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THE EFFECT OF ULTRA-HIGH PRESSURE ON
THE EMF OF THERMOCOUPLES

INTRODUCTION

Statement of the Problem

The accurate measurement of high temperatures presents a
challenging experimental problem in a high-pressure environment.
Such conditions are routinely encountered in the study of phase trans-
formations in solids, where temperatures exceeding 2000°C and
pressures of more than 100 kilobars are not uncommon
(1 kilobar = 14, 504 pou.nds/inchZ = 108 newtons/mz). When the tem-
peratures involved are no more than a few hundred degrees Celsius,
an entire pressure vessel may be heated externally, often by immers-
ing the vessel in a heated fluid. Under such conditions when the
system attains thermal equilibrium the temperature within the vessel
may be conveniently determined externally with considerable accuracy
by conventional means, such as a calibrated thermocouple or resist-
ance thermometer, at atmospheric pressure. At temperatures above
approximately 400°C the strength of the material of which the pressure
vessel is constructed begins to decrease rapidly with increasing tem-
perature, thus limiting the maximum safe operating pressure. This
difficulty is commonly circumvented by heating only a relatively

small. thermally-insulated high-pressure region by means of an



internal electric furnace, while the pressure vessel itself remains
safely cool. Because of their simplicity, ruggedness and small size,
thermocouples have become the principal means of determining the
internal temperature of the pressurized region in such high-pressure
devices. The absolute accuracy of such temperature measurements
is in question, however, since the thermal emf produced in a thermo -
couple is itself dependent on the ambient pressure. As an example,
for the commonly-used platinum-10% rhodium /platinum thermocouple
(Pt10%Rh/Pt) the pressure effect at 1200°C and 50 kbar is believed to
produce readings approximately 50°C lower than the true tempera-

ture (39,40).

Review of Previous Work

Before reviewing in detail the efforts of previous investigators
we present a few necessary introductory remarks concerning the
experimental configurations commonly used in this field of research.
Attempts to experimentally determine the effect of pressure on the
the rmal emf of metals and alloys have generally employed either of
two configurations: a single-wire method or a thermocouple approach.
In the single-wire method a single, continuous, homogeneous wire of
the material under investigation is passed through pressure and tem -~
perature gradients as shown schematically in Figure 1. Also shown

in Figure 1 are the temperature and pressure as a function of position



SINGLE-WIRE CONFIGURATION
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along the wire, both for the idealized case of isothermal pressure
seals and for a more physically realistic case which might be

encountered in an actual laboratory situation. Under atmospheric
pressure (pO = 0.001 kbar) the wire passes from the reference

temperature TO (typically an ice point bath at 0°C) to the pressure

seal at temperature T, = TO. The wire then passes isothermally

(in the idealized case) into the high-pressure region at pressure p,.
After leaving the pressurized region through another isothermal
pressure seal at some temperature TZ > Tl, the wire returns
under atmospheric pressure, Pge to the reference temperature,
TO. Denoting by S(p,T) the Seebeck coefficient or thermoelectric
power (also referred to as the ''thermopower') at pressure p and
temperature T, the total thermal emf generated in the circuit is

determined by summing the contributions from each segment around

the circuit.

= ,T
T L) To
= S‘ S(pO,T)dT + S‘ S(pl,T)dT + g S(pO,T)dT
TO Tl TZ
TZ
Esw = S‘ [S(pl,T)—S(pO,T)]dT (1-1)



The alternative method most commonly used exposes a
thermocouple composed of two dissimilar metals, denoted here by
subscripts a and b, to pressures and temperatures as depicted
schematically in Figure 2. Both wires pass from reference tem-
perature T at atmospheric pressure, Py to the pressure seal

0

at temperature Tl > TO. The wires then pass through an (ideally)

isothermal pressure seal into the pressurized region at high pres-
sure P, - Under pressure p;, the wires then increase in tempera-

ture from T1 to T the temperature at the thermocouple

2’
junction. Again, evaluating the total thermal emf around the circuit

we have

2
+ g [S_(p,» T)-Sy(py- T)AT (1-2)



EXTERNALLY—HEATED THERMOCOUPLE CONFIGURATION
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or
T1 TZ
Etc = S Sab(pO,T)dT + S Sab(pl,T)dT (1-3)
T T
0 1
where
S_, (p,T) =S, (p, T) - Sy(p: T) (1-4)

is defined as the relative Seebeck coefficient. The first term in
Equation (1-3) is simply the contribution due to the unpressurized
portion of the circuit between the reference temperature, TO, and
the pressure seal temperature, T,. For TO = 0°C and a known

temperature T this first term may be evaluated for standard

1’
thermocouple pairs using published reference tables (71) for use at
atmospheric pressure

One modification of this thermocouple configuration consists of
connecting two identical thermocouples in a differential mode with one
thermocouple under pressure and the other at atmospheric pressure,
with both hot junctions at temperature TZ’ as shown schematically
in Figure 3.

Evaluating the total thermal emf around the circuit we find
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Tl T2 Tl
Ediff: S\T S (pO,T)dT + ST S (pl,T)dT + ST Sb(pl,T)dT
0 1 2
T0 TZ T0
+ ST Sb(pO,T)dT + S‘T Sb(p , T)AT + \S‘T S (pO,T)dT
1 0 2
TZ
=§ [s_(py> T)-S,(p,> T)IAT
T
1
TZ
- S' [Sa(po, T)dT—Sb(pO,T)]dT (1-5)
T
1
TZ
Eaige gT (S, (P T)-S 1, (P, TVAT (1-6)

1

which gives directly the change in thermal emf which results from
placing the thermocouple under pressure. This quantity can also be

obtained using the absolute corrections from single-wire experiments.

Rewriting Equation (1-5) we obtain

T T

2
Eq g gT [Sa(pl,T)—sa(pO,T)]dT —ST [Sb(pl,T)-sb(pO,T)JdT
1 1 (1-7)

which demonstrates that is also equal to the difference

Ediff

between the single-wire corrections for each of the individual
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materials, represented by subscripts a and b, which constitute

the thermocouple; that is, from Equations (1-1) and (1-7)

E (E ) -(E (1-8)

diff  Tswa sw'b

Finally, a common variation of the thermocouple configuration
used in ultra-high-pressure systems which employ a solid pressure-
transmitting medium is illustrated in Figure 4. The pressurized
junction is heated by means of an internal electrical resistance
furnace. The total thermal emf for this configuration is also given

by Equation (1-3),

Proceeding with a review of this field one finds that high-
pressure research falls generally into two pressure ranges. Studies
done under truly hydrostatic conditions requiring the use of a liquid
or gas as the pressure-transmitting medium have generally been
limited to pressures up to 12 kbar and temperatures of no more than
a few hundred degrees Celsius. To attain higher pressures and tem-
perature one must be satisfied with quasi-hydrostatic conditions using

a solid pressure-transmitting medium.
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Within the hydrostatic pressure range the first significant study
of the effect of pressure on the thermal emf of metals and alloys was
that of Bridgman (16), whose extraordinary pioneering efforts laid
the foundations of modern high-pressure physics. Using a single -
wire approach (Figure 1), Bridgman studied 18 metallic elements and
two alloys under pressures up to 12 kbar and temperatures up to
100°C, concluding that even over this rather limited range of pres-
sure and temperature the results were 'unexpectedly complicated''.
Unfortunately, Bridgman did not study most of the thermocouple
materials in common use today.

Birch (10), using a thermocouple configuration (Figure 2),
studied Pt10%Rh /Pt and chromel/alumel thermocouples at pressures

up to 4 kbar and hot junction temperatures (T in Equation (1-3))

2
up to 470°C. His results for Pt10%Rh /Pt indicated an emf pressure
correction of +15 uV at 470°C and 4 kbar, corresponding to a tem-
perature correction of approximately +15°C. (Note: According to
convention the ''emf pressure correction'' is the voltage which must
be added to the emf of the pressurized thermocouple in order to obtain
the true temperature using standard atmospheric pressure thermo-
couple reference tables. The corresponding ''temperature correc-
tion'' is the number of degrees which must be added to the uncorrected

temperature indicated by the pressurized thermocouple to obtain the

true temperature.) Birch found the thermal emf of the chromel/alumel
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thermocouple to be essentially independent of pressure to within
10 pV. However, he did not record the temperature of the pressure

seal (T in Equation (1-3)), which implies that the actual tempera-

1
ture gradient under pressure was somewhat smaller than otherwise
indicated.

Bloch and Chaissé (11) employed a thermocouple configuration
(Figure 2) to study the effect of pressure up to 5 kbar on copper/
constantan thermocouples at low temperatures from -196°C to
+89°C. They found a linear positive correction of 0. 048° C/kbar at
89°C which agrees with the results of Bridgman (16) and Bundy (21)
over the mutual range of measurement.

Bell, Boyd and England (8) employed a differential thermocouple
arrangement (Figure 3) to study the effect of pressure on Pt10%Rh/Pt
thermocouples under hydrostatic conditions up to 10 kbar and tem-
peratures up to 509°C. Their results indicate that pressure
decreases the thermal emf of a Pt10%Rh/Pt thermocouple, thus
requiring the addition of a positive correction at pressures above
atmospheric. An emf pressure correction of 20 pV was determined
at 509°C and 3.5 kbar, corresponding to a temperature correction of
approximately 2°C, values which compare favorably with results
extrapolated from solid-media experiments at much higher pressures.

Freud and LaMori (32) conducted single-wire (Figure 1) hydro-

static studies on chromel, alumel, copper and constantan at pressures
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up to 8 kbar and temperatures from -195°C to +290°C. Results
computed for the copper /constantan thermocouple (Equation (1-8))
agree within experimental error with those of Bloch and Chaissé (11)
and Bridgman (16). For chromel/alumel at 8 kbar the emf pressure
correction was found to be essentially zero between -83°C and
+27°C, increasing to approximately +1 pV between 100°C and 200°C,
then decreasing and changing sign between 200°C and 300°C. This
behavior agrees essentially with the results of Getting and Kennedy
(34) for chromel/alumel extrapolated to these lower pressures.

Using hydrostatic pressures up to 7 kbar and an internal
furnace to produce temperatures from 500°C to 980°C, Lazarus,
Jeffrey and Weiss (56) employed a thermocouple approach (Figure 4)
to compare differences between temperatures indicated by a pres-
surized chromel /alumel thermocouple as compared to a pressurized
Pt10%Rh /Pt thermocouple. Their results indicate that the
chromel/alumel thermocouple is definitely pressure dependent above
720° C with the correction reversing sign (becoming negative) above
this temperature in agreement with higher -pressure results of
Getting and Kennedy (34). Lack of knowledge of the precise tempera-
ture of the internal furnace precluded the quantitative evaluation of
emf pressure corrections for the individual thermocouples.

Lallemand, et al. (53), using a Pt10%Rh /Pt thermocouple,

studied the effect of pressure on the fusion curves of gold and silver.
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By comparison with thermodynamic calculations they concluded that
for pressures up to 8 kbar and temperatures between 960°C and
1100°C, the thermal emf of the Pt10%Rh/Pt thermocouple decreases
with increasing pressure resulting in a temperature correction of
approximately 0.5°C/kbar. This value is consistent with results of
Lazarus et al. (56) and Getting and Kennedy (34).

Using a differential thermocouple arrangement (Figure 3),
Cheng, Allen and Lazarus (23) have studied the effect of hydrostatic
pressures up to 2 kbar and temperatures up to 950°C on chromel/
alumel and Pt10%Rh/Pt thermocouples. Results indicate positive emf
pressure corrections for Pt10%Rh/Pt in general agreement with
Getting and Kennedy (34), while the corrections for chromel/alumel
thermocouples may be even more negative than those indicated by
Getting and Kennedy. The pressure dependence of the difference
between indicated temperatures of the two thermocouples is generally
in good agreement with the earlier work of Lazarus, et al. (56).

The most recent hydrostatic determinations are those of
Diatschenko and Chu (30) for a chromel /alumel thermocouple (Figure
2) at pressures up to 22 kbar and temperatures between -269°C and
+27°C, which indicate extremely small emf pressure corrbections of
no more than =1 pV over the entire range of temperatures studied.
This result is consistent with previous studies at temperature above

0°C (34,40, 56).
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Within the relatively limited pressure range of hydrostatic
studies the results have generally agreed within experimental error.
In the ultra-high pressure range above approximately 20 kbar, how -
ever, the currently available thermal emf corre ctions due to pres-
sure are only approximate because of several inherent experimental
difficulties (41):

(1) uncertainty in the absolute pressure in the nonhydrostatic

solid pressure-transmitting medium,

(2) lack of precise knowledge of the true temperature within

the pressurized region,

(3) pressure seals which are not isothermal,

(4) plastic deformation of the thermocouple wires, and

(5) environmental problems including chemical contamination

and electrical shunting of the thermocouples at high tem-
peratures.

In spite of these difficulties a number of significant results have
been obtained in this higher pressure range using solid -media sys -
tems. Bundy (21) employed a single-wire method to study the effect
of pressure on the thermal emf of eight metals and alloys at pres-
sures up to 72 kbar and a temperature difference of 100°C. Taking
differences between the single-wire corrections (Equation (1-8)) to
determine the appropriate thermocouple emf pressure corrections

Bundy found corresponding temperature corrections of nearly +5°C
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2t 100°C and 40 kbar for Pt10%Rh/Pt and slightly more than +1°C at
100°C and 40 kbar for chromel/alumel. The extrapolated results for
chromel /alumel are shown in Figure 5 for a pressure of 40 kbar.
Bundy also conducted common -junction thermocouple experiments
which compared chromel /alumel against Pt10%Rh/Pt at pressures to
42 kbar and temperatures to 1200°C. The difference was found to
first increase to as much as +15°C at 42 kbar and approximately
500°C; then to decrease, eventually changing sign at temperatures
above 800°C. Bundy thus clearly demonstrated the danger inherent in
extrapolating thermocouple corrections far beyond actual measured
temperature and pressure ranges, 2 warning that has often been
ignored in practice pre sumably for lack of better information.

Hanneman and Strong (39) used a thermocouple approach to
determine relative temperature corrections for several thermo -
couples including chromel /alumel against Pt10%Rh /Pt. Their results
differ from those of Bundy at high temperature, the relative tempera-
ture correction reaching +47°C at 1200°C and 50 kbar. Comparing
experimental results with theoretical thermodynamic calculations for
single -component phase transformations and for diffusion at high
pressures, Hanneman and Strong were able to estimate the true tem-
perature of the internally-heated pressurized region, thus determining
the absolute temperature corrections for the individual thermocouples.

Their results for chromel/alumel at 40 kbar are shown in Figure 5.
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Later work by the same investigators (40) using different high
pressure cell materials and attempting to correct for temperature
and pressure gradients in the pressure seal region resulted in a
downward revision of their previous estimate for the temperature
correction in chromel/alumel, also shown in Figure 5. Peters and
Ryan (65) also measured relative temperature corrections for
Pt10%Rh/Pt against chromel/alumel at 40 kbar and temperatures from
200°C to 1000°C, but found values exceeding those of Hanneman and
Strong (39,40) by as much as 35% at 1000° C.

Getting and Kennedy (33, 34) have used a single-wire method to
determine absolute thermal emf corrections for Pt, Pt10%Rh,
chromel and alumel for pressures up to 35 kbar and temperatures up
to 1000°C. Thermocouple corrections obtained from differences in
the appropriate single-wire corrections indicate temperature correc-
tions for Pt10%Rh /Pt of approximately half those of Hanneman and
Strong (40) at 35 kbar and 1000°C. For chromel/alumel the tempera-
ture corrections differ considerably from previous work, becoming
large and negative with increasingly negative slope at the higher tem-
peratures (Figure 5). Freud and LaMori (32) also performed single-
wire measurements on the same materials for pressures up to 40 kbar
and temperatures from 30°C to 380°C. Their single-wire results
agree with those of Getting and Kennedy for Pt, Pt10%Rh and alumel.

For chromel, however, the results of Getting and Kennedy are lower
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by about 30% at 20 kbar and 400°C. Freud and LaMori attribute the
difference to possible strain effects on the chromel used by Getting
and Kennedy.

A totally different approach has been attempted by Wentorf (75)
using a Pt10%Rh/Pt thermocouple at pressures of 40 kbar and 50 kbar
and temperatures up to about 1400°C. The true temperature of the
thermocouple junction is estimated by measuring the minute fluctuat -
ing voltage (‘thermal noise'’) generated within a smaill carbon resistor
by thermal agitation of the charge carriers (48). The technique is
quite difficult experimentally, requiring extremely low noise
electronics, but the rather sparse data available indicate temperature
corrections which agree with those of Hanneman and Strong (40).

Most recently Stokes (68) has employed Mossbauer effect
studies to estimate the true temperature of a chromel/alumel thermo-
couple at pressures of 27 kbar, 50 kbar and 75 kbar at temperatures
up to 600°C. Results for the temperature correction agree within
rather large (x3°C) experimental error with the results of Hanneman
and Strong (40) and Getting and Kennedy (34) at 27 kbar and 50 kbar
up to 600°C. However, at higher pressure (75 kbar) the Méssbauer
estimates give much larger positive temperature corrections than
even the early results of Hanneman and Strong (39), suggesting cor-

rections of the order of +25°C at 600°C.
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The considerable uncertainty in the corrections for thermal
emf and temperature measured with chromel /alumel thermocouples
under ultra-high pressure is evident in Figure 5. It was hoped that
the new approach employed in the present work might help to resolve

this discrepancy.

Theoretical Considerations

Although the theoretical understanding of thermoelectric
phenomena is currently inadequate to allow reliable calculations of a
quantitative nature for the effect of high pressure on thermal emf, it
is nonetheless instructive to attempt to determine at least the order
of magnitude for the pressure effect which might be considered
physically reasonable. From formal Boltzmann transport theory we
obtain a general expression for the absolute thermopower of a metal,

due to electron diffusion (6,61,78)

2,2
S:_Trk T[a(lna(e))]_ (1-10)
3|el de e=e
F
where
o(e) = electrical conductivity

e = electronic charge
-19
= -1.60x 10 coulomb
k = Boltzmann constant

~23
1.38 x 10 joule/°K



22

absolute temperature (degrees Kelvin)

H
H

I}

€

P Fermi energy

The thermopower can also be written in the form

2. 2
R T el I (1-11)
F F
szsz
= —mg (1-12)

where the dimensionless parameter £ is commonly referred to as
the thermoelectric parameter. The magnitude of ¢ is generally
taken to be of order unity. Values of & from 1.5 to 3 are common,
depending upon the energy dependence of the electron scattering
mechanisms contributing to the resistivity of the material.

We wish to derive an expression which will allow us to estimate
the magnitude of the effect of pressure on the thermopower for simple
metals, and further, to estimate the magnitude of the pressure cor-
rection for the thermal emf of such a metal under idealized high-
temperature, high-pressure conditions. For the pressure derivative

of the thermopower we write

) (1-13)



Since the Fermi energy may be expressed in terms of the

number of free electrons per unit volume we write (6)

s —;—1—;— e /)2
where
N = number of free electrons in volume V
% = Planck's constant/2mw
= 1.054 x 10—34 joule-sec
m = electron rest mass
-9 11 x 10701 kg
thus
8;5 i} _%(23;_)(%21\1)2/3\/,_5/3
. 2F
3V

Using the expression for S in Equation (1-12) we have

2

os _ ntkze, 27F 0V,

op 2 "3 v Nep
3‘e‘eF

which on re-arranging may be written as

2.2
88 _2r k T LAV,

op - 9|e‘eF _Vap
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(1-14)

(1-15)

(1-16)
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where the factor in parentheses is just the isothermal cubic com-

pressibility of the metal

1 8V
B =-T an (1-17)
V op
Finally,
8s _ 2 K’ TE B (1-18)
0
p  9leleg

To obtain an expression for estimating the magnitude of the
pressure correction for the thermal emf we expand the pressurized

thermopower S' in a Taylor series to first order in pressure.

s -5+ (... (1-19)

Thus, the emf measured in a single-wire experiment, Equation (1-1)

yields

2
ESW = S‘ (S'-S)dT
Tl
TZ .
= S‘ (8——)p(T)dT, (1-20)
T 1%
1

where p(T) describes the pressure-temperature profile of the
pressurized wire. This is possible since both p and T can be

expressed parametrically in terms of position. We may in principle
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eliminate the position parameter between P and T, and express
p as a function of T. For an idealized single-wire configuration

with isothermal pressure seals, Equation (1-20) becomes

2.2
Tk EBp 2 g8 (1-21)
9\e|€F 1

where we have assumed the temperature dependence enters only

through the explicit dependence of S on T in this approximation.

Substituting typical values

p = 60 kbar
T, =0°C = 273°K

- 1000°C = 1273°K

=
i

e_. =5 eV
s -3
B = 10 ~ /kbar

£ =3 (for free electrons (6))

in Equations (1-18) and (1-21) we find

S
—; =~ (0,013 pV/°K-kbar
and

E =~ 0.45 mV
SW
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These results compare favorably with experimental single-wire values
for platinum and platinum-10% rhodium (34). Single-wire corrections
for chromel and for alumel are found (34) to be greater by factors of
approximately 4 and 2, respectively.

Tor studies involving composite thermocouples we would
reasonably expect the pressure corrections to be of this order or
smaller since the composite thermocouple correction has been shown
to be essentially equivalent to the difference between the two corres-
ponding single-wire values. Thus, we might physically expect the
pressure correction for Pt10%Rh /Pt thermocouples at 60 kbar and
1000°C to be 0. 5 mv or less, while that for a chromel/alumel
thermocouple in similar conditions might be of the order of 1-2 mv,

corresponding to a temperature correction of 25°C or less.

The Present Study

Previous attempts to determine the pressure correction for the
emf of thermocouples using solid pre ssure-transmitting media and
internal electric furnaces have been limited by a lack of precise
knowledge concerning the true temperature of the pressurized junction.
In each case the true junction temperature has been estimated by
some indirect means. In the present study a method is employed
which requires no such initial estimate of the true temperature. The

unknown temperature is written parametrically as a function of a
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directly measured quantity, the electrical power delivered to the
internal furnace. The emf of the pressurized thermocouple is then
written as a function of the true (as yet unknown) junction temperature
and a set of unknown coefficients. The temperature-ver sus -power
function is then substituted into the pressurized emf-versus-
temperature relationship to obtain an expression which gives the
pressure-corrected thermocouple emf in terms of the furnace power.
The coefficients for both the temperature-versus-power function and
the pressure-corrected emf-versus -temperature function are then
obtained simultaneously by performing a nonlinear least-squares fit
to the directly measured emf-versus-furnace power data. The.tech—
nique, first proposed by Waxman and Hastings (74), has been success-
fully used for determining coefficients in highly nonlinear equations of
state for gases (73,74). The present work represents the first
attempt to apply this approach to actual experimental data for pres-

surized thermocouples.
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EXPERIMENTAL APPARATUS AND TECHNIQUE

The Tetrahedral Press

The ultra-high pressures employed in this study were generated
using a tetrahedral-anvil press designed by Hall (35,38) and con-
structed by McCartney Manufacturing Company, Inc., Baxter Springs.,
Kansas. The press consists essentially of four tungsten carbide
anvils with 1.0-inch triangular faces which are driven together by
four hydraulic rams, each capable of exerting a force of up to 300
tons against the faces of a sample holder having the form of a regular
tetrahedron (Figures 6 and 7). The anvils are electrically insulated
from each other and from the main frame of the press, thus allowing
electrical power and signals to be transmitted to and from the pres-
surized region through the anvils themselves. Each anvil is edquipped
with channels through which a fluid may be circulated to heat or cool
the anvil. In the present study cold water was circulated through
these channels to maintain the temperature in the pressure seal region
at approximately 10°C. The cil pressure in the hydraulic rams is
measured by means of a 0-12, 000 psi Heise gauge of the Bourdon tube
type. A common hydraulic system together with a series of sliding
anvil guide rods ensure that all four anvils move simultanecusly in
proper alignment with each other toward a common center. Three

1/2 -inch thick Plexiglas safety shields surround the pressurized



The 300-ton tetrahedral-anvil press.

Figure 6.



re seal.

Figure 7. Detail view of pyrophyllite pressu
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region to protect the operator from flying debris in the event of

sudden failure of the pressure seal,

The High Pressure Cell

The tetrahedral high-pressure sample holders, or cells',
were cut from 1" x 1" x 12" bars of pyrophyllite supplied by the
American Lava Company, Chatanooga, Tennessee. Pyrophyllite, a
soft, gray mineral resembling talc. is the most widely used solid
pressure -transmitting medium. The blank tetrahedra were cut with
2 1.25-inch (3.175 cm) edge length for use with the 1. 0-inch anvils.
When these oversized tetrahedra are placed under pressure; the
excess pyrophyllite is extruded between the anvils to form the high-
pressure seal, or ''gasket'. The 25% oversize factor has been found
to provide the most efficient transmission of anvil pressure to the
interior of the pyrophyllite cell (1,57). The blank tetrahedra were
machined as shown in Figure 8 to accommodate an internal graphite
furnace and the thermocouple assembly. The internal furnace was
made of spectroscopic graphite rod (37), 0. 180 inch in diameter.
Before being inserted in the tetrahedra, the graphite rod was coated
with a thin layer (approximately 0.005 inch) of a 1:1 mixture (by
volume) of finely divided boron nitride and Duco cement. The mixture
was diluted with acetone until it had a watery consistency. The

graphite rod was then dipped briefly in the dilute mixture to apply a
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fairly uniform coating of the boron nitride. Early high-temperature,
high-pressure cells were found to suffer from intrusions of apparently
moliten pyrophyllite in the graphite furnace region, which often
increased the furnace resistance enough that furnace temperatures
were limited to less than 200°C. The boron nitride seems to effec-
tively prevent the formation of these intrusions. The furnace was
inserted into the pyrophyllite tetrahedron, trimmed to proper length
and drilled for the insertion of the thermocouple assembly. The
interior detail of the assembled high-temperature, high-pressure cell
is shown in Figure 9. The chromel/alumel thermocouples were pre -
pared by spot-welding the two #36 AWG wires together and inserting
the resulting junction in standard two-hole mullite ceramic thermo -
couple insulator (0.160 cm O.D.) prepared as shown in Figure 10.
Both the thermocouple wires and the ceramic insulator were supplied
by Omega Engineering, Inc.. Stamford, Connecticutt. Kern Ceram
Cement, an inorganic two-component refractory cement from Elec-
tronic Space Products, Inc., Los Angeles, California, was used in
the preparation of the thermocouple as sembly. With the thermocouple
inserted, two wafers of pyrophyllite were cemented on either side of
the mullite insulator where the insulator emerged from the tetra-
hedron. This produced a pre-formed gasket which minimized the
pinching-off of thermocouple wires during the extrusion of the

pyrophyllite pressure seal. A copper strip was placed across each
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end of the graphite furnace and topped with a pyrophyllite prism on
each end. The copper furnace contacts were connected to a 6 VDC,
500 ampere power supply through the opposing pairs of anvils (Figure
9). An exploded view of the complete cell is shown in Figure 11. An

example of a typical pyrophyllite gasket is shown in Figure 12.

Thermocouple Circuitry

The instrumentation and circuitry used in making the thermo-
couple readings is shown in Figure 13. The four thermocouple leads
emerging from the tetrahedral pressure cell could be connected in
four possible pairings. This minimized the risk of total failure
should one, or even two, of the thermocouple wires be sheared in the
process of gasket formation. The thermocouple extension leads which
connected the pressurized thermocouple with the ice point reference
junctions were of the same chromel/alumel material. All other
circuitry, including the switches, were of copper. The ice point
bath was surrounded by a Bayley Model 118 constant temperature bath
kept at 1. 0°C. The distilled water -and-ice mixture was constantly
agitated by bubbling pre-chilled air up from the bottom of the bath.

Measurements of the furnace voltage were made with #30 AWG
copper wires soldered directly to the copper furnace contacts, while
measurements of furnace current were made by measuring the

voltage drop across a standard high-current resistance (0.0002 chm)



Figure 11.

The tetrahedral pressure cell.

Exploded view.
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Figure 12.

Tetrahedral cell, before and after pressure run.
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in series with the poewer supply.

Collection of Data

The steps involved in a typical experimental run were as follows:

1.

The assembled tetrahedral cell was coated with a mixture of
jeweler's rouge in methanol to increase friction between
tetrahedron and anvils, thus minimizing amount of pyro-
phyllite extruded during gasket formation.

Tetrahedral cell was dryed at approximately 70°C-80°C for
24 hours prior to run.

Tetrahedral cell was connected (soldered) to extension leads.
Anvils were advanced to make contact with cell.

Coolant (water) was allowed to flow through anvils until
system came to thermal equilibrium.

Thermocouple emf with power off was recorded.

Pressure increased slowly to form gasket, then increased to
desired working pressure.

Thermocouple emf with power off was again recorded and
compared with low pressure reading. (In all cases the dif-
ference was no more than a few microvolts, quite small for
this thermocouple.)

The furnace power was increased; the system allowed to

attain thermal equilibrium (as indicated by the stabilizing of
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the emf of the pressurized thermocouple), usually requiring

about 2-3 minutes.

10. Readings were then taken in the following crder:

a.

b.

g-

h.

furnace voltage (five readings)

furnace current (five readings)

. thermocouple emf (five readings for each pair of thermo -

couple leads still intact)

- furnace voltage (five readings)

- furnace current (five readings)

thermocouple emf (five readings for each pair)
furnace voltage (five readings)

furnace current (five readings)

(Average values were used in the final computations. )

l1l. The run was terminated when the chromel/alumel thermo -

couple began to drift (usually at temperatures over 800°C).

Pressure Calibration

The pressure in solid -media high-pressure systems is generally

determined by calibrating the hydraulic oil pressure gauge using well-

established phase transformation in certain materials. Intermediate

values of pressure are then obtained by interpolation. For the present

study the tetrahedral press was calibrated using three well -

established room-temperature transitions: bismuth I — II at 25. 5 kbar
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(13,18,29,43,50,51, 72); thallium II —~1III at 36. 7 kbar (13,17, 20,29,
50,51, 72); and barium I —1I at 55. 0 kbar (19,20,29,42,47,54,72,76).
The lack of hydrostatic conditions within the solid pressure-
transmitting medium requires that the calibration be carried out using
an internal cell configuration which conforms as closely as possible
to that used in the actual thermocouple cell. The calibration cell used
is shown in Figure 14. The calibration assembly is simply inserted
in place of the usual thermocouple, the remainder of the tetrahedral
cell being unchanged. The electrical resistance of the calibrant
shorting link is recorded (Figure 15) as a function of hydraulic oil
pressure as the pressure is gradually increased. The results are
plotted (Figures 16, 17 and 18), the onset of the phase transition being
taken as the calibration point in solid-media systems (28, 77). We
obtain hydraulic oil pressures of 4100 psi, 6300 psi and 10,500 psi
for the transitions in Bi, T1 and Ba respectively. (Though our cali-
brants are of high purity; 99.9999%, 99,999% and 99. 5%, respectively,
the purity of the material is fortunately not extremely critical to reli-
able calibration (77).) Fitting the three calibration points with a
quadratic function we obtain the pressure calibration curve of Figure
19. The hydraulic oil pressures of 4000, 6000, 8000, 10,000 and
12,000 psi correspond to cell pressure of 25.0, 35.2, 44.6, 53.0

and 60. 6 kbar, respectively.
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COMPUTATIONS

As mentioned earlier in thivs work, the principal advantage to
be gained from this method is a determination of the effect of pres-
sure on the thermal emf of the chromel/alumel thermocouple without
actually having to measure the pressurized junction temperature
directly. The unknown junction temperature is written parametrically
as a function of the electrical power delivered to the pressurized
furnace. In our case we have used a quadratic function for the
temperature-versus-power function since this is the simplest function
which gives an acceptable fit to the uncorrected temperature-versus -
furnace power data, as will be seen in the chapter dealing with the
results of this work. The pressurized emf is then expressed as a
function of the (as yet unknown) junction temperature, the form of
this function being determined by the thermocouple emf-versus-
temperature data at atmospheric pressure. In the case of the
chromel /alumel thermocouple, emf values for 66 equally-spaced
temperatures between 0-900°C were taken from standard thermo-

couple reference tables (71) and fit with power series of the form

using linear least-squares methods. The maximum deviation of the
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fitting function dropped by a factor of 3 to less than 10 pV (corres-
ponding to a temperature error of less than one -fourth of a degree
Celsius) on passing from k =7 to k = 8. Thus, the eighth-degree
pcwer series was chosen for the form of our pressurized emf-versus-

temperature function. Then, substituting

2
T Z a_wo (°C) (3-1)
. m
m=0
into
8
n
E = Z ch (mV) (3-2)
n=1

where w = furnace power in watts, we eliminate the unknown tem-

perature T, and obtain

8 2
E:Zc Za w (3-3)
n m

expressing the pressurized emf E as a function of the furnace
power, w, both of which are directly measured quantities. The
problem is then to solve the nonlinear function in Equation (3-3) for
the unknown coefficients a_ and . which will then provide us
with expressions for the junction temperature and pressurized emf

(Equations (3-1) and (3-2)).
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The iterative method ultimately chosen for the nonlinear least-
squares fit is known as the damped least-squares method (60, 63).
The particular form of the method we have used is an algorithm due to
Marquardt (62), which is globally convergent, that is, if a minimum
exists for the objective function (sum of the squares of the residuals),
Marquardt's algorithm will converge to the minimum no matter what
starting values are given. The method claims to combine the most
attractive features of both Taylor series methods and steepest-decent
methods while avoiding the pitfalls of each. The computer program
which incorporates this algorithm for the specific problem under
study is given in Appendix A. A typical output listing is presented in
Appendix B. The computational procedures are summarized in Figure
20. The starting values for the coefficients a and a were

1 2

determined from a linear least-squares fit of the uncorrected

temperature-versus-furnace power data. The value of a_, which

o
was held constant throughout the nonlinear fit, was determined by
direct measurement of the pressurized thermocouple emf with the
furnace power off, neglecting the pressure correction since a, is
of the order of 10°C. All estimates give pressure corrections of less
than 5 pV at this temperature for the range of pressures treated here;

and 5 BV is approximately the magnitude of the fluctuations in our

emf readings.
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The initial values of the emf-versus-temperature coefficients
are given in Table 1.
Table 1. Coefficients of eighth-degree linear

least-squares fit to NBS chromel/
alumel tables, 0-900°C.

c, = 3.893861 x 107°
c, = 5. 117805 x 107>
cy = -4 755624 x 1077
c, = 2 042506 x 10"
cg = -4. 625686 x 1071%
cy = 5.780822xlo"15
cp = -3 784051 x 10’18
cg = 1.014250 x 10721

The convergence criterion found most satisfactory was to
requir e that all of the coefficients change by less than some small
5

fraction € > 0 at any given iteration. Values of ¢ between 10"

-7
and 10 ' proved generally strict enough to ensure that the sum of

squares also changed by a fractional amount less than ¢.
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RESULTS

General Remarks

A program of nonlinear regression analysis using Marquardt's
algorithm was carried out at each of five pressures: 25.0 kbar,
35,2 kbar, 44.6 kbar, 53.0 kbar and 60.6 kbar (corresponding to
hydraulic oil pressures of 4000, 6000, 8000, 10000 and 12000
pounds/inchz). In each case, as previously mentioned, the initial
values for the coefficients of the temperature-versus-power function

were determined by direct measurement (a,) or by linear least-

0
squares analysis of the uncorrected thermocouple temperature
(measured emf referred to standard thermocouple tables) as a
quadratic function of the measured furnace power. The initial esti-
mates of the coefficients of the pressurized emf-versus-temperature
function were obtained from a linear least-squares eighth-degree
polynomial fit to standard atmospheric pressure thermocouple refer -
ence tables (71) for type K (chromel/alumel) thermocouples between
0°C and 900°C.

A typical graph of uncorrected temperature versus furnace
power is shown in Figure 21. FEach data point shown represents a
mean value of 20 to 40 individual thermocouple readings. The solid

curve represents the linear least-squares fit of a quadratic function

to those points lying below the point of inflection of the experimental
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curve. It is the measured emf-versus-furnace power data corres-
ponding to these points which are subsequently used in the nonlinear
regression.

Empirically it was found that the hypersurface (representing the
sum of the squares of the residuals for the fit of the nonlinear model
to the data) possesses multiple local minima. The Marquardt
algorithm, in common with all other methods currently available,
cannot distinguish between a local minimum and the global or absolute
minimum (3). Thus, if the initial estimates of the coefficients are not
sufficiently close to the ''physically correct'’ final values, the
algorithm may converge to a local minimum that will generally pro-
duce results which are obviously physically unreasonable (52); for
example, temperature corrections of hundreds of degrees at tem-
peratures of only a few hundred degrees Celsius. Predictably this
becomes more of a problem at the higher pressures where the pres-
surized coefficients would logically be expected to differ from the
unpressurized initial values by amounts increasing with increasing
pressure. It was found that convergence to a physically acceptable
minimum was most rapid when the data were equally weighted.
Weighting the data with the reciprocal of the variance of the mean
value for each data point often resulted in extremely slow convergence
to physically unsatisfactory minima, the algorithm seemingly trapped

in a deep valley, slowly changing only one coefficient while the rest of
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the coefficients remained essentially unchanged over many iterations.
This may have been a manifestation of the ''ridge paralysis'' phenome-
non referred to by Zwart (79).

Since we have no means available for including the effect of
multiple minima in our estimate of experimental error, we will
assume that the algorithm has converged to a physically acceptable
solution and base our estimate of the limits of experimental error on
the more tangible aspects of the experimental configuration. The
uncertainties associated with the final values of the pressurized emf -
versus -temperature coefficients are taken to be an indication of the
precision with which the final minimum is defined and contribute very
little to the experimental uncertainty. The uncertainty in the abso-
lute pressure within the pressurized region due to calibration error
may be as great as ten percent at the highest pressures studied here
due principally to hysteresis effects. However, since the thermo-
electric power of the chromel/alumel thermocouple is not strongly
pressure-dependent the net uncertainty introduced in the emf and
temperature corrections by the uncertainty in pressure is probably not
more than five percent. Errors due to uncertainty in determining the
temperature of the pressure seal should be quite small for chromel/
alumel thermocouples since both the magnitude and slope of the emf
pressure corrections are extremely small for temperatures in the

range between 10°C and 15°C (34). The effect of plastic deformation
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of the thermocouple wires should also be quite small since deforma-
tion is chiefly confined to the pressure seal region where the tem-
perature gradient should be very small. Temperature and pressure
gradients within the pressure seal region are extremely difficult to
measure in solid-media systems, but uncertainties of as much as
ten percent are not unreasonable (40). The lack of specific temperature
calibration data at atmospheric pressure for each individual thermo-
couple used requires that we consider the manufacturer's limits of
error, which could introduce an additional uncertainty of the order of
ten percent in the pressure corrections for emf and temperature.
Errors in the measurement of the thermocouple emf are generally
quite small, much less than one percent for the temperature range
studied. Thus, we consider the overall limits of experimental error
for the present work to be of the order of 25% to 30% for the emf

pressure correction and for the corresponding temperature correction.

Effect of Pressure on Thermal Emf

The results of the nonlinear regression are summarized for
each of the five pressures studied in Tables 2-6. The final values of
the fitted coefficients are given for both the temperature-versus-

furnace power function



59

2

T = Z amwm (°C) (4-1)
m=0

and the pressurized emf-versus-temperature function,

8

n N

- z e TV (mV). (4-2)
n:

1

Also given are the initial values of the temperature-versus-power
coefficients, number of data points used in the nonlinear regression,
number of iterations required to meet the convergence criterion,
total running time of central processing unit (CPU) of computer
(Digital Equipment Corporation PDP-15/30) and the maximum and

standard deviations for the fit.

Temperature Corrections

The temperature corrections for the pressurized chromel/
alumel thermocouple are plotted as a function of the true temperature
in Figures 22-26. At 25.0 kbar (Figure 22) present results indicate
temperature corrections which rise initially at temperatures below
400°C in the manner of the early estimates of Hanneman and Strong
(39) but are approximately twice as great as their values at 400°C.

Decreasing above 400°C and becoming negative at approximately
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Table 2. Summary of results at 25.0 kbar.

Pressure = 25.0 kbar

Data points used =31

Iterations required =23

CPU time required = 5 min. 41.5 sec.
Maximum deviation of fit = 0.095 mV
Standard deviation of fit =0.036 mV

Temperature-versus -power function
Initial values (linear least-squares)

a, = 10.6567 (fixed)
a. = 1,305072

! -4
aZ = 8.992534 x 10

Final values (nonlinear regression)

2, = 10.6567 (fixed)
a, = 1.357304(x0.000048)
a, = 8.088715(x0.001323) x 10’4

Pressurized emf-versus-temperature function
Final values (nonlinear regression)

-2
3.836105(x0.000123) x 10

C1 =

c, = 4.835669(x0.000200) x 107>
cg = -4 742510(x0.000030) x 107"
cy = 2. 051190(x0.000004) x 10'9
cg = -4.622069(x0.000006) x 10712
c, = 5.770335(x0.000008) x 10712
c, = -3.799801(x0.000012) x 10718
cg = 1.031922(0.000016) x 10741




Table 3.

Summary of results at 35.2 kbar.

Pressure

Data points used
Iterations required

CPU time required
Maximum deviation of fit
Standard deviation of fit

1

35.2 kbar

= 31

= 35

= 8 min. 23.8 sec.
= -0.080 mV
0.035 mV

I

Temperature-versus-power function
Initial values (linear least-squares)

10.9421 (fixed)
1.298049

8.494781 x 10

4

Final values (nonlinear regression)

1

10. 9421 (fixed)

1.381652(+0,000151)

6.594274(x0.004157) x 10

4

Pressurized emf-versus-temperature function
Final values (nonlinear regression)

3.824104(+0.000405) x 10‘2

1t

. 574962 (%0
.686723(+0
.056860(x0
.624962(£0
. 756365(£0
.813415(+0
. 058906(x0

.000674) x 10~5

.000102) x 107"
.000015) x 10'9

.000021) x 10712

-1
.000029) x 10 °°

.000040) x 10718

.000054) x 10'21

61



Table 4. Summary of results at 44,6 kbar.

Pressure = 46. 6 kbar

Data points used = 44

Iterations required = 55

CPU time required = 16 min. 45.8 sec.
Maximum deviation of fit = 0.067 mV
Standard deviation of fit = 0.029 mV

Temperature -versus -power function
Initial values (linear least-squares)

ay = 10. 6757 (fixed)
a, = 1.309262
a, = 7.708974 x 10‘4

Final values (nonlinear regression)

)
T

10. 6757 (fixed)

0
a, = 1.283038(+0.000412)
a, = 1.008781(x0.001011) x 10‘4

Pressurized emf-versus-temperature function
Final values (nonlinear regression)

¢, = 3.985510(x0.000932) x 107%
c, = 5.864072(x0,001254) x 107>
c, = -6.227969(x0.000154) x 107"
c, = 2.593573(x0.000018) x 1077
cg = 5. 537769(+0.000021) x 10714
cg = 6.461893(x0.000024) x 10715
c, = -3.923298(0.000026) x 10718
cg = 9.692577(0.000295) x 104!




Table 5. Summary of results at 53.0 kbar.

Pressure = 53.0 kbar

Data points used =21

Jterations required =31

CPU time required = 5 min. 51.1 sec.
Maximum deviation of fit = -0.044 mV
Standard deviation of fit = 0.028 mV

Temperature-versus -power function
Initial values (linear least-squares)

a. = 11,1700 (fixed)

0
a, = 1.288227
a, = 7.592047 x 10"4

Final values (nonlinear regression)
a_ = 11,1700 (fixed)
a, = 1.331208(+0.000525)

a. = 6.630124(£0.011824) x 10~

Pressurized emf-versus-temperature function
Final values (nonlinear regression)

c, = 3.880417(x0.001375) x 1072
c, = 4.377894(£0.001826) x 107>
cy = -4.516860(£0.000220) x 107"
c = L. 962530(x0.000026) x 10'9
cp = -4.457024(x0.000029) x 10“12
c, = 5.678940(£0.000033) x 10_18
c, = -3.841081(x0.000036) x 10

cg = 1.068597(x0,000040) x 104!




Table 6. Summary of results at 60.6 kbar.

1

Pressure 60.6 kbar
Data points used =22

Iterations required = 44

CPU time required = 8 min. 29.2 sec.
Maximum deviation of fit = 0.038 mV
Standard deviation of fit =0.026 mV

Temperature-versus -power function
Initial values (linear least-squares)

2, = 11,1748 (fixed)
a, =1.247312

! -4
a, = 7.380479 x 10

Final values (nonlinear regression)

oY
3l

11.1748 (fixed)

0
a, = 1.312159(0.000179)
a, = 8.495842(x0.004359) x 10'4

Pressurized emf-versus-temperature function
Final values (nonlinear regression)

-2
3.869921(x0.000433) x 10

It

1.024677(x0.000017) x 10

C =
1
-5
c, = 4 129931(+0.000609) x 10
ey = ~4,711172(+£0.000077) x 10'7
c, = 2.053068(x0.000009) x 10'9
cg = -4.623358(x0 000011) x 10714
cy = 5.774496(x0. 000013) x 10”15
-1
c. = -3.797166(x0.000015) x 10 8
7
-21
8
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800° C, the curve more closely resembles the results of Getting and
Kennedy (33, 34) at these higher temperatures. Similar results are
seen at 35.2 kbar in Figure 23 with a maximum positive temperature
correction of +10,9°C at 370°C, finally becoming negative at 680°C.
At 44.6 kbar (Figure 24) the temperature correction curve takes a
different form entirely, indicating a negative correction below 160°C,
then rising to what appéars to be inordinately large values at higher
temperatures (+30°C at 800°C), suggesting the likelihood that the
nonlinear algorithm has converged to one of the local minima dis-
cussed previously. At 53.0 kbar the indicated temperature correc-
tion follows the values of Hanneman and Strong (39) very closely at
temperatures below 500°C, reaching a peak of +12.2°C at 430°C,
then dropping rapidly between 500°C and 750°C to follow the estimated
corrections of Getting and Kennedy (34) above 750°C. Finally, at
60.6 kbar the temperature correction rises rapidly above 100°C to
rather large positive values (+44°C at 800°C), two to three times the
magnitude of the Hanneman and Strong results (39). Though it is
tempting to suppose this large positive correction is again due to
convergence to a local minimum, it must be pointed out that recent
Mé8ssbauer effect studies by Stokes (68) suggest a temperature cor-
rection of as much as +25°C at 600°C for this thermocouple at

75 kbar.
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Effect of Pressure on Relative Seebeck, Peltier
and Thomson Coefficients

Although it is not specifically the goal of this study to evaluate
any pressure corrections except those for the thermal emf of the
chromel/alumel thermocouple, the fact that the model used expresses
the thermal emf, E, as an analytic function of the temperature,

T, permits the direct calculation of the effect of pressure on the
relative Seebeck, Peltier and Thomson coefficients, defined as fol-
lows:

1. Relative Seebeck coefficient (thermoelectric power)

oK

.__ab o
S.p © 5T (LV /°K)
where E = thermal emf of thermocouple (a,b)

ab

2. Relative Peltier coefficient

ab ab

3. Relative Thomson coefficient

0S5

(bWV /°K)
ab

The relative Seebeck coefficient is shown in Figure 27 as a

function of true temperature for six different pressures. With the
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exception of the curve for 44.6 kbar, the effect of pressure is to
decrease the relative thermoelectric power at temperatures below
375°C compared to its value at atmospheric pressure. Near 400°C,
three of the five high-pressure curves become greater than the cor-
responding value at atmospheric pressure.

The differences between the pressurized and unpressurized
values of the relative Peltier coefficient and relative Thomson coef-
ficient are shown in Figures 28 and 29, respectively. No attempt is
made to interpret the individual curves. As Bridgman observed (16)
from his study of similar properties under a much more limited
range of temperatures (0-100°C) and pressures (0-12 kbar), the

!

results are ''unexpectedly complicated'.
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SUMMARY AND CONCLUSIONS

An indirect parametric method has been successfully used to
determine the effect of ultra-high pressure on the thermal emf of a
chromel/alumel thermocouple under pressures of 25.0 kbar,

35.2 kbar, 44.6 kbar, 53.0 kbar and 60.6 kbar, and temperatures up
to approximately 900°C. A model is chosen which expresses the
temperature of the pressurized thermocouple junction as a quadratic
function of the electrical power delivered to the pressurized furnace,
while the thermal em£ of the pressurized junction is approximated
using an eighth-degree polynomial power series function of the tem-
perature. Combining the two functions to eliminate the unknown
junction temperatures, the pressurized emf is given as a function of
furnace power, which is nonlinear in its coefficients. Through the
application of an iterative nonlinear least-squares algorithm, the
coefficients are obtained. The nonlinear objective function (repre-
senting the sum of the squares of the residuals for the fit of the
model to the emf-versus-power data) being minimized is found to
possess multiple local minima, thus requiring carefully chosen initial
values for the unknown parameters. The temperature corrections
obtained using this method compare favorably with previous estimates

obtained by other means, especially at the lower pressures studied.



Suggested further study of the method would include:

1, improved instrumentation allowing simultaneous digital
recording of furnace power and thermocouple emf,

2. application of the method to other types of thermocouples, in
particular ones such as Pt10%Rh /Pt for which the emf-
versus-temperature curve can be fitted with a simpler
polynomial power series,

3. modification of the Marquardt algorithm (70) or use of
recently-developed more efficient nonlinear least-squares
algorithms (49), and

4. attempts to systematically identify and compare the solutions
corresponding to the multiple minima of the objective func-

tion (14, 15).
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~
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STERS = 7, 122

IO PESETOM = 7012
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1 74 7>
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Y

)
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AL CLIME, NP 3. O
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RETURM
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CELL MARRRT

10FF = 4

RETURN

FHD
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SUEEOUTTHE PREDGC PORTRAN IV (Pl 157200 S A EICE
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FRGE CLINEG, MHPG, LUH. LODDD
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AN R ]
MENS D0
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I=1. HTERMSD
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-

aOn0

a4 Ly o= 8
IF CRSHY LN D L DR ITER CEQL NTOTY L = 3
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oReNeRwl

AR CERC rrce 2

fnr = ﬂf..." >
ACT = PCHCTD
TRST = ()H..JJ" I<cinl RTINS R D0 iF”J\
IF ¢TUST L LT, FERTOLY JFRZED
AN CC'HT JHLIE )
a0 = CCHIGEE — CHIZAV)/CHTSRY
: = fls (TEST2
FOTEST = 138 #TENT
4ah LT = 11 + NTERMS
IF s, HE 20 0R TTER S0 NTOT> ChRLL FRGE CLINE, MG, LU LTS
CrRLL ERASE

MIXT A5 STATERENTS COMPUTE CFU TINE FER O ITERATIOM AMD
CUMLATIVE CPU TINE.

cpn o= FLOATCIS) + FLOATCIS1O0 10,
467 Il— SEC LT, A ) G9 T0 452
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GOOTO 46
a5s 1F ¢JSid LT, 19) GO 70 483
JEae = JT18 -~ 19
J5 = 33 + 1
G0 TO GEE
4R SEDTOT
ary LF CSECTOT (LT
SECTOT = SECVOT
Jo = JS - E8
aM o= g6+ L
GO TO 478

A+ FLGATCIDEE
xR0 YD -

v STRTEMENTS FPROGUIDE FRINT-QUT CHARD COFY OPTIANSL>
£ ooupimiEyY FOLLOMING EFRCH TTERnT I0n,

CH I I Ao R EETEST
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WETTUCL L a7y I8, B
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IF CVEST L LE YRR nBo T 9 s
pypiyy = YTEST
g = 1
G s T

g
v

(U CERIVERGEMCE CRITERIOH = 7. 12,
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el

4, 1a/7 REOURED CHI-SQWARE = 7 AFELE. 5, 3R,

SEZ D
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MRRFLHCSR ) FARGE 2

DYHES = OIMARD — WITTOHFRD
FOCOIF = 4000 4 DYRfns @ POLRAD
ET = ACITNAD
WEPT = YTt
P2 TTE L BIsE, a7 s DAt
e FORmaT o HRSImue i«
1. BRFE 2,7, 0 s umn 4y
2 7, CURECNT EMF FROasink [ptaTra oy
Ol 1472 74,5
T = 2 g o+ FLOATCLD
ECOECTy = EMF C(CREF, T4, 8, 20 - EMF (AT, K L 8D
L4V CONTINE
PITECL LT, 1480 CEComIIr, 1=1, 5D
14359 FORMATN, F7. 2, 7<mafn, 7, F7. %, 7¢439), 7, F7. 3, 7<Cenid, “,F7. 3,
1 CLEaad, YL F? 3, 2imng Y70
G0 MRITE LN, 4310
484 FORMATO 59, 2CUREENT YALDE GF PRRAMETERSZ, S, "PERCENT CHAMIGE >

¥
S, 2 = 7L,IFES. 1,7 X AT A =7,
B THIS ITERATION = 7, 14,

CTIONS VD REEZD

S R
Prime = BLANE
IF CJICRIT OVER A GO To A2
IF CABSORTY LY. PARTOLY PASS = CONY
O MELITE LU, 33y L, MLy, FPCC, PRSE
7 FORMATCEN, "R, 12, 75 = SLAFRDAS. £, ¥, 757, OFFLO. 3, 707, 3K, ASD
500L3 = L+ 1
LR YTECLLM, 337D
S8 FORMATCS 7D
Ui 4% Ki=1, hC
1.3 = FACKK + HRD
P = FCHKCKEANAD
Foo= (AT - BDIMAACT
PCC = a3 o PO
PHZS = BLAMK
IF <JCRIT . EQ. 1> GO T3 423
1F ¢A2aaFey LT, FRETILY FHS
TECLUN, 928) KE, RS DUV o o Y
FreaT CS, oee, 18, 7y = L, AFDLE B, T
o= KZ + 1
HRTITECLLIN, 491 )
Ay FOEMATCT 72
D 402 J=1, NTCRMS
A9 BCHECTY = A0
IF CITER . EQ HIOTY W07 = NTOT ¢ HTH
CHISAY = THIZOR

TS, BRFLR. 3, 07, 3K, AT

IF CED AN GO T Rl
i CEQD A G T 45

IF CEQ NTERMS) Ol 7O SIod
GG To aus

oty 16 COTEST LT, CHITOLY 60 T

e TEOCITRR LT TR GOT0 17
CRLL CHOLGT 72
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e ReXe)
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S
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56
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Coogs
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QAT R e FHGE 4

MERT 25 STATEMENTS OOWTROL OFTIONS MHEH TTERATION LIMIT
15 RERACHED. N

CrRLL ERAS
WRITECD, D96

FORMOT (A 2S5, “HPATHL . TTERATION HUMBER |
1 “SELECT DESInED & slabets DELONL 7S N SRS S L
2 7 ITERATION TNt O RIS R RN S CE FInAL”,
2 7 FRINI-OUT ULSI CRHT DISFLAY,
4 7 REZTART 0@Tht =
5 S EHTER MEW ROu)

CALL CHIM <JJ>
J] =
GO T0
WeRITECS z

FOspMATo 77 ENTER NEM YALUE Fid LAMEDA CE1D. 337D
205, S0 FLPNGH

e £ 5 AT
ann, S62, S9N JJ

SPRTCELA. 32
GO 7O 422

1S MO = 7, PS4, 75 ENTER HEM ACE) FE 4370

FOfRMET sor MUMBER OF ADDITIONAL ITERATIONS DESIRED (14072
JEEGCE, 525y IT
WHYHI RS T )
1T = ITPAR + BT
i o= -4

E0TO 805

REMPTHDER OF SUSRCUTIHE COMTROLD PRIMT-OUT OF FINAL YALUES

LIME = &1
CALL PRl (LINE, MG, 32 2D
3

1N PRALYSIST A

ST RO SR,

FORMOT O L AT DE MO TS

SEINAL VAL i
PRI TE
= FLORTC

FLOSTTC IS0 20

YOT L iy G0 T b
SECTOAT - £4,

GO T DU5a

KR o= b

L3 = L2

Do yoLL=1, i

[RIDANEE STGMARCLLY STICLL DY * 1K
WREITEOE, 70 L2, HLly, S1GM

FORMATOMS, “RE7, T2, 7> = 7, APDAG 8 305 1PELS. 3, 4 LFELD. 3D
LI o= LT o L
L TECE

o
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Line = LIDE + L
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AT OADERE FRGE D

R oaEd K=, HC
""fnﬂ )H(V‘
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SAG MOPDE I = 1)
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ORI = I
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?"?"1,

Al

MY
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)
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—
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OO0

1G20 CHLL
W&

“1. FHALYSIS OF
EHF AMD TUMF M
ARG TROMZON
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; ur, ur- 1. E‘nIranL MEANT, D,

S FLD S TS T CLIFL
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=
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