AN ABSTRACT OF THE THESIS OF

\qquad
Ramesh Lal Shrestha for the degree of Master of Science in Civil Engineering presented on August 6, 1979 Title: LEAST SQUARES ADJUSTMENT COMPUTER PROGRAMS FOR HORIZONTAL

AND VERTICAL POSITIONS

Redacted for Privacy

Abstract approved:

The application of the least squares adjustment techniques to the area of surveying has been considered and two computer programs called HCONTRL and VCONTRL are developed for horizontal and vertical control respectively. The principle of least squares is discussed in chapter II. The observation and condition equations are compared and the observation equations technique is applied in the programs.

The general forms of the observation equations for distance and angle (or direction) are derived in chapter III. The solution and the precision of the solution from the least squares adjustment technique are also discussed. A brief discussions on future systems; the satellite positioning, the inertial positioning, and the non-classical method, are included in chapter III.

In chapter IV, the development and the procedures to be used in using the computer program HCONTRL are discussed. The least squares application to the various techniques of the horizontal position control; traverse, intersection, resection, triangulation, trilateration, and combined networks, are described in chapter V.

The theory of vertical position control is discussed in chapter VI where techniques of direct leveling and trig leveling are described. This chapter also includes a brief description on; gravimetric leveling, barometric leveling, hydrostatic leveling, tacheometric leveling, satellite altimetry, and steric leveling. The development and procedures of the computer program VCONTRL, to adjust the direct leveling and the trig leveling by the least squares technique are discussed in chapter VII. The application of the least squares to the direct leveling and the trig leveling is given in chapter VIII. In chapter IX, practicality of the least squares adjustment is considered.

The summary and conclusions are in chapter X. Appendix I consists of the numerical examples of the least squares adjustment of the various techniques in the horizontal position control by the computer program HCONTRL. The numerical examples of direct leveling and trig leveling by the computer program VCONTRL are given in Appendix II. A numerical example of the gravimetric leveling computation to find the geopotential numbers is also presented in Appendix II. Appendix III contains the complete listings of the computer programs HCONTRL and VCONTRL.

Least Squares Adjustment Computer Programs For Horizontal and Vertical Positions

by

Ramesh Lal Shrestha

A THESIS
submitted to
Oregon State University

> in partial fulfillment of the requirements for the degree of

> Master of Science
> Completed August 6, 1979

Commencement June 1980

APPROVED:

Redacted for Privacy

Professor of Civil Engineer in charge of major

Redacted for Privacy

Head of Deppartment of Civil Engineering

Redacted for Privacy

Dean of Graduate School

Date thesis is presented Auqust 6, 1979

Typed by Shanda L. Smith for Ramesh Lal Shrestha

ACKNOWLEDGEMENT

The author would like to take this opportunity to acknowledge for the continuous support given by Mr. Owen G. Miller, Jr., of Portland, Oregon, during the course of study of the author at Oregon State University. Mr. Miller's support is truly and gratefully appreciated.

The author is sincerely very grateful to Professor Robert J. Schultz for patiently editing and correcting this paper, and for the proper guidance in the completion of the paper.

The author would like to express his gratitude to Assoc. Professor John Seaders for the academic inspiration given to do this paper.

The computer programs developed in this paper are the result of the assistance provided by the Computer Center of Oregon State University. The author is sincerely very grateful and thankful for the assistance.

TABLE OF CONTENTS

I. Introduction 1
II. The Least Squares Principle 4
Weights 9
Problem Analysis 12
Observation Equations vs. Condition Equations 15
III. Theory of the Horizontal Position Control 18
Distance Equation 18
Direction or Angle Equation 21
Least Squares Solution 25
Precision from the Least Squares 29
Future Systems 34
Satellite Positioning 35
Inertial Positioning 37
Non-Classical Technique 38
IV. Development of the Computer Program HCONTROL for the Horizontal Position Control 40
Program HCONTRL 40
V. Application of Least Squares Solution for the Hori- zontal Position Control Techniques 52
Traverse 52
Intersection 55
Resection 57
Triangulation 59
Trilateration 61
Combined Networks 63
VI. Theory of the Vertical Position Control 67
Direct Leveling 68
Trig (Trigonometric) Leveling 70
Atmospheric Refraction 72
Curvature of the Earth 75
Gravimetric Leveling 77
Non-Classical Techniques 81
Barometric Leveling 82
Hydrostatic Leveling 82
Stadia (Tacheometric) Leveling 83
Satellite Altimetry 84
Steric Leveling 84
VII. Development of the Computer Program VCONTROL for the Vertical Position Control 86
Program VCONTRL 86
VIII. Application of Least Squares Solution for the Vertical Position Control Techniques 95
Direct Leveling 95
Trig (Trigonometric) Leveling 98
IX. Practicality of the Adjustment 102
X. Summary and Conclusions 104
XI. Bibl iography 106
XII. Appendices
Appendix I 110
Traverse 110
Intersection 115
Resection 118
Triangulation 121
Trilateration 125
Combined Networks 128
Appendix II 134
Direct Leveling 134
Trig Leveling 136
Gravimetric Leveling 139
Appendix III 148
HCONTRL 148
VCONTRL 156

LIST OF ILLUSTRATIONS

Figure Page

1. Sketch for Distance Observation Equation 19
2. Sketches for Direction and Angle Observation Equations 21
3. Position Fix from Artificial Satellites 36
4. Sample Coefficients Computations 41
5. Deck Set Up for HCONTRL 46
6. Flow Chart for HCONTRL 47
7. Sample Sketch for HCONTRL Input 49
8. Traverse Sketch 54
9. Intersection Sketch 56
10. Resection Sketch 58
11. Triangulation Sketch 59
12. Sketch for Combined Networks 64
13. Reference Surface 67
14. Direct Leveling 69
15. Trig Leveling 70
16. Refraction and Curvature of Earth 73
17. Equipotential Gravity Surfaces 79
18. Non-parallelism of Equipotential Gravity Surfaces 79
19. Stadia Leveling 83
20. Sample Level Net 88
21. Deck Set Up for VCONTRL 90
22. Flow Chart for VCONTRL 91
23. Level Net 97
Figure Page
24. Trig Leveling Net 100
25. Sample Traverse Computation 111
26. Level Net and Gravity Observation Sequence 139

LIST OF ILLUSTRATIONS

Table Page

1. Techniques of Least Squares Adjustment 14
2. Effects of Refraction and Curvature 77
3. Surface Gravities, Station Elevations, and Geo- potential Numbers 81
4. Extract from Field Book of Vertical Angle Observations 100
5. Gravity Computation 141
6. Geopotential Numbers 143
7. Calibration Values 144
8. Earth Tide Corrections - April 20, 1979 145
9. Earth Tide Corrections - April 21, 1979 146
10. Earth Tide Corrections - May 8, 1979 147

LEAST SQUARES ADJUSTMENT COMPUTER PROGRAMS
FOR HORIZONTAL AND VERTICAL POSITIONS

I. INTRODUCTION

The purpose of an adjustment is to have a series of observed quantities consistent within themselves and with geometrical or other data conditions. Once consistency has been achieved, computations involving the adjusted values will give unique results. Since observed values are the best evidence for determining the true value of the desired quantities, the best adjustment is that which can achieve consistency with as little disturbance to the observation as possible.

A good adjustment technique should give due consideration and order to all relevant factors and permit the simultaneous interaction of these factors in the derivation of the adjusted values. The least squares adjustment technique satisfies all of these criterions and requirements, because it produces a best set of consistent values - the most probable values (MPV) or the best estimates by simultaneous consideration of all factors, while at the same time it causes the least affect on the observations themselves.

In some adjustment techniques, factors affecting the observations are taken arbitrarily and the adjustment is carried out step
by step with the previous results affecting successive results. For example, there are a number of techniques for adjusting a traverse. Some are: arbitrary, transit, compass (or Bowditch) and Crandal techniques. Whatever technique is applied, the final positions depend on the adjusted angles (or directions). They are usually corrected first by arbitrarily applying a constant correction to each angle. Any error not corrected for at this stage, is carried forward when the distance is adjusted by making sum of the latitudes and the departures equal to zero.

In this paper, the principle of the least squares has been described. Amongst the various computational techniques of the least squares adjustment cited in chapter II, the observation equations technique has been presented in detail, and applied, to obtain the most probable values of the horizontal and the vertical position controls in the classical survey adjustment.

The theory of the horizontal position control has been described in chapter III where the distance and the angle have been considered as the observations. The classical techniques of traverse, intersection, resection, triangulation, trilateration, and combined networks in the horizontal position control have been discussed in this chapter. A brief description on the precision from the least squares adjustment has also been considered. The future systems in this chapter gives a short description of the satellite and inertial positioning which have been practiced frequently in the recent years.

The non-classical method is just meant to show that the three dimensional representation and the adjustment of the positions, might be the ultimate goal in surveying. The theory of the vertical position control has been discussed separately from the horizontal control in chapter VI, where the techniques of leveling, trig leveling, and gravimetric leveling have been discussed. A very brief description on barometric leveling, hydrostatic leveling, stadia leveling, satellite altimetry, and steric leveling are also given in chapter VI. For each technique of the horizontal position control, a numerical example has been chosen and adjusted by the program HCONTRL and the respective numerical adjustment is given in Appendix I. The numerical examples of the leveling and the trig leveling utilizing VCONTRL are given in the Appendix II where a computational procedure to obtain the geopotential numbers in gravimetric leveling are also given. The complete listings of the HCONTRL and VCONTRL are provided in the Appendix III.

II. THE LEAST SQUARES PRINCIPLE

The principle of least squares dates back to 1806 when Legendre proposed a method to obtain the most probable value (MPV) of a quantity. He postulated that, given a set of equally reliable measured values of a quantity, the most probable value, or the best estimate, of a quantity would be the one which makes the sum of the squares of the residuals a minimum. A residual is defined as

$$
\begin{equation*}
v=\hat{\ell}-\ell \tag{2.01}
\end{equation*}
$$

where ℓ is the observed (measured) value and $\hat{\ell}$ is the MPV of the quantity observed.

When there are more observations than necessary to uniquely determine the MPV's of the desired quantities, it is said that there exists redundancy in the observations. In such circumstances, the observations no longer give a unique solution of the MPV's, but they give the inconsistent infinite solutions for the MPV's. On the other hand, if the principle of least squares is applied to the redundant observations, one unique and consistent set of best estimates or MPV's will be obtained. This principle provides the best estimate $\hat{\ell}$, assuming that no systematic errors are involved in the observations. Consequently, any variation of the observed quantity from the MPV produced by the redundant observations should be small. True value of the observed quantities for the large sets of normally observed data should be the MPV's. If n is the number observations and n_{0} is
the minimum number of variables required to determine estimates uniquely, then the redundancy r or degrees of freedom as expressed in statistics is

$$
\begin{equation*}
r=n-n_{0} \tag{2.02}
\end{equation*}
$$

If a set of residuals is given by v_{1}, v_{2}, \ldots, etc., where a residual is defined by the equation (2.01), the residuals can be represented in the matrix form by

$$
\underline{v}=\left|\begin{array}{c}
v_{1} \tag{2.03}\\
v_{2} \\
\cdot \\
\cdot \\
v_{n}
\end{array}\right|
$$

where a slash below the letter v symbolizes the matrix, and this notation to represent a matrix will be used in this paper. A transpose of the matrix \underline{v} is defined as \underline{v}^{t}, such that

$$
\begin{equation*}
\underline{v}^{t}=\left|v_{1} v_{2} \ldots \ldots v_{n}\right| \tag{2.04}
\end{equation*}
$$

Then, the sum of the squares of the residuals is

$$
v_{1}^{2}+v_{2}^{2}+\ldots+v_{n}^{2}
$$

which, in the matrix form, is given by

$$
\underline{v}^{t} \underline{v}
$$

For a set of equally reliable measured values, according to Legendre's postulation, the function defined by the equation (2.04), should be a minimum for the MPV of the measured quantity. This is known as the least squares principle which can be stated as; the sum of the squares of the residuals of equally reliable measured values is a minimum. If the measured values are not equally reliable, the relative reliabilities of the measurements must be considered. The different reliabilities may be due to different factors involved in the measurements. For example, one angle of a triangle might have been measured more number of times than the other, the two angles might have been measured by two different transits or theodolites, etc. In such circumstances, measurements are adjusted by weighting them with the corresponding weights. Usually, the weight is taken as a function of the standard deviation of the measurement. If the standard deviation of the $i^{\text {th }}$ observation is σ_{i}, the weight w_{i}, of that observation is usually taken as:

$$
\begin{equation*}
w_{i}=\frac{1}{\sigma_{i}^{2}} \tag{2.05}
\end{equation*}
$$

where $\sigma_{i}{ }^{2}$ is known as the variance of the observation. Therefore, for n measurements of observations, (e.g. n angles in a traverse), there will be n residuals given by the equation (2.03), and n number of weights, given by

$$
\underline{w}=\left|\begin{array}{c}
w_{1} \tag{2.06}\\
w_{2} \\
\cdot \\
\cdot \\
w_{n}
\end{array}\right|
$$

where $w_{1}, w_{2}, \ldots, w_{n}$ are the corresponding weights of the measurements. Here, it has been assumed that the one measurement does not affect the other. It is then said that the measurements are independent from each other, and there is no correlation between any two measurements. In practice, this principle of no correlation is used, but in theory, it may not be true. The column weight matrix \underline{w} of equation (2.06) may, in theory, contain other elements. In such circumstances, the column matrix of the equation (2.06) is replaced by a square matrix $\underset{W}{W}$. The properties of the weight matrix will be discussed later in the section Weights. It is, however, important to note that $\underset{W}{ }$ is a square matrix of order n by n and is of the form:

$$
\underline{W}=\left|\begin{array}{ccc}
w_{1} & & \text { other } \tag{2.07}\\
& w_{2} & \text { elements } \\
& & \\
\text { other } & \cdot \\
\text { elements } & w_{n}
\end{array}\right|
$$

The principle of the least squares can then be shown [26];

$$
\begin{equation*}
\phi=\underline{v}^{t} \underline{W} \underline{v} \rightarrow \text { minimum } \tag{2.08}
\end{equation*}
$$

where ϕ is a function of \underline{v} and \underline{W}.

The criterion expresed by the equation (2.08) is the most general case. Other special cases can be derived from it by considering the special structure of the weight matrix \underline{W}, and they are:
(a) W being a diagonal matrix, i.e. all the off diagonal elements are zero, which implies that there is no correlation between two of the measurements. If this matrix, called the diagonal matrix, is represented by \underline{W}^{*}, then the principle of least squares becomes:

$$
\begin{equation*}
\phi=\underline{v}^{t} \underline{v}^{*} \underline{v} \rightarrow \text { minimum } \tag{2.09}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\phi=\sum_{i=1}^{n}\left(w_{i} v_{i}^{2}\right) \rightarrow \text { minimum } \tag{2.10}
\end{equation*}
$$

where w_{i} is the $i^{\text {th }}$ diagonal element of W^{*} and v_{i} is the residual associated with the corresponding $i^{\text {th }}$ observation.
(b) \underline{W} being an identity matrix, i.e. all the diagonal elements are one and all the off diagonal elements are zeroes. This implies that there is no correlation between any two of the observations and all the observations have the same and equal weight one. Then the weight matrix \underline{W} is represented by \underline{I}. This gives the principle of the least squares as:

$$
\begin{equation*}
\phi=\underline{v}^{t} \underline{I} \underline{v} \rightarrow \text { minimum } \tag{2.11}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\phi=\sum_{i=1}^{n}\left(v_{i}^{2}\right) \rightarrow \text { minimum } \tag{2.12}
\end{equation*}
$$

where v_{i} is the $i^{\text {th }}$ residual.
It follows from the least squares principle that the arithmetic mean $(\hat{\ell})$ of a series of equally reliable observations is the MPV. This can be mathematically derived. For the simplest case, where \underline{W} is an identity matrix, the least squares principle is given by the expression (2.12), i.e.

$$
\begin{equation*}
\phi=\sum_{i=1}^{n}\left(v_{i}^{2}\right)=\sum_{i=1}^{n}\left(\hat{\ell}-l_{i}\right)^{2} \rightarrow \text { minimum } \tag{2.13}
\end{equation*}
$$

This equation to be minimized, therefore,

$$
\frac{\partial \phi}{\partial \hat{\ell}}=0
$$

Taking the partial derivative of the equation (2.13) gives

$$
2 n \hat{\ell}-2 \sum_{i=1}^{n}\left(\ell_{i}\right)=0
$$

Hence, $\hat{\ell}=\frac{1}{n_{i}} \sum_{i=1}^{n}\left(\ell_{i}\right)$, which is the arithmetic mean, noting that $\frac{\partial^{2} \phi}{\partial^{2} \ell}=2 n>0$ which indicates the minimum.

A. Weights

The elements of the weight matrix must be known in advance to adjust the data by the least squares technique as seen from the equation (2.08). The reason for using the weight matrix \underline{W} is that the measurements of different reliabilities are often made in practice, and it is necessary to find the MPV's. For example, in triangulation, some angles may have been measured more precisely than the others.

If both angles and distances are included in the observations, as in traverse, the relative reliabilities must be taken into account, if the MPV's of the observations are desired. The reliabilities of the different measurements are given by the corresponding precisions. The precision is the degree of closeness of the measurements to its mean and it is given by the standard deviation σ_{ℓ}. The weight of a measurement is given by the equation (2.05). On page 65 of [26], the weight matrix \underline{W} is defined as

$$
\begin{equation*}
\underline{W}=\frac{Q^{-1}}{\underline{\ell \ell}}=Q^{-1} \tag{2.14}
\end{equation*}
$$

where $\underline{Q}_{\ell \ell}$ is called the cofactor matrix of the observations, and for convenience, it is written as \mathbb{Q}, which is given by, page 21, [26];
$Q=\frac{1}{\sigma_{0}^{2}}\left|\begin{array}{ccccc}\sigma_{\ell_{1}}^{2} & \sigma_{\ell_{1} \ell_{2}} & \cdot & \cdot & \cdot \\ \sigma_{\ell_{2} \ell_{1}} & \sigma_{\ell_{2}}^{2} & \cdot & \cdot & \cdot \\ \vdots & \vdots & & & \sigma_{\ell_{1} \ell_{n}} \\ \vdots & \cdot & & \\ \sigma_{\ell_{2} \ell_{n}} \\ { }_{n} \ell_{1} & \sigma_{\ell_{n} \ell_{2}} \cdot & \cdot & \cdot & \sigma_{\ell_{n}}{ }^{2}\end{array}\right|$
The off diagonal elements of this matrix are called the covariances of and σ_{0}^{2} is an arbitrary constant with the arbitrary dimension, and it is known as the reference variance; and $+\sqrt{ } \sigma_{0}{ }^{2}$ is known as the standard error of the unit weight. In the section 11.3 of [26], it is shown that the best estimate (MPV), $\hat{\sigma}_{0}{ }^{2}$, of the reference variance $\sigma_{0}{ }^{2}$, is given by

$$
\begin{equation*}
\hat{\sigma}_{0}^{2}=\frac{\underline{v}^{t} \underline{w} \underline{v}}{r} \tag{2.16}
\end{equation*}
$$

Therefore, if the variances and the covariances in the equation (2.15) are known, the weight matrix W, needed for the least squares adjustment given by the equation (2.08), can be determined from the equation (2.14). These elements may be determined from the measurement data.

Let the m observational sets of data be

$$
\begin{array}{cccc}
x_{11}, & x_{12}, & \cdot & , \\
x_{21}, & x_{22}, & \cdots & , \tag{2.17}\\
x_{2 n} \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdots & \cdot \\
x_{m 1}, & x_{m 2}, & \cdots & \cdot
\end{array} x_{m n}
$$

where n is the number of measurements for each set. The set of measurements may be the measurements of an angle measured n times and the second set for a distance. The estimated values of the variance $\left(\sigma_{\ell}^{2}\right)$ and covariance ($\sigma_{m-1, m}$) of the expression (2.15) are respectively given by s_{m}^{2} and $s_{m-1, m}$ such that

$$
\begin{align*}
& \bar{x}_{m}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{m i}\right) \tag{2.18}\\
& s_{m}^{2}=\frac{1}{(n-1)} \sum_{i=1}^{n}\left(x_{m i}-\bar{x}_{m}\right)^{2} \tag{2.19}
\end{align*}
$$

$$
\begin{equation*}
s_{m-1, m}=\frac{1}{(n-1)} \sum_{i=1}^{n}\left(x_{m-1, i}-\bar{x}_{m-1}\right)\left(x_{m i}-\bar{x}_{m}\right) \tag{2.20}
\end{equation*}
$$

For detail see chapter 3, [26].

In classical survey, there are basically two quantities observed. They are angle (or direction) and distance. Each set of measurements, taken at different times and environmental conditions produces different variances, but observations of similar quantities, angle or distance, are assumed to have the same variances. It is usually also assumed that the observations are uncorrelated, producing zero covariances in the weight matrix \underline{W}. Consequently, a diagonal cofactor matrix of the expression (2.15) will be left, with the same variance (or precision) for all the angular measurements and the variances for all the distance observations. However, if different variances for different measurements are available or computable, they should be used accordingly. Obviously, the capability of measuring a quantity greatly depends on the instrument used. Instrument manufacturer provides the precision of the instrument which in general, can be used as the estimation of the variance to be utilized in the weight matrix, if there is no other way to find the variances and covariances of the cofactor matrix.

B. Problem Analysis

There are several different computational techniques in least squares adjustment which yield a unique result. It should be emphasized that whatever technique is used, the final answers are always the same. Table 1 gives the different techniques cited in [26]. It is the "Adjustment of Indirect Observation" that this paper will follow for all computations. The technique will be referred to as "observation
equations technique" in the remainder of this paper. Observation equations technique means Indirect method.

Among the different techniques tabulated in Table 1, general case technique under conditions only is used if the adjustment consists of both the observations and the parameters (or unknowns). Adjustment of observations only technique is used when the adjustment includes observations only. This technique is also referred to as Direct method. Since this technique involves adjusting condition equations, it will be referred to as "condition equations" in this paper. This technique is often used for simple geometrical figures, such as; a plane triangle, a small level net, etc. Observation and condition equations techniques are simpler compared to the general case. Therefore, they are used more frequently in the adjustments. The least squares adjustment with conditions and constraints is used when the part or all of the parameters in the adjustment must be constrained corresponding to some other constraints in the data. For example, the elevations of points on a lake shore may be constrained to have the same elevation in the adjustment procedures. Details of all the techniques in Table 1 are given in [26].

In the observation equations technique, one observation formulates one equation in the adjustment process. Hence, there are as many observation equations as there are observations themselves. In this case, the parameters are the unknowns. In the case of condition equations, there will be no parameters, but only the residuals. The detail adjustment procedure by the observation equations will be demonstrated later in this paper.

Table 1. Techniques of the Least Squares Adjustment

Whatever technique is applied, the least squares adjustments are performed with linear functions. This is because the computation by the least squares technique is possible only when the function is linear. Therefore, some means of linearization, in the case of nonlinear function, must be used. Taylor's series expansion is often used for this purpose, where only the zero and the first order terms are retained, and all other higher order terms are neglected. Details of linearization procedures are given in Appendix B of [26] and in [32].

In survey adjustment, a simple technique is sometimes used to linearize the non-linear function when the parameters are co-ordinates of any form, such as: rectangular, geodetic, or three dimensional. The linear form is obtained by partially differentiating the nonlinear function with respect to the unknown parameters. This technique is often called the Variation of Co-ordinates technique and will be used in this paper where applicable.

C. Observation Equations vs Condition Equations

An important advantage of the observation equations technique is that there are as many observation equations as there are the observations themselves. In the condition equations technique, it is essential to correctly determine the necessary and sufficient conditions (c), for a unique solution, such that $c=r+u$, where u is the number of parameters (unknowns), and r is the redundancy or the degrees of freedom. It is often difficult to determine r, which is given by, $r=$ $n-n_{0}$, where n_{0} is the minimum number of variables required to
uniquely determine the MPV's, and it is difficult to determine n_{0} as it depends on the geometrical conditions of the observations. Consequently, it is sometimes difficult to determine c.

In the observation equations technique, there is not as good a check as there is in the condition equations technique, because the right hand side of a condition equation is an indication of the misclosure by which the measurements fail to satisfy the condition. Any large number, here indicates possible mistake or mistakes in the measurements. No such check is available in the observation equations technique.

In both of the techniques, the solution of the desired quantities is obtained by solving the equations in the form of $\underline{B}^{t} \underline{W} \underline{B} \underline{x}=\underline{f}$, called the normal equations, where ($\underline{B}^{t} \underline{W} \underline{B}$) is symmetric and definite. the derivation of this equation for the observation equations technique will be given later in the paper. In the above normal equations, everything is known except \underline{x}, the solution of which are obtained by inverting the matrix $\left(\underline{B}^{t} \underline{W} \underline{B}\right)$ and post-multiplying it by \underline{f}. Thus, the smaller the normal equations matrix, the smaller amount of storage space is required for a given technique of solution. In the observation equations technique, the dimension of the normal equations matrix will be the number of unknown parameters u, whereas the condition equations technique will have the dimension of the independent conditions, i.e., c. Usually, c is less than u.

Current computers can provide a reasonable amount of storage space for most of the project. In the past, however, because of the
lack of computer capabilities, the condition equations technique was most widely used. Moreover, it is much easier and simpler to write a computer program in the form of observation equations than in the form of condition equations. Hence, computer programs utilizing observation equations have been developed for the adjustments in this paper.
III. THEORY OF THE HORIZONTAL POSITION CONTROL

The purpose of horizontal position control is to establish the horizontal positions, rectangular X and Y co-ordinates, of points surveyed. This can be done in a number of ways. Whichever technique is employed, the basic principle is that the horizontal positions are the result of measurements of directions and/or distances. The precision of the observed directions or angles and distances can be used to determine the theoretical accuracy of the horizontal positions.

In adjusting horizontal positions by the observation equation technique, one equation for each observation is written. This technique is often referred to as the variation of co-ordinates method.

Observation equations for a distance and an angle will now be developed.

A. Distance Equation

For a measured distance such as that between points \mathbf{i} and j, Figure 1 , let the most probable value (MPV) of the distance be $\hat{\mathrm{d}}_{\mathrm{i}}$ and the measured value of the distance be d_{i}. Then if v_{i} is the residual of the measurement, rewriting equation (2.01), so the observation equation becomes:

$$
\begin{equation*}
v_{i}=\hat{d}_{i}-d_{i} \tag{3.01}
\end{equation*}
$$

Figure 1. Sketch for Distance Observation Equation.
where

$$
\begin{equation*}
\hat{d}_{i}=\left\{\left(X_{j}-X_{i}\right)^{2}+\left(Y_{j}-Y_{i}\right)^{2}\right\}^{\frac{1}{2}} \tag{3.02}
\end{equation*}
$$

and X_{i}, Y_{i}, X_{j} and Y_{j} are the MPVs of the co-ordinates.
Equation (3.02) is non-linear. In order to obtain a linear observation equation, let $X_{i}^{0}, Y_{i}^{0}, X_{j}^{0}$ and Y_{j}^{0} be the approximate co-ordinates so that

$$
\begin{array}{ll}
X_{i}=X_{i}^{0}+\delta X_{i}^{0} ; & X_{j}=X_{j}^{0}+\delta X_{j}^{0} \\
Y_{i}=Y_{i}^{0}+\delta Y_{i}^{0} ; & Y_{j}=Y_{j}^{0}+\delta Y_{j}^{0} \tag{3.04}
\end{array}
$$

and $\hat{\mathrm{d}}_{\mathbf{i}}=\mathrm{D}_{\mathbf{i}}+\delta \mathrm{D}_{\mathbf{i}}$
where $D_{i}=\left\{\left(X_{j}^{0}-X_{i}^{0}\right)^{2}+\left(Y_{j}^{0}-Y_{i}^{0}\right)^{2}\right\}^{\frac{1}{2}}$
Partially differentiating (3.05) gives

$$
2 D_{i} \delta D_{i}=2\left(X_{j}^{0}-X_{i}^{0}\right)\left(\delta X_{j}^{0}-\delta X_{i}^{0}\right)+2\left(Y_{j}^{0}-Y_{i}^{0}\right)\left(\delta Y_{j}^{0}-\delta Y_{i}^{0}\right)
$$

or

$$
\begin{equation*}
\delta D_{i}=\frac{X_{j}-X_{i}^{0}}{D_{i}}\left(\delta X_{j}^{0}-\delta X_{i}^{0}\right)+\frac{Y_{j}^{0}-Y_{i}^{0}}{D_{i}}\left(\delta Y_{j}^{0}-\delta Y_{i}^{0}\right) \tag{3.06}
\end{equation*}
$$

or
$\delta D_{i}=\left(\frac{X_{j}^{0}-X_{i}^{0}}{D_{i}}\right) \delta X_{j}^{0}+\left(\frac{X_{i}^{0}-X_{j}^{0}}{D_{i}}\right) \delta X_{i}^{0}+\left(\frac{Y_{j}^{0}-Y_{i}^{0}}{D_{i}}\right) \delta Y_{j}^{0}+\left(\frac{Y_{i}^{0}-Y_{j}^{0}}{D_{i}}\right) \delta Y_{i}^{0}$
Let

$$
\begin{align*}
& P_{i}=\frac{x_{i}^{0}-x_{j}^{0}}{D_{i}}, \quad R_{i}=\frac{x_{j}^{0}-x_{i}^{0}}{D_{i}} \\
& Q_{i}=\frac{Y_{i}^{0}-y_{j}^{0}}{D_{i}} \text { and } S_{i}=\frac{y_{j}^{0}-y_{i}^{0}}{D_{i}} \tag{3.08}
\end{align*}
$$

Substituting from (3.08) to (3.07) and rearranging terms, equation (3.07) becomes

$$
\begin{equation*}
\delta D_{i}=P_{i} \delta X_{i}^{0}+Q_{i} \delta Y_{i}^{0}+R_{i} \delta X_{j}^{0}+S_{i} \delta Y_{j}^{0} \tag{3.09}
\end{equation*}
$$

Recalling equation (3.01),

$$
v_{i}=\hat{d}_{i}-d_{i}
$$

Now substituting $\hat{d}_{\mathfrak{i}}=D_{i}+\delta D_{i}$ from equation (3.04) gives

$$
\begin{aligned}
v_{i} & =D_{i}+\delta D_{i}-d_{i} \\
& =D_{i}-d_{i}+\delta D_{i}
\end{aligned}
$$

Substituting for $\delta \mathrm{D}_{\boldsymbol{i}}$ from equation (3.09) gives

$$
\begin{equation*}
v_{i}=D_{i}-d_{i}+P_{i} \delta X_{i}^{0}+Q_{i} \delta Y_{i}^{0}+R_{i} \delta X_{j}^{0}+S_{i} \delta Y_{j}^{0} \tag{3.10}
\end{equation*}
$$

Substituting "0" for the observed value d_{i}, and "C" for the computed value D_{i} in equation (3.10), the general observation equation for a distance becomes

$$
\begin{equation*}
P_{i} \delta X_{i}^{0}+Q_{i} \delta Y_{i}^{0}+R_{i} \delta X_{j}^{0}+S_{i} \delta Y_{j}^{0}=(0-C)+v_{i} \tag{3.11}
\end{equation*}
$$

where $\delta X_{i}^{0}, \delta Y_{i}^{0}, \delta X_{j}^{0}$, and δY_{j}^{0} are the unknown quantities. The unknown quantities here, are the correction to be added to the approximate coordinates.

B. Direction or Angle Equation

The observation equation for a direction will be derived first. The difference between two directions will give the one observation equation for each angle. The observation equation for a direction from i to j. Figure 2a, will be

$$
\begin{equation*}
v_{i j}=\hat{\alpha}_{i j}-\alpha_{i j} \tag{3.12}
\end{equation*}
$$

where $\hat{\alpha}_{i j}$ is the MPV of the direction, $\alpha_{i j}$ is the observed direction, and v_{ij} is the residual. Then it follows that

$$
\begin{equation*}
\tan \hat{\alpha}_{i j}=\frac{X_{j}-X_{i}}{Y_{j}-Y_{i}} \tag{3.13}
\end{equation*}
$$

Figure 2. Sketches for Direction and Angle Observation Equations.

Note that the direction $\alpha_{i j}$ is the azimuth of the line from i to j. This transcendental function is not linear and can be linearized by taking the approximate co-ordinates as $X_{i}^{0}, Y_{i}^{0}, X_{j}^{0}$, and Y_{j}^{0} such that

$$
\begin{array}{ll}
X_{i}=x_{i}^{0}+\delta x_{i}^{0}, & x_{j}=x_{j}^{0}+\delta x_{j}^{0} \tag{3.14}\\
Y_{i}=Y_{i}^{0}+\delta Y_{i}^{0}, & Y_{j}=Y_{j}^{0}+\delta Y_{j}^{0}
\end{array}
$$

If $\alpha_{i j}^{0}$ is the approximate direction then

$$
\begin{equation*}
\tan \alpha_{i j}^{o}=\frac{X_{j}^{0}-x_{i}^{0}}{y_{j}^{0}-Y_{i}^{0}} \tag{3.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{\alpha}_{i j}=\alpha_{i j}^{0}+\delta \alpha_{i j}^{0} \tag{3.16}
\end{equation*}
$$

where $\delta X_{i}^{0}, \delta Y_{i}^{0}, \delta X_{j}^{0}$, and δY_{j}^{0} are the corrections to be added to the approximate co-ordinates and $\delta \alpha_{i j}^{0}$ is the correction to be added to the approximate direction. X_{i}, Y_{i}, X_{j}, and Y_{j} are the MPV's of the co-ordinates.

Partial differentiation of equation (3.15) gives
$\sec ^{2} \alpha_{i j}^{0} \delta \alpha_{i j}^{0}=\frac{\left(Y_{j}^{0}-Y_{i}^{0}\right)\left(\delta X_{j}^{0}-\delta X_{i}^{0}\right)-\left(X_{j}^{0}-X_{i}^{0}\right)\left(\delta Y_{j}^{0}-\delta Y_{i}^{0}\right)}{\left(Y_{j}^{0}-Y_{i}^{0}\right)^{2}}$
$\delta \alpha_{i j}^{0}=\frac{\cos ^{2} \alpha_{i j}^{0}}{\left(Y_{j}^{0}-Y_{i}^{0}\right)^{2}} \quad\left\{\left(Y_{j}^{0}-Y_{i}^{0}\right)\left(\delta X_{j}^{0}-\delta X_{i}^{0}\right)-\left(X_{j}^{0}-X_{i}^{0}\right)\left(\delta Y_{j}^{0}-\delta Y_{i}^{0}\right)\right\}$

From Figure 2a,

$$
\cos \alpha_{i j}^{0}=\frac{Y_{j}^{0}-Y_{i}^{0}}{D_{i j}}
$$

Hence,

$$
\begin{equation*}
\frac{\cos ^{2} \alpha_{i j}^{0}}{\left(Y_{j}^{0}-Y_{i}^{0}\right)^{2}}=\frac{1}{D_{i j}^{2}} \tag{3.18}
\end{equation*}
$$

Where

$$
\begin{equation*}
D_{i j}^{2}=\left(X_{j}^{0}-X_{i}^{0}\right)^{2}+\left(Y_{j}^{0}-Y_{i}^{0}\right)^{2} \tag{3.19}
\end{equation*}
$$

Substituting (3.18) into equation (3.17)

$$
\delta \alpha_{i j}^{0}=\frac{1}{D_{i j}^{2}}\left\{\left(Y_{j}^{0}-Y_{i}^{0}\right)\left(\delta X_{j}^{0}-\delta X_{i}^{0}\right)-\left(X_{j}^{0}-X_{i}^{0}\right)\left\{\delta Y_{j}^{0}-\delta Y_{i}^{0}\right)\right\}
$$

or

$$
\begin{equation*}
\delta \alpha_{i j}^{0}=\frac{Y_{j}^{0}-Y_{i}^{0}}{D_{i j}^{2}} \delta X_{j}^{0}+\frac{Y_{i}^{0}-Y_{j}^{0}}{D_{i j}^{2}} \delta X_{i}^{0}+\frac{x_{i}^{0}-X_{j}^{0}}{D_{i j}^{2}} \delta Y_{j}^{0}+\frac{X_{j}^{0}-X_{i}^{0}}{D_{i j}^{2}} \delta Y_{i}^{0} \tag{3.20}
\end{equation*}
$$

Let

$$
\begin{array}{ll}
P_{i j}=\frac{Y_{i}^{0}-Y_{j}^{0}}{D_{i j}^{2}}, & Q_{i j}=\frac{X_{j}^{0}-X_{i}^{0}}{D_{i j}^{2}} \\
R_{i j}=\frac{Y_{j}^{0}-Y_{i}^{0}}{D_{i j}^{2}}, & S_{i j}=\frac{X_{i}^{0}-X_{j}^{0}}{D_{i j}^{2}} \tag{3.21}
\end{array}
$$

Substituting (3.21) into (3.20) gives

$$
\begin{equation*}
\delta \alpha_{i j}^{0}=P_{i j} \delta X_{i}^{0}+Q_{i j} \delta Y_{i}^{0}+R_{i j} \delta X_{j}^{0}+S_{i j} \delta Y_{j}^{0} \tag{3.22}
\end{equation*}
$$

Substituting for $\hat{\alpha}_{i j}$ from equation (3.16) into equation (3.12) gives

$$
\begin{align*}
& v_{i j}=\alpha_{i j}^{0}+\delta \alpha_{i j}^{0}-\alpha_{i j} \\
& v_{i j}=\delta \alpha_{i j}^{0}+\left(\alpha_{i j}^{0}-\alpha_{i j}\right) \tag{3.23}
\end{align*}
$$

Substituting for $\delta \alpha_{i j}^{0}$ from equation (3.22) into equation (3.23) gives

$$
v_{i j}=P_{i j} \delta X_{i}^{0}+Q_{i j} \delta Y_{i}^{0}+R_{i j} \delta X_{j}^{0}+S_{i j} \delta Y_{j}^{0}+\left(\alpha_{i j}^{0}-\alpha_{i j}\right)
$$

Recognizing $\alpha_{i j}$ as observed value " 0 ", and $\alpha_{i j}^{0}$ as computed value " C ", then the general observation equation for a direction is given by

$$
\begin{equation*}
P_{i j} \delta X_{i}^{0}+Q_{i j} \delta Y_{i}^{0}+R_{i j} \delta X_{j}^{0}+S_{i j} \delta Y_{j}^{0}=(0-C)_{i j}+v_{i j} \tag{3.24}
\end{equation*}
$$

Similarily, for the direction from i to k in Figure $2 b$, the observation equation for the line $\mathbf{i}-k$ is given by

$$
\begin{equation*}
P_{i k} \delta X_{i}^{0}+Q_{i k} \delta Y_{i}^{0}+R_{i k} \delta X_{k}^{0}+S_{i k} \delta Y_{k}^{0}=(0-C)_{i k}+v_{i k} \tag{3.25}
\end{equation*}
$$

where

$$
\begin{array}{ll}
P_{i k}=\frac{Y_{i}^{0}-Y_{k}^{0}}{D_{i k}^{2}}, & Q_{i k}=\frac{X_{k}^{0}-X_{i}^{0}}{D_{i k}^{2}} \\
R_{i k}=\frac{Y_{k}^{0}-Y_{i}^{0}}{D_{i k}^{2}}, & S_{i k}=\frac{X_{i}^{0}-X_{k}^{0}}{D_{i k}^{2}} \tag{3.26}
\end{array}
$$

Subtracting equation (3.24) from equation (3.25) gives a general observation equation for an angle $i j k$, Figure $2 b$, as

$$
\begin{gathered}
\left(P_{i k}-P_{i j}\right) \delta X_{i}^{0}+\left(Q_{i k}-Q_{i j}\right) \delta Y_{i}^{0}-R_{i j} \delta X_{j}^{0}-S_{i j} \delta Y_{j}^{0}+R_{i k} \delta X_{k}^{0}+ \\
S_{i k} \delta Y_{k}^{0}=(0-C)_{i k}-(0-C)_{i j}+v_{i k}-v_{i j}
\end{gathered}
$$

Let $0-C=(0-C)_{i k}-(0-C)_{i j}$, and $v_{i j k}=v_{i k}-v_{i j}$

Then the final general equation for an angle $\theta_{i j k}$ becomes

$$
\begin{align*}
& \left(P_{i k}-P_{i j}\right) \delta X_{i}^{0}+\left(Q_{i k}-Q_{i j}\right) \delta Y_{i}^{0}-R_{i j} \delta X_{j}^{0}-S_{i j} \delta Y_{j}^{0}+R_{i k} \delta X_{k}^{0}+ \\
& S_{i k} \delta Y_{k}^{0}=(0-C)+v_{i j k} \tag{3.27}
\end{align*}
$$

It is very important to realize here that ($0-\mathrm{C}$) in equation (3.27) is the difference between the observed and the computed angle. The computed angle is obtained from the approximate co-ordinates assigned to the three points under consideration. The observed angle, of course, is the angle observed and comes directly from the field work.

C. Least Squares Solution

As stated earlier, the observation equations technique which is also known as the adjustment of indirect observations, will be adopted in this paper where one observation equation for each observation is written. The observations in our case could be direction(s), distance(s), angle(s), or the combination of any of these items. For each observation, one of the respective observation equations of the form given by equations (3.11), (3.24) or (3.27) can be written which yields n observation equations on u unknowns ($n \times u$). These observation equations can be represented by the following equations.

$$
\begin{align*}
& b_{11} x_{1}+b_{12} x_{2}+\cdots \cdot+b_{1 u} x_{u}=f_{1}+v_{1} \\
& b_{21} x_{1}+b_{22} x_{2}+\cdots \cdot+b_{2 u} x_{u}=f_{2}+v_{2} \\
& \begin{array}{llllll}
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot &
\end{array} \tag{3.28}\\
& b_{n 1} x_{1}+b_{n 2} x_{2}+\cdots \cdot+b_{n u} x_{u}=f_{n}+v_{n}
\end{align*}
$$

Each of these equations has the corresponding weight $w_{1}, w_{2}, \ldots, w_{n}$. In the equations above, the x 's are the unknown parameters which represent $\delta X_{i}^{0}, \delta Y_{j}^{0}, \ldots$, etc. in the equations of distance (3.11), direction (3.24), or angle (3.27). Similarily, b_{11}, b_{12}, \ldots, etc. represent $P_{i}, Q_{i j}, \ldots$, etc. whereas f_{1}, f_{2}, \ldots, etc. represent $(0-C)$'s, and v_{1}, v_{2}, \ldots, etc. represent $v_{i}, v_{i j}, \ldots$, etc. in the equations (3.11), (3.24), and (3.27).

In the matrix notation, equation (3.28) is given by

$$
\begin{equation*}
\underline{B} \underline{\Delta}=\underline{f}+\underline{v} \tag{3.29a}
\end{equation*}
$$

where a slash below a letter represents a matrix. Therefore:

$$
\underline{B}=\left|\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 u} \tag{3.29b}\\
b_{21} & b_{22} & \cdots & b_{2 u} \\
\cdot & \cdot & \cdots & \cdot \\
\cdot & \cdot & \cdots & \cdot \\
b_{n 1} & b_{n 2} & \cdots & b_{n u}
\end{array}\right|, \underline{f}=\left|\begin{array}{c}
f_{1} \\
f_{2} \\
\cdot \\
\cdot \\
f_{n}
\end{array}\right|, \underline{v}=\left|\begin{array}{c}
v_{1} \\
v_{2} \\
\cdot \\
\cdot \\
v_{n}
\end{array}\right| \text {, and } \underline{\Delta}=\left|\begin{array}{c}
x_{1} \\
x_{2} \\
. \\
\cdot \\
x_{u}
\end{array}\right|
$$

where \underline{B} will be called the coefficient matrix, f the right hand side matrix, $\underline{\Delta}$ the parameters, and \underline{v} the residuals respectively in this paper.

For the least squares solution (shown in chapter II), the most probable values of the x 's in the observation equationswill give a set of v's such that

$$
\begin{equation*}
\phi=\underline{v}^{t} \underline{W} \underline{v} \rightarrow \text { minimum } \tag{3.30}
\end{equation*}
$$

where properties of \underline{W} have been discussed in chapter II. From the equation (3.29a),

$$
\underline{v}=\underline{B} \underline{\Delta}-\underline{f}
$$

Substituting for \underline{v} in equation (3.30),

$$
\phi=(\underline{B} \Delta-\underline{f})^{t} \underline{W}(\underline{B} \Delta-\underline{f})
$$

The transposition factor " t " in the above equation can be taken inside the bracket giving:

$$
\phi=\left\{(\underline{B} \underline{\Delta})^{t}-\underline{f}^{t}\right\} \underline{W}(\underline{B} \underline{\Delta}-\underline{f})
$$

or

$$
\begin{equation*}
\phi=\left(\underline{\Delta}^{t} \underline{B}^{t}-\underline{f}^{t}\right) \underline{W}(\underline{B} \underline{\Delta}-\underline{f}) \tag{3.31}
\end{equation*}
$$

Note that $(\underline{B} \underline{\Delta})^{t}=\underline{\Delta}^{t} \underline{B}^{t}$. For this proof, see page 437 of [26]. Matrix multiplication is accomplished in a manner similar to ordinary multiplication except that the multiplication must be done in order. Thus, equation (3.31) gives

$$
\begin{align*}
& \phi=\left(\underline{\Delta}^{t} \underline{B}^{t} \underline{W}-\underline{f}^{t} \underline{W}\right)(\underline{B} \underline{\Delta}-\underline{f}) \\
& \phi=\underline{\Delta}^{t} \underline{B}^{t} \underline{W} \underline{B} \underline{\Delta}-\underline{f}^{t} \underline{W} \underline{B} \underline{\Delta}-\underline{\Delta}^{t} \underline{B}^{t} \underline{W}+\underline{f}^{t} \underline{W} \underline{f} \tag{3.32}
\end{align*}
$$

To determine the least squares solution of the unknown parameters, Δ, the condition is

$$
\begin{equation*}
\frac{\partial \phi}{\partial \underline{\Delta}}=0 \tag{3.33}
\end{equation*}
$$

Matrix differentiation, however, is not the same as the ordinary differentiation. The procedures for differentiating matrix functions are given in page 457 [26]. Only the final derivatives will be given here. The differentiation of equation (3.32) with respect to $\partial \Delta$ is then,

$$
\begin{gather*}
\frac{\partial \phi}{\partial \underline{\Delta}}=\frac{\partial}{\partial \underline{\Delta}}\left(\underline{\Delta}^{t} \underline{B}^{t} \underline{W} \underline{B} \underline{\Delta}\right)-\frac{\partial}{\partial \underline{\Delta}}\left(\underline{f}^{t} \underline{W} \underline{B} \underline{\Delta}\right)-\frac{\partial}{\partial \underline{\Delta}}\left(\underline{\Delta}^{t} \underline{B}^{t} \underline{W} \underline{f}\right)+ \\
\frac{\partial}{\partial \underline{\Delta}}\left(\underline{f}^{t} \underline{W} \underline{f}\right) \tag{3.34}
\end{gather*}
$$

Matrix differentiation will yield [26]:

$$
\begin{align*}
& \frac{\partial}{\partial \underline{\Delta}}\left(\underline{\Delta}^{t} \underline{B}^{t} \underline{W} \underline{B} \underline{\Delta}^{\prime}=2 \underline{\Delta}^{t} \underline{B}^{t} \underline{W} \underline{B}\right. \\
& \frac{\partial}{\partial \underline{\Delta}}\left(\underline{f}^{t} \underline{W} \underline{B} \underline{\Delta}\right)=\frac{\partial}{\partial \underline{\Delta}}\left(\underline{\Delta}^{t} \underline{B}^{t} \underline{W} \underline{f}\right)=\underline{f}^{t} \underline{W} \underline{B} \tag{3.35}
\end{align*}
$$

and $\quad \frac{\partial}{\partial \underline{\Delta}}=\left(\underline{f}^{t} \underline{W} \underline{f}\right)=0$
since $\underline{f}^{t} \underline{W} \underline{f}$ is a constant.
Substituting into equation (3.34),

$$
\begin{aligned}
\frac{\partial \phi}{\partial \Delta} & =2 \Delta^{t} \underline{B}^{t} \underline{W} \underline{B}-\underline{f}^{t} \underline{W} \underline{B}-\underline{f}^{t} \underline{W} \underline{B}+0 \\
& =2 \underline{\Delta}^{t} \underline{B}^{t} \underline{W} \underline{B}-2 \underline{f}^{t} \underline{W} \underline{B}
\end{aligned}
$$

Imposing the least squares condition from equation (3.33) of

$$
\begin{gathered}
\frac{\partial \phi}{\partial \underline{\Delta}}=0 \quad \text { gives: } \\
2 \underline{\Delta}^{t} \underline{B}^{t} \underline{W} \underline{B}-2 \underline{f}^{t} \underline{W} \underline{B}=0 \\
\text { or, } \underline{\Delta}^{t} \underline{B}^{t} \underline{W} \underline{B}=\underline{f}^{t} \underline{W} \underline{B}
\end{gathered}
$$

Transposing both sides gives

$$
\begin{align*}
& \left(\underline{\Delta}^{t} \underline{B}^{t} \underline{W} \underline{B}\right)^{t}=\left(\underline{f}^{t} \underline{W} \underline{B}\right)^{t} \\
& \underline{B}^{t} \underline{W} \underline{B} \underline{\Delta}=\underline{B}^{t} \underline{W} \underline{f} \tag{3.36}
\end{align*}
$$

Again, for this derivation see page 437 [26].
Equation (3.36) is the normal equation where matrix $\underline{B}^{t} \underline{W} \underline{B}$ is: symmetric and square, of the order u, and with the number of unknown parameters Δ. Post multiplying both sides of equation (3.36) by $\left(\underline{B}^{t} \underline{W} \underline{B}\right)^{-1}$ gives

$$
\left(\underline{B}^{t} \underline{W} \underline{B}\right)^{-1}\left(\underline{B}^{t} \underline{W} \underline{B}\right) \Delta=\left(\underline{B}^{t} \underline{W} \underline{B}\right)^{-1}\left(\underline{B}^{t} \underline{W} \underline{f}\right)
$$

But $\quad\left(\underline{B}^{t} \underline{W} \underline{B}\right)^{-1}\left(\underline{B}^{t} \underline{W} \underline{B}\right)=\underline{I}$, Identity matrix
and since $\quad \underline{I}=\underline{\Delta}$
then $\quad \underline{\Delta}=\left(\underline{B}^{t} \underline{W} \underline{B}\right)^{-1}\left(\underline{B}^{t} \underline{W} \underline{f}\right)$

This is the least squares solution for the unknown parameters Δ. All the terms at the right hand side of this equation are known. The unknown parameters $\underline{\Delta}$, coefficient matrix \underline{B}, the weight matrix \underline{N}, and right hand side matrix f are given by the equations in the expression (3.29b). Usually, the matrices $\underline{B}^{t} \underline{W} \underline{B}$ and $\underline{B}^{t} \underline{W} \underline{f}$ are respectively represented by \underline{N} and \underline{t}. Then, the equation (3.37) becomes

$$
\begin{equation*}
\Delta=\underline{N}^{-1} \underline{t} \tag{3.38}
\end{equation*}
$$

Matrix \underline{N} is called the normal matrix.

D. Precision from the Least Squares

The adjustments made by the least squares techniques give the MPV's of the measured quantities and in any adjustment it is important to know the precisions of the adjusted quantities. For instance, we might like to know the precisions of the adjusted co-ordinates of the stations in a traverse. This precision can be obtained by the technique of propagation described in chapter IV of [26].

Recalling equation (3.37)

$$
\Delta=\left(\underline{B}^{t} \underline{W} \underline{B}\right)^{-1}\left(\underline{B}^{t} \underline{W} \underline{f}\right)
$$

This gives the adjusted values (MPV's) of the unknown parameters Δ, and it is desired to find the precisions of these parameters. In equation (3.29b), Δ is given by

$$
\Delta=\left|\begin{array}{l}
x_{1} \tag{3.39}\\
x_{2} \\
\cdot \\
x_{u}
\end{array}\right|
$$

where $x_{1}, x_{2}, \ldots, x_{u}$ are defined as the δX^{0} 's and $\delta Y^{0}{ }^{\prime} s$, which are the corrections to be added to the approximate co-ordinates $X^{0} s$ and Y^{0} 's. Therefore, the parameters in this case, are the unknown coordinates. These parameters can be other quantities, such as the unknown elevations in direct leveling or trig leveling. Whatever the parameters may be, the least squares adjustment can provide their precisions.

Under the section Weights in chapter II, it has been shown from [26] that the cofactor matrix $Q_{\underline{\ell}}(\underline{Q})$ for the observations $\underline{\ell}$ is given by:

$$
\underline{Q}_{\ell \ell}=\frac{1}{\sigma_{0}^{2}}\left|\begin{array}{lllll}
\sigma_{\ell_{1}}^{2} & \sigma_{\ell_{1} \ell_{2}} & \cdots & \sigma_{\ell_{1} \ell_{n}} \tag{3.40}\\
\sigma_{\ell_{2} \ell_{1}} & \sigma_{\ell_{2}^{2}} & \cdots & \cdot & \sigma_{\ell_{2} \ell_{n}} \\
\cdot & \cdot & \cdots & \cdots \\
\cdot & \cdot & \cdots & \cdots & \\
\sigma_{\ell_{n} \ell_{1}} & \sigma_{\ell_{n} \ell_{2}} & \cdots & \sigma_{\ell}
\end{array}\right|
$$

where σ_{0}^{2} is a constant and $\underline{\ell}$ is given by:

$$
\underline{\ell}=\left|\begin{array}{c}
\ell_{1} \tag{3.41}\\
\ell_{2} \\
\\
\cdot \\
\cdot \\
\ell_{n}
\end{array}\right|
$$

Comparing equations (3.41) and (3.39), by analogy, $\underline{\ell}$ can be replaced by $\underline{\Delta}$ and ℓ 's by x 's. Substituting $\underline{\Delta}$ for ℓ and x 's for ℓ 's in the equation (3.40) gives:

Since there are u number of parameters, the order of the matrix given by the equation (3.42) will be u by u. The expected value of σ_{0}^{2} is given by $\hat{\sigma}_{0}{ }^{2}$ which is shown in chapter XI of [26] as

$$
\begin{equation*}
\hat{\sigma}_{0}^{2}=\frac{\underline{v}^{t} \underline{W} \underline{v}}{r} \tag{3.43}
\end{equation*}
$$

It is shown in [26], that

$$
\begin{equation*}
\underline{Q}_{\Delta \Delta}=\left(\underline{B}^{t} \underline{W} \underline{B}\right)^{-1} \tag{3.44}
\end{equation*}
$$

In the process of the least squares adjustment, the term $\left(\underline{B}^{t} \underline{W}\right)^{-1}$ has already been computed when the solution of the parameters Δ was obtained from the equation (3.37). It can be shown that the order of the matrix $\left(\underline{B}^{t} \underline{W} \underline{B}^{-1}\right.$ is u by u. Substituting for $\underline{Q}_{l l}$ from the equation (3.45) into the equation (3.42) and rearranging gives:

$$
\left|\begin{array}{cccccc}
\sigma_{x_{1}}^{2} & \sigma_{x_{1} x_{2}} & \cdot & \cdot & \cdot & { }_{x_{1} x_{u}} \tag{3.45}\\
\sigma_{x_{2} x_{1}} & \sigma_{x_{2}}^{2} & \cdot & \cdot & \cdot & { }_{x_{2} x_{u}} \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \dot{2} \\
\sigma_{x_{u} x_{1}} & \sigma_{x_{u} x_{1}} & \cdot & \cdot & \cdot & { }_{x_{u}}
\end{array}\right|=\sigma_{0}^{2} \underline{B}^{t} \underline{W} \underline{B}^{-1}
$$

Note that σ_{0}^{2} is a known constant computed from the equation (3.43). Therefore, the elements of the right hand side matrix of the equation (3.45) are all known. Suppose, that $\sigma_{0}^{2}\left(\underline{B}^{t} \underline{W} \underline{B}\right)^{-1}$ is represented by:

$$
\sigma_{0}^{2}\left(\underline{B}^{t} \underline{W} \underline{B}\right)^{-1}=\left|\begin{array}{cccc}
n 11 & n 12 & \cdots & n 1 u \\
n 21 & n 22 & \cdots & n 2 u \\
. & . & \cdots & \cdot \\
\cdot & \cdot & \cdots & \cdot \\
n u 1 & n u 2 & & n u u
\end{array}\right|
$$

where n's are the known numbers. Comparing this equation (3.46) to the equation (3.45):

$$
\begin{aligned}
& \text { (} u \times u \text {) } \\
& \text { (} u \times u \text {) }
\end{aligned}
$$

Note that all the elements of the left hand side matrix can now be computed. For example

$$
\begin{equation*}
\sigma_{x_{1}}^{2}=n 11, \quad \sigma_{x_{2} x u}=n 2 u, \ldots, \text { etc. } \tag{3.48}
\end{equation*}
$$

Therefore, $\sigma_{x_{i}}= \pm \sqrt{n i i}, \quad i=1,2,3, \ldots, u$.
where $\sigma_{x_{i}}$ gives the precision of the adjusted parameter x_{i}.

In our case of horizontal position control, the parameter for the $j^{\text {th }}$ station are δX_{j}^{0} and δY_{j}^{0}, and they are given in the equations (3.03) and (3.14) as:

$$
\begin{equation*}
X_{j}=X_{j}^{0}+\delta X_{j}^{0}, \quad Y_{j}=Y_{j}^{0}+\delta Y_{j}^{0} \tag{3.49}
\end{equation*}
$$

It has been defined earlier that X^{\prime} s represent the parameters $\delta X^{\prime} s$ and $\delta Y^{\prime} s$. Suppose, $\delta X_{j}^{0}=X_{1}$ and $\delta Y_{j}^{0}=X_{2}$
Then,

$$
\begin{equation*}
X_{j}=X_{j}^{0}+x_{1} \quad \text { and } \quad Y_{j}=Y_{j}^{0}+x_{2} \tag{3.50}
\end{equation*}
$$

where $\left(X_{j}, Y_{j}\right)$ and $\left(X_{j}^{0}, Y_{j}^{0}\right)$ are the adjusted and approximate co-ordinates of the $j^{\text {th }}$ station. Assuming $\left(X_{j}^{0}, Y_{j}^{0}\right)$ are constants, it can be shown [26] that:

$$
\sigma_{X_{j}}^{2}=\sigma_{x_{1}}^{2}, \quad \text { and } \sigma_{Y}^{2}=\sigma_{X_{2}}^{2}
$$

or

$$
\begin{equation*}
\sigma_{X_{j}}= \pm \sqrt{\sigma_{x_{1}}^{2}}, \quad \text { and } \sigma_{Y_{j}}= \pm \sqrt{\sigma_{x_{2}}^{2}} \tag{3.51}
\end{equation*}
$$

where $\sigma_{X_{j}}$ and $\sigma_{Y_{j}}$ are the precisions of the adjusted co-ordinates X_{j} and Y_{j} respectively, and these are the quantities we wish to determine. From the equation (3.47),

$$
\sigma_{x_{1}}^{2}=n 11, \quad \text { and } \quad \sigma_{x_{2}}^{2}=n 22
$$

Therefore,

$$
\begin{equation*}
\sigma_{X_{j}}= \pm \sqrt{n 11}, \text { and } \sigma_{Y_{j}}= \pm \sqrt{n 22} \tag{3.52}
\end{equation*}
$$

Thus, for all the adjusted co-ordinates, their corresponding precisions can be computed. This technique has been used in HCONTRL to compute the precisions (printed as the standard errors in the computer output) of the adjusted co-ordinates, X and Y. The precision of the $j^{\text {th }}$ position will be computed by:

$$
\begin{equation*}
\pm \sqrt{\sigma_{X}^{2}+\sigma_{Y}^{2}}= \pm \sqrt{n 11+n 22} \tag{3.53}
\end{equation*}
$$

In the case of the vertical position control, since the adjusted parameters are elevations, (one quantity as opposed to two quantities, X and Y, in the horizontal control); the precision for the adjusted elevation of the $j^{\text {th }}$ elevation station will be directly given by the equation (3.48). For the example, the third adjusted elevation, the precision will be given by:

$$
\begin{equation*}
\sigma_{x_{3}}= \pm \sqrt{n 33} \tag{3.54}
\end{equation*}
$$

This technique has been utilized in the program VCONTRL.

E. Future Systems

So far we have discussed the traditional or classical techniques of the horizontal control positioning. Current technological development has grown beyond the imagination of a few decades ago. New techniques of precise horizontal and vertical positioning are rapidly developing; some of which are already in use. In this section, a brief description of these techniques will be presented. These techniques are:

1. Satellite Positioning
2. Inertial Positioning
3. Non-Classical Technique

Satellite Positioning
Since the introduction of the first artificial satellite in 1958, the development in satellite positioning has leaped ahead, especially, since the development of the high speed computer. The first operational satellite, for the position fixing on the surface of the earth, was introduced in January 1964 as a U.S. Navy Navigation Satellite System (NAVSAT). It was developed by the Applied Physics Laboratory (APL.) of the John Hopkins University and is known as Transit. The Transit became commercial available in July 1969.

Currently, there are five operational Transit satellites in orbit. These satellites are in circular polar orbits, about 1,075 kilometers high, circling the earth at about every 107 minutes. Whenever a satellite passes above the horizon, there is an opportunity to obtain a position fix.

The satellite continuously transmits very stable frequencies at a constant interval of two minutes. A similar frequency may also be generated at the observer's position. By comparing the transmitted frequencies from two positions of a satellite to the frequency of the observer, it is possible to compute the difference between the two distances (distances between the observer and the two satellite positions), called the range rate (0), Figure 3. The satellite, also transmits a message in terms of orbital parameters [27] as a function

$$
\text { Range rate }=d_{2}-d_{1}
$$

Figure 3. Position Fix from Artificial Satellites.
of time, from which its position can be computed [27]. From such two positions, and the approximate coordinates of the observer P, Figure 3, the range rate (C), can be computed. Since the range rate is the function of the unknown co-ordinates of the observer and the fixed coordinates of the satellites at the specific times, it can be differentiated to form a linear observation equation, where the parameters will be the correction quantities to be algebraically added to the assumed approximate coordinates of the observer. The observation equation can be represented by the similar type of the aqualion as given by the equation (3.11), where the right hand side is given by $(0-C)$ for the range rate. Therefore, for each observation of frequencies comparison, one observervation equation can be formulated. Typically, twenty to forty such comparisons are possible from one pass of the satellite at a point on the surface of the earth. Hence, twenty to forty observation equations per pass can be formed. The
redundant observations, can then be adjusted by the least squares technique to obtain the MPV's of the co-ordinates of the observer. All the computations and the adjustments are done in the digital computer which gives the position of the observer at any desired moment, almost instantaneously [31].

Inertial Positioning

In inertial positioning, the horizontal position of an observer is obtained from the measurements of the velocity and displacement of the observer from a starting point by sensing the acceleration acting on the observer or the vehicle in which the inertial positioning equipment is transported. This technique is fundamentally different from the others because it depends only on the measurements made on the vehicle itself.

The inertial positioning system consists of three components; (a) Gyroscope, (b) Accelerometers, and (c) A Computer. A gyroscope is an instrument which spins about its axis. The property of the gyroscope is such that its spin axis always points towards a fixed direction in space unless a torque is applied. When the torque is applied, the resultant change in direction is then the measure of the applied torque. This change in direction of the spin axis of the gyroscope provides the reading in terms of the rate of change of direction with respect to the original spin axis at the instrument. This information is then integrated by the computer with respect to time and this gives the direction.

An accelerometer, on the other hand, gives distance travelled from the starting point. It is a device, a sensor, for measuring the acceleration of the vehicle. Therefore, integration of the accelerometer output by the computer gives velocity which, further integrated provides the distance travelled. This information combined with the integrated gyroscope output, will provide the change in position of the observer relative to the initial known point, from which the position of the observer can be computed.

The position of the observer, thus obtained by the inertial system, is then the function of the direction and the distance, which can be differentiated and linearized to obtain the observation equation. For the redundant data, the observations can then be adjusted by the usual least squares technique to obtain the desired parameters.

Non-Classical Technique

So far we have discussed and dealt with the position of a point in two dimensions only; that is X and Y co-ordinates only. Besides these co-ordinates, there is a third dimensional co-ordinate, which is the elevation or altitude of the point. This co-ordinate, the vertical control position, is presented in this paper in chapter VI, and it is represented by Z. The classical technique has been to deal with the vertical and horizontal controls separately. Therefore, traditionally, horizontal and vertical positions controls have been adjusted independently.

A new aspect of non-classical technique combines both the horizontal and vertical positions control techniques, into one technique. This technique considers the measurements or the observations, and the adjustment in three dimensions, instead of the conventional two dimensions. The unified three dimensional approach in surveying is a very advanced mathematical approach and is accomplished by the relevant mathematical tools such as vector and tensor calculus. The concepts of the three dimensional adjustment are very complicated. None the less, it is possible to get the unified three dimensional solution. The concepts and reality of a position in three dimensions, as well as the adjustment techniques, are illustrated in [20]. As the standards of the surveying sciences, especially geodesy, get higher, it seems in the near future that the use of three dimensional aspect of surveying may be close at hand, because, it is desirable to think and get the position of a point in three dimensions X, Y, and Z.

IV. DEVELOPMENT OF THE COMPUTER PROGRAM
 FOR THE HORIZONTAL POSITION CONTROL

A computer program called HCONTRL has been developed to adjust the horizontal position control by the least squares technique. The development procedures and running of this program will be discussed here. A similar program called VCONTROL for vertical position control has also been developed and is discussed in chapter VII.

A. Program "HCONTROL"

This is a computer program to compute the horizontal positions by the various classical techniques such as: traverse, intersection, resection, triangulation, trilateration, and combined networks utilizing the least squares technique of adjustment when the redundant measurements are taken. The program is capable of adjusting the measurements of distance(s), or angle(s), or both. It is written in Fortran IV language.

The HCONTRL employs the observation equations technique of adjustment. The measurements must be either angle(s), or distances(s), or both. For each measurement, HCONTRL formulates one observation equation given by the equation (3.27) for the angle, and by the equation (3.11) for the distance. This is accomplished by computing the coefficients of the unknown parameters and assigning them into a
matrix form. For example, for a distance measurement between the two points i and j, Figure 1 , the observation equation is of the form given by the equation (3.11). The computer computes the coefficients P_{i}, Q_{i}, R_{i}, and S_{i}; given by the equation (3.08), of the unknown parameters, $\delta x_{i}^{0}, \delta y_{i}^{0}, \delta x_{j}^{0}$ and δy_{j}^{0}, respectively. These coefficients are computed from the given approximate co-ordinates $\left(X_{i}^{0}, Y_{i}^{0}\right)$ and $\left(X_{j}^{0}, Y_{j}^{0}\right)$ of the points i and j respectively. The HCONTRL then assigns these computed coefficients as the elements of the coefficient matrix \underline{B}. This is illustrated by the following example.

Figure 4. Sample Coefficients Computation.

In Figure 4, 1, 3, and 5 are three unknown points whose X and Y co-ordinates are required, and $X_{1}^{0}, Y_{1}^{0}, \ldots$, etc. are their corresponding approximate co-ordinates. If the distance D_{4}, between the two points (unknown stations) 3 and 5 is inputed into the computer as the fourth observation, HCONTRL computes the approximate distance D_{4}^{0} from the
equation (3.19) and assigns as C, which is then subtracted from D_{4}, and puts the result in the matrix form as

$$
\begin{equation*}
f(k)=D_{k}-D_{k}^{0} \tag{4.01}
\end{equation*}
$$

where $k=4$ (for the fourth input observation). The coefficients of the unknown parameters will be computed from:

$$
\begin{array}{ll}
P_{i}=\frac{x_{3}^{0}-x_{5}^{0}}{D_{4}^{0}}, & Q_{i}=\frac{Y_{3}^{0}-Y_{5}^{0}}{D_{4}^{0}} \tag{4.02}\\
R_{i}=\frac{x_{5}^{0}-x_{3}^{0}}{D_{4}^{0}} & S_{i}=\frac{Y_{5}^{0}-Y_{3}^{0}}{D_{4}^{0}}
\end{array}
$$

These coefficients will be assigned as the elements of the matrix \underline{B} according to the stations numbers 3 and 5 , and the order of the input of the observation. These will be given by;

$$
\begin{array}{lll}
b(k, 2 i-1) & =P_{i}, & b(k, 2 j-1) \tag{4.03}\\
=R_{i} \\
b(k, 2 i) & =Q_{i}, & b(k, 2 j)=S_{i}
\end{array}
$$

where $k=4$ (for the fourth input), $\mathfrak{i}=3$, and $j=5$. If there is additional unknown station(s), the computer will make the coefficients of all the other unknown parameters zero. Together with the distance, the standard deviation for the measured distance is also inputed. The program computes the weight from the standard deviation, and assigns it in the matrix form by

$$
\begin{equation*}
w(k)=\frac{1}{\sigma^{2}(k)} \tag{4.04}
\end{equation*}
$$

where $k=4$.

This completes the formation of one observation equation for a distance. The process is repeated for all the measured distance and the elements of the matrix $\underline{B}, \underline{f}$ and \underline{w} are filled.

When the input is an angle, the observation equation is given by the equation (3.27). The procedures of forming the observation equation for an angle is almost the same as in the formation of distance observation equation. The difference is that there are six unknown parameters (two each, for \mathbf{i}, \mathbf{j}, and k unknown stations) as opposed to four parameters in the distance observation equation. The six coefficients for the six parameters are obtained from the equation (3.21) and (3.26) by computing $P_{i j}, Q_{i j}, R_{i j}, S_{i j}, P_{i k}, Q_{i k}$, $R_{i k}$, and $S_{i k}$. The element of the right hand side of the equation (3.27), ($0-\mathrm{C}$), is the difference between the observed and computed angles. The computed angle is obtained from the approximate coordinates of the three unknown stations.

The procedure for assigning the computed values to the matrix \underline{B} is illustrated from the following example. If the angle between the stations 1, 3, and 5, Figure 4, is inputed as the seventh observation, the elements of the matrix $\underline{B} \underline{f}$, and \underline{w} will be given by;

$$
\begin{array}{ll}
b(k, 2 i-1)=\left(P_{i k}-P_{i j}\right), & b(k, 2 j-1)=-R_{i j} \\
b(k, 2 i)=\left(Q_{i k}-Q_{i j}\right), & b(k, 2 j)=-S_{i j} \tag{4.05}\\
b(k, 2 m-1)=R_{i k}, & b(k, 2 m)=S_{i k}
\end{array}
$$

where $k=7$ (for the seventh input), $i=1, j=3^{\prime}$, and $m=5$. From the approximate co-ordinates of the stations 1,3 , and 5, approximate angle θ_{7}^{0} will be computed by the program. If the input angle is
represented by θ_{7}, and the input standard deviation for the angle by σ_{7}, the element of \underline{f} and \underline{w} will be given by

$$
\begin{equation*}
f(k)=\theta_{7}-\theta_{7}^{0}, \quad w(k)=\frac{1}{\sigma_{7}^{2}} \tag{4.06}
\end{equation*}
$$

where k is the order number of the input angle, i.e. 7 , in our case. All other coefficients of the other unknown station or stations. (if any) will be assigned zero for this observation equation. For all the input angles, this procedure is repeated and the corresponding elements of $\underline{B}, \underline{f}$, and \underline{w} are computed and assigned.

For any fixed input azimuth, the observation equation for it is formed, almost exactly the same way as the angle observation equation. The coefficients of the unknown parameters are computed. from the equation (3.21). For a fixed distance, the procedure for the formation of the observation equation is exactly the same as in the measured distance observation equation. The difference between the fixed and the observed observation equations is that, in the fixed observation equation, the elements of the matrix f will be made zero by the computer. For all the fixed azimuths and distances, computation of the coefficients is repeated and the formation of matrix \underline{B} is completed. The formation of the weight matrix \underline{w} is completed according to the equation (4.06). Thus, the matrices $\underline{B}, \underline{f}$, and \underline{w} are formed.

In the process of the adjustment into the computer, HCONTRL converts the column weight matrix \underline{w} into \underline{W}, and the least squares adjustment is accomplished by solving the equation (3.37), which is

$$
\begin{equation*}
\underline{\Delta}=\left(\underline{B}^{t} \underline{W} \underline{B}^{-1}\left(\underline{B}^{t} \underline{W} \underline{f}\right)\right. \tag{4.07}
\end{equation*}
$$

The adjustment gives Δ, which is given by

$$
\Delta=\left|\begin{array}{c}
\delta X_{1}^{0} \tag{4.08}\\
\delta Y_{1}^{0} \\
1 \\
\cdot \\
\cdot \\
\delta X_{u}^{O} \\
\delta Y_{u}^{0}
\end{array}\right|
$$

The equation (4.08) is the same equation as the equation (3.29b), written in terms of the actual parameters. The adjusted co-ordinates or MPV's are then obtained from

$$
\begin{equation*}
X_{i}=X_{i}^{0}+\delta X_{i}^{0}, \quad Y_{i}=Y_{i}^{0}+\delta Y_{i}^{0} \tag{4.09}
\end{equation*}
$$

where $\mathbf{i}=1,2, \ldots, u$.
HCONTRL, then, compares each element (absolute value) of Δ with the number 0.001 . If it is greater than 0.001 , the co-ordinates given by the equation (4.09) are taken as the new approximate coordinates and the procedures repeat themselves to obtain the new set of $\underline{\Delta}$, and the new adjusted co-ordinates of all the unknown stations, until all of the elements (absolute values) of Δ are, separately, not greater than 0.001 . When this condition is met, the computer computes the residuals for all the observations from which the estimate of the reference variance $\hat{\sigma}_{0}^{2}$ is computed from the equation (2.16). The precisions (standard errors) of the adjusted co-ordinates and the
position, are then computed according to the discussion given in the section, Precision from Least Squares, chapter II. All the necessary informations are printed out. Detail listings are given in Appendix I. A complete listing of the HCONTRL is provided in Appendix III. A flow chart for HCONTRL is shown in Figure 6.

The general compilation and running of the program HCONTRL is shown in Figure 5. The following conditions must be satisfied to run the program.

Figure 5. Deck Set Up for HCONTRL

1. The maximum number of observations must not exceed 104.
2. The total number of fixed and unknown stations must not exceed 10 and 40 respectively.
3. The maximum number of fixed azimuths and distances must not exceed four each.

Figure 6. Flow Chart for HCONTRL.
4. At least one, fixed azimuth, distance, and fixed control stations (X and Y co-ordinates) to control the scale and orientation of the net must be given. The scale and orientation may also be fixed by providing two fixed control stations.
5. The approximate co-ordinates of all the unknown station(s) must be pre-determined. These co-ordinates can be, computed approximately, scaled from any available map or any other possible means.

Once the above criterions are satisfied, all that is needed in the adjustment procedure to run the program, are the observed angles, and/or the distances and their respective standard errors to account for the weighting of the observations. These standard errors may be obtained according to the discussion in the section Weights, chapter II.

To run the program, number the unknown station(s) first as, 1, 2, ..., m (m is number, no other character is allowed), and then the fixed stations as $m+1, m+2, \ldots$, etc. Any station number must not exceed two digits. Thus the maximum number, a station can have is 99. Set up the free form input data in the following order:

Step or Rule

Input Quantity

1. Title of the project, up to 75 characters (letters, numerals, or both).
2. Number of fixed station(s), number of unknown station(s) number of observed angle(s) (zero, if none), number

Approximate co-ordinates as $X_{\mathfrak{i}}$ and $\gamma_{\mathfrak{i}} ; \mathbf{i}=1,2$, \ldots, m : where i denotes the $i^{\text {th }}$ unknown station. Fixed co-ordinates as X_{j} and $Y_{j} ; j=m+1, m+2$, \ldots, etc., where j denotes the $j^{\text {th }}$ fixed station.
5. Observed angle in degrees, minutes, and seconds (or any decimal part of second), the standard error of the angle in seconds (or any decimal part of second), the station number I, J, and K such that I is the station number at angle observation point; J and K are such that they, (in that order), appear in the clockwise manner when viewed through I towards the the measured angle. For example, in Figure 7, if the measured value of the angle 3 is, $69^{\circ} 23^{\prime} 16.2^{\prime \prime}$,

Figure 7. Sample Sketch for HCONTRL Input.
with the standard error of 5.0", then the input for this angle would be

$$
\frac{69 \quad 23 \quad 16.2}{\text { angle }} \frac{5.0}{\substack{\text { standard } \\
\text { error }}} \frac{4 \frac{2}{\text { station }} \begin{array}{l}
\text { numbers }
\end{array}(I, J, K)}{}
$$

when viewed through the angle observation point 4 (I), towards the measured angle 3 ($69^{\circ} 23^{\prime} 16.2^{\prime \prime}$)
$2(J)$ and $3(K)$, in that order, appear in the clockwise manner relative to 4 .
(If no angle observation, go to step 7).
6.

Repeat step 7 for all the measured distances.
9.

The fixed azimuth from station I to the station J in degrees, minutes, and seconds (any decimal part of second), its standard error in seconds, station numbers I,J (in that order). For example, in Figure 7, the fixed azimuth is $349^{\circ} 55^{\prime} 48.6^{\prime \prime}$ from the station 3 to the station 4, if the standard error is $0.1^{\prime \prime}$, the input will be
10. Repeat step 9 for all the fixed azimuths.
11. Repeat step 7, replacing the measured distance by the fixed distance for all the fixed distances.

The classical techniques of horizontal position control such as: traverse, intersection, resection, triangulation, trilateration, etc. have been adjusted using the program HCONTRL. All the numerical examples for the various techniques are given in Appendix I. For each of these techniques, corresponding input data set up is also given in this Appendix. A complete listing of the computer program HCONTRL is given in Appendix III.

V. APPLICATION OF LEAST SQUARES SOLUTION

FOR THE HORIZONTAL POSITION CONTROL TECHNIQUES

Generally, classical techniques of horizontal position control include:

1. Traverse
2. Intersection
3. Resection
4. Triangulation
5. Trilateration
6. Combined Networks

> A. Traverse

This is the most widely used technique in general practice. A continuous set of directions or angles together with distances are measured. The least squares adjustment is accomplished by simultaneously adjusting two different types of measurements. The adjustment procedure to be followed here is the one which adjusts angle and distance.

For each angle and distance, observation equations like equations (3.27) and (3.11) respectively are written. Utilizing these equations, the computer program HCONTRL forms the observation equations for all the measured angles and distances. The program adjusts
all of these equations to give the MPV's, that is, co-ordinates of the unknown stations, by the procedures described in chapter IV. To run the program for the traverse adjustment, the following quantities are needed: the measured angles, the measured distances, standard errors of the measured angles and the distances, the approximate coordinates of all the unknown stations, and the fixed control coordinates. The scale and the orientation of the traverse must be fixed. The procedures for fixing the scale and the orientation are discussed in chapter IV.

The output of the computer program includes: the adjusted coordinates of the unknown stations, the standard errors of the adjusted co-ordinates X_{i} and Y_{i}, and of position, of each adjusted station. The standard errors are computed according to the discussion presented in the section Precision from Least Squares, chapter II. The output also includes the adjusted angles and the distances. A listing of HCONTRL is provided in Appendix III. Details of the input procedures and running the program is given in chapter IV.

A traverse of Figure 8, has been adjusted by the program. The data, for checking purpose, are taken from [17]. Following are the fixed and measured quantities.

Fixed Data

Co-Ordinates

Station	$X(m)$	$Y(m)$	Azimuth from North
4	$163,208.49$	$104,375.29$	$\alpha_{1}=48^{\circ} 27^{\prime} 30.0^{\prime \prime}$
5	$165,074.49$	$105,227.47$	$\alpha_{2}=67^{\circ} 48^{\prime} 48.0^{\prime \prime}$

Figure 8. Traverse Sketch.

Measured Data

(a) Angles
(b) Horizontal Distance (m)
$\theta_{1}=203^{\circ} 41^{\prime} 28^{\prime \prime}$
$d_{1}=703.28$
$\theta_{2}=162 \quad 37 \quad 21$
$d_{2}=473.29$
$\theta_{3}=193 \quad 18 \quad 06$
$d_{3}=687.48$
$\theta_{4}=170 \quad 08 \quad 49$
$d_{4}=202.31$
$\theta_{5}=189 \quad 35 \quad 52$

The standard errors of a measured angle and a distance are arbitrarily chosen as $\pm 3^{\prime \prime}$ and $\pm 0.001 \mathrm{~m}$. respectively, and for all measured angles and the distance, these values for the standard errors are assumed. The data fed into the computer program HCONTRL gives the following adjusted co-ordinates of stations 1,2 , and 3 with their corresponding standard errors. The detail output is given in Appendix I.

	Adjusted Co-ordinates		Standard Errors of Adj. Co-ord.		
Station	$X(m)$	$Y(m)$	$X(m)$	$Y(m)$	Position (m)
1	$163,877.98$	$104,590.94$	± 0.088	± 0.068	± 0.111
2	$164,264.64$	$104,864.04$	± 0.098	± 0.079	± 0.126
3	$164,902.44$	$105,120.86$	± 0.079	± 0.052	± 0.095

The last digit of the numbers on the above table are rounded digits and this rounding off rule will be followed throughout this chapter.

B. Intersection

Intersection is a simple technique to obtain the horizontal position of one point by measuring horizontal angles only from the fixed points to the point to be intersected. This technique is very convenient when the position of an inaccessible point is needed. At least two horizontal angles from the two fixed control points must be measured to obtain a unique horizontal position. Any more measurements will give the redundant observations, which can be adjusted by the least squares technique.

An observation equation of the form given by the equation (3.27) can be written for each angle measured. All of these observations equations can be represented in the matrix form given by the equation (3.29a). Note here that the elements of the matrices $\underline{B}, \underline{W}$, and \underline{f}, will be different from the corresponding matrices obtained in traverse adjustment. Elements of the coefficient matrix \underline{B} depends on the approximate co-ordinates of the unknown point(s). Elements of the
weight matrix \underline{W} depends on the standard errors of the observation and the elements of the right hand side matrix f are the functions of the observed and computed quantities, angles in the case of intersection. Since, each adjustment has different fixed and observed data, all these matrices will then be different for different techniques of the horizontal position control.

For a numerical example, angles θ_{1} through θ_{8} in Figure 9 , have been measured from the five fixed control stations (points),

Sketch not to scale
\triangle Fixed control points
O Intersection point

Figure 9. Intersection Sketch.
station 2 through 6, to the station 1 to be intersected. Fixed and measured data are given on the next page.

Assuming the standard error of all the measured angles to be the same, equal to $\pm 0.1^{\prime \prime}$, and inputing the data into the computer program HCONTRL, the following results extracted from the output at Appendix I, are obtained. Detail input procedures for running the program are given in chapter IV.

Fixed Data*			Measured Data*			
Co-ordinates						
Station	$X(M)$	$Y(m)$	Angle	0	1	"
2	345,780.67	150,394.05	θ_{1}	32	14	18.8
3	350,044.25	150,752.70	θ_{2}	53	18	32.5
4	356,442.71	148,778.96	θ_{3}	72	09	20.7
5	351,240.22	138,628.80	${ }^{+} 4$	27	35	52.1
6	347,490.50	145,480.79	θ_{5}	48	01	23.9
			θ_{6}	40	59	38.9
			θ_{7}	57	42	28.2
			θ_{8}	56	00	48.8

Adjusted Co-Ordinates Standard Errors of Adj. Co-ordinates

Resection is the opposite of intersection. In resection, horizontal angles from the point whose horizontal position is required, to the fixed control stations are measured. A minimum of two horizontal angles are necessary. Any more observations gives the redundancy. As stated earlier, each observed angle formulates one observation equation given by the equation (3.27). All the observation equations are represented

[^0]by the matrix equation (3.29a) whose least squares solution is given by the equation (3.37). The adjustment procedure is the same as described in intersection or traverse. The same computer program HCONTRL is used for the adjustment.

For a numerical example, six horizontal angles θ_{1} through θ_{6}, in Figure 10, are measured from the resection.

Sketch not to scale
\triangle Fixed control point
OResection point

Figure 10. Resection Sketch.

Fixed and measured data are given below:

Fixed Data
Control Co-ordinates
$\begin{array}{ccc}\text { Station } & X(m) & Y(m) \\ 2 & 350,044.25 & 150,752.70 \\ 3 & 356,442.71 & 148,778.96 \\ 4 & 356,788.67 & 144,328.27 \\ 5 & 351,240.22 & 138,628.80 \\ 6 & 347,490.50 & 145,480.79 \\ 7 & 345,780.67 & 150,394.05\end{array}$

Measured Data
Horizontal Angles
Angle
$\begin{array}{llll}\theta_{1} & 94 & 27 & 06.5\end{array}$
$\begin{array}{llll}\theta_{2} & 35 & 12 & 51.4\end{array}$
$\begin{array}{llll}\theta_{3} & 31 & 38 & 05.6\end{array}$
$\begin{array}{llll}\theta_{4} & 66 & 16 & 48.9\end{array}$
$\begin{array}{llll}\theta_{5} & 45 & 10 & 57.2\end{array}$
$\begin{array}{llll}\theta_{6} & 87 & 14 & 09.4\end{array}$

Standard error for each measured angle is assumed $\pm 0.1^{\prime \prime}$. These data are adjusted using HCONTRL to obtain the following results. For the input procedure, see chapter IV. The complete listing of the computer output is given in Appendix I.

Adjusted Co-Ordinates Standard Errors of Adj. Co-Ordinates

Station
1

$$
X(m)
$$

$Y(m)$
$X(m)$
$Y(m)$ Position (m)
351,629. 12
144,899.09
± 0.016
$\pm 0.012 \pm 0.020$

D. Triangulation

In a traditional and classical technique of triangulation, coordinates of one station together with one fixed distance and azimuth are given. All the horizontal angles in the network are measured. From these items, the horizontal position(s) of all the point(s) are computed. Such a net is shown in Figure 11. The measured quantities are the angles, θ_{1} through θ_{14}. The adjustment procedure is exactly the same as described in the previous three techniques. The fixed and measured data are given on the next page.

\triangle Fixed Station
OUnknown Station
\Longrightarrow Fixed Distance
——Fixed Azimuth

Figure 11. Triangulation Sketch.

Fixed Data

	Co-ordinates		Line	Distance (m)
Station	$X(\mathrm{~m})$	$Y(\mathrm{~m})$	$6-1$	$5,202.273$
6	$347,490.50$	$145,480.79$	Azimuth from North	
			$6-1 \quad 340^{\circ}$	48^{\prime}
		$43.0^{\prime \prime}$		

Measured Data

Angle	0	,	$\prime \prime$	Angle	0	1	$" 1$
θ_{1}	79	14	33.5	θ_{8}	27	35	52.1
θ_{2}	55	34	32.3	θ_{9}	45	02	04.0
θ_{3}	56	00	48.8	θ_{10}	72	09	20.7
θ_{4}	57	42	28.2	θ_{11}	35	12	51.4
θ_{5}	40	59	38.9	θ_{12}	31	38	05.6
θ_{6}	59	20	44.4	θ_{13}	66	16	48.9
θ_{7}	48	01	23.9	θ_{14}	45	10	57.2

The standard error for each of the measured angles and the fixed azimuth are assumed equal and is taken as $\pm 1.0^{\prime \prime}$. The standard error of the fixed distance is taken as $\pm 0.05 \mathrm{~m}$. The computer program HCONTRL is used to adjust these data by the least square technique and the following adjusted co-ordinates and standard errors are obtained. The complete listing of the output is given in Appendix I.

	Adjusted Co-Ordinates		Standard Errors of Adj. Co-ordinates		
Station	$X(\mathrm{~m})$	$Y(\mathrm{~m})$	$X(\mathrm{~m})$	$Y(\mathrm{~m})$	Position (m)
1	$345,780.00$	$150,394.00$	± 0.091	± 0.151	± 0.177
2	$350,043.67$	$150,753.20$	± 0.127	± 0.177	± 0.218
3	$356,442.61$	$148,780.20$	± 0.312	± 0.226	± 0.385
4	$356,789.15$	$144,324.41$	± 0.334	± 0.209	± 0.394
5	$351,629.29$	$144,899.56$	± 0.154	± 0.092	± 0.179

E. Trilateration

In the trilateration technique only the distances are measured and reduced to horizontal distances. As the Electronic Distance Measuring (EDM) equipment became more and more precise, the feasibility of the trilateration technique compared to the triangulation technique for the horizontal control positioning became a reality. In general practice in the past, this technique was not used due to the expensive EDM equipment. But this is no longer the case. Precise EDM equipment is now available at a reasonable price for the general use. Because of the tremendous saving of time, this technique is now economically practicle.

Once the scale and the orientation of a network is fixed, any kind of net can be adjusted by the trilateration technique. To adjust the net by the least squares technique using the computer program HCONTRL, horizontal distances must be obtained.

For a numerical example, the same net as in resection, Figure 10 , is taken. Instead of measuring angles at station 1 , the horizontal
distances from six control stations to the station 1 , were recorded, and they are:

$$
\begin{array}{ll}
\text { Line } & \text { Distance (m) } \\
2-1 & 6,064.34 \\
3-1 & 6,182.65 \\
4-1 & 5,191.05 \\
5-1 & 6,282.32 \\
6-1 & 4,179.31 \\
7-1 & 8,024.87
\end{array}
$$

The control co-ordinates of the fixed stations 2 through 7 are the same as given in Resection, page 58.

Each measured horizontal distance produces one observation equation of the form given by the equation (3.27). For the seven measured distances, there will be seven observation equations, but only two unknown parameters, that is X and Y co-ordinates of the station 1. These redundant observations have been adjusted by the least squares technique using the program HCONTRL, by utilizing the equation(3.37) to obtain the following adjusted co-ordinates of the station 1 and the corresponding standard errors. The standard errors are computed according to the procedure described in the section Precision from Least Squares, chapter II.

	Adjusted Co-Ordinates		Standard Errors of Adj. Co-ord.		
Station	$X(m)$	$Y(m)$	$X(m)$	$Y(m)$	Position (m)
1	$351,629.08$	$144,899.07$	± 0.022	± 0.024	± 0.032

In the adjustment, the standard errors for all the measured distances are assumed to be the same and taken as $\pm 0.01 \mathrm{~m}$. Input and the run procedure for the program HCONTRL are given in chapter IV. The complete listing of the output is given in Appendix I.

F. Combined Networks

The most general technique in the horizontal position control is the technique of combined networks. This technique is the combination of all the techniques previously described. Once the orientation and scale of the net are fixed, the combination of the horizontal distance(s) and horizontal angle(s) are measured. Then the basic net produced by the combination(s) of figures of triangle(s), quadrilateral(s), central point figure(s), or any other figure(s), by the measurements of distance(s) or angle(s), or both, are adjusted by the simultaneous adjustments of the distance(s) and angle(s). In practice, the scale and orientation of the net are usually controlled and checked by fixing distance(s) and azimuth(s) at chosen places in the net.

Regardless of the shape and size of the triangulated figures, the basic observation equations are angle(s) and distance(s). The adjustment procedure involves formulating one observation equation for one measurement which is represented by equation (3.11) for distance and equation (3.27) for the angle. All the observation equations, put together, can be represented in the matrix form given by the equation (3.29a). Then, the adjustment is carried out as usual; obtaining the unknown parameters by the equation(3.37) using the computer program HCONTRL.

For a numerical example, 21 horizontal angles and 6 distances in Figure 12, are measured with one fixed azimuth and one fixed distance. the fixed azimuth from the north and the fixed distance are between station 7 and station 3 . Also fixed in the net, are the co-ordinates of stations 6 and 7. The measured angles are labeled θ_{1} through θ_{21}. Following are the fixed and measured data:

\triangle Fixed Station
OUnknown Station
\rightarrow Fixed Aximuth
= Fixed Distance

Sketch not to scale

Figure 12. Sketch for Combined Networks

Fixed Data

	Co-Ordinates		Line	Distance (m)
Station	$X(m)$	$Y(m)$	$7-3$	$4,464.116$
6	$347,490.50$	$145,480.79$		Azimuth
7	$356,442.71$	$148,778.96$	$7-3$	$175^{\circ} 33^{\prime} 18.85^{\prime \prime}$

Measured Data
Angle 0 , "Angle 0 1 " Angle 0 1 "

${ }^{\theta} 1$	32	14	18.8	θ_{8}	57	42	28.2	${ }^{15}$	53	18	32.5
θ_{2}	23	35	17.6	θ_{9}	40	59	38.9	${ }^{\theta} 16$	94	27	06.5
θ_{3}	17	05	36.2	θ_{10}	59	20	44.4	${ }^{\theta} 17$	35	12	51.4
θ_{4}	52	04	57.1	${ }^{11}$	48	01	23.9	${ }^{18}$	31	38	05.6
θ_{5}	79	14	33.5	${ }^{12}$	27	35	52.1	${ }^{\theta} 19$	66	16	48.9
θ_{6}	55	34	32.3	${ }^{1} 13$	45	02	04.0	${ }^{20}$	45	10	57.2
${ }^{7} 7$	56	00	48.8	${ }^{1} 14$	72	09	20.7	θ_{21}	87	14	09.4

Line	Measured Distan
$4-5$	$6,282.32$
$3-5$	$5,191.05$
$7-5$	$6,182.65$
$2-5$	$6,064.34$
$1-5$	$8,024,87$
$6-5$	$4,179.31$

The standard errors for each of the measured angle and the distance are arbitrarily taken as $\pm 1.0^{\prime \prime}$ and $\pm 0.01 \mathrm{~m}$. respectively, whereas the standard errors of the fixed azimuth and the distance are taken as $\pm 0.1^{\prime \prime}$ and $\pm 0.005 \mathrm{~m}$. respectively. These data are adjusted by the least squares technique using HCONTRL and the following adjusted co-ordinates together with the corresponding standard errors of the adjusted co-ordinates are obtained. To input and run the program,
see chapter IV. The standard errors are computed according to the technique described in chapter II.

Adjusted Co-ordinates Standard Errors of Adj. Co-ord.

Station	$X(\mathrm{~m})$	$Y(\mathrm{~m})$	$X(\mathrm{~m})$	$Y(\mathrm{~m})$	Position (m)
1	$345,780.70$	$150,394.03$	± 0.043	± 0.043	± 0.061
2	$350,044.25$	$150,752.64$	± 0.043	± 0.029	± 0.052
3	$356,788.64$	$144,328.21$	± 0.005	± 0.012	± 0.013
4	$351,240.17$	$138,628.77$	± 0.045	± 0.031	± 0.055
5	$351,629.08$	$144,899.04$	± 0.014	± 0.020	± 0.024

The complete listing of the computer output is given in Appendix I.

VI. THEORY OF THE VERTICAL POSITION CONTROL

The vertical is the line which a plumb line takes, Figure 13, when it is hung up freely under the affect of the gravitational attraction of the earth. A surface, everywhere at right angle to the vertical, is called the level surface. A reference surface, called

Figure 13. Reference Surface.
datum, is any level surface, chosen according to the conveniency. The datum that coincides with the mean sea level surface is known as the mean sea level surface (MSL) datum. The mean sea level surface is determined from the observations on the tide gauges over a period of years. The MSL surface is not a regular simple figure and computation on its surface is difficult. To ease the computational work, the MSL surface is approximated by an oblate spheroid, which is the figure obtained by revolving an ellipse about its minor axis. In
surveying, the linear distance, up or down the vertical; from the datum to a point is known as the elevation, or the altitude, or the height of the point above or below the datum.

There are several techniques for determining elevation. The classical or the most frequently used are the direct leveling and the trigonometric leveling. For conveniency, direct leveling, in this paper, will be called leveling, and the trigonometric leveling as trig leveling. Each of these techniques will be discussed. Also discussed is the gravimetric leveling, which is applicable only to the highest order of leveling work. A brief discussion will also be presented on the non-classical techniques of the vertical position control, which includes: barometric leveling, hydrostatic leveling, stadia (tacheometric) leveling, satellite altimetry, and steric leveling.

A. Direct Leveling

Direct leveling employs the use of a spirit or automatic level which establishes a near horizontal line of sight, Figure 14. The elevation difference between two points are determined by taking the difference between two consecutively sighted horizontal line of sights to two uniformly marked vertical rods held on the two points. If R_{A} and R_{B} are the two rod readings at the points A and B respectively, Figure 14, when the level is at position (1), the elevation difference $\Delta H_{A B}$, between the points A and B is given by;

$$
\begin{equation*}
\Delta H_{A B}=R_{A}-R_{B} \tag{6.01}
\end{equation*}
$$

The process is continued to obtain the successive elevation differences between the two concucative points until the point X, whose

Figure 14. Direct Leveling
elevation is desired, is reached. All these elevation differences are algebraically added to obtain the elevation difference between the two points. In Figure 14, if A is the fixed elevation station, the elevation of the point X can then be obtained from;

$$
\begin{align*}
\text { Elevation } X= & \text { Elevation } A+\left(R_{A}-R_{B}\right)+\left(R_{b}-R_{C}\right)+\ldots \\
& \ldots \ldots+\left(R_{Y}-R_{X}\right) \tag{6.02}
\end{align*}
$$

where R_{b}, R_{c}, R_{X}, and R_{Y} are the rod readings shown in the Figure 14 at different points.

B. Trig (Trigonometric) Leveling

Trig leveling is the technique used to determine the elevation difference between two points. by measuring the vertical angle from an instrument over one point to a rod over the second point. To compute the elevation difference, either the horizontal or the slant distance must be known.

In Figure 15, the elevation difference, $Q R$, between the two points P and Q is given by;

$$
\begin{equation*}
\mathrm{QR}=\mathrm{D} \tan \theta \tag{6.03}
\end{equation*}
$$

where D is the horizontal distance and θ is the verticle angle between the two points; θ is determined by a transit or a theodolite. If the slant distance S has been measured instead of the horizontal distance, the same elevation difference is given by;

$$
\begin{equation*}
\mathrm{QR}=\mathrm{S} \sin \theta \tag{6.04}
\end{equation*}
$$

Figure 15. Trig Leveling.

In Figure 15, H_{A} and H_{B} are the elevations of the points A and B respectively, which in most surveying work, are considered linear elevations; i_{A} and g_{B} are the height of the instrument (HI) and height of the target (HT) respectively. All these quantities are related by the expression

$$
H_{A}+i_{A}+D \tan \theta=H_{B}+g_{B}
$$

which gives

$$
\begin{equation*}
H_{B}-H_{A}=D \tan \theta+i_{A}-g_{B} \tag{6.05}
\end{equation*}
$$

If the slant distance S, is measured, then;

$$
\begin{equation*}
H_{B}-H_{A}=S \sin \theta+i_{A}-g_{B} \tag{6.06}
\end{equation*}
$$

These are the basic elevation difference expressions between the two points as determined by the trig leveling technique. These equations are true for all values provided the following conventions are followed:
(i) Height above a station is positive and below it, is negative.
(ii) $H_{B}-H_{A}$ is defined as the elevationdifference between A and B; from A to B.
(iii) The angle θ is positive for the elevationangle, and negative for the depression angle.

From the equations (6.05) and (6.06), the elevation difference between the two points can be computed if the vertical angle and, either the horizontal or the slant distance are measured. However, the measured vertical angle θ, must be corrected for the effects of the
atmospheric refraction and the curvature of the earth, if the greater precision in the elevation difference is desired from the trig leveling.

Atmospheric Refraction

In Figure $16 \mathrm{a}, \theta$ is the vertical angle at A between the horizontal at A and the chord $A B$. Due to the atmospheric refraction, the measured vertical angle is α. Therefore, a correction β, must be applied to to obtain θ, such that

$$
\begin{equation*}
\theta=\alpha-\beta \tag{6.07}
\end{equation*}
$$

In Figure 16a,
$R=$ mean radius of curvature of the earth.
$\lambda=$ angle between the two R's at A and B.
$\gamma=\lambda / 2$
A^{\prime} and B^{\prime} are the projection of A and B respectively along the verticals to the datum.

If the slant path is assumed to be circular and if σ is the radius of the patin, from Figure 16b,

$$
\begin{equation*}
\operatorname{arc} A B=2 \sigma B \tag{6.08}
\end{equation*}
$$

From Figure 16a,
$\operatorname{arc} A^{\prime} B^{\prime}=R \lambda$
and since $A^{\prime} B^{\prime} \doteq A B$

$$
\operatorname{arc} A^{\prime} B^{\prime} \doteq \operatorname{arc} A B=R \lambda
$$

Substituting the arc $A B$ in the equation (6.08)

$$
R \lambda \doteq 2 \sigma \beta
$$

Therefore,

$$
\begin{equation*}
\beta \doteq \frac{R \lambda}{2 \sigma} \tag{6.10}
\end{equation*}
$$

From Figure 16a,

$$
R \lambda \doteq \mathrm{~S}
$$

(a)

(b)

Figure 16. Refraction and Curvature of Earth.

Therefore, substituting for $R \lambda$ in the equation (6.10) gives

$$
\begin{equation*}
\beta \doteq \frac{S}{2 \sigma} \tag{6.11}
\end{equation*}
$$

where R is defined as [13];

$$
\begin{equation*}
R=(\rho \nu)^{1 / 2} \tag{6.12}
\end{equation*}
$$

such that

$$
\begin{align*}
& \rho=\frac{\mathrm{a}\left(1-\mathrm{e}^{2}\right)}{\left(1-\mathrm{e}^{2} \sin ^{2} \phi\right)^{3 / 2}} \tag{6.13}\\
& \nu=\frac{\mathrm{a}}{\left(1-\mathrm{e}^{2} \sin ^{2} \phi\right)^{1 / 2}} \tag{6.14}
\end{align*}
$$

where ϕ is the latitude of the point A.
a. is the semi-major radius of the spheroid used.
e is the eccentricity of the spheroid.
For a spheroid, a and e are fixed quantities. In this paper, the Clarke spheroid of 1866 has been taken for the computations and they are:

$$
a=6,378,206.4 \text { meters, and } e=0.006768657979291
$$

It is also defined on page 97 [17] that

$$
\begin{equation*}
k=\frac{R}{2 \sigma} \tag{6.15}
\end{equation*}
$$

where k is called the coefficient of refraction. Substituting for $\sigma=\frac{R}{2 k}$ from equation (6.15) into the equation (6.11) gives

$$
\begin{equation*}
\beta \doteq \frac{\kappa S}{R} \text { radians } \tag{6.16}
\end{equation*}
$$

For visible light, it is shown in [17] that $\sigma \doteq 43 \times 10^{6}$ meters. Taking the mean radius of curvature $R=6.36 \times 10^{6} \mathrm{~m}$, the value for the value for the coefficient of refraction κ is given by

$$
\begin{equation*}
\kappa=\frac{R}{2 \sigma} \doteq 0.07 \tag{6.17}
\end{equation*}
$$

For the case of microwave, which may be used in some EDM measurenents, it is shown in [17] that the value of k varies between 0.1 and 1 with the value of 0.125 taken as the standard. These values of $\kappa, 0.07$ for the visible light waves, and 0.125 for the microwaves, are used later in this paper in the computer program VCONTRL.

Thus, from the equation(6.16), the value of β can be computed, if S and R are known. This value of β is then subtracted to obtain the vertical angle corrected for the atmospheric refraction, and is given by the equation (6.07).

Curvature of the Earth

In the derivation of the equations (6.05) and (6.06), the datum CE, Figure 15, has been assumed as straight, but it is actually curved and shown as $A^{\prime} B^{\prime}$ in Figure 16a. The elevation difference obtained from (6.05) or (6.06), gives the elevation difference above a flat earth. The effect of the curvature of the earth must be corrected if the better elevation difference is desired. This effect is shown as $\dot{\gamma}$ in Figure 16a.

At point $\mathrm{E}, \mathrm{x}=90+\lambda / 2$
Applying the sine rule to the parts of the triangle $A B E$;

$$
\frac{B E}{\sin (\theta+N 2)}=\frac{S}{\sin x}
$$

Substituting for x from the equation (6.18)

$$
\frac{B E}{\sin (\theta+\lambda / 2)}=\frac{S}{\sin (90+\lambda / 2)}
$$

or,

$$
B E=S \cdot \frac{\sin (\theta+\lambda / 2)}{\cos (\lambda / 2)}
$$

Therefore,

$$
\begin{equation*}
B E=S \cdot \sin (\theta+\lambda / 2) \cdot \sec (\lambda / 2) \tag{6.19}
\end{equation*}
$$

Since $\lambda / 2$ is very small for usual work, $\sec (\lambda / 2)$ can be considered as unity. Then the effect of the curvature of the earth is accounted by adding γ to θ, where

$$
\gamma=\lambda / 2
$$

Substituting for $\lambda=\left(\operatorname{arc} A^{\prime} B^{\prime}\right) / R$ from the equation (6.09)

$$
\gamma \doteq \frac{\operatorname{arc} A^{\prime} B^{\prime}}{2 R}
$$

From Figure 16a, assuming arc $A^{\prime} B^{\prime} \doteq S$, therefore,

$$
\begin{equation*}
\gamma \doteq \frac{S}{2 R} \tag{6.20}
\end{equation*}
$$

The refraction and the curvature corrections are often combined together so that the corrected vertical angle θ is given by

$$
\begin{equation*}
\theta=\alpha-\beta+\gamma \tag{6.21}
\end{equation*}
$$

where α is the measured vertical angle. Substituting for β and γ from the equations (6.16) and (6.20) respectively, gives

$$
\theta=\alpha-\frac{K S}{R}+\frac{S}{2 R}
$$

or,

$$
\theta=\alpha+\left(\frac{S}{2 R}-\frac{k S}{R}\right)
$$

Therefore, $\quad \theta=\alpha+\frac{S}{2 R}(1-2 K)$

In this paper, this equation has been used to compute the corrected vertical angle, and thus the elevation difference from the equations (6.05) or (6.06). The effects of the refraction and the curvature for the various distances are tabulated in Table 2, by computing the value of $\frac{S}{2 R}(1-2 K)$. The value of R is taken as $6,378,206.4 \mathrm{~m}$ which is the semi-major axis of the Clarke spheroid of 1866.

Table 2. Effects of Refraction and Curvature.

Distance	Coefficient of Refraction (K)			
meters	0.07		0.125	
100	00^{\prime}	$01.4^{\prime \prime}$	00^{\prime}	$01.2^{\prime \prime}$
500	00	07.0	00	06.1
1,000	00	13.9	00	12.1
2,000	00	27.8	00	24.3
5,000	01	09.5	01	00.6
10,000	02	19.1	02	01.3
50,000	11	35.3	10	06.4
100,000	23	10.6	20	12.7

C. Gravimetric Leveling

It should be realized that the gravimetric leveling is usually only applied to the first order leveling where the misclosure of a leveling loop, according to the National Geodetic Survey (NGS)
specifications [34], must be within $\pm 3 \mathrm{~mm} \sqrt{K}$; where K is the single direction path distance of the level line in kilometers. Elevation of a point is the amount that the point is above or below the mean sea level (MSL) surface. Mathematically, the MSL surface is a surface of equal gravity potential and it is conventionally known as the Geoid.

Due to the: rotation of the earth around the sun as well as about its own rotational axis; the transcendental attractions of the sun, the moon, and other planets on the earth; differing densities of the earth at various depths underneath the surface; the Eartn's gravitation produces a very complicated Geoid. The Geoid is not spherical in shape with a longer radius at the equator than at the pole. Consequently, gravity at the pole is greater than at the equator. The equal gravity potential surface or the equipotential surface, is closely approximated by a spheroid, sometimes referred to the best fitting ellipsoid. An ellipse revolved around the minor axis produces a mathematical figure called an oblate ellipsoid. Fitting an oblate ellipsoid or spheroid to the earth eases the computational work involved in the horizontal and the vertical control positions.

In leveling, elevation of a point can be a linear distance of the point above or below the geoid measured along the vertical. This elevation or height is called an Orthometric height and is the value normally quoted in the literature.

Due to the different gravity values from the equator to the pole, the equipotential surfaces are not parallel, but they are closer together at the pole than at the equator, Figure 17 . It should be

Figure 17. Equipotential Gravity Surfaces.
realized that nonparallelism of the equipotential or the level surfaces is significant only in the north-south direction due to the varying gravity along this direction. Therefore, leveling in the north-south direction over a long distance will be in error in otherwise errorless leveling. This is clearly seen in Figure 18., A and B are two points at sea level while a and b are vertically above them

Line a to b is in north-south direction

Figure 18. Non-parallelism of Equipotential Gravity Surfaces.
at another equipotential surface. Note that the linear distances Aa and Bb are not straight lines, but curved. This is due to the fact that these vertical lines have to be perpendicular to all the infinite equipotential surfaces between A and $a(B$ and $b)$. It is clearly seen Aa is not equal to Bb . Thus the determination of an elevation of a point may be dependent upon the leveling route taken.

From the previous vertical control techniques described, only the route dependent elevations are obtained. To make them route independent, what is known as geopotential numbers are used. A geopotential number is the product of the observed gravity, in Kilogals, at the point and elevation of the point in Meters. Geopotential numbers (GPU) are measured in geopotential units (gpu) such that $1 \mathrm{gal}=1 \mathrm{~cm} / \mathrm{sec}^{2}$ and $1 \mathrm{gpu}=1000 \mathrm{gal}$ meters. Additional information may be found in [14] and [11]. In the most simple form GPU is given by

$$
\begin{equation*}
\mathrm{GPU}=\mathrm{gh} \tag{6.23}
\end{equation*}
$$

where g is the observed gravity at the point in kgals and h is the elevation of the point in meters.

A numerical example of a GPU computation is given on page 140. Table 3 gives the GPU of the five stations extracted from Table 5, Appendix II.

Since $1 \mathrm{gpu}=1 \mathrm{kgals}$-meter, and the average gravity value is 980 gals which is equal to 0.98 kgals, gpu values will always be less than the orthometric height (elevation).

Table 3. Surface Gravities, Station Elevations, and Geopotential Numbers

Station	Surface Gravity (gals)	Elevation (meter)	Geopotential Number (gpu) kgals-meter
Corvallis OSU-PC	980.573149	77.142	75.643
U-54	980.573253	76.787	75.295
$\tau \beta \pi$	980.575467	71.337	69.951
Corvallis OSU-KL	980.573844	73.336	71.911
College	980.573302	73.219	70.816

D. Non-Classical Techniques

It is just meant to show in this section that there exists other techniques of vertical position control. Only a brief discussion will be presented here. The non-classical technique of the vertical position control include:

1. Barometric Leveling
2. Hydrostatic Leveling
3. Stadia (Tacheometric) Leveling
4. Satellite Altimetry
5. Steric Leveling

Barometric Leveling

The atmospheric pressure (P), at a point is a function of the elevation of the point (H), gravity (g), and the density of air (ρ) [2]. That is

$$
\begin{equation*}
P=f(g, \rho, H) \tag{6.24}
\end{equation*}
$$

If g and ρ at the two points are constant, then it is shown on page 383,[2] that

$$
\begin{equation*}
\frac{H_{1}}{H_{2}}=k \log _{e}\left(\frac{P_{1}}{P_{2}}\right) \tag{6.25}
\end{equation*}
$$

where H_{1}, H_{2} and P_{1}, P_{2} are the corresponding elevations and pressures respectively, and k is a constant. Thus, if one elevation is known, other elevations can be computed from the known pressures at the two points. The pressure is measured by the instrument known as a Barometer [13].

Hydrostatic Leveling

If a U-shaped tube is partially filled with water, the elevations of the two water level surfaces at the two 1 imbs will be equal due to the balance of water set by the force of gravity. This idea is used in hydrostatic leveling by laying and filling water into long flexible pipes, from a known elevation point. Pipes as long as 10 km . have been used to determine the elevations by this technique [2]. The technique is useful where the elevation differences are very small and has been much used in Holland.

Stadia (Tacheometric) Leveling

The stadia or tacheometric leveling is based on the measurements of the vertical angle and the horizontal distance. Though this technique looks like the trig leveling, the later is more precise than the previous. For detail information on stadia leveling, see [2] and [13].

A transit or a theodolite provides the top and bottom cross wires besides the central cross wire in the raticule. The transit or the theodolite is sighted at a near vertical rod, and the rod readings at the top and the bottom cross wires, S_{T} and S_{B} respectively are recorded, Figure 19. If α is the vertical angle, the vertical distance

Figure 19. Stadia Leveling.
V, as shown in the figure, can be mathematically shown as [13];

$$
\begin{equation*}
V=C\left(S_{T}-S_{B}\right)\left(\frac{1}{2} \sin 2 \alpha\right) \tag{6.26}
\end{equation*}
$$

where C is an instrument constant, and usually made equal to 100. In Figure 19;
$\mathbf{i}=$ Height of the instrument (HI)
$g=\operatorname{Rod}$ reading
$H_{p}=$ Elevation of the point P
$H_{Q}=$ Elevation of the point Q.
Then it can be shown [13] that;

$$
\begin{equation*}
H_{Q}-H_{P}=i+V-g \tag{6.27}
\end{equation*}
$$

If the elevation of one point is known, the elevation of the other point can then be computed. This equation very much looks like the equation (6.05). The difference is the computation of V. The adjustment by least squares technique can then be applied in the similar manner as described in the trig leveling adjustment.

Satellite Altimetry

The determination of the X and Y co-ordinates from the artificial satellites have been briefly described in the section Future Systems in chapter III. During the horizontal position (X, Y) fix, as described in chapter III, from the satellites, the Z co-ordinate or the elevation, is also computed applying the adjustment of least squares technique described in the chapter. For more information, see [27].

Steric Leveling

The technique of the steric leveling is applied by the oceanographers to find the elevations of points on the ocean surface. It is meant to indicate here that the technique of the steric leveling exists. It is out of the scope of this paper to describe the
procedures of the steric leveling. The technique involves the measurements of: density, pressure, salinity of sea water, temperature, etc. at different points on the ocean surface. For more information, see [19].

VII. DEVELOPMENT OF THE COMPUTER PROGRAM FOR THE VERTICAL POSITION CONTROL

A computer program called VCONTRL has been developed for adjusting the classically obtained vertical control positions by the least squares technique. The classical obtained vertical control means either the direct leveling or the trig leveling. The program is written in Fortran IV language.
A. Program VCONTRL

This program employs the observation equation technique of the least squares adjustment, where one observation equation, given by the equations(6.01) for the direct level ing, or the equation (6.05) or (6.06) for trig leveling, for each measurement is written. This is accomplished by the computer by assigning the coefficients of the parameters as the elements, $\mathrm{b}(\mathrm{i}, \mathrm{j}) ; \mathrm{i}=1,2, \ldots, \mathrm{n}$, and $\mathrm{j}=1,2$, \ldots, u, of the coefficient matrix \underline{B}. The parameters $\underline{\Delta}$, are the elevations of the unknown stations, and can be represented by

$$
\Delta=\left|\begin{array}{c}
H_{1} \tag{7.01}\\
H_{2} \\
\cdot \\
H_{u}
\end{array}\right|
$$

where $H_{m} ; m=1,2, \ldots, u$, is the elevation of the $m^{\text {th }}$ unknown elevation station. The formation of the elements of the matrix \underline{B} is illustrated as following. The elements of \underline{B}, are represented according to the numbers of the elevation stations and the order of the elevation difference, put into the computer as the observation. For example, if the elevation difference between the two elevation stations I and J is $\Delta H_{I J}$, then

$$
\begin{equation*}
H_{J}-H_{I}=\Delta H_{I J} \tag{7.02}
\end{equation*}
$$

where I and J must be numerals. If this observation is put into the computer as the $i^{\text {th }}$ observation, then the VCONTRL assigns the coefficients of the parameters H_{I} and H_{J} in

$$
\begin{equation*}
b(i, I)=-1, b(i, j)=1 \tag{7.03}
\end{equation*}
$$

The right hand side number $\Delta H_{I J}$, will be represented by the element of the right hand side matrix f as

$$
\begin{equation*}
f(i)=\Delta H_{I J} \tag{7.04}
\end{equation*}
$$

If there are any additional stations besides I and J, the coefficients of all the other parameters will be assigned to zero. Note that all the elements of the matrix \underline{B} will be either $1,-1$, or 0. For a numerical example, Figure 20, if the elevation difference of +16.201 m occuring between the stations 3 and 1 is put into the computer as the fourth observation, then

$$
\mathrm{i}=4, \mathrm{I}=3, \mathrm{~J}=1, \text { and } \Delta \mathrm{H}_{\mathrm{IJ}}=+16.201 \mathrm{~m}
$$

which gives the elements of \underline{B} and \underline{f} as

\triangle Fixed Elevation Station - Unknown Elevation Station

Figure 20. Sample Level Net.
$b(4,3)=-1, b(4,1)=1$, and $f(4)=16.201$;
Also: $b(4,2)=b(4,4)=0$
When the observation is put into the computer, its standard error is also inputed into the computer at the same time. VCONTRL converts this to the element of the column weight matrix w. If, for the above example, the standard error of the fourth observation is 10 mm , then the fourth element of \underline{w} will be given by

$$
w(4)=1 /(0.010)^{2}
$$

Note in the above equation that input units of the elevation difference and the standard error are, and must be the same. For each input observation, the process is repeated and the matrices $\underline{B}, \underline{W}$, and \underline{f} are formed. The least squares adjustment is then performed according to the equation (3.37) which yields the parameter $\underline{\Delta}$, given by the equation (7.01). Adjusted, elevation differences, standard errors, and all the relevant quantities are then printed out. A listing of such an adjustment is given in Appendix II.

The adjustment procedures for the trig leveling is almost the same as in the direct leveling technique. The difference here is that the elements of the right hand side matrix f are computed either
from the equation (6.05), or the equation (6.06), which are respectively given by

$$
H_{B}-H_{A}=D \tan \theta+i_{A}-g_{B}
$$

and

$$
H_{B}-H_{A}=S \sin \theta+i_{A}-g_{B}
$$

where θ is given by the equation (6.22). The computation of θ requires that ϕ, a, e, R, k, etc be specified.

There is, however, one difference between the two adjustment procedures, and that is in the computation of the elements of the weight matrix w. Since the trig leveling is a function of two observed quantities, vertical angle and the distance in the same observation equation, given by the equation (6.05) or (6.06); as opposed to two observation equations for the horizontal position, given by the equations (3.11) and (3.27), for the distance and the angle respectively, the resultant standard error for an observation of the trig leveling will be a function of the standard errors of the vertical angle and the distance. The technique for computing the weight of trig leveling is described in the section trig leveling, chapter VIII. Standard errors of the vertical angle and the distance are converted by VCONTRL by the equation (8.06) to obtain the weight of the trig leveling observation.

The general deck set up and the flow chart for VCONTRL are given in Figures 21 and 22 respectively.

To run the program VCONTRL the following conditions must be satisfied.

Figure 21. Deck Set Up for VCONTRL

1. The maximum number of observations must not exceed 100.
2. The maximum number of fixed elevation stations must not exceed 10.
3. A maximum number of 90 unknown elevation stations can be adjusted.
4. At least one fixed elevation must be given.

To run the progran, number the unknown elevation stations first as $1,2, \ldots, u$. Then number the fixed elevation station(s) as $u+1, u+2, \ldots, M$; where u and M must be numerals. No character is is allowed. Any station number must not exceed two digits. Then, set up the free form input data in the following order.

Figure 22. Flow Chart for VCONTRL.

Step/Rule
1.
2.
3.
4.
5.
6.

Technique identifier, 1 for direct leveling, 0 for trig leveling.

Project title, up to 75 characters (letters, numerals, or both).
(If 1 in step 1 , input the following; otherwise go to step 8).

Number of observed direct level line(s), number of fixed elevation station(s), and number of unknown elevation station(s).

Fixed elevation(s).
Repeat step 4 for all the fixed elevation(s) in order of the fixed elevation station numbers. The observed elevation difference from elevation station number I to the elevation station number J (a negative value is entered as minus), standard error of the observed elevation difference in the same unit as the elevation difference, station number I, and station number J. For example, in Figure 20, for the observed elevation difference of +16.201 m from the station 3 to the station 1 , with the standard error of $\pm 0.010 \mathrm{~m}(\pm 10 \mathrm{~mm})$, the input will be
$\begin{array}{llll}16.201 & 0.01 & 3 & 1\end{array}$

Step/Rule

7.
8.
9.
10.
11.
12.
13.

.

Input Quantity

Repeat step 6 for all the observed elevation difference(s). (If 1 in step 1 , input ends here).

Approximate average latitude of the project area in degrees, minutes and seconds (or any decimal part of the second); e.g. latitude of $45^{\circ} 40^{\prime}$ $33^{\prime \prime}$ will be inputed as $45 \quad 40 \quad 33$ (or 33.00). Number of observed trig leveling line(s), number of unknown elevation station(s), number of fixed elevation station(s); 1 if the input measured distance(s) is/are slant distance(s), 0 if horizontal, 1 if the distance(s) is/are measured with the visible light wave system EDM equipment, 0 for the microwave.

Unit identifier, 1 for feet, 0 for meters. Fixed elevation in the same unit as the measured distance(s).

Repeat step 11 for all the fixed elevation(s) in the order of the numbered fixed elevation station(s).
The observed vertical angle in seconds (or any decimal part of second) as positive upward and negative downward, its standard error in seconds (any decimal part), measured distance, standard error of the measured distance in the same unit as
Step/RuleInput Quantitythe measured distance, height of the instrument,height of the target (HI and HT must be in thesame unit as the measured distance), instrumentstation number, and target station number.
Example: In Figure 20, if the instrument is at station 2 , a vertical angle of $-2^{\circ} 18^{\prime} 10.0^{\prime \prime}$ is measured by sighting instrument to the target at station 3 , the height of the instrument $\mathrm{HI}=$ 1.72 m , the target height $H T=4.85 \mathrm{~m}$, the measured horizontal distance $=6,286.342 \mathrm{~m}$, the standard error of the observed vertical angle and distance are $\pm 10.0^{\prime \prime}$ and $\pm 0.001 \mathrm{~m}(\pm 1 \mathrm{~mm})$, then the input for this observation would be -8290 (-8290.0) 106286.3420 .0011 .724 .8523
14. Repeat step 13 for all the measured vertical angle. Numerical example of the vertical position control least squares adjustment by the direct and trig leveling are given in Appendix II.

VIII. APPLICATION OF LEAST SQUARES SOLUTION FOR THE VERTICAL POSITION CONTROL TECHNIQUES

The least squares solution for the vertical position control is obtained in the same way as described in the horizontal position control by the equation (3.37). The difference here is that the observation equation is already linear, given by the equations (6.01), and (6.05) or (6.06) for the direct and trig leveling respectively. Therefore, it is relatively simpler to form the observation equation in the vertical position control in comparison to the horizontal position control.

A. Direct Leveling

For each observation of the elevation difference between the two elevation stations, one observation equation of the form given by the equation (6.01) can be written. For all the observations, the observation equations can then be represented in the matrix form given by the equation (3.29a). Rewriting this equation

$$
\begin{equation*}
\underline{B} \underline{\Delta}=\underline{f}+\underline{v} \tag{8.01}
\end{equation*}
$$

where the parameters $\underline{\Delta}$, here, are the unknown elevations of the elevation stations given by the equation (7.01), B is the coefficient matrix, f is the column right hand side matrix. It is important to realize that the elements of \underline{B} will be different from those obtained
in the horizontal position control. The elements of \underline{B} in the vertical position control will be either $1,-1$, or 0 as discussed in chapter VII, and the elements of f will be the observed elevation differences $\left(\Delta H_{I J}\right.$ from the equation (7.02) for the direct leveling, and the value of the right hand side of the equation (6.05) or (6.06) for the trig leveling). For the least squares adjustment of the equation (8.01), given by the equation (3.37), the weight matrix \underline{W} is needed. In direct leveling, the elements of the weight matrix are usually taken as the reciprocal of the distance between the corresponding elevation stations of observation. This implies, according to the discussion in the section Weights, chapter II, that the standard error of the observation is proportional to the square root of the distance between the two stations. In other words, the precision of the elevation difference is proportional to \sqrt{L}, where L is the length of the level line. However, the standard error should be determined by the actual observation, if possible. One way to find this quantity is, by taking the repetitive measurements of one elevation difference between the two points and finding the standard deviation given by the equation (2.19). This may, then be taken as the representative standard deviation (error) for all the observations. Another way of finding the precision is, by utilizing the precision of the instrument provided by the instrument manufacturer.

A level net of Figure 23, has been adjusted by the least squares technique by VCONTRL as a numerical example. The observed elevation differences and the other data are tabulated below.

Sketch not to scale

\triangle Fixed Elevation Station

- Unknown Elevation Station

Direction of Leveling
Figure 23. Level Net.

Level	Line	Observed Elevation Difference* (m)	Length of Line (L) (km)	Standard Error From
To	+16.298	1.3	1.1402	
6	1	-17.700	1.9	1.3784
1	2	-0.687	2.3	1.5166
2	3	+2.036	2.7	1.6432
3	6	+23.615	0.3	0.5477
6	4	+7.304	0.9	0.9487
1	4	+14.162	1.2	1.0954
5	4	+25.709	1.6	1.2649
3	4	-6.855	1.1	1.0488
1	5	+10.863	0.5	0.7071
2	5			

*For computational purposes, these data are taken from [17].

These data have been adjusted by the computer program VCONTRL and the following adjusted elevations and their corresponding standard errors are obtained. The standard errors of the adjusted elevations are computed according to the discussion in the section Precision from Least Squares, chapter II.

Station	Adjusted Elevation (m)	Standard Error (m)
1	216.304	± 0.0044
2	198.594	± 0.0056
3	197.908	± 0.0057
4	223.614	± 0.0030
5	209.454	± 0.0051

The complete listing of the computer is given in Appendix II.

B. Trig (Trigonometric) Leveling

The adjustment procedure is the same as in the direct leveling. One observation equation for each measured vertical angle is written. For the trig leveling, either the horizontal or the slant distance must be known. The observation equation is given, either by the equation (6.05) or the equation (6.06), depending whether the measured distance is the horizontal or the slant respectively. Note that in both equations, θ is given by the equation (6.22).

Setting up the observation equation in the trig leveling in the matrix form is the same as in the direct leveling. The solution, by the least squares technique, obtained by the equation (3.37), requires the weight matrix \underline{W}. Various methods for determining the elements of the weight matrix are discussed in the direct leveling, as well as in chapter II. However, since the observed elevation difference in trig leveling is the function of two measurements, the
vertical angle and the distance, a separate technique for obtaining the elements of the weight matrix will be used. This technique is used because the trig leveling observation equation consists both of the measurements in the same observation equation. Rewriting equation (6.05)

$$
H_{B}-H_{A}=D \tan \theta+i_{A}-g_{B}
$$

Representing the elevation from the point A to the point B by

$$
\begin{gather*}
\Delta H_{A B}=H_{B}-H_{A} \\
\Delta H_{A B}=D \tan \theta+i_{A}-g_{B} \tag{8.02}
\end{gather*}
$$

If the variances of the observed elevation difference, the measured horizontal distance, and the measured vertical angle are $\sigma_{\Delta H}^{2}, \sigma_{D}^{2}$, and σ_{θ}^{2} respectively; then, from the technique of the propagation of the variances, chapter IV, [26] it can be shown that

$$
\begin{equation*}
\sigma_{\Delta H}^{2}=\left(\frac{\partial\left(\Delta H_{A B}\right)}{\partial D} \sigma_{D}\right)^{2}+\left(\frac{\partial\left(\Delta H_{A B}\right)}{\partial \theta} \sigma \theta\right)^{2} \tag{3.03}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\sigma_{\Delta H}^{2}=\tan ^{2} \theta \sigma_{D}^{2}+D^{2} \sec ^{4} \theta \sigma_{\theta}^{2} \tag{8.04}
\end{equation*}
$$

In this derivation, it has been assumed that there is no correlation between the distance (D) and the vertical angle (θ) measurements. It is further assumed that the both i_{A} and g_{B} are constants. Similarily, if the technique of the propagation is applied to the equation (6.06), it can be shown that

$$
\begin{equation*}
\sigma_{\Delta H}^{2}=\sin ^{2} \theta \sigma_{S}^{2}+s^{2} \cos ^{2} \theta \sigma_{\theta}^{2} \tag{8.05}
\end{equation*}
$$

Figure 24. Trig Leveling Net.

Table 4. Extract from Field Book of Vertical Angle Observations**

[^1]where σ_{S}^{2} is the variance of the measured slant distance S. Thus, from the given σ_{θ} and σ_{D} or $\sigma_{S}, \sigma_{\Delta H}$ can be determined from the equation (8.04), or (8.05). The determination of the quantities, $\sigma_{\theta}, \sigma_{D}$, and σ_{S} have been discussed in the section Weights, chapter II. The computer program VCONTRL utilizes either the equation (8.04), or the equation (8.05) to determine the standard error fo the observed elevation difference by the trig leveling technique. The weight of an observation is then computed from
\[

$$
\begin{equation*}
w=\frac{1}{\sigma_{\Delta H}^{2}} \tag{8.06}
\end{equation*}
$$

\]

Table 4 gives the data for the trig leveling net of Figure 24 for the least squares adjustment. The standard errors for all the vertical angles and the distance measurements are arbitrarily taken as $\pm 1^{\prime \prime}$ and $\pm 0.10 \mathrm{~m}$ respectively. The data are put into the computer for VCONTRL and the following adjusted elevations and the corresponding standard errors are obtained.

Station	Adjusted Elevation (ft)	Standard Error (ft)
1	363.851	± 0.2006
2	234.586	± 0.2154
3	437.433	± 0.2291

The complete listing of the computer output is given in Appendix II.

IX. PRACTICALITY OF THE ADJUSTMENT

Since the introduction of the principle of the least squares by Legendre in 1806, the technique has been widely used in the various types of problems where there is redundancy in the observations. Since then, various computational techniques have been developed to ease the computation. In the past, it has not been an easy computation whatever the technique was used, especially in a project containing many observations. The introduction of high speed digital computers has removed most of the tedium of the computations. The continuous development in the digital computer capabilities, now and in the future, makes many kinds of complicated and difficult computational systems in mathematics routine work. Therefore, it looks like the adjustments of surveying in the future will be by the least squares technique, as more reliable and precise data are required with a precision estimate.

Currently, under U.S. Department of Commerce, the re-adjustment of the North American Geodetic Horizontal Control Network is in progress. When the project is completed in 1983, it will replace the present North American Datum of 1929 (NAD 29), and it will be called North American Datum of 1983 (NAD 83). The reason for obtaining NAD 33 is that NAD 29 is not precise enough for currently required precision in the horizontal and the vertical positions control computations and adjustments. The importance of redefining the North American Datum may be judged from the statement by [36]: "The precision
required for today's scientific technology, plus a pressing need for accurate inventories of our Earth's resources, resulted in the creation of an international project to readjust the North American Geodetic Horizontal Control Network.... Many of these papers deal with computer software and have not been published previously. Computer specialists will find the information on utilizing computer capability to solve for as many as 400,000 unknowns fascinating and applicable to other fields..." The NAD 83 will provide, the best MPV's of the horizontal and the vertical positions from the most currently available data, adjusted by the least squares techniques; consequently, giving the most reliable values.

The computer programs, HCONTRL and VCONTRL, developed in this paper are for the adjustments of the horizontal and the vertical positions control respectively by the least squares technique when the distances and angles are obtained as the observations. The HCONTRL is capable of adjusting any classical techniques of horizontal position control such as; traverse, intersection, resection, triangulation, trilateration independently or the combination of any of these techniques which is specified here by combined networks. To use the program, one must have access to a computer, whose capability, in terms of storage space, must be able to store a matrix of the order of 104 by 100 . The program VCONTRL, on the other hand, is capable of adjusting either the direct leveling or the trig leveling network. In this case, the maximum storage space needed in the computer is a matrix of the order of 100 by 100 . These types of storage requirement should be able to be handled on the current mini-computers.
X. SUMMARY AND CONCLUSIONS

All of the adjustment techniques utilized in the least squares are based on the principle that the sum of the squares of the residuals is a minimum. Consequently, no one technique is better than the other, and whichever technique is adopted, the final adjusted quantities and the corresponding precisions are the same.

The observation equations technique provides the direct determination of the precisions from the covariance matrix of the adjusted quantities of any survey measurement. It is relatively easier to write observation equations than the condition equations in computer language. Though the condition equations technique, generally, requires lesser computer storage space than the observation equations technique, the availability of the computer storage space is no longer a problem.

Two computer programs, HCONTRL and VCONTRL, have been developed to adjust the respective classical horizontal and vertical positions control survey measurement data, by utilizing the least squares adjustment. The inputs for both of the programs are fairly simple. The basic input quantities are angle, distance, or both, and the control co-ordinates, for HCONTRL, and elevation difference, or vertical angle for VCONTRL. For both of the programs, the estimates of the precisions for the corresponding observations must also be inputed into the
computer. The input data comes directly from the field work; consequently, no intermediate adjustment is necessary.

Any measurement or the adjustment is of little use if the precisions of the measurements or the adjusted values (MPV's) from the adjustment, are not known. These quantities are provided by the least squares adjustment techniques; a factor which makes the adjustment by the least squares so important. From the continued availability and the advancement of the digital computer, it is most likely that the adjustment of surveying data by the least squares techniques will probably be adopted in the future for most of the survey computations.

XI. BIBLIOGRAPHY

1. Allan, A.L.; "The Error Ellipse: A Further Note," Survey Review, Great Britain, No. 166, Oct. 1972.
2. Allan, A.L., Hollwey, J.R., Maynes, J.H.B.; Practical Field Surveying and Computations, William Heinemann Ltd., London, 1968.
3. Allman, J.S., Hoar, G.J.; "Optimisation of Geodetic Network," Survey Review, Great Britain, Vol. 22, No. 167, p. 11, Jan. 1973.
4. Banister, I., Raymond, S.; Surveying, Pitman Publishing Corporation, New York, N.Y., 1972.
5. Bell, J.F.; "The Intersection Problem - A Statistical Paradox?", Survey Review, Great Britain, p. 295, Jan. 1968.
6. Bellamy, C., Watterson, G.; "Least Squares Adjustment of Networks", Survey Review, Great Britain, No. 156, p. 250, Apr. 1970.
7. Berg, J.W., Thiruvathukal, J.V.; "Gravity Base Station Network, Oregon", Journal of Geophysical Research, Vol. 70, No. 14, July 15, 1965.
8. Bird, R.G.; "Least Squares Adjustment of Traverse", Survey Review, Great Britain, No. 155, p. 218, Jan. 1970.
9. Bird, R.G.; "Least Squares Adjustment of E.D.M. Traverse", Survey Review, No. 165, p. 307, July 1972.
10. Bjerhammar, A.; Theory of Errors and Generalized Matrix Inverses, Elsevier Scientific Publishing Company, New York, N.Y., 1973.
11. Bomford, G.; Geodesy, third ed., Oxford University Press, Oxford, Great Britain, 1971.
12. Bowditch, N.; American Practical Navigator, Vol. I, Pub. No. 9, Defence Mapping Agency Hydrographic Centre, 1977.
13. Brinker, R.C., Wolf, P.R.; Elementary Surveying, Thomas Y. Crowell Company, Inc., New York, N.Y., 1977.
14. Cook, K.L., Schultz, R.J.; "Understanding Geopotential Numbers", Proceedings of the American Congress on Surveying and Mapping, 37th Annual Meetings, Feb. 27-March 5, 1977, Washington D.C.
15. Conn, C.; "Least Squares Adjustment of Dissimilar Quantities", Correspondence, Survey Review, Great Britain, No. 131, p. 246, 1964.
16. Cooper, M.A.R.; Modern Theodolites and Levels, Crosby Lockwood and Son Ltd., London, Great Britain, 1971.
17. Cooper, M.A.R.; Fundamentals of Survey Measurement and Analysis, Crosby Lockwood Staples, London, Great Eritain, 1974.
18. Ewing, C.E., Mitchell, M.M.; Introduction to Geodesy, American Elsevier Publishing Company, Inc., New York, N.Y., 1976.
19. Fisher, I.; "Mean Sea Level and Marine Geoid Analysis of Concepts", Marine Geodesy, Vol. 1, No. 1, Crane, Russak \& Company, Inc., 1977.
20. Hotine, M.; Mathematical Geodesy, U.S. Department of Commerce, Washingtō D.C., 1964.
21. Huddle, J., Mancini, A.; "Gravimetric and Position Determinations Using Land Based Inertial System", Proceedings of ACSM, 35th Annual Meetings, Washington D.C., March 9-14, 1974.
22. Ingham, A.E.; edited by; Sea Surveying, Text, John Wiley and Sons, London, 1975.
23. Jones, P.B.; "The Notion of a Permissible Misclose in Traversing", Australian Surveyor, Vol. 23, No. 3, Sept. 1970.
24. Jones, P.B.; "Standards of Accuracy", Australian Surveyor, Vol. 23, No. 7, p. 420, Sept. 1971.
25. Kissam, P.; Surveying for Civil Engineers, McGraw Hill Book Company, New York, N.Y., 1956.
26. Mikhail, E.M.; Observations and Least Squares, IEP-Dun Donnelley, Harper and Row, Publishers, Thomas Y. Crowell Company, Inc., New York, N.Y., 1976.
27. Mueller, A.E.; Introduction to Satellite Geodesy, Frederick Ungar Publishing Co., New York, N.Y., 1964.
28. Navyasky, M.J.; "Adjusting Observed Directions by Angles Using Equitable Weights", Surveying and Mapping, Vol. 34, No. 4, p. 355, 1974.
29. Netter, J., Wasserman, W.; Applied Linear Statistical Models, Richard D. Irwin, Inc., Homewood, Illinois, 1974.
30. Rainsford, H.R.; Survey Adjustments and Least Squares, Frederick Ungar Publishing Co., New York, N.Y., 1958.
31. Stansell, T.A.; The Transit Navigation Satellite System, Magnavox Government and Industrial Electronics Company, Torrence, California, Oct., 1978.
32. Stark, E., Mikhail, E., "Least Squares and Non-Linear Functions", Photogrammetric Engineering, p. 405, Apr. 1973.
33. Sturgul, J.R., Merchant, M.J.; Applied Fortran IV Programming, second ed., Wadsworth Publishing Company, Inc., Belmont, California, 1976.
34. U.S. Department of Commerce; Classification, Standards of Accuracy, and General Specifications for Geodetic Control Surveys, National Oceanic and Atmospheric Administration, Rockvílle, MD., Feb. 1974.
35. U.S. Department of Commerce; Specification to Support Classification, Standards of Accuracy, and General Specifications of Geodetic Control Surveys, National Oceanic and Atmospheric Administration, Rockville, MD., July 1975.
36. U.S. Department of Commerce; Proceedings of the Second International Symposium on Problems Related to the Redefinition of North American Geodetic Networks, April 24-28, 1978, Arlington, VA, Rockville, MD, 1978.
37. Uotila, U.A.; "Useful Statistics for Land Surveyors", Surveying and Mapping, Vol. 33, No. 1, p. 67, 1973.
38. Uotila, U.A.; "Statistical Tests as Guidelines in Analysis of Adjustment of Control Nets", Surveying and Mapping, p. 47, 1975.
39. Veress, S.A.; "Measures of Accuracy of Analysis and Design of Survey", Surveying and Mapping, p. 435, Dec. 1973.
40. Veress, S.A.; "Selection of Least Squares Adjustment for Control Survey", Proceedings of ACSM Convention, St. Louis, March 10-15, 1974.
41. Veress, S.A.; Adjustment by Least Squares, Monograph, Control Survey Division, CS-3, ACSM, 1974.
42. Wolf, P.R.; "Horizontal Position Adjustment", Surveying and Mapping, p. 635, Dec. 1969.
43. Wolf, P.R.: Adjustment Computations, third ed., Civil and Environmental Engineering, University of Wisconsin, Madison, Wisconsin, 53706, Copyright 1974, Wolf.
44. Wolf, P.R., Johnson, S.D.; "Trilateration with Short Range E.D.M. Equipment and Comparison with Triangulation", Surveying and Mapping, Vol. 34, No. 4, Dec. 1974.
XII. APPENDICES

APPENDIX I

A numerical example for each of the horizontal position control described in chapter IV will be adjusted by the computer program HCONTRL. All the necessary input data and the complete listing of the output will be given. The conditions, the requirements, and the procedures for running the program are discussed in chpater IV.
A. Traverse

For Figure 8, the following input data are obtained.

TRAVERSE BY LEAST SQUARES

3	400
163877.00	104590.00
164264.00	104865.00
164902.00	105120.00
163208.49	104375.29
165074.49	105227.4

006	41	42	3.0	4	5	1
162	37	21	3.0	1	4	2
193	18	06	3.0	2	1	3
170	08	49	3.0	3	2	5
007	14	20	3.0	5	3	4

$703.28 \quad 0.01 \quad 1 \quad 4$
$473.29 \quad 0.01 \quad 1 \quad 2$
$687.48 \quad 0.01 \quad 2 \quad 3$
$202.31 \quad 0.01 \quad 3 \quad 5$

Note that the input angles given at the stations 4 and 5 , in Figure 8, are different from the given measured angles. For example, at station 4, the input angle is $06^{\circ} 41^{\prime} 42^{\prime \prime}$ whereas the measured angle
is $203^{\circ} 41^{\prime} 28^{\prime \prime}$ (page 55). The reason for being different is that HCONTRL requires three station numbers for each input angle, and the approximate or fixed co-ordinates of all the input station numbers must be given. In Figure 8, however, only two station numbers 4 and 1 are given. So, from the fixed co-ordinates of the stations 4 and 5, the fixed azimuth α_{1}, and the measured angle of $\theta_{1}=203^{\circ} 41^{\prime} 28^{\prime \prime}$, the included angle $\Omega_{1}=06^{\circ} 41^{\prime} 42^{\prime \prime}$ (Figure 25), is computed. Similarly,

Figure 25. Sample Traverse Computation.
the input angle at station 5 has been computed. These input angles include the criterions of the fixed azimuths α_{1} and α_{2} in the traverse. Another way of inputing the angle $203^{\circ} 41^{\prime} 42^{\prime \prime}$ as the observation, is by computing the co-ordinates of the station 6 (Figure 25) from the fixed azimuth α_{1}, and arbitrary distance d_{1}^{\prime}, and inputing the necessary data for the inputed angle of $203^{\circ} 41^{\prime} 42 \prime$. Whichever technique is used, the final answers from both will be the same.

The complete listing of the computer output by HCONTRL is given on the next page.

TRAVERUE BY LEAST SQUARES

APPROXIMATE CO-ORDINATES

STATICN
x
Y
$1.1036770000 E+06 \quad .1045900000 E+0 E$
$2 \quad .1642040000 E+30 \quad .1348050000 E+06$
$3 \quad .1049020000 E+06 \quad .1051200000 E+0 E$

FIAED CO-ONOINATES
$4 \quad-1632084700 \mathrm{~F}+06 \quad-10 \div 3752900 \mathrm{E}+06$
$5 \quad .1650744700 E+16 \quad .1052274700 E+06$

ITEरATIUN NJ. 1
CO-ORDINATE VARIATIONS

STATION	DELTAX	DELTA Y
1	.973	.942
2	.042	-.962
3	$.4+4$.880

ITERATIUN NU. 2
CO-JKOINATE VARIATIONS
STATION DELTA X JELTA Y

1	.002	-.001
2	.000	.000

$3.000 \quad .002$

ミTEZATICN NO. 3
CO-ORUINATE VARIATIJNS

STATIUN	JELTAX OELTAY	
1	-.000	.000
2	-.000	-.000
3	-.000	-.000

CJEFFICIE:NT MATEIX - E-

B. Intersection

The input data corresponding to Figure 9, are:
INTERSECTION BY LEAST SQUARES

8	0
351625.00	144905.00
345780.67	150394.05
350044.25	150752.70
356442.71	148778.96
351240.22	138628.80
347490.50	145480.79

32	14	18.8	0.1	5	6	1
56	00	48.8	0.1	4	1	3
57	42	28.2	0.1	3	4	1
40	59	38.9	0.1	3	1	6
48	01	23.9	0.1	2	3	1
27	35	52.1	0.1	2	1	6
72	09	20.7	0.1	6	3	1
53	18	32.5	0.1	6	1	5

Complete listing of adjustment of these data by HCONTRL is given on the next page.

7 7100112.11 .06 .29 .5

	$\begin{array}{lll} \text { N } & & N \\ \text { NN } & & N \\ \text { in } & & N \\ \text { N } & & N \\ \text { N } & & N \\ \text { in } & & N \\ \text { N } & & N \end{array}$		```EEEEEEE E EEEEEE E E EEEEEEE```	Kえにスたた $\begin{array}{lll}R & R \\ R & R \\ R \\ R & R K K R \\ R & R \\ R & R \\ R & R\end{array}$	－ーーー	
	$\begin{aligned} & \text { EEEEEEE } \\ & E \\ & E \\ & E E E E E E \\ & E \\ & E E E E E E E \end{aligned}$					

¡NTRESECTION BY LEAST SQUARES

APPROXIMATE CO－ORUINATES

STAT 4 ON	x	Y
1	． $3316250000 \mathrm{E}+00$	－1449050000E＋06
FIAED CO－ORCINATES		
2	－3457806700E＋06	． $1503340500 E+0 \varepsilon$
3	． $3500442500 \mathrm{C}+06$	． $1507527000 E+36$
＋	． $35644271005+00$	－1＊87789600E＋06
5	－3512402200E＋06	． $1306288000 \mathrm{E}+06$
0	－ $347+965000 E+06$	－145407900E＋06

ITERATICN NO． 1
CO－OKDINLTE VAR：ATIJNS
STATION DEGTA X DELTA Y
1

$$
4.082 \quad-5.949
$$

ITERATICN NO． 2
CO－CKOINATE VARIATIONS
STATION DELTA X DELTA Y
$1.001 \quad .005$

ITERATICN NO． 3
CO－OKDINATE VARIATIONS
STATION DELTA X DELTA Y
$1.000 \quad .000$

COEFFICIENT MATKIX－B－

$32.76 y 8$	-2.0323
20.9304	$-25.97+9$
-32.8364	-8.8080
32.0364	8.8080
-17.0001	-18.7320
17.6061	18.7320
-0.8700	-48.8730
0.8740	48.8738

C. Resection

The input data corresponding to the Figure 10, are:
RESECTION BY LEAST SQUARE
$\begin{array}{llllll}6 & 1 & 6 & 0 & 0 & 0\end{array}$
$351620.00 \quad 144905.00$
$350044.25 \quad 150752.70$
$356442.71 \quad 148778.96$
356788.67144328 .27
$351240.22 \quad 138628.80$
$347490.50 \quad 145480.79$
$345780.67 \quad 150394.05$
$\begin{array}{lllllll}94 & 27 & 06.5 & 0.1 & 1 & 5 & 6\end{array}$
$\begin{array}{lllllll}35 & 12 & 51.4 & 0.1 & 1 & 6 & 7\end{array}$
$\begin{array}{lllllll}31 & 38 & 05.6 & 0.1 & 1 & 7 & 2\end{array}$
$\begin{array}{lllllll}66 & 16 & 48.9 & 0.1 & 1 & 2 & 3\end{array}$
$\begin{array}{lllllll}45 & 10 & 57.2 & 0.1 & 1 & 3 & 4\end{array}$
$\begin{array}{lllllll}87 & 14 & 09.4 & 0.1 & 1 & 4 & 5\end{array}$

The complete listing of the adjustment by HCONTRL is given on the next page.

resection by least square
APPROXIMATE CO-OROINATES
STAT」ON
x
γ
$1.3516200000 E+06 \quad .1449050000 E+06$

FIXED CO-ORDINATES
$2 \quad 3500442500 E+06 \quad .1507527000 E+0 E$
$3 \quad .3504+27100 E+06 \quad .1407789600 E+06$
$4 \quad .3567886700 E+06 \quad .1443282700 E+06$
$5 \quad .351240200 E+0 \sigma \quad .1386288000 E+J E$
5 $\quad .3474905000 E+00 \quad .1454807900 E+06$
$7 \quad .3457806700 E+06 \quad .1503940500 E+06$
ITERATICN NO. 1
CO-JKU:NATE VARIATIONS
STATICN OELTA X OELTA Y
$1 \quad 3.126 \quad-5.914$
ITERATIGN NE. 2
CO-JREINATE VARIATIONS
STATION DELTA x DELTA Y
$1-.008 \quad-.001$
ITERATEUH NG. 3
CO-OROINATE VARIATIONS STATION DELTA X DELTA Y
$1.000-.000$

CこEFFICIENT MATRIX -3-
$-33.63 \geq 0 \quad-46.8+11$
$-15.2306 \quad 3.1414$
$\begin{array}{ll}11.8739 & 34.8040 \\ 25.3059 & 13.5150\end{array}$
$\begin{array}{rr}25.3079 & 13.5150 \\ 23.4002-41.5263\end{array}$

D. Triangulation

The input data corresponding to the Figure 11, are:
AdJustment of triangulation by least squares

14	011
345780	150394
350044	150752
356442	148778
356788	144328
351629	144899
347490.50	145480.79

79	14	33.5	1	4	5	3
55	34	32.3	1	3	4	5
56	00	48.8	1	3	5	2
57	42	28.2	1	2	3	5
40	59	38.9	1	2	5	6
59	20	44.4	1	2	6	1
48	01	23.9	1	1	2	5
27	35	52.1	1	1	5	6
45	02	04.0	1	6	1	2
72	09	20.7	1	6	2	5
35	12	51.4	1	5	6	1
31	38	05.6	1	5	1	2
66	16	48.9.	1	5	2	3
45	10	57.2	1	5	3	4
340	48	43.0	1	6	1	
5202.273	0.05	6	1			

The complete listing of the output by HCONTRL is given on the next page.

ajustment of triangulation by leadt squares
APPROXIMATE CJ-OROINATES
STATECN
x
Y

1	$.3457800000 E+06$	$.1503940000 E+06$
2	$.3500+40000 E+06$	$.1507520000 E+06$
3	$.3564420000 E+06$	$.1487780000 E+05$
+	$.3567950000 E+06$	$.1443280000 E+06$
5	$.3516290000 E+06$	$.1440990000 E+06$

fIXED CU-ORCINATES
6

- $3474305000 \mathrm{t}+0 \mathrm{o} \quad .1454007300 \mathrm{E}+06$

ITEZATION NO. 1
co-jroinate variations
statiun oelta x oelta y
$1-.000 \quad .000$
$2 \quad-.330 \quad 1.135$
$3 \quad .505 \quad 2.197$
$41.150 \quad 1.410$
5 . 295 . 564

ITERATICN NO. 2
CO-JRGINATE VARIATIONS

STATIOV	DELTA X	OELTAY
1	-.000	.000
2	-.000	-.000
3	-.000	.000
4	-.000	.000
5	-.000	.000

STANCARO	RESIOUQL
ERKUK	
$.100 E+01$	$-.100 E+01$
$.100 E+01$	$-.100 E+01$
$.100 E+01$	$-.197 E+01$
$.100 E+01$	$-.197 E+01$
$.100 E+01$	$.363 E+01$
$.100 E+01$	$.498 E+00$
$.100 E+01$	$.173 E+01$
$.100 E+01$	$-.451 E+01$
$.100 E+01$	$-.211 E+01$
$.100 E+01$	$-.150 E+01$
$.100 E+01$	$-.717 E-01$
$.100 E+01$	$.135 E+01$
$.10 J E+01$	$-.157 E+01$
$.100 E+01$	$-.100 E+01$
$.100 E+01$	$-.026 E-13$
$.500 E-01$	$.530 E-14$

GOJUSTED ANGLES					
didGLE	UEG	MIN	SECS		
4	5	3	79	14	32.50
3	4	5	55	34	31.30
3	5	2	50	0	40.03
2	3	5	57	42	20.23
2	5	6	40	59	42.53
2	0	1	59	20	44.89
1	2	5	48	1	25.63
1	5	0	27	35	47.59
0	1	2	45	2	1.83
5	2	5	72	5	19.19
5	0	1	35	12	51.33
5	1	2	31	30	0.55
5	2	3	06	16	46.94
5	3	4	45	10	56.20

stindiro ekfor of cu-oricinates

STATIUN	χ	r	POSITICN
1	. $914209 \mathrm{E}-01$. $151406 E+00$. 176950 E+00
2	- :273 $7 \mathrm{~F}+00$	-17059+E+00	. $217733 \mathrm{E}+00$
3	. $311529 \mathrm{E}+00$. $220322 \mathrm{E}+00$. $385061 E+00$
+	. 33417 FE +00	. $203092 \mathrm{E}+00$	- $394202 \mathrm{E}+00$
5	. $153877 \mathrm{E}+00$	- $316465 \mathrm{E}-01$. $179102 \mathrm{E}+00$
GOJUSTEJ CO-OROINLTES			
STATAGM	\times	γ	
1	. $3457800000 \mathrm{E}+06$. $1503940000 E+0 \varepsilon$	
2	. $3500436696 E+06$. $1507531954 \mathrm{E}+06$	
3	. $356+426050 E+06$.14878C1975E+06	
4	- $3567891500 \mathrm{E}+06$	-1443294103E+0E	
5	. $3516292946 \mathrm{E}+06$.1448995636E+06	

E. Trilateration

The input data corresponding to the Figure 10 are:
ADJUSTMENT OF TRILATERATION BY LEAST SQUARES
$\begin{array}{llllll}6 & 1 & 0 & 6 & 0 & 0\end{array}$
$351628.00 \quad 144897.00$
350044.25150752 .70
$356442.71 \quad 148778.96$
356788.67144328 .27
$351240.22 \quad 138628.80$
$347490.50 \quad 145480.79$
$345780.67 \quad 150394.05$
$6064.34 \quad 0.01 \quad 1 \quad 2$
$6182.65 \quad 0.01 \quad 1 \quad 3$
$5191.05 \quad 0.01 \quad 1 \quad 4$
$6282.32 \quad 0.01 \quad 1 \quad 5$
$4179.31 \quad 0.01 \quad 1 \quad 6$
$8024.87 \quad 0.01 \quad 1 \quad 7$

The complete listing of the adjustment of these data by HCONTRL is given on the next page.

ITEPATIJN NO. 1
CO-OROINATE VARIATIONS
STATION DELTA X DELTAY
$1.2 .094 \quad 2.074$
ITERATION NO. 2
CO-JPDINATE vARIATIONS
STATION DELTA x DELTAY
1
$-.000$
.000
CDEFFICIENT MATPIX -g-

2513	-. 765 ?
-. 7755	-. 5275
-. 3939	-1100
- 0519	- 9981
. 7933	.1392
-7288	-. 6447

	$\begin{aligned} & 5 \\ & 2 \\ & 4 \\ & 0 \\ & 3 \\ & 1 \end{aligned}$
STANDARD EROOR	RESIDUAL
.100E-01	. 346E-01
. 1 DOE-01	-.521E-01
. $100 \mathrm{E}-01$	-143E-01
. $100 \mathrm{E}-01$	-196E-03
. 100E-01	-. $435 \mathrm{E}-01$
. $100 \mathrm{E}-01$	-105F-01

LINE	ADJ.JISTANCE		
12	5054.375		
13	6192.598		
14	5191.364		
15	6292.320		
15	4179.267		
17	80?4.831		
STAMIARD EPROR OF CO-ORCINATES			
Station	y	r	POSITION
1	. 221 9FEE-01	. 23 5432E-01	. 3234 94E-01
	A DJUSTEJ CO-OROINATES		
starton	\times	Y	
1	. $3516290837 E \cdot 06$. 1448990	35+95

F. Combined Networks

The input data for the Figure 12, are:
LEAST SQUARES ADJUSTMENT OF COMBINED NETWORKS

$2 \quad 5$	21	$6 \quad 1 \quad 1$
345780		150394
350044		150752
356788		144328
351240		138628
351629	144899	
347490.50	145480.79	
356442.71	148778.96	

32	14	18.8	1	4	6	5
23	35	17.6	1	4	5	7
17	05	36.2	1	4	7	3
52	04	57.1	1	3	4	5
79	14	33.5	1	3	5	7
55	34	32.3	1	7	3	5
56	00	48.8	1	7	5	2
57	42	28.2	1	2	7	5
40	59	38.9	1	2	5	6
59	20	44.4	1	2	6	1
48	01	23.9	1	1	2	5
27	35	52.1	1	1	5	6
45	02	04.0	1	6	1	2
72	09	20.7	1	6	2	5
53	18	32.5	1	6	5	4
94	27	06.5	1	5	4	6
35	12	51.4	1	5	6	1
31	38	05.6	1	5	1	2
66	16	48.9	1	5	2	7
45	10	57.2	1	5	7	3
87	14	09.4	1	5	3	4
6282.32	0.01	4	5			
5191.05	0.01	3	5			
6182.65	0.01	7	5			
6064.34	0.01	2	5			
8024.87	0.01	1	5			
4179.31	0.01	6	5			
175	33	18.85	0.1	7	3	
4464.116	0.005		7	3		

The complete listing of the adjustment is given on the next page.

7－1／07／12．13．50．51．5

－Enst soumses aujustment jf cJadnej networks

> APPROXIHATE こO-GRDINATES

STATAN

λ

Y

1	． $345730 C 000 E+00$	． $150394000 J E+0 ¢$
2	． $35004+0000 E+00$	． $1507520000 \mathrm{E}+0 \mathrm{o}$
3	． $3257860000 E+06$	－1443230000E＋06
＊	． $35124000005+00$	． $1300230000 \mathrm{E}+06$
j	．3516290000E＋06	－1－40950000E＋06
FixEO GU－OREINATES		
0		－1424307900E＋06
7	．320＋427100E＋06	－1487789000E＋06

ItEzaticn inv． 1
LO－JKここNATE VARIATIONう

STATION	JELTAK	DELTA Y
1	.501	.141
2	.173	.792
3	.027	-.008
4	-.240	.936
5	-.147	.152

ITESATION NE． 2
CU－JKGINATE VARIGTIUHS
sIATIUN JE．ta x JELTA r

1	.011	-.006
2	.004	-.010
3	.026	-.006
4	.009	-.011
5	.010	-.009

ITERATICN NJ. 3
CO-DKUINATE VARZATIONد
STATICN JEGTA x DELTA Y
$1 \quad .011 \quad-006$
$2 \quad .004 \quad-.009$
$3 \quad .023 \quad-.005$
$4 \quad .009 \quad-.010$
$5 \quad .003 \quad-.003$
iteraticn no. 4
CO-Jfdimate variations
STATION JELTA x DELTA
1
$.010 \quad-.005$
$2 \quad .00+\quad-.009$
$3 \quad .02 \% \quad-.003$
$4 \quad .007 \quad-.009$
$5 \quad .009 \quad-.008$

ITERATIUN NJ. 5
CO-CRDINATE VARIATIUNS
Station Jelta x DEita y
1
$.007 \quad-.005$
2 .00 -.008
$3 \quad .023 \quad-.002$
$4 \quad .010 \quad-.009$
$5 \quad .003 \quad-.007$

ITEXATICN NO. 6
CC-jRJINATE VARIATIONS
STATECN DELTA x DELTAY

1
$.037 \quad-.005$
$.003 \quad-.007$
$3 \quad .022 \quad-.001$
$4 \quad .013 \quad-.008$
$5 \quad .003 \quad-.006$
ITERATICN : $\mathrm{d} \cdot \mathrm{J}$
CG-JRDINATE VARIATIONS STATIGN JEGTA x DELTA r
$1 \quad .008 \quad-.005$
$2 \quad .003 \quad-.007$
3 .021 -.000
$4 \quad .010 \quad-.007$
$5 \quad .005 \quad-.006$

ITERATICN NO．d
CU－JKJINATE JARIATIUND

STATICN	JELTA A	JELJAY
1	.003	-.034
2	.003	-.000
3	.020	.031
4	.010	-.007
5	.037	-.005

ITEスATIGN NJ． 9
CO－JRDINATE VARIATIJNS
डTATION JEGTA X JËцT由 Y
1
$.007 \quad-.004$
$2.003 \quad-.036$
$3.013 \quad .001$
$4 \quad .010 \quad .006$
$j \quad .007 \quad .005$

こTEXATICN NO． 10
CE－URJINATE VARIATIUNS STATION JELTAX OELTA Y
$1 \quad .007 \quad .004$
$2.003 \quad .005$
$3 \quad . C i 3 \quad .002$
$+\quad .010 \quad-.006$
$5 \quad .057 \quad-.005$
－• • • • • •－

こTEスATIUN NU．j7
co－JROINATE VARIATIJivS
SIATIUN DEETAX JELTA Y
$1.000 \quad .000$
$2 \quad .000 \quad-.000$
$3 \quad .001 \quad .001$
$4 \quad .001 \quad-.000$
$5 \quad .000 \quad-.000$

StinjakJ	RESIJUAL	mojustej anales					
R			Nume		DEG	Milv	SECら
．100E＋01	$-.7+1 E+00$			5	32		17.65
． $100 E+C 1$	． $7+1 E+00$			5			
．100E＋C1	－．167E＋ 0	4	j	7	23	35	18.34
．100E＋01	－．123E＋01		7	3	17	；	30.03
． 100 E＋01	－．601E＋00	3	＋	5	52	4	55.63
．10JEt01	－．307E＋01	3	5	7	79	14	32.71
－100etur		7	3	5	55	3.	20.33
．100E＋01	－．254E＋01	7	5	2	56	6	40.25
－100E＋01	－．009ミ＋00	2	7	5	57	42	27.54
．100E＋く1	－477E＋01	2					
． $100 \mathrm{E}+01$	．793E＋00	2	，	6	40		43.05
．100E＋i1	． $513 \mathrm{E}+\mathrm{j} 0$	2	6	1	59	20	45.20
． $100 \mathrm{E}+01$	－． $426 \mathrm{E}+31$	1	2	5	$\checkmark 8$	1	24.72
COE＋01	175E＋01	1	j	ε	27	35	47.83
00＋01	1752＋01	6	1	2	45	2	2.25
． $100 \mathrm{E}+1$	－．140E＋J1	6	2	5	72	\pm	19.31
． $1005+01$	－1ヶ7E＋C1	。			－3	15	
－1COE＋01	－157E＋01	－					
－1COE＋近	－．794E＋00	5	＋	－	4		
－1C0E＋C1	－013E＋00	5	－	1	35	12	30.61
．100Eか1	－．253E＋01	5	1	2	31	39	6.42
－160＝＋C1	－1ぐ5＋01	5	2	i	と6	10	40.21
		5	7	3	45	10	56．70
－100E＋C1	－410ct00	5	3	4	67	1.	9.00
．100E－C1	－．976E－03						
．100E－C1	－．953E－02		ine		431.02	Estanc	
．100E－Ũ1	－． $30 \rightarrow$ E－01				62	32.319	
．100E－01	．131ミ－01		35		51	± 1.040	
－16JE－01	－．653E－02		75		61	82.619	
．100E－C1	－．379E－01				00	04．353	
． $100 \mathrm{E}+03$	－． 480 E－01				002	24．do5	
． $500 \mathrm{E}-62$	－．933E－03		－\quad		41	19.272	

STAIVJARJ ERROF OF CO－ORJINATES

STATIUN	λ	r	PUSETION
$:$	． $431336 E-01$	－4203＊かE－C1	．0ひ7893E－01
2	． $425315 E-01$	．292832E－01	． 316 d7 DE－01
3	－529619E－02	－118－47E－01	． $1277+0 \mathrm{E}-01$
4	－- －05つ5E－01	． $31453+E=01$	． $546200 \mathrm{E}-01$
5	． 1401 ¢YE－̇	．190002E－C1	． $2+2032 \mathrm{E}-\mathrm{C} 1$
aujusteu cu－úroinimtes			
STATIOV	χ	r	
1	． $3+573070125+06$	－12039＋620	$3 \mathrm{E}+06$
2	． $3500+42537 E+05$	－15075264	$39 E+06$
3	． $3207856433 \bar{z}+06$	－1＋432321	$38 \mathrm{E}+06$
＊	． $3512+[1057 E+00$	． 13002870	$93 \mathrm{E}+06$
\bar{j}	． $3 \pm 102 y C 041 E+06$	． $1+$＋ 8990	¢ $\mathrm{E}+\mathrm{O} 6$

APPENDIX II

A numerical example for each of the vertical position control techniques; the direct leveling and the trig leveling, described in chapter VIII, will be adjusted by the computer program VCONTRL. The conditions, the requirements, and the procedures for running the program are given in chapter VII. All the necessary input data and the corresponding output of the adjustment will be given here. A numerical example of the gravimetric leveling computation is also presented.

A. Direct Leveling

The input data corresponding to Figure 23, are:
1
ADJUSTMENT OF DIRECT LEVELING BY LEAST SQUARES

10	1	5	
200			
16.298	1.1402	6	1
-17.700	1.3784	1	2
-0.687	1.5166	2	3
2.086	1.6432	3	6
23.615	0.5477	6	4
7.304	0.9487	1	4
14.162	1.0954	5	4
25.709	1.2649	3	4
-6.855	1.0488	1	5
10.863	0.7071	2	5

The complete listing of the adjustment output is given on the next page.

AJJUSTMEAT OF DIFECT LEVELING $3 Y$ LEAST SQUARES

こOEFFILIENT MATRIX

1． 0.	0 － 0
－1． 1.	C．C．
3．-1.	1． 0.
0.0.	－1． 0 ．
3． 0.	0.10
1． 0.	O． 1.
0.0.	0.1.
0.0.	－1． 1.
－1． 0.	0.0.
0.1 －	0 － 0
КІヒ́rt	MAMO SIDE
	$\begin{array}{r} 21 \varepsilon .2930 \\ -1 \% \cdot 7000 \end{array}$
	－．0870
	－297．9140
	223.6150
	7.3040
	14.1620
	25.7090
	$-6.8>50$
	10.8630

LEV．LINE OBS．ELEV．DIFE．STANJ．ERROR ADJ．ELEV．CIFF．

6	－	1	16.295	1.1402	$16.30+5$
：	－	2	－17．700	1.3784	－17．7104
2	－	3	． 6887	1.5166	－． 6801
3	－	6	2.086	1.6432	2.092 C
6	－	4	23．015	－ 5477	23．61＋2
1	－	4	7.304	． 9.407	7． 3.336
5	－	4	14．162	1.0954	14.1600
3	－	4	25.709	1.2049	25.7051
1	－	5	－6．855	1.0488	－6．8504
2	－	5	10.863	． 7071	10．8501

STATION	LOJ．ELEVATION	STAND．EKス̃OR
1	210.3045	.00435
2	$196.59+1$.00558
3	197.5080	.00570
4	223.6142	000302
5	209.4542	.00511
	FIAEJELEVATION	
6	200.000	

B. Trig Leveling

The input data corresponding to the Figure 24, are:

The complete listing of the output of the adjustment by VCONTRL is given on the next page.

Trio léveidng by least square

TRIG.inine		ACJ.ELEU.OLFF.
+ - 1		-030.1-95
- - 2		-755.4140
- - 3		-562.5072
1-4		-36.1495
1-2		-129.204\%
1-3		73.5824
$2-4$		705.4140
2-1		129.2845
2-3		202.3409
3-4		562.5072
3-1		-73.5024
3-2		-202.8469
STATEON	Qoj.elevation	STANO.EERROR
1	363.8565	. 20362
2	234.5850	. $215+0$
3	437.4328	. 22960
	FiaEu ElEvation	
4	1000.000	

C. Gravimetric Leveling

To demonstrate the theory of the geopotential numbers, field measurements with a LaCoste and Romberg Model G Geodetic Gravity Meter were taken on five stations located on the Oregon State University (OSU) Campus, Corvallis. These five stations are located in either line 15 of the National Geodetic Survey (NGS) Leveling Network or from the Oregon Gravity Base Station Network. Figure 26, shows the five stations and the gravity observation sequence.

Figure 26. Level Net and Gravity Observation Sequence.

Computational Procedures

The detail computation procedures are given in [14]. Only a very brief description will be given here. The interest is in finding the actual gravity values, $g^{\prime} s$, at the five observation points. The mean readings from the gravity observations and the
corresponding local times on two separate days are given in column (2) of Table 5. From the gravity meter calibration chart provided by the manufacturer (Table 7), corrected values (mgals) for the corresponding mean readings (counter reading in the calibration chart) are obtained and they are tabulated in column (5) of Table 5.

The next step is to apply the Earth Tide correction. For this, Earth Tide Correction Tables were obtained from the Department of Oceanography, Oregon State University computer. These are given in Tables 8 through 10. The earth tide correction for an instant of time is then interpolated from these tables and it is tabulated in column (6) of Table 5. The correction is algebraically added to the corrected value of column (5) to obtain the corrected reading in column (7). The instrument drift correction, in column (8), has been computed linearly for the difference of time from the corrected readings misclosure at the starting Gravity Base Station 1 (GB \#1). This, algebraically added to the corrected reading, in column (7) gives the relative gravity in milligals (mgals) in column (9) of Table 5.

From the published data for the Oregon Gravity Network, the gravity value for the Corvallis OSU-PC (Gravity Base Station 1; GP \#1 in Figure 26), [7], is $980,573.14$ mgals. By comparing this value with the relative gravity at GP \#l in Table 5, the difference is 976,341. 609 mgals.

This value must be added to each of the relative gravity values to obtain the surface gravity values, tabulated in column (2) of Table 6. Values in column (3) are computed similarily for the second day of

Table 5. Gravity Computation

Station	$\begin{aligned} & \text { Mean } \\ & \text { Reading } \end{aligned}$	$\begin{gathered} \text { Mean } \\ \text { Local Time } \\ \mathrm{h} \end{gathered}$	$\begin{aligned} & \text { GMT } \\ & \text { h in } \end{aligned}$	Corrected value (mgals)	Earth Tide (mgals)	Corrected Reading (magals)	Drift Corr (mingals)	Relative Gravity (migals)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Date: 04/20/1979, PST; GMT: 04/20,21/1979								
GB\#1 *	4024.132	$15 \quad 36$	2336	4231.544	-0.013	4231.531	0.000	4231.531
U-54	4024.236	1548	2348	4231.653	-0.009	4231.644	-0.005	4231.639
T ${ }^{1}$	4026.376	1605	0005	4233.903	-0.003	4233.874	-0.012	4233.862
GB \# 4**	4024.804	$16 \quad 15$	0015	4232.250	0.001	4232.251	-0.016	4232.235
College	4024.290	$16 \quad 27$	0027	4231.710	0.005	4231.715	-0.020	4231.695
GE \# 1.	4024.135	$16 \quad 41$	0041	4231.547	0.010	4231.557	-0.026	4231.531
Date: 05/08/1979, POT; GMT: 05/08/1979								
GB \# 1	4024.008	$15 \quad 26$	2226	4231.413	-0.022	4231.391	0.000	4231.391
U-54	4024.126	$15 \quad 36$	2236	4231.537	-0.027	4231.510	-0.002	4231.508
T ${ }^{11}$	4026.230	1546	2246	4233.750	-0.032	4233.718	-0.005	4233.713
GB \# 4	4024.700	$15 \quad 57$	2257	4232.141	-0.037	4232.104	-0.008	4232.096
College	4024.196	1621	2321	4231.611	-0.048	4231.563	-0.013	4231.550
GB \# 1	4024.060	$16 \quad 48$	2348	4231.463	-0.057	4231.411	-0.020	4231.391

* Corvallis OSU-PC (Gravity Base \#1)
** Corvallis OSU-KL (Grävity Base \#4)
observations. Values in columns (2) and (3) are averaged to obtain the mean surface gravity g, as explained earlier, in column (4). The elevations of $U-54, \tau \beta \pi$, and COLLEGE in column (6) are from the published values by the U.S. Department of Commerce in the Vertical Control Data, Sea Level Datum of 1929 , and the elevations of the other two stations are taken from [14]. These elevations should be the values after the adjustment of the observation by the least squares adjustment, described in this paper. The elevations in column (5), are then multiplied by the corresponding mean surface gravity, in kgals, of column (4), to obtain the geopotential numbers (GPU) tabulated in column (6) of Table 6.

Table 6. Geopotential Numbers

	Surface Gravity			Mean Station	$04 / 21 / 79$ (mgals)
(1)	(2)	$05 / 09 / 79$ (mgals)	Surface Gravity (mgals)	Elevation (m)	GPU (Kgal m)
GB \# 1	$980,573.14$	$980,573.14$	$980,573.140$	77.142	75.643
U-54	$980,573.248$	$980,573.257$	$980,573.253$	76.787	75.295
T B π	$980,575.471$	$980,575.462$	$980,575.467$	71.337	69.295
GB \# 4	$980,573.844$	$980,573.845$	$980,573.844$	73.336	71.911
College	$980,573.304$	$980,573.299$	$980,573.302$	72.219	70.816

Table 7. Calibration Values.

Milligal Values for LaCoste \& Romberg, Inc. Model G Gravity Meter No. 126

Counter Reading*	Value in Milligals	Factor for Interval	Counter Reading*	Value in Milligals	Factor for Interval
000	000.00	1.05230	3500	3785.58	1.05150
100	105.23	1.05220	3700	3890.73	1.05150
200	210.45	1.05210	3800	3995.88	1.05145
300	315.66	1.05200	3900	4101.02	1.05145
400	420.86	1.05190	4000	4206.17	1.05145
500	526.05	1.05185	4100	4311.31	1.05140
600	631.23	1.05175	4200	4416.45	1.05135
700	736.41	1.05170	4300	4521.59	1.05135
800	841.58	1.05160	4400	4626.72	1.05130
900	946.74	1.05155	4500	4731.85	1.05125
1000	1051.89	1.05150	4600	4836.98	1.05120
1100	1157.04	1.05145	4700	4942.10	1.05120
1200	1262.19	1.05140	4800	5047.22	1.05105
1300	1367.33	1.05140	4900	5152.33	1.05095
1400	1472.47	1.05140	5000	5257.43	1.05090
1500	1577.62	1.05140	5100	5362.52	1.05085
1600	1682.75	1.05140	52.00	5467.60	1.05075
1700	1787.89	1.05140	5300	5572.68	1.05070
1800	1893.03	1.05140	5400	5677.75	1.05060
1900	1998.17	1.05140	5500	5782.81	1.05045
2000	2103.31	1.05140	5600	5887.85	1.05025
2100	2208.45	1.05135	5700	5992.88	1.05005
2200	2313.58	1.05135	5800	6097.89	1.04985
2300	2418.72	1.05135	5900	6202.87	1.04965
2400	2523.85	1.05135	6000	6307.84	1.04950
2500	2628.99	1.05135	6100	6412.79	1.04920
2600	2734.12	1.05135	6200	6517.71	1.04895
2700	2839.26	1.05140	6300	6622.60	1.04865
2800	2944.40	1.05140	6400	6727.47	1.04840
2900	3049.54	1.05145	6500	6832.31	1.04810
3000	3154.69	1.05145	6600	6937.12	1.04780
3100	3259.83	1.05150	6700	7041.90	1.04750
3200	3364.98	1.05150	6800	7146.65	1.04720
3300	3470.13	1.05150	6900	7215.37	1.04685
3400	3575.28	1.05150	7000	7356.06	
3500	3680.43	1.05150			

Note: Right hand wheel on counter indicates approximately 0.1 milligal.
8-2-66

Table 8. Earth Tide Corrections - April 20, 1979. EARTH TIDE GRAVITY CORRECTIONS TO BE ADDED ALGEBRAICALLY

Table for Location: 4433.58 Lat. 123 17.68 Long., 240.0 Feet Elevation On Day: 20 April 1979 From 0000 Hrs to 2400 Hours GMT

Time (GMT)	Tide (MGAL)	Slope (Mgal/Min)
0	0.036300	0.000000
30	0.045913	0.000275
100	0.05458	0.000216
130	0.060638	0.000146
200	0.065006	0.000066
230	0.066989	-0.000020
300	0.066403	-0.000108
330	0.063166	-0.000195
400	0.057307	-0.000278
430	0.048967	-0.000352
500	0.038398	-0.000415
530	0.025958	-0.000462
600	0.012095	-0.000492
630	-0.002668	-0.000503
700	-0.017760	-0.000494
730	-0.032587	-0.000466
800	-0.046563	-0.000419
830	-0.059141	-0.000357
900	-0.069842	-0.000282
930	-0.078289	-0.000198
1000	-0.084223	-0.000110
1030	-0.087521	-0.000023
1100	-0.088204	0.000059
1130	-0.086438	0.000131
1200	-0.082519	0.000189
1230	-0.076854	0.000231
1300	-0.069936	0.000254
1330	-0.062307	0.000260
1400	-0.054520	0.000247
1430	-0.047104	0.000219
1500	-0.040528	0.000179
1530	-0.035163	0.000130
1600	-0.031269	0.000076
1630	-0.028968	0.000024
1700	-0.028245	-0.000024
1730	-0.028950	-0.000062
1800	-0.030813	-0.000088
1830	-0.033466	-0.000100
1900	-0.036472	-0.000096
1930	-0.039356	-0.000076
2000	-0.041644	-0.000042
2030	-0.042896	0.000005
2100	-0.042737	0.000062
2130	-0.040885	0.000124
2200	-0.037171	0.000187
2230	-0.031555	0.000248
2300	-0.015106	0.000301
2330	-0.004833	0.000342
2400		0.000000

Table 9. Earth Tide Corrections - April 21, 1979. earth tide gravity corrections to be adoed algebraically

Table for Location: 4433.58 Lat., 123 17.68 Long., 240.0 Feet Elevation On Day: 21 April 1979 Fron 0000 Hours to 2400 Hours GMT

Time (GMT).	Tide (MGAL)	Slope (Mgal/Min)
0	-0.004833	-0.000000
30	0.006248	0.000379
100	0.017618	0.000369
130	0.028701	0.000340
200	0.038903	0.000291
230	0.047641	0.000225
300	0.054379	0.000142
330	0.058653	0.000049
400	0.060109	-0.000053
430	0.058520	-0.000157
500	0.053809	-0.000258
530	0.046055	-0.000352
600	0.035502	-0.000432
630	0.022546	-0.000494
700	0.007723	-0.000535
730	-0.008313	-0.000551
800	-0.024833	-0.000541
830	-0.041061	-0.000505
900	-0.056225	-0.000446
930	-0.069601	-0.000365
1000	-0.080555	-0.000268
1030	-0.088589	-0.000159
1100	-0.093368	-0.000046
1130	-0.094745	0.000065
1200	-0.092776	0.000169
1230	-0.087711	0.000258
1300	-0.079985	0.000327
1330	-0.070187	0.000372
1400	-0.059020	0.000392
1430	-0.047257	0.000386
1500	-0.035684	0.000354
1530	-0.025054	0.000301
1600	-0.016028	0.000230
1630	-0.009137	0.000146
1700	-0.004746	0.000057
1730	-0.003026	-0.000031
1800	-0.003953	-0.000112
1830	-0.003707	-0.000180
1900	-0.012695	-0.000229
1930	-0.019574	-0.000257
2000	-0.027299	-0.000262
2030	-0.035163	-0.000243
2100	-0.042450	-0.000201
2130	-0.048483	-0.000140
2200	-0.052672	-0.000062
2230	-0.054551	0.000025
2300	-0.053811	0.000116
2330	-0.050320	0.000206
2400	-0.044136	0.000000

Table 10. Earth Tide Corrections - May 8, 1979

EARTH TIDE GRAVITY CORRECTIONS TO BE ADDED ALGEBRAICALLY
Table for Location: 4433.58 Lat., 123 17.68 Long., 240.0 Feet Elevation
On Day: 8 May 1979 From 0000 Hours to 2400 hours GMT
Time (GMT) Tide (MGAL) Slope (Mgal/Min)

0
100
130
200
230
300
400
430
500
530 0.

600
630
700
730
800
830
900
930
1000
1030 1100 1130 1200 1230 1300
133
-0.054856
0.000000
0.000065
0.000156
-0.05388
0.000233
-0.049201
0.000289
-0.042226
0.000322
$\begin{array}{ll}-0.023870 & 0.000329 \\ -0.013994 & 0.000309\end{array}$
$-0.004726 \quad 0.000263$
$0.003166 \quad 0.000195$
$0.009008 \quad 0.000109$
$0.012274 \quad 0.000011$
$0.012618 \quad-0.000090$
$0.009905 \quad-0.000189$
$0.004226-0.000278$
$-0.004116 \quad-0.000350$
$-0.014620 \quad-0.000400$
$-0.026617 \quad-0.000424$
$-0.039323 \quad-0.000419$
$-0.051882 \quad-0.000385$
$-0.063429 \quad-0.000324$
$-0.073149 \quad-0.000239$
$-0.080323-0.000135$
$-0.084381 \quad-0.000019$
$-0.084940 \quad 0.000104$
$-0.081827 \quad 0.000225$
-0.075091 0.000336
-0.065003 0.000432
-0.052041 0.000506
$\begin{array}{ll}-0.036860 & 0.000553 \\ -0.020255 & 0.000571\end{array}$
-0.003118 - 0.000558
0.013622 " 0.000514
$0.029047 \quad 0.000432$
$0.042305 \quad 0.000345$
$0.052667 \quad 0.000230$
$0.059562 \quad 0.000102$
$\begin{array}{ll}0.062617 & -0.000031 \\ 0.061684 & -0.000161\end{array}$
$0.056840 \quad-0.000218$
$0.048393-0.000384$
$0.036863-0.000464$
$0.022947-0.000515$
0.007483 -0.000536
$-0.008604 \quad-0.000525$
-0.024367 -0.000484
$-0.038882 \quad-0.000415$
$\begin{array}{llr}2330 & -0.051324 & -0.000323 \\ 2400 & -0.061010 & 0.000000\end{array}$

APPENDIX III

79/07/13.17.26.49.5

P₹しERLM HCUNTKL（：NPUT，OUTPUT，TAPEEG＝ミNPUT，TAPEG1＝CUTPUT）
UIMEMSI UN
2
2
3
4
5
6
7
8
Aら（50）， $\mathcal{H E}(56), I D E=(50), \operatorname{MiN}(50), \operatorname{SEC}(501$,
SIUMA1（50），NUAI（50），NUYJ（50），NUMK（50）：
CASD（5），SAZGMAZ（SO），
INUE $(+)$ ：INOJ $(4), F(10+4), O(104)$ ，
FOIST（4），STE（4）：NJI（4），NOJ（4）

C CUMPUTER LANUUMGE－－．．FCRTRAN IV
C PROGRAMMED BY KAMESH L．SHKESTHA
THIS PROGRAM ADJUSTS A NETHOKK OF ANGLES，JISTANCES
OR A ZI MUTHS UNLY．OR THE SOMEEHAT IO，UF ANY THO OF
KLL Br THE LEAJI SUUARES TEGHNJUUE USING OZSERVATION
GOJJSTING TREVEK̇EE，INTERSECTICN．RESECTION．
KRIANSUNGTIONVE TKILATERATION，OR＇COMJINEU NETHOKKS．
A MAXI MUM YF 104 O3SERVATION EQUATIONS CAN BE AOJUSTED，
SUCH THAT THE TOTAL NUYBER OF FI XED ANO UNKNONIY POINTS
 4 EACH．

THE MEASUKED ANGLES TUST BE IN DEGEEES，MINUTES，AND
SECJMS．THE MEASUKED DISTANGES GANTEEETTHEN FN FEETR
NOKTN AND MUST INPUT IN JEOKEES．MINUTES，ANJ FEOCNOS
THE FIA J MISTANCE（S）CAN BE ELTHERFEET，OR METEFS．
THE URIT د MUSTT BE CONS SSTENT．FUR INSTANCERIF THE
APPROXIHATE ALVO FIAES CO－UROINATESARE IN FEET．
THE DISTANCE（S）MUST ALSO BE IN FEET．
NFXJ＝NO：OF FIAEJ STATIONS

ITER＝0
F $=3.141$ ；42054
CONV＝1．1SIN（ONE）
\therefore inPut title gup to 75 Characteñs，letters，nlmerals of bothi
FEAJ（Éa， 3 ）（TITLE（I），I＝1，15）
3 FORYAT（iวAS）
HEIE（O1，4）（TIT－E（I），I $=1,15)$

O INPUT NUMGE NUNBEE JF OBSERYEJ ANGLES NUKXER UF OUSERVEL DISTANCES，
GEAJ（60．＊）NFXO，NTRAV，NANGL，NOIST，NAL，NFO
NSTL $=$ NFAJ＋NTRAV
$N T=2$＝NTRAV
$N F=N A N G L+N J I T$
$\begin{aligned} & \text { MISJM }=N P+N A Z \\ & \text { NT } \\ & \text { OT }\end{aligned}=N P+N A Z+N F O$

PROUKムH HSONTRL $73 / 73 \quad$ OPT＝2 FTN 4．74465

INPJT approg．－O－ORJINAIES，x ANO Y，OF The
UNKVONA JTATION（S）ACCOROIHG IO THE OROER OF THE NUMBEKED
UNKNOWN STATION（S）ANO THEN THE FIXEU CO－OROINATES，
X AIVO Y，ACGOKOINE TO THE ORCER OF THE OF THE
KEAD（óa，＊）（xC（I），YC（I），I＝1，NSTA）

NCNT＝NTRAV＋1
MKITE（5i，15）
15 FUTHAT（FOz，T22，FFIKEJ CO－OKOINATES＊／）

－F（NANG：EWOO）GO TO 16

1 NUMK（ 1 ）：$i=1$ ，NANOL）

$1 Y$ IF（NAL．EA．O）GU TO 22
\because INPUT FIXEJ AZIMUTH IN UEGNEES，MINJTES，AND SECONUS FOLLOWEJ GY

$2^{\text {KEA })(60, *)(I N Z U(I), I A Z Y(I), S E C A Z(I), S I G M A 3(I), I N O I(I), ~}$
22 IF（NFO．Eス．O）GO TO 20
E INPUT FIXEU OISTANCE，ETS STANDAKO OEVIATION IJN TME SAME UNIT AS THE DJSTANCE）FOLLONEU
ENDS（I，
REPEAT GR GGLFIXED OISTANCES．

C FORMATION OF COEFFIEIENT MATEXX FUR ANGLES．
20 IF（NANGL．EQ．O）GCTO 31
IO 30 M $M=1$ ，NA NUL
$I=N J M I(M)$
$J=N \cup M J(M)$
K＝NUMK（M）
$x_{1}=x C(J)-x C(I)$
$r 1=Y C(J)-Y i(I)$
$x_{2}=X C(K)-X C(I)$
$Y 2=Y C(K)-Y \mathcal{C}$
CALL ANG＿E（X1，Y1，X2，Y2，COMP，A12，A21）
EST（M）＝こOMP
ANUZ＝FLOAT（IUEG（M））＊3600．＋FLUんT（MIN（M））＊OU．HSEC（M）

```
PZCOFAM HEONTRL 73173 OPT=2 FTN 4.7*485
```

$F(n)=A N=2-\operatorname{COMP}$
CIST $2=x 1 * A 1+Y 1 * Y 1$

$4\left(M, 2^{*} J-1\right)=-\operatorname{CONV}\left(\mathrm{H}_{1} \mathrm{DIST1}\right)$
A (M, 2*J) $=$ CONV ${ }^{*}(x 1 / 01 S T 1)$
A(A; $2 * K 1=-G O N V^{*}(x 2 \% O L S T 2)$
30 CONTINUE

- FORMATIOR UF COEFFICIENT MATRIX FOR DISTANGES.

31 IFCNO:ST.EQ.OIGGTO 41
0040 II $=1$, NDIST
$=L N U M$
$j=L Y I S$
$0 x=x C(J)-x C(I)$
Dr=rc(J)-rc(I)
j502 $=3 x * 0 x+0 r * 0 r$
COMP = SQRT (DSQR)
miII +NANGL
(H) =1./(SIGMAZ(II)*SIGMA2はII)

EST $(M)=$ COMP
$F(H)=$ CIST(II)-COMP
$A(M, 2 * 1-1)=-(D X / C O H P)$
$A(\mathrm{H}, 2 * I)=-(O Y / C O M P)$
$A(H, 2 \cdot J-1)=0 \times$ COMP
$A(A, 2 * J)=O Y / C O M P$
40 CONTINUE

0250 III=1.NAZ
$I=I \cup 0 I(I I I)$
CI = $\mathrm{XC}(\mathrm{J})-\mathrm{x} G(I)$
$C 2=r=(J)-Y C(I)$
$C 3=E 1 * C 1+C 2 * L 2$
$M=I I I+N^{p}$
Q(M) $=1 . /(S I G M A 3(I I I) * S I G M A 3(I I))$
G(M, 2*I-1) $=-50 \mathrm{NV}+(\mathrm{C} 2 / \mathrm{C} 3)$
G(M, 2*I) CONV*(C1/C3)
$4\left(\mu, 2^{*} J-11=C O H N^{*}(C 2 / E 3)\right.$
$F(H)=0$
50 CONTINUE
60 IF(NFD.EQ.OI GO TO DS
C FOFMATION OF CDEFFICIENT MATRIX FOR FIXED OISTANCES.
$0061-6=1$,NFO
$I=N D I(L)$
$j=N O J P$
0
$0 \mathrm{D} x=\lambda$ (J)

h=NI SUn+LL
Q(M) $=1 . /(S T E(L L) * S T E(L L))$

SUGRJUTINE ANG.E

73173
OPT=2
FTN $4.7+465$

1

5

10

15

20

SUBROUTINE DEGREE(SECOHD,IG, KG, SE1)
C CONVERSICN OF ANGLE FROM SECUNDS TO UEG, HINGAND SEC
5. G1=SECONO/3600.
$G G=I$ Hi $(G 2)$
$G 2=(G 1-F$
$M O=I N I(G 2)$
$S E I=(G 2-F L O A$
SEL=(G2-FLOAT(MG))*60。 KETJRN
20

SUẼ̃OUTINE ANGLE(A1,A2,A3,A4,Z,AZ1,AZ21
C COMPUIE AZINUTHS UF TNO LINES ANC TAXE THE OIFFERENEE TN COMPUTE ANGLE.
$P I=3.141592654$
ONE=PI/6+0000.
COMYFI- $/ 5 I N$ NONE
$B 1=A T A N(A 1 / A 2)$
$B 2=A T A / H(A 3 / A 4)$

200
IF (A1.GE.O.O.AND.A2.GE.O.O) GO TO 100
GO IO 210
$A 21=81$
IF (A1. UE. O.O.ANO.AZ.LT.O.O) GU TJ 101
TO 211

6010212
$421 \times 32+P 1$
$\begin{array}{ll}102 \\ 212 & A 21232+P I \\ 2\end{array}$
203 GOI

20.

301
$\begin{array}{ll}301 & A Z 2=B 2 \\ 310 & \text { TF (A3 GE. O. O.AHD.A4.AT.O.OS GO TJ } 302\end{array}$
$3 \mathrm{G2} \mathrm{GZ2=32+9}$

$303422=32+0$ I
32 GO IO 315
304 AZ2 $=82+P I+2$.
315 ; $\mathrm{CAT}=厶 Z 2-A Z 1$

END

79/07/15. 13.08.58

PROGPAM VCONTRL (INPUT, CUFPUT,TAPEGO=INPUT,TAPEEI=OUTDUT) DIMENSION TITLE(15).ELEV(100).A(100,90), W(100),
 COMPUTER LANGUAGE -- FORTRAN IV
C PROGDAMMED OY ——— RAMESH L. SHDESTHA
C VERTICAL CONTROL ADJUSTMENT, EITHEP EY DIRECT LEVELING OR TRIG LEVELING TECHNIQUE CAN BE PEREORMED BY THIS PROGRAM. CSSERVAYION EQUATICN METHOO HAS DEEA EMPLOYED.
IN THE A NJUSTMENT SY PDIG LEVELING, ATNOSPHERIC REFRACTION ANE CUZVATUOE CF THE EARTH CORRECTIONS NEED MEAN RADIUS AND ECCENTRICITY OF THF SPHEROTD.CONSTANTS OF CLAKRE SDHERCIO CF 1 EGF ARE USED FOR THIS PUPOCSE.

TJTAL NUMBER OF 100 ODSERVATION EOUATINNS CAN PE ADJUSTEC. THE MAXIMUM NUMDERS OF FIXET AND UNKNOWN ELEVATICN STATTONS MUST NOT EXEEED IO AND QO RESPECTIVELY.

E THE APPDOXIMATE LATITUDE OF THE PRCJECT AREA MUST RE IN BETOEES, MINUTES, ANC SECONTS IDE ANY CECIMAL PART OF ANY DECI YAL PART OF THE SECDND CAN OE HANDLED.
 IN IS NUMGER.NO LETTED IS ALLOWET.ANT STATION NUMAER MUST NCT EXT,EED TWO DIGIISI, AND THEN THE FIXED ELEYATION STATİCN(S) AS $N+1, N+2, \ldots . . . E T C$.
C AT LEAST DNE FIXED ELEVATION MUST DE GIVEN.
C THE UNITS MUST BE CONSISTENT IF THE AOPROXIMATFAND EIXED C- CO-OFOIMATES AFE IA FEET, THEN THE DISTANCEISI MUSTA ALSO PE INFEET.

COEFF $=0.125$
$C O E F F=0.125$
$E S O=0.056753657997291$
SEMIA=637タ20E-4*3-280日33333
PI=3. 141592654
DP=PI/180.* 3 EOO.1
C INPUT CONTPOL IOENTIEIER. 1 FOR DIFECT LEVELING. O FCQ
C TPIGLEVELING.
READIGDEE) I SELCT
IFRISELCT.EQ.II GO TO 4θ G
C INPUT TIFLE IUP TO 75 CHAPACTERS.LETTEPS,NUMERALS.OR GOTHI
PEAD(50.10) (TITLE(I). I=1.15)
0 FORMATYi5A51
HPITE(51.20) (TITLE(I),I $=1.15$)

$\stackrel{C}{5}$ INDUT APPRCYIMATE AVERASE LAYITUDE DF THE PROJECT AREA
C IN DEGPEES,MINLTES,ANO SECONCS.
PEAD(60,*) ICEG,MIN, SFC
vuevun veven
NORS $=$ NO.OF ORSEQUATIONS
NUN $=$ NO. OF UNKNONN ELEVATIONS
NFIXEO= NOOOFEFIXED ELNEVATRESTFIEG TSLANT OF HOFIZONTALI LIGHT = TISTANCE MEASURING EQUIPMENT IDENTIFIER PVISIRLE IIGHT HAVE OR MICOOHAVE SYSTEMI
TNPUT NO. OE OESERVATICNS, NO. OF UNKNCWN ELEVATIONS, NO OF FIXED ELEVATIONS: 1 CF O II IF THE INPUT MEASUREC
 EGUIPMENT SYSTEM. O IF MICROWAVEI.

REAO（60．＊）NORS，NUN，NFIXED，ICHOSE，LIGHT IF（LIGHT．EQ．1）COEFF＝0．07

C INPUT UNIT IDENTIFIER， 1 FOR FEFT O FOR NETERS． READ（60，＊）IUNIT

IF\｛IUNIT．EG． 0 （SEMIA＝6マTR206．4
PH1 $=3600$ ．FLOAT（IOEG）＊ 60 ．FFLOAT（MIN）＋SEC PHI＝PP＊PHI

DENOF1－EESO＊SIN（PHI）＊SIN（PHI）
AN＝SE TIF 1 ROESON
RHO＝AN／INENO＊＊1－51
ANU＝SEMIA／SORTIDENO）
RAVE＝SQRT（RH（FANE）
$N O=N U N+1$
NTOT $=$ NUN＋NFIXEO
C INPUT FIXED ELEVATIONS
PEAC（GO．＊）（ELEV（I），I＝N®，NTCT：
HRITE（61．25）

3 torgoetstancoeoportil
INDUT VERTICAL ANGLE（POSITIVE UPWAFC．NEGATIVE DOWNWARD） IN SFCONOS（CR IN ANY DFCTMAL DARTI．ITS STANEARD EONOD IN SECONDS TCR IA ANV OECIMAL PARTI：OQSEOVETEISTANCE （HOKIZONTAL OR VERTIFALI．ITS STANDARO ERROD IIN THE SAME UNIT ES THE DISTANGE：INSTRUMENT HEIGHT，TADGET HEIGHT． INSTRLMENT STA．NO．，TARGET STA．NO．
$0030 \mathrm{~N}=1$ ，NOES
READ（EC，F）SECSI，SIGA，SLANT，SIGS，AI，BT，I，J
NกI $(N)=I$
NOJ $(N)=J$
ALFA＝PDFSECS
OIVI＝SECSI／3ECO．
Ln＝GEINTIOIV1）

REM＝AnSIDFGI）
REM1＝位I
LMIN＝INTIRE＊I）
SECC＝（PE～1－FLOAT（LMTN））＝60．
IF（SECSI．LT．G．O．AND．LDET．EQ．O）GC TO 32
HDITE（61．40）I．J，LOEG，LMIN．SECC，STTA．SLANT，SIGS

GO TO 43
3？WEITE（51，4）I）J，LNIN，SECO，ETGA．SLANT．SIGS

IFIICHOSE．EO．1）GOTO 4 ？
TANSQ＝TAN（ALPHA）ETANIALPHA）
SEC4＝1．（（COS（ALPHAY：＊世．）
SS＝SIGS＊SIGS
ST＝SSIGAFSIGA）（ 206265.7206265 .1
GOTANSOFSSHSLANTFSLANTFSEC4＊ST
42 S11＝SIN（ALPHA）FSIN（ALPHA）

> S22=SIGS*STGS
> $\mathrm{C} 11=\mathrm{CCS}(A L P H A)$ COS $(A L P H A)$
> C22=C11*SLANT*SLANT

S44（SIGAFSICGA）（206265．＊206265．）
$0=511$＊S22 + C22＊S44
$44 W(N)=1.10$
$A(N, I)=-1$ ．
$A(N, J)=1$ ．
CONST＝AI－RT＋SLANT＊SINTALPHAT
CONST2＝AI－BTHSLANTTTAN（ALPHAS
IFIICHOSE．EG．OI GO IO 38
$F(N)=$ CONST 1
 38 FINY＝CONST2

IF（I．GT．NUNI FIN）＝ELEV（TI＋CCNST？
IF（J．GT：NUNI F（N）＝－ELEV（J）＋CONST2
30 CONTINUE
HDITE（61．50）

$3060 \quad I=1$ ，NOES
G9 WRITE（51，7B）NUN，（AfI，J），J＝1，NUNI
70 FORNATTI $7, T E,=1 F 4.011$
WRIPE（61，a0）

90 WRITE（E1，90）（F（I），WII），T＝1，NODS）
DO $100 \quad \mathrm{I}=1$ ，NLA

$00105 I=1, N(N$
$09105 J=1$ ，NUN
AII，J）＝0．

$0 \cap 110 \mathrm{~K}=1$ ，NUN
DO $120 \mathrm{~J}=1$ ；NUN
140 q（ $k, J)=9(k, j) 101 \times 0$
120 CONTINUE
旦 $\left(K_{0} K\right)=1.1 f\left(K_{0} K\right)$
$30110 I=1, N L N$
150 1F（1－K） 150 ， 10.150

160 A（I，L）＝BiITLI－E（I，K）＊E（K，L）
110 CONTINUE
$11, K) * B(K, K)$
10 GONTINUE
DO $170 \mathrm{I}=1$ ，NUN
$1700^{00} 170^{\circ}, J=1$ ．NODS
$\left.170 \mathrm{~T}(\mathrm{I})=\mathrm{T}(\mathrm{I})+\mathrm{ATH}_{\mathrm{T}} \mathrm{I}, \mathrm{J}\right) * F(\mathrm{~J})$
DO I＇9 0 I＝1．RUN

1月0 ELEV（I）＝ELFV（I）＋GII，J）：T（J）

```
235
240
245
250
255
260
255
270
                                    no 1:5 I=1;NCES
    IR5 ADIFF(I)=ADIFF(I)+A(I,J) ELEY(J)
        WFITE(61,186)
```

186

```
    187 FORNATI{ I,T7.I2,Z - &,I2,T3C,F10.4/1
        KRITE(61,18T) (NOI(N),NOJ(N),ADIFF(N),N=1,NORS)
        VTWV=0.
        OO 190' I=1.NOPS
        AF=0.
                            OC 2OD J=1.NUN
    200 AE=AE+A(IGJ)*ELEV(J)
        V=AE-F(I)
    190 VTWV=VTHV+V*WV
        PRIOPI=VTWV/FLOAT(NOAS-NUN)
        00 210 I=1,NLN
        00 210 J=1,NLN
        A(I;J)=PRINRI*R(I;J)
            GNTO 790
        C INOUT TITLE (UP TO 75 EHADACTERS,LETTERS.NUMERALS,OO BOTH)
        406 REAE(60,410) (TITLE(I),T=1,15)
        41[ FCO*AT(15451
        WOITE(61,420) (TITLEII),I=1,15%
        420 FCOMA゙T\{1才,T5,15A5%/゙!
    C INPUT NUMBER OF LEVEL LINESONUNOEE OF FIXEC ELEVATIONS
        READ(60.*) NOBS,NFXD,NUN
        ISUN=NEXD+NUN
    C INDUT FIXED ELEVATIONS
        READ(60.*: (ELEVIII,I=IPIGIN,ISUNI
    C INPUT ORSERVEO ELEVATION NIFFERENEE
    C IELEV OF SIA J E ELEVYOF STA IT STGNOARZ ERQOR CE THE
    C PEPEAT FOR ALL OBSERVED FLEYATION EIFFFRFNEF
        00430 N=1,NOQS
        REAO(60,*) F(N),SIG(N),I,J
            E(N)=F(N)
            NOI(N)=I
            IF(I.GI.NUN) F(N)=F(N)+ELEV(IS
            A(N,J)=1.
            SOR=SIG(N)*SIG(N)
            430 W(N)=1./SOR
            00450 I=1.NUN
```


$00450 \quad \mathrm{I}=1$, NLN
$00460 \quad I=1$, NLN
㕵1, J)=0.
460 و(I, J) $=A(1, j)+A T W(T, K) F A(K, J)$
PO $\mathrm{T}^{4 T}=1=1, N(N$
$\mathrm{T}^{1} 1 \mathrm{I}=0$.

$00510 \quad x=1$, NUN
$00520 \mathrm{~J}=1$, NUN
IF(JKK) $5400.520,540$
$54 \mathrm{C} 3\left(K_{0} J\right)=B(k, j) / \pi(k, K)$
520 CONTINUE
g($K, k)=1.1 E(K, K)$
$02510 \mathrm{I}=1, N(N$

550 IF (L-K) $560^{\circ}, 530.560$

DO $620 \mathrm{I}=1$, NUN
$\begin{aligned} & \text { ELEV } \\ & \text { DO } \\ & 600 \\ & \text { I }\end{aligned}=0=1$ NUN
600 ELEVII)=ELEV(I) + P(I,J)FT(J)
WDITE(61,645

HPITE(61:570). FRIGHT MANE SIDE MATRIX -F-ZAS

$A E=0$.
$V=0$ 。
0005 ? $J=1$, NUN
6e2 $A E=A E+A(I, J)$ ELEV(J)
$V=A E-F(I)$
$6 巴 1 \quad V T W=V T K+V * W V$
PRICDI=VTW/(NOSS-NUN)

583 B(I.J)=SDRT(VARI)
HPITE (61.5A4)

DC ES5 I=1, NODS
ATIFFIII=0:

$\mathrm{NR}=$ IRISIN
NTOT
ISUU
WPITE(61, 686)(NOTYN), NOS(N), F(NI, STG(N), $\triangle D I F F(N), N=1, N O S S)$


```
    1 * 土, r51.F10.4/1
```


WPITE 61,730)(I, ELEV(I), P(I,I), I=1, NUN)

395
400

TSO WRITEPR1, 750 (IT,ELFY(I), I=NE,NTOT)
$T 50$ FORMAT(Z \neq,TT,I2,T15,F9.3/1

END

[^0]: *These and the rest of the data in this chapter, unless otherwise stated, are from [2].

[^1]: **For computation checking purposes, these data are taken from [2].

