of ways in which it can be

improved. Since only a single parameter may be specified (the maximum size of P ˚I ),

this offers the user limited control over the behavior of the algorithm.

In this chapter, we introduce three extensions to provide the system designer with

additional methods by which the performance of PaCcET may be controlled to provide a

finer grain of solutions on a certain area of the Pareto front, to avoid a certain area of the

Pareto front, or to provide an even spread across the entire Pareto front. We additionally

offer a theoretical proof that the extension for evenly spreading solutions will discover

solutions within an arbitrarily small distance of any point on the Pareto front.

This chapter again deals with multi-objective concepts, so the necessary background

includes the PaCcET transformation (Chapter 5), evolutionary algorithms (Section 2.1.2),

Pareto optimality, utopia and nadir vectors, (Section 2.3), and normalization and scalar-

ization (Section 2.4.1).
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6.0.1 The Pareto Concavity Elimination Transformation (PaCcET)

The core functionality of PaCcET is through a transformation, which is then fed into

a linear combination, which is then given to an optimizer Ξ. For this chapter, we notate

this process as T RÑ LC Ñ Ξ.

In this chapter, we introduce three extension algorithms that can be incorporated

into the PaCcET procedure either independently, or in tandem. These extensions are the

complete coverage extension (CC, Section 6.1.1), the reference point extension (RP ,

Section 6.2.1), and the interactive extension (I, Section 6.2).

6.0.2 Established Theoretical Properties

In the previous chapter, we established that with the following assumptions, theoret-

ical guarantees arise. These are:

Assumption A1. The system designer specifies k points that are incomparable to the

Pareto front, which describe a hyper-prism that completely bounds the Pareto front.

Assumption A2. Optimizer Ξ solves the PaCcET problem exactly in a single iteration.

Assumption A3. The feasible region has no solutions that are weakly dominated by the

Pareto front.

Assumption A4. The Pareto front is continuous.

Theorem T1. The solution to the PaCcET optimization problem will be Pareto optimal.
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Theorem T2. PaCcET finds solutions in concave areas of the Pareto front.

In the previous chapter A1-A4 are categorically violated, yet PaCcET still achieves

high system performance that partially supports T1 and T2. Note that despite T1 and

T2, there are no formal guarantees regarding coverage of the entire Pareto front.

6.1 Algorithms

In this chapter we introduce 3 novel extensions for use in PaCcET: the CC extension

guarantees complete coverage of the Pareto front; the RP extension allows the system

designer to focus PaCcET’s computational effort on a particular area of the Pareto front;

and I allows the system designer to specify areas of the Pareto front to be avoided.

6.1.1 CC (Complete Coverage) Extension Algorithm

Algorithm 6.1 describes the process, and Figure 6.1 illustrates it. At an iteration I ,

the members of P ˚I are compared pairwise. Those that are sufficiently close (ă δ, a

user-defined parameter specifying how closely spaced the discovered solutions should

be along the Pareto front) generate a surrogate (Line 10), which is always in the unattain-

able space. If any of their objective values are too close (ă ε), a modified surrogate is

generated (Line 12), guaranteeing that a nontrivial amount of hypervolume on the Pareto

front is dominated by the surrogate (L3). In both cases an anti-surrogate is generated

(Line 8). An anti-surrogate/surrogate pair describes the opposite corner points of a sur-

rogate hyperprism (important in L1, T3, and T4). Finally, the surrogates are put through
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a Pareto filter against the other surrogate points to reduce the size of this set. The CC

extension then functions by using the united set P ˚I Y S during the calculation of ||v||B

in T R.

6.2 I (Interactive) Extension Algorithm

The I extension functions by the user defining a custom surrogate set S at any time

during problem execution, which is used in the ||v||B by the PaCcET algorithm in the

same way that CC does. These points are interactively generated by the user, instead of

automatically generated. This allows for more control over where the algorithm’s effort
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Figure 6.1: Diagram of terms included in CC extension, and visualization of surrogate
and modified surrogate process.
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is focused: points dominated by S will be valued less by Ξ, preferably ignored.

Algorithm 6.1: CC Module for Iteration I
Data: Solution vi
Data: Pareto Approximate Set P ˚I
Data: Empty S

1 forall the Members p P P ˚I do
2 forall the Members q ‰ p, q P P ˚I do
3 z “ sizepSq “ sizepASq ;
4 v1 “ P ˚I,p ;
5 v2 “ P ˚I,q ;
6 if ||P ˚I,p ´ P ˚I,q|| ą δ then
7 S “ S
8 end
9 if ||P ˚I,p ´ P ˚I,q|| ă δ then

10 @c P C : ASz`1pcq “ maxpv1pcq, v2pcqq (Anti-Surrogate)
11 end
12 if |P ˚I,ppcq ´ P ˚I,qpcq| ą ε then
13 @c P C : Sz`1pcq “ minpv1pcq, v2pcqq (Surrogate)
14 else
15 @c P C : Sz`1pcq “ maxpv1pcq ´ ε, v2pcq ´ εq (Modified Surrogate);
16 end
17 Pareto F ilterpSq ;
18 end
19 end
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6.2.1 RP (Reference Point) Extension Algorithm

TheRP extension uses a reference point calculation in place of the LC process. For

vector v and reference point ref this is:

RPpv, refq “
ÿ

cPC

|vτ pcq ´ refpcq| (6.1)

The distinct benefit of RP is that any ref with an L1 norm ||ref ||1 ă pk ´ 1q

will eventually be unattainable as PaCcET refines P ˚I . This guarantees a Pareto optimal

solution [42]. A standard reference point method requires prior knowledge of the shape

of the true Pareto front to specify an unattainable reference point.

6.3 CC Theoretical Properties

We first establish that this surrogate process dictates that PaCcET find solutions

on other areas of the Pareto front than those covered by the surrogate (L1). We then

establish that the CC extension will provably execute and generate a surrogate point.

This covers one extreme (solutions too spread out) (L2). Conversely, solutions can be

clustered too close together, so we then establish that each new hyper prism introduced

will cover a minimum amount of hypervolume on the Pareto front (L3). Finally (T3),

we show that we can drive down ε (involved in L3) to attain the guaranteed spacing (T4).

Lemma L1. A Module CC surrogate hyper prism will prevent the solution to the PaCcET

optimization problem from being within its boundaries until the entire Pareto Front is
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covered with surrogate hyperprisms.

Proof.

P1. By T1, only Pareto optimal solutions will be found. The CC extension uses the set

P ˚I Y S when calculating ||v||B.

P2. Therefore, of the points not dominated by P ˚I , points dominated by the S set will

necessarily take on a higher (worse) value than those not dominated by S.

P3. The optimal solution at each iteration will be non-dominated by S.

Lemma L2. A minimum number of surrogates will be created as a function of iterations

and the number of problem objectives k.

Proof.

P1. The Pareto front has finite length (area, volume, hypervolume) L.

P2. In the worst case, points will be discovered that are δ plus some infinitesimal dis-

tance away from each other. The number of Pareto optimal points that can be discovered

in this fashion (η) is a function of optimal hypersphere packing in pk ´ 1q dimensions.

P3. After a finite number of iterations pη “ pL{δ ` 1q for k “ 2q, at least one pair of

solutions will lie within δ of each other.

P 4. For iterations I ą η, there will be at least I ´ η surrogates in existence at any

iteration.

P5. The number of required iterations for the creation of the first surrogate is determined

by hypersphere packing in dimension k ´ 1. This is line segment packing in the two

objective case, hexagonal packing of circles in 3 objectives, hexagonal close packing of
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spheres in 4 objectives, and so on [99].

Lemma L3. Each surrogate dominates an amount of hypervolume on the Pareto front

not less than εk´1.

Proof.

P1. If any dimension of the surrogate hyperprism is less than ε, the surrogate point is

modified such that that dimension is equal to ε (Algorithm 6.1, lines 9 and 12).

P2. The minimum hypervolume of the Pareto front dominated by the surrogate is equal

to the hypervolume of the smallest side of the surrogate hyperprism.

P 3. Since the lowest dimension of a surrogate hyperprism is ε, the smallest possible

hypervolume dominated is εk´1.

L3 introduces one new problem that must be addressed: the Pareto front may have

an extreme slope near a discovered Pareto point, such that the ε-modification of the

surrogate point may dominate an exceedingly large amount of the Pareto front (not con-

tained within the surrogate hyperprism). This is illustrated in Figure 6.2. While rare in

practice, Theorem T3 addresses this issue.

Theorem T3. D ε Q maxdist ă δ

There exists an ε value such that the maximum distance between two neighboring

discovered Pareto optimal points is less than δ.

Proof.
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Figure 6.2: The need for T3. The Pareto front will pass through both green points, and
the shaded orange areas. If, in region 1, BO2

BO1
" 0, then the Pareto front will exit out of the

top of the region, and a long distance will be covered before it becomes nondominated
by the modified surrogate. On the other hand, in region 2, if BO1

BO2
" 0, a similar problem

arises.

P1. If a point is discovered that is dominated by S, the Pareto front is wholly dominated

by S (L1).

P 2. If all surrogate hyperprisms are joined, the process is complete, and T4 will be

satisfied.

P3. If the surrogate hyperprisms are not joined, ε may be reduced by a factor of 2, and

areas of the Pareto front not within surrogate hyperprisms may become nondominated

by S. ε can be reduced in this manner ad infinitum.

P4. As ε Ñ 0, the amount of hyperspace that the modified surrogate dominates outside
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of the surrogate hyperprism reduces to 0.

P5. As P4 occurs, points on the Pareto Front which were previously dominated by S will

no longer be dominated by S. When ε is sufficiently small, a point will be discovered

that lies within δ of a point in P ˚I .

Theorem T4. Using Module CC guarantees the discovery of two Pareto optimal solu-

tions within δ Euclidian distance from any point on the true Pareto front.

Proof.

P1. The extension provably executes and produces a surrogate or modified surrogate. It

does so in a finite number of iterations (L2).

P2. Each surrogate or modified surrogate covers part of the Pareto front, with a minimum

size (L3).

P3. It will continue to fire using newly-introduced base points not already dominated

by a surrogate or modified surrogate (L1) until the whole Pareto front is dominated by

surrogates (L2).

P 4. Once contained in a non-modified surrogate hyperprism, all points on the Pareto

front are within δ of the base points of that hyperprism.

The implications of these two theorems are that the user can choose any δ value that

suits their needs, and two Pareto optimal solutions will be found within that distance of

every point on the Pareto front. This δ can be chosen to be arbitrarily small, and full

coverage is still attained as ε decreases.
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6.4 Domains of Study

In this work, we use the DTLZ-2 scalable test problem [37] with 3 and 10 objectives,

and Kursawe’s test problem (KUR) [70].

The DTLZ-2 problem is a problem that can have any number of objectives, with a

globally concave Pareto front. A solution is described by a vector (x “ tx1, x2, ¨ ¨ ¨ , xk´1,xMu)

of length k ´ 1 `m, where k ´ 1 elements (x1, ¨ ¨ ¨ , xk´1) determine at what angles in

the k dimensional objective space evaluation v will lie and the remaining m elements

pxMq determine the distance from the origin at which v will lie. We use k “ 10 and

sizepxMq “ 10, for a 10-objective instantiation of the problem with 20 design variables;

and a k “ 3 and sizepxMq “ 10 for a visualizable 3-objective problem. The k functions

to be minimized are:

F1pxq “ p1` gqcos
´

x1
π

2

¯

cos
´

x2
π

2

¯

¨ ¨ ¨ cospxk´1
π

2
q

F2pxq “ p1` gqcos
´

x1
π

2

¯

¨ ¨ ¨ cos
´

xk´2
π

2

¯

sin
´

xk´1
π

2

¯

F3pxq “ p1` gqcos
´

x1
π

2

¯

¨ ¨ ¨ sin
´

xk´2
π

2

¯

...

Fkpxq “ p1` gqsin
´

x1
π

2

¯

(6.2)

with each element of x remaining in the range [0:1], and:

gpxMq “
ÿ

xiPxM

pxi ´ 0.5q2 (6.3)
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Deb et. al. recommend this problem “to investigate a multi-objective evolutionary

algorithm’s ability to scale up its performance in large numbers of objectives” [37],

which is our purpose in using this problem. It also breaks assumption A3 intrinsically.

The KUR problem is a two-objective problem with a discontinuous, locally concave

Pareto front. It takes the form:

F1pxq “

2
ÿ

i“1

”

´10 exp
´

p´0.2q
b

x2
i ` x

2
i`1

¯ı

F2pxq “

3
ÿ

i“1

“

|xi|
0.8
` 5 sinpxiq

3
‰

(6.4)

Where f1 and f2 are to be minimized by controlling the decision variables:

xi P r´5, 5s ; i P t1, 2, 3u (6.5)

We use this test problem to show the impact of the three extensions introduced in

this work in an easily visualizable manner, and because it breaks assumption A4.

6.5 Results

We display results on multi-objective benchmark problems, to display each of the

unique benefits conferred by the three extensions introduced in this paper. We also ex-

amine PaCcET and its extensions’ performance on a 10-objective instantiation of DTLZ-

2 [37].

In each of these cases, we use the original T R ñ LC ñ Ξ formulation of PaCcET
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in tandem with the extensions being tested, except in RP , which replaces LC. Un-

less otherwise noted, for Ξ we use an evolutionary algorithm with a population of 100

solutions for 1000 generations for each evolutionary algorithm, and binary tournament

selection. This breaks A2. We do not seed P ˚I , breaking A1. Thus, all 4 assumptions

A1-A4 are broken.

Guaranteed coverage of Pareto Front (CC) Figure 6.3 shows the density of solutions

produced by PaCcET on KUR. In this implementation, the top curve is mostly ignored.

With CC (δ “ 0.1) (Figure 6.5), the entire Pareto front is more fairly covered with

solutions.

Avoiding areas of the Pareto Front (I) Figure 6.4 shows that the I extension suc-

cessfully forces the algorithm away from areas of the Pareto front that were deemed
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Figure 6.3: PaCcET solution densities in KUR on tF1, F2u using T R´ LC ´ Ξ.



107

Figure 6.4: PaCcET solution densities in KUR on tF1, F2u using I´T R´LC´Ξ. Red
lines denote the area dominated by the single point introduced by I, which is avoided.
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Figure 6.5: PaCcET solution densities in KUR on tF1, F2u using CC ´ T R ´ LC ´ Ξ,
which encourages a more even spread of solutions across the Pareto front than without
the use of the CC extension.
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Figure 6.6: (Left) 3-Objective DTLZ-2. PaCcET without using I attains an even spread
across the entire Pareto front. Shaded prism for comparison only. (Right) When I is
used with one point, t0, 0.5, 0u , the area dominated by it (inside the shaded prism) is
ignored, and computational effort is directed to other parts of the Pareto front.

undesirable. This produces the highest density of solutions on the upper curve that was

originally ignored.

Figure 6.6 shows the performance of PaCcET with and without the I extension on

the 3-objective DTLZ2 problem. Without the I extension, a fair spread across the entire

Pareto front is attained. With the I extension, an area of the Pareto front can be ignored,

and computational effort concentrated elsewhere.

Guided search (RP) Figure 6.7 (left) shows how the reference point t0.2, 0.7u (static

in the transformed space) moves through the untransformed space as P ˚I is refined in

three independent runs. The point starts in the right portion of the plot, and proceeds

toward the left as time increases. The reference point eventually moves into the unattain-
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Figure 6.7: Movement of the reference point in the pre-T R space, for various indepen-
dent runs, over 1000 iterations. (left) ref “ t0.2, 0.7u; (right) ref “ t0.7, 0.2u

able portion of the search space, guaranteeing Pareto optimal solutions [42], while re-

quiring no previous knowledge of the shape of the true Pareto front.

Figure 6.7 (right) shows how the reference point t0.2, 0.7u (static in the transformed

space) moves through the untransformed space as P ˚I is refined in three independent

runs. The point starts in the right portion of the plot, and proceeds toward the bottom-

left as time increases.

Figure 6.8 shows the final reference points over 100 independent runs for each ref-

erence point. The reference point is always forced into the unattainable portion of the

space.
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Figure 6.8: The final reference points for both described above over 100 independent
runs for each reference point. Each final reference point is unattainable, guaranteeing
Pareto optimal solutions.
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Algorithm Mean % Dom. St. Dev.
PaCcET + CC 83.39% .2258%
PaCcET (T R-LC-Ξ) 80.95% .3317%
NSGA-II 72.45% .5970%
PaCcET (Sim. An.) 68.59% 1.3231%
SPEA2 3.78% .1875%

Table 6.1: 10-objective DTLZ-2 problem performance. All instances of PaCcET per-
form highly, with the CC extension improving over the original PaCcET.

Many-Objective Problem (10 Objectives) We used the 10-objective instantiation of

DTLZ-2 to evaluate the performance of NSGA-II, SPEA2, and three variations of PaC-

cET in a many-objective problem. This problem’s true Pareto front is known to be

bounded by the ~0 and ~1 vectors in R10. We compare the points generated by each algo-

rithm to 10,000 uniform randomly generated vectors in that range.

Table 6.1 shows the mean and standard deviation (over 30 independent statistical

runs) percent domination by each method. SPEA2 dominated only 3% of the randomly

generated vectors. NSGA-II performs significantly better, dominating 72.45% of the

vectors. PaCcET using an evolutionary algorithm performed better yet, and the CC

extension improved over PaCcET alone. PaCcET with a simulated annealing algorithm

(allowed as many global evaluations as the evolutionary algorithms) performed almost

as well as NSGA-II.
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6.6 Conclusions

In this work we introduced three extensions to PaCcET, a multi-objective transfor-

mation that forces the Pareto front to become non-concave so that computationally sim-

ple optimizers may solve complex multi-objective problems. The I and CC extensions

use a surrogate set to steer the solution through the objective space manually and au-

tomatically, respectively. We provided a guarantee for full coverage of the Pareto front

using CC. The RP extension lets reference points be used with PaCcET, without the

need to know the shape of the attainable space. Finally, we tested PaCcET in a 10-

objective problem, showing that it scales into many-objective problems, dominating

more sampled hypervolume than NSGA-II or SPEA2.
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Chapter 7 – Multiagent PaCcET

In the previous chapters, we have developed the PaCcET Transformation (Chap-

ter 5), and provided three extensions to allow a system designer to bias which areas of

the Pareto front an optimizer using PaCcET will favor (Chapter 6). We identified that

it executes quickly and provides good solution quality in the single-agent case, which

makes it a good candidate for multiagent systems. In this chapter, we incorporate the

concept of credit assignment into the PaCcET framework.

For this chapter, it is therefore necessary to be familiar with the PaCcET Transfor-

mation (Chapter 5), cooperative coevolutionary algorithms (Section 2.2.3), and the con-

cepts of Pareto optimality (Section 2.3), and credit assignment (Section 2.2.2). We use

empirical attainment functions (Section 2.3) to compare this multiagent implementation

of PaCcET against the multiagent NSGA-II algorithm developed previously (Chapter 4)

and a linear combination of objectives (Section 2.4.1). We compare performance on the

multi-objective rover problem originally introduced in Chapter 4, which we reproduce

here for completeness. Note that there are differences in parameters (20 rovers instead

of 10 previously; 40 POIs instead of 50 previously) that make this a more difficult coor-

dination problem to solve than the previous version.
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7.1 Multi-Objective Rover Domain

We perform a series of experiments with the different algorithms in a continuous

rover domain. In this domain, a team of 20 rovers must work together to observe a set of

40 heterogeneous points of interest (POIs) on a 500 x 500 Euclidian plane, which have

vector-valued importance ~V of length k “ 2 objectives. Each of the elements of this

vector represents a type of scientific data that the rovers may collect from a POI, which

acts as an objective. We desire to maximize the system (global) performance vector ~G.

Rover Motion Each rover policy selects a series of waypoints (µx, µy), which are then

sent to a low-level planner that determines the path the rover should take to reach that

waypoint. After that waypoint is reached (with some variance σx and σy), the rover takes

an observation of any POIs that it can observe, before proceeding to the next waypoint.

We assume the rovers can localize en route, so variance from the intended waypoints

does not increase with time.

Observations The quality of the observations created by the rovers is a function of the

Euclidian distance at which they observe the POI, δ:

δpx, yq “ maxt}x´ y}2, d2
u (7.1)

where x is the location of one object, y is the location of a second object, and d is the

minimum observation distance (to prevent singularity, we use d “ 1). This then allows

us to calculate the vector of global evaluations ~G based on rover locations LR and POI
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locations LP :

~G “
ÿ

p

~Vp
minr δpLP,p, LR,rq

(7.2)

where “minr δpLP,p, LR,rq” is the minimum distance between any rover and POI p. Ap-

plying the difference evaluation (Equation 2.2) directly to Equation 7.2, we can calculate

the difference evaluation vector ~Dr for rover r:

~Dr “
ÿ

p

~Vp
minr δpLP,p, LR,rq

´
ÿ

p

~Vp
minr1‰r δpLP,p, LR,r1q

(7.3)

Note, only when rover r is the rover whose observation of a POI is used in the global

evaluation will ~Dr be non-zero.

7.2 Naive implementation of credit assignment within PaCcET

As PaCcET is built on the use of a linear combination, it may seem reasonable that

credit assignment may be incorporated into PaCcET in much the same was as it was into

a linear combination in Chapter 3. However, because PaCcET transforms the objective

space before the linear combination of objectives takes place, the linear combination

in the PaCcET Λτ space is a non-linear combination in the original Λ space. Couple

this with the fact that the PaCcET transformation changes as the current best estimate

of the Pareto front (P ˚I ) is refined, and the potential difficulties for simply using the

same methodology for the incorporation of credit assignment are many. We first tested

PaCcET with credit assignment in a multiagent system using the multi-objective rover

domain (Section 7.1). We compare against multiagent NSGA-II as we developed in
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Algorithm 7.1: Naive algorithm
1 simulate rover domain in coevolutionary manner, with randomly-formed teams;
2 perform difference evaluations ~da,i for all agents a, for all population members i;
3 foreach Population a do
4 foreach Population member i do
5 fitnessi “ PaCcETap~da,iq // P˚

I independent by population

6 end
7 end
8 remove less-fit members of populations;
9 replenish populations with mutated copies of members;

Chapter 4. Figure 7.2 shows the EAF attained by NSGA-II. A naive PaCcET imple-

mentation (Algorithm 7.1) in Figure 7.1 shows that a very conspicuous pattern arises.

No combination of difference evaluations and PaCcET attained any better perfor-

mance than that shown in Figure 7.1. We experimented with various orders of op-

erations, as was previously shown to be important in some MOEAs, and while some

proved to be destructive to system performance, none improved performance beyond

this. However, upon closer inspection, there is a readily available explanation to the

poor performance that PaCcET attains in this multiagent system. First, note that the

performance tends toward the center of the Pareto front. This is because each agent

individually settles on a policy that is good at achieving performance on objective 1 or

objective 2, since each POI has only one type of data available. On average, then, the

team as a whole tends toward the center of the Pareto front as each agent optimizes one

or the other objective. Achieving performance on either end of the Pareto front requires

some level of coordination among the team, as they all must choose to optimize the same

objective at the same time.
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Figure 7.1: A naive implementation of PaCcET in the multi-objective rover domain
using the global evaluation (left) and difference evaluations (right). Even with difference
evaluations, the agents trained with PaCcET only discover the central portion of the
Pareto front.

Figure 7.2: Multiagent NSGA-II EAF.

7.3 The Problem with Nash Equilibria

So why does this not happen? It does appear that there is some variation along the

Pareto front, but this variation is only as large as the impact a single agent can make.
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For any variation further along the Pareto front, multiple agents would have to develop

policies to optimize the same objective at the same time — and if any agent developed

a policy to optimize the other objective at the same time, the team would again tend

toward the center of the Pareto front. Furthermore, it is not even as simple as this:

an agent can’t simply to change its contribution in the objective (Λ) space; it only can

change its policy within the policy space (Ω), so even if it had incentive to change its

contribution in the Λ space, it would have to develop a policy to achieve this. Beyond

these difficulties, this process does not happen incrementally because of the concept of

Nash Equilibria [81]. Even if it were instantaneously able to do so, each agent does

not have an incentive to change its policy to move along the Pareto front, because it

simply moves to another point very near the current P ˚I , which is by definition valued

equally by a linear combination in the PaCcET τ space. Thus, after these one-agent-

wide variations along the Pareto front have been discovered once, there is no incentive

to go that direction again.

This is compounded by a related problem: the agents cannot simply choose to

change the contribution that they make to each of the objectives; they must develop

policies that map to their contributions, while interacting with all of the other agents. In

the setting of the multi-objective rover problem, this means that the agent’s policy must

discover a point of interest that is not yet discovered by the other agents, which creates

a difficult coordination problem, on top of the multi-objective considerations.
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7.4 Two-Level PaCcET for Multiagent Systems

There exist a number of possible solutions to this: stabilizing the PaCcET process

so that it must discover a point many times before adding it to P ˚I ; or updating P ˚I

only incrementally so that it takes many iterations for a newly discovered point to be

fully included in P ˚I ; or using a multiagent hall-of-fame method [25] keeping multiple

halls of fame, one associated with every point in P ˚I ; all of these bear some merit,

and are grounds for future research. In the section, however, we take a very simple

approach: we simplify the mapping between Ω ÝÑ Λ by first using PaCcET with

Difference evaluations to generate successful policies, storing each of these policies

in a shared library, and then conducting another higher-level optimization that simply

chooses policies from this library of successful policies. This process is clarified in the

following paragraphs, and described in Algorithms 7.2 and 7.3.

The lower-level algorithm functions similarly to the naive implementation of credit

assignment within PaCcET discussed in Section 7.2. This method is highly capable of

generating successful individual agent policies, as was shown in Figure 7.1. It simply

was a lack of team-wide coordination that prevented this method from achieving high

performance on the team-level. In order to generate a variety of different policies, we

perform a series of rapid random restarts. This allows the agents to develop many Ω ÝÑ

Λ mappings that, while they may achieve similar performance in Λ, come from different

portions of Ω, giving the team a wide variety of policies to choose from at the higher

level.

The higher-level algorithm is a combinatorial optimizer that chooses successful poli-
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Algorithm 7.2: Lower-level algorithm
Data: gen per restart

1 foreach Random Restart R do
2 initialize num rovers populations a of pop size solutions;
3 carry capacity Ð pop size{2;
4 foreach Generation g P 1 : gen per restart do
5 simulate rover domain in coevolutionary manner, with randomly-formed

teams;
6 perform difference evaluations ~da,i for all agents a, for all population

members i;
7 foreach Population a do
8 foreach Population member i do
9 fitnessi “ PaCcETap~da,iq // P˚

I maintained independently

for each population

10 end
11 end
12 remove less-fit members of populations;
13 if g=gen per restart then
14 add all remaining policies to library L;
15 else
16 replenish populations with mutated copies of members;
17 end
18 end
19 end

cies from the policy library, and maintains a population of sets of policies. The set, in

this way, acts as the individual in a higher-level evolutionary algorithm. This higher

level was conducted in parallel with the low-level algorithm, such that each time the low

level performed a new random restart, the policies developed by the previous restart are

added to the current library. Because this quickly adds to the size of the library, we only

perform a small number of random restarts, and this provides enough variety to achieve

good performance. There are refinements that can be made to this process to increase
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Algorithm 7.3: Higher-level algorithm
Data: Library of candidate policies L

1 initialize pop size solutions // each solution consists of indexes

corresponding to policies from the library L

2 foreach generation g P 1 : total generations do
3 if lower-level algorithm random-restarted then
4 update library L from lower-level algorithm;
5 end
6 foreach solution s in population do
7 simulate s in rover domain;
8 evaluate team fitness Ts;
9 end

10 remove less-fit solutions;
11 replenish populations with mutated copies of solutions;
12 end

the generalizability, which we relegate to future work.

Figure 7.3 shows the empirical attainment achieved by this two-level algorithm,

which can be compared to Figure 7.2. The two achievement functions show that the per-

formance with this two-level algorithm is very readily comparable to the performance

achieved by the multiagent NSGA-II algorithm. The performance benefits offered by

PaCcET, discussed in previous chapters, carry through into this, so this comparable

performance is achieved with significantly reduced computation being dedicated to the

fitness evaluation step.

7.5 Two-Level PaCcET with Reference Points

Finally, in this section we incorporate the use of reference points into the two-level

algorithm developed in the previous section. We segment the population into three sub-
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Figure 7.3: Multiagent PaCcET EAF.

populations, each of which are evaluated on a different reference point in the PaCcET

space. In this way we can force a fairer coverage of the Pareto front. Two of the reference

points that we create emphasize the ends of the Pareto front, and the third emphasizes

the middle:

RP1 “ t0, 0.9u (7.4)

RP2 “ t0.9, 0u (7.5)

RP3 “ t0.45, 0.45u (7.6)

By each of these sub-populations attempting to reach a different portion of the Pareto
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Figure 7.4: Multiagent PaCcET with three reference points: EAF.

front, the population as a whole attains good coverage over the whole Pareto front. The

EAF they produce can be seen in Figure 7.4. This produces superior performance to

NSGA-II and the two-level PaCcET algorithm not using reference points. In the case of

a more complex, tougher to cover Pareto front, or a higher-objective problem, additional

reference points could be specified throughout the PaCcET space. As long as each of

the reference points specified meets the criteria that the (non-negative) components sum

to less than one, the reference point in the original space will move to the unattainable

portion of the space. Specifying such a set of reference points in the PaCcET space,

with no previous knowledge of the Pareto front in the problem space, creates a set that

forms to the Pareto front in the original space.
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7.6 Conclusion

In this chapter, we have discussed the incorporation of PaCcET into a multiagent

system. We demonstrated that the formulation of PaCcET creates a predisposition for

Nash Equilibria to cause a lack of solution spread along the Pareto front, and that be-

cause of a lack of incentive to deviate from these Nash strategies, the agents do not

coordinate to find additional solutions on other portions of the Pareto front in the team

objective space, despite achieving highly based on the difference evaluation in the PaC-

cET space. The team, on average, tended toward solutions in the central area of the

Pareto front, and did not create a broad solution that covered from extreme to extreme.

To remedy these problems, we introduced a two-level algorithm in which the lower-

level algorithm used difference evaluations and PaCcET to produce a library of high-

performing agent policies over a short series of rapid random restarts, and the higher-

level algorithm performed a combinatorial optimization over that library of policies de-

veloped by the lower-level algorithm. This two-level algorithm offers significantly re-

duced computation compared to NSGA-II, while offering similar performance. It offers

a reasonable set of tradeoff solutions, from which a compromise solution may be se-

lected. We then improved upon these results by using reference points in the PaCcET

space, with a segmented population seeking different portions of the Pareto front. This

allowed each sub-population to specialize in reaching solutions on a particular portion

of the Pareto front, with no need for prior knowledge about the space of the Pareto front.

Future work in this area consists of refining the way in which the library of agent

policies is developed and maintained, as well as developing alternative methods for
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maintaining diversity in the agent populations in a more traditional evolutionary algo-

rithm, possibly by mechanisms like hall of fame or leniency-based approaches.
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Chapter 8 – Conclusion

As large, complex systems become increasingly common in the modern world, it

will be important to use these systems to their fullest. The study of multiagent systems

seeks to understand how the components of these systems interact and can be controlled

to maximize their usefulness, but this is not enough in itself. These systems can rarely

be considered as having a single objective to be myopically optimized; instead, multiple

objectives need to be considered simultaneously.

Despite this, the intersection between these two fields, multi-objective optimiza-

tion and multiagent systems, has received scant attention until now. This dissertation

serves to provide a foothold from which additional adaptive multiagent multi-objective

research can be launched. We have:

• derived methods for automatically assigning credit for a team’s success or failure

to members of that team in the presence of multiple objectives

• derived multiagent equivalents to state-of-the-art multi-objective algorithms

• developed PaCcET, a fast, effective multi-objective algorithm that outperforms

state-of the art MOEAs in as little as one tenth of the computation time

• theoretically proved that PaccET will produce Pareto optimal results that cover

the entire Pareto front to an arbitrarily fine resolution
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• developed a framework for integrating this fast multi-objective algorithm into

multiagent systems

The remainder of this chapter discusses how the content of each of the previous

chapters developed these contributions.

In Chapter 3, we derived methods for automatically assigning credit for a team’s

success or failures in a multi-objective context. This resulted in system performance

that dominated an approach not considering credit assignment, and while choosing an

a priori aggregation that was well-suited to the problem was found to be important,

using difference evaluations to assign credit improved performance regardless of the

scalarization chosen.

In Chapter 4, we introduced an algorithm which produced equivalent total rankings

of populations to the successful multi-objective algorithm NSGA-II, which was better-

defined for incorporating difference evaluations. We showed that difference evaluations

and NSGA-II have orthogonal benefits, and when used in tandem, produce results that

are superior to using either alone while neglecting the other. We showed that the order in

which they are combined is of paramount importance, and combining them the wrong

way can destroy system performance. We identified the underlying mechanisms for

this, and offered guidelines for future use of difference rewards in other multi-objective

evolutionary algorithms.

In Chapter 5, we produced PaCcET, a fast multi-objective algorithm that performs as

well or better than other state-of-the-art multi-objective methods with a radical reduction

of computation time, and provided two theoretical guarantees: (i) that PaCcET produces

Pareto optimal solutions, and (ii) despite being built on a linear combination, which
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cannot find concave areas of the Pareto front, PaCcET can discover solutions even in

these concave areas.

In Chapter 6, we identified a number of weaknesses associated with the PaCcET

framework, and offered three extensions to offset these weaknesses, and allow a system

designer more control over the behavior of the algorithm. We provided an extension

that guarantees complete coverage of the Pareto front to an arbitrarily fine resolution,

and theoretically proved this guarantee.

Finally, in Chapter 7, we introduced PaCcET into a multiagent system. We dis-

covered that, alone, PaCcET did not perform as well as the multiagent implantation of

NSGA-II that we produced in Chapter 4, even after incorporating difference evaluations.

We then created a two-stage algorithm, in which a team of agents coevolved using sep-

arate PaCcET instances to produce successful agent policies, which are then passed to a

higher-level algorithm, which performed a multi-objective evolutionary algorithm using

PaCcET to combinatorially optimize which agents should be used with each other.

This area remains a fertile ground for future research. There exist many other

a priori multi-objective methods and many other multi-objective evolutionary algorithms

that have never been studied in the context of credit assignment in multiagent systems.

Additionally, other evaluation-shaping techniques from the multiagent community have

not been studied in the context of multiple objectives. The concepts of alignment and

sensitivity, which are related to the difference evaluation, have never been studied in the

context of multiple objectives, either. Additionally, PaCcET must be tested in a wide va-

riety of standard multi-objective problems, and the two-level algorithm used for PaCcET

in a multiagent system could be altered in a number of ways to increase its performance
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or generalizability.

The demand for fast, effective multi-objective optimization suited for use with dis-

tributed systems will only grow with time, and the contributions of this dissertation

provide a platform from which future multiagent multi-objective research can continue.
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