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LEAST SQUARES ADJUSTMENT COMPUTER PROGRAMS

FOR HORIZONTAL AND VERTICAL POSITIONS

I. INTRODUCTION

The purpose of an adjustment is to have a series of observed

quantities consistent within themselves and with geometrical or

other data conditions. Once consistency has been achieved, compu-

tations involving the adjusted values will give unique results.

Since observed values are the best evidence for determining the

true value of the desired quantities, the best adjustment is that

which can achieve consistency with as little disturbance to the ob-

servation as possible.

A good adjustment technique should give due consideration

and order to all relevant factors and permit the simultaneous inter-

action of these factors in the derivation of the adjusted values.

The least squares adjustment technique satisfies all of these

criterions and requirements, because it produces a best set of con-

sistent values - the most probable values (MPV) or the best estimates -

by simultaneous consideration of all factors, while at the same

time it causes the least affect on the observations themselves.

In some adjustment techniques, factors affecting the observa-

tions are taken arbitrarily and the adjustment is carried out step
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by step with the previous results affecting successive results. For

example, there are a number of techniques for adjusting a traverse.

Some are: arbitrary, transit, compass (or Bowditch) and Crandal tech-

niques. Whatever technique is applied, the final positions depend

on the adjusted angles (or directions). They are usually corrected

first by arbitrarily applying a constant correction to each angle.

Any error not corrected for at this stage, is carried forward when

the distance is adjusted by making sum of the latitudes and the de-

partures equal to zero.

In this paper, the principle of the least squares has been de-

scribed. Amongst the various computational techniques of the least

squares adjustment cited in chapter II, the observation equations

technique has been presented in detail, and applied, to obtain the

most probable values of the horizontal and the vertical position

controls in the classical survey adjustment.

The theory of the horizontal position control has been described

in chapter III where the distance and the angle have been considered

as the observations. The classical techniques of traverse, inter-

section, resection, triangulation, trilateration, and combined net-

works in the horizontal position control have been discussed in this

chapter. A brief description on the precision from the least squares

adjustment has also been considered. The future systems in this

chapter gives a short description of the satellite and inertial

positioning which have been practiced frequently in the recent years.
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The non-classical method is just meant to show that the three dimen-

sional representation and the adjustment of the positions, might be

the ultimate goal in surveying. The theory of the vertical position

control has been discussed separately from the horizontal control

in chapter VI, where the techniques of leveling, trig leveling, and

gravimetric leveling have been discussed. A very brief description

on barometric leveling, hydrostatic leveling, stadia leveling,

satellite altimetry, and steric leveling are also given in chapter VI.

For each technique of the horizontal position control, a numer-

ical example has been chosen and adjusted by the program HCONTRL

and the respective numerical adjustment is given in Appendix I.

The numerical examples of the leveling and the trig leveling

utilizing VCONTRL are given in the Appendix II where a computational

procedure to obtain the geopotential numbers in gravimetric leveling

are also given. The complete listings of the HCONTRL and VCONTRL

are provided in the Appendix III.
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II. THE LEAST SQUARES PRINCIPLE

The principle of least squares dates back to 1806 when Legendre

proposed a method to obtain the most probable value (MPV) of a quantity.

He postulated that, given a set of equally reliable measured values

of a quantity, the most probable value, or the best estimate, of a

quantity would be the one which makes the sum of the squares of

the residuals a minimum. A residual is defined as

v = C C (2.01)

where is the observed (measured) value and is the MPV of the

quantity observed.

When there are more observations than necessary to uniquely

determine the MPV's of the desired quantities, it is said that there

exists redundancy in the observations. In such circumstances, the

observations no longer give a unique solution of the MPV's, but they

give the inconsistent infinite solutions for the MPV's. On the other

hand, if the principle of least squares is applied to the redundant

observations, one unique and consistent set of best estimates or

MPV's will be obtained. This principle provides the best estimate

assuming that no systematic errors are involved in the observations.

Consequently, any variation of the observed quantity from the MPV

produced by the redundant observations should be small. True value

of the observed quantities for the large sets of normally observed

data should be the MPV's. If n is the number observations and n
o

is



the minimum number of variables required to determine estimates

uniquely, then the redundancy r or degrees of freedom as expressed

in statistics is

r = n - no

5

(2.02)

If a set of residuals is given by vl, v2,..., etc., where a

residual is defined by the equation (2.01), the residuals can be

represented in the matrix form by

v=

1

v
2

v
n

(2.03)

where a slash below the letter v symbolizes the matrix, and this nota-

tion to represent a matrix will be used in this paper. A transpose

of the matrix Y is defined as v
t

, such that

vt lvi v2
vnl

Then, the sum of the'squares of the residuals is

2 2 2
v
1
+ v2 + + vn

which, in the matrix form, is given by

(2.04)
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For a set of equally reliable measured values, according to

Legendre's postulation, the function defined by the equation (2.04),

should be a minimum for the MPV of the measured quantity. This is

known as the least squares principle which can be stated as; the sum

of the squares of the residuals of equally reliable measured values

is a minimum. If the measured values are not equally reliable, the

relative reliabilities of the measurements must be considered. The

different reliabilities may be due to different factors involved in

the measurements. For example, one angle of a triangle might have

been measured more number of times than the other, the two angles

might have been measured by two different transits or theodolites,

etc. In such circumstances, measurements are adjusted by weighting

them with the corresponding weights. Usually, the weight is taken

as a function of the standard deviation of the measurement. If the

standarddeviationoftheithobservationf

that observation is usually taken as:

(2.05)

where a.
2

is known as the variance of the observation. Therefore,

for n measurements of observations, (e.g. n angles in a traverse),

there will be n residuals given by the equation (2.03), and n number

of weights, given by



w=

w
I

w
2

w
n

7

(2.06)

where w1, w2, ..., w
n

are the corresponding weights of the measurements.

Here, it has been assumed that the one measurement does not affect

the other. It is then said that the measurements are independent

from each other, and there is no correlation between any two measure-

ments. In practice, this principle of no correlation is used, but

in theory, it may not be true. The column weight matrix w of equation

(2.06) may, in theory, contain other elements. In such circumstances,

the column matrix of the equation (2.06) is replaced by a square

matrix W. The properties of the weight matrix will be discussed later

in the section Weights. It is, however, important to note that W is a

square matrix of order n by n and is of the form:

W

w
I

other

w
2

elements

other

elements w
n

The principle of the least squares can then be shown [26];

(I) = vt W v minimum

where (I) is a function of v and W.

(2.07)

(2.08)



8

The criterion expresed by the equation (2.08) is the most general

case. Other special cases can.be derived from it by considering the

special structure of the weight matrix W, and they are:

(a) W being a diagonal matrix, i.e. all the off diagonal elements

are zero, which implies that there is no correlation between two of

the measurements. If this matrix, called the diagonal matrix, is

represented by W*, then the principle of least squares becomes:

(1) = vt v 4- minimum

which is equivalent to

(2.09)

= E (wi v.2 ) -4- minimum (2.10)
1=1

th
where w is the i diagonal element of W* and vi is the residual

associated with the corresponding ith observation.

(b) W being an identity matrix, i.e. all the diagonal elements

are one and all the off diagonal elements are zeroes. This implies

that there is no correlation between any two of the observations and

all the observations have the same and equal weight one. Then the

weight matrix W is represented by I. This gives the principle of

the least squares as:

= V

which is equivalent to

. minimum (2.11)

= E (v.2 ) minimum
i=1 1

(2.12)
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where v. is the i
th

residual.

It follows from the least squares principle that the arithmetic

mean (i) of a series of equally reliable observations is the MPV.

This can be mathematically derived. For the simplest case, where W

is an identity matrix, the least squares principle is given by the

expression (2.12), i.e.

2,
(L. ...t1(1)=Ekv.) =E..)2 minimum (2.13)

i=1 1 i=1

This equation to be minimized, therefore,

Taking the partial derivative of the equation (2.13) gives

n

2 n t- 2 E (Zi) =0
i=1

I n
Hence, t =

r-T

-E (t. ) , which is the arithmetic mean, noting that
i=1

;21,
= 2n >0 which indicates the minimum.

D
2
t

A. Weights

The elements of the weight matrix must be known in advance to

adjust the data by the least squares technique as seen from the

equation (2.08). The reason for using the weight matrix W is that the

measurements of different reliabilities are often made in practice,

and it is necessary to find the MPV's. For example, in triangulation,

some angles may have been measured more precisely than the others.
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If both angles and distances are included in the observations, as in

traverse, the relative reliabilities must be taken into account,

if the MPV's of the observations are desired. The reliabilities of

the different measurements are given by the corresponding precisions.

The precision is the degree of closeness of the measurements to its

mean and it is given by the standard deviation aL. The weight of a

measurement is given by the equation (2.05). On page 65 of [26],

the weight matrix W is defined as

-1w = = -1

U (2.14)

where gte is called the cofactor matrix of the observations, and for

convenience, it is written as (1, which is given by, page 21,[26];

2
a
o

2

2
at a

t a
t

1 1 2 1 n

2

at
2
t
1

at
2

dt
2
t
n

2
a
t
n 1

a
tnZne2

(2.15)

The off diagonal elements of this matrix are called the co-

variances of an d ao
2

is an arbitrary constant with the arbitrary di-

mension, and it is known as the reference variance; and +
o

Z
is

known as the standard error of the unit weight. In the section 11.3

of [26], it is shown that the best estimate (MPV), a
o
2, of the reference

variance ao2,, s given by



2
vt v

a
o

r

11

(2.16)

Therefore, if the variances and the covariances in the equation

(2.15) are known, the weight matrix W, needed for the least squares

adjustment given by the equation (2.08), can be determined from the

equation (2.14). These elements may be determined from the measurement

data.

Let the m observational sets of data be

x11' x12' , xln

, . . . ,

x21, x22 x2n

X
ml'

X
m2' ' xmn

(2.17)

where n is the number of measurements for each set. The set of

measurements may be the measurements of an angle measured n times and

the second set for a distance. The estimated values of the variance

(a
2

) and covariance (c
m-1,m

) of the expression (2.15) are respectively

given by s
m

2
and s

m-1,m
such that

T = E (x )

m n i=1 mi

s
2 1

(x
mi

-)
2

m (n-1)
iE 1

(s
m-1,m (n-1)

iE 1
m-1,1 m-1

) (x
mi

- )x

For detail see chapter 3, [26] .

(2.18)

(2.19)

(2.20)
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In classical survey, there are basically two quantities observed.

They are angle (or direction) and distance. Each set of measure-

ments, taken at different times and environmental conditions produces

different variances, but observations of similar quantities, angle or

distance, are assumed to have the same variances. It is usually also

assumed that the observations are uncorrelated, producing zero co-

variances in the weight matrix W. Consequently, a diagonal cofactor

matrix of the expression (2:15) will be left, with the same variance

(or precision) for all the angular measurements and the variances for

all the distance observations. However, if different variances for

different measurements are available or computable, they should be used

accordingly. Obviously, the capability of measuring a quantity greatly

depends on the instrument used. Instrument manufacturer provides the

precision of the instrument which in general, can be used as the esti-

mation of the variance to be utilized in the weight matrix, if there

is no other way to find the variances and covariances of the cofactor

matrix.

B. Problem Analysis

There are several different computational techniques in least

squares adjustment which yield a unique result. It should be emphasized

that whatever technique is used, the final answers are always the

same. Table 1 gives the different techniques cited in [26]. It is

the "Adjustment of Indirect Observation" that this paper will follow

for all computations. The technique will be referred to as "observation
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equations technique" in the remainder of this paper. Observation

equations technique means Indirect method.

Among the different techniques tabulated in Table 1, general

case technique under conditions only is used if the adjustment con-

sists of both the observations and the parameters (or unknowns).

Adjustment of observations only technique is used when the adjustment

includes observations only. This technique is also referred to as

Direct method. Since this technique involves adjusting condition

equations, it will be referred to as "condition equations" in this pa

per. This technique is often used for simple geometrical figures, such

as; a plane triangle, a small level net, etc. Observation and condi-

tion equations techniques are simpler compared to the general case.

Therefore, they are used more frequently in the adjustments. The

least squares adjustment with conditions and constraints is used when

the part or all of the parameters in the adjustment must be constrained

corresponding to some other constraints in the data. For example,

the elevations of points on a lake shore may be constrained to have

the same elevation in the adjustment procedures. Details of all the

techniques in Table 1 are given in [26].

In the observation equations technique, one observation formulates

one equation in the adjustment process. Hence, there are as many

observation equations as there are observations themselves. In this

case, the parameters are the unknowns. In the case of condition equa-

tions, there will be no parameters, but only the residuals. The

detail adjustment procedure by the observation equations will be

demonstrated later in this paper.



Table 1. Techniques of the Least Squares Adjustment

Ll

Least Squares Adjustment Techniques

1

'General Case
1

with conditions only

'Special Cases

1

Adjustment of

Observations only

(Condition

Equations)

Adjustment of

Indirect

Observations

(Observation

Equations)

with conditions and constraints

u < cj > c

Case --(Special Case--(General

1

Direct Solution by Direct Solution by

Solution Constraint Solution Constraint

Elimination Elimination

Constraints with

added parameters

Adjustment with

Derived

Observations

Adjustment

In steps
General Case

u < c

Solution by

Constraint

Elimination

United Approach to Least Squares Adjustment
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Whatever technique is applied, the least squares adjustments are

performed with linear functions. This is because the computation by

the least squares technique is possible only when the function is

linear. Therefore, some means of linearization, in the case of non-

linear function, must be used. Taylor's series expansion is often

used for this purpose, where only the zero and the first order terms

are retained, and all other higher order terms are neglected. Details

of linearization procedures are given in Appendix B of [26] and in [32].

In survey adjustment, a simple technique is sometimes used to

linearize the non-linear function when the parameters are co-ordinates

of any form, such as: rectangular, geodetic, or three dimensional.

The linear form is obtained by partially differentiating the non-

linear function with respect to the unknown parameters. This tech-

nique is often called the Variation of Co-ordinates technique and will

be used in this paper where applicable.

C. Observation Equations vs Condition Equations

An important advantage of the observation equations technique is

that there are as many observation equations as there are the obser-

vations themselves. In the condition equations technique, it is essen-

tial to correctly determine the necessary and sufficient conditions (c),

for a unique solution, such that c = r + u, where u is the number of

parameters (unknowns), and r is the redundancy or the degrees of free-

dom. It is often difficult to determine r, which is given by, r =

n - n
o'

where n
o

is the minimum number of variables required to
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uniquely determine the MPV's, and it is difficult to determine no as it

depends on the geometrical conditions of the observations. Consequently,

it is sometimes difficult to determine c.

In the observation equations technique, there is not as good a

check as there is in the condition equations technique, because the

right hand side of a condition equation is an indication of the mis-

closure by which the measurements fail to satisfy the condition. Any

large number, here indicates possible mistake or mistakes in the

measurements. No such check is available in the observation equations

technique.

In both of the techniques, the solution of the desired quantities

is obtained by solving the equations in the form of Bt W B x = f,

called the normal equations, where (Bt W B) is symmetric and definite.

the derivation of this equation for the observation equations technique

will be given later in the paper. In the above normal equations,

everything is known except x, the solution of which are obtained by

inverting the matrix (Bt W B) and post-multiplying it by f. Thus, the

smaller the normal equations matrix, the smaller amount of storage

space is required for a given technique of solution. In the observa-

tion equations technique, the dimension of the normal equations matrix

will be the number of unknown parameters u, whereas the condition

equations technique will have the dimension of the independent condi-

tions, i.e., c. Usually, c is less than u.

Current computers can provide a reasonable amount of storage

space for most of the project. In the past, however, because of the
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lack of computer capabilities, the condition equations technique was

most widely used. Moreover, it is much easier and simpler to write a

computer program in the form of observation equations than in the form

of condition equations. Hence, computer programs utilizing observa-

tion equations have been developed for the adjustments in this paper.
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III. THEORY OF THE HORIZONTAL POSITION CONTROL

The purpose of horizontal position control is to establish the

horizontal positions, rectangular X and Y co-ordinates, of points

surveyed. This can be done in a number of ways. Whichever technique

is employed, the basic principle is that the horizontal positions

are the result of measurements of directions and/or distances. The

precision of the observed directions or angles and distances can be

used to determine the theoretical accuracy of the horizontal positions.

In adjusting horizontal positions by the observation equation

technique, one equation for each observation is written. This tech-

nique is often referred to as the variation of co-ordinates method.

Observation equations for a distance and an angle will now be

developed.

A. Distance Equation

For a measured distance such as that between points i and j,

Figure 1, let the most probable value (MPV) of the distance be di and

the measured value of the distance be d.. Then if v. is the residual

of the measurement, rewriting equation (2.01), so the observation

equation becomes:

vi = di di (3.01)



X

Figure I. Sketch for Distance Observation Equation.

where di . = {(X. X.)2 + (V. - Y.1 )2}1/2
J 1 J

and
, l

X.
1

Y.
' 3

X. and V. are the MPVs of the co-ordinates.

Equation (3.02) is non-linear. In order to obtain a linear

19

(3.02)

o
observation equation, let X1

1.,

Y.
o

, j
X. and Yj

co-ordinates so that

Xi = X? + 6X? o
X.
J

= X.

Y. = Y. + (sy.
o

Y. = Yo.

' J J

and d. = O. + OD.

where D. = {(X? - X?)2 + (y? - y?)21 1/2
J 1 J 1

Partially differentiating (3.05) gives

2Di6Di = 2(X3 - X7) (OX,c; - 6X°) + 2(V

or

X.- X. Yo. - Yo.
1 + 1

6D. =

o
be the approximate

o
+ 6X.

J

+ (syo .

J

- Y7) (61 - 6'17)

(6Y(? 6Y
°)

)

(3.03)

(3.04)

(3.05)

(3.06)(6X? - (5X?)
DD.

or
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X °.

0 0 0 o o o o
X. - X. X. - X. Y. - Y. Y. - Y.

,n. iN nv0. 4. I 1 31 X? ( JD. 1)61 ( 1 J)6y7 (3.07)Oui
Di ° Aj k u

1

Let
o o

X. - X.
P. 1

1 Di '

Y.
o

Y
j

yo
i

y?

1 D. and Si -
D.

o o
X. X.

R. J
D.

(3.08)

Substituting from (3.08) to (3.07) and rearranging terms, equation

(3.07) becomes

6Di = Pi6X7 + Qi6Y7 + Ri6X3 + Si6Y3 (3.09)

Recalling equation (3.01),

v. = d. - d.
1 1 1

Now substituting di = Di + 6Di from equation (3.04) gives

v. = D. + 6D. - d.

= Di - di + D.

Substituting for 6Di from equation (3.09) gives

v. = D. - d. + P. 6X. + Q.6Y. + R.6X. + S.sY
o

1 1 1 11 1 ij ij (3.10)

Substituting "0" for the observed value di, and "C" for the computed

value D. in equation (3.10), the general observation equation for a

distance becomes

P.6X. + +
j

+ S 6Y
j

= (0 C) + v. (3.11)

where 6X., 6Y.
o

,

o

'

6Xj. and ei are the unknown quantities. The unknown

quantities here, are the correction to be added to the approximate co-

ordinates.
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B. Direction or Angle Equation

The observation equation for a direction will be derived first.

The difference between two directions will give the one observation

equation for each angle. The observation equation for a direction

from i to j. Figure 2a, will be

1/1.j
l

- a.j (3.12)

wherefLij is the MPV
ij

of the observed direction,

and vij is the residual. Then it follows that

Y°.

X. X.

tanai . 1

j Y. - Y.
J

(a)
X

(3.13)

N

(b)
X

Figure 2. Sketches for Direction and Angle Observation Equations.

Notethatthedirectiona..ij is the azimuth of the line from i to j.

This transcendental function is not linear and can be linearized by

taking the approximate co-ordinates as X7, Y7, Xs°j, and 1 such that



X. = X° 6X?
i

Y. o
= Y. + 6Y,

o o
X

J.

= X
J.

+ 6x
J.

Y. = + 6Y?
J J J

If a
ij

is the approximate direction then

o o

o
X
j

- X.
tana

ij
Yo.Y - Y.

and

= ao +6a.
lj ij ij

22

(3.14)

(3.15)

(3.16)

where ,6 ° 6Y°, j6e, and6Yj ?are the corrections to be added to theXi

approximate co-ordinates and 62j is the correction to be added to
i

theapproximatedirection.X.1,
1Y., j' J

XandY.are the MPV's of the

co-ordinates.

Partial differentiation of equation (3.15) gives

2 o o (Y3
Yl) (6X? - 6X.7) - (X? X°) (6Y? - 6Y?)

Jsec aijoaj-
(e. y9)2
k 11

or
2

cos a..
Su

ij
=

o

lj

o 2
{(Y? - Y?)(6X? - 6X?) - (X? - X?)(6Y? -6Y?)} (3.17)

(Y
j

- Y )
J 1 J jiji

From Figure 2

Hence,

Where

Y. Y.
o

o
cosa..

J 1

1J Di

costa ?.
lj 1

k

0 o 2
(Y- - Y 1

2
Dij i,

j

2 o
D.. = (X? - X:0 )

2
+ ( .

ij j 1
Yj

(3.18)

(3.19)



Substituting (3.18) into equation (3.17)

fie ( 6)(0 (sx0
(x

x0) (6y0 _6yON)1J T 1/4 j ij j ij 1 j 11
uli

or
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o
Y °. Yo.

o o oY. - Y. Y. - Y. X. X. X. - X;csao j 6x0.4. 1 j (Sy?
+

1
j 6y".+ 1 (Sr.' (3.20)2

1j D
ij

2
Dij

2 2
Dij
ij

Y.
o

- Y.
o

Let P
ij

=
1

2 '

D1J..

Y.
0

- Y.

1Rij
2

Dij

o
- XoX. .

j 1

lj
ij

X °.X. - X.
S
ij

1

D
2
..
ij

Substituting (3.21) into (3.20) gives

Sac.). = P..6X? + (1..6y9 + R..6e +
lj 1J 1 lj 1 lj j lj j

(3.21)

(3.22)

Substituting for aii from equation(3.16)into equation (3.12) gives

v. = a. + Su. - a.
lj lj lj lj

j
vl.=6c,tl.(1 +(a? - a1.j )

j 1j-
(3.23)

Substituting for da
ij

from equation (3.22) into equation (3.23) gives

v.. = P..6x? + Q..6Y? + R..dX? + S.. 6Y? + (a?. - a..)13 13 1 13 1 13 3 13 3 13 13

Recognizing aij as observed value "0", and a7j as computed value

"C", then the general observation equation for a direction is given by

P1.3. 6x? + Q1.j. 6y? +
1j j

+ S1j SYj ? = (0 -
1j

+ v1j (3.24)



Similarily, for the direction from i to k in Figure 2b, the obser-

vation equation for the line i - k is given by

P.
1

where

? + Q (sy? + Ri Ax° + s. AY° c) + vik k k lk- k ik ik

o o oYi - Yk Xk Xi
o

P
ik 2 02

ik
Dik

Rik = Y° - Y9
k 1

2 D
D
ik

ik

o
X - X

S
ik

o

1 k
2

24

(3.25)

(3.26)

Subtracting equation (3.24) from equation (3.25) gives a general

observation equation for an angle Figure 2b, as

(Pi
k 13

- P..)6X? + (Q - Q
i j J

)6Y9 - R..6X9 -
J
+ R

ik k
6X° +

ik 1j

Sik6q = (0 - C)ik - (0 - C)ij + vik - vij

Leto- C= (0 - C)ik - (0 - .., andvijk =vik- vij

Then the final general equation for an angle e..,
1Jk

becomes

(Pik
Pij)6X9 +(0.ik Qii)6Y.7 Rij6X3 - S. + Rik6q +

Sik
k

6Y
o

= (0 C) +
k (3.27)

It is very important to realize here that (0 - C) in equation (3.27)

is the difference between the observed and the computed angle. The

computed angle is obtained from the approximate co-ordinates assigned

to the three points under consideration. The observed angle, of course,

is the angle observed and comes directly from the field work.
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C. Least Squares Solution

As stated earlier, the observation equations technique which is

also known as the adjustment of indirect observations, will be

adopted in this paper where one observation equation for each obser-

vation is written. The observations in our case could be direction(s),

distance(s), angle(s), or the combination of any of these items.

For each observation, one of the respective observation equations

of the form given by equations (3.11), (3.24) or (3.27) can be

written which yields n observation equations on u unknowns (n x u).

These observation equations can be represented by the following equa-

tions.

b
11

x
1

+ b
12

x
2

+ . .

bluxu fl vl

b21 x1 +b22 x2 + . + b
2u
xu = f2 + v2

(3.28)

. . nuu =
bnlx1 bn2x2

+ bx
n

+ v
n

Each of these equations has the corresponding weight wl, w2, wn.

In the equations above, the x's are the unknown parameters which

represent(Sei3O(!,..., etc. in the equations of distance (3.11),

direction (3.24), or angle (3.27). Similarily, b11, b12, ..., etc.

represent Pi, Qij, ..., etc. whereas f1, f2,..., etc. represent

(0 - Crs, and vl, v2, ..., etc. represent vi, vij, ..., etc. in

the equations (3.11), (3.24), and (3.27).



In the matrix notation, equation (3.28) is given by

BA=f+ v

where a slash below a letter represents a matrix. Therefore:

B=

b11
b

11 b12 lu

b
21

b
22

b
2u

...

...

bnl bn2 bnu

f =

f
1

f
2

f
n

, V =

v
1

v
2

v
n

, and A =

26

x
1

x
2

(3.29a)

(3.29b)

where B will be called the coefficient matrix, f the right hand side

matrix, A the parameters, and v the residuals respectively in this

paper.

For the least squares solution (shown in chapter II), the most

probable values of the x's in the observation equations will give a

set of v's such that

(I) = vt W v + minimum (3.30)

where properties of W have been discussed in chapter II. From the

equation (3.29a),

v =BA- f

Substituting for v in equation (3.30),

(I) = (B A - f)t W (B A - f)

The transposition factor "t" in the above equation can be taken inside

the bracket giving:

or

={(B
t

- f }W (B f)

(At Bt ft) (B
- (3.31)



(n .)t At BtNote that 2 = . For this proof, see page 437 of [26].

Matrix multiplication is accomplished in a manner similar to

ordinary multiplication except that the multiplication must be done

in order. Thus, equation (3.31) gives

= (A Bt W - ft W) (B A - f)_

=AtBt WBA-f WBA- AtBt Wf+ ft Wf

27

(3.32)

To determine the least squares solution of the unknown parameters,

A, the condition is

= 0
3A

(3.33)

Matrix differentiation, however, is not the same as the ordinary

differentiation. The procedures for differentiating matrix functions

are given in page 457 [26]. Only the final derivatives will be given

here. The differentiation of equation (3.32) with respect to 3A is

then,

( AtBtWBA
TE

- 3A (ft W B A ) -
(A t Bt f)

3A

3 (ft W f)
3A

Matrix differentiation will yield [26]:

t
5Ta (At B W B A)

.t
. 4 _

(3.34)

(3.35)



and
1

= (f
t W f) =0

aA

since ft W f is a constant.

Substituting into equation (3.34),

At
Bt

ft ft- _
aA

2 At Bt w B 2 ft w B

Imposing the least squares condition from equation (3.33) of

aA
= 0 gives:

2At Bt WB- 2f WB= 0

or, At Bt W B = ft W B

Transposing both sides gives

(At Bt (ft Eot

Bt W B A = Bt W f

28

(3.36)

Again, for this derivation see page 437 [ 26].

Equation (3.36) is the normal, equation where matrix Bt W B is:

symmetric and square, of the order u, and with the number of unknown

parameters A. Post multiplying both sides of equation (3.36) by

(Bt
8)-1

gives

(Bt s)-1 (Bt (Bt B)-1 (Bt w f)

But (Bt W B)-1 (Bt W B ) = I, Identity matrix

and since I A = A

then A = (8
t
W B)

-1
(8

t
W f) (3.37)
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This is the least squares solution for the unknown parameters A.

All the terms at the right hand side of this equation are known. The

unknown parameters A, coefficient matrix B, the weight matrix W.

and right hand side matrix f are given by the equations in the expres-

sion (3.29b). Usually, the matrices Bt W B and Bt W f are respec-

tively represented by N and t. Then, the equation (3.37) becomes

A = N
-1

t

Matrix N is called the normal matrix.

D. Precision from the Least Squares

(3.38)

The adjustments made by the least squares techniques give the

MPV's of the measured quantities and in any adjustment it is impor-

tant to know the precisions of the adjusted quantities. For instance,

we might like to know the precisions of the adjusted co-ordinates of

the stations in a traverse. This precision can be obtained by the

technique of propagation described in chapter IV of [26].

Recalling equation (3.37)

(Bt B)-1 (Bt

This gives the adjusted values (MPV's) of the unknown parameters A,

and it is desired to find the precisions of these parameters. In

equation (3.29b), A is given by

(3.39)
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where xl, x2, x
u

are defined as the 6X°'s and SY °'s, which are

the corrections to be added to the approximate co-ordinates X°'s and

Y
o
's. Therefore, the parameters in this case, are the unknown co-

ordinates. These parameters can be other quantities, such as the

unknown elevations in direct leveling or trig leveling. Whatever the

parameters may be, the least squares adjustment can provide their

precisions.

Under the section Weights in chapter II, it has been shown from

[26] that the cofactor matrix Q CO for the observations t. is

given by:

2

Gt.
1

at.
1 2

at
1 n

_ 1
G°2 at t.

2 1 '2 2 (3.40)_u

2

n 1 n
t2

n

where 602 is a constant and is given by:

ti

2

n

(3.41)

Comparing equations (3.41) and (3.39), by analogy, can be replaced

by A and L's by x's. Substituting A for and x's for L's in the

equation (3.40) gives:



=
1

A--2-AA_._.

(u x u)
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a
x

2

1

a
X
2
X
1

a.

X
u
X
1

a
x x
1 2

a
2

x
2

a
x
u
x
2

a
X
1
X
u

a
x2xu

axu
2

(3.42)

Since there are u number of parameters, the order of the matrix given

by the equation (3.42) will be u by u. The expected value of a
o

2
is

given by e
2
which is shown in chapter XI of [26] as

v W v
20

It is shown in [26], that

AA = (Bt W B)-1

(3.43)

(3.44)

In the process of the least squares adjustment, the term (Bt W B)
-1

has already been computed when the solution of the parameters A was

obtained from the equation (3.37). It can be shown that the order of

the matrix (Bt W B)-1 is u by u. Substituting for Q from the

equation (3.45) into the equation (3.42) and rearranging gives:

2
a
x
1

a
X
2
X
1

axuxi

a
X
1
X
2

2
a

X
2

a
XuX

1

a
X
1
X
u

a
X
2

X
u

2
a
x

= a
2

o
(B

t
W B)

-1
(3.45)

(u x u) (u x u)
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Note that 0
2

is a known constant computed from the equation (3.43).

Therefore, the elements of the right hand side matrix of the equation

(3.45) are all known. Suppose, that a
2
(B

t
W B)

-1
is represented by:

o

a
2

(B
t
W B)

-1
=

o

n11 n12 . . . nlu

n21 n22 . . . n2u

nul nu2 nuu

(u x u)

(3.46)

where n's are the known numbers. Comparing this equation (3.46) to

the equation (3.45):

2
a
xl

a
x2x1

a
x x
u 1

av
1^v^4

a 2
x

a
x
u
xn .

.

xixu

a
x2xu

xu
2

n11

n21

nul

n12

n22

nu2

. .

. . .

. . .

nlu

n2u

nuu

(3.47)

(u x u) (u x u)

Note that all the elements of the left hand side matrix can now be

computed. For example

axl
2

x
= n11

'

a
x

= n2u, ..., etc.
2 u

Therefore, a
x

= + !FITT , i = 1, 2, 3, ..., u. (3.48)
.

1

where a
x

gives the precision of the adjusted parameter x..
1

1
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In our case of horizontal position control, the parameter for the

th o
Jstationare6Land6Y.and they are given in the equations

(3.03) and (3.14) as:

X. = x? + ox?,
J J J

Y. = Y? + 6Y?
J J J

(3.49)

It has been defined earlier that x's represent the parameters 6X's

andWs.Suppose,6e=x and 6Y? = x2
2

Then,

X . = X . + x and Y = Y. + x
J j 1 j j 2

(3.50)

o o
where (X.,Y.)and (X.,Y.) are the adjusted and approximate co-ordinates

J J J J

of the j
th

station. Assuming (X
o
. Y.)

J

o
are constants, it can be

shown [26] that:

or

2 2
G = a
Xi x

1
'

Y
2 2

and Y. = ),(

2

6X.
2 and 0 =

2
Yi :7X

J.

= x1
, (3.51)

where a and G are the precisions of the adjusted co-ordinates
Xj Yj

X .and Yj respectively, and these are the quantities we wish to deter-

mine. From the equation (3.47),

2 2
= n11, and a

x2
= n22

xi

Therefore,

= + mnll and a = + 11122
x

,
. .

J
Yj

(3.52)
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Thus, for all the adjusted co-ordinates, their corresponding pre-

cisions can be computed. This technique has been used in HCONTRL to

compute the precisions (printed as the standard errors in the computer

output) of the adjusted co-ordinates, X and Y. The precision of the

jth position will be computed by:

2 2±la +a = ± + n22
x. Y.
J J

(3.53)

In the case of the vertical position control, since the adjusted

parameters are elevations, (one quantity as opposed to two quantities,

X and Y, in the horizontal control); the precision for the adjusted

elevation of the j
th

elevation station will be directly given by

the equation (3.48). For the example, the third adjusted elevation,

the precision will be given by:

ax = n33
X
3

(3.54)

This technique has been utilized in the program VCONTRL.

E. Future Systems

So far we have discussed the traditional or classical techniques

of the horizontal control positioning. Current technological develop-

ment has grown beyond the imagination of a few decades ago. New

techniques of precise horizontal and vertical positioning are rapidly

developing; some of which are already in use. In this section, a

brief description of these techniques will be presented. These

techniques are:
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1. Satellite Positioning

2. Inertial Positioning

3. Non-Classical Technique

Satellite Positioning

Since the introduction of the first artificial satellite in 1958,

the development in satellite positioning has leaped ahead, especially,

since the development of the high speed computer. The first opera-

tional satellite, for the position fixing on the surface of the earth,

was introduced in January 1964 as a U.S. Navy Navigation Satellite

System (NAVSAT). It was developed by the Applied Physics Laboratory

(APL) of the John Hopkins University and is known as Transit. The

Transit became commercial available in July 1969.

Currently, there are five operational Transit satellites in orbit.

These satellites are in circular polar orbits, about 1,075 kilometers

high, circling the earth at about every 107 minutes. Whenever a

satellite passes above the horizon, there is an opportunity to obtain

a position fix.

The satellite continuously transmits very stable'frequencies at

a constant interval of two minutes. A similar frequency may also be

generated at the observer's position. By comparing the transmitted

frequencies from two positions of a satellite to the frequency of the

observer, it is possible to compute the difference between the two

distances (distances between the observer and the two satellite posi-

tions), called the range rate (0), Figure 3. The satellite, also

transmits a message in terms of orbital parameters [27] as a function
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Range rate = d2 - d1

Figure 3. Position Fix from Artificial Satellites.

of time, from which its position can be computed [27]. From such

two positions, and the approximate co-ordinates of the observer P,

Figure 3, the range rate (C), can be computed. Since the range rate

is the function of the unknown co-ordinates of the observer and the

fixed co-ordinates of the satellites at the specific times, it can be

differentiated to form a linear observation equation, where the para-

meters will be the correction quantities to be algebraically added

to the assumed approximate co-ordinates of the observer. The obser-

vation equation can be represented by the similar type of the equa-

tion as given by the equation (3.11), where the right hand side is

given by (0-C) for the range rate. Therefore, for each observation

of frequencies comparison, one observervation equation can be formulated.

Typically, twenty to forty such comparisons are possible from one pass

of the satellite at a point on the surface of the earth. Hence,

twenty to forty observation equations per pass can be formed. The
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redundant observations, can then be adjusted by the least squares

technique to obtain the MPV's of the co-ordinates of the observer.

All the computations and the adjustments are done in the digital com-

puter which gives the position of the observer at any desired moment,

almost instantaneously [31].

Inertial Positioning

In inertial positioning, the horizontal position of an observer

is obtained from the measurements of the velocity and displacement

of the observer from a starting point by sensing the acceleration act-

ing on the observer or the vehicle in which the inertial positioning

equipment is transported. This technique is fundamentally different

from the others because it depends only on the measurements made on

the vehicle itself.

The inertial positioning system consists of three components;

(a) Gyroscope, (b) Accelerometers, and (c) A Computer. A gyroscope

is an instrument which spins about its axis. The property of the gyro-

scope is such that its spin axis always points towards a fixed

direction in space unless a torque is applied. When the torque is

applied, the resultant change in direction is then the measure of the

applied torque. This change in direction of the spin axis of the

gyroscope provides the reading in terms of the rate of change of

direction with respect to the original spin axis at the instrument.

This information is then integrated by the computer with respect to

time and this gives the direction.



38

An accelerometer, on the other hand, gives distance travelled

from the starting point. It is a device, a sensor, for measuring

the acceleration of the vehicle. Therefore, integration of the

accelerometer output by the computer gives velocity which, further in-

tegrated provides the distance travelled. This information combined

with the integrated gyroscope output, will provide the change in

position of the observer relative to the initial known point, from

which the position of the observer can be computed.

The position of the observer, thus obtained by the inertial

system, is then the function of the direction and the distance, which

can be differentiated and linearized to obtain the observation equa-

tion. For the redundant data, the observations can then be adjusted

by the usual least squares technique to obtain the desired parameters.

Non-Classical Technique

So far we have discussed and dealt with the position of a point in

two dimensions only; that is X and Y co-ordinates only. Besides these

co-ordinates, there is a third dimensional co-ordinate, which is the

elevation or altitude of the point. This co-ordinate, the vertical

control position, is presented in this paper in chapter VI, and it is

represented by Z. The classical technique has been to deal with the

vertical and horizontal controls separately. Therefore, tradition-

ally, horizontal and vertical positions controls have been adjusted

independently.
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A new aspect of non-classical technique combines both the hori-

zontal and vertical positions control techniques, into one technique.

This technique considers the measurements or the observations, and the

adjustment in three dimensions, instead of the conventional two

dimensions. The unified three dimensional approach in surveying

is a very advanced mathematical approach and is accomplished by the

relevant mathematical tools such as vector and tensor calculus.

The concepts of the three dimensional adjustment are very complicated.

None the less, it is possible to get the unified three dimensional

solution. The concepts and reality of a position in three dimensions,

as well as the adjustment techniques, are illustrated in [20].

As the standards of the surveying sciences, especially geodesy, get

higher, it seems in the near future that the use of three dimensional

aspect of surveying may be close at hand, because, it is desirable

to think and get the position of a point in three dimensions X, Y,

and Z.
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IV. DEVELOPMENT OF THE COMPUTER PROGRAM

FOR THE HORIZONTAL POSITION CONTROL

A computer program called HCONTRL has been developed to adjust

the horizontal position control by the least squares technique. The

development procedures and running of this program will be discussed

here. A similar program called VCONTROL for vertical position con-

trol has also been developed and is discussed in chapter VII.

A. Program "HCONTROL"

This is a computer program to compute the horizontal positions

by the various classical techniques such as: traverse, intersection,

resection, triangulation, trilateration, and combined networks

utilizing the least squares technique of adjustment when the redun-

dant measurements are taken. The program is capable of adjusting

the measurements of distance(s), or angle(s), or both. It is written

in Fortran IV language.

The HCONTRL employs the observation equations technique of

adjustment. The measurements must be either angle(s), or distances(s),

or both. For each measurement, HCONTRL formulates one observation

equation given by the equation (3.27) for the angle, and by the

equation (3.11) for the distance. This is accomplished by computing

the coefficients of the unknown parameters and assigning them into a
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matrix form. For example, for a distance measurement between the two

points i and j, Figure 1, the observation equation is of the form

given by the equation (3.11). The computer computes the coefficients

Pi, Qi, Ri, and Si; given by the equation (3.08), of the unknown

parameters, 6X°, 4°, (SX°. and (SY°.
'

respectively. These coefficients
j J

are computed from the given approximate co-ordinates (X7, Y7) and

(X3, 1) of the points i and j respectively. The HCONTRL then

assigns these computed coefficients as the elements of the coeffi-

cient matrix B. This is illustrated by the following example.

05,y05)

Figure 4. Sample Coefficients Computation.

X

In Figure 4, 1, 3, and 5 are three unknown points whose X and Y

co-ordinates are required, and
, 1

X°
1

Y° , etc. are their corresponding'
approximate co-ordinates. If the distance D4, between the two points

(unknown stations) 3 and 5 is inputed into the computer as the fourth

observation, HCONTRL computes the approximate distance 04 from the
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equation (3.19) and assigns as C, which is then subtracted from D4,

and puts the result in the matrix form as

f(k) = Dk - D(13( (4.01)

where k = 4 (for the fourth input observation). The coefficients of

the unknown parameters will be computed from:

o o o o
X
3

X
5

Y
3

- Y
5

P.
.1

D°
Qi

Do
4 4

o o o o
X
5

X
3

Y
5

Y
3

R. = S.
1 e

4

1 o
D
4

(4.02)

These coefficients will be assigned as the elements of the matrix

B according to the stations numbers 3 and 5, and the order of the

input of the observation. These will be given by;

b(k,2i -1) = Pi,

b(k,2i) = Qi,

b(k,2j-1) = Ri

b(k,2j) = Si
(4.03)

where k = 4 (for the fourth input), i = 3, and j = 5. If there is

additional unknown station(s), the computer will make the coeffi-

cients of all the other unknown parameters zero. Together with the

distance, the standard deviation for the measured distance is also

inputed. The program computes the weight from the standard devia-

tion, and assigns it in the matrix form by

w(k) = 1 (4.04)
a2(k)

where k = 4.
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This completes the formation of one observation equation for a dis-

tance. The process is repeated for all the measured distance and

the elements of the matrix B, f and w are filled.

When the input is an angle, the observation equation is given

by the equation (3.27). The procedures of forming the observation

equation for an angle is almost the same as in the formation of

distance observation equation. The difference is that there are six

unknown parameters (two each, for i, j, and k unknown stations) as

opposed to four parameters in the distance observation equation. The

six coefficients for the six parameters are obtained from the equa-

tion (3.21) and (3.26) by computing Pii, Qij, Rij, Sii, Pik, Qik,

Rik, and S
ik*

The element of the right hand side of the equation

(3.27), (0 - C), is the difference between the observed and computed

angles. The computed angle is obtained from the approximate co-

ordinates of the three unknown stations.

The procedure for assigning the computed values to the matrix B

is illustrated from the following example. If the angle between the

stations 1, 3, and 5, Figure 4, is inputed as the seventh observation,

the elements of the matrix B f, and w will be given by;

b(k,2i-1) = (Pik- P.

b(k,2i) = (Qik- Qij),

b(k,2m-1) = Rik

b(k,2j-1) = -R..,

b(k,2j) = -S1J..

b(k,2m) = Sik

(4.05)

where k = 7 (for the seventh input), i =-1, j = 3, and m = 5. From

the approximate co-ordinates of the stations 1, 3, and 5, approximate

angle e(7) will be computed by the program. If the input angle is
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represented by 07, and the input standard deviation for the angle

by a7, the element of f and w will be given by

f(k) = 07 - e7 , w(k) Q (4.06)

where k is the order number of the input angle, i.e. 7, in our case.

All other coefficients of the other unknown station or stations.(if

any) will be assigned zero for this observation equation. For all

the input angles, this procedure is repeated and the corresponding

elements of B, f, and w are computed and assigned.

For any fixed input azimuth, the observation equation for it

is formed, almost exactly the same way as the angle observation

equation. The coefficients of the unknown parameters are computed,

from the equation (3.21). For a fixed distance, the procedure for the

formation of the observation equation,is exactly the same as in the

measured distance observation equation. The difference between the

fixed and the observed observation equations is that, in the fixed

observation equation, the elements of the matrix f will be made zero

by the computer. For all the fixed azimuths and distances, compu-

tation of the coefficients is repeated and the formation of matrix B

is completed. The formation of the weight matrix w is completed ac-

cording to the equation (4.06). Thus, the matrices B, f, and w are

formed.

In the process of the adjustment into the computer, HCONTRL con-

verts the column weight matrix w into W, and the least squares adjust-

ment is accomplished by solving the equation (3.37), which is
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A = (Bt W B)-1 (Bt W f) (4.07)

The adjustment gives A, which is given by

6X
1

SY°
1

(4.08)

SX°

(SY
u

The equation (4.08) is the same equation as the equation (3.29b),

written in terms of the actual parameters. The adjusted co-ordinates

or MPV's are then obtained from

Xi X .

0
+ dXo . , Y. = Yc.) + 6?

1 1 1 1 1 1

where i = 1, 2, ..., u.

(4.09)

HCONTRL, then, compares each element (absolute value) of A

with the number 0.001. If it is greater than 0.001, the co-ordinates

given by the equation (4.09) are taken as the new approximate co-

ordinates and the procedures repeat themselves to obtain the new

set of A, and the new adjusted co-ordinates of all the unknown stations,

until all of the elements (absolute values) of A are, separately, not

greater than 0.001. When this condition is met, the computer computes

the residuals for all the observations from which the estimate of the

reference variance 62 is computed from the equation (2.16). The

precisions (standard errors) of the adjusted co-ordinates and the
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position, are then computed according to the discussion given in the

section, Precision from Least Squares, chapter II. All the necessary

informations are printed out. Detail listings are given in Appendix

I. A complete listing of the HCONTRL is provided in Appendix III.

A flow chart for HCONTRL is shown in Figure 6.

The general compilation and running of the program HCONTRL is

shown in Figure 5. The following conditions must be satisfied to

run the program.

INPUT DATA DECK

SOURCE DECK
(HCONTRL)

JCL: Job Compilation
and control cards.

Figure 5. Deck Set Up for HCONTRL

1. The maximum number of observations must not exceed 104.

2. The total number of fixed and unknown stations must not

exceed 10 and 40 respectively.

3. The maximum number of fixed azimuths and distances must not

exceed four each.
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Angle Observation

Equation

(§-1' fl, Y1)

'Distance Observation

Equation

(12' 12 2)

Fixed Azimuth

Observation Equation

(13. f3, W3)

iFixed Distance

Observation Equation

(EC' 149 Y4)

Parameters:

v 11

fZ

w2

f"

N
B
41

fI

11'1
I

I4i

0.001

Yes

Normal Equations

IN Bt W B, t Bt W f

ro

O
/Print Adjusted

/Co-ordinates,

Standard Errors, etc,/

( Stop

Figure 6. Flow Chart for HCONTRL.
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4. At least one, fixed azimuth, distance, and fixed control

stations (X and Y co-ordinates) to control the scale and

orientation of the net must be given. The scale and orien-

tation may also be fixed by providing two fixed control

stations.

5. The approximate co-ordinates of all the unknown station(s)

must be pre-determined. These co-ordinates can be, computed

approximately, scaled from any available map or any other

possible means.

Once the above criterions are satisfied, all that is needed in

the adjustment procedure to run the program, are the observed angles,

and/or the distances and their respective standard errors to account

for the weighting of the observations. These standard errors may be

obtained according to the discussion in the section Weights, chapter II..

To run the program, number the unknown station(s) first as, 1, 2,

m (m is number, no other character is allowed), and then the

fixed stations as m+1, m+2, ..., etc. Any station number must not

exceed two digits. Thus the maximum number, a station can have is 99.

Set up the free form input data in the following order:

Step or Rule

1.

2.

Input Quantity

Title of the project, up to 75 characters (letters,

numerals, or both).

Number of fixed station(s), number of unknown station(s)

number of observed angle(s) (zero, if none), number
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Step or Rule

3.

Input Quantity

of observed distance(s) (zero, if none), number of

fixed azimuth(s) (zero, if none), number of fixed

distance(s) (zero, if none).

Approximate co-ordinates as Xi and Yi; i = 1, 2,

m: where i denotes the ith unknown station.

4. Fixedco-ordinatesasX.andY..j= m+1, m+2,

..., etc., where j denotes the j
th

fixed station.

5. Observed angle in degrees, minutes, and seconds (or

any decimal part of second), the standard error of

the angle in seconds (or any decimal part of second),

the station number I, J, and K such that I is the

station number at angle observation point; J and K

are such that they, (in that order), appear in the

clockwise manner when viewed through I towards the

the measured angle. For example, in Figure 7, if

the measured value of the angle 3 is, 69°23'16.2",

Fixed Station

0 Unknown Station

Fixed Azimuth

3 Fixed Distance

Figure 7. Sample Sketch for HCONTRL Input.

with the standard error of 5.0", then the input for

this angle would be
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Step or Rule Input Quantity

69 23 16.2 5.0 4 2 3

angle standard station
error numbers (I,J,K)

when viewed through the angle observation point 4

(I), towards the measured angle 3 (69° 23' 16.2")

2 (J) and 3 (K), in that order, appear in the clock-

wise manner relative to 4.

(If no angle observation, go to step 7).

6. Repeat step 5 for all the observed angles.

7. The measured distance (in the same unit as the approx-

imate and fixed co-ordinates or vice versa), its

standard deviation (in the same unit as the measured

distance), station numbers of the two ends (I,J or J,I).

For example, if the measured distance between the

stations 3 and 1 is 6,254.53 m. with the standard

error of 5 cm, the input for the distance will be

6254.53 0.05 3 1 (or 1 3)

(If no distance observation, go to step 9)

8. Repeat step 7 for all the measured distances.

9. The fixed azimuth from station Ito the station J in

degrees, minutes, and seconds (any decimal part of

second), its standard error in seconds, station numbers

I,J (in that order). For example, in Figure 7, the

fixed azimuth is 349° 55' 48.6" from the station 3

to the station 4, if the standard error is 0.1",

the input will be
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10.

11.

Input Quantity

359 55 48.6 0.1 3 4

(If no fixed azimuth, go to step 11)

Repeat step 9 for all the fixed azimuths.

Repeat step 7, replacing the measured distance by

the fixed distance for all the fixed distances.
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The classical techniques of horizontal position control such

as: traverse, intersection, resection, triangulation, trilateration,

etc. have been adjusted using the program HCONTRL. All the numerical

examples for the various techniques are given in Appendix I. For

each of these techniques, corresponding input data set up is also

given in this Appendix. A complete listing of the computer program

HCONTRL is given in Appendix III.
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V. APPLICATION OF LEAST SQUARES SOLUTION

FOR THE HORIZONTAL POSITION CONTROL TECHNIQUES

Generally, classical techniques of horizontal position control

include:

1. Traverse

2. Intersection

3. Resection

4. Triangulation

5. Trilateration

6. Combined Networks

A. Traverse

This is the most widely used technique in general practice. A

continuous set of directions or angles together with distances are

measured. The least squares adjustment is accomplished by simul-

taneously adjusting two different types of measurements. The adjust-

ment procedure to be followed here is the one which adjusts angle

and distance.

For each angle and distance, observation equations like equa-

tions (3.27) and (3.11) respectively are written. Utilizing these

equations, the computer program HCONTRL forms the observation equa-

tions for all the measured angles and distances. The program adjusts
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all of these equations to give the MPV's, that is, co-ordinates of

the unknown stations, by the procedures described in chapter IV. To

run the program for the traverse adjustment, the following quantities

are needed: the measured angles, the measured distances, standard

errors of the measured angles and the distances, the approximate co-

ordinates of all the unknown stations, and the fixed control co-

ordinates. The scale and the orientation of the traverse must be

fixed. The procedures for fixing the scale and the orientation are

discussed in chapter IV.

The output of the computer program includes: the adjusted co-

ordinates of the unknown stations, the standard errors of the adjusted

co-ordinates X.and Y
i'

and of position, of each adjusted station.

The standard errors are computed according to the discussion presented

in the section Precision from Least Squares, chapter II. The output

also includes the adjusted angles and the distances. A listing of

HCONTRL is provided in Appendix III. Details of the input procedures

and running the program is given in chapter IV.

A traverse of Figure 8, has been adjusted by the program. The

data, for checking purpose, are taken from [17]. Following are the

fixed and measured quantities.

Fixed Data

Co-Ordinates

Station X(m) Y(m) Azimuth from North

4 163,208.49 104,375.29 a
1
= 48° 27' 30.0"

5 165,074.49 105,227.47 a
2

= 67° 48' 48.0"
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L Fixed Station

()Unknown Station

Fixed Azimuth

Sketch not

to scale

Figure 8. Traverse Sketch.

Measured Data

28"

(b) Horizontal Distance (m)

d
1
= 703.28

(a) Angles

e
1

= 203° 41'

0
2

= 162 37 21 d
2

= 473.29

3
= 193 18 06 d

3
= 687.48

04 = 170 08 49 d
4

= 202.31

e
5

= 189 35 52

The standard errors of a measured angle and a distance are

arbitrarily chosen as +3" and ± 0.001 m. respectively, and for all

measured angles and the distance, these values for the standard errors

are assumed. The data fed into the computer program HCONTRL gives

the following adjusted co-ordinates of stations 1, 2, and 3 with their

corresponding standard errors. The detail output is given in Appendix I.
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Adjusted Co-ordinates Standard Errors of Adj. Co-ord.

Station X(m) Y(m) X(m) Y(m) Position (m)

1 163,877.98 104,590.94 ± 0.088 ± 0.068 ± 0.111

2 164,264.64 104,864.04 ± 0.098 ± 0.079 ± 0.126

3 164,902.44 105,120.86 + 0.079 ± 0.052 ± 0.095

The last digit of the numbers on the above table are rounded

digits and this rounding off rule will be followed throughout this

chapter.

B. Intersection

Intersection is a simple technique to obtain the horizontal

position of one point by measuring horizontal angles only from the

fixed points to the point to be intersected. This technique is very

convenient when the position of an inaccessible point is needed. At

least two horizontal angles from the two fixed control points must be

measured to obtain a unique horizontal position. Any more measure-

ments will give the redundant observations,which can be adjusted

by the least squares technique.

An observation equation of the form given by the equation (3.27)

can be written for each angle measured. All of these observations

equations can be represented in the matrix form given by the equation

(3.29a). Note here that the elements of the matrices B, W, and f,

will be different from the corresponding matrices obtained in traverse

adjustment. Elements of the coefficient matrix B depends on the

approximate co-ordinates of the unknown point(s). Elements of the
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weight matrix W depends on the standard errors of the observation and

the elements of the right hand side matrix f are the functions of the

observed and computed quantities, angles in the case of intersection.

Since, each adjustment has different fixed and observed data, all

these matrices will then be different for different techniques of the

horizontal position control.

For a numerical example, angles el through 08 in Figure 9,

have been measured from the five fixed control stations (points),

Sketch not to scale

LS Fixed control points

0 Intersection point

Figure 9. Intersection Sketch.

station 2 through 6, to the station 1 to be intersected. Fixed and

measured data are given on the next page.

Assuming the standard error of all the measured angles to be the

same, equal to t 0.1", and inputing the data into the computer program

HCONTRL, the following results extracted from the output at Appendix

I, are obtained. Detail input procedures for running the program are

given in chapter IV.
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Fixed Data*

Y(m)

Measured Data*

Co-ordinates

Station X(M) Angle

2 345,780.67 150,394.05 0
1

32 14 18.8

3 350,044.25 150,752.70 0
2

53 18 32.5

4 356,442.71 148,778.96 0
3

72 09 20.7

5 351,240.22 138,628.80 0
4

27 35 52.1

6 347,490.50 145,480.79 e
5

48 01 23.9

0
6

40 59 38.9

e
7

57 42 28.2

08 56 00 48.8

Adjusted Co-Ordinates Standard Errors of Adj. Co-ordinates

Station X(m) Y(m) X(m) Y(m) Position (m)

1 351,629.08 144,899.05 ± 0.044 ± 0.036 ± 0.057

C. Resection

Resection is the opposite of intersection. In resection, horizontal

angles from the point whose horizontal position is required, to the

fixed control stations are measured. A minimum of two horizontal angles

are necessary. Any more observations gives the redundancy. As stated

earlier, each observed angle formulates one observation equation given

by the equation (3.27). All the observation equations are represented

*These and the rest of the data in this chapter, unless otherwise
stated, are from [2].



58

by the matrix equation (3.29a) whose least squares solution is given by

the equation (3.37). The adjustment procedure is the same as described

in intersection or traverse. The same computer program HCONTRL is used

for the adjustment.

For a numerical example, six horizontal angles 01 through 06,

in Figure 10, are measured from the resection.

5

Sketch not to scale

QFixed control point

()Resection point

Figure 10. Resection Sketch.

Fixed and measured data are given below:

Fixed Data

Control Co-ordinates

X(m) Y(m)

Measured Data

Angles

0Station

Horizontal

Angle

2 350,044.25 150,752.70 e
1

94 27 06.5

3 356,442.71 148,778.96 8
2

35 12 51.4

4 356,788.67 144,328.27 e
3

31 38 05.6

5 351,240.22 138,628.80 8
4

66 16 48.9

6 347,490.50 145,480.79 e
5

45 10 57.2

7 345,780.67 150,394.05 8
6

87 14 09.4
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Standard error for each measured angle is assumed + 0.1". These

data are adjusted using HCONTRL to obtain the following results. For

the input procedure, see chapter IV. The complete listing of the

computer output is given in Appendix I.

Adjusted Co-Ordinates Standard Errors of Adj. Co-Ordinates

Station X(m) Y(m) X(m) Y(m) Position (m)

1 351,629.12 144,899.09 ± 0.016 i 0.012 ± 0.020

D. Triangulation

In a traditional and classical technique of triangulation, co-

ordinates of one station together with one fixed distance and azimuth

are given. All the horizontal angles in the network are measured.

From these items, the horizontal position(s) of all the point(s) are

computed. Such a net is shown in Figure 11. The measured quantities

are the angles, el through 014. The adjustment procedure is exactly

the same as described in the previous three techniques. The fixed

and measured data are given on the next page.

6 5 4

A Fixed Station

0 Unknown Station

=====Fixed Distance

Fixed Azimuth

Figure 11. Triangulation Sketch.
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Fixed Data

Co-ordinates Line Distance (m)

Station X(m) Y(m) 6 - 1 5,202.273

6 347,490.50 145,480.79 Azimuth from North

6 1 340° 48' 43.0"

Measured Data

Angle

e
1

0
2

0
3

04

5

06

0
7

79

55

56

57

40

59

48

14

34

00

42

59

20

01

33.5

32.3

48.8

28.2

38.9

44.4

23.9

Angle

08

e
9

010

0
11

0
12

13

e
14

27

45

72

35

31

66

45

0

35

02

09

12

38

16

10

52.1

04.0

20.7

51.4

05.6

48.9

57.2

The standard error for each of the measured angles and the fixed

azimuth are assumed equal and is taken as + 1.0". The standard error

of the fixed distance is taken as + 0.05 m. The computer program

HCONTRL is used to adjust these data by the least square technique and

the following adjusted co-ordinates and standard errors are obtained.

The complete listing of the output is given in Appendix I.
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Station

Adjusted Co-Ordinates

X(m) Y(m)

Standard Errors of Adj. Co-ordinates

X(m) Y(m) Position (m)

1 345,780.00 150,394.00 ± 0.091 ± 0.151 ± 0.177

2 350,043.67 150,753.20 ± 0.127 ± 0.177 ± 0.218

3 356,442.61 148,780.20 + 0.312 ± 0.226 + 0.385

4 356,789.15 144,324.41 ± 0.334 ± 0.209 ± 0.394

5 351,629.29 144,899.56 ± 0.154 ± 0.092 + 0.179

E. Trilateration

In the trilateration technique only the distances are measured

and reduced to horizontal distances. As the Electronic Distance

Measuring (EDM) equipment became more and more precise, the feasi-

bility of the trilateration technique compared to the triangulation

technique for the horizontal control positioning became a reality.

In general practice in the past, this technique was not used due to

the expensive EDM equipment. But this is no longer the case. Precise

EDM equipment is now available at a reasonable price for the general

use. Because of the tremendous saving of time, this technique is now

economically practicle.

Once the scale and the orientation of a network is fixed, any

kind of net can be adjusted by the trilateration technique. To adjust

the net by the least squares technique using the computer program

HCONTRL, horizontal distances must be obtained.

For a numerical example, the same net as in resection, Figure 10,

is taken. Instead of measuring angles at station 1, the horizontal
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distances from six control stations to the station 1, were recorded,

and they are:

Line Distance (m)

2 - 1 6,064.34

3 - 1 6,182.65

4 - 1 5,191.05

5 - 1 6,282.32

6 1 4,179.31

7 - 1 8,024.87

The control co-ordinates of the fixed stations 2 through 7 are the same

as given in Resection, page 58.

Each measured horizontal distance produces one observation equa-

tion of the form given by the equation (3.27). For the seven measured

distances, there will be seven observation equations, but only two

unknown parameters, that is X andY co-ordinates of the station 1. These

redundant observations have been adjusted by the least squares technique

using the program HCONTRL, by utilizing the equation(3.37) to obtain

the following adjusted co-ordinates of the station 1 and the corre-

sponding standard errors. The standard errors are computed according

to the procedure described in the section Precision from Least Squares,

chapter II.

Adjusted Co-Ordinates Standard Errors of Adj. Co-ord.

Station X(m) Y(m) X(m) Y(m) Position (m)

1 351,629.08 144,899.07 ± 0.022 ± 0.024 .± 0.032
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In the adjustment, the standard errors for all the measured dis-

tances are assumed to be the same and taken as ± 0.01 m. Input and the

run procedure for the program HCONTRL are given in chapter IV. The

complete listing of the output is given in Appendix I.

F. Combined Networks

The most general technique in the horizontal position control is

the technique of combined networks. This technique is the combination

of all the techniques previously described. Once the orientation and

scale of the net are fixed, the combination of the horizontal distance(s)

and horizontal angle(s) are measured. Then the basic net produced by

the combination(s) of figures of triangle(s), quadrilateral(s), central

point figure(s), or any other figure(s), by the measurements of dis-

tance(s) or angle(s), or both, are adjusted by thesimultaneous adjust-

ments of the distance(s) and angle(s). In practice, the scale and

orientation of the net are usually controlled and checked by fixing

distance(s) and azimuth(s) at chosen places in the net.

Regardless of the shape and size of the triangulated figures, the

basic observation equations are angle(s) and distance(s). The adjust-

ment procedure involves formulating one observation equation for one

measurement which is represented by equation (3.11) for distance and

equation (3.27) for the angle. All the observation equations, put

together, can be represented in the matrix form given by the equation

(3.29a). Then, the adjustment is carried out as usual; obtaining the

unknown parameters by the equation(3.37) using the computer program

HCONTRL.
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For a numerical example, 21 horizontal angles and 6 distances in

Figure 12, are measured with one fixed azimuth and one fixed distance.

the fixed azimuth from the north and the fixed distance are between

station 7 and station 3. Also fixed in the net, are the co-ordinates

of stations 6 and 7. The measured angles are labeled 01 through 621.

Following are the fixed and measured data:

L Fixed Station

0 Unknown Station

Aximuth

Fixed Distance

Sketch not to scale

Figure 12. Sketch for Combined Networks

Fixed Data

Co-Ordinates Line Distance (m)

Station X(m) Y(m) 7 - 3 4,464.116

6 347,490.50 145,480.79 Azimuth

7 356,442.71 148,778.96 7 3 175° 33' 18.85"
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Measured Data

Angle
o ,

Angle " Angle

0
1

32 14 18.8 08 57 42 28.2
15

53 18 32.5

2
23 35 17.6 e

9
40 59 38.9 e

16
94 27 06.5

6
3

17 05 36.2 6
10

59 20 44.4 0
17

35 12 51.4

e
4

52 04 57.1 6
11

48 01 23.9 8
18

31 38 05.6

8
5

79 14 33.5
12

27 35 52.1 0
19

66 16 48.9

0
6

55 34 32.3
13

45 02 04.0 e
20

45 10 57.2

e
7

56 00 48.8
14

72 09 20.7 0
21

87 14 09.4

Line Measured Distance (m)

4 5 6,282.32

3 - 5 5,191.05

7 5 6,182.65

2 - 5 6,064.34

1 - 5 8,024,87

6 - 5 4,179.31

The standard errors for each of the measured angle and the distance

are arbitrarily taken as t 1.0" and ± 0.01 m. respectively, whereas

the standard errors of the fixed azimuth and the distance are taken

as + 0.1" and ± 0.005 m. respectively. These data are adjusted by

the least squares technique using HCONTRL and the following adjusted

co-ordinates together with the corresponding standard errors of the

adjusted co-ordinates are obtained. To input and run the program,
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see chapter IV. The standard errors are computed according to the

technique described in chapter II.

Station

Adjusted Co-ordinates

X(m) 1(m)

Standard Errors of Adj. Co-ord.

X(m) 1(m) Position (m)

1 345,780.70 150,394.03 + 0.043 ± 0.043 ± 0.061

2 350,044.25 150,752.64 + 0.043 + 0.029 + 0.052

3 356,788.64 144,328.21 + 0.005 + 0.012 + 0.013

4 351,240.17 138,628.77 + 0.045 + 0.031 + 0.055

5 351,629.08 144,899.04 + 0.014 + 0.020 + 0.024

The complete listing of the computer output is given in Appendix
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VI. THEORY OF THE VERTICAL POSITION CONTROL

The vertical is the line which a plumb line takes, Figure 13,

when it is hung up freely under the affect of the gravitational

attraction of the earth. A surface, everywhere at right angle to the

vertical, is called the level surface. A reference surface, called

Vertical (Plumb Line)

Horizontal Line

(Surface)

Level Line (Surface)

Figure 13. Reference Surface.

datum, is any level surface, chosen according to the conveniency.

The datum that coincides with the mean sea level surface is known as

the mean sea level surface (MSL) datum. The mean sea level surface

is determined from the observations on the tide gauges over a period

of years. The MSL surface is not a regular simple figure and compu-

tation on its surface is difficult. To ease the computational work,

the MSL surface is approximated by an oblate spheroid, which is the

figure obtained by revolving an ellipse about its minor axis. In
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surveying, the linear distance, up or down the vertical; from the datum

to a point is known as the elevation, or the altitude, or the height of

the point above or below the datum.

There are several techniques for determining elevation. The

classical or the most frequently used are the direct leveling and the

trigonometric leveling. For conveniency, direct leveling, in this

paper, will be called leveling, and the trigonometric leveling as

trig leveling. Each of these techniques will be discussed. Also

discussed is the gravimetric leveling, which is applicable only to the

highest order of leveling work. A brief.discussion will also be

presented on the non-classical techniques of the vertical position

control, which includes: barometric leveling, hydrostatic leveling,

stadia (tacheometric) leveling, satellite altimetry, and steric

leveling.

A. Direct Leveling

Direct leveling employs the use of a spirit or automatic level

which establishes a near horizontal line of sight, Figure 14. The

elevation difference between two points are determined by taking the

difference between two consecutively sighted horizontal line of sights

to two uniformly marked vertical rods held on the two points. If RA

and R
B
are the two rod readings at the points A and B respectively,

Figure 14, when the level is at position (1), the elevation difference

AHAB, between the points A and B is given by;



AH
AB

= RA - R
B
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(6.01)

The process is continued to obtain the successive elevation dif-

ferences between the two concucative points until the point X, whose

Telescope

Horizontal

Line of Sight

Rods

k Fixed Elevation

40 (2)

C) Unknown Elevation

AL
Level

Datum

Figure 14. Direct Leveling

elevation is desired, is reached. All these elevation differences are

algebraically added to obtain the elevation difference between the two

points. In Figure 14, if A is the fixed elevation station, the ele-

vation of the point X can then be obtained from;

Elevation X = Elevation A + (RA - RB) + (Rb - Rc) +

(Ry RX) (6.02)

where Rb, R
c'

R
X'

and R are the rod readings shown in the Figure 14

at different points.
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B. Trig (Trigonometric) Leveling

Trig leveling is the technique used to determine the elevation

difference between two points. by measuring the vertical angle from an

instrument over one point to a rod over the second point. To compute

the elevation difference, either the horizontal or the slant dis-

tance must be known.

In Figure 15, the elevation difference, QR, between the two

points P and Q is given by;

QR = Dtan0 (6.03)

where D is the horizontal distance and 0 is the verticle angle between the

two points; 0 is determined by a transit or a theodolite. If the

slant distance S has been measured instead of the horizontal distance,

the same elevation difference is given by;

HA

QR = Ssin0 (6.04)

B

Datum

B

H
B

E

Figure 15. Trig Leveling.
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In Figure 15, HA and HB are the elevations of the points A and

B respectively, which in most surveying work, are considered linear

elevations; iA and gB are the height of the instrument (HI) and height

of the target (HT) respectively. All these quantities are related

by the expression

HA + iA + Dtane= H + g
B

which gives

H - H
A

= Dtano+ iA - gB

If the slant distance S, is measured, then;

HB - HA = Ssine+ iA - gB

(6.05)

(6.06)

These are the basic elevation difference expressions between the

two points as determined by the trig leveling technique. These

equations are true for all values provided the following conventions

are followed:

(i) Height above a station is positive and below it, is negative.

(ii) H - H
A

is defined as the elevation difference between A and

B; from A to B.

(iii) The angle e is positive for the elevation angle, and nega-

tive for the depression angle.

From the equations (6.05) and (6.06), the elevation difference

between the two points can be computed if the vertical angle and, either

the horizontal or the slant distance are measured. However, the mea-

sured vertical angle e, must be corrected for the effects of the
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atmospheric refraction and the curvature of the earth, if the greater

precision in the elevation difference is desired from the trig leveling.

Atmospheric Refraction

In Figure 16a, e is the vertical angle at A between the horizontal

at A and the chord AB. Due to the atmospheric refraction, the measured

vertical angle is a. Therefore, a correction 13, must be applied to

to obtain 0, such that

0 = a - a (6.07)

In Figure 16a,

R = mean radius of curvature of the earth.

A = angle between the two R's at A and B.

y= A/2

A' and B' are the projection of A and B respectively along the

verticals to the datum.

If the slant path is assumed, to be circular and if 0 is the radius

of the path, from Figure 16b,

arc AB = 2013 (6.08)

From Figure 16a, arc A'B' = RA (6.09)

and since A'B' = AB

arc A'B' = arc AB = RA

Substituting the arc AB in the equation (6.08)

RA =2x13

Therefore,

From Figure 16a,

. RA
fi=

2a

RA = S

(6.10)
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Figure 16. Refraction and Curvature of Earth.
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Therefore, substituting for RX in the equation (6.10) gives

2a
(6.11)

where R is defined as [13];

R (pv)1/2
(6.12)

such that
2

a(1 - e )p (6.13)
(1 - e2sin2() 3/2

v =
a

(6.14)
(1 - e2sin2(1/2

where (I) is the latitude of the point A.

a, is the semi-major radius of the spheroid used.

e is the eccentricity of the spheroid.

For a spheroid, a and e are fixed quantities. In this paper, the

Clarke spheroid of 1866 has been taken for the computations and they

are:

a = 6,378,206.4 meters, and e = 0.0067 686 579 79291

It is also defined on page 97 [17] that

_ R
K (6.15)

where K is called the coefficient of refraction. Substituting for

a ,
R

1(

from equation (6.15) into the equation (6.11) gives
4

. KS
(3= radians (6.16)

For visible light, it is shown in [17] that a = 43 x 106 meters.

Taking the mean radius of curvature R = 6.36 x 106 m, the value for the

value for the coefficient of refraction K is given by



RK= =0.07
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(6.17)

For the case of microwave, which may be used in some EDM mea-

surements, it is shown in [17] that the value of K varies between

0.1 and 1 with the value of 0.125 taken as the standard. These values

of K, 0.07 for the visible light waves, and 0.125 for the microwaves,

are used later in this paper in the computer program VCONTRL.

Thus, from the equation(6.16), the value of B can be computed, if

S and R are known. This value of 6 is then subtracted to obtain the

vertical angle corrected for the atmospheric refraction, and is given

by the equation (6.07).

Curvature of the Earth

In the derivation of the equations (6.05) and (6.06), the datum

CE, Figure 15, has been assumed as straight, but it is actually

curved and shown as A'B' in Figure 16a. The elevation difference

obtained from (6.05) or (6.06), gives the elevation difference above a

flat earth. The effect of the curvature of the earth must be corrected

if the better elevation difference is desired. This effect is shown

as y. in Figure 16a.

At point E, x = 90 + X/2 (6.18)

Applying the sine rule to the parts of the triangle ABE;

BE = S

sin(0 + x/2) sinx

Substituting for x from the equation (6.18)
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Therefore,
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BE

sin(0 + X/2) sin(90 + X/2)

sin(0 + A/2)
BE = S

cos(X/2)

BE = S sin (0 + X/2) sec(X/2) (6.19)

Since A/2 is very small for usual work, sec(X/2) can be considered

as unity. Then the effect of the curvature of the earth is accounted

by adding Y to 0, where

Y = A/2

Substituting for A = (arcA'B')/R from the equation (6.09)

Y
arc A'B'

2R

From Figure 16a, assuming arc A'B' = S, therefore,

yLS
2R

(6.20)

The refraction and the curvature corrections are often combined

together so that the corrected vertical angle e is given by

0 = a - + y (6.21)

where a is the measured vertical angle. Substituting for 13 and y from

the equations (6.16) and (6.20) respectively, gives

0
K S= a - S +
R 2R



or,

Therefore,

e a + (;T

0 = a + (1 - 2K)
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(6.22)

In this paper, this equation has been used to compute the corrected

vertical angle, and thus the elevation difference from the equations

(6.05) or (6.06). The effects of the refraction and the curvature for

the various distances are tabulated in Table 2, by computing the value

of (1 - 2K). The value of R is taken as 6,378,206.4 m which is
21-2

the semi-major axis of the Clarke spheroid of 1866.

Table 2. Effects of Refraction and Curvature.

Distance Coefficient of Refraction (K)

meters 0.07 0.125

100 00' 01.4" 00' 01.2"

500 00 07.0 00 06.1

1,000 00 13.9 00 12.1

2,000 00 27.8 00 24.3

5,000 01 09.5 01 00.6

10,000 02 19.1 02 01.3

50,000 11 35.3 10 06.4

100,000 23 10.6 20 12.7

C. Gravimetric Leveling

It should be realized that the gravimetric leveling is usually

only applied to the first order leveling where the misclosure of a

leveling loop, according to the National Geodetic Survey (NGS)
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specifications [34], must be within t 3mm /K.; where K is the single

direction path distance of the level line in kilometers. Elevation

of a point is the amount that the point is above or below the mean

sea level (MSL) surface. Mathematically, the MSL surface is a surface

of equal gravity potential and it is conventionally known as the Geoid.

Due to the: rotation of the earth around the sun as well as

about its own rotational axis; the transcendental attractions of the

sun, the moon, and other planets on the earth; differing densities of

the earth at various depths underneath the surface; the Earth's gra-

vitation produces a very complicated Geoid. The Geoid is not spherical

in shape with a longer radius at the equator than at the pole.

Consequently, gravity at the pole is greater than at the equator. The

equal gravity potential surface or the equipotential surface, is

closely approximated by a spheroid, sometimes referred to the best

fitting ellipsoid. An ellipse revolved around the minor axis pro-

duces a mathematical figure called an oblate ellipsoid. Fitting an

oblate ellipsoid or spheroid to the earth eases the computational work

involved in the horizontal and the vertical control positions.

In leveling, elevation of a point can be a linear distance of the

point above or below the geoid measured along the vertical. This

elevation or height is called an Orthometric height and is the value

normally quoted in the literature.

Due to the different gravity values from the equator to the pole,

the equipotential surfaces are not parallel, but they are closer to-

gether at the pole than at the equator, Figure 17. It should be
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Pole

Equator

Figure 17. Equipotential Gravity Surfaces.

realized that nonparallelism of the equipotential or the level sur-

faces is significant only in the north-south direction due to the

varying gravity along this direction. Therefore, leveling in the

north-south direction over a long distance will be in error in other-

wise errorless leveling. This is clearly seen in Figure 18., A and

B are two points at sea level while a and b are vertically above them

Line a to b is in
north-south direction

Figure 18. Non-parallelism of Equipotential Gravity Surfaces.
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at another equipotential surface. Note that the linear distances

Aa and Bb are not straight lines, but curved. This is due to the

fact that these vertical lines have to be perpendicular to all the

infinite equipotential surfaces between A and a (B and b). It is

clearly seen Aa is not equal to Bb. Thus the determination of an

elevation of a point may be dependent upon the leveling route taken.

From the previous vertical control techniques described, only

the route dependent elevations are obtained. To make them route in-

dependent, what is known as geopotential numbers are used. A geo-

potential number is the product of the observed gravity, in Kilogals,

at the point and elevation of the point in Meters. Geopotential

numbers (GPU) are measured in geopotential units (gpu) such that

1 gal = 1 cm/sec2 and 1 gpu = 1000 gal meters. Additional information

may be found in [14] and [11]. In the most simple form GPU is given

by

GPU = gh (6.23)

where g is the observed gravity at the point in kgals and h is the

elevation of the point in meters.

A numerical example of a GPU computation is given on page 140.

Table 3 gives the GPU of the five stations extracted from Table 5,

Appendix II.

Since 1 gpu = 1 kgals-meter, and the average gravity value is

980 gals which is equal to 0.93 kgals, gpu values will always be

less than the orthometric height (elevation).
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Table 3. Surface Gravities, Station Elevations, and
Geopotential Numbers

Station Surface
Gravity
(gals)

Elevation

(meter)

Geopotential
Number
(gpu)

kgals-meter

Corvallis OSU-PC 980.573 149 77.142 75.643

U-54 980.573 253 76.787 75.295

Tf31T 980.575 467 71.337 69.951

Corvallis OSU-KL 980.573 844 73.336 71.911

College 980.573 302 73.219 70.816

D. Non-Classical Techniques

It is just meant to show in this section that there exists other

techniques of vertical position control. Only a brief discussion will

be presented here. The non-classical technique of the vertical posi-

tion control include:

1. Barometric Leveling

2. Hydrostatic Leveling

3. Stadia (Tacheometric) Leveling

4. Satellite Altimetry

5. Steric Leveling
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Barometric Leveling

The atmospheric pressure (P), at a point is a function of the

elevation of the point (H), gravity (g), and the density of air (p)

[2]. That is

P = f(g,p,H) (6.24)

If g and p at the two points are constant, then it is shown on page

383,[2] that

1
k loge

"2 r2
(6.25)

where H1, H
2
and P

1'
P
2
are the corresponding elevations and pressures

respectively, and k is a constant. Thus, if one elevation is known,

other elevations can be computed from the known pressures at the two

points. The pressure is measured by the instrument known as a

Barometer [13].

Hydrostatic Leveling

If a U-shaped tube is partially filled with water, the elevations

of the two water level surfaces at the two limbs will be equal due to

the balance of water set by the force of gravity. This idea is used

in hydrostatic leveling by laying and filling water into long flexible

pipes, from a known elevation point. Pipes as long as 10 km. have been

used to determine the elevations by this technique [2]. The technique

is useful where the elevation differences are very small and has been

much used in Holland.
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Stadia (Tacheometric) Leveling

The stadia or tacheometric leveling is based on the measurements

of the vertical angle and the horizontal distance. Though this tech-

nique looks like the trig leveling, the later is more precise than

the previous. For detail information on stadia leveling, see [2] and

[13].

A transit or a theodolite provides the top and bottom cross wires

besides the central cross wire in the raticule. The transit or the

theodolite is sighted at a near vertical rod, and the rod readings at

the top and the bottom cross wires, ST and SB respectively are re-

corded, Figure 19. If a is the vertical angle, the vertical distance

Figure 19. Stadia Leveling.

V, as shown in the figure, can be mathematically shown as [13];

V = C(ST SB) (lisin2a) (6.26)

where C is an instrument constant, and usually made equal to 100.

In Figure 19;
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i = Height of the instrument (HI)

g = Rod reading

H = Elevation of the point P

H
Q

. Elevation of the point Q.

Then it can be shown [13] that;

HQ-HP =i+V- g (6.27)

If the elevation of one point is known, the elevation of the other

point can then be computed. This equation very much looks like the

equation (6.05). The difference is the computation of V. The adjust-

ment by least squares technique can then be applied in the similar

manner as described in the trig leveling adjustment.

Satellite Altimetry

The determination of the X and Y co-ordinates from the artifi-

cial satellites have been briefly described in the section Future

Systems in chapter III. During the horizontal position (X,Y) fix,

as described in chapter III, from the satellites, the Z co-ordinate or

the elevation, is also computed applying the adjustment of least

squares technique described in the chapter. For more information,

see [27].

Steric Leveling

The technique of the steric leveling is applied by the oceanog-

raphers to find the elevations of points on the ocean surface. It

is meant to indicate here that the technique of the steric leveling

exists. It is out of the scope of this paper to describe the
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procedures of the steric leveling. The technique involves the measure-

ments of: density, pressure, salinity of sea water, temperature,

etc. at different points on the ocean surface. For more information,

see [19].
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VII. DEVELOPMENT OF THE COMPUTER PROGRAM

FOR THE VERTICAL POSITION CONTROL

A computer program called VCONTRL has been developed for adjust-

ing the classically obtained vertical control positions by the

least squares technique. The classical obtained vertical control

means either the direct leveling or the trig leveling. The program

is written in Fortran IV language.

A. Program VCONTRL

This program employs the observation equation technique of the

least squares adjustment, where one observation equation, given by

the equations(6.01) for the direct leveling, or the equation (6.05)

or (6.06) for trig leveling, for each measurement is written. This

is accomplished by the computer by assigning the coefficients of the

parameters as the elements, b(i,j); i = 1, 2, ..., n, and j = 1, 2,

u, of the coefficient matrix B. The parameters A, are the ele-

vations of the unknown stations, and can be represented by

H
1

H
2

a=

H
u

(7.01)
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where Hm; m = 1, 2, ..., u, is the elevation of the m
th

unknown ele-

vation station. The formation of the elements of the matrix B is

illustrated as following. The elements of B, are represented according

to the numbers of the elevation stations and the order of the eleva-

tion difference, put into the computer as the observation. For example,

if the elevation difference between the two elevation stations I

and J is AH
IJ'

then

HJ - H1 = AH
IJ

(7.02)

where I and J must be numerals. If this observation is put into the

th
computer as the then the VCONTRL assigns the coef-

ficients of the parameters HI and Hj in

b(i,I) = -1, b(i,J) = 1 (7.03)

The right hand side number AHIJ, will be represented by the element

of the right hand side matrix f as

f(i) = AHIJ (7.04)

If there are any additional stations besides I and J, the coeffi-

cients of all the other parameters will be assigned to zero. Note

that all the elements of the matrix B will be either 1, -1, or O.

For a numerical example, Figure 20, if the elevation difference of

+16.201 m occuring between the stations 3 and 1 is put into the com-

puter as the fourth observation, then

i = 4, I = 3, J = 1, and ANL) = +16.201 m.

which gives the elements of B and f as
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ZsFixed Elevation Station

0 Unknown Elevation
Station

/
Direction of the

leveling run

Figure 20. Sample Level Net.

b(4,3) = -1, b(4,1) = 1, and f(4) = 16.201;

Also: b(4,2) = b(4,4) = 0

When the observation is put into the computer, its standard

error is also inputed into the computer at the same time. VCONTRL

converts this to the element of the column weight matrix w. If, for

the above example, the standard error of the fourth observation is

10 mm, then the fourth element of w will be given by

w(4) = 1/(0.010)2

Note in the above equation that input units of the elevation dif-

ference and the standard error are, and must be the same. For each

input observation, the process is repeated and the matrices B, w,

and f are formed. The least squares adjustment is then performed

according to the equation (3.37) which yields the parameter A, given

by the equation (7.01). Adjusted, elevation differences, standard

errors, and all the relevant quantities are then printed out. A

listing of such an adjustment is given in Appendix II.

The adjustment procedures for the trig leveling is almost the

same as in the direct leveling technique. The difference here is

that the elements of the right hand side matrix f are computed either
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from the equation (6.05), or the equation (6.06), which are respec-

tively given by

and

HB - HA = Dtan0 + iA - gB

HB - HA = Ssin0 + iA - gB

where e is given by the equation (6.22). The computation of e re-

quires that 4), a, e, R, K, etc be specified.

There is, however, one difference between the two adjustment pro-

cedures, and that is in the computation of the elements of the weight

matrix w. Since the trig leveling is a function of two observed

quantities, vertical angle and the distance in the same observation

equation, given by the equation (6.05) or (6.06); as opposed to two

observation equations for the horizontal position, given by the equa-

tions (3.11) and (3.27), for the distance and the angle respectively,

the resultant standard error for an observation of the trig leveling

will be a function of the standard errors of the vertical angle and

the distance. The technique for computing the weight of trig leveling

is described in the section trig leveling, chapter VIII. Standard

errors of the vertical angle and the distance are converted by VCONTRL

by the equation (8.06) to obtain the weight of the trig leveling ob-

servation.

The general deck set up and the flow chart for VCONTRL are given

in Figures 21 and 22 respectively.

To run the program VCONTRL the following conditions must be

satisfied.



90

JCL: Job compilation and
control cards.

Figure 21. Deck Set Up for VCONTRL

1. The maximum number of observations must not exceed 100.

2. The maximum number of fixed elevation stations must not

exceed 10.

3. A maximum number of 90 unknown elevation stations can be

adjusted.

4. At least one fixed elevation must be given.

To run the program, number the unknown elevation stations first

as 1, 2, ..., u. Then number the fixed elevation station(s) as

u+1, u+2, M; where u and M must be numerals. No character is

is allowed. Any station number must not exceed two digits. Then,

set up the free form input data in the following order.
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(Start)

rlObserved

Elevation

Difference

Standard Error,

etc.

Observation

Equation

(B, W, f)

Yes

't

bserved Vertical

No Angle, Standard

Error, etc.

Normal

Equations

N = Bt W B

= Bt W f

Parameters

= 4
-1

t

fOutputl

-( Stop )-

Observation

Equation

(B, W F)

Normal

Equations

N = Bt W B

t = Bt W f

Parameters

= N-I

/Output I

Figure 22. Flow Chart for VCONTRL.
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Step /Rule Input Quantity

1. Technique identifier, 1 for direct leveling, 0

for trig leveling.

2. Project title, up to 75 characters (letters,

numerals, or both).

(If 1 in step 1, input the following; otherwise

go to step 8).

3. Number of observed direct level line(s), number

of fixed elevation station(s), and number of

unknown elevation station(s).

4. Fixed elevation(s).

5. Repeat step 4 for all the fixed elevation(s)

in order of the fixed elevation station numbers.

6. The observed elevation difference from elevation

station number I to the elevation station number

J (a negative value is entered as minus), standard

error of the observed elevation difference in the

same unit as the elevation difference, station

number I, and station number J. For example, in

Figure 20, for the observed elevation difference

of +16.201 m from the station 3 to the station 1,

with the standard error of ± 0.010 m (i 10 mm),

the input will be

16.201 0.01 3 1
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Step/Rule Input Quantity

7. Repeat step 6 for all the observed elevation

difference(s).

(If 1 in step 1, input ends here).

8. Approximate average latitude of the project area

in degrees, minutes and seconds (or any decimal

part of the second); e.g. latitude of 45° 40'

33" will be inputed as 45 40 33 (or 33.00).

9. Number of observed trig leveling line(s), number

of unknown elevation station(s) , number of fixed

elevation station(s); 1 if the input measured

distance(s) is/are slant distance(s), 0 if horizon-

tal, 1 if the distance(s) is/are measured with

the visible light wave system EDM equipment, 0

for the microwave.

10. Unit identifier, 1 for feet, 0 for meters.

11. Fixed elevation in the same unit as the measured

distance(s).

12. Repeat step 11 for all the fixed elevation(s)

in the order of the numbered fixed elevation

station(s).

13. The observed vertical angle in seconds (or any

decimal part of second) as positive upward and

negative downward, its standard error in seconds

(any decimal part), measured distance, standard

error of the measured distance in the same unit as
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14.
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Input Quantity

the measured distance, height of the instrument,

height of the target (HI and HT must be in the

same unit as the measured distance), instrument

station number, and target station number.

Example: In Figure 20, if the instrument is

at station 2, a vertical angle of -2° 18' 10.0"

is measured by sighting instrument to the target

at station 3, the height of the instrument HI

1.72 m, the target height HT = 4.85 m, the mea-

sured horizontal distance = 6,286.342 m, the stan-

dard error of the observed vertical angle and dis-

tance are ± 10.0" and ± 0.001 m (± 1 mm), then the

input for this observation would be

-8290 (-8290.0) 10 6286.342 0.001 1.72 4.85 2 3

Repeat step 13 for all the measured vertical angle.

Numerical example of the vertical position control least squares

adjustment by the direct and trig leveling are given in Appendix II.
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VIII. APPLICATION OF LEAST SQUARES SOLUTION

FOR THE VERTICAL POSITION CONTROL TECHNIQUES

The least squares solution for the vertical position control

is obtained in the same way as described in the horizontal position

control by the equation (3.37). The difference here is that the

observation equation is already linear, given by the equations

(6.01), and (6.05) or (6.06) for the direct and trig leveling

respectively. Therefore, it is relatively simpler to form the obser-

vation equation in the vertical position control in comparison to

the horizontal position control.

A. Direct Leveling

For each observation of the elevation difference between the two

elevation stations, one observation equation of the form given by the

equation (6.01) can be written. For all the observations, the obser-

vation equations can then be represented in the matrix form given

by the equation (3.29a). Rewriting this equation

BA=f+ v (8.01)

where the parameters A, here, are the unknown elevations of the

elevation stations given by the equation (7.01), B is the coefficient

matrix, f is the column right hand side matrix. It is important to

realize that the elements of B will be different from those obtained
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in the horizontal position control. The elements of B in the vertical

position control will be either 1, -1, or .0 as discussed in chapter

VII, and the elements of f will be the observed elevation differences

(AH
IJ

from the equation (7.02) for the direct leveling, and the value

of the right hand side of the equation (6.05) or (6.06) for the trig

leveling). For the least squares adjustment of the equation (8.01),

given by the equation (3.37), the weight matrix W is needed. In

direct leveling, the elements of the weight matrix are usually taken

as the reciprocal of the distance between the corresponding eleva-

tion stations of observation. This implies, according to the dis-

cussion in the section Weights, chapter II, that the standard error

of the observation is proportional to the square root of the distance

between the two stations. In other words, the precision of the ele-

vation difference is proportional to it, where L is the length of the

level line. However, the standard error should be determined by

the actual observation, if possible. One way to find this quantity

is, by taking the repetitive measurements of one elevation difference

between the two points and finding the standard deviation given by the

equation (2.19). This may, then be taken as the representative stan-

dard deviation (error) for all the observations. Another way of

finding the precision is, by utilizing the precision of the instrument

provided by the instrument manufacturer.

A level net of Figure 23, has been adjusted by the least squares

technique by VCONTRL as a numerical example. The observed elevation

differences and the other data are tabulated below.
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Sketch not to scale

AFixed Elevation Station

@Unknown Elevation
Station

Direction of Leveling

Figure 23. Level Net.

Level Line Observed Elevation
Difference*

(m)

Length of
Line (L)

(km)

Standard
Error
,firFrom To

6 1 +16.298 1.3 1.1402

1 2 -17.700 1.9 1.3784

2 3 - 0.687 2.3 1.5166

3 6 + 2.036 2.7 1.6432

6 4 +23.615 0.3 0.5477

1 4 + 7.304 0.9 0.9487

5 4 +14.162 1.2 1.0954

3 4 +25.709 1.6 1.2649

1 5 - 6.855 1.1 1.0488

2 5 +10.863 0.5 0.7071

*For computational purposes, these data are taken from [17].

These data have been adjusted by the computer program VCONTRL

and the following adjusted elevations and their corresponding stan-

dard errors are obtained. The standard errors of the adjusted

elevations are computed according to the discussion in the section

Precision from Least Squares, chapter II.
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Station
Adjusted

Elevation (m)
Standard

Error (m)

1 216.304 10.0044

2 198.594 -10.0056

3 197.908 ±0.0057

4 223.614 ±0.0030

5 209.454 ±0.0051

The complete listing of the computer is given in Appendix II.

B. Trig (Trigonometric) Leveling

The adjustment procedure is the same as in the direct leveling.

One observation equation for each measured vertical angle is written.

For the trig leveling, either the horizontal or the slant distance

must be known. The observation equation is given, either by the equa-

tion (6.05) or the equation (6.06), depending whether the measured

distance is the horizontal or the slant respectively. Note that in

both equations, 0 is given by the equation (6.22).

Setting up the observation equation in the trig leveling in the

matrix form is the same as in the direct leveling. The solution,

by the least squares technique, obtained by the equation (3.37),

requires the weight matrix W. Various methods for determining the

elements of the weight matrix are discussed in the direct leveling,

as well as in chapter II. However, since the observed elevation dif-

ference in trig leveling is the function of two measurements, the
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vertical angle and the distance, a separate technique for obtaining

the elements of the weight matrix will be used. This technique is

used because the trig leveling observation equation consists both of

the measurements in the same observation equation. Rewriting equation

(6.05)

H
B

- H
A

= Dtano + iA - gB

Representing the elevation from the point A to the point B by

pH = H - H
AB B

HA

AB
= Dtano + iA - gB (8.02)

If the variances of the observed elevation difference, the measured

2 2
horizontal distance, and the measured vertical angle are GAH, GD,

and Ge
2
respectively; then, from the technique of the propagation of the

variances, chapter IV, [26] it can be shown that

9(AH
AB ) (AHAIDt)

G2 ( G
D

9

+ ( are o6o)2

9

AH ap

which gives

2 4 2
G
AH

= tan
2

D
+ D sec eGe

(8.03)

(8.04)

In this derivation, it has been assumed that there is no correla-

tion between the distance (D) and the vertical angle (e) measurements.

It is further assumed that the both iA and gB are constants. Simi-

larily, if the technique of the propagation is applied to the equation

(6.06), it can be shown that

a2Fl = sin2e4 + s2cos204 (8.05)
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Sketch not to scale

Fixed Elevation Station

0 Unknown Elevation
Station

Figure 24. Trig Leveling Net.

Table 4. Extract from Field Book of Vertical Angle Observations**

At station 4 Peg i = +4.96ft g = 10.03 ft

To 1 -02°38'00" Top pillar M
2 -02 17 22 Top skirt

3 -01 39 24 Top pillar
r--

Top

At station 1 Pillar i = +0.68ft

To 4 +02°36'57" Top beacon

2 -00 25 25 Top beacon

3 +00 07 39 Top pillar

g = 0

At station 2 Peg i = +4.80ft

To 4 +02°16'27" Top beacon

1 +00 23 48 Top pillar

3 +00 48 46 Top pillar

'41--

'61-10.42 Top beacon

9.24 Top skirt

mz-

At station 3 Pillar i = +0.83ft

To 4 +01°37'27" Top beacon

1 -00 11 33 Top pillar

2 -00 49 25 Top beacon 71;E-

g = 0

**For computation checking purposes, these data are taken from [2].
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where a
2

is the variance of the measured slant distance S. Thus, from

the given ue and ap or as, ou can be determined from the equation

(8.04), or (8.05). The determination of the quantities, a
0'

a
D'

and

a have been discussed in the section Weights, chapter II. The computer

program VCONTRL utilizes either the equation (8.04), or the equation

(8.05) to determine the standard error fo the observed elevation dif-

ference by the trig leveling technique. The weight of an observation

is then computed from

1
w =

2
(8.06)

a
AH

Table 4 gives the data for the trig leveling net of Figure 24 for

the least squares adjustment. The standard errors for all the vertical

angles and the distance measurements are arbitrarily taken as i 1"

and + 0.10 m respectively. The data are put into the computer for

VCONTRL and the following adjusted elevations and the corresponding

standard errors are obtained.

Station
Adjusted

Elevation (ft)
Standard

Error (ft)

1 363.851 +0.2006

2 234.586 ±0.2154

3 437.433 +0.2291

The complete listing of the computer output is given in Appendix

II.
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IX. PRACTICALITY OF THE ADJUSTMENT

Since the introduction of the principle of the least squares by

Legendre in 1806, the technique has been widely used in the various

types of problems where there is redundancy in the observations. Since

then, various computational techniques have been developed to ease

the computation. In the past, it has not been an easy computation

whatever the technique was used, especially in a project containing

many observations. The introduction of high speed digital computers

has removed most of the tedium of the computations. The continuous

development in the digital computer capabilities, now and in the future,

makes many kinds of complicated and difficult computational systems in

mathematics routine work. Therefore, it looks like the adjustments

of surveying in the future will be by the least squares technique, as

more reliable and precise data are required with a precision estimate.

Currently, under U.S. Department of Commerce, the re-adjustment

of the North American Geodetic Horizontal Control Network is in pro-

gress. When the project is completed in 1983, it will replace the

present North American Datum of 1929 (NAD 29), and it will be called

North American Datum of 1983 (NAD 83). The reason for obtaining NAD

83 is that NAD 29 is not precise enough for currently required pre-

cision in the horizontal and the vertical positions control computa-

tions and adjustments. The importance of redefining the North American

Datum may be judged from the statement by [36]: "The precision
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required for today's scientific technology, plus a pressing need for

accurate inventories of our Earth's resources, resulted in the creation

of an international project to readjust the North American Geodetic

Horizontal Control Network.... Many of these papers deal with computer

software and have not been published previously. Computer specialists

will find the information on utilizing computer capability to solve

for as many as 400,000 unknowns fascinating and applicable to other

fields..." The NAD 83 will provide, the best MPV's of the horizontal

and the vertical positions from the most currently available data,

adjusted by the least squares techniques; consequently, giving the

most reliable values.

The computer programs, HCONTRL and VCONTRL, developed in this

paper are for the adjustments of the horizontal and the vertical posi-

tions control respectively by the least squares technique when the

distances and angles are obtained as the observations. The HCONTRL

is capable of adjusting any classical techniques of horizontal posi-

tion control such as; traverse, intersection, resection, triangulation,

trilateration independently or the combination of any of these tech-

niques which is specified here by combined networks. To use the pro-

gram, one must have access to a computer, whose capability, in terms

of storage space, must be able to store a matrix of the order of 104

by 100. The program VCONTRL, on the other hand, is capable of adjust-

ing either the direct leveling or the trig leveling network. In

this case, the maximum storage space needed in the computer is a

matrix of the order of 100 by 100. These types of storage requirement

should be able to be handled on the current mini-computers.
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X. SUMMARY AND CONCLUSIONS

All of the adjustment techniques utilized in the least squares are

based on the principle that the sum of the squares of the residuals

is a minimum. Consequently, no one technique is better than the other,

and whichever technique is adopted, the final adjusted quantities and

the corresponding precisions are the same.

The observation equations technique provides the direct determin-

ation of the precisions from the covariance matrix of the adjusted

quantities of any survey measurement. It is relatively easier to write

observation equations than the condition equations in computer

language. Though the condition equations technique, generally, requires

lesser computer storage space than the observation equations tech-

nique, the availability of the computer storage space is no longer a

problem.

Two computer programs, HCONTRL and VCONTRL, have been developed

to adjust the respective classical horizontal and vertical positions

control survey measurement data, by utilizing the least squares adjust-

ment. The inputs for both of the programs are fairly simple. The

basic input quantities are angle, distance, or both, and the control

co-ordinates, for HCONTRL, and elevation difference, or vertical angle

for VCONTRL. For both of the programs, the estimates of the precisions

for the corresponding observations must also be inputed into the
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computer. The input data comes directly from the field work; conse-

quently, no intermediate adjustment is necessary.

Any measurement or the adjustment is of little use if the pre-

cisions of the measurements or the adjusted values (MPV's) from the

adjustment, are not known. These quantities are provided by the least

squares adjustment techniques; a factor which makes the adjustment

by the least squares so important. From the continued availability

and the advancement of the digital computer, it is most likely that

the adjustment of surveying data by the least squares techniques will

probably be adopted in the future for most of the survey computations.
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APPENDIX I

A numerical example for each of the horizontal position control

described in chapter IV will be adjusted by the computer program

HCONTRL. All the necessary input data and the complete listing of

the output will be given. The conditions, the requirements, and the

procedures for running the program are discussed in chpater IV.

A. Traverse

For Figure 8, the following input data are obtained.

TRAVERSE BY LEAST SQUARES

2 3 5 4 0 0

163877.00 104590.00
164264.00 104865.00
164902.00 105120.00
163208.49 104375.29
165074.49 105227.47

006 41 42 3.0 4 5 1

162 37 21 3.0 1 4 2

193 18 06 3.0 2 1 3

170 08 49 3.0 3 2 5

007 14 20 3.0 5 3 4

703.28 0.01 1 4

473.29 0.01 1 2

687.48 0.01 2 3

202.31 0.01 3 5

Note that the input angles given at the stations 4 and 5, in

Figure 8, are different from the given measured angles. For example,

at station 4, the input angle is 06° 41' 42" whereas the measured angle
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is 203° 41' 28" (page 55 ). The reason for being different is that

HCONTRL requires three station numbers for each input angle, and the

approximate or fixed co-ordinates of all the input station numbers must

be given. In Figure 8, however, only two station numbers 4 and 1 are

given. So, from the fixed co-ordinates of the stations 4 and 5,

the fixed azimuth al, and the measured angle of el = 203° 41' 28",

the included angle Qi = 06° 41' 42" (Figure 25), is computed. Similarly,

6.1`,
A Fixed Station

n Arbitrary Station

al 0 Unknown Station

Fixed Azimuth

Sketch Not to Scale

1a2 LIN.3

Figure 25. Sample Traverse Computation.

the input angle at station 5 has been computed. These input angles

include the criterions of the fixed azimuths a
1

and a
2

in the traverse.

Another way of inputing the angle 203° 41' 42" as the observation, is

by computing the co-ordinates of the station 6 (Figure 25) from the

fixed azimuth al, and arbitrary distance di, and inputing the neces-

sary data for the inputed angle of 203° 41' 42". Whichever technique

is used, the final answers from both will be the same.
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The complete listing of the computer output by HCONTRL is given

on the next page.
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79/06/13. 11.32.01.5

TTTTITT mi-iiili m...44.: d V EEEEEEE 12RRRRR SSSSS EEEEEEE
T ts, k 4 A V J E R K S S

T m h A A 4 V E R i S E

T mikiiiR A A J 4 EEEEEE RARRRR sSSSS EEEEEE
T M. N i I £ N i 3 E

T M ii 4 4 V 4 E i R S 3 E

T m R A A V EEEEEEE i m SS35S EEEEEEE

TRAVERsE BY LEAST SQUARES

APPROXIMATE CO- ORDINATES

STATICN

1 .1036770000E+06 .1045900000E+06

2 .1642640000E+36 .1048650000E+06

3 .1649020000E+06 .1051200000E+0 E

FIRED CO-ORDINATES

4 .1632084900E+06 .1043752900E106

5 .1650744900E+06 .1052274700E+06

ITERATIUN NJ. 1

CO-ORDINATE VARIATIONS

STATION DELTA X DELTA Y

1. .973 .942

2 .642 -.962

3 .444 .860

ITERATION NU. 2

CO-ROINATE VARIATIONS

STATION DELTA X DELTA Y

1 .002 -.001

2 .000 .000

3 .000 -.002

ITERATION NO. 3

CO-GROINATE VARIATIJNS

STATION DELTA X DELTA I

-.000 .000

2 -.000 -.000

3 -.000 -.000

G4E'7FICIENT MATRIX -B-

39.9116 -273.1305 0.0303 0.0000 0.0000 0.0000
-341.2509 035.0371 251.3744 -355.9305 0.0000 3.0003
2,1.3744 -355.9006 -303.4276 634.1858 112.4532 -278.2793

0.0340 0.0000 112.032 -273.2793 -.648.0490 1144.5388
0.30u0 0.0000 0.0000 0.0000 536.7958 -666.2595
.9516 .30o6 0.0000 0.0003 0.0000 0.0000

-.8100 -.5709 .8168 ..6769 0.0000 0.0000
0.0000 0.0040 -.9270 -.3735 .9276 .3735
0.0040 0.0000 0.0000 0.0000 -.d500 -.5267
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RIGHT NANO 9I0E MATRIA -F-

13.915
4.984
4.517

-2.369
-3.047
-.085
-.090
-.087
-.090

STA4OARJ
ERRCR

RESIDUAL

.300E+01 -.139E+02

.300E+01 -.498E+01

.300E+01 -.452E+01

.300E+01 .237E+01

.300E+01 .305E+01

.100E-01 .554E-41

.100E-01 .902E-01

.100E-01 .873E-01

.100E-01 .399E-01

ADJUSTED

ANGLE -DEG

ANGLES

MIN SECS

4 5 1 6 41 28.30

1 * 2 lo2 37 16.02

2 1 3 193 18 1.48

3 2 5 170 d 51.37

5 3 4 7 14 22.83

LINE AJJ.JISTANCE

1 4 773.365

1 2 473.380

2 3 687.557

3 5 202.400

STANOARJ ERROR OF GO-ORi:INATES

STAT,04 A Y POSITION

.883381E-01 .579080E-01 .111463E+00

2 .981203E-01 .767825E-01 .125835E+00

3 .794213E-01 .517326E-01 .947841E-01

ADJUSTED CO-ORDINATES

STAT,UN A V

1 .1o36779804E+06 .1045309415E+06

2 .16426446419E+06 .1048040380E+06

3 .1649024444E+06 .1051208584E06
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B. Intersection

The input data corresponding to Figure 9, are:

INTERSECTION BY LEAST SQUARES

5 1 8 0 0 0

351625.00 144905.00
345780.67 150394.05
350044.25 150752.70
356442.71 148778.96
351240.22 138628.80
347490.50 145480.79

32 14 18.8 0.1 5 6 1

56 00 48.8 0.1 4 1 3

57 42 28.2 0.1 3 4 1

40 59 38.9 0.1 3 1 6

48 01 23.9 0.1 2 3 1

27 35 52.1 0.1 2 1 6

72 09 20.7 0.1 6 3 1

53 18 32.5 0.1 6 1 5

Complete listing of adjustment of these data by HCONTRL is given

on the next page.
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74/00/12. 11.06.29.5

IIIIIII N N TTTTTTT EEEEEEE KrimmRk

t
NN N I t R R

1 t. h N T E R R

I N N N T EEEEEE RmrucmR
4 I. i N T E K ec

I N NN T E R R
..::IIZI ti N r EEEEEEE R R

041.= WM..

SSSSS EEEEEEE CCCOO ITTITTT IIIIIII 00000 N N

Ci S E C T I 0 0 NN N

S E C T I 0 ONNIN
SSSSS EEEEEE 0 T 1 0 3 h N N

S E . C T I 0 0 N N N

3 S E C C r I 0 0 N NN
SSSSS EEEEEEE CCCL:C T 1111111 00000 N N

INTRESECTION BY LEAST SQUARES

APPROAIMATE CODROINATES

STATION X

1 .3216250000E+06 .1449050000E+06

FIXED COORCINATES

2 .3457806700E+06 .1503940500E+06

3 .3500442500E+06 .1507527000E+06

.3564427100E+06 .1487789600E+06

5 .3512402200E+06 .1306288000E+06

0 .3474305000E+06 .1454807900E+06

ITERATION NO. 1

COORDINATE VARIATIONS

STATION DE-TA X DELTA Y

1 4.082 2.949

ITERATICN NO. 2

COORDINATE VARIATIONS

STATION DELTA X DELTA

1 .001 .005

ITERATION NO. 3

COORDINATE VARIATIONS

STATION DELTA A DELTA Y

1 .000 .000

COEFFICIENT MATRIX 8
32.7648 2.0323
20.9364 25.9749
32.8304 8.8686
32.0304 8.6086

17.6001 18.7320
17.60(1 18.7320
0.8700 48.6738
6.8700 48.8738
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RIGHT HAND SIDE MATRIX -F-

1.084
1.151
1.916

-3.417
-2.044
4.923
.755

-.288

STANDARD
ERROR

RESIDUAL

.100E+00 -.108E+01

.100E+00 -.115E+01

.100E+03 -.192E+01

.100E+00 .342E+01

.100E+00 .204E+01

.100E+00 -.492E+61

.100E+00 -.755E+00

.100E+00 .244E+00

AOJUSTED

ANGLL DEG

ANGLES

MIN SECS

6 1 32 14 17.72

4 1 3 56 0 47.65

3 4 1 57 42 26.28

3 1 6 40 59 42.32

2 3 1 48 1 25.94

2 1 6 27 35 47.18

6 3 1 72 9 19.94

6 1 5 53 id 32.79

STANOAsJ ERROR OF CO-ORCINATE5

STAT...GN X Y POSITION

.436066E-01 .363213E-01 .567520E-01

ADJUSTED GO-ORDINATES

STATION

.3516290826E+06 .1444990462E+06
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C. Resection

The input data corresponding to the Figure 10, are:

RESECTION BY LEAST SQUARE

6 1 6 0 0 0

351620.00 144905.00
350044.25 150752.70
356442.71 148778.96
356788.67 144328.27
351240.22 138628.80
347490.50 145480.79
345780.67 150394.05

94 27 06.5 0.1 1 5 6

35 12 51.4 0.1 1 6 7

31 38 05.6 0.1 1 7 2

66 16 48.9 0.1 1 2 3

45 10 57.2 0.1 1 3 4

87 14 09.4 0.1 1 4 5

The complete listing of the adjustment by HCONTRL is given on

the next page.
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79/07/13. 17.27.45.S

RRiRRP4 EEEEEEE SSSSS EEEEEEE CCCCC TTTTTTT 1111111 00000 N N
S C C 0R R E S E T 1 0 NN N

R 2 E s E C T 1 0 ONNN
RRRRRR EEEEEE SSSSS EEEEEE C T 1 0 0 N N N
R R E S E C T I 0 0 N N N
R R E S s E C C T 1 0 0 N NN
R R EEEEEEE SSSSS EEEEEEE CCCCC T 1111111 00000 N N

RESECTION BY LEAST SQUARE

APPROXIMATE CO-ORDINATES

STATION

..3516200000E+06 .1449050000E+06

FIXED CO-ORDINATES

2 .3500442500E+06 .1507527000E+0E

3 .3504427100E+06 .14d7789600E+06

.35678867.00E+06 .1443282700E+06

5 .3512402200E+06 .1386288000E.JE

6 .3474905000E+06 .1454807900E+06

7 .3457806700E+06 .1503940500E+06

ITERATION NO. 1

CO-OkDINATE VARIATIONS

STATION DELTA X DELTA Y

1 9.126 -5.914

ITERATICN NO. 2

CO-ORCINATE VARIATIONS

STATION DELTA X DELTA

1 -.008 -.001

ITERATION NO. 3

CO-ORDINATE VARIATIONS

STATION DELTA X DELTA Y

1 .000 -.000

COEFFICIENT MATRIX -3-

- 33.63'10 -46.8411
-13.7305 3C.1414
- 15.23156 9.8432
11.8939 34.8o40
25.3059 13.5188
28.4002 -41.5263
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RIGHT HAND SIDE MATRIA -F-

.242
-.128

-1.249

-.853
-.060

STANGARO
ERROR

RESIDUAL

.100E+00 -.242E+00

.100E+00 .128E+00

.100E+00 .125E+01

.100E+00 -.105E+01

.100E+00 .853E+00

.100E+00 .596E-01

ADJUSTED

ANGLE OEG

ANGLES

MIN SECS

1 5 6 94 27 6.25

1 o 7 35 12 51.53

1 7 2 31 38 b.85

1 2 3 66 15 47.85

1 3 4 45 10 58.05

1 4 5 87 14 9.46

STANDARD ERROR OF CO-ORDINATES

STAT4Oh A Y POSITION

1 .160557E-01 .119578E-01 .200193E-01

ADJUSTED CO- ORDINATES

STATION X

1 .3516291181E+05 .1448990852E+06
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D. Triangulation

The input data corresponding to the Figure 11, are:

ADJUSTMENT OF TRIANGULATION BY LEAST SQUARES

1 5 14 0 1 1

345780 150394
350044 150752
356442 148778
356788 144328
351629 144899
347490.50 145480.79

79 14 33.5 1 4 5 3

55 34 32.3 1 3 4 5

56 00 48.8 1 3 5 2

57 42 28.2 1 2 3 5

40 59 38.9 1 2 5 6

59 20 44.4 1 2 6 1

48 01 23.9 1 1 2 5

27 35 52.1 1 1 5 6

45 02 04.0 1 6 1 2

72 09 20.7 1 6 2 5

35 12 51.4 1 5 6 1

31 38 05.6 1 5 1 2

66 16 48.9 1 5 2 3

45 10 57.2 1 5 3 4

340 48 43.0 1 6 1

5202.273 0.05 6 1

The complete listing of the output by HCONTRL is given on the

next page.



79/07/23. 13.17.02.5

TTTTTTT mk2R2R IIIIIII AAAAA N N GGGGG U U
T m R ;

A A NN N G G U U
T m R A A N N N G U U
I mFORRIRR t A 4 N N N G U U
T m R I AAAAAAAN NNGGGig U U
T m R , A A N NN G 4 U U
T m ic IIIIIII A A N N GGGGG UUUUU

o mmAAA TTITTIT IIIIII: 00000 N N
m m A r I J 0 NN N
Ls A A I I o 0 N N N

m A T 1 0 0 A N A
l MAMAA AA T I 0 0 N N N
L M A I I J 0 N NN
L.....64,.L. A A T IIIIIII JUJ00 N N

ADJUSTMENT OF TRIANGULATION SY LEAsI SQUARES

APPROXIMATE 03-ORDINATES

STAT.:ON

.3457800000E+06 .1503940000E+06

2 .350040000E+06 .1507520000E+06

3 .3564420000E+06 .1467780000E+06

.35678b0000E+06 .1443280000E+06

5 .3516290000E+06 .1448990000E+06

FIXED CO- ORDINATES

6 .3474905000E+06 .1454807900E+06

ITERATION NO. 1

CO-ORDINATE VARIATIONS

STATION DELTA X DELTA Y

1 -.000 .000

2 1.195

3 .605 2.197

1.150 1.410

5 .295 .564

ITE2ATICN NO. 2

COOROINATE VARIATIONS

STATION DELTA X DELTA Y

1 -.000 .000
2 -.000 -.000

3 -.00U .000

-.000 .000

5 -.000 .000

122



COEFFI LENT MATRIX -6-

0.0040 .0000 0.0000 0.0000 40.0642 3.5866
0.0060 .0000 0.0000 0.0000 -25.1253 -23.5530
0.3040 .0000 9.0760 29.4358 -30.0149 -3.4644
3.3000 .00130 23.7523 -20.5'.33 9.0760 29.4358
0.0000 .0000 -1.1360 -24.2385 0.0000 0.0000

-4.0409 4 .0304 -27.6434 -32.6903 0.0000 0.0000
21.0440 -2 .3027 -4.0469 *6.0364 0.0000 0.0000
12.8403 -2.6900 0.0000 0.0000 0.0000 0.0000

-37.4434 -13.0357 31.6902 -15.3400 0.0060 0.0000
3.0300 0.0000 -31.6932 12.3460 0.3000 1.0000

17.59/1 18.7336 0.0303 0.0300 3.0000 J.0000
-17.2971 -18.733o 32.8283 8.8925 0.3000 0.0000

0.0000 0.0000 -32.0233 -6.8925 20.4389 -25.97/4
0.3000 0.0030 0.0000 0.0000 -20.3369 25.9714

37.4434
-.3206

13.0357
.9444

0.0000
3.0000

0.0000
0.3000

0.0000
0.3000

0.0000
0.0000

-41.7043 35.9061 -4.3639 -39.4927
46.0642 3.5666 -20.9309 2.9714
0.0140 0.0000 20.9369 -22.9714
J.0000 0.0000 -32.8283 -8.8325
0.0040
0.3000

0.0000
0.0000

32.82o3
3.0033

0.8925
3.0000

3.0000 0.0030 -17.5971 -18.7336
0.0000
0.0000

0.0030
0.0000

17.5971
0.0000

18.7336
0.0003

0.0000 0.0000 -6.8634 -46.0731
0.0000 0.0000 -10.7337 30.1394
3.0100 0.0000 -15.2312 4.6411
0.0000 0.0000 11.8894 34.6634
-4.3649 -39.4927 25.3028 13.5213
0.0000 0.0000 0.0000 0.0000
3.0060 0.0000 0.0000 0.0003

HANG SIDE 1ATRIX -F-

1.001
.997

1.971
1.968

-3.632
-.490
-1.729
4.510
2.119
1.507
.074

-1.349
1.961
1.002
0.000
0.000
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STANCARD
ERROR

.100E+01

.100E+01

.100E+01

.100E+01

.100E+01

.100E+01

.100E+01

.100E+01

.100E+01

.100E+01

.100E+01

.100E+01

.100E+01

.100E+01

.100E+01

.500E-01

RESIDUAL

-.100E+01

-.100E+01

-.197E+01

-.197E+01

.363E+01

.498E+00

.173E+01

-.451E+01

-.211E+01

-.150E+01

-.717E-01

.135E+01

-.197E+01

-.100E+01

-.626E-13

.530E-14

4

3

3

2

2

2

1

1

6

6

5

5

5

5

ADJUSTED

AAL;LE GEG

5 3 79

4 5 55

5 2 56

3 5 57

5 6 40

6 1 59

2 5 48

5 6 27

1 2 45

2 5 72

6 1 35

1 2 31

2 3 66

3 4 45

ANGLES

MIN

14

34

C

42

59

20

1

35

2

1

L2

3b

16

10

SECS

32.50

31.30

46.63

26.23

42.53

44.89

25.63

47.59

1.69

19.13

51.33

6.95

46.94

56.20

STAT:JN

STANOARO ERROR OF CO-ORGINATES

X Y POSITICN

1 .91409E-01 .151466E+00 .176950E+00

2 .127367E+00 .176514E+00 .217733E+00

3 .311529E+00 .226322E+00 .385061E+00

4 .334179E+00 .201092E+00 .394202E+00

5 .153877E+00 .916465E-01 .179102E+00

ADJUSTED GO-ORCINATES

STAT.CN

1 .3457600000E+06 .1503940000E+06

2 .3500436696E+06 .1507531954E+06

3 .3564426053E+06 .1467601975E+06

4 .3567891500E+06 .1443294103E+06

5 .3516292946E+06 .1448995636E+06
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E. Trilateration

The input data corresponding to the Figure 10 are:

ADJUSTMENT OF TRILATERATION BY LEAST SQUARES

6 1 0 6 0 0

351628.00
350044.25
356442.71
356788.67

144897.00
150752.70
148778.96
144328.27

351240.22 138628.80
347490.50 145480.79
345780.67 150394.05

6064.34 0.01 1 2

6182.65 0.01 1 3

5191.05 0.01 1 4

6282.32 0.01 1 5

4179.31 0.01 1 6

8024.87 0.01 1 7

The complete listing of the adjustment of these data by HCONTRL

is given on the next page.
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TTTTTTT 0RRRRR IIIIIII I_ AAAAA

79/07,18. 13.08.47.5

TTTTTTT EEEEEEE
T R e I L 4 A r F
T R R I l a a I E
T 00RR0Q I L 4 A T EEEEEE
7 R cf I L AAAAAAA r F
T Q R I L A A r c
T R R IIIIIII LLLULL A A T EEEEEE

aR0RR0 aAAAA TTTTTTT IIIIIII 00000 N N
R A A I I 0 0 NN .1

0 a A A T I 0 0 N N N
RRPRRR A A T I 0 0 4 N 4
R 0 AAAAAAA T I 0 0 N N N
R R A a T I o 0 N NN
R 0 A A T IIIIIII 00000 N N

ADJUSTMENT OF TRILATERATION BY LEAST SQUARES

Appia0xTPATE COORDINATES

STATION X

.3516280030E+06 .1410970030E+06

FIXED COORDINATES

2 .3500442500E1.06 .1507527011E+06

3 .3564427100E+06 .1487789601E+06

.3567186703E+06 .1443282700E+06

5 .3512402200E+06 .1316293030E+16

6 .3474905000E+06 .1454807900E+06

.34578067120E+06 .1503940500E+06

ITERATION NO. 1

CO ORDINATE VARIATIONS

sTAT/04 DELTA X DELTA Y

1.014 2.014

ITERATION NO. 2

COOPOINATE VARIATIONS

STATION DELTA X DELTA Y

1 .000 .000

COEFFICIENT MATRIX

.2613 .9652
.7716 .5275
.9939 .1100
.0619 .9981
.9933 .1392
.7288 .6147
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RIGHT HAND SIDE mATRfx

-.035
.052

-.C14
-.000
.043
-.011

STANDARD
ERROR

RESIDUAL

.100E-01 .346E-01

.100E-C1 -.521E-01

.100E-01 .143E-01

.100E-01 .196E-03

.100E-01 -.435E-01

.100E-01 .105E-01

LINE ADJOISTANCE

1 2 6064.375

1 3 6112.59P

1 4 5191.164

1 5 6212.320

1 5 4179.267

1 7 10'4.811

STANDARD ERROR OF CO-ORCINATES

STATION X Y POSITION

1 .22115F.E-01 .235432E-01 .323494E-01

ADJUSTED CO- ORDINATES

STATION

1 .1516290837E1-06 .1440990735E+96
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F. Combined Networks

The input data for the Figure 12, are:

LEAST SQUARES ADJUSTMENT OF COMBINED NETWORKS

2 5 21 6 1 1

345780 150394

350044 150752

356788 144328

351240 138628
351629 144899
347490.50 145480.79
356442.71 148778.96

32 14 18.8 1 4 6 5

23 35 17.6 1 4 5 7

17 05 36.2 1 4 7 3

52 04 57.1 1 3 4 5

79 14 33.5 1 3 5 7

55 34 32.3 1 7 3 5

56 00 48.8 1 7 5 2

57 42 28.2 1 2 7 5

40 59 38.9 1 2 5 6

59 20 44.4 1 2 6 1

48 01 23.9 1 1 2 5

27 35 52.1 1 1 5 6

45 02 04.0 1 6 1 2

72 09 20.7 1 6 2 5

53 18 32.5 1 6 5 4

94 27 06.5 1 5 4 6

35 12 51.4 1 5 6 1

31 38 05.6 1 5 1 2

66 16 48.9 1 5 2 7

45 10 57.2 1 5 7 3

87 14 09.4 1 5 3 4

6282.32 0.01 4 5

5191.05 0.01 3 5

6182.65 0.01 7 5

6064.34 0.01 2 5

8024.87 0.01 1 5

4179.31 0.01 6 5

175 33 18.85 0.1 7 3

4464.116 0.005 7 3

The complete listing of the adjustment is given on the next page.
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79/07/12. 13.50.5/.S

.:.C.6... 000UU M M 636363 1 1;4111 N N EEEEEEE 033000
V . . 0 MM Mm 3 3 t

NN 4 E 0 0

! u u MMMM 9 3 I NN N E 3 0

C A 4 M 333333 i N N N EEEEEE 0 D

. u U M M d i N N N E 3 0

. C U U M m is 3 I N NN E u 0

...,. UUOJC M m 836383 '1 N N EEEEEEE C0)033

N LEEEEEE TTTTTTT w k u0000 RkKklik K K SSSSS
NA 4 T N w 0 0 R R K K S S

14 N t T w w 0 0 K K K

N N V LEEEEE i w W w U 0 RRRRRR KKK< SSSSS
N N E T w A 11 el 0 iJf-<4i KK S

N4 t ww moi 0 0 R K K S $

A EEEEEEE T w w 00003 K K K K SSSSS

.EwST Q.:104%ES ADJUSTMENT OF CD13INEJ NETwOkKS

APPROXIMATE DO-CROINATES

STAT,Ch X

1 .3457300000E+06 .1903940000E+0E

2 .3500440000E+06 .1507520000E+06

3 .3o67860000E+06 .1443280000E+06

.3512400000E.0o .1300230000E+06

5 .341t290000E+06 .1.4,4o9 90000E+06

F:XED CU- ORDINATES

o .347..365000E+G6 .1vows07900E+06

7 .32E1...J27100E+06 .1*87789000E+06

ITE<ATICN N.. 1

60-JACINATE VAR:ATION.

STATION DELTA K DELTA Y

1 .501 .141

2 .173 .792

3 .C27 -.008

-.24o .936

5 -.147 .152

ITECATION NC. 2

CU-U'RGINATE VARIATIJNS

.TATItori JE-TA x DELTA

1 .011 -.006

2 .004 -.010

3 .026 -.006

.00g -.011

5 .010 -.009
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IrEkATICN NJ. 3

CU-DkaINATE VARIATION]

STATION DELTA X DELTA

1 .011 -.006

2 .004 -.009

3 .025 -.005

4 .009 -.010

5 .009 -.008

ITERATION NO. 4

00-DRaINATE VARiATIJNS

STATION DELTA X DELTA r

1 .010 -.00s

2 .864 -.009

3 .024 -.003

4 .0G9 -.009

5 .009 -.008

ITERATION Nj. 5

CO-ORDINATE VARIATIONS

STATION DELTA ( DE.TA

1 .003 -.005

2 .004 -.008

3 .023 -.002

4 .010 -.009

5 .003 -.007

ITEkATIGN ND. 6

CO-DRDINATE VARIATIONS

STATION DELTA A DELTA Y

1 .033 -.005

2 .0C3 -.007

3 .D22 -.001

4 .010 -.008

5 .008 -.006

ITElATICN L. 7

CO-JKOINATE VARIATIONS

STATION DELTA -A DELTA Y

.008 -.005

2 .003 -.007

3 .021 -.000

.010 -.007

5 .006 -.036
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ITERATION NO. d

CO-OkOINATE

STATION JELTA 4 JELTA Y

L .003 -.014

2 .003 -.00o

3 .023 .011

4 .010 -.007

5 .037 -.005

ITEkATION NJ. 9

CO-JROINATE VARIATI3NS

STATION JELTA X DE)..T Y

.007 -.004

2 .003 -.036

3 .013 .001

4 .010 -.006

5 .007 -.005

;.tE;tATION NO.10

CC-.3ROINATE VAI(i.ATIONS

STATION JELTA A DELTA Y

.007 -.004

2 .003 -.305

3 .C13 .002

4 .310 -.006

5 .007 -.005

ITEkATIIA NO. 37

CO-JROINATE V.:kRIATIONS

STATION DELTA X JELTA Y

1 .000 -.000

2 .000 -.000

3 .001 .001

4 .001 -.000

5 .000 -.000



LJE=F, IENT MATkIA -9-

.00J0 0.000

.0000 0.00000

.0000 o.000a

.ococ 0.0000

. 0030 0.0000

. 0000 0.0000

.0000 /.0799

.0000 23.7506

. 000C -1.1411
45.03bd -27.0481

- 23.3E07 -4.0407
-2.7007 3.0000

- 13.0313 31.68/o
0.0000 -31.08,5
0.0000 0.0000
0.6000 0.3003

13.7321 0.0000
-18.7321 32.8307

0.0000 -32.8307
0.0000 0.0003
0.0000 0.0000
J.0000 0.0000
3.C600 0.0000
0.0000 0.0030
0.0000 -.2613
.6847 0.0000

0.0000 0.0003
0.000G 0.0000
0.0000 0.0000

0.0000
0.3300
0.3060
0.006C
0.30j&
0.0376
0.00u0
3.0000
0.3000

-.4.0467
21.04uo
19.1404

-37.440c
0.0060
0.0060
3.0366

17.8301
-17.03j1

0.03JC
0.006.0
3.30.0
0.3060

0.331:5
3.0000
-.7248
0.0000
0.00,0
J.00u0

-3.6041 14.709)
10.870
-2.46i5
18.3808
0.3000
0.0060
0.0000
0.30j0
0.00,50
0.0035
0.00J0
3.0060
0.0000
0.3000

-23.15o5
32.7890
3.0000
3.3000
3.0000
3.00.0

*32.7610
-.3019
0.0300
0.00u0
0.00jC
0.3000'
0.0360
J.0Jj0
0.000j

6.2162

- 18.0,1;87
0.0030
0.0003
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

-12.0770
-2.6328
0.0000
0.0000
0.5000
0.0600
2.0320
-.9981
0.0005
0.0535
0.0000
0.0000
0.0000
0.0600
0.040j

0.0000
0.0000
0.0000
0.0000
0.0000
6.0000
21.4359

-20.5471
-24.2395
-32.6079
48.0338
0.0300

- 15.3508
15.3508
0.0000
6.0000
3.0300
3.8887

-3.45887
0.0000
8.0000
0.000:
3.0000
G.0003
.9o52
0.0000
J.0000
0.0000
0.0030

32.7696 -2.0326
-32.7692
0.0000
4.3o94

-4.3834
-20.9304
20.9364

- 32.8.307
32.8307
0.0000

- 17.0001
17.0001
0.0000

-6.8701
o.8731

- 3/.0397
- 16.7301
- 15.23j5
11.8942
25.3058
20.4002

. 0c19
-.993/
-.77z0
. 2o13
.72'03
.9903

0.0300
6.0003

2.0320
0.6000
39.4933

- 31.4,J33
. 974.3

-25.9745
-8.8887
o.8357
0.0000

- 18.7321
18.7321
0.0000

-46.6738
48.8733

- 40.8412
33.1417
9..3433

34.8635
13.5193

-41.5204
.9951
.1100

-.6270
-.9652
-.6847
-.1392
0.0000
6.0003

0.0000
0.0000
18.5808

-22.9502
-41.0962
46.0056

. 6000

. 0000

.0006

.0000

. 0000

.0000

. 0000

.aooc
6.0000
0.0000
0.0000
0.0000
0.0000

-4.3094
4.3094
0.0000
. 9939

0.0000
0.0070
0.0000
0.0030

0.0300
0.0000

-18.0887
-21.4052
35.9134
3.5604
0.0003
0.0000
0.0100
0.0000
3.0000
0.0300
0.01100
0.0003
0.0003
0.0600
0.0000
3.0000
0.0000

-39.4930
39.4935
0.0000
-.1100
0.0000
0.0000
0.0000
0.0000

132

-46.0076 -3.5804
.0775 -.9970

iI4-jrIT NANO SIDE M4TCIA -F-

.941
-.737
.1o6

1.270
.793

3.910
2.549
.062

-4.757
-.7/9

v.2722
1.747
1.390

-1.586
-1.575

.790
-.824
2.609

-1.702
-.390
.001
.010
.G3I

-.013
.005
.038

3.000
0.000



iT4NJAIO
EikEkOR

.100E+01

RESIDUAL

-.341E+00

40JUS7ED ANJLES

060 MIN SECS

.100E+01 .741E+00
4 o 5 32 1* 17.66

.100E+01 -.167E+50
4 5 7 23 35 13.34

.100E+01 -.129E+01
4 7 3 17 5 36.03

3 4 5 52 4 55.63
.1006+01 -.501E+00

3 5 7 79 1* 32.71
.100E+01 -.357E+01

7 3 5 55 34 20.33
.100E+01 -.254E+01

7 5 2 56 0 40.25
.100E+01 -.069E+10

2 7 5 57 42 27.54
.100E+1;1 .477E+01

2 5 6 40 59 43.66
.100E+01 .793E+00

2 6 1 59 20 45.20
.100E+01 .518E+60

1 2 5 48 1 24.72
.100E+01 -.426E+J1

1 5 6 27 35 47.83
.100E+01 -.175E+01

6 1 2 45 2 2.25
.100E+01 -.140E+11

2 5 72 4 19.31
.100E+01 .157E+01

o 5 4 53 15 34.09
.100E+01 .157E+01

5 4 6 y4 27 6.06
.150E+61 -.794E+00

5 o 1 35 12 50.61
.100E+01 .613E+00

5 1 2 31 30 6.42
.100E+01 -.269E+01

5 2 7 66 16 40.21
.1C0c+01 .11,7E+01

5 7 3 45 10 56.40
*100E+61 .416E+00

5 3 4 87 1, 9.30
.100E-G1 -.476E-03

.100E-01 -.983E-02 A)J.OISTANCE

.100E-51 -.304E-01 4 5 6262.319

.100E-01 .131E-01 3 5 5141.C4C

.103E-01 -.453E-02 7 5 6182.619

.100E-01 -.375E-01 2 5 0004.353

.100E+03 -.460E-01 1 5 0024.305

.500E-G2 -.833E-03 6 5 4179.272

5FAT:04

STANJ4NL EkkOR OF CO-Cm JINATES

x Y RJSITION

1 .431336E-01 .425348E-01 .007853E-01

2 .425915E-01 .292832E-01 .010670E-01

3 .529519E-02 .118447E-01 .129745E-01

4 .44055E-01 .314534E-01 .540205E-01

5 .140145E-01 .156062E-C1 .242632E-C1

AjJUSTEU C:)-idrOINATES

STATiD+.

1 .3457507015E+00 .1533940203E+0e

2 .3500442537E+06 .1507526439E+06

3 .3507856433E+06 .1443232138E+06

.35124C1057E+00 .1300287699E+06

5 .35115250541E+06 .1+48940364E+06

133



134

APPENDIX II

A numerical example for each of the vertical position control

techniques; the direct leveling and the trig leveling, described in

chapter VIII, will be adjusted by the computer program VCONTRL.

The conditions, the requirements, and the procedures for running the

program are given in chapter VII. All the necessary input data and

the corresponding output of the adjustment will be given here. A

numerical example of the gravimetric leveling computation is also

presented.

A. Direct Leveling

The input data corresponding to Figure 23, are:
1

ADJUSTMENT OF DIRECT LEVELING BY LEAST SQUARES

10

200
1 5

16.298 1.1402 6 1

-17.700 1.3784 1 2

-0.687 1.5166 2 3

2.086 1.6432 3 6

23.615 0.5477 6 4

7.304 0.9487 1 4

14.162 1.0954 5 4

25.709 1.2649 3 4

-6.855 1.0488 1 5

10.863 0.7071 2 5

The complete listing of the adjustment output is given on the

next page.
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71/06/12. 23.17.28.5

LEEEEEE v V EEEEEEE . III:III N N GGGGG
E V V E L I NN N G G

L E V V E L 1 .: N N u

L .EEEEE V V EEEEEE . I N N N G

L E V V E L I N N N S GGGG

L E V v E L I N NN G G

vLL-664L tEEEEEE EEEEEEE LL66LLL IIII/I,: N N GGGSG

AJJUSTMENT OF DIRECT LEVELING 3Y LEAST SQUARES

COEFFILIENT MATRIX

1. 0. G. 0. 0.
-1. I. C. C. 0.
0. 1. C. 0.
0. U. -1. 0. 0.
0. 0. 0. 1. C.

-1. 6. 0. 1. D.
00 00 0. 1.
0. C. -1. 1. 0.

-1. a. 0. 0. 1.
0. -1. 0. C. 1.

RIGHT HAND SIDE MATRIX -F-

Z16.2980
-17.7000

-.6670
-197.9140
223.6150

7.3640
14.1620
25.7090
-6.6650
10.8630

LEV. LINE OBS. ELEV. DiFr. STANJ. ERROR ADJ.ELEW.CIFF.

6 - 1 16.298 1.1402 16.3045

1 - 2 -17.700 1.3784 -17.7104

2 - 3 -.687 1.5166 -.6861

3 - 6 2.086 1.6432 2.092C

6 - 4 23.615 .5477 23.6142

1 - 4 7.304 .9467 7.Z096

5 - 4 14.162 1.0954 14.1600

3 - 4 25.709 1.2649 25.7061

1 - 5 -6.855 1.0468 -6.t504

2 - 5 10.863 .7071 10.8601

STATION ADJ.ELEVATION STAND.ERROR

1 2116.3046 .00435

2 196.59+1 .00558

3 197.9080 .00570

223.6142 .00302

5 209.4542 .00511

FIxE3 ELEVATION

6 200.000
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B. Trig Leveling

The input data corresponding to the Figure 24, are:

0

TRIG LEVELING BY LEAST SQUARE

45 10 10

12 3 1 0 1

1

1000
-9480 1.0 14037.6 0.1 4.96 0.00 4 1

-8242 1.0 19211.8 0.1 4.96 9.24 4 2

-5964 1.0 19896.3 0.1 4.96 0.00 4 3

9417 1.0 14037.6 0.1 0.68 10.08 1 4

-1525 1.0 17064.9 0.1 0.68 10.42 1 2

4459 1.0 26328.4 0.1 0.68 0.00 1 3

8187 1.0 19211.8 0.1 4.80 10.08 2 4

1428 1.0 17064.9 0.1 4.80 0.00 2 1

2926 1.0 13706.8 0.1 4.80 0.00 2 3

5847 1.0 19896.3 0.1 0.83 10.08 3 4

-693 1.0 26328.4 0.1 0.83 0.00 3 1

-2965 1.0 .13706.8 0.1 0.83 10.42 3 2

The complete listing of the output of the adjustment by VCONTRL

is given on the next page.
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71/0o/12. 23.17.35.5

TTTTTTT ms,..:kl.m I.I:ii: GG4645
I m m i G

-
J

T K k
i.

G
T KRAKNK t G
T m R G GGGG
T m 4-. t G
I K. R :iiiii: G6GGG

- LEEEEEt V V EEEEEE L IIIIII, N N 6vGGG
E II W E L I NN N G u

6 c V V E 6 I N N N G
L EEEEEE V V EEEEEE L NNNG
L E V V E 6 I 11 h 14 u GGGG
L E V V E i. i S. NN G C.

...L.-L. tEEEEEE . EEEEEEE L...1.6..L I,-III: N N GUGGG

TRIO LEVELING BY LEAST SDJAZE

TUG.-ANE
065.VEkT.ANGLE
DEG IIN SED 3TAND.EmKOR J9.3. J:ST. STANJ.ERROR

4 - 1 -2 37 60.00 1.00 14037.60 .1000

* - 2 -2 17 22.00 1.00 19211.80 .1000

4 '' 3 -1 3/ 24.00 1.00 19696.30 .1000

1 - 4 2 36 57.00 1.00 14037.60 .1000

1 - 2 -0 25 25.00 1.00 17064.90 .1000

1 - 3 0 7 39.00 1.0C 26328.40 .1000

2 - 4 2 la 27.00 1.0C 19211.60 .1000

2 - 1 0 23 46.00 1.00 17064.90 .1000

2 - 3 0 *6 40.00 1.00 13706.80 .1000

3 - 4 1 37 27.00 1.00 19896.33 .1000

3 - 1 -0 11 33.00 1.00 26328.40 .1000

3 - 2 -0 45 25.00 1.00 13706.30 .1000

CDEFFIwIENT MATRIX

lo
u.
J.

u.
4.
u.

0.
0.
1.

-1. J. G.
1. G.
io 1

0. -1. 0.
1. -1. G.
J. 1. 1.
J. G. -1.
1. 6. 1.
0. 1. -1.

4I ;MT haND SIDE MATRIA wEIG4T MATkiA

363.3102 214.346
235.2356 114.703
*37.o534 107.207

-364.0114 214.024
-129.5256 146.073

73.5123 ol.375
-234.7340 114.688
128.9266 146.071
203.1143 22o.251

-.3o.95o3 107.2C2
-73.363* 4)1.345
-202.7737 226.262
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4 ''' 1

2

4 - 3

1 - 4

1 - 2

- 3

2 - 4

2 - 1

2 3

3 - 4

3 - 1

3 - 2

138

40J.ELEW.OIFF.

-630.1495

-765.4140

- 562.5072

436.1495

-129.2445

73.5624

745.4140

129.2645

202.6449

562.5672

-73.5624

-202.8469

STATION 40J.ELEV4TION STAND.EiiROR

1 343.8505 .20062

2 234.5860 .21540

3 437.4328 .22904

FIAEJ ELEVATION

1000.000
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C. Gravimetric Leveling

To demonstrate the theory of the geopotential numbers, field

measurements with a LaCoste and Romberg Model G Geodetic Gravity

Meter were taken on five stations located on the Oregon State Univer-

sity (OSU) Campus, Corvallis. These five stations are located in

either line 15 of the National Geodetic Survey (NGS) Leveling Network

or from the Oregon Gravity Base Station Network. Figure 26, shows the

five stations and the gravity observation sequence.

COLLEGE

CORVALLIS
OSU-PC (4) = 44°34.1')
(GB#1) (x = 123°16.5')

CORVALLIS
OSU-KL

((p= 44%4.0'

(X= 123 16.5')

T 137T

Sketch not to scale

0 Fixed Gravity Base
Station

CDUnknown Gravity
Station

Figure 26. Level Net and Gravity Observation Sequence.

Computational Procedures

The detail computation procedures are given in [14]. Only a

very brief description will be given here. The interest is in

finding the actual gravity values, g's, at the five observation

points. The mean readings from the gravity observations and the
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corresponding local times on two separate days are given in column

(2) of Table 5. From the gravity meter calibration chart provided by

the manufacturer (Table 7), corrected values (mgals) for the corres-

ponding mean readings (counter reading in the calibration chart) are

obtained and they are tabulated in column (5) of Table 5.

The next step is to apply the Earth Tide correction. For this,

Earth Tide Correction Tables were obtained from the Department of

Oceanography, Oregon State University computer. These are given in

Tables 8 through 10. The earth tide correction for an instant of time

is then interpolated from these tables and it is tabulated in column

(6) of Table 5. The correction is algebraically added to the corrected

value of column (5) to obtain the corrected reading in column (7).

The instrument drift correction, in column (8), has been computed

linearly for the difference of time from the corrected readings mis-

closure at the starting Gravity Base Station 1 (GB #1). This, alge-

braically added to the corrected reading, in column (7) gives the

relative gravity in milligals (mgals) in column (9) of Table 5.

From the published data for the Oregon Gravity Network, the

gravity value for the Corvallis OSU-PC (Gravity Base Station 1;

GP #1 in Figure 26), [7], is 980,573.14 mgals. By comparing this

value with the relative gravity at GP #1 in Table 5, the difference is

976,341.609 mgals.

This value must be added to each of the relative gravity values to

obtain the surface gravity values, tabulated in column (2) of Table 6.

Values in column (3) are computed similarily for the second day of



Table 5. Gravity Computation

Station
Mean

Reading

Mean
Local Time

h in

GMT

h in

Corrected
Value
(mgals)

Earth
Tide
(mgals)

Corrected
Reading
(mgals)

Drift
Corr
(mgals)

Relative
Gravity
(mgals)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Date: 04/20/1979, PST; GMT: 04/20,21/1979

GB # 1 * 4024.132 15 36 23 36 4231.544 -0.013 4231.531 0.000 4231.531

U - 54 4024.236 15 40 23 48 4231.653 -0.009 4231.644 -0.005 4231.639

E a Tt 4026.376 16 05 00 05 4233.903 -0.003 4233.874 -0.012 4233.862

GB N 4** 4024.804 16 15 00 15 4232.250 0.001 4232.251 -0.016 4232.235

College 4024.290 16 27 00 27 4231.710 0.005 4231.715 -0.020 4231.695

GB N 1 4024.135 16 41 00 41 4231.547 0.010 4231.557 -0.026 4231.531

Date: 05/08/1979, PDT; GMT: 05/08/1979

GB # 1 4024.008 15 26 22 26 4231.413 -0.022 4231.391 0.000 4231.391

U - 54 4024.126 15 36 22 36 4231.537 -0.027 4231.510 -0.002 4231.508

T a li 4026.230 15 46 22 46 4233.750 -0.032 4233.718 -0.005 4233.713

GB # 4 4024.700 15 57 22 57 4232.141 -0.037 4232.104 -0.008 4232.096

College 4024.196 16 21 23 21 4231.611 -0.048 4231.563 -0.013 4231.550

GB N 1 4024.060 16 48 23 48 4231.468 -0.057 4231.411 -0.020 4231.391

* Corvallis OSU-PC (Gravity Base #1)

** Corvallis OSU-KL (Gravity Base #4)
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observations. Values in columns (2) and (3) are averaged to obtain the

mean surface gravity g, as explained earlier, in column (4). The ele-

vations of U - 54,T air, and COLLEGE in column (6) are from the published

values by the U.S. Department of Commerce in the Vertical Control Data,

Sea Level Datum of 1929, and, the elevations of the other two stations are

taken from [14]. These elevations should be the values after the

adjustment of the observation by the least squares adjustment, de-

scribed in this paper. The elevations in column (5), are then multi-

plied by the corresponding mean surface gravity, in kgals, of column

(4), to obtain the geopotential numbers (GPU) tabulated in column (6)

of Table 6.



Table 6. Geopotential Numbers

Station

Surface Gravity
Mean

Surface Gravity
(mgals)

Elevation

(m)

GPU
(Kgal m)

04/21/79
(mgals)

05/09/79
(mgals)

(1) (2) (3) (4) (5) (6)

GB # 1 980,573.14 980,573.14 980,573.140 77.142 75.643

U - 54 980,573.248 980,573.257 980,573.253 76.787 75.295

T 13 7 980,575.471 980,575.462 980,575.467 71.337 69.295

GB # 4 980,573.844 980,573.345 980,573.844 73.336 71.911

College 980,573.304 980,573.299 980,573.302 72.219 70.816
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Table 7. Calibration Values.

Milligal Values for LaCoste& Romberg, Inc. Model G Gravity Meter No. 126

Counter Value in Factor for
Reading* Milligals Interval

000 000.00 1.05230
100 105.23 1.05220
200 210.45 1.05210
300 315.66 1.05200
400 420.86 1.05190
500 526.05 1.05185
600 631.23 1.05175
700 736.41 1.05170
800 841.58 1.05160
900 946.74 1.05155

1000 1051.89 1.05150
1100 1157.04 1.05145

1200 1262.19 1.05140
1300 1367.33 1.05140
1400 1472.47 1.05140
1500 1577.62 1.05140
1600 1682.75 1.05140
1700 1787.89 1.05140

1800 1893.03 1.05140

1900 1998.17 1.05140
2000 2103.31 1.05140
2100 2208.45 1.05135
2200 2313.58 1.05135
2300 2418.72 1.05135
2400 2523.85 1.05135

2500 2628.99 1.05135
2600 2734.12 1.05135
2700 2839.26 1.05140
2800 2944.40 1.05140

2900 3049.54 1.05145
3000 3154.69 1.05145
3100 3259.83 1.05150
3200 3364.98 1.05150
3300 3470.13 1.05150
3400 3575.28 1.05150
3500 3680.43 1.05150

Counter Value in Factor for
Reading* Milligals Interval

3500 3785.58 1.05150
3700 3890.73 1.05150
3800 3995.88 1.05145
3900 4101.02 1.05145
4000 4206.17 1.05145
4100 4311.31 1.05140
4200 4416.45 1.05135
4300 4521.59 1.05135
4400 4626.72 1.05130
4500 4731.85 1.05125
4600 4836.98 1.05120
4700 4942.10 1.05120
4800 5047.22 1.05105
4900 5152.33 1.05095
5000 5257.43 1.05090
5100 5362.52 1.05085
5200 5467.60 1.05075
5300 5572.68 1.05070
5400 5677.75 1.05060
5500 5782.81 1.05045
5600 5887.85 1.05025
5700 5992.88 1.05005
5800 6097.89 1.04985
5900 6202.87 1.04965
6000 6307.84 1.04950
6100 6412.79 1.04920
6200 6517.71 1.04895
6300 6622.60 1.04865
6400 6727.47 1.04840
6500 6832.31 1.04810
6600 6937.12 1.04780
6700 7041.90 1.04750
6800 7146.65 1.04720
6900 7215.37 1.04685
7000 7356.06

Note: Right hand wheel on counter indicates approximately 0.1 milligal.

8-2-66
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Table 8. Earth Tide Corrections - April 20, 1979.

EARTH TIDE GRAVITY CORRECTIONS TO BE ADDED ALGEBRAICALLY

Table for Location: 44 33.58 Lat. 123 17.68 Long., 240.0 Feet Elevation

On Day: 20 April 1979 From 0000 Hrs to 2400 Hours GMT

Time (GMT) Tide (MGAL) Slope (Mgal/Min)

0 0.036300 0.000000
30 0.045913 0.000275
100 0.054158 0.000216
130 0.060638 0.000146
200 0.065006 0.000066
230 0.066989 -0.000020
300 0.066403 -0.000108
330 0.063166 -0.000195
400 0.057307 -0.000278
430 0.048967 -0.000352
500 0.038398 -0.000415
530 0.025958 -0.000462
600 0.012095 -0.000492
630 -0.002668 -0.000503
700 -0.017760 -0.000494

730 -0.032587 -0.000466

800 -0.046563 -0.000419
830 -0.059141 -0.000357
900 -0.069842 -0.000282
930 -0.078289 -0.000198

1000 -0.084223 -0.000110

1030 -0.087521 -0.000023

1100 -0.088204 0.000059

1130 -0.086438 0.000131

1200 -0.082519 0.000189

1230 -0.076854 0.000231

1300 -0.069936 0.000254

1330 -0.062307 0.000260
1400 -0.054520 0.000247
1430 -0.047104 0.000219
1500 -0.040528 0.000179

1530 -0.035163 0.000130

1600 -0.031269 0.000076

1630 -0.028968 0.000024

1700 -0.028245 -0.000024

1730 -0.028950 -0.000062

1800 -0.030813 -0.000088
1830 -0.033466 -0.000100
1900 -0.036472 -0.000096

1930 -0.039356 -0.000076
2000 -0.041644 -0.000042
2030 -0.042896 0.000005
2100 -0.042737 0.000062
2130 -0.040885 0.000124
2200 -0.037171 0.000187

2230 -0.031555 0.000248
2300 -0.024126 0.000301
2330 -0.015106 0.000342
2400 -0.004833 0.000000
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Table 9. Earth Tide Corrections - April 21, 1979.

EARTH TIDE GRAVITY CORRECTIONS TO BE ADDED ALGEBRAICALLY

Table for Location: 44 33.58 Lat., 123 17.68 Long., 240.0 Feet Elevation

On Day: 21 April 1979 From 0000 Hours to 2400 Hours GMT

Time (GMT) Tide (MGAL) Slope (Mgal/Min)

0 -0.004833 -0.000000

30 0.006248 0.000379

100 0.017618 0.000369

130 0.028701 0.000340

200 0.038903 0.000291

230 0.047641 0.000225

300 0.054379 0.000142

330 0.058653 0.000049

400 0.060109 -0.000053

430 0.058520 -0.000157

500 0.053809 -0.000258

530 0.046055 -0.000352

600 0.035502 -0.000432

630 0.022546 -0.000494

700 0.007723 -0.000535

730 -0.008313 -0.000551

800 -0.024833 -0.000541

830 -0.041061 -0.000505

900 -0.056225 -0.000446

930 -0.069601 -0.000365

1000 -0.080555 -0.000268

1030 -0.088589 -0.000159

1100 -0.093368 -0.000046

1130 -0.094745 0.000065

1200 -0.092776 0.000169

1230 -0.087711 0.000258

1300 -0.079985 0.000327

1330 -0.070187 0.000372

1400 -0.059020 0.000392

1430 -0.047257 0.000386

1500 -0.035684 0.000354

1530 -0.025054 0.000301

1600 -0.016028 0.000230

1630 -0.009137 0.000146

1700 -0.004746 0.000057

1730 -0.003026 -0.000031

1800 -0.003953 -0.000112

1830 -0.003707 -0.000180

1900 -0.012695 -0.000229

1930 -0.019574 -0.000257

2000 -0.027299 -0.000262

2030 -0.035163 -0.000243

2100 -0.042450 -0.000201

2130 -0.048483 -0.000140

2200 -0.052672 -0.000062

2230 -0.054551 0.000025

2300 -0.053811 0.000116

2330 -0.050320 0.000206

2400 -0.044136 0.000000
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Table 10. Earth Tide Corrections - May 8, 1979

EARTH TIDE GRAVITY CORRECTIONS TO BE ADDED ALGEBRAICALLY

Table for Location: 44 33.58 Lat., 123 17.68 Long., 240.0 Feet Elevation

On Day: 8 May 1979 From 0000 Hours to 2400 hours GMT

Time (GMT) Tide (MGAL) Slope (Mgal/Min)

0 -0.054856 0.000000
30 -0.055841 0.000065
100 -0.053881 0.000156
130 -0.049201 0.000233
200 -0.042226 0.000289
230 -0.033544 0.000322
300 -0.023870 0.000329
330 -0.013994 0.000309
400 -0.004726 0.000263
430 0.003166 0.000195
500 0.009008 0.000109
530 0.012274 0.000011
600 0.012618 -0.000090
630 0.009905 -0.000189
700 0.004226 -0.000278
730 -0.004116 -0.000350
800 -0.014620 -0.000400
830 -0.026617 -0.000424
900 -0.039323 -0.000419
930 -0.051882 -0.000385
1000 -0.063429 -0.000324
1030 -0.073149 -0.000239
1100 -0.080323 -0.000135
1130 -0.084381 -0.000019
1200 -0.084940 0.000104
1230 -0.081827 0.000225
1300 -0.075091 0.000336
1330 -0.065003 0.000432
1400 -0.052041 0.000506
1430 -0.036860 0.000553
1500 -0.020255 0.000571
1530 -0.003118 0.000558
1600 0.013622 0.000514
1630 0.029047 0.000432
1700 0.042305 0.000345
1730 0.052667 0.000230
1800 0.059562 0.000102
1830 0.062617 -0.000031
1900 0.061684 -0.000161
1930 0.056840 -0.000218
2000 0.048393 -0.000384
2030 0.036863 -0.000464
2100 0.022947 -0.000515
2130 0.007483 -0.000536
2200 -0.008604 -0.000525
2230 -0.024367 -0.000484
2300 -0.038882 -0.000415
2330 -0.051324 -0.000323
2400 -0.061010 0.000000
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PROGRAM HCONTR,. 73/73 OP1=2 FTN 4.7.465

1 PRGGRAM HCUNTkL(INPUT,OUTPUT,TAPE60=INPUT,TAPE61 =CUTPUT)

DIMENSION AC(50),YD(53),IDEG(50),MIN(50),SEO(50),
1 SIoMA1(501,NUMI(50),NUMJ(501,NUAK(501,

5 2 UIST(50),SiGMA2(50),LNLMI(53),LNUMJ(50),
3 IAZO(4),IALM(4),5EGAZ(4),SIGMA3(41,
4 iNUI (4) ,INOJ (A) ,F(1041,0(104).
5 A(104,d01,4T180,1041,ATW130,1041,a(d0,80),
6 T(104),DELTA(60),JELX(AG),0ELY(401,DIG(60),

10 7 AD(104)104V(104),TITLE(15),V(100,EST(1001,
d FOIsT(4),STE(4),NOI(4),NJJ(4)

C COMPUTER LANoUAGE ---- FORTRAN IV

15 G PROGRAMMED BY RAMESH L. SHPESTHA

L THIS PROGRAM ADJUSTS A NETWORK OF ANGLES, DISTANCES
C OR AZIMUTHS ONLY, OR THE COMBiMATION OF ANY TWO OF
U ALL BY THE LEAST SQUARES TECHNIUJE USING 03SERVAT/ON

23 c EQUATIONS. DONsECUENTLY, THIS PROGRAM IS CAPABLE OF
u ADJJSTING TRAVERSE, iNTERSECTILN, RESECTION,
C TRIANGULATION, TRILATERATION, OR COMBINED NETWORKS.

G. A MAXIMUM oF 104 03SER4ATION EQUATIONS CAN BE ADJUSTED,
25 C SUCH THAT THE TOTAL NUMBER OF FIXED AND UNKNOWN POINTS

G JJES NOT EACEEJ 10 AND 40 RESPECTI4E.Y, THE MAXIMUM
G NUMBER OF FIxED AZIMUTHS AND DISTANCES MUST NOT EXCEED
C 4 EACH.

30 C MEASURE) ANG-E(SlIFIAED AZIMUTH(S),AND THEIR RESPECTIVE
C STANDARD ERRORS CAN MADE ANY DECIMAL PART OF " SECOND ".

C THE MEASURED ANGLES MUST BE IN DEGREES, MINUTES, AND
SECONDS. HE mEASUREJ DISTANCES CAN BE EITHER IN FEET,

C35 C OR METERS. THE FIXED AZIMUTH(S)- MUST SE TAKEN FROM THE
NORTH AND MUST INPUT IN DEGREES, MINUTES, ANJ SECONDS.
THE FIXED uisTANCE(S) CAN BE EITHER FEET, OR METERS.
THE UNITS mUST dE CONSISTENT. FOR INSTANCE, IF THE
APPiOxiMATE AND FIAEJ CO- ORDINATES ARE IN FEET,

AG THE DISTANCE(S) MUST ALSO BE IN FEET.

NFA) =NJ. OF FIXED STATIONS
NTRAV=Ns. OF UNKNOWN POINTS
NAP66=013. OF OBSERVED ANGLES

45 NJIST=NC. uF 03SER4E0 DISTANCES
NAZ =NU. OF FIAEU AZIMJIHS
NFU =NJ. OF FIXED DISTANCES

ITE2=0
53 PI=3.141392654

ONE=PI/048000.
CONV=ISSINIONEI

INPUT TITE (UP TO 75 CHARACTERS,LETTERS,NLMERALS OR BOTH)

REA)(63,3) (TiT,E(I),I=1,15)
3 FORMAT(15A5)

wRITE(61,4) (TIT-E(I),I=1,15)
* FORIAT(t1t,T5,15A5//)

C INPUT NUMBER OF FIXED STATIONS,NUM3ER OF UNKNOWN POINTS,
NUMBED .),7 OaSERVEJ ANGLES, NUhdEk (OF 03SERJEC DISTANCES,
NUMBER OF FIRED AZIMUTHS AND NUMBER OF FIXED DISTANCES.

65 REAJ(600) NFX0pNTRAJ,NANGLOOIST,NAI,NFO

55

OD

NSTA=NFAJ+NTRA)(
NT=2NTRAV
NP=NANGL+NJIST

70 NISJM=NP+NAZ
NTOI=NP.NAZ+NFO

NUMBER THE UNKNOWN STATION(S) F1RST,AS 1,2,... IN
(N IS NJHJEk,N6 LETTER IS ALLOWED),AND FIXED STATION(S)

75 AS N4.104+2,...,ETG. (ANY STATION NUMBER. MUST NOT
C EXCEED Th0 DIGITS).
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PROGkAM HCONTR6 73/73 OPT=2 FIN 4.74465

C INPUT APPROX. CO-OROINATES, X AND Y, OF THE
L UNKNOWN STATION(S) ACCORDING TO THE ORDER OF THE NUMBERED

BO L UNKNOWN STATIONtS) ANO THEN THE FIxEJ CO-OROINATES,
C X ANO Y, ACCORDINL, TO THE ORCER OF THE OF THE
C NJI3EREU FIXED STATIJN(S).

READ(60.) (4C(I)tIC(I),I=1.NSTA/
85

WRITE(61.51
5 FOKIAT(* *J22.*APPROXIMATE CO-ORCINATEW/
1 t *.T7.*STATION*,T24.*AW44.*Y*/)

90 WkITE(61.101 (;.(I1LYC(I),I=1.NTRAVI
10 FOkMAT(t ioTlit.J.T1O.E10.10.130.L181.10/1

NCNT=NTRAV+1
wRITE(51915)

95 15 FORIAT(*0*,722.*FIXED CO-ORDINATES*/)
wRITE(t1.17) (I.XO(I1LYC(I),I=NCAT.NSTA)

17 FORMATC* Wdti3.T1ott16.10.T36.E16.10/)

C INPUT OBSERVED AN0LE IN DEGREES.MINCTEStANO SECONDS FOLLCNED
100 L BY ITS STANJARO DEVIATION in SEUJNjS AND STATION UMBERS

I,J.K WHEKE I=NUM9ER AT THE MEASURED ANGLE, J,K IS TAKEN
IN THE CLOCKWISE MANNER LOOKING THROLGH THE MEASURED
ANG,.E FkOM I TOWARDS J AND K.

C REPEAT FOR ALL ANGLES.
175

IF(NANGL.E44.0) GO TO 18
REA)(B011tIOEG(I).MIN(I).SECti).SIGIA1(I).NUdI(I)OUMJ(I),

1 NUMK(11.1=1.NANGLI

113 L INPUT MEASURED DISTANCE, ITS STANDARD DEVIATION
IN THE SAME UNIT AS THE DISTANCE FOLLOWED 3Y STATION

C NUM3ERS OF THE TWO EADS (I,J OR J,I).
C REPEAT FOR ALL DISTANCES.

115 18 IF(NOIST.EJ.0) GC TO 19
kEAD (b0 t ) (Di sT( .SIGMA2(1) NU1I (I1,LNUNIJ .I=1.NOIST)

19 IF(NAZ.E7.0) GU TO 22

120 C. INPUT FIXED AZIMUTH IN JEGREES.MINJIESIAND SECONDS FOLLOWED 3Y
C ITS STANDARD DEV:ATIJN IN SECONDS ANJ STATION NUMBERS
C OF ITS TWO ENDS i,J FOR THE FIXED AZIAJTH FROM I TO J.

REPEAT FOR ALL FIAEU AZIMUTHS.

125 REA7(60..)(IAZJII),IAZI(I).SEGAZ(1),SIGMA3(i),INOI(I),
2 iN0J(I),I=1.NAZ)

22 IF(4FO.E4.0) GO TO 20

130 C INPUT FIXED DISTANCE, ITS STANDARD DEVIATION (IN THE SAME
C UNIT AS THE DISTANCE) FOLLOWED BY STATION NUMBERS OF ITS
C ENDS (I,J Ok J.1).

REPEAT FOR ALL FIXED DISTANCES.

135 REA3(80.*)(FDIST(I).STE(I)tNOI(I).NOJ(I),I=1.NFD)

C FORMATION OF COEFFICIENT MATRIX FOR ANGLES.

20 IF(NANGL.EQ.0) GC TO 31
143 DO 30 M=1.NANJL

I:NJMI(M)
J=NJMJ(M)
K=NUMK(M)

1,5 X1=KC(J)-XC(I)
Y1=YC(J)-YL(I)
X2=XC(K)-X6(I)
Y2=YC(K)-Yv(I)

150 CALL ANG.E(X1.1.1.X2tY2,COMP,Al2tA21)

EST(H)=COMP
ANs2=FLOAT(IDEG(A)) 43600.+FLOAT(MIN(M))*60.+SEC(M1
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155

160

165

PROGRAM HCONTRL 73/73 OPT=2

Flm1=AN32COMP
OIST1=x1x14.Y1*Y1
DIST2=x21.2.121,2
0(m)=1./(SIGm41(M)SIGNA1(M)1

A(M,2*I-1)CDNY(Y1/DIST1-1(2/OIST2)
Aim,2II=CuN/+(x2/JIST2Xl/OIST1)
ACM,2..1-1)=CONV(Y1/0IST11
Atti.21.1)=CONIPP(X1/DIST1)
AIN,2wk-1)=CJNv*(Y2/JIST2)
A(M.2,K)=COIV(X2/0I5T2)

FTN 4.7.485

30 CONTINUE

C FORMATION uF COEFFICIENT MATRIX FOR DISTANCES.
170

31 IF(NDIST.EQ.01 GC TO 41
JO 40 II=1.NDIST
I=LNUmI(il)
J=64u4J(II)

175 OX=xCl.1)XC(I)
OY=YC(J)-11.AI)

.5"SUR=Dx*Ox4.01POY
COmP=.)ORTUSQR)

180
N=II+NANGL
4(M)=1./(SIGMA2(II)SIGMA2III))

EST(M) =COMP
185

F(M)=CIST(IIICOMP

A(M,20I-1)=(0X/COMP)
A(mo2'0I1=(0Y/COMP)

190 AIm,20J-1)=Dx/UUMP
Atm.2J)=DY/COMP

40 CONTINUE

195 41 IF(MAZ.E2.0) GO TO 60
6 FORMATION OF COEFFICIENT MATRIX FUR FIXEO AZIMUTHS.

DO 50 III=1,NAZ
200 I=I40I(III)

C1=KC(J)AC(I)
C2=rC(J)YC(I)
C3=O1,C1.C2C2

205
M=III.NP

Al4,2*I-1)=CO(C2/C3)
210 401,2*II=CUNV*(C1/C3)

A(m,2*J-1)=CONV(C2/031
A(m.24,J1=L.ONV*(01/031

F(H)=0.
215

50 CONTINUE

60 IFOIFD.EJ.01 GO TO 05

220 C FORMATION OF COEFFICIENT MATRIX FOR FIXED DISTANCES.

00 61 66=1,NFO
I=NOI(4.,)
J=N0J(.6)

225 00x=x.,(J)XC(I)
ODY=Y;(J)YClii

M=NU)UN+LL

230 Qtril=1./(STE(1.1.) STE(L6))
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FiOGRAM N:ONTRL 73,73 OPT=2 FTN 4.7+485

F(M) =0.

A(M.2I-..1)=.(00X/FDIST(t.L))
235 A(M,241)=-(JOY/FOIST(LL11

A(11.2.i...1)=00A/FGIST(LL)
61 A(M.2J)=UUY/FOIST(I.L1

C FORMATION OF NOkMAL EQUATIONS.
2,0

65 00 70 I=1.NT
U0 70 J=1INT3T
AT(I.J)=0.

70 AT(I.J1=A(J.D
245

DO 80 I=1.NT
DO 80 J=1.NTOT

80 ATW(I.J1=AT(I.J)NIJI

230 GO 90 I=1.NT
00 90 J =i,NT
5(1..1)=0.
00 90 X=1INTOT

90 3II.A=8(40A+ATW(I.KI*A(K.A
255

C INVERT NORMAL EQUATION MATRIX.

00 100 I=1.NT
T(I)=0.

260 00 100 j=1,NTOT
100 T(I(=T(Il+ATW(I.J)*F(JJ

CO 110 K=1.NT
DO 120 J=1.NT

235 IF(J -K1 140.120.140
14C 8(K.J)=9(K.J)/04K,K,
120 CONTINUE

3(K.K(=1.13(KIK)
00 110 I=1.NT

270 IF(I-K) 150.110.150
150 00 130 611.NT

IF(..-.K( 130.130,160
1E0 8(i.L)=3(I.C(....3(I.043(K.LA
13J CONTINUE

275 5(I,K)=.-3(I.K)38(K.K)
110 CONTINUE

C CJMPUTE PAkAMETERS (UNKNOWNS).

200 DO 170 I=1.NT
DELT4(I1=0.
00 170 J=1.NT

170 DELTA(I)=UcLTA(I)+3(I,J)*T(J)

285 C PERFORM ITERATIONS (IF NECESSARY).

ITER=ITE1.1
IF(ITER.UT.10) GO TO 192
mRITE(61,1801 ITER

290 180 FORMAT(t0x,T12.tITERATION NO.t1I2//
s,T20,2C0-ORCiNATE VARIATiONSt//

2 t t,T1o.*STATIUNt.T28,t(-JLTA At,T38,t0ELTA Yt/)

DO 190 L=1.NTRAV
295 L1=2*L-1

L2=2,6
wRITE(61.200) L DELTA(L1).0ELTA(62)

200 FOk4AT(1 X.T18.12.727.F8.3.T37.F8.3/1
190 CONTINUE

300
192 00 205 I=1.NTRAV

II=2*I-1
JJ=2*I
DELK(i(=KC(I)

305 DELT(I)=YC(I)
X;(:)=XC(I))ELTA(iI)

205 YC(I)=YCIII+JELTA(JJ)
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PK0;K4M K.UNTRL 73/73 OPT=2 FTW 4.7+485

310 DO 210 I:IINT
OIG(I)=0ELTA(I)
A8=A6SOELTA(I)/

210 IF(49.GT.0.001) GO TO 20

315 IF(ITER....E.10) GO TO 218
oRITE(61,212) ITER

212 FORMAT(505.721,5 $//
1 5 50.2195. . . . 2///
2 5 $,T12,5ITERATION NO.$,I3//

320 3 : $,T20,5C0-OROINATE VARIATIONS5//
4 5 tirT18,$STATION$,T28,t0E-Tu Xt,T38,SDELTA Y5/1

DO 213 L33=1,NTRA5
L11=2*L33-1

325 L22=2*1-33
213 MRITE(619214)...330ELTA(L/1)1DELTA(L22)
214 FORNATIt 5016,I2027,F8.3.T37.F8.3/)

330

335

C COMPUTE RESIDUALS.

216 00 220 I=1,NTOT
AD(I)=0.
00 220 J=11NT

220 AD(I)=AJ(I)+A(I,J)OIG(J)

DO 23G Iml,NTOT
230 V(I) =A0(i) -F(I)

00 240 I=1INTOT
340 240 WO(I)=Q(I)+5(4)

C COMPUTE POST PRIORI.

VTWV=0.
345 DO 250 I=1,NTOT

250 1/TWV=VTKW.V(I1*WV(I)

PRIORI:VTWV/INTOT-NT)

350 WRITE(61,260)
2E0 FORMAT(505,10A,*COEFFICIENT MATRIX ..3-5/)

CON:(FLOAT(NT))/6.
N0T=INT(CON)+1

355
11=0
N11=0

OD 265 II=1,NOT
360 M1=MT-E-N11

N11=NT-N1

J1=II.I1
N12=N11-J1s1

365 IF( 1.1-T.0) GO TO 266
GO TO 269

266 N12:64-N1
NII=NT
IF(N12.ED.0) GO TO 283

370 269 00 270 I=1,NTUT
270 WkITE(61,200) N12.(A(I,J),J=J1,N11)
280 FOKMAT(5 $,= (F11.41)

11=5+11
4RITE161.261)

375 281 FORMAT(s 50.5,5 5,//)
265 CONTIVUE

283 WRIrE(61,284)284 FaRIATIt0t,i3A.tRIGHT NANO SIDE MATRIX -F-.4/1
360 WRITEI61,2651 lF(I),I=1,14TOTJ

285 FGR(AT(t 5,15A,F13.3/

WRITE(61,290)
290 FORMAT(5050.1544STANJARD5J31,$RESIDUALt/

385 1 t 5,716.*EKRORt/)
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PROGRAM NCUNTRL 73/73 OPT=2 FTN 4.7+485

00 242 I=1,ATOT
011=1./O(I/
Q1=5.0,7(411)390 292 4kITE(61.300) Oloaf(I1

300 FORMAN: :.714.E3.3,T3O.E9.3i)

C COMPUTE AOJUSTEJ ANGLES
335 IF(NANG,..EC.3) GO TO 304

miITE(61.3011
301 FORMAT(*0:1T11.:ADJUSTEJ ANGLES://

1 * $0.7,:ANSLE:.716.:OEG:IT21,:MIN*.T27.:SECS*/)
430 00 302 M=1.NANGL

SOL=EST(4)
CAL. JEJREE(SOCIIMAT.MHATISHAT)
A=NJMI(4)
J=NJMJ(MI

405 K=NJM<(M1
302 MRITE(61.303) I.J,K.INATOMAT.SHAT
303 FORIATI: $0.4.3i3.1.16,131T21,13,T26.F5.2/1

304 IF(40IST.E3.01 GO TO 308411 ARITE(61,3051
305 FORMAT(t0i.T7.:LINEtIT141:AJJ.DISTANCE:/)

NO=4A4GL+1
00 306 N=NO.NP

415 NN=4-NANSL
I=LNUMI(NN)
J=LIUMJ(NN)

306 WRITE(61.307) I.J.EST(N1
307 FORMATU i.T5.213,715.F10.3/1

'.20

C COMPUTE VARIANCE/COVARIANCE MATRIX.

308 DO 310 I=1.NT
03 313 J=1.NT

425 310 6(I.JJ=9(i,J)*PRIORI

NRITE(61.320)
320 FORIAT(*-3*.T18.:STANOARD ERRCR OF CO-ORDINATES://

1 t :.T7.:STATION*024,:Xx.T39.*Y*,T49.:POSITION:/)433
C COMPUTE STATDARO ERROR OF ADJUSTED CO-OROINATES (X.T)

J=0
DO 333 I=1.NTRA*

435 J=J*1
M=2°I-/
N=2I
VAR=3(M0) +9(NO1
SEP=SORT4VAR/440 SEA=SCIRT(6(1.M)1
SEY=SORT(S(N,U))

WRITE(61.340/ J,SEA.SEY.SEP
343 FORMAT!: :48.13.T1,E13.6.T32.E13.O.T45.E13.6/)

4+5 330 CONTIVUE
mRITE(61,350)

350 F0RIAT(g0:,T24,:A0JUSTEJ 0J-ORCINATES://
1 $ X.T7.:STATIJN:024.=Xt.T441tY:/1

430
NRITE(611360/(1t0ELX(I),0E.J(I)1:=1.NTRA41360 F0k4ATlt Z.TO,I3.T16,E16.101T36.E16.10//
E40
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4U3RJUTINE

1

5

ANGLE 73/73 OPT=2 FIN 4.74.465

SUEuROUTINE ANGLE(A1.A211A3.A4,Z,AZi.AZ2)

C COMPUTE AZIMUTHS OF T00 LINES ANC TAKE THE
C DIFFERENCE TO COMPUTE ANGLE.

PI=3.141592654
ONE=PI/6,0000.
GONV=1./SIN1ONE/
61=ATAN(41/421

10 62=41414(43/A4)

/F(A1.GE.O.O.AND.A2.GE.0.0) GO TO 100
GO TO 210

100 AZ1=81
15 210 IF(A1.GE.0.O.AND.A2.0.0.0) GU TO 101

GO 10 211
1C1 AZ1=514-PI
211 IF(A1.,T.0.0.AND.A2.0.0.0) GO TO 102

GO TO 212
20 102 AZ1=31+PI

212 IF(41.LT.0.0.AND.A2.GE.0.0) GO TO 103
GO 10 200

103 AZ1=81+PP#2.
200 IFR3.GE.O.O.AND.A4.GE.0.0! GC TO 301

25 GO 10 310
301 AZ2=62
310 IF(43.GE.0.O.ANO.A4...T.0.0) GO TO 302

GO TO 311
3G2 AZ2=32+12:

30 s11 IF(413.LT.0.O.ANO.A4.LT.0.01 GU TO 303
GO 10 312

303 AZ2=32+PI
312 IF143.LT.O.0.AND.A4.GE.0.01 GO TO 304

GO TO 315
35 304 AZ2=62+PI*2.

315 ACk1=4Z2-AZ1
21 =4 CAT
IF(ACAT.,T.0.0) Z1=ACAT+2.sPI

40 Z=Z1ONV
RETURN
ENO

SUSFOUTINE DEGREE 73/73 OPT=2 FTN 4.7+405

SU3kOUTINE DEGREE(SECONO,IU,K,ISED

C CONVERSION OF ANGLE FROM SECONDS TO UEG.MIN,ANO SEC

5 01=SECON0/3600.
IG=INT(G11
G2=(61-F,UATAI0l1 '60.
MG=INT(521
SEI:(02-FLOAT(MG))+60.

10 RETJRN
END
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PROGRAM VCONTRL 73/71 OPT=2 FTN 4.7+415

1 PROGRAM VCONTRL(INPUT,OUTPUT,TAPE60=INPUT,TAPESI=OUTPUT)

DIMENSION TITLE(15),ELEV(1001,4(10e190),W(1091.
1 r(1001,ATW(90,1101,17(9/001,T(100),r(100).

5 2 NOI(100),N0J(100).ADIFF(100).SIG(100)

C COMPUTER LANGUAGE ---- FORTRAN IV

C PROGRAMMED PY RAmESH L. SHQtSTHA
10

C VERTICAL CONTROL ADJUSTMENT, EITHER BY DIRECT LEVELING OR
C TRIG LEVELING TECHNIQUE CAN 8E PERFORMED IX THIS PROGRAM.
C OBSERVATION EQUATION METHOD HAS PEEN EMPLOYED.

15 C IN THE ADJUSTMENT BY TRIG LEVELING,ATmOSPHERIC REFRACTION
r ANC CURVATURE OF THE EARTH CORRECTIONS NEED MEAN RADIUS AND
C ECCENTRICITY OF THE SPHEROTO.CCNSTANTS OF CLAKRE SPHEROID
C OF lev, ARE USED FOR THIS ()UPROSE.

'20 C TOTAL NUMBER OF 100 OBSERVATION EQUATIrNS CAN PE ADJUSTEC.
C THE MAXIMUM NUERS OF FIXED AND UNKNOWN ELEVATION
C STATIONS MUST NOT EXCEED 10 AND BO RESPECTIVELY.

C THE APPROXIMATE LATITUDE OF THE PRCJECT AREA MUST RE IN
25 C DEGPEES,MINUTES,ANC SECON1S (OR ANY DECIMAL PART Or

C SECONCS).THE MEASURED VERTICAL ANGLE MUST PE IN SECONDS.
C ANY DECIMAL PART OF THE SECOND CAN PF HANDLED.

C NUMBER THE UNKNOWN ELEVATION STATION(S) FIFST,AS 1.21...,N,
30 C (N IS NUMSER,NO LETTER IS ALLOWED.ANY STATION NUMBER MUST

C NCT EXCEED TWO DIGITS),AND THEN THE FIXED ELEVATION
C STATION(S) AS N+1,N+2,....ETC

C AT LEAST ONE FIXED ELEVATION MUST PE GIVEN.
75

C THE UNITS MUST BE CONSISTENT. IF THE APPROXIMATE AND FIXED
C COORDINATES AFE IN FEET,THEN THE DISTANCE(S1 MUST ALSO
C PE IN FEET.

40 COEFF =0.125
ESQ=0.39676SE578872R1
SEmIA=637t20E.4,3.280033333
P1=3.141542E54
PP=PI/(1R0.'7E00.1

45
C INPUT CONTROL IDENTIFIER. 1 FOR DIFECT LEVELING, 0 FOR
C TRIG LEVELING.

READ(61,$) I5ELCT
50 IF(ISELCT.E0.11 GO TO 406

C INPUT TITLE (UP TO 75 CHARACTERS,LETTERS,NUmERALS,OR 90TH)

READ(60,10) (TITLE(I1,I=1.15)
55 10 FORMAT(151151

WRITE(61,201 (TITLE(I),I=1,15)
2C FORMAT(t1X,TE,15A5///)

60 C INPUT APRROxImATE AVERAGE LATITUDE OF THE PROJECT AREA
C IN DEGREES,MINLTES,AND SECONDS.

READ(60,') ICEG.MIN.SFO

65 C NOPS = NO.OF OBSERVATIONS
C NUN = NO. OF UNKNOWN ELEVATIONS
C NFIXED= NO.OF FIXED ELEVATIONS
C ICHOSE=MEASUPEI DISTANCE TOENTIFIEr ISLANT OP HOFT7ONTAL1
C LIGHT =rISTANCE MEASURING EQUIPMENT IDENTIFIER (VISIBLE

70 C LIGHT WAVE OR MICROWAVE SYSTEM)

C INPUT NC. OF OTSERVATIONS, NO. OF UNKNOWN ELEVATIONS,
C NO. OF FIXED ELEVATIONS, 1 OR 0 (1 IF THE INPUT MEASURED
C PISTANSE(S) IS/ARE SLANT, 0 IF HORIZONTAL), 1 OP 1 (1 IF

75 C THE 7ISTANCE(S1 WERE MEASURED BY VISIBLE LIGHT WAVE EDM
C EQUIPMENT SYSTEM. 0 IF MICROWAVE).
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PROGRAM VCONTRL 73/7! OPT=2 FTN 4.7+415

AO

15

C

READ(60,') NORSOUNOFIXED.ICHOSE.L/GHT

IF(LIGHT.E0.11 COEFF=0.07

INPUT UNIT IDENTIFIER, 1 FOR FEET 0 FOR PETERS.

READ(60.m1 IUNIT

IFITUNTT.EC.t) SEm/A=61r71206.4

PH1=3600.,FLOATtIDEG1+60.,FLOATIMIN1,SEC
PHI=PPmPH1

90
DEN0=1.-ESO*SIN(PHI1mSIN(PHI)
AN=SErIAw(1.-ES01
RHO=AN/(DEN0**1.51
ANU=SEmIA/SORT(DEN31

95 RAVE=SORT(RHC,ANU)

NR=NUN+1
NTOT=NUN+NFIYED

100 C INPUT FIXED ELEVATIONS

REA0(A0,m) (ELEV(I1,I=N9,NTOT1

WRITE(61,251
105 25 FORMAT(*0t.T17.tO9S.VERT.ANGLEt/

1 t t,TEOTPIS.LINEt,T11.t0EG MIN SECT,
2 t $,T34,tSTANI:'.ERRORI,T47,tOSS. DTST.t,
3 t t,T60,tSTAND.ERRORt/1

110 C INPUT VERTICAL ANGLE(POSITTVF UPWAEC, NEGATIVE DOWNWARD)
C IN SECONDS (CR IN ANY OECTPAL RAPTI, ITS STANDARD E°ROD
C IN SECONDS teR IN ANY DECIMAL PART1,09SP0VED rISTANCE
C (HORIZONTAL OR VERTI7,AL),ITS STANDARD ERROR (IN THE SAME
C UNIT AS THE DISTANCE),INSTRUMENT HEIGHT,TARGET HEIGHT.

115 C INSTRUMENT STA.NO..TARGET STA.NO.

00 30 N=1NOIS

READ(50,*1 SECS1ISIGA,SLANT,SIGS.AIOT,I.J
120

NnI(N) =I
NOJIN1=.1

ALFA=Pv'SECSi
125 DIV1=SECS1/300.

LDEG=INT(DIV1)
IF(SECS1.LT.C.) DIV1=AES(DTV11
OFG1=FLOAT(LIEG)
REP=A!S(DFG11

130 REm1=(0TV1-RE01,60.
LMIN=INT(REM1)
SEr'C=(REm1-FLOAT ILMTN11'60.

IF(SECS1.LT.G.O.ANO.LDEG.E0.01 GC TO 32
135

WoITE(61.401 I J,LOEG,LMINSECC,STGASLANT.SIGS
4D FORHAT(t t,T7.I2.*

1 T37,F5.2,T46.F10.2.T60,F7.4/1
140 GO TO 43

32 WRITE(61.411I,J.LHINSECOFTGA,SLANT.SIGS
41 FORMAT(t t,T7.22,t -$.12,T19.t-0t,T22,I2,125,55.2.

737,F5.29145110.2,T50,r7.4/1
43 ALPHA=ALF1144(1.-2.mCCEFE)mSLANT/12.TPAVE))

145
IF(TCHOSE.E0.1) GO TO 42
TANSO=TAN(ALEmA) *TAN(ALPHA)
SEC4=1./((CO5IALPHA11"4./
SS=SIGSTSIGS

150 ST=CSIGA'SIGA1/(296265.*206265.1
0=TANSO*SS4SLANTSLANT*SEC4mST
GO TO 44

42 S11=SINIALPHAV'SIN(ALPHA)
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155 S22=SICS'SIGS
C11=COS(ALPHA)COS(ALPHA)
C22=C11*SLANT*SLANT
S44=(SICA'F/GA)/(206265.9206265.1
0=S11'S22+C22'S44

160 44 W(N)=1./O

A(N,I)=-1.
A(N,J)=1.

IFS CONSTI=AI-DT+SLANT*SINTALPHAl
CONST2=AI-BT,SLANT*TANIALPHAI

IF(ICHOSF.E0.01 GO TO 38

170 F(NI=CONST1

IF(I.GT.NUN)
IF1J.GT.NUN)
GO TO 30

175
38 F(N1=CONST2

IF(I.GT.NUN)
IFIJ.GT.NUN)

180

F(N)=ELEV(I),CONST1
F(N)=-ELEV(J)+CONST1

F1N)=ELEV(T)+CCNST2
F(N)=-ELEV(J)+CONST2

30 CONTINUE

woITE(61,501
50 FORPAF(t0t,T5,tCOEFFICIENT mATRIXt/)

00 60 I=1,NOES

6' WRITE(61,70) NUN,(A(I,J),J=1,NUN)
70 FORPAT(t t,T5,=(F4.011

wFITE(c,1,80)
80 roPHATtiOt.T5,tIGHT HAND SIDE MATRIxt,

t t,T20.tWEIGHT mATF/xtf)

195 WRITE(61,90)(F(I),W(II,I=1,w0°S)
90 FOF*AT(t t,T13.F10.4,T34,F7.31

DO 100 I=1,NLN
DO 100 J=1,NODS

201 100 ATH(I.J)=A(J,I)*W(J1

DO 105 I=1,N1N
DO 105 J=1,NUN
0(70)=3.

205 DO IDS K=1,Nc
105 9(I,J)=1)(I,J)44TW(I,K)*A(KIJ)

(y+ 110 K=1,NuN
DO 120 J=1,NUN

210 IF(J-K) 140,120,140
140 9(K.J)=S(K,J)/41(K,K)
120 CONTINUE

B(K,K)=1./PtK,K)
90 110 I=1,NLN

215 IF(I-K) 150,710,150
150 DO 130 L=1,NUN

rF(L-K) 16C.130,160
160 5(I,L)=8(I,L)-P(I,K),01K.L1
130 CONTINUE

220 . R(I,K)=-9(I,W9(K,K)
110 CONTINUE

DO 170 I=1,NUN
'7(1)=0-

225 00 iro J=1,NORS
17C T(I)=T1I)+AT.(I.J)*F(J)

DO 180 I =1,NUN
ELEV(I)=0.

230 DO 180 J=1,NUN
180 ELEVII)=ELFV1I1+91I,J10T(J)

185

190
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no 1'5 j=10(08S
ADIFF(I)=0.

235 00 185 J=1,NTOT
185 ADIFF(I)=ADIFF(I)+11(I,J)PELEV(J)

WRITE(61,186)
186 FORNAT($0t,T6,$TRIG.LINEt,T10.1ADJ.ELEV.DIFF.t/1

WRITE(61,1871 (N0I(N),N0J(N).A0IFF(8),N=1,N0B9)
187 FORNATit g,T7,I2,* -J,I2,T30,F10.4/1

VTWV=0.
245 DO 190 I=1.NORS

AF= 0.
DC 200 J=1,NUN

200 AE=AE+A(I,J)8ELEV(J1
V=AE-F(I)

250 WV=WII)+V
190 VTWV=VTWV+V,WV

240

PRIOPI=VTWV/FLOAT(N09S-NUN)

255 DO 210 I=1,NLN
DC 210 J=1.NLN
I(I,J)=PRIORI8P(I,J)

210 9(I,J)=SORT(P(I,J))

260 GO TO 700

C INPUT TITLE (UP TO 75 CHAPACTERSLETTERS,NUMERALS,OR BOTH)

406 REAr(60,410) (TITLE(I),T=1,1E)
265

410 F09 *AT(15A5I
wrITE161,4201 (TITLE(I1,I=1,151

420 FCPNAT(elt,T5.15A5//1

270 C INPUT NUMBER OF LEVEL LINES, 4UNPER OF FIXEC ELEVATIONS
C AND NUMBER OF UNKNOWN ELEVATION POINTS

REAC(60, *) NOBS,NFXU,NUN

275 ISU`1=NrX0+NUh
IPIG/N=NUN+1

C INPUT FIXED ELEVATIONS

280 PEAD(60,g1

C INPUT OBSERVED ELEVATION' 9IFFERENCE
C tELEV OF STA J - ELEV OF STA I1, STANDARD ERROR CF THE
r OBSERVED ELEVATION DIFFERENCE (IN TNF SAME UNIT AS THE

285 C ELEVATION DIFFERENCE*, STATION NUMEERS I J.

C REPEAT FOR ALL OBSERVED ELEVATION r/FFFRENCE

00 430 N=10095
290

READ(60.8) F(N),SIG(N),I,J

EtN1=F(N)

295 NOI(N1=I
NOJINI=J
IF(I.GT.NUN) F(N)=F(N1+ELEV(II
IF(J.GT.NUN) F(N)=F(N)-ELEV(J)

300 A(N,J)=1.
A(N,I)=-1.

SOR=SIG(N)*SIG(N)
305 430 W(N)=1./SOR

00 450 I=1,NUN
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DO 450 J=1,409S
710 450 ATNII,J)=A(3.1)*W(J1

00 460 I=1,N1N
VC 460 J=1,NUN

I,J)=0.
315 00 450 K=1,NO8S

460 5(I,J)=R(1,J1443WCI,KI'A(K,J)

DO 470 I=1,N1N
T(I1 =0.

320 Do 470 j=1,NOPS
470 TtI)=T111 .ATF(I.J)1FIJI

00 510 K=1,NUN
DO 520 J=1,NUN

325 IF(J-K) 5409520,540
540 0(R,J)=0(K,J)/n(K,K1
520 CONTINUE

91K,K1=1./P(K,K)
DD 510 I=1,NLN

330 IF(1-K1 550,510.550
550 DO 530 1=1,NUN

IF(1-.K1 560,530.560
960 B(I.L)=8(I,L)-..0(I.K)43(K,C1
530 CONTINUE

335 R(I,v)=-B(I,K)*B(K.K)
510 CONTINUE

00 600 I=1,NUN
ELEV(I1 =0.

343 DO 600 J=1.NUN
600 ELEViI)=ELEV(Il+P(I.J)*T(J)

NPTTE(61,6451
645 FOR*AT($0t.TS.tCOEFFICIFNT rATZIYtfl

DO 650 I=1.N055
650 WoIrE(61.6601 NUN.(8(T.J).J=1,NUN1
66' FO0WAT(1 t.=(F4.0))

350 UPITEt61,670)
670 FORPAT(te2.r5,/RIGNT .INCA SIDE MATRIX -F-2I)

WPIT=161,680) IF(II.I=1,NOPS)
580 F0P'AT(t f,T7,F12.4)

355 VTN=0.
DO 681 I=1,N0S
AE=D.
V=0.
DO 5R2 J=1,NUN

360 61'2 AE=AE+A(I,J)ELEV(J)
V=AE-F(T)
WV=W(1117

6e1 VT4=t/TW+V*Wv

345

365 PRICI=VTW/(NORS-NUN)

DC 583 I=1,NlN
90 683 J=1,NUN
VAR1=PRI02I"(T.J)

370 683 BtI,j)=SORTIVAR11

WPITE(61,684)
684 FORIAT(t0S.75,*IFV. LINE4.716.tOPS. ELEV. DIrF.t.735.

1 !STANG. EPRORt.T51.*ADJ.ELEV.CIPF.*/)

DC 655 I=1.N05S
AniFFm=0.
CO 685 J=1.I!Uu

685 APIFFM=ACIFF(1).14(1,J)*ELEV(J1

Nr4=IRIGIN
NtOT=ISUM

375

380

NPITE(61.686)1NOTtN).NOJ(N) .rtNI.SIG(N).ADIFF(N)0=1003S1
385 686 FORPATlt 20.6.12.$ -2,T3.1.17.F10.3,T38.F6.4,
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2.T51.F10.4/1

700 WPITE(51.'20)
720 FORP,AT(202,..2STATIONt.T1c.2A0J.ELEVATIONI,

390 1 t 1,T32,2STANO.E0ROP1/1

WPITE(61.7301(I.ELEV(I).43(IIT),I=1.NUN)
730 FORmATlt 2,17.12,T15.F10.4.T33,F8.5/1

395 WRITE(61,740)
740 FORmATit 2015.2FIXED ElEVATTON2/1

WRITE(61,7501(I,ELFV(II.I=NB.NT07)
750 FORmAT(t 20-7,12,T15.F9.3/1

(*CI WRITE(61.840)
840 FORhAT(202.115,2 21

END


