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As computational power increases, so does the desire to use fluid-structure 

interaction (FSI) software to design complex systems and components such as fuel plates. 

Presently, an effort is underway to support the design and qualification of a new nuclear 

fuel material which is intended for applications in select, plate-type, research and test 

reactors. Because of the high flow velocities which are experienced within these reactors, 

a safety parameter of interest is the onset of plate deformation and potential of plate-to-

plate collapse. Using FSI software for the entire design process is tempting; however, 

utilizing FSI software for large, complex systems requires large quantities of 

computational resources. Currently, computing FSI solutions using off-the-shelf software 

of components as small as individual fuel plates can take weeks on a desktop computer, 

thus requiring the use of multiple servers or a cluster to enable a pragmatic solving time. 

Since computational resources are valuable, the pertinent question to ask is whether or 

not the resources being used are a necessity. Fluid structure interaction simulations 

provide a wealth of information regarding flow patterns, but many practical engineering 

problems do not require such a detailed solution form. If acceptable solutions could be 

obtained without solving the entire flow field, the required computational resources may 

be reduced by orders of magnitude. The study detailed herein presents an alternative 

approach to solving FSI problems using a one dimensional, semi-analytic model derived 

from first principles. The resulting approach is much less computationally expensive than 



 

the alternative of leveraging off-the-shelf FSI software. The FSI model developed herein 

is specific to solving plate deformations (single plates and arrays of plates). A qualitative 

benchmark of this study’s model is made against an analytic solution ABAQUS. Results 

are then compared against experimental data collected for a single plate acquired by the 

University of Missouri, as well as experimental data collected for an array of six plates 

acquired by at Oregon State University. The outcome of this work has resulted in a new 

modeling approach for FSI problems applied toward flat plate geometry. Results from 

this new model approach (while limited) compare reasonably well to commercially 

available software (ABAQUS) and experimental data over a wide range of flow 

conditions. 
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An Approach to Modeling Fuel Plate Deformations in Fluid-Structure Interactions 

1  INTRODUCTION 

With the advent of the Global Threat Reduction Initiative (GTRI) there has been a 

renewed interest in designing plate-type fuels of new material composition for use in 

select civilian research and test reactors. The GTRI requires all test and research reactors 

to convert from Highly Enriched Uranium (HEU) to Low Enriched Uranium (LEU) fuel. 

For some reactors, such as Training, Research, Isotopes, General Atomic (TRIGA) 

reactors, conversion can be achieved with the addition of more fuel elements. For plate 

type reactors, this is not the case. In order to achieve criticality, let alone a reasonable 

neutron flux, HEU cannot simply be replaced with LEU equivalent fuel. Instead, new 

LEU fuel must be designed. 

 

One of the consequences of using new materials for fuel fabrication is the need for hydro-

mechanical testing and design to support an altered design basis which impacts safety 

related parameters in such reactors. Nuclear fuel plates are very thin (on the order of 1 

mm) with coolant channels being slightly larger. Conducting experiments for the purpose 

of testing fuel plates designed for use in a reactor is a long and costly process; a large 

effort is therefore placed in designing the elements before physical testing takes place in 

order to reduce the amount of testing required. One aspect of fuel element design which 

has proven to be important in maintaining the fuel’s mechanical integrity over the course 

of its in-pile life is placed on coupled fluid-structure interaction (FSI) simulations [1].  

 

Typically, FSI simulations comprise a computational fluid dynamics (CFD) solver 

coupled (either explicitly or implicitly) with a computational structural mechanics solver 

(CSM). Current advances in computational power and discrete numerical methods have 

provided the ability for great insight into FSI of countless components and systems, 

including plate type fuels. Unfortunately, the use of software packages for large or 
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complex geometries is computationally expensive, and in many cases prohibitive based 

on limited availability of such resources. Time-cost considered, many of the computed 

results from these software packages are excessive when the goal of the simulation is to 

determine macro-scale phenomenon such as plate collapse and deflection profiles. The 

objective of the work presented herein is to further simplify the modeling techniques used 

to solve the complex FSI problem down to bulk parameters and achieve an acceptable 

solution expediently. An expedient solution is achieved by leveraging the exact solution 

for heterogeneous plate deflection under uniform loading within the solid domain and 

coupling it to an iteratively computed flow distribution solution derived from first 

principles with appropriately applied correlations within the fluid domain. In this study, a 

step-wise process is detailed in the development, and qualitative benchmark of an FSI 

computational model for plate-type geometry. The solution of deflection for a single plate 

within the solid domain is first compared against the computational results acquired via 

an off-the-shelf finite element analysis (FEA) code ABAQUS. The plate is then coupled 

to the fluid domain, having two flow channels adjacent to it and compared against 

experimental data collected under several boundary conditions. Lastly, the use of the 

qualitatively validated model is expanded to represent an element which is presently 

being tested to support the qualification of a new fuel material – the Generic Test plate 

Assembly (GTPA) (a six plate, seven channel assembly). Results throughout maintain 

agreement with exceptions, explicitly demonstrating the limitations to the model and 

method. 
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 Document Overview 1.1 

This thesis consists of the following outlined content. 

Chapter 1: Introduction – An introduction of the work providing the basis of 

understanding and motivation of the thesis as well as an overview of the later 

chapters. 

 

Chapter 2: Survey of Literature – A survey of available literature pertaining to plate 

deformation under various boundary conditions. The chapter subdivides the 

current literature into three primary categories: fluid dynamics, structural 

mechanics, and fluid-structure interactions. 

 

Chapter 3: Theory and Development – The theory behind plate deformation and fluid 

flow in channels is presented along with the development of the method and 

formulation of equations utilized to complete this work. The theory and 

development section describes the model and how it converges upon a 

solution. 

 

Chapter 4: Model Verification – The model is compared to flow solutions and 

structural solutions. Verification and expected accuracy of the model as well 

as various design challenges which were overcome. 

 

Chapter 5: Results and Discussion – The model is compared to two experimental 

studies, first a single plate model for which deflections were completely 

characterized. The second is a six plate model which has pressure data and 

post testing deflection data. 

 

Chapter 6: Conclusion – The conclusion focuses on the implications of the model as 

well as potential future work associated with the design. 
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2  SURVEY OF LITERATURE 

The literature reviewed herein has been divided into three primary categories based on its 

importance to the development of the model. The first category delves in to the field of 

fluid mechanics. Beyond the basics of the fluid mechanics there are three main 

components important to the development of the model. The effect of high-aspect ratios 

on fluid flow, the friction loss effects as a result of these channels, and the minor loss 

effects associated with the plate entrant and exit boundary conditions are such 

components. For the second section, structural mechanics, it is important to distinguish 

between a wide-beam and real-plate deflections, and the effects of heterogeneous 

compositions. The final category is the literature involved with fluid-structure 

interactions. For the geometry and model, the three types of FSI categories that are 

important are fluid induced plate deflection, plate flutter, and theoretical and numerical 

FSI. While other FSI components such as vortex shedding may play a role in the overall 

deflection, these aspects are not detailed within the framework of the model.  
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Each of the following sections is detailed as: 

1. Fluid Mechanics 

a. High-Aspect Ratio Channels 

b. Minor Loss Effects 

c. Frictional Loss Effects 

2. Structural Mechanics 

a. Wide-Beam Deflection 

b. Real Plate Deflection 

c. Heterogeneous Compositions 

3. Fluid-Structure Interactions 

a. Plate Deflection and Collapse 

b. Plate Flutter 

c. Theoretical and Numerical FSI 

 

In Table 2.1 the three categories and sub-categories have been listed as individual items 

as well as the reference number. Of the sections listed above, an “X” has been placed 

under the categories for which the reference applies. Each section is discussed in further 

detail later. 
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Table 2.1: Reference material 

 Categories as Listed Above 

Reference Number 1.a. 1.b. 1.c. 2a. 2b. 2c. 3a. 3b. 3c. 

[1]       X X  

[2] X  X       

[3]  X     X   

[4]  X X       

[5]  X X       

[6] X X X       

[7] X X X       

[8] X X X       

[9]    X  X X   

[10]    X  X    

[11]       X X  

[12]        X  

[13]        X X 

[14]       X  X 

[15]       X X X 

[16]       X X  

[17]       X  X 

[18]       X X  

[19]       X X  

[20]        X X 

[21]        X  

[22]       X   

[23]       X X  

[24]        X X 

 Fluid Mechanics 2.1 

Most fluid textbooks provide a general background for the fluid mechanics driving the 

pressure differential which creates the load on the plate. These sources provided the basis 

for the fluid mechanics equations used to write the code. White, Nunn, and Panton 

provided basic formulas for the use of minor loss coefficients and friction factors [4-6]. 

As seen in the textbooks previously mentioned, the majority of research which has been 

conducted on fluid mechanics for internal flow has traditionally centered on generic 

geometric forms such as pipes or ducts. The bulk characterization of pressure loss 
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through a piping system (or narrow flow channel) may be divided into minor losses and 

major losses. The calculation of the major and minor loss terms is dependent upon 

geometry. The geometries presented in textbooks tend to have aspect ratios near unity. 

However, the nuclear fuel considered herein uses high-aspect ratio flow channels which 

present a unique challenge. High-aspect ratio channels have limited applications and as 

such these channels are often not discussed in the context of standard fluid mechanics 

text books. While all cited sources provided great insight, none detailed cases where the 

geometry varied significantly from generic pipe flow. An article by Jones, however, 

provided an enhancement to the turbulent friction factor for high-aspect ratio rectangular 

ducts [2]. While Jones’ article presented on the friction factor, there was no correlation 

for form losses of finite plate arrays. To determine the form loss term, two references 

stand out in particular. The first reference is the Applied Fluid Dynamics Handbook 

which provides a wealth of information regarding atypical geometries, friction factors, 

and form losses, including large arrays of plates [7]. The latter was a numerical study 

performed by Roth which utilized the six plate geometry mentioned herein [8]. The study 

provided detailed pressure drop results along the flow path which may be used to 

determine the form loss coefficient associated with the geometry. 

 Structural Mechanics 2.2 

Important considerations must be made for the appropriate handling of the structural 

mechanics under a load. With respect to plate-deformation, many models assume wide-

beam theory to simplify the calculations, resulting in a fourth order polynomial deflection 

profile along a plate’s span-width and no out-of-plane deflection. This, however, does not 

reflect the exact solution for deflection of a plate which may have appreciable 

components of deflection in the out-of-plane direction. While the numerical handling of 

the deflection profile between wide-beams and plates are important, the inclusion of 

appropriate information relating to the composition of the plate is equally important. Two 

models provided insight toward the nature of heterogeneous plate deformation and 

implementation of multiple material properties. An article by Jensen investigated the 



8 

change in Miller’s critical velocity by changing a homogeneous plate into a 

heterogeneous composite [9]. An extension of the aforementioned work was completed 

by Marcum and investigated the effects of adding a heterogeneous region to the plate 

near the supports [10]. 

 Fluid-Structure Interaction 2.3 

Articles based on fluid structure interactions provided the best information on the physics 

involved in the analysis of the parallel plate flow. With respect to this study’s focus 

(plate-type fuel geometry), the most extreme scenario which may result from FSI is that 

of plate collapse (plate-to-plate contact). During plate collapse, two plates separated by a 

single flow channel are drawn together by a pneumatic load. The collapse results in a 

reduction of heat removal capability and an immediate rise in local surface temperature 

may lead to eventual fuel failure. Several studies provided calculations and predictions 

pertaining to plate collapse [3, 9, 12, 14-19, 22]. The genesis of these works can be traced 

back to the theoretical work done by Miller in 1958 [14]. More importantly, Miller 

provided the eponymous critical velocity further detailed in section 3.1. Miller’s critical 

velocity is derived from inviscid flow and stability theory. As a result it is a powerful 

analytical relation for predicting when the deflection in a plate becomes significant. Kane 

further expanded on Miller’s critical velocity by quantifying how deviations in the form 

losses at the inlet would affect deflections in the plate and eventual plate collapse [3]. 

While plate collapse is of interest, plate flutter is also an important phenomenon as it can 

occur as a result of pressure waves in the fluid or as a result of vortex shedding at the 

frequency which aligns with a plate’s natural frequency. While vortex shedding is not 

modeled, pressure waves may occur in the solution developed herein resulting in flutter. 

Flutter won’t be present in this study’s final solution; however, causes of flutter are 

important to understand as they may lead to numerical instabilities in the code. From the 

experimental side, Groninger, Smissaert and Zabriskie observed flutter around twice that 

of Miller’s critical velocity [15, 16, 18, 19, 22]. The flutter observed is reminiscent of the 

observed flow induced flutter observed in free blunt bodies [21, 24]. Flutter and the 
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stability of both single and parallel plate assemblies has been studied in depth [1, 9, 11-

16, 18-20, 22, 23]. Most studies determine a critical velocity at which the deformations 

become very large, or the plate becomes unstable. The synthesis of the work, both 

experimental and theoretical in nature, provides great insight into the deformations and 

instabilities associated with fluid flowing past plates.  
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3  THEORY AND DEVELOPMENT 

 Plate Collapse 3.1 

In 1958, Ronald Miller predicted plate collapse by combining wide-beam and inviscid 

flow theory. Miller’s relationship determined the point at which the dynamic pressure 

forces would supersede those of the plate’s restorative forces [14]. The relationship 

which Miller derived was designed for an array of plates with symmetric channels. 

Although the relation was derived for symmetric channels in an array, further 

modifications can be made to account for a single plate with asymmetric spacing. In the 

case of an array, plates deflect towards or away from each other. The result is a change in 

channel area twice the integral deflection of one plate. With only one plate, the change in 

gap size is exactly the integral deflection of the plate; thus, Miller’s critical velocity for a 

single plate is a factor of √2 greater than Miller’s critical velocity for an array of plates 

[19]. In section 4 the gap thicknesses are not constant as is the case with Miller and 

Zabriskie’s studies [1, 8, 14, 19]. With further analysis, one can derive the change in 

Miller’s velocity due to asymmetry. The change per unit cross-sectional area, given as  

 
 2 4

3

1

60o

p

A

bA

Ea h


 , (1) 

can be determined by: Ao, the flow channel original cross sectional area; ΔA, the change 

in cross sectional area of the flow channel; υ, Poisson’s ratio of the plate; b, the plate 

span-width; p, the mechanical load on the plate; a, the plate thickness, E, Young’s 

modulus of the plate; and h, the channel height. Noting h is not specific for a respective 

flow channel which separates the plate, the relation in (1) is limited to a geometry which 

assumes symmetric channels. Because this study is interested in identifying the influence 

of the hydro-dynamic response of the flow field on a single plate with asymmetric 

channels, it is more appropriate to use the average channel height and flow area,  
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where subscript 1 and 2, represent characteristics of flow channel 1 and channel 2, 

respectively. If the flow channel widths of each channel are equal, then the average 

channel height may be reduced to 

 1 2

2
o

h h
h


 . (3) 

From Bernoulli’s equation, the pressure load on the plate per area change is equivalent to 

the change of the velocity squared,   
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. (4) 

In (4) p is pressure resulting from a change in cross sectional area via a Bernoulli effect, 

vo is the initial flow channel superficial fluid velocity, and ρ is fluid density. As ΔA 

approaches null, the limit of the right hand side of (4) can be solved for pressure (p), 

resulting in 
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As would be expected, replacing rA  with its reciprocal in (5) yields the same solution. 

One can utilize the method developed by Miller to arrive at a generic form of the critical 

flow velocity for a single plate with both edges clamped which is asymmetric between 

two adjacent flow channels, 
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To confirm the relation presented in (6), its form should return to the fundamental form 

derived by Ronald Miller [14] as Ar approaches unity. Through inspection, taking Ar to 

unity produces 
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analogous to the relation developed by Miller [14], and exactly Zabriskie’s relation [19]. 

At the opposite end of the spectrum, forcing Ar to infinity yields 
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where hmin is the channel height of the smaller channel. Thus, there is a limit to the 

maximum Miller’s critical velocity for asymmetric channels. Miller’s velocity can be 

further modified using relationships posed by Kim [12]. The relation accounts for both 

single plates and arrays and shows the expected critical velocity is slightly higher than 

Miller’s critical velocity.   

 

In the case of fuel plates, the critical velocity is altered relative to a homogeneous plate 

due to the presence of the fuel within a cladding. Equation (6) can be better utilized by 

substituting in 

 
 
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flexural rigidity  D EI . In doing so, one can calculate the flexural rigidity for a 

laminate plate and, respectively, the critical flow velocity as outlined by Jensen [9]. More 

in-depth relations and solutions are presented by Guo determining the instability of a 

plate [11] or array of plates [23]. However, Guo’s work assumes a free-free boundary 

condition on the sides of the plates, not the clamped-clamped boundary condition present 

in most nuclear reactor fuel plates. 

 

Currently, the most conservative basic-model approach for the purpose of predicting fuel 

plate deflection is the ‘dynamic pressure model’ [17]. It assumes the pressure disparity 

between two channels is at its most extreme. The dynamic pressure model applies the 

dynamic pressure to determine the deflection of the plate as a uniform wide beam. The 

plate loading of the dynamic pressure model is specifically the dynamic pressure, 

 
21

2
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The dynamic pressure model assumes plate deflection is based on the loss of flow, or 

stagnation of a fluid in a discrete channel adjacent to said plate. It is shown to be accurate 

in a certain range for specific problems. At higher flow rates, the model tends to vastly 

over-predict the deflection seen in the plate [17]. 

 

Alternatively, one could turn to a more computationally expensive and accurate method 

for calculating deflections in the channel through use of a coupled CFD-CSM solver or 

computational FSI program. Computational FSI is commonly utilized within 

organizations possessing vast computational resources and sufficient time to allow a 

solution to result which is valid and independent of spatial and temporal model 

refinement. Unfortunately, computational FSI techniques are often not practical and 

available for many researchers, engineers, and scientists interested in acquiring a 

relatively robust, comprehensive, and accurate solution. An alternate approach to the 

traditionally considered CFD-CSM solvers is to leverage analytical models for fluid flow 

and plate deformation for use in a fully integrated FSI domain. This study achieves the 

aforementioned approach by comprehensively characterizing the fluid-structure 

interaction of an array of flat plates with variable boundary conditions and channel 

geometries. 

 

An important characteristic of plates in axial flow is the onset of flutter, or the general 

dynamic instability associated with the plate above a critical velocity. Flutter is a 

phenomenon observed in plates as well as any non-circular body. Flutter occurs when the 

reduced velocity, 

 *
n

v
v

f a
 , (11) 

is satisfied. From (11) v is the fluid velocity and fn is the plate frequency (of relevance 

when it exceeds 20); however, flutter has been witnessed in reduced velocities as low as 

unity [24]. Plate flutter has recently been study by Eloy [21] which examined plate 

dynamics under a single fixed boundary condition. A solution for parallel plates under a 

single fixed boundary has been proposed by Michelin [13]. Additionally, flutter and 
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deformations involved with nuclear fuel plates has been examined since Miller derived 

the critical velocity [14,15,17-19,21]. While the studies focus on nuclear fuel plates – 

which are composite in nature – the experiments are often conducted using a 

homogeneous plate and the analytic solutions assume a homogeneous composition. 

 Description of Model 3.2 

One objective of the model is to obtain a reasonable solution. In order to determine 

whether or not the solution is reasonable, the solution developed by this study must be 

compared to experimental data. The bulk of the available data for plate deflection and 

flow fields comes from the hydro-mechanical fuel test facility (HMFTF), located at 

Oregon State University (OSU). Several tests were conducted between 2012 and 2014 

using a specialized element called the generic test plate assembly (GTPA).  

 

The GTPA frame is designed for versatility, allowing the channel gaps (flow channels 

adjacent to each plate) to be varied so a range of channel gaps may be evaluated if 

necessary. The GTPA design is modular, so the test plates may be assembled into the 

complete GTPA prior to each test and disassembled at the conclusion of each test. By 

designing the GTPA in such a modular manner, its frame may be used for all of the test 

plate sets, reducing the number of mechanical components requiring fabrication. Support 

combs are inserted between the plates at the inlet and the outlet of the channels. These 

combs limit the plate deflection at the inlet and outlet so that maximum deflection takes 

place in the interior of the experiment assembly (where the fueled region is located on a 

plate) instead of at the inlet and outlet; this allows for a quantitative comparison of the 

various fuel meat types and their relative resistance to hydraulic forces to be made. These 

combs are inserted into each channel at the center of the plate width. The GTPA is 

designed such that comb use is optional. 

 

The GTPA can be seen in Figure 3.1. Figure 3.1 (a) presents the modular GTPA in a 

disassembled configuration; Figure 3.1 (b) shows the GTPA after assembly and placed 
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onto the experimental hardware, prior to being placed within the test section of the 

HMFTF at OSU. One of the central two plates is referred to as the Test plate while all 

other exterior plates are known as the Hydraulic plates. A single Test plate was chosen in 

order to provide asymmetry to the GTPA. This asymmetry is intended to provide more 

repeatable experimental results from trial-to-trial as compared to a symmetric GTPA. 

During all tests performed under this work-scope the Hydraulic plates are comprised of 

Inconel [25]. The Test plate will be one of the following material configurations: 

aluminum 6061-O Temper, aluminum clad DU-Mo monolithic foil, or aluminum clad, 

aluminum-stainless steel dispersion, depending on the test. This design provides for the 

appropriate hydraulic boundary conditions to be set via the hydraulic plates while 

mechanical displacement is achieved via the Test plate. 

 

 

(a) 

 

(b) 

Figure 3.1: GTPA disassembled (a) and assembled (b) 

 

All flow channel thicknesses are equally spaced to a nominal 0.075 inch height with the 

exception of the central channel which is adjustable in thickness to facilitate flow biasing 

and therefore inducing hydraulic loading on the central plates. There are six variably 

designed thicknesses for the central flow channel which are outlined below in Table 3.1. 

The wire separators simulate pinned edge boundaries for the Test plate, all other plates 

will emulate clamped edged boundaries. All test plates are similar in nominal geometry 

(24 inches long, 4 inches wide, and 0.05 inches in thickness). 
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Table 3.1: GTPA Geometric Configuration Summary 

GTPA Geometric Case 

[#] 

Nominal Channel Thickness 

[inches] 

Central Channel Thickness 

[inches] 

1 0.075 0.102 

2 0.075 0.106 

3 0.075 0.118 

4 0.075 0.125 

5 0.075 0.188 

6 0.075 0.225 

 

The plates were made entirely of aluminum for the initial testing and were aluminum for 

the experimental results in section 4.4 . After the first few verification tests it was decided 

to replace five of the outer plates with Inconel shown as green in Figure 3.2 and dark grey 

in Figure 3.3. These plates provided a more rigid boundary condition around the plate 

being tested. By substituting Inconel for aluminum, the deflections observed in the test 

plate were more consistent.  

 

 

Figure 3.2: Top-down view of the GTPA 

 

Hydraulic Plate spacer 
Boundary Plate 

Hydraulic Plate 

Test plate 
Test plate spacer Test plate wire supports 
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Figure 3.2 shows the GTPA as assembled. There are a total of five hydraulic plates which 

are comprised of either Inconel or aluminum. The test plate can either be fueled or 

aluminum and uses and spacer and wire supports to achieve the desired boundary 

conditions. The five hydraulic plates maintain a clamped boundary condition whereas the 

test plate wire supports allow for the test plate to have pinned boundary conditions. 

 

Figure 3.3: GTPA model geometry 

 

Figure 3.3 shows the side view of the GTPA. The test plate is seen in light gray and the 

hydraulic plates are dark grey. The thicker boundary plates are shown as well on the 

outside. During the testing the central channel maintains the largest amount of flow up 

until plate collapse occurs.  
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While the end goal is to develop the model for a six plate system, effort is given herein to 

develop a nomenclature that works for any number of plates. The easiest way of 

achieving the desired outcome is setting the numerical model to solve a single plate in a 

channel. Single-plate geometry allows for an expedient understanding of the model 

process and design. Additionally, the single plate model is less complex to verify and 

thus a pre-requisite for the six plate, or any multi-plate model. In a single plate model, 

only one plate is deflecting and the gap size is only a function of the deflections of the 

single plate. A study conducted by Kennedy provided experimental data to qualitatively 

validate the model for a single plate [1]. A representation of the model domain is shown 

in Figure 3.4. 

 

 



19 

 
Figure 3.4: Model geometry (a) cross section and (b) axial-length cut view 

 

In Figure 3.4, the plate is secured to the wall of the channel along the y-z faces via a 

clamped-clamped (CC) boundary condition; the remaining faces remain free. Water 

flows through the channel in the y-direction. The gap between the x-y faces of the plate 

and the channel are different between the top and bottom, thus resulting in the flow 

disparity and plate deflection.  
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 Wide-Beam Theory 3.3 

It is necessary to begin the method development with the most fundamental form of a 

uniformly distributed load (w) on a beam; given as 

 
4

4

d z
D w

dx
 , (11) 

where D is the flexural rigidity of the beam, z is the deflection and x is the span-wise 

direction. The above equation has a well-known exact solution for beams where both 

edges simply supported (SS), one edge simply supported and the other clamped (CS), or 

both edged clamped (CC) [10]. For this study, the exact solution for the deflection of a 

wide-beam is utilized to solve the solid-domain response to a hydraulic load. 

 Fluid Dynamics 3.4 

For the fluid fields, the pressure loss associated with the flow can be determined from the 

Navier-Stokes equations. The case described herein looks at the Navier-Stokes equation 

in the y-direction for an incompressible fluid with constant properties, 

   2v dp
u v v

t dy
 

 
      

 
.  (12) 

Furthermore, (12) is reduced to a one velocity component for a steady state system, 

 2dv dp
v v

dy dy
 
 

    
 

.  (13) 

Linearization of (13) yields the Darcy-Weisbach Equation, 

 
2

2

v l
p f k

d

  
   

 
, (14) 

where f is the friction factor, l is the length along the flow direction, d is the hydraulic 

diameter, and k is the form loss coefficient. The flow area is formed by a rectangular 

shape; therefore the hydraulic diameter is most appropriately characterized as, 

 
4A

d


 , (15) 

where η is the wetted perimeter. It is assumed the friction factor can be described as 
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under laminar flow conditions and 
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 (17) 

when the flow is turbulent in each respective flow channel [5]. Since the friction factor is 

dependent upon itself, an iterative process must be used. Currently the minor loss term at 

the entrance is described by the equation for a sudden contraction (ksc), 
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0.42 1 n
sck

d

d

 
  

 
, (18) 

where dn is the hydraulic diameter of either channel 1 or 2, and d3 is the hydraulic 

diameter of the inlet region. Equation (18) is valid for a diameter squared ratio of 0.76 

after which, the sudden expansion equation can be used [5]. At the outlet, the fluid 

undergoes a sudden expansion which is described as 
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e

d

d
k

 
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 

. (19) 

From here, the original equation for the flow field can be solved using continuity [5]. 

Non-recoverable losses experienced via channel 1 must be the same as the non-

recoverable losses experienced via channel 2. In other words,  

 
1 2p p   . (20) 

Second, the mass flow rates must be conserved, thus,  

 
1 2 3m m m  . (21) 

Mass flow rate is defined as 

 m Av . (22) 
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 Solving the Structural Domain 3.5 

In the x-direction (refer to Figure 3.4), the deflection profile at any given y location is 

assumed to match the profile of a homogeneous wide beam. For a heterogeneous 

deflection profile solution in the x-direction, a model presented by Marcum et al. was 

leveraged [10]. The model allowed for the utilization of both homogeneous and 

heterogeneous plates for use in the code. 

 

With the initial model, there are no forces propagated in the y-direction. With no 

communication from one plate section to the next, the deflection profile mimics the 

pressure profile. With lack of communication between the cells in the y-direction, the 

simulation loses accuracy under steep pressure gradients and collapses at velocities more 

than 50 percent lower than predicted by experiment. To achieve a more accurate solution, 

two models were proposed so the plate would represent appropriate resistive loading 

along the y-direction. The first of which was a spring model. The spring model assumes 

the force between two different elements can be described by the spring equation, 

 F z  , (23) 

where F is a force applied across a distance Δz, to an object having a spring-constant λ. 

The resulting force is then converted into a pressure load, 

 
z

p
yb





, (24) 

where b is the plate width and y  is the cell size in the y-direction. The constant was 

predicted using the definitions of Young’s modulus and the shear modulus, and 

determined from inspection. The constant was found to be inversely proportional to y  

which played an important role in the implementation of boundary conditions.  

 

The second method was solving the structural equation while forcing a wide beam profile 

in the x-direction and solving for the additional forces using the gradients in the y-

direction. The “additional term model” allows for the beam to propagate forces in the y-
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direction while reducing the numerical solution to a one dimensional problem. The 

equation for plate deflection is defined as, 

 2 2( )Dz w   , (25) 

which bears a resemblance to the wide-beam model from equation (11). Expanding out 

the terms, equation (25) can be written as 

 
4 4 4

4 4 2 2

z z z
D D D w

x y x y

  
  

   
. (26) 

w is the load on the plate, which is the fluid induced pressure load P. If one assumes a 

wide-beam profile in the x-direction, the fourth order term in the x-direction can be 

replaced with a hypothetical load (w’). Solving for the new load, 

 
4 4

4 2 2
'

z z
w P D D

y x y

 
  

  
. (27) 

'w  is then applied to the plate at the given y-location as opposed to P (which would 

produce the base model solution). The corresponding derivatives in equation (27) can be 

solved for numerically. The solution was achieved by using a first order central 

differencing scheme. 

 Solving the Fluid Domain 3.6 

Since the channel is rectangular with a high-aspect ratio, utilizing equation (17) is not 

entirely appropriate. To account for high-aspect ratio channels, a method is proposed in a 

study conducted by Jones. The new Reynolds number is determined as, 

 * * ReRe  ; (27) 

and the corresponding * is a function approximated as, 

 * 2 11
2

3 24

h h

b b


 
   

 
. (28) 

The approximation most resembles the complete equation at high aspect ratios, 

particularly above 5:1 [2]. While equation (28) modified the value for the friction factor, 

the modification played only a small role in the overall deflection. 
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3.6.1  Geometric Losses 

Most form loss coefficients are designed for use in nearly circular ducts; however, the 

problem presented is not circular, but rectangular channels with high aspect ratios. As a 

direct consequence, some of the terms require modification. Both minor loss terms are 

functions of the hydraulic diameter squared. The basis of the proportionality is entirely 

based on convention; however, an alternative approach looked at replacing the diameter 

squared with the area of the channel. The premise for doing so is the area for a high-

aspect ratio channel is proportional to the diameter, not the diameter squared as is the 

case for circular channels. The diameter ratio is then replaced as 

 

2

2

3 3

n nd A

d A
 , 

in equations (18) and (19). The entrance and exit coefficients assume the volume of fluid 

from the entire channel is being contracted to, or expanded from the volume of the plate 

channel. For the given geometry, the flow is split, neither fully contracted nor expanded. 

The fluid area ratio should be determined by the perceived area of the entrant fluid, not 

the ratio of the channels. The new ratio is determined by the amount of mass flow rate 

into the channel. The expected area prior to expansion, 

 
3

3

n nv h
A b

v
  , (29) 

is derived from equations (21) and (22). The original value for the diameter ratio is 

transformed,  
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d A A
 


, 

and replaced in equations (18) and (19). The consequences of changing the minor loss 

coefficient are discussed in section 4.1 . 

3.6.2  Acceleration Effects 

Using Bernoulli’s principle, the change in pressure due to acceleration was also 

considered after the minor loss at the inlet. The pressure change in the channel, 
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shows the velocity (which is linearly proportional to the area) plays a role in plate 

deflection. Biased deflection will tend to become more biased as the inlet velocity 

increases. 

 Domain Coupling 3.7 

Wide-beam theory is, as the name implies, designed for wide-beams. A plate in and of 

itself is not a wide-beam. However, if the plate were under a uniform load, the wide-

beam theory solution would hold for most of the plate.  Instead of being represented as a 

single wide-beam, the plate can be represented as a string of “wide-beams”. Under a 

uniform load the solution wouldn’t change, however, if the load changes along the plate, 

then each “wide-beam” would respond to the load at the given location. The result would 

be a plate deflection profile respondent to a changing load, or more importantly, the flow 

conditions. Each wide-beam equation is required to be solved for the deflection, so the 

plate must be discretized into individual cells. Since the width is clamped, the plate is 

discretized along the y-direction.  

 

The discretization of the plate is not only for use of the wide beam model for a changing 

load, but for the friction factor as well. The friction factor, instead of being one value, can 

be determined as a sum of the friction factors of each given cell; thus, 
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A problem arises because the average velocity is not the same for every cell. To account 

for the change in velocity, the nominal velocity for the gap is used in equation (14). The 

nominal velocity is defined as the channel mass flow rate divided by the density and 

nominal area (height of the channel (h) multiplied by the width (b)), 
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Since all calculations are performed with respect to the nominal velocity, the friction 

factor requires an additional modification to be used in the pressure drop equation based 

on the ratio of the section average velocity to the nominal average velocity. 

 
i,n

,

,

n

n

i n

i n

v h
r

v h


 


  (33) 

where h  is the new height of the channel. Consequently, the pressure drop equation is 

modified and becomes 
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The coupled interaction is the communication between the structural domain and the fluid 

domain. Communication is achieved through an iterative process.  

 Generic Process 3.8 

From beginning to completion, the flow solver first determines the cell geometry. If it is 

the first iteration, the geometry has been defined by the user. The next step is presented 

by solving the equilibrium equations (20), (21), and (34). Once the equations have been 

solved, and the fluid velocities determined, the load created by the fluid can be 

calculated. Additionally, the plate will resist deformations and the “self-load” must be 

calculated afterwards. The combination of these loads determines the deflection of the 

plate. With the plate deflected, the cell geometry can be recalculated and the process 

restarted. A qualitative process can be seen in Figure 3.5. 
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Figure 3.5: Circular flow diagram of the solver 

 

Figure 3.6 shows the entire flow diagram for all process steps of the solver. The loops are 

color coded to the most inner loop. Prior to running, the initial parameters are used to 

determine plate deflection and model geometry. Upon start-up of the code, the channel 

geometry is imported in the form of a .csv file to set a baseline for the initial plate 

geometry and determine deflection. Once the model is defined, the initial mass flow rate 

increment is used. The mass flow rate increment is used in the plate deflection model.  

 

With the mass flow rate defined, the first step of the solver is calculating the plate 

deflections due to the load. For the initial step the load is 0, thus the plates do not deflect. 

The deflections of the plate are then used to calculate the gap geometry (“calculate cell 

geometry” in Figure 3.5) and the plate restorative load. The gap geometry is then fed into 

the flow distribution loop.  

 

Once in the flow distribution loop the mass and momentum equilibrium equations are 

solved to determine the distribution of flow (“solve equilibrium equations” in Figure 3.5). 

The values for the modified Reynolds number are calculated in each channel. From there, 
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the respective friction factor can be calculated. Next, the minor loss terms for the channel 

are calculated. The initial pressure drop for the first channel is then acquired. Once the 

pressure drop in the channel is tabulated, the same pressure drop is used for all other 

channels. Since the given pressure drop is the same for all channels, the velocity of each 

channel be calculated. If the solution were correct on the first iteration, the mass flow 

rates of the sum of all of the channels would be equal to the inlet mass flow rate. The 

reality is the mass flow rates will differ. If the absolute difference between the calculated 

and defined mass flow rates is too large, or rather, out of tolerance, the nominal velocities 

are scaled such that the mass flow rates are equal. Upon rescaling the velocities, the loop 

begins again.  

 

Once the mass flow rate is within tolerance, the loop ends and the fluid load is then 

calculated (“calculate fluid load” in Figure 3.5). The fluid load is then combined with the 

plate restorative forces (“calculate plate restorative forces” in Figure 3.5). The 

combination of forces is then combined into a uniform load. If the change in the load is 

insignificant when compared to the previous generation, the loop outputs the data as a 

.mat file and proceeds to the next incremental mass flow rate. If the load is not within 

tolerance, the plate is then deflected again (“deflect plate” in Figure 3.5) and the process 

starts over. 
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Figure 3.6: Complete flow diagram of the solver 
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4  MODEL VERIFICATION 

 Assessment of Fluid Solver 4.1 

An initial assessment of the solver verified flow rate conservation over each respective 

cell; additionally it confirmed the total pressure drop observed across each flow channel 

summed to an equivalent value. The plate deflection corresponded appropriately to the 

pressure differential applied. For the purpose of verification, a plate with specific aspect 

ratios was chosen. The plate was chosen to have a ratio of 1:100:500 (similar in 

dimensional proportion to results to be further examined herein). Following the initial 

assessment, a test-case was conducted. The desired outcome of the test case demonstrates 

alignment with the model’s ability to predict the equivalent flow velocity Miller’s model 

predicts under respective conditions. Miller’s model assumes there is neither friction nor 

minor losses involved, additionally the change in mass flow rate within each channel is 

null. Consequently, the plate deflects as a single solid body, ultimately reaching a point 

where the forces imposed by the fluid overcome the forces of the plate. The model 

geometry considered for the test case is presented in Table 4.1. 

 

Table 4.1: Verification plate data 

Parameter [Symbol] (unit) Quantity 

Plate length [ l ] (m) 0.5 

Plate width [b] (m) 0.1 

Plate thickness [a] (m) 0.001 

Young’s modulus [E] (GPa) 70 

Poisson’s ratio [υ] (#) 0.33 

Flow channel 1 Height [h1] (m) 0.002 

Flow channel 2 Height [h2] (m) 0.003 

Fluid density [ρ] (kg/m
3
) 997 

Viscosity [μ] (Pa-s) 0.00088871 

Surface roughness [ε] (m) 0.0000015 

Spring constant [ ] (MN/m) 300 

 

Explicitly computing the solution from equation (6) yields a fluid velocity of 7.532 m/s. 

Since the goal is to compare the analytic solution to the developed code, the velocity ratio 
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(vr) is taken to be the ratio of the predicted velocity relative to the velocity predicted by 

Miller’s model. Figure 4.1 presents the trend in deflection and the relative relationship 

between the study’s model and Miller’s relation. At a velocity ratio of unity, the plate 

collapses; confirming the analogous outcome between the outcome predicted by Miller, 

and the outcome predicted by the study’s model after having removed all non-recoverable 

fluid losses. In theory, the relative deflection shown in Figure 4.1 would ideally be null 

below Miller’s velocity and unity above it. The difference in the value on the left side is a 

result of the iterative solver’s tolerance. Had the tolerance been smaller, the final solution 

would have been smaller. However, tolerance was left at a relatively large value to 

demonstrate the robustness of the model and its ability to yield a representative solution 

regardless of the iterative solver’s convergence criterion. 

 

 

Figure 4.1: Model prediction of plate collapse relative to Miller’s model 

 

One of the most sensitive individual parameters within the model is the form loss 

characterization and quantification at the inlet of each flow channel, which ultimately 
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yields the pressure difference between the two adjacent channels; sensitivity of deflection 

to form loss has been analytically shown to hold true by Kane [3]. The form loss 

coefficient values (k), fluid velocities, initial and final pressure differential, and pressure 

drop were recorded for a 4 m/s inlet flow. Results are tabulated in Table 4.2, and the 

spanwise-centerline deflection for each scaling method is plotted along the axial length of 

the plate in Figure 4.2. 

 

Table 4.2: Parameters associated with potential values for k 

Parameter [Symbol] (unit) 2 2

3nD D  

3nA A  

2 2

3nD D  

3nA A  

Channel 1 inlet form loss coefficient [
1,ink ] (#) 0.3616 0.2693 0.05837 0.02869 

Channel 1 outlet form loss coefficient [
1,outk ] (#) 0.7548 0.4153 0.06508 0.01215 

Channel 2 inlet form loss coefficient [
2,ink ] (#) 0.3208 0.2207 0.1652 0.09611 

Channel 2 outlet form loss coefficient [
2,outk ] (#) 0.5678 0.2727 0.1067 0.04094 

Channel 1 superficial velocity [
1v ] (m/s) 4.643 4.602 4.704 4.647 

Channel 2 superficial velocity [
2v ] (m/s) 4.906 4.932 4.864 4.902 

Plate load at inlet [w] (Pa) -5220 -4885 -5708 -5249 

Plate load at outlet [w] (Pa) -4081 -4236 -637.5 -2071 

Total pressure drop across plate [∆p] (Pa) 50290 45510 41720 40300 
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Figure 4.2: Axial deflection profile with varying entrance and exit loss terms 

 

It can be seen from Figure 4.2 application of the area driven form losses as opposed to the 

hydraulic diameter results in a generally smaller deflection. Note, for high-aspect ratios, 

the area is proportional to the hydraulic diameter. Consequently, squaring the difference 

term within the of the minor loss coefficient relation results in a large minor loss ergo, a 

larger deflection difference. Use of the ‘perceived area’ or ‘perceived diameter’ resulted 

in a larger deflection. Using the perceived area or diameter ( ,A D  ) caused the minor 

loss terms to be greatly reduced as would be expected. The unexpected result was an 

increase in plate deflection. As the ratios approach unity, the influence of the minor loss 

terms at the inlet yielded a larger difference. Conversely, the minor loss terms at the 

outlet tended to yield a similar solution. In essence, a larger difference in pressure at the 

leading edge of the plate resulted in a smaller difference in pressure at the outlet. For the 

purposes of the combined fluid-structure solver, the A  scaling as derived in equation 

(29) was utilized. It was chosen because it has been shown, in previously conducted 

studies, to generally function appropriately as the form loss distribution relation 

associated with parallel plate arrays [6]. 
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 Quasi-Verification of Structural Solver 4.2 

Perhaps the boldest assumption in developing the model detailed herein is the plate is 

represented by a wide beam profile across the spanwise direction (perpendicular to the 

flow direction) along the entire length. To support the verification of the model’s 

structural computation and modeling ability, it was compared with ABAQUS models 

under two different loading profiles. First, the pressure as a function of y (prior to the 

addition of the acceleration terms) was approximated for a 6 m/s inlet flow velocity. The 

pressure profile was modeled by a hexatic polynomial to ensure consistency in 

ABAQUS. The hexatic polynomial was also used in developing the deflection profile of 

the code. Second, a uniform pressure distribution was used for further comparison. The 

pressure load profiles used to compare ABAQUS to the code are presented in Figure 4.3. 

 

 

Figure 4.3: Axial pressure profiles utilized for model verification 

4.2.1  Assessment of the Wide Beam Assumption 

Both of the two pressure profiles were applied to ABAQUS and the structural solver 

detailed herein. Additionally, each profile was compared while considering three edge 
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boundary condition combinations. In all cases, the long plate edges (along the axial 

length of the plate) were assumed to be clamped, while the leading and trailing edges 

were varied, with free-free (FF), pinned-pinned (PP), and clamped-clamped (CC) 

boundary conditions. For the two pressure loadings chosen, along with the three applied 

end conditions, the profile shape from ABAQUS was compared to a wide beam profile. 

The average deflection of a wide-beam under a given loading condition can be obtained 

by integrating 
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D
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with respect to z, over the width, and subsequently dividing by the width of the plate. 

Performing said operations results in  
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the average deflection. If the average deflection of the plate is known at any given y 

location, the “wide-beam” profile shape may be determined from the mean deflection of 

the plate. Combining equation (36) with equation (35) achieves the ideal profile shape in 

terms of the actual profile shape’s mean deflection. The relationship between the 

deflection and average deflection, 

  
22

4

30z
z x b x

b
  , (37) 

for a wide beam may be utilized to determine the relative error between the expected 

plate deflection (determined by ABAQUS) and the optimal deflection achieved by the 

code. The deviation from the ideal profile, 

 1
ideal actual

N

i i

i

z z

z
N





 


, (38) 

may be used to compare how well the actual plate profile shape fits the ideal or wide-

beam model utilized in the code. Alternatively, it may be compared as a percentage by 

dividing by the absolute value of the average deflection. The results of the optimal profile 
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comparison may be seen for both pressure profiles and all three end conditions from 

Figure 4.4. 

 

For all cases presented in Figure 4.4, the solution form yielded from the model results in 

a solution nearly analogous to the ABAQUS solution within the middle region of the 

plate, while it diverges from the ABAQUS solution at the leading and trailing edges. 

Deviation near the edges is understood to be a causal effect of the application of wide-

beam-theory within the structural domain of the model. The flexural rigidity of the plate 

is well understood and characterized via the wide-beam relation shown in (35); however, 

when the cross-product stress-tensors, within the plate equation shown in (26), become 

more influential toward the plate’s response to a hydraulic load, the model’s ideal 

solution begins to diverge from the ABAQUS solution. Note, however, the largest 

percent deviation between the model and the ABAQUS solution was found to be 

approximately ten percent with most cases yielding a maximum percent deviation of 

approximately four percent. Within Figure 4.5 three variants of the study’s model are 

presented along with the ABAQUS solution. Figure 4.5 presents plate deflections with 

leading and trailing edges free (a-e), pinned (f-k), and clamped (l-o); given a uniform 

load (a,b,f-h,l,m) and hexatic load(c-e,i-k,n,o); and using ABAQUS (a,c,f,i,l,n), the base 

model (b,d), the spring model (e,g,j), and the additional term model (h,k,m,o) These 

variants are referred to as the ‘base model’ an ‘added term model’ and a ‘spring model’. 

Each model variant has been detailed in section 3.5 . 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 4.4: ABAQUS deviation from the ideal wide-beam profile 

with leading and trailing edges free (a-b), pinned (c-d), and clamped (e-f), given a 

uniform load (a,c,e) and Hexatic load (b,d,f) along the axial plate length 
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Figure 4.5: Plate deflections 
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Figure 4.6 presents the axial deflection profile taken along the spanwise centerline of the 

plate for all applicable models for each of the three edge boundary condition cases. Of the 

three model variants, the ‘spring model’ yielded the most agreeable deflection profile 

relative to ABAQUS, and was therefore selected for further application within the study.  

 

In an attempt to further characterize deviation of the ‘spring model’ relative to the 

ABAQUS solution, a complete contour presentation of the explicit deviation is shown in 

Figure 4.7. Figure 4.7 provides a graphical representation of the relative deviation of the 

solution domain for the ‘spring model’ given a uniform load and Hexatic load, as 

compared to the ABAQUS solution. Note, the largest deviations tend to occur near the 

leading and trailing edges of the plate for all boundary condition sets. The large deviation 

is in agreement with the observations made from the ‘ideal model’ in Figure 4.4. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 4.6: Plate deflection profile 

with leading and trailing edges free (a-b), pinned (c-d), and clamped (e-f), given a 

uniform load (a,c,e) and hexatic load (b,d,f) along the axial plate length with ABAQUS 

results in red, the standard code in blue, and spring model in green (a,b,c,d only) 
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(a) 
  

(b) 

(c) (d) 

(e) (f) 

Figure 4.7: Deflection deviation 

of spring model (a-d) and full term model (e-f) relative to ABAQUS solution with 

leading and trailing edges free (a-b), pinned (c-d), and clamped (e-f), given a uniform 

load (a,c,e) and hexatic load (b,d,f) along the axial plate length 
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In addition to the graphical representation of the deviation for spring model shown in 

Figure 4.7, Table 4.3 provides a summary of the maximum relative deviation between the 

model’s solution for each model and the ABAQUS solution, considering all load types 

and boundary condition sets. Table 4.3 further demonstrates, the spring model, while not 

always yielding the smallest maximum relative deviation to ABAQUS in all cases, in 

general, generates a credible and reproducible solution and is, therefore, recommended 

for application under similar conditions over the alternate forms. 

 

Table 4.3: Maximum deviation of model relative to ABAQUS 

Load Type 
Model deviation 

from ABAQUS 

Leading and trailing edge boundary conditions 

[μm deviation] and (% deviation) 

FF SS CC 

Uniform 

Base Model 
2.1890 

(9.914) 
--- --- 

Spring Model 
2.1890 

(9.914) 

-1.5821 

(-15.24) 
--- 

Added Term 
2.1890 

(9.914) 

-4.9734 

(-33.71) 

-3.6176 

(-24.82) 

Hexatic 

Base Model 
7.3333 

(66.047) 
--- --- 

Spring Model 
2.7579 

(13.771) 

-1.9873 

(-17.934) 
--- 

Added Term 
6.1669 

(55.565) 

-6.296 

(-36.636) 

-4.7717 

(-26.016) 

 Comparison to Single Plate Experimental Data 4.3 

A series of experiments were conducted at the University of Missouri, Columbia 

mapping a single plate’s structural response to a variety of fluid boundary conditions. In 

the experiments, a single aluminum plate was placed in a Plexiglas test section and 

positioned so two flow channels were adjacent to the plate, one of which was larger in 

thickness than its partner. During the conduct of the experimental study, the test plate was 

clamped along its axial length, while two sets of conditions were applied to the leading 

and trailing edge. In one case, the leading and trailing edges were left free, and in the 

second they were pinned using a removable pin at the midpoint designed to replicate the 
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boundary condition of a comb [1]. A summary of the input parameters used to model the 

experiment are presented in Table 4.4. 

 

Table 4.4: Parameters used for analysis of a single plate 

Parameter (Symbol) [units] Value 

Plate length [ l ] (m) 0.6477 

Plate width [b] (m) 0.1102868 

Plate thickness [a] (m) 0.0009652 

Young’s modulus [E] (GPa) 70 

Poisson’s ratio [υ] (#) 0.33 

Flow channel 1 height [h1] (m) 0.002032 

Flow channel 2 height [h2] (m) 0.002540 

Inlet and outlet flow channel height [h3] (m) 0.0056204 

Density [ρ] (kg/m
3
) 997 

Viscosity [μ] (Pa-s) 0.00088871 

Surface roughness [ε] (m) 0.0000015 

Spring constant [ ] (MN/m) 300 

 

A thorough characterization of the experimental configuration was conducted by the 

investigators of the experimental study. While in theory each flow channel would be 

perfectly flat, some variance of the channel spacing occurred in both x and y directions. 

For each respective boundary condition set in the experiment, a computation is conducted 

using the ‘ideal’ flat plate geometry and the measured ‘as-built’ geometry documented by 

the experimental investigators [1]. The comparison was made to determine the influence 

of small deviations in geometry, as well as the model’s ability to capture a more 

representative solution when considering the as-built conditions of the experiment. A 

graphical representation of the ideal geometry and the as-built geometry is shown in 

Figure 4.8. 
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Figure 4.8. Comparison of channels for ideal and as-built geometries 

 

The deflection profile along the axial length of the plate located at the plate’s spanwise 

centerline is presented in Figure 4.9 for each model using the ‘spring model’ and is 

compared against the experimental data. Note, all experimental data presented herein is 

accompanied with error bars representing 95 percent confidence. Figure 4.9 (a) and (b) 

present the deflection profile corresponding to a flow rate of 1 kg/s; Figure 4.9 (c) and (d) 

correspond to a flow rate of approximately 2.25 kg/s; and Figure 4.9 (e) and (f) 

correspond to a flow rate of approximately 3.5 kg/s. The profile shapes compare well 

with the experimental results obtained. The largest discrepancy is observed to occur with 

the free plate at high velocities. There is a striking difference between the ‘ideal’ and ‘as-

built’ results. The absolute difference in channel height is greater in the ideal case, yet the 

deflections remain significantly smaller. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 4.9: Deflection profile comparisons 

for ideal and as-built channel geometries with leading and trailing edges free (a,c,e) and 

pinned (b,d,f), for low (a,b), medium (c,d), and high (e,f) flow rates 
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Despite having the maximum deflection in the opposite direction for the free-free case, 

the plate profiles were remarkably similar with exception of the ends of the plate. The 

biasing in deflection toward the lower flow channel for the ‘as-built’ geometry was seen 

similar to the experiment. The difference between deflection magnitudes of the 

experiment and computational solution became significantly larger at higher flow rates 

for the free-free case. The most likely cause for the inversion and lack of magnitude 

comes from the lack of additional deflection at the end of the plate which was witnessed 

Figure 4.7. At each of the plate ends, the minor loss term is determined; therefore any 

additional deflection results in a significant impact on the overall flow field. Additionally, 

the extra deflection would result in a significantly different acceleration term. If such is 

the case, one would expect the pinned-pinned conditions to be much more representative, 

which is, in fact, seen in Figure 4.9 (b), (d), and (f). 

 

Lastly, a comparison is made between the maximum plate deflection experimentally 

observed and the simulation results for the ideal and as-built conditions for both sets of 

leading and trailing edge boundary conditions. Figure 4.10 and Figure 4.11 summarize 

the comparison. Notice the relatively uniform and predictable trend of the ideal model, 

whereas the as-built model tends to exhibit a number of traits which are seen to be 

present in the experimental data. 



47 

 

 

Figure 4.10: Maximum plate deflection for leading and trailing edges free 

 

Considering the boundary condition where leading and trailing edges are free, a “snap” is 

observed around a flow rate of 3 kg/s for the experiment. The numerical simulation also 

exhibits a “snap-like” effect at the same flow rate. The dynamic response of the ‘snap’ of 

the plate was not instantaneous within the computational model’s solution development 

as it is predicted to be from the experiment pressure data. For the ideal geometry, the 

critical flow rate is 2.86 kg/s, per equation (6), which is approximately the flow rate of 

the plate snap during the experiment. The critical flow value is between the medium and 

high flow rates in Figure 4.9, lending to a further understanding as to why the axial 

profile of the plate within the simulation tended to exhibit a profile which would be 

perceived as a buckled shape. For the ideal results no snap occurred; however, significant 

distortions of the plate began to occur around the critical flow rate as predicted by Miller. 
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Figure 4.11: Maximum plate deflection for leading and trailing edges pinned 

 

Furthermore, from Figure 4.11, one can clearly see alignment of the as-built model’s 

maximum deflection as compared to the experimental results through the entire flow rate 

range. If one were interested in acquiring a relatively comprehensive solution or a plate 

having two edges clamped and two edges pinned, the model presented herein would lend 

a solution both effective in predictive capability and economic. 

 

A final note should be made regarding flutter in the plates. From equation (11), a reduced 

velocity of 20 (the expected value of flutter) corresponds to a flow rate of 4.27 kg/s. 

Above the flutter flow rate, both the free-free and pinned-pinned simulations were 

unstable. Since the simulation was searching for a steady solution, any flutter 

characteristics resulted in the solution not converging. In the case of pinned-pinned plate, 

the solution achieved a convergence slightly higher than the free-free plate. Since the 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 
-1 

-0.8 

-0.6 

-0.4 

-0.2 

0 

0.2 

0.4 

0.6 

0.8 

1 

Mass Flow Rate [kg/s] 

M
a

x
im

u
m

 D
e

fl
e
c
ti
o
n

 [
m

m
] 

  

  
Experiment 
Model (Ideal Geometry) 
Model (As-Built Geometry) 



49 

 

plate was pinned, the boundary conditions at the inlet and exit were forced resulting in a 

postponement of flutter driven by changes in the minor losses. 

 Comparison to Six Plate Experimental Data 4.4 

After a comparison for the two dimensional model, an additional analysis was performed 

using the GTPA geometry. The plate model was designed for use with multiple plates for 

which the GTPA has six. An important feature of the GTPA is the inclusion of a comb 

which pins the plates at the axial ends (shown in Figure 4.12). The comb creates 

additional frictional losses which creates a significant difference in the pressure load 

profile. The combs at the ends effectively reduce then increase the hydraulic diameter of 

the plate and provide additional expansion and contraction terms. As a result, the pressure 

profiles generated off of the hydraulic diameter assumption and the CFD model presented 

by Roth [8] were significantly different.  

 

 

 

(a) 

 

(b) 

Figure 4.12. The comb pulled out (a) and inserted in the GTPA (b)  

 

To achieve a representative solution for comparison with experimental data, the minor 

loss coefficients were calculated from the CFD simulations [8] using equation (34) and 

combined with the aforementioned component of the minor loss term. The properties of 

the plate as well as the coefficients used are listed in Table 4.5. 
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Table 4.5: Parameters used for the GTPA 

Parameter (Symbol) [units] Value 

Plate length [ l ] (m) 0.6096 

Plate width [b] (m) 0.0889 

Plate thickness [a] (m) 0.00127 

Young’s modulus [E] (GPa) 70 

Poisson’s ratio [υ] (#) 0.33 

Flow center channel height [h1] (m) 0.002032 

Flow peripheral channel height [h2] (m) 0.002540 

Inlet and outlet flow channel height [h3] (m) 0.02225 

Density [ρ] (kg/m
3
) 990 

Viscosity [μ] (Pa-s) 0.000553 

Surface roughness [ε] (m) 0.0000015 

Spring constant [ ] (MN/m) 300 

Minor Loss Coefficient [kin], CFD (Inlet) 0.6 

Minor Loss Coefficient [kout],  CFD (Outlet) 1.6 

 

In Table 4.5, two new values for minor loss coefficients are introduced. The values were 

designed to more appropriately reflect the physics of the GTPA. In the case of the two 

plate channel, the minor loss terms are similar, however, in the case of the GTPA it can 

be expected the minor loss terms will be different in the outer channels when compared 

to the central channels, due, in part, to the differences in acceleration of the fluid. The 

outer channels maintain a wall boundary condition while the central channels use fluid 

traveling at approximately a uniform velocity. The CFD model included the pins shown 

in Figure 4.12. The values for the minor loss coefficients were derived from the pressure 

data presented in Roth’s case 1 which had a flow rate of 11 kg/s [8]. Two minor loss term 

cases were considered; one using Equation (29) to determine the pressure drop across the 

test section and another using the minor loss values stated in Table 4.5. It is important to 

look at potential differences in the profile stemming from changes in the minor loss 

coefficient. For the rigid hydraulic plate conditions, the ideal GTPA geometry was used 

to compared the plate deflection profile for the minor loss values listed in Table 4.5 and 

derived from Equation (29). The profiles can be seen in Figure 4.13.  
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Figure 4.13: Mean deflection profile at 12 kg/s comparison with rigid hydraulic plates. 

 

Figure 4.13 shows the comparisons of the average deflection at each y-position using the 

values. While the maximum deflection is comparable, the profiles are slightly different. 

The larger minor loss coefficients derived from the CFD model produce additional 

upward bending of the plate, whereas the equation based value for the minor loss 

coefficient pushes the plate entirely into the channel below. The large loss coefficients 

which could result from the pin, strain gauges, or the pitot tubes could be better 

represented by the CFD derived form loss coefficient.  

 

While the deflection profile provides some insight as to the effect the minor loss term has 

on the plate deflections, it doesn’t directly indicate which minor loss term is better suited 

for use in the computational model. To determine the better minor loss coefficient, the 

pressure drop through the assembly was compared for a rigid geometry identical to CFD 
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model presented by Roth, and a real geometry, or “As-Built” GTPA geometry with 

flexible plates and strain gauges within a channel.  The results of the comparison are 

shown in Table 4.6. 

 

Table 4.6: Pressure Drop Data 

Data Set Total Pressure Drop at (Pa) 

Experimental GTPA ( 8.43 kg/s) 51.71 kPa 

CFD Model (11.2 kg/s) [rigid] 175.8 kPa 

Computational Model (8.43 kg/s) 

{form loss coefficient from Equation (29)} 
50.12 kPa 

Computational Model (8.43 kg/s) 

{form loss coefficient from Table 4.5} 
83.87 kPa 

Computational Model (11.2 kg/s) [rigid] 

{form loss coefficient from Equation (29)} 
128.58 kPa 

Computational Model (11.2 kg/s) [rigid] 

{form loss coefficient from Table 4.5} 
202.7 kPa 

 

Table 4.6 presents the pressure drop across the test section for the two minor loss 

conditions previously stated. Despite being tabulated from the CFD model, the minor loss 

values that were calculated created a larger pressure drop than was seen in the model. The 

larger pressure drop is likely caused by the difference in minor loss terms between the 

outer and central channels. The form loss coefficient was averaged for the central three 

channels as opposed to being directly calculated for every channel. The minor loss term 

is geometry dependent which resulted in a higher pressure drop when a constant form 

loss coefficient was used. Alternatively, the equation derived values for the pressure drop 

resulted in a pressure drop that was nearly 2/3 of the expected value. The best overall 

agreement, however, was between the experimental data and the minor loss terms derived 

from Equation (29). Consequently, the minor loss terms derived from Equation (29) were 

used to determine the deflection profiles in the GTPA experiment. Since one data point is 

hardly sufficient, the complete experimentally measured pressure drop data was 

compared to the model’s pressure drop results in Figure 4.14. 
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Figure 4.14: Pressure drop comparison between model and experiment. 

 

The pressure drop data of the as-built model compares very well between the model and 

the experiment as can be seen in Figure 4.14. The range of the model extends well 

beyond the experiment; however, the results are comparable for the test range. The 

pressure drop across over the model exhibits a near quadratic trend as is seen in 

experiments and expected from the values presented in equation (14).  

 

 Miller’s Critical Velocity and Stability 4.5 

For the GTPA boundary conditions, the value for Miller’s critical velocity is 8.62 m/s 

(~11 kg/s) for the small gap parallel plate region. A significant instability in the ideal 

model occurred at the corresponding flow rate as was witnessed in the one plate study. 
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The primary difference between the single plate and multi-plate models is small increases 

in the mass flow rate requiring large decreases in the relaxation factor to achieve quasi-

stability. The largest flow rate achieved was 12 kg/s. When the as-built model was used, 

the solution maintained stability up to about 15 kg/s. Because the as-built model deviates 

from the ideal situation, there is less room to deviate from an expected profile. As such, 

the as-built model ends up being more robust than the ideal one for the case of six plates. 

Additionally, the lack of stability in the six plate model is more apparent than the two 

plate model because of the number equations involved. 

 Comparison to Experimental Data 4.6 

The experimental data that quantifies the Test Plate’s deformation was obtained through 

the use of a channel gap probe (CGP). The CGP measured the gaps between the plates 

before and after testing. While the plate deflection values can’t be directly obtained 

(except on the hydraulic plates furthest from the center) the gap size before, after, and 

change can be measured. While it is important to note the change is caused by a plastic 

deformation, and the model cannot quantify plasticity, the general profiles may still be 

compared to one another to confirm trends. 

 

A model of the GTPA under the influence of flow can be seen in Figure 4.15. The as-

built GTPA has a few larger differences than the ideal model. The most notable is the 

presence of strain gauges. The strain gauges are integrated into the plate model and 

provide a reduction in the overall gap thickness where they are located. The strain gauges 

are included by reducing the gap size only. They do not increase the stiffness of the plate 

or add additional frictional losses within the model. 
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Figure 4.15: Model geometry and plate deflections 

 

Figure 4.15 shows the deflection locations, relative magnitude of the deflections and 

general geometry of the plates at a flow rate of 12 m/s. The values of deflection can be 

seen to be largest in the central channel and deflect towards the center of the plate. The 

larges deflections are at the front end of the plate and taper off towards the back end. An 

alternate presentation of the deflections experienced by the plate can be seen in Figure 

4.16 and Figure 4.17. 
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Figure 4.16: GTPA measured test plate deflection 

 

Figure 4.16 shows the deflection of the test plate as measured after the test. This is done 

to show the relative magnitudes of the deflections seen in the plate. A profile comparison 

with the model results can be seen in Figure 4.18. 

0

0.5

1 0

0.2

0.4

0.6

0.8

1

-1

-0.5

0

0.5

1

x 10
-4

 

Normalized Length

Normalized Width

 

D
e
fl
e
c
ti
o
n
 [

m
]

-8

-6

-4

-2

0

2

4

6

8

x 10
-5



57 

 

 

Figure 4.17 GTPA deflection from as-built computer model at 8.43 kg/s 

 

Figure 4.17 shows the deflection profile of the test plate obtained from the as-built 

computer model. The deflection shows the test plate deflection largely toward the center 

channel with the largest deflections occurring about three quarters from the inlet. 

0

0.5

1 0

0.2

0.4

0.6

0.8

1

-1

-0.8

-0.6

-0.4

-0.2

0

x 10
-3

 

Normalized Length

Normalized Width

 

D
e
fl
e
c
ti
o
n
 [

m
]

-8

-7

-6

-5

-4

-3

-2

-1

0
x 10

-4



58 

 

 

Figure 4.18: Test plate axial deflection profile 
 

 

Figure 4.18 shows the normalized deflection of the as-built model test plate profile at 

8.43 kg/s compared alongside the experimental results. The plate and model profile share 

the same general trends. The biggest difference is seen in at the back end of the plate. The 

difference in form loss coefficients as witnessed in Figure 4.13 may be seen as an 

explanation for the difference. The data being presented is post test data. As a result all 

deflections are caused by plastic deformations. Since the model doesn’t include plastic 

deformations, the unloaded plate may look very different than the one experiencing a 

fluid load. 
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 Hastalloy vs. Aluminum Boundary Conditions 4.7 

Due to the desire to create more stringent boundary conditions, the typically flexible 

aluminum side plates were replaced with a more rigid Inconel boundary condition. For 

the following cases, the effect of the Inconel boundary is modeled by forcing all 

deflections in the plate to null. While this is not realistic, a null net deflection is very 

reasonable; especially considering the flexural rigidity of the Inconel is an order of 

magnitude greater than aluminum. Changing the boundary conditions of the GTPA is 

likely to affect the deflection profile and magnitude of the test plate. The nature of this 

impact is seen in Figure 4.19.  

Figure 4.19: Comparison of test plate response with different hydraulic plates. 

 

Figure 4.19 compares the maximum span-wise averaged deflection between an aluminum 

hydraulic plate condition and a Hastalloy plate condition. The rigid hydraulic plate 

condition sets up a limit for how much of an impact the Inconel plates could have. While 
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the change is relatively small at low flow rates, the results begin to diverge at higher flow 

rates, a consequence of the fixed boundaries being unable to deflect. While flow is 

diverted to other channels, the overall pressure difference causes the fuel plate to deflect 

more when the boundaries are fixed as opposed to deformable. What is interesting to note 

is the maximum deflection begins to converge again above Miller’s critical velocity. The 

test plate deflects more under the rigid test plates because the hydraulic plates cannot 

deflect. Near and above Miller’s velocity, the hydraulic plate deflections become a 

hindrance to the test plate deflection and result in an increased maximum deflection. 

 Heterogeneous Plate in the GTPA 4.8 

While the parallel plate model provided works well for the aluminum model, it is of 

importance to compare the deflections witnessed in the homogeneous model to those of a 

heterogeneous model. The heterogeneous model plated model provided by Marcum et. al. 

[10] was used investigate the difference between a heterogeneous plate and a 

homogeneous plate. For the heterogeneous plate, the fuel material properties must be 

defined as well. These values are listed in Table 4.7 below. 

 

Table 4.7: Additional parameters for the heterogeneous plate 

Parameter (Symbol) [units] Value 

Plate thickness [a] (m) 0.00127 

Young’s modulus clad [Ec] (GPa) 70 

Young’s modulus fuel [Ef] (GPa) 87.27 

Poisson’s ratio clad [υc] (#) 0.33 

Poisson’s ratio fuel [υf] (#) 0.324 

Clad thickness [a1, a3] (m) 0.0004445 

Fuel thickness [a2] (m) 0.000381 

Spring constant [ ] (MN/m) 300 

 

For all cases, the aluminum and fuel plate deflected less than 0.1% for every flow rate. 

The reason for the small change in the overall deflection is the slight difference between 

the flexural rigidity of the fuel plate and the aluminum plate. The fuel plate and the 
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aluminum plate in the center deflected less than in the entire array of aluminum. The 

stabilizing effect or the fuel plate can be seen in Figure 4.20. 

 

 

Figure 4.20: Comparison of homogeneous and heterogeneous models. 
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5  CONCLUSION 

A new method for computing a plate’s dynamic response to fluid in axial flow conditions 

has been detailed and presented herein. The method is compared against an analytic 

solution, a numerical model (ABAQUS), and experimental results. While the solutions 

yielded from the study do not produce a ‘perfectly aligned’ set of results as compared to 

the experimental and computational counterparts, the model does, in fact, produce 

representative solution forms which are founded on the transparency of the method. 

 

Furthermore, the model provides a solution in the structural domain comparable to the 

solutions derived with ABAQUS. The largest discrepancy between the two models is at 

the entrance and exit of the plate. Despite the discrepancy, the deflection model still 

provides an accurate representation of the plate deflection. The greatest advantage of the 

study’s model is its ability to achieve a solution within minutes utilizing much less 

processing power then an identical simulation using coupled CFD and FEM models 

which could take days. 

 

The model also provides a solution for a parallel array of plates. The solution is achieved 

in a comparable amount of time as the single plate model, and given the resources 

required to run a large FSI simulation, the benefit is significant. The solution compares 

well with the post data for pressure drop, however, the change in gap height is very 

different. While the reason for this has been discussed, it is important to note that better 

data may provide better means of characterizing the overall deflections.  

 

Additionally, use of the model has shown that the change in plate geometry from 

homogeneous to heterogeneous has played only a small roll on the overall deformation of 

the plate as the change in deflections between the aluminum and fuel plate were less than 

0.1% at the highest achieved flow rate. 
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Lastly, a relation which credibly correlates appropriate minor losses at the inlet and exit 

of the flow channels would yield a more accurate solution, especially in the cases of as-

built geometry where 'snap-through' and other leading-edge effects are prominent. The 

consequence of this can be seen in the case of the GTPA where the addition of a 

representative comb changed the plate profile significantly. 
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7  NOMENCLATURE 

 Acronyms 7.1 

ATR Advanced Test Reactor 

CFD Computational Fluid Dynamics 

CSM Computational Structural Mechanics 

FSI  Fluid-Structure Interaction 

GTPA Generic Test plate Assembly 

GTRI Global Threat Reduction Initiative 

INL Idaho National Lab 

 Variable 7.2 

A Cross sectional area (m
2
) 

a Plate thickness (m) 

b Flow channel and plate width (m) 

D Flexural rigidity 

∆ Differential value 

ε Surface roughness (m) 

E Young’s modulus (GPa) 

F Force, (N) 

f Friction Factor 

   Gradient 

h Flow channel height (m) 

I Area moment of inertia 

k Form loss coefficient 
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l  Plate length (m) 

λ Spring constant (N/m) 

m   Mass flow rate [kg/s] 

μ Fluid viscosity (Pa-s) 

υ Poisson’s ratio (#) 

*  Equation (28) 

ρ Fluid density (kg/m
3
) 

r Equation (33) 

Re Reynolds number 

v Velocity (m/s) 

v* Reduced Velocity 

w Plate Load (Pa) 

x,y,z Coordinate directions 

 

 Subscript 7.3 

1 Flow channel 1 

2 Flow channel 2 

3 Inlet and outlet flow channel 

c Critical value 

i cell  

n Number of cells 

r Ratio value 
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8  APPENDIX A: MATLAB CODE 

% Multiplate Flow Solver 
% TKH 2/3/2015 

  
%Here's some "ASCII" Pictures of the Plate Nomenclature 
%/|                                                                     |\ 
%/|                                                                     |\ 
%/|XXXXXXXXXXXXXXXX|XXXXXXXXXXXXXRegion 2cXXXXXXXXXXXXX|XXXXXXXXXXXXXXXX|\ 
%/|XXXXRegion 1XXXX|OOOOOOOOOOOOORegion 2bOOOOOOOOOOOOO|XXXXRegion 3XXXX|\ 
%/|XXXXXXXXXXXXXXXX|XXXXXXXXXXXXXRegion 2aXXXXXXXXXXXXX|XXXXXXXXXXXXXXXX|\ 
%/|                                                                     |\ 
%/|                                                                     |\ 
%      z 
%      | 
%      | 
%      | 
%      /----------x 
%     / 
%    / 
%   y 
% Anticipated flow direction in y. 

  

  

  
%/////////////////////////////////////////////////////////////////////// 
%________________________________________________________________________ 
% 
% Gap 1 
% FLOW 
%------> XXXXXXXXXXXXXXXXXXXXXXXXPlateXXXXXXXXXXXXXXXXXXXXXXXXX     Gap 3 
% 
% Gap 2 
%________________________________________________________________________ 
%//////////////////////////////////////////////////////////////////////// 
% 
%      z 
%      | 
%      | 
%      | 
%      /----------y 
%     / 
%    / 
%   x 

  
%1 Preliminary Values______________________________________________________ 

  

  
%1.1 Initialization Parameters---------------------------------------------- 

  
clc %clears the screen 
clear all %clears all variables 
close all %closes the plots 

  
% 1.2 User Input Variables------------------------------------------------- 
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% 1.2.1 Numerical and Discretizaition Parameters............................ 
y_num = 64; %Number of cells in the Y direction, must be even 
x_num = 65; %Number of cells in the X direction, should be odd 
tolerance_f = 0.000000001; %friction factor tolerance (plate deflection loop) 
tolerance_P = 1; %Pressure Tolerance (main loop) 
tolerance_v = 0.000000001; %velocity tolerance (flow solver loop) 

  
% 1.2.2 Geometric Variables................................................ 

  
length = 0.6096; %[m] %length of the plate 
width = 0.0889; %[m] %width of the plate 
a = 0.00127; %[m] %Plate thickness 
ref_h = 0.001905; %[m] %Reference Gap Size (should be close to average) 
ref_A = ref_h*width; %[m^2] %Reference Gap Area 
ref_P = 2*(width+ref_h); %[m] %Reference Gap Perimeter 
ref_D = 4*ref_A/ref_P; %[m] %Reference Gap Diameter 
%inlet_h = 0.022225; %[m] %Inlet Channel Height 
%inlet_A = inlet_h*width; %[m^2] %Inlet Area 
%inlet_P = 2*(inlet_h+width); %[m] %Inlet Perimeter 
%inlet_D = 4*inlet_A/inlet_P; %[m] %Inlet Hydraulic Diameter 
Channel_Data = csvread('channels_GTPA.csv'); %Channel Gap Probe Data 
x_1 = 0.00635; %[m] %End of Region 1 
x_2 = 0.09525; %[m] %End of Region 2(a,b,c) 
x_3 = width; %End of Region 3, or the width of the plate 

  

  
% 1.2.3 Flow/Fluid Properties.............................................. 

  
P_o = 0; %Inlet Total_Pressure 
rho = 990; %[kg/m^3] %fluid density 
mu = 0.000553; %[Pa-s] %fluid dynamic viscosity 
epsilon = 0.0000015; %[m/m] %pipe roughness 
inlet_m = 6; %[kg/s] %inlet mass flow rate 

  
% Plate Properties......................................................... 

  
%Set-up Parameters for Homogeneous Region 1 
E = 70000000000; %[Pa] Young's Modulus 
nu = 0.33; %[n/a] Poissons Ratio 
G = E/(2*(1+nu)); %[Pa] Shear Modulus 
flex = E*(a^3)/((12)*(1-(nu^2))); %Flexural Rigidity 

  
% 1.3 Dependent Variables-------------------------------------------------- 

  
% 1.3.1 Calculated Parameters.............................................. 
channel_num = numel(Channel_Data(1,:))-1; %[#] %Number of Channels 
plate_num = channel_num-1; %[#] %Number of Plates 

  
%Position Related Parameters 
dy = length/y_num; %[m] %descritization length 
dx = width/x_num; %[m] %descritization width 
Y_Vector = (1:y_num)*dy-dy/2; %[m] %y vector of cell centers 
Y_Vector_2(1:y_num+1) = ((1:y_num+1)-1)*dy; %[m] %y vector of cell edges 
Y_Vector_3(1)=0; %[m] %y vector first point used for plotting pressure 
Y_Vector_3(2:y_num+2) = ((1:y_num+1)-1)*dy; %[m] %ditto, for middle points 
Y_Vector_3(y_num+3) = length; %[m] %ditto last point 
X_Vector = ((1:x_num)*dx-dx/2)'; %[m] %x vector of cell centers 
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lambda = 300000000*0.0101203125^2/dy^2; 

  
%Pre-allocation 
Gap = zeros(y_num,channel_num); 
Total_Pressure_Check = P_o*ones(y_num,channel_num); 
Plate = zeros(y_num,plate_num); 
Fluid_Load = Plate; 
Plate_Load = Fluid_Load; 
Self_Load = Plate_Load; 
V_nom = ones(1,channel_num)*inlet_m/channel_num/rho/width/ref_h; 
K_in = 0.5*ones(1,channel_num); 
K_out = ones(1,channel_num); 
F = 0.03*ones(y_num,channel_num); 
Pi_f = ones(1,channel_num); 
Profile = zeros(y_num,1); 
Profile_Base = Profile; 
for n = 1:channel_num 
    Gap_Base(:,n) = 

interp1(Channel_Data(:,1),Channel_Data(:,n+1),Y_Vector,'spline','extrap'); 
    Gap_Edge_Base(:,n) = 

interp1(Channel_Data(:,1),Channel_Data(:,n+1),Y_Vector_2,'spline','extrap'); 
end 
for n = 2:channel_num+1 
    Profile_Base(:,n) = Gap_Base(:,n-1)+Profile_Base(:,n-1); 
end 
Gap_Edge = Gap_Edge_Base; 
inlet_h = sum(Gap_Edge(1,:))+plate_num*a; 
outlet_h = sum(Gap_Edge(y_num,:))+plate_num*a; 
alpha = 0.1; 
for inlet_m = 12 

  
    residual_P = 100; 
    while residual_P > tolerance_P 
        Deflection = Plate_Load/(720*flex)*width^4;         
        for n = 2:y_num-1 
            Delta_z(n,:) = Deflection(n-1,:)-

2*Deflection(n,:)+Deflection(n+1,:); 
        end 
        Delta_z(1,:) = 0-5*Deflection(1,:)+Deflection(2,:); 
        Delta_z(y_num,:) = Deflection(y_num-1,:)-5*Deflection(y_num,:)+0; 
        Self_Load = lambda*Delta_z; 
        Gap(:,1) = Gap_Base(:,1)+Deflection(:,1); 
        Gap(:,channel_num) = Gap_Base(:,channel_num)-Deflection(:,plate_num); 
        if plate_num > 1 
            for n = 2:plate_num 
                Gap(:,n) = Gap_Base(:,n)+Deflection(:,n)-Deflection(:,n-1); 
                Gap_Edge(:,n) = 

interp1(Y_Vector,Gap(:,n),Y_Vector_2,'spline','extrap'); 
            end 
        end 
        Ratio_v = ref_h./Gap; 
        Ratio_h = Gap/ref_h; 
        for n = 1:channel_num 
            Gap_Edge(:,n) = 

interp1(Y_Vector,Gap(:,n),Y_Vector_2,'spline','extrap'); 
            Ratio_v_in(1,n) = ref_h./Gap_Edge(1,n); 
            Ratio_v_out(1,n) = ref_h./Gap_Edge(1+y_num,n); 
            Ratio_h_in(1,n) = Ratio_v_in(1,n)^-1; 
            Ratio_h_out(1,n) = Ratio_v_out(1,n)^-1; 
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        end 
        D = 4*width*Gap./(2*(width+Gap)); 
        residual_v = 1; 
        while residual_v > tolerance_v 
            for n = 1:channel_num 
                Re = rho*V_nom(n)*Ratio_v.*D/mu; 
            end 
            phi_star = 2/3+11/24*Gap/width.*(2-Gap/width); 
            Re_star = phi_star.*Re; 
            F = (-2.0*log10(epsilon./D/3.7+2.51./(Re_star.*F.^(1/2)))).^-2; 
            for n = 1:channel_num 
                Inlet_h_eff(n) = inlet_h*rho*width*ref_h*V_nom(n)/inlet_m; 
                Outlet_h_eff(n) = outlet_h*rho*width*ref_h*V_nom(n)/inlet_m; 
                K_in(n) = 0.6+0*(1-Ratio_h_in(n)*ref_h/Inlet_h_eff(n))^2; 
                K_out(n) = 1.6+0*(1-Ratio_h_out(n)*ref_h/Outlet_h_eff(n))^2; 
            end 
            Pi_f = 

(sum(((Ratio_v.^2).*F*dy)./D)+K_in.*(Ratio_v_in.^2)+K_out.*(Ratio_v_out.^2)); 
            pressure_drop = 1/2*rho*V_nom(1)^2*Pi_f(1); 
            for n = 1:channel_num 
                V_nom(n) = (2*pressure_drop/rho/Pi_f(n))^(1/2); 
            end 
            outlet_m = rho*sum(V_nom)*ref_h*width; 
            V_nom(1) = V_nom(1)*inlet_m/outlet_m; 
            parameter_3 = 0; 
            while parameter_3 > tolerance_f 
            end 
            residual_v = abs(inlet_m-outlet_m)/inlet_m; 
        end 
        for n = 1:channel_num 
            Total_Pressure_Check(2,n) = Total_Pressure_Check(1,n)-

1/2*rho*(Ratio_v_in(n)*V_nom(n))^2*K_in(n); 
            for m = 3:y_num+2 
                Total_Pressure_Check(m,n) = Total_Pressure_Check(m-1,n)-

1/2*rho*(Ratio_v(m-2,n)*V_nom(n))^2*(F(m-2,n)*dy/D(m-2,n)); 
            end 
            Total_Pressure_Check(y_num+3,n) = Total_Pressure_Check(y_num+2,n)-

1/2*rho*(Ratio_v_out(n)*V_nom(n))^2*K_out(n); 
        end 
        for n = 1:channel_num 
            Total_Pressure(:,n) = 

interp1(Y_Vector_3(2:y_num+2),Total_Pressure_Check(2:y_num+2,n),Y_Vector,'linea

r'); 
            Dynamic_Pressure(:,n) = 1/2*rho*(Ratio_v(:,n)*V_nom(n)).^2; 
            Static_Pressure(:,n) = Total_Pressure(:,n)-Dynamic_Pressure(:,n); 
        end 
        for n = 1:plate_num 
            Fluid_Load(:,n) = Static_Pressure(:,n)-Static_Pressure(:,n+1); 
        end 

         
        Plate_Load = alpha*(Fluid_Load+Self_Load)+(1-alpha)*Plate_Load; 
        residual_P = max(max(abs((Plate_Load-(Self_Load+Fluid_Load)))))/alpha; 
        for n = 2:channel_num+1 
            Profile(:,n) = Gap(:,n-1)+Profile(:,n-1); 
        end 

  
    end 

  
end 




