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Chapter 1: Introduction

1.1 Introduction

While the amount of digital information available each year is growing rapidly, the world

is still inherently analog. In order to communicate between our digital systems and the

analog world, data converters are needed. Data converters are divided into two types:

analog to digital converters (ADCs) and digital to analog converters (DACs). These

data converters are required to record and play back audio, to monitor and control

the temperature of a room automatically, and to monitor your heart rate. These are

just some of the many situations and applications in which ADCs are needed. The

design of ADCs is a complicated matter of balancing the trade-offs of power, size, and

speed. Due to the effects of Moore’s Law over the past 50 years, transistors have been

decreasing in size at a rapid rate [1]. This improves digital designs by decreasing power

consumption and increasing speed. However, for analog designs the smaller feature sizes

cause decreased intrinsic gains and require lower voltage supplies. In order to utilize

smaller semiconductor process technologies, researchers have increasingly directed their

attention towards ADC architectures that can tolerate and even leverage these limitations

while still achieving the desired amount of performance.
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1.2 Motivation

In order to improve ADC performance, analog designers must take into account non-

idealities intrinsic to their chosen design. Common non-idealities include noise, matching,

jitter, and nonlinearity. Nonlinearity and other non-idealities can be reduced by good

design, but to get peak performance ADC calibration is a consistent method to improve

results. Traditional calibration methods require external input and various test signals

in order to work. Recently a novel blind calibration algorithm for nonlinearity was

developed that does not require additional inputs or test signals, utilizing only the digital

output from the ADC. [2] Further increasing our understanding of the blind calibration

algorithm and determining its limitations with the intent to implement in silicon as

future work is of considerable value.

1.3 Thesis Organization

This thesis is organized as follows. Chapter 2 will cover the background of ADCs,

nonlinearity in ADCs, and a sampling of previous digital calibration techniques utilized

to combat this non-ideality. Chapter 3 discusses the blind calibration algorithm for

nonlinearity in ADCs developed at Oregon State University. Chapter 4 explores the

limitations of the algorithm, both those inherent in the theoretical design and those

related to eventual implementation in silicon. Chapter 5 presents the optimizations that

can be made to the algorithm based upon the limitations introduced in the previous

chapter. Finally, the thesis ends with the conclusion in Chapter 6.
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Chapter 2: Background

2.1 Introduction

Every analog design has its pros and cons. Power consumption, speed, and size are all

factors that play into the decision to pick a specific architecture. The negatives for a

design are often based upon the kinds of non-idealities inherent to the architecture, such

as noise. One of the most common and troubling non-idealities found in analog designs

is nonlinearity. ADCs are no exception to these issues.

2.2 Analog to Digital Converters

An analog to digital converter converts a continuous time physical input signal to a

discrete time digital output signal through quantization. ADCs are typically defined

by their bandwidth (or sampling rate) and resolution, which is found by calculating

the effective number of bits (ENOB) from the signal to noise distortion ratio (SNDR)

determined by the frequency response of the ADC. There are a wide variety of ADC

architectures, including flash, successive approximation (SAR), pipeline, and ∆Σ [3].

ADCs are everywhere, from satellite communications, to medical imaging, and smart-

phones. They are more important than ever in an increasingly digital world as they

provide the interface to quantify and interact with the physical world around us.

Flash ADCs are the fastest ADC architecture, as they use a voltage ladder made up

of resistors or capacitors and then feed the results at each point simultaneously into a
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Figure 2.1: Symbol for an Analog to Digital Converter

series of comparators. However, to get high resolutions they require a large area and

power consumption and thus are usually limited to applications where extremely large

bandwidths are needed. SAR ADCs are often used for medium to high resolution appli-

cations at relatively slow sample rates, and are known for their low power consumption

and small area requirements, leading to widespread use in the many energy constrained

systems. SAR ADCs successively generate a digital signal by comparing the analog input

to a specified voltage reference range that narrows after each quantization until the final

bit is found. Pipeline ADCs are a versatile architecture that can attain a wide range of

sampling rates and resolutions, and they consist of a number of stages containing a low

resolution flash comparator and DAC. A coarse quantization is done, and then leftover

residue is amplified and fed into the next stage until the end of the pipeline and the

residue left is the smallest bit (LSB). ∆Σ ADCs (also known as Σ∆) are mostly used

for low speed-high resolution applications. The high resolution is attained via the use

of oversampling the input, followed by a filter band to restrict the output to the desired

bandwidth. [4]

2.2.1 Non-Idealities

There are a number of non-idealities that are common to ADC designs, including noise,

component mismatch, jitter, and nonlinearity. Noise is inherently produced inside the
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Figure 2.2: Example of a nonlinear system response

ADC circuits by resistors and capacitors (kTC noise), which appears in what is known as

the input-referred noise. Quantization error is noise inherent to ADCs as well, and is

dependent upon the ADC resolution. Its effects can be mitigated by oversampling. Jitter

is the deviation of a clock edge from its ideal location, causing uncertainty in what time

a data sample has actually been quantized. This uncertainty and thus error appears as

more noise when examining the ADC output.

2.3 Nonlinearity

Nonlinearity is present when the output and input of a system are not directly propor-

tional to each other, breaking the rule of superposition shown in Equation 2.1. Nonlinear

systems are a well known phenomenon in the fields of physics and mathematics. Due

to this, much effort has been put forth to find efficient methods for modelling nonlinear

systems.

f(x+ y) = f(x) + f(y) (2.1)

When looking at the frequency domain for a system’s outputs, nonlinearity manifests

in the form of frequencies other than the original input. These additional signals created
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(a) Harmonics in the frequency domain (b) Harmonics in the time domain

Figure 2.3: Harmonic distortion

by nonlinearity are known as harmonic distortion. For a signal with multiple tones,

nonlinearity causes both harmonic distortion and undesired intermodulation. A signal

from a system with second and third order harmonic distortion could be represented by

Equation 2.2, where yout is the system output, xin is the input signal, and α2 and α3 are

the distortion coefficients.

yout = α1(xin) + α2(xin)2 + α3(xin)3 (2.2)

These new frequencies are generated at multiples of the input. In the case of audio

signals, harmonic distortion in significant amounts is easily heard. In radio frequency

(RF) systems, harmonic distortion and intermodulation can cause transmitted data to

be corrupted and therefore lost.
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2.3.1 Nonlinearity in ADCs

Nonlinearity is inherent to analog systems due to the nonlinear components used. As seen

in the previous section, it presents itself in the form of harmonics that can be observed

in both the time and frequency domains. However, the frequency domain is where most

ADC performance analysis occurs. The additional tones decrease the performance of the

ADC in the form of lower SNDR, a defining metric for ADC performance. The digital

output of an ADC suffering from nonlinearity can commonly be written as Equation 2.3,

where α1 and α3 are the distortion coefficients correlating to the fundamental frequency

and third harmonics respectively.

Dout = α1D(Vin) + α3D(Vin)3 (2.3)

There is a wide variety of possible sources for nonlinearity in ADCs. Common sources

include amplifier nonlinearity and capacitor mismatches. Both analog domain and digital

domain solutions exist for these problems. In the analog domain, using larger values for

passive components such as capacitors and resistors can improve matching, in addition

to larger loop gains and wider bandwidths. However, these methods come with the

compromise of higher power consumption and area. They are also becoming harder to

design due to process scaling.

Due to this, digital calibration is becoming the preferred method to improve linearity.

There are a number of techniques that have been proven to reduce or remove nonlin-

earity in ADCs, each with their own limitations. These methods include bootstrapped

calibration, split ADC based calibration, and multiple pseudo-random number based

calibration.



8

2.4 Digital Nonlinearity Calibration Techniques

A number of digital calibration techniques have been developed to solve the widespread

problem of nonlinearity in ADCs. One method involves the use of a bootstrapped calibra-

tion algorithm, in which the calibration digital to analog converter (DAC) is calibrated

by the ADC and vice versa [5]. This technique runs the ADC at a higher clock than

the input is sampled at, allowing the ADC/DAC pair to process calibration signals and

update in the background. Two known codes are given to the DAC and then passed to

the ADC. The difference in the ADC output from ideal, coupled with varying the input

DAC codes across the entire ADC range, allows the nonlinearity to be estimated and

thus its impact on the performance reduced.

Another technique is known as split ADC based calibration. As the name would

suggest, the ADC design is split into two identical halves. Then a known offset delta

(∆) is given to each input; one gets a positive delta and the other gets a negative delta.

After the conversion is complete the difference between the digital outputs is found, and

for an ideal ADC the result should equal 2∆. Any error found from that value is then

fed into into a least mean squares (LMS) engine to calibrate for odd order harmonics

(3rd, 5th, etc.) [6].

The multiple pseudo random number based calibration presented in [7] passes a sum

of multiple independent pseudo random number sequences to the input of the ADC,

and then multiplies the output with the product of the same pseudo random number

sequences. This allows for estimation of the nonlinearity coefficient because independent

pseudo random number sequences are orthogonal to each other.

While all of the discussed methods have presented good results, they are either limited

to a specific ADC architecture or require known test signals in order to complete the
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calibration. The blind calibration algorithm for nonlinearity is not limited in either of

these ways, and will be discussed in the following chapter.
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Chapter 3: Blind Calibration Algorithm for Nonlinearity in ADCs

3.1 Introduction

In this chapter a previously developed blind calibration algorithm for nonlinearity in

analog to digital converters is discussed. The benefits of this algorithm include not

requiring any external calibration signal, being entirely digital, and the ability to remove

both even and odd harmonics simultaneously in the background [2]. Performance was

demonstrated using a MATLAB simulation on data from a ring oscillator based ADC

with nonlinearity limited performance. To reduce the nonlinearity generated by the ADC

in th digital output, the calibration algorithm relies on the properties of downsampling

and the orthogonality of sinusoids.

3.2 Downsampling

A downsampled signal in a discrete time system is one in which every Nth sample of the

original signal x[n] is kept to create a new signal xds[n], as shown in Equation 3.1. For

example, with a downsampling factor (Nds) of 5 the new signal would contain every 5th

sample and the total number of samples would be one fifth of the original [8].

xds[n] = x[nNds] (3.1)

Downsampling in the time domain is observed in the dropping of data samples as seen

in Figure 3.1. In the frequency domain, downsampling is observed via the input frequency
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spectrum being spread out by the downsampling factor, including any harmonics that

might be present (Figure 3.2). This effect is one of the important concepts for the blind

calibration algorithm as it allows for the creation of new signals at known frequencies

with respect to the input.

Figure 3.1: Downsampling in the time domain, Nds = 3

Due to the harmonics generated by nonlinearity being at integer multiples of the

input frequency fin, downsampling allows the signal to stretch and have the original

tone be at the same frequency as the nonlinearity introduced by the non-ideal ADC.

This is accomplished by choosing the downsampling factor (Nds) to be the same as the

harmonic being calibrated (e.g. Nds = 3 for third order correction, Nds = 2 for second

order correction, etc.). If the original signal is at 0.25fs, and it is downsampled by 3,

the new signal would be at 0.75fs.

One possible side effect of downsampling is signal aliasing. Aliasing, also known as

frequency folding, is an effect that causes different signals to become indistinguishable

from one another when sampled at the same rate. This occurs when the Nyquist theorem
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Figure 3.2: Downsampling in the frequency domain, Nds = 3

is not met by both frequencies of interest, i.e. f < 0.50fs, and thus one of the frequencies

”folds” around fs and appears to be a different frequency. In general, a signal with

frequency fsampled after sampling could have been obtained by the sampling of signals

of frequency fin

fsampled = |fin − kfs| (3.2)

where k is any integer. Thus for k = 1, with a normalized fin of 0.75fs, fsampled

would appear to have a frequency of 0.25fs. As can be seen in Figure 3.3, while the

original signals are two different frequencies, they appear to be the same frequency after

sampling. To reduce or remove any aliasing after downsampling, an anti-aliasing filter is

often used to restrict the bandwidth of the input signals to 0.5fs and insure no frequency

folding occurs.



13

Figure 3.3: Example of aliasing that can occur when an input frequency is higher than
the Nyquist bandwidth of 0.5Fs

3.3 Orthogonality

A pair of signals are orthogonal if the sum of their inner product is zero, as shown in

Equation 3.3.

x ⊥ y ⇔
∫
x(t)y(t)dt = 0 (3.3)

A key property of sinusoidal signals is that they are orthogonal at different frequencies

[9]. In continuous time, this statement holds regardless of amplitude and phase for

sinusoids of infinite duration (e.g. summed from −∞ to ∞ as seen in Equation 3.4).

∫ ∞
−∞

sin(ω1t)sin(ω2t) = 0⇒ ω1 6= ω2 (3.4)

However, digital signal processing typically takes place in discrete time with sampled

signals, such as those produced from ADCs and used for the discrete Fourier transform
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Figure 3.4: Graph illustrating the orthogonality of two sine waves

(DFT) [10]. While math can be done for infinite duration signals, in the real world there

is a set of sampled data of length N to work with. Thus two discrete time signals are

orthogonal if over N data points their inner products sums to 0 (Equation 3.5).

N−1∑
n=1

sin(ω1n)sin(ω2n) = 0⇒ ω1 6= ω2 (3.5)

For discrete time sinusoidal signals of length N , the exact rule of orthogonality holds

only for the harmonics of the sampling rate fs divided by N . This means that the

product of two sinusoids will only sum to zero if their frequencies are integer divisions

of the total number of sampled data points with respect to the sampling rate. The list

of orthogonal frequencies for a given set of data samples is described by Equation 3.6.
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f = k
fs
N
, for k = 0, 1, 2, ...N − 1 (3.6)

These frequencies are the only frequencies that have a whole number of periods in

N samples, and thus fulfill the expectation that sinusoidal signals are orthogonal. If

frequencies besides these are used, the signals will not be perfectly orthogonal, and thus

will not sum perfectly to zero.

3.4 Algorithm

By combining the properties of downsampling and orthogonality of sinusoidal signals, the

distortion coefficients for a non-ideal ADC can be estimated. [2] This is done by incorpo-

rating a second and identical ADC with a scaled input, thus allowing the removal of the

original signal and leaving only the harmonics available for processing. The coefficient

is estimated by summing the product of the downsampled signal Dds3 along with the

signal-free signal Dnosig, thus calculating the error (err) present in the current coefficient

estimate. This error is then used to update the coefficient value, and the cycle repeats

until the error is minimized, thus providing the final distortion coefficient which is then

used to calibrate incoming data. This feedback for minimizing the error is part of what

is known as a least mean squares (LMS) engine, a concept often used in calibration. The

blind calibration algorithm can calibrate for multiple orders of distortion simultaneously.

However, for the sake of simplicity and understanding the following equations and Figure

3.6 explaining the algorithm only show calibration for a third order harmonic.

The periodic input signal Vin is fed into both ADC1 and ADC2, though before
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Figure 3.5: Ideal calibration of third order distortion

entering ADC2 it is scaled down by a factor of 2 (Eq. 3.7c).

Vin = Asin(ωt) (3.7a)

Dout = D(Vin) + α3D(V 3
in) (3.7b)

Dout2 = D(0.5Vin) + α3D(0.5V 3
in) (3.7c)

The digital outputs from the ADCs are then raised to the power of the coefficient

being calculated (in this example, 3), and then multiplied by the current α3 coefficient

estimate. This new value is then subtracted from the original Dout to find the calibrated

digital output Dcal. When the α3 estimate has converged to the correct value, the

harmonic distortion is greatly reduced.

Dcal[n] = Dout[n]− α3[n− 1]Dout[n]3 (3.8)
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Figure 3.6: Simplified block diagram of blind calibration algorithm calibrating for 3rd
harmonic

In order to converge to the correct α3 using the LMS engine as shown in Equation

3.9, the error must be found. Note that µ is just a variable for adjusting the step size of

the error term, and thus the rate of convergence for finding the stable and final value of

the distortion coefficient.

α3[n] = α3[n− 1]− µ× err (3.9)

The error term is found by summing the product of the downsampled input Dds3

and the harmonics left in Dnosig. Dds3 and Dnosig are both centered around 3fin, which

would dictate that their sum is nonzero based upon the rules of orthogonality. As the

harmonics present in Dnosig are minimized, the err term decreases to zero until there

are no harmonics left in Dnosig and thus none left in the calibrated output Dcal.

err =
∑

Dnosig ×Dds3 (3.10)
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Figure 3.7: Convergence of distortion coefficient estimation

To isolate the nonlinearity from the original input signal for use in the error calcu-

lation, the second ADC is used to linearly scale the output down and up by 2. When

the scaled version of Dcal2 is subtracted from Dcal, the resulting signal free output is

Dnosig. This works because the original signal will have scaled linearly, while the har-

monics added by ADC nonlinearity will not have. A simplified graphical version of this

using Dout and Dout2 can be seen in Figure 3.8. Dds3 is created by simply taking every

third signal from the original ADC output Dout as seen in Equation 3.11b.

Dnosig = Dcal − 2Dcal2 (3.11a)

Dds3 = Dout[3n] (3.11b)

To calibrate for multiple harmonics, an additional downsampled stream is needed
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Figure 3.8: Scaling used to separate nonlinearity terms from original signal for LMS
engine

for each additional harmonic, and some additional computation blocks in parallel to

the third order distortion calibration path to find the calibrated output Dcal. A block

diagram for the calibration of both the third and fifth harmonics can be seen in Figure

3.9.
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Figure 3.9: Simple block diagram of blind calibration algorithm for 3rd and 5th order
distortion
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Chapter 4: Limitations

4.1 Introduction

The implementation of mathematical theories in electrical hardware is a challenging

process. Many times the original theory needs to be modified or simplified in a way to

allow for it’s reproduction in hardware. For the blind calibration algorithm discussed in

the previous chapter, several aspects of the theory are difficult to achieve in hardware.

This section discusses some of the limitations intrinsic to the algorithm and some of the

considerations for creating a hardware implementation.

4.2 Generation of Higher Order Harmonics

In the effort to remove certain nonlinearities, higher order nonlinearities are introduced.

This is mathematically shown in Equation 4.2 and simulation results are shown in Figure

4.1 These generated harmonics are proportional in size to the lower order nonlinearities,

and can usually be neglected with respect to the higher order nonlinearities in terms of

defining ADC performance via SNDR. If even better performance is desired, calibration

of the generated harmonics can be added to the design.

Dout = D(Vin) + α2D(V 2
in) (4.1)
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Dcal = Dout − α2D
2
out (4.2a)

= D(Vin)− α2
2D(V 3

in)− α3
2D(V 4

in) (4.2b)

Figure 4.1: Generation of higher order harmonics by calibration algorithm

4.3 Background Mode

For the algorithm to run in the background, two identical ADCs are needed. This comes

at the expense of additional power consumption and size in both the analog and digital

domains, as most of the processing needs to be done twice. This is necessary in order

to run in the background with any possible input. If only one ADC output was used

for calibration, any digital output signal with multiple tones would get destroyed by the
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algorithm, as shown in Figure 4.2. The red signal is the original data, which needs to

stay the same after calibration. The blue signal is the distortion added by the nonlinear

ADC during conversion. Since parts of the red and blue signal overlap at the harmonic

being calibrated, there is undesired calibration. This is because with only one ADC, the

LMS engine uses the product of the downsampled signal and the calibrated signal to find

the error, and thus cannot distinguish between a tone that is part of a multi-tone input

and a tone that is due to nonlinearity.

Figure 4.2: Spectrum result of calibration algorithm using a single ADC

4.4 Offset

Any offset introduced by the ADC to the signal must be removed before entering the

calibration algorithm [11]. If offset is not removed from Dout, then Dnosig will also

have an offset. This causes the algorithm error term to include the added offset in

addition to the nonlinearity information. The algorithm would not converge to the
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correct distortion coefficient. Removing any offset requires additional signal processing

before the calibration algorithm begins. Since it is difficult to deduce whether or not the

offset was present in the original signal or added to the digital output by the ADC it

is best to carefully design the ADCs such that they do not add significant offset during

data conversion.

Figure 4.3: Removal of offset by centering periodic signal around 0

4.5 Input Buffers

In order to perfectly match each sample over time with its correlating downsampled

value for the LMS engine, infinite length shift registers are needed to buffer and hold all

incoming data. This implies a data set that is continually increasing in length as more

samples are collected, as shown by Equation 4.3b where Nbuff is the required buffer

length, w is the length of the data being summed by the LMS engine, and n is the

index of the coefficient error update. As this is impossible when it comes to a hardware
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Table 4.1: Theoretical Input Buffer

n Growing Buffer Length Dds3

0 [1 2 3 4 5 6 7 8 9 10] [1 4 7 10]
1 [2 3 4 5 6 7 8 9 10 11 12 13] [4 7 10 13]
2 [3 4 5 6 7 8 9 10 11 12 13 14 15 16] [7 10 13 16]

Table 4.2: Practical Input Buffer

n Finite Buffer Length Dds3

0 [1 2 3 4 5 6 7 8 9 10] [1 4 7 10]
1 [2 3 4 5 6 7 8 9 10 11] [2 5 8 11]
2 [3 4 5 6 7 8 9 10 11 12] [3 6 9 12]

implementation, an alternative solution was developed. For third order calibration, a

buffer of finite length Nbuff,finite is chosen such that there are w samples in Dds3 and

Dnosig being fed into the LMS engine for each coefficient estimate error update.

err[n] =
w∑

k=1

Dnosig[k]Dds3[k] (4.3a)

Nbuff = 2n+ (3w − 2) for w > 0, n = 0, 1, 2, ...∞ (4.3b)

Nbuff,finite = 3w − 2 for w > 0 (4.3c)

In order to achieve a buffer of finite length, the downsampled data used by the LMS

engine is collected in a slightly different manner. Instead of continuously downsampling

Dout from the data in the growing input buffer to form Dds3, downsampling occurs only

on the data in the finite input buffer. A visual comparison of the original theoretical
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implementation to the practical implementation is shown in Tables 4.1 and 4.2. For this

example, assume a w of 4. The values in the brackets are the indices of the input buffer

and the downsampled signal, respectively. The data is continually shifting through the

buffer and generating updated err terms for the distortion coefficient α3 estimation.

All further discussion moving forward utilizes the practical input buffer method such

that any limitations due to this change in the way downsampled data is collected from

the input stream are discovered.

4.6 Input Frequency Resolution

During testing, the Equation 4.4 is used to define a periodic signal at frequency fin that

contains an integer number k of complete cycles within the given number of samples N

to satisfy the concept of coherent sampling. This equation is used to create a test signal

capable of generating a frequency spectrum using the Fast Fourier Transform (FFT). The

FFT uses sample sets of length 2n, which is required for the fast computation time. The

generated input frequency is such that it is an integer ratio of the sampling frequency

fs. In order to find the frequency response of a system, you are limited in the resolution

of the input frequencies passed in to the ADC by the resolution of the FFT you want to

run. This limitation typically only applies during the testing phase of ADC design, as

in real world usage the input frequency only needs to be within the bandwidth.

fin = k
fs
N
, for k = 0, 1, 2, ...N − 1 (4.4)

Notice that Equation 4.4 is exactly the same as Equation 3.6, which is a limitation

on the orthogonality of sampled sinusoids. While the limitation on fin for the FFT is
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Figure 4.4: Example FFT output with coherent sampling and without coherent sampling

only applicable to specific testing cases, since the blind calibration algorithm needs to

continuously run in the background this limitation on the input frequency required for

exact orthogonality in sampled sinusoids is notable.

fin = k
fs
w
, for k = 0, 1, 2, ...w − 1 (4.5)

Since the error term of the coefficient estimate is calculated using the concept of

orthogonality (see Eq. 4.3a), the length w of Dnosig and Dds3 must be carefully chosen.

In the case of the algorithm, the input frequencies are thus limited to those seen in

Equation 4.5, where the input frequency must have an integer number of complete cycles

in w in order for exact orthogonality rules to apply. When there is not an integer

number of periodic cycles in the sampled window of length w, the algorithm can no

longer accurately estimate the distortion coefficient error as the error term will never be

completely minimized as signals of different frequencies will not sum perfectly to zero.

Figure 4.6 illustrates this effect for a w of 25. For a nonlinearity coefficient α3 of
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(a) Example of exact orthogonality for a sampled data set

(b) Example of non-orthogonal signals for a sampled data set

Figure 4.5: Discrete time orthogonality of sinusoids
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Figure 4.6: Deterioration of algorithm performance when input frequency is not at an
integer division of the window size

0.05, the algorithm converges to approximately 0.044 during perfect operation (it does

not reach 0.05 exactly due to the higher order harmonics generated by the algorithm

beginning to dominate the performance). As the resolution of the input frequency (e.g.,

how many frequencies are tested across the bandwidth) increases past the size of the error

summing window length w, the performance of the points in between integer divisions

of the window size severely deteriorates. The resolution of the input frequencies was

increased by a power of 2 each time based upon the assumption that any output would

be examined using an FFT.

Thus, as the summing window of length w increases in size, the more input frequencies

the calibration algorithm can accept and still produce consistent results. This is an

unfortunate correlation, as increasing w quickly increases the amount of memory and
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time needed for each error calculation.
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Chapter 5: Optimizations

5.1 Introduction

Based on simulation results, a number of optimizations that can be used to improve the

blind calibration algorithm with respect to a hardware implementation are discussed in

the following sections.

5.2 µ

This coefficient determines the settling time and accuracy of the coefficient estimation by

altering the step size of the error term in the blind calibration algorithm (see Equation

5.1). The specific choice of µ is not critical to the final coefficient value if it is given

enough time to converge, as can be seen in Figure 5.1. As µ increases, the estimator

converges more quickly. From Figure 5.2, it can be seen that while at a larger µ it

converges faster, it also oscillates more. At large values of µ the estimator eventually

becomes unstable and will not converge to a final value. If the number of cycles it takes

to converge is not a limiting factor, it is then ideal to use a small µ to improve final

accuracy.

α3[n] = α3[n− 1]− µ× err (5.1)
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Figure 5.1: Impact of changing µ on estimator convergence time

5.3 Error Estimation Window

As discussed in Chapter 4, the theoretical algorithm relies on multiplying data by a

downsampled version of the input. For a hardware implementation, this would require

an infinitely growing buffer to store all past data for use with the current data. As this

is not practical, steps were taken to determine a more efficient way to process the data

while still maintaining algorithm performance. The concept of windowing, examining a

small section of the original signal at a time, was found to be the most applicable. It

is worthwhile to examine the trade-offs between window size and error and the rate at

which the window moves through the data, among other things.
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Figure 5.2: Impact of changing µ on estimator final accuracy

5.3.1 Shifting

Currently an updated α3 is calculated with every new sample Dout that comes in. This

means that the entire calibration algorithm calculation has to finish in one cycle of the

ADC output. This is theoretically possible if the algorithm logic is clocked at a much

higher rate than the ADC output speed. However, it would be ideal if it could run at or

near the same speed as the ADC, and thus shifting the window by different amounts was

simulated. This would allow the algorithm more time to complete before each distortion

coefficient update. From the results in Figure 5.3, it can be seen that increasing the

amount by which the window shifts for each α3 estimation update does not impact

performance; however, it does increase the convergence time, as the coefficient is not

getting updated as often as before.
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Figure 5.3: Effects of sliding algorithm window by varying amounts

5.3.2 Shape

The ultimate cause of the input frequency resolution limitation discussed in the previous

chapter is that for a given window size, the error would not sum to 0 if there was not an

integer number of periods in the data. In many cases there are only a few points missing

that lead to this problem, as seen in Figure 4.5b. One way to get the results closer to

those of exact orthogonality is to weight the data points at the center of the window as

more important than those at the edges. This involves the use of classic window filters

such as the Hanning, Hamming, and Blackman windows. The window responses are

shown in Figure 5.4, and their impact on the input frequency resolution issue is shown

in Figure 5.5. The windows are applied to Dnosig and Dds3 before the error calculation

to get as close to exact orthogonality as possible.
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Figure 5.4: Classic window functions)

The three non-rectangular windows are all fairly similar in response, which can be

seen in their behavior being nearly identical in Figure 5.5. Errors still exist around the

band edges (0Fs and 0.5Fs) when using the window functions, though the middle of

the band is consistently improved compared to the case without windowing (or rather,

using a rectangular window). Around 0Fs the windows only contain a few (incomplete)

cycles of the signal, such that any errors present are not averaged out. Around 0.5Fs,

or the maximum rate at which the data can be sampled accurately, there are plenty of

cycles within the window, and thus a shaped window warps the data interfering with the

algorithm accuracy.
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Figure 5.5: Improvement of algorithm performance after utilizing shaped windows (Han-
ning, Hamming, etc.)

5.3.3 Size

With the intention of minimizing hardware area and computation time, determining the

smallest window size with an acceptable amount of error is a useful endeavor. However,

the window needs to be large enough to capture at least one period of the signal for

exact orthogonality. In order to account for a high resolution of input frequencies, an

extremely large window must be used based upon the rules of orthogonality.

5.4 Fixed-Point

Floating point processors are typically more expensive and complicated than their fixed-

point counterparts. For a synthesized version of the algorithm, fixed-point math could

be used to determine the size of the internal data paths. The algorithm computations

are somewhat prohibitive in the sense that for all of the required calculations, the data
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paths grow in size very quickly. However, the algorithm can be designed based upon the

resolution of the digital output from the ADCs. Another side effect of using fixed-point

is the loss of precision due to overflow and rounding.
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Chapter 6: Conclusion

While it is likely that nothing will ever completely solve the problem of nonlinearity,

the blind calibration algorithm comes close. Looking at the limitations of the algorithm,

along with optimizations that can be made, brings the design one step closer to actual

practical implementation in silicon. Not all algorithms translate well to this final step,

with some being near impossible, but with respect to the current results it appears

that hardware implementation is still a viable option for future development. A further

understanding of the novel blind calibration algorithm was presented such that future

researchers have a better starting point for continuing the design.
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