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THE SHORTEST STRINGS IN A CONTEXT-FREE LANGUAGE

I. INTRODUCTION

In [9] Michael J. Mclean and Daniel B. Johnston presented an

algorithm for finding the shortest terminal strings derivable from each

variable in context-free grammars (CFG).

There was no mention of time bounds in relation to the algorithms.

This might be due to the lack of an acceptable notion of size in CFG.

However, with the works of Ginsburg and Lynch [6] this gap has been

bridged. So that it makes sense for one to attempt an investigation

of the time bounds of the algorithm.

In this paper, we obtain the time complexity of the Mclean-Johnston

algorithm. Furthermore, with the aid of an .appropriate data structure,

we give an algorithm which performs faster than the Mclean-Johnston,

although both are of the same space complexity.

In chapter 2, we discuss basic facts about context-free grammars.

In chapter 3, we give a detailed description of the Mclean and

Johnston Algorithm. We introduce the four measures of size in a CFG

and obtain the time complexity of the Mclean-Johnston algorithm in

relation to one of these.

Finally, in chapter 4, we introduce our new algorithm, discuss

its data structure, space and time complexities. As a byproduct, the

algorithm detects all useless variables, where a useless variable is one

not involved in the derivation of a terminal string.
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This work was motivated in part by the realization, as pointed out

in [1], that out of the four classes of grammars in the Chomsky

Hierarchy [8], the CFG are the most important in terms of application to

programming languages and compiling. In converting a source program

into an object program, the compiler goes through a series of processes.

As shown in Figure 1, one of these processes is the syntax analysis.

During this stage the string of tokens generated by the lexical analyser

(the scanner) is examined to determine whether the string obeys certain

structural conventions explicit in the syntactic definition of the pro-

gramming language being used. A context-free grammar can be used to

specify most of the syntactic structures of a programming language.

This may explain the importance attached to context-free grammars and

their various extensions in the theory of computation.

Various algorithms have been developed for parsing CFG; among these

are Early's Algorithm [1], and the Cocke-Young-Kasami Algorithm [1].

The performances of these algorithms have been greatly improved by

appropriate data structures. This brings us to our second reason for

studying the present problem:

Since the effects of an appropriate data structure on the per-

formances of an algorithm cannot be overemphasized, we are interested

in finding out whether we could specify a data structure that will

improve the time complexity of the Mclean-Johnston Algorithm.

We present in chapter 4 the results of our investigation.
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II. CONTEXT-FREE GRAMMARS AND LANGUAGES

In this chapter, we shall give a few definitions, examples, basic

facts and simplification lemmas for context-free arammars and languages.

We do not intent to go into too much detail, however, we shall give

adequate references about proofs and further explanations.

First, we define an alphabet and a language:

An alphabet V is any finite set of symbols. The set of all finite

strings over V is denoted by V*, the symbol F.: is used to indicate the

null string, i.e., the string that consists of no symbols, while V

denotes the set V*-{El.

A language is any set of finite strings over an alphabet.

Definition: 2.1. A context-free grammar is a 4-tuple G = (V , P, S),

where

(2.1.1) 1. V
N

is a finite set of symbols called variables (non-terminals).

2. VT is a finite set of terminal symbols, disjoint from VN.

For convenience, we shall let V = VNU VT.

3. P is a finite subset of VN X (VNU VT)*. An element

(A, $) E P is called a production rule and written.

(2.1.2) A: := $ , A ts VN and e V*.

4. S is a distinguished symbol in VN called the start symbol

The production rule (2.1.2) is said to be associated with A.

Usually in describing a context-free grammar, all the rules associated

with a given variable A are grouped together and written as

(2.1.3) A:: = $1I $2 I... On, sje VN, 1 < j < m, and I denotes 'or'.
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Our definition of a CFG allows the string a to be a null string,

although the usual definition [8] does not allow this.

We define the length Iw1 of a string w in V* as the number of

symbols in W. 1E1 = 0.

In a CFG G = (VN, VT, P, S), the string w1Aw2, wo'2 V *, and A e vN

is said to directly generate (derive) the string wl x w2, xe V*, if

A::=x is a production rule of G. In this case we simply write

(2.1.4) w
1
Aw

2
-4- w x w2

And this is similarly called a direct derivation in G.

More generally, a string w is said to generate w' if there exists

a finite chain of strings wl, w2, wn such that w4 is directly

generated by wi_1, i = 2,3,...,n, w =w1 and wn = w. We specify this by

writing
*

(2.1.5) w -4- w'.

G

When there is no danger of confusion, the G in (2.1.5) is supressed.

Definition: 2.2. The language generated by G, denoted by L(G), is

defined as

L(G) = {wiwf VT *, and S N}.

The language L is said to be context-free if there is some CFG G

such that L = L(G).

A CFG is said to be E-free, if P has no E-production rules.



6

Since by [1], every context-free language CFL has an a -free

grammar which generates it, we may content ourselves with a-free grammars.

Definition: 2.3. Let G = (V
N

, V
T

, P, S) be a CFG. A tree is a

derivation tree for G if:

1. Every node has a label, which is a symbol of V.

2. The label of the root is S.

3. If a node n has at least one descendant other than itself,

and has label A, then A must be in VN.

4. If nodes ni, n2,..., nk are the direct descendants of node n,

in order from the left, with labels Al, A2, ..., Ak, respectively,

then

A:: = AlA2...Ak

must be a production in P.

We refer to the tree as the derivation tree of the string repre-

sented from left to right by the labels of the pendant nodes.

If S:: = a is a production rule in P, then a derivation tree for the

string a is

The descendant node is neither specified nor labelled.

Example:

G = (VN, VT, P, S), where

V
N
= {S, A, B}

VT = {a, b, d} , and the production rules are

S:: = SAjAB

A:: = aIABB

B:: = blBd
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Then Figure 2 is a derivation tree of the string abd from S.

Figure 2. A derivation tree.

We are now going to discuss some theorems which relate directly

to the derivation trees and the shortest terminal strings.

Our use of derivation tree will not always require the restriction

that the root be S. Whenever we require the root to be any other symbol

A, different from S, we shall refer to the derivation tree as an

"A-derivation tree."

We give now a theorem proved in [8] page 21, Theorem 2.3:

Theorem 2.4. Let G = (VN, VT, P, S) be a CGF. Then S a, a E V,

if and only if there is a derivation tree in G with a result a.

A corollary of this theorem is the following:

Corollary: 2.5. Let G be a CFG, then the language generated by B

is empty if and only if the collection of derivation trees whose

pendant nodes form a terminal string is empty.
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Since the language generated by the grammar G = ("N, VT, P, S)

is empty if there are no shortest terminal strings derivable from the

start symbol S, an algorithm on shortest terminal strings will help

determine whether the language generated by a CFG is empty or not and

also identify useless variables and production rules, and thus help in

reducing the grammar.

Lemma 2.6. Let G be a CFG, then the shortest terminal string derivable

from a variable A, if it exists, can be produced by applying only

production rules which do not reintroduce the symbol A.

Proof: Consider an A-derivation tree of such a string, if there is anoth-

er node n other than the root with the label A, then the subtree rooted

at n has A as the root and to the pendant nodes one will have a string,

no longer than the original string. Thus one has reduced the copies of

A by one, and continuing in like manner, one will reach a situation in

which there is only a node, the root, with the label A.

It is now clear that one can pair together a shortest terminal string

derivable from a variable A and a production rule associated with A

used in achieving it. This leads us to yet another definition:

Definition. 2.7. Let G be a CFG. A production rule

A:: = x

will be referred to as a shortest rule of A if starting with this rule

one can derive a shortest terminal string for A.

Now, the following theorem constitutes the whole basis of the Mclean-

Johnston algorithm:
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Theorem. 2.8. Let G be a CFG. Let A, A
l'

A
2'

, A
k
be the non-

pendant nodes of the derivation tree of a shortest terminal string w

derivable from the variable A, then, for I < j < k, the subtree with

root A., is a derivation tree of a shortest terminal string w. derivable

from the variable A..

Proof:Assuming.Ai is not the root of a derivation tree of a shortest

terminal string for A., then replacing the "A.-subtree" by a derivation

tree of one of its shortest terminal strings will produce a shorter

terminal string for A, contradicting the choice of the string w.
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III. THE MCLEAN AND JOHNSTON ALGORITHM

In this chapter, we describe the Mclean-Johnston Algorithm [9]

for finding the shortest terminal strings derivable from variables in a

CFG.

Basically the algorithm sets out to determine whether a terminal

string could be derived from a variable, and if so finds the length of

the shortest string, and finally finds a shortest terminal string for a

variable.

This is a three-in-one task. However, the algorithm achieves this

in two parts. Part I of the algorithm: in this part a yes or no is

returned to the question whether a terminal string can be derived from

a given variable, also the shortest length of such a string is re-

turned together with a production rule associated with the variable that

could be used to derive the string.

Part II consists in using the production rule obtained in part one

to construct the derivation tree of a shortest string, and therewith

the string itself.

3.1. The Description of the Algorithm

For each variable A the algorithm finds the length of the known

shortest terminal string derivable from it. This we call temporary

shortest length of a terminal string derivable from A, and denote it by

L(A).

Defining the temporary length of a production rule
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m
A:: = Al A

2
...A

m
as E. L(A.), if L(A.) is defined for each j,

j=1

1 < j < m,

the algorithm finds for each variable A a temporary shortest production

rule P(A) whose temporary length, if defined, is equal to L(A).

It searches all production rules associated with A for a shorter

production rule than P(A), if one exists, it updates P(A) and L(A)

accordingly.

After searching sequentially the production rules associated with A

it proceeds to the next variable.

If after a complete search of all the production rules no temporary

shortest production rule is replaced, the algorithm stops.

The following partially coded form will help make the algorithm

clear.

SS denotes the set of symbols known to have terminal strings

derivable from them, N the number of variables.

LOO: SS 4- V
T

LO: I 4- O.

If I # N THEN GO TO L6.

Ll: I 4- I + 1

L2: USE SS TO UPDATE THE NEXT PRODUCTION RULE ASSOCIATED WITH I.

IF RULE IS NOT SHORTER THAN P(I) THEN GO TO L3.

UPDATE P(I) AND L(I) ACCORDINGLY.

SET CHANGE TO TRUE.

PUT I IN SS.

L3: IF ALL THE RULES ASSOCIATED WITH I ARE NOT YET EXHAUSTED THEN

GO TO L2.

L4: OF I N THEN GO TO Ll.
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L5: IF CHANGE THEN GO TO LO.

L6: STOP.

McLean and Johnston decided to initialize P(A) and L(A) to O.

With this type of initialization the algorithm required another Boolean

variable E(A), to indicate whether or not a terminal string is known

to exist for A; otherwise the definition of temporary shortest length

will not hold; these are now defined for only variables for which E

is True.

3.2 The Data Structure of the Algorithm

The variables are linearly ordered and listed as

Al, A2, ..., An

Similarly, all the production rules associated with a particular

variable are grouped together into one block of rules:

(3.2.1) /1 < i < n, where
"i

(3.2.2) ai = B B2 .B 1 < k < 1 B. G.:, V *, 1 < j < m
k*k m '

k
= = = =

A quick look at (3.2.1) and (3.2.2) suggests a list representation

for all the production rules, and this is defined as follows:

A one-dimensional array PP holds all the production rules, with

0 delimiting the rules. Each block (3.2.1) has all its production rules

stored consecutively together. Another array D indicates the range

within which the production rules associated with each variable could

be found, i.e. PP(k), D(i -1)+1 < k < D(i), contain the production rules

associated with the variable numbered i.
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And lastly, the variables are stored in a circular list LINK, i.e.,

LINK(i) = i+1, 1 < i < n-1, and LINK(n) = 1,

Example: G = ({Al, A2 }, {x1, x2}, P, A1)

A = A x Ix1 2 1 2

A2:: = A1A2Ix1

PP

Figure 3.2. The Mclean-Johnston Data Structure

3.3 The Computer Program for the Mclean-Johnston Algorithm

The length function and the Boolean variable L and E respectively,

of section 3.1 are extended to functions L
+

and E
+
over V as follows:

(3.3.1) E-1-(X) = I True, if X is a terminal

L E(X), if X is in VN

[

(3.3.2) 1.4-(X) = 1, if X is a terminal

L(X), if X is in V
N



14

Using E+ as a control function, one can now think of L as a function over

V*, by setting

m
(3.3.3) E*(X) = ii E'(A.), if X = A A A , A. in V

i=1 1 x
...

m 1

and
m

L*(X) = E*(X) * L+(Ai)

i=1

where E*(X) is 1 or 0 depending on whether it is true or false.

Then our temporary length of a production rule defined in 3.1 is the value

of L* evaluated on its right hand side. The computer program is

designed to minimize L*(A) over production rules associated with A.

To reduce the number of searches needed another function G(X)

is introduced. It stores an estimated lower bound for the shortest

length of a terminal string derivable from the variable A. So that as

soon as G(A) = L(A), we know a shortest terminal string has been

found for the variable A. G(X) is simply. the value of L*(X) in (3.3.3)

without the factor E*(X): The minimum of this over production rules

associated with A gives the value of G(A).

See Appendix I for the detailed computer program.

3.4 Measure of Size in a CFG

In this section, we shall introduce the four notions of size in a

CFG. With this we shall then be able to determine the time complexity

of the Mclean-Johnston Algorithm.

According to [2], the time needed by an algorithm expressed as a

function of the size of a problem is called the time complexity of the

algorithm. Therefore central to time complexity is the notion of size.
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According to Ginsburg and Lynch [6], there are four notions of

size in a CFG.

These are as follows:

1. S
G

- the total number of occurrences of variables and terminals

on both sides of all production rules in G.

2. V
G

- the total number of occurrences of variables on both

sides of all production rules in G.

3. PG - the number of production rules of G.

4. NG - the number of variables of G.

Assuming that each variable has at least a production rule

associated with it, then the above measures of size satisfy the

following inequalities:

(3.4.1) N <P <V <S
G G G = G

For our present study, the measures of size that seem appropriate

are PG, V(.;, SG, and we may need the following modifications:

i. S
R - the total number of occurrences of variables and terminals

on the right hand side of all the production rules.

ii. V
R
- the total number of occurrences of variables on the right

hand side of all the production rules. And finally

iii. S
RD

- defined as follows:

Let RD(K) = number of different variables appearing on the right

hand side of the K
th

production rule, adding 1 if the rule

contains terminals, then

S
RD

= S RD(K).
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We have

N <P <S <S <S.
G G= RD= R= G

(3.4.2) NG < PG VR SR 1 SG

There is no ordering between VG and SRD.

3.5 Time Complexity of Part I of Mclean-Johnston Algorithm

Although the Mclean and Johnston Algorithm is found to be of

0(N *;Gi), there are cases in which it performs very excellently,

particularly if the production rules are cleverly arranged.

Theorem 3.5. The Mclean- Johnston go thril is at most of 0 (1*S-
K )

See Appendix I for a full text of the algorithm.

Proof At line 21 of the algorithm a next variable is selected, also

at line 26 a next production rule associated with the selected variable

is selected and finally for the selected production rule, at line 41 the

next symbol is selected.

Thus, for going through the algorithm from line 21 to 118, we

examine each symbol on the right hand side of each production rule at

least once. This is S
R
number of examinations.

Assuming the delete on line 104 is not effected, then the algorithm

will repeat lines 21 to 118 at most N times before stopping. This then

gives rS
R

total number of examinations.

Counting the number of comparisons, we have at lines 43 and 47 a

comparison for each symbol on the left; at line 55, one for each

variable on the left (counting repetitions); at lines 61 and 70 one

comparison for each production rule. And at line 78 three for each
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variable on the right. Thus, for going through lines 21 to 118 once

we have

3*SR + VR + 2*NG + 2*PG

comparisons. And since the lines are repeated at most N times before

the algorithms stops we have

N*(3*SR + VR + 2*NG + 2PG) < N*(8SR).

And by the ordering earlier given, we have

0(N*SR).

This order is true whether the grammar is in Chomsky, Greibach or

in any other form, because the inequalities (3.4.1) are also fulfilled

in all these cases.

Although the deletion on line 105 saves time it does not change

the time complexity of the algorithm. This can easily be seen by assuming

uniformity, that is, the total number of symbols (counting duplications)

on the right of all production rules associated with each variable is

the same.

If this is R', then by not deleting we shall have 0(N
2
*RI),

while by deleting we have 0((N(N-1)/2)*R'). Both of these are of

0(N*SR), since SR = N *R' in this case.

Example: G = {a }, P, A) with production rules

A:: = BB...B (m times)

B:: = CC...0 (m times)

C:: = DD...D (m times)

D:: = aa...a (m times)

The length of the shortest terminal string derivable from A is m'.

This example is the worst case for the algorithm. Only one rule can
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be deleted at each time the algorithm goes through lines 21 to 118.

However, if the above example were arranged in reverse order

D:: = aa...a (m times)

C:: = DD...D (m times)

B:: = CC...0 (m times)

A:: = BB...B (m times)

then the algorithm will go through lines 21 to 118 only once.
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IV. A NEW ALGORITHM

A thorough examination of the Mclean-Johnston Algorithm reveals

several areas in which one can incorporate time saving devices. For

example, at line 55 on encountering a variable X for which E(X) is

false, one can discontinue processing the production rule and move to

another production rule. This suggests using only variables for which

E(X) is true for updating and processing any production rule.

This itself is not the ideal situation. The ideal situation we

feel, is suggested by theorem 2.8, since only "shortest" production

rules are involved in producing a shortest terminal string, then only

such rules should be used in updating any production rule, not tempor-

ary shortest production rules!

An algorithm based on this principle will require updating (re-

writing as terminals) each occurrence of a variable on the right hand

side of a production rule only once and therefore will be at most of

O(SR). Since to convert a production rule to a terminal string will

require rewriting each variable in the rule at least once, this appears

to be the best one can do.

Thus, such an 0(SR) algorithm will be more efficient than the

Mclean-Johnston algorithm which was of order N*SR.

With a modified data structure, grouping together each occurrence

of a variable on the right hand side of a production rule, and updating

them together, we achieve an 0(SRD), where SRD is as defined in chapter III.

Although our algorithm aims primarily at obtaining the shortest

length of a terminal string derivable from a variable, it stores also
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the production rule used for achieving this. Thus it accomplishes

everything the Mclean-Johnston Algorithm does.

4.1 The Description of the New Alaorithm

We associate with each production rule P defined by A::=

A
k
in V, a linear equation

N

(4.1.1) A = a + 2 c.A., A. in VN, and c. the number of times A
j=1

J J J

occurs in the production, a E VT, a bundling together of all

terminals in P.

Then if L(A) denotes the length of the shortest terminal string
N

derivable from A, we define L(P) = H + 2 L(A.)*c., then
j=1

(4.1.2) L(A) = min (L(P)), P a production rule associated with A.
P

Our Algorithm can now be described simply as follows:

(4.1.3) O. Initialize the latest symbols with shortest terminal strings

to VT. k = 0.

1. Use the set of the latest symbols with shortest terminal

strings to update the remaining production rules.

2. Determine the length of the next set of shortest terminal

strings. Set this to LL.

3. For each variable A for which no shortest terminal string

is known, determine L(A) according to (4.1.2). If L(A) = LL,

then LL is the length of the shortest terminal string

der,ivable from A. Accumulate such variables in the set S1,,

as the set of the latest symbols with shortest terminal

strings. Delete all their production rules. If set empty then

STOP, else increase k by 1 and go to 1.



Example:

A
1:

: = A
2
alb

A
2

= A
1
A
2
la

A3:: = Aly2laA2

k = 0 S
o

{a,b }, Al b,

A2 4- a

k = 1 S
1

{A1,A2} A
3

4- bba

A
3

aa

k =

.k = 3

S9 = {A3}

S
3

0

21

LL = 1, L(A1) = 1, L(A2) = 1.

P(A1) = 2, P(A2) = 4.

LL = 2, L(A3) = 3,

P(A3) = 6

To be able to establish the complexity of our algorithm we introduce

a parameter k as a counter: each time we go through steps 1 to 3 we

increase k by 1, and denote the set of latest symbols with shortest

terminal strings by Sk. At initialization k = O.

We denote the remaining set of variables by Sk, and define it recur-

sively as

SO V
N

Sk =
k-1

- S
k

Let k = k
0
whenever the algorithm stops.

Theorem 4.1: k
0

< N + 1.

Proof: Obvious. Since if for every k, o < k < N, Sk 0, then

ik+11 1'1(1
1. Therefore Sy = 0 4- SN÷1 = 0.

Theorem 4.2: For A e Sk, denote L(A) by Lk, then Lk is the length of

a shortest terminal string derivable from A.
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Proof: Again obvious, since Lk < Lk+j, j > 0.

From theorem 2.8 and lemma 2.6, we have the corallary;

Corollary 4.3. For each shortest terminal string, there is a deri-

vation tree whose depth is at most N.

Theorem 4.4. If A E 3 then no terminal string can be derived fromSk

A.

Proof: Let Tk denote the terminal strings generated during _the k

step. Since the algorithm stops when Sk is empty, it follows that Tk

is empty.

Suppose A is in Sk then every production rule associated with A
0

is of the form A:: = w1Alw2, Al in Sk . If this were not so, let

0
A:: = A1A2...Am be a production rule associated with A which violates

the condition. Let r' be minimum r such that A1A2...Am is in (1/4.1 Sk)*

n=1

0

Then L(A) > L
r1+1

, otherwise A would be in S
r'+1.

And for k > r' L(A) > Lk. In particular L(A) > L
k

1 therefore
0

S
k

is not empty, since it must now contain at least A. Which is a
0

contradiction of the definition of k0.

We have therefore shown that the algorithm works and it stops in

at most N+1 steps. The additional step is introduced to enable us

proof the correctness of the algorithm.

The present algorithm is more efficient than the Mclean-Johnston

Algorithm, since it re-writes only those variables for which shortest

terminal strings have been found.

Since re-writing all the occurrences of a variable in a production

rule requires at most SRD re-writings for the entire algorithm, it

follows that the algorithm is at worst of 0(SRD).
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4.2 The Data Structure for the New Algorithm

The data structure we are going to describe is suggested by the

equation (4.1.1).

N

3
Yid L. WAIT COEFF 4 D IND Id

I

1

I

C)

I

I

2 2., 0
1 I 0 I

3 1 0
3 I 1 I

A1:: = A2alb

A
2
:: = A

1
A
2

la

A3:: = AlA1A2laA2

Figure 4.1. Data Structure for the New Algorithm

The E-rule A:: = E, is indicated by IND(P)=0 and L(P)=0.

Figure 4.1 contains all the main arrays in the data structure.

The production rules in which a variable appears on the right hand

side are stored in increasing order in the list WAIT, and entering

in the last segment those production rules in which terminals are

involved.

LH SP
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In the list COEFF are stored the number of times a variable appears

in a production rule, in a position corresponding to the position of

that rule in the variable's segment in WAIT.

The list WL indicates where the sequence of the production rules

in which a particular variable is involved begins in WAIT. (As the

name suggests WAIT refers to production rules waiting to be updated by

the variable under whose segment they appear).

We use a few other arrays such as HEAD, IND, L, LH, and SP to

indicate respectively, the left hand side of a production rule, the

number of variables still in the production rule, the number of ter-

minals in the production rule, the length of the shortest terminal

string known for the variable and the production rule used in ob-

taining this.

The algorithm works briefly as follows:

Begin the k
th

step: If IND(j) = 0, then the j
th

rule has produced

a terminal string, L(j) stores the length of that string while we compare

to see whether it is the shortest terminal string for HEAD(j) if so, we

store its length in LH(HEAD(j)) and the production rule, i.e. j in

SP(HEAD(j)). If L(j) is of the shortest length so far for this

step, we add HEAD(j) to the list of variables in Sk and set Lk = L(j).

If we are still interested in being able to prevent re-writing

production rules associated with variables for which shortest terminal

strings have been found, then we will still have to modify our data

structure further:

We introduce another list WPHEAD to replace HEAD which stores the

left hand side of a production rule, in ascending order, in which a

variable is involved and for each entry in WPHEAD there is a POINTER
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indicating where the sequence of production rules begin in WAIT. Thus,

if WPHEAD (K) has no shortest terminal string we use the POINT(K) to

access production rules associated with WPHEAD (X)_in which the current

variable is involved and then update.

For the example in Figure 4.1 we shall have the following layout:

v\I

3
6
7

vol.kapt

2

0

POI NI 11:7

10

b

Figure 4.2. Modified Data Structure.

"" NO L

L ;.4 P.

0

1

This data structure enables us to gather information about the

HEAD of a production rule before accessing the rule.

For special grammars such as linear, regular and Chomsky Normal

Form our algorithm is of 0(PG). Because a linear and a regular grammar
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have at most a variable on the right hand side of a production rule and

a CFG in the Chomsky Normal Form has at most two variables on the right

hand side of each production rule.

4.3 Computer Program for the New Algorithm

We shall adopt the data structure in Figure 4.1 and use the array

STAR - which will indicate whether or not a shortest terminal string has

been found for a variable to achieve the effect of the data structure in

Figure 4.2.

We present the program in three procedures.

1. STSTRING - This is the main procedure.

2. SELECT - This procedure determines the length LL of the next set

of shortest terminal strings and generates the set VIP which is the

set of variables whose shortest terminal strings are of length LL.

Finally it stores the remaining variables which have, already,

terminal strings derived from them but no shortest terminal strings

yet, in the set WSS.

If VIP = 0, the algorithm stops.

3. UPDATE - This procedure uses the set VIP to generate a new set

of terminal strings and generate the set SS - the set of variables

without shortest terminal strings which were terminal strings

derived from them through the current UPDATE.

The individual arrays are as explained in Section 4.2.

L - stores the current number of terminal symbols in a production rule.

LH - stores the shortest length of the terminal string known so far

for each of the variables.

SP - stores the productionrules used in generating LH.

The detailed program now follows:



27

1. PROCEDURE STSTRING (WL, WAIT, COEFF, HEAD, IND, L, LH, SP, N, MM, PP);

-2. INTEGER N, MM, PP;

3. INTEGER ARRAY WL,WAIT,COEFF, HEAD, IND, L, LH, SP;

4. BEGIN

_5. INTEGER I, J, K, KK, LHH, LP, P, HP, LL, Kl, LL,

6. COUNT, COUNT1, KK1;

7. INTEGER ARRAY VIP, WSS, SS [1:N STAR, CHARGE [1:N];

8. FOR I:=1 STEP 1 UNTIL N DO

9. VIP[I] :=SS[I]:=WSS[I]:=0;

10. FOR I:=1 STEP 1 UNTIL N DO

11. STAR[I]:=CHARGE[I]:=0;

12. OLDCOUNT1:=KK:=COUNT:=COUNT1:=0;

13. Ki: =O;

14. Ll: SELECT (VIP, SS, WSS, CHARGE, LL, KK, COUNT, OLDCOUNT1, COUNT1, Ki);

15. IF KK =O THEN GO TO FIN;

16. FOR I:=1 STEP 1 UNTIL COUNT DO

17. SS[I]:=0;

18. FOR I:=1 STEP 1 UNTIL N DO

19. CHARGE [I]:=0;

20. COUNT:=0;

21. UPDATE (VIP, SS, CHARGE, KK1, COUNT, LL);

22. K1:=K1+1;

23. COUNT1:=0;

24. FOR I:=1 STEP 1 UNTIL COUNT DO

25. VIP [I]:=0;

26. KK:=0;

27. GO TO L1;
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23. FIN: OUTPUT (LH, SP, STAR, Kl);

29. END;

30. PROCEDURE UPDATE (VIP, SS, CHARGE, (K1, COUNT, LL);

31. INTEGER ARRAY VIP, SS, CHARGE;

32. INTEGER KK1, COUNT, LL;

33. BEGIN

34. INTEGER I, 3, K, Il, 12;

35. 7C:P. J:=1 SE? 1 UNTIL KK1 00

35. 5E3:N

37. K:=VI? :3];

IF AT :WL[K]: 0 THEN

BEGIN

Il:=WL:K];

39.

49. FOR I:=I1 STE!? 1 UNTIL 12 DO

41. BEGIN

42. ?:=WAIT[I];

43. HP:=HEAD[P];

44. IF STAR [H?]=O THEN

45. BEGIN

46. COMMENT HP HAS NO SHORTEST TERMINAL STRING YET;

47. LP:=L[P]:=L[P]-4-COEFF[I]*LL;

42. IND[P]:=IND[P]-1;

49. IF IND [P]=0 THEN

50. BEGIN

31. COMMENT WE HAVE A TERMINAL STRING FROM PRODUCTION

32. LHH:=LH[HP];

53. IF L?<LHH THEN

? ;
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54. BEGIN

56. COMMENT THE TERY.INAL STRING IS SHORTER THAN THE

56. CURRENTLY HELD FOR HP;

57. LH[HP]:=HP;

53. SPEHP::=P;

59. IF CHARGE [HP] =0 THEN

60. BEGIN

61. COMMENT NE PUT HP IN SS;

62. CCUNT:=COUN7,1;

53. SS[COUNT]:=HP;

64. CHARGE:HP]:=1;

65. ENC;

65. END;

67.

69.

END:

70. END:

71. END;

ENO;

END;

END;

72. PROCEDURE SELECT(VIP, SS, WSS, CHARGE, LL, KK, COUNT, CLOCCUN71, CCUNT1, K1

73. INTEGER ARRAY VIP, SS, WSS, CHARGE;

74. INTEGER LL, KK, COUNT, OLDCOUNT1, COUNT1, K1;

76. BEGIN

76. INTEGER I1, 12, 1, J, K, X;

77. IF K1=0 THEN

78. BEGIN

79. I1:=WL[N+1];

IF WAIT [WLEN+12] 74 0 THEN

BEGIN



80.

81.

COMMENT MM IS THE DIMENSION OF WL;

I1:=WL[N+1];

I2:=MM;

FOR I:=I
1

STEP 1 UNTIL I
2

co_

82. BEGIN

83. P:=WAIT [I];

84. IF IND[P]=0 THEN

85. BEGIN

26. LP:=L[P]:=COEFF[I];

57. HP:=HEAD[P];

0,
IF CHARGE [HP]=0 THEN

30

89.

0

91.

92.

93.

94.

95.

BEGIN

COMMENT PUT HP IN SS;

COUNT:=COUNT+1;

SS[COUNT]:=HP;

SP[HP]:=P;

LH[HP]:=LP;

CHARGE[HP]:=1;

96. END

97. ELSE

98. IF LPqH[HP] THEN

99. BEGIN

100. COMMENT THE NEW TERMINAL STRING IS SHORTER THAN THE

101. ONE CURRENTLY HELD FOR HP;

102. LH[HP]:=LP;

103. SP[HP]:=P;

104. END;

105. END;

106. END;
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107. FOR I:=2 STEP 1 UNTIL COUNT DO

108. IF LH[SS[I-l]j<LH[SS[I]] THEN

109. BEGIN

110. X:= LH[SS[I]];

111. LH[SS[I]]:=LH[SS[I-1]];

112. LH[SS[I-1]]:=X;

113. END;

114. K4 :=0;

115. COUNT1:=0;

116. LL:=LH[SS[COUNT11;

117. FOR I:=1 STEP 1 UNTIL COUNT DO

118. IF LH[SS[I]]=LL THEN

119. BEGIN

120. KK:=KK+1;

121. VIP[KK]:=SS[I];

122. STAR[VIP[KK]]: =1;

123. END

124. ELSE

125. BEGIN

126. COUNT1:=COUNTL+1;

127. WSS[COUNT1]:=SS[I];

128. END.

129. FORI:=1 STEP 1 UNTIL COUNT DO

130. BEGIN

131. CHARGE [SS[I]]:=0;

132. SS[I]:=0;

133. END;



134.

135.

136.

137.

138.

139:

140.

144.

145.
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END

ELSE

BEGIN

FORI:=1 STEP 1 UNTIL OLDCOUNT1 DO

BEGIN

IF CHARGE [WSS[1]]=0 THEN

BEGIN

COMMENT WSSFI] HAS A TERMINAL STRING EARLIER BUT NONE

THIS ROUND.

PUT WSS[I] IN SS:

COUNT:=COUNT+1;

SS[COUNT]:=WSS[I];

146. END;

147. WSS[I]:=0;

148. END;

149. END;

150. FOR I:=2 STEP 1 UNTIL COUNT DO

151. IF LH[SS[I-1]] < LH[SS[I]] THEN

152. BEGIN

153. X:=LH[SS[i]];

154. LH[SS[I]]:=LH[SS[I-1]];

155. LH[SS[I-1]];

15.6. END;

157. KK: =O;

153. COUNT1:=0;

159. LL:=LH[SSECOUNTi];

160. FOR I:=1 STEP 1 UNTIL COUNT DO
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161. IF LH [SSD-J] =U THEN

162. BEGIN

153. COMMENT PUT SSFI] IN VIP;

164. KK:=KK+1;

165. VIP [KK]:= SS[I];

167. STAR [VIPEKKII]:=1;

168. END

169, ELSE

170. 3EGIN

171. COMMENT PUT SS[I] in WSS:

172. COUNT1:=COUNT1+1;

173. WSS[CCUNT1]:= SS[I];

174. END;

175. END;

176. OLDCOUNT1:=COUNT1;

177. END;

The selection process is done in two halves, first for K1=0 and

then for Kl > O. This is why lines 107-128 are repeated in lines

150-174.
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4.4 Analysis of the Time Complexity of the New Algorithm

The main procedure STSTRING calls the procedure SELECT at line 14

at most N times and similarly calls the procedure UPDATE at line 22 at

most N times.

First we examine what happens when the procedure UPDATE is

called:

(UPDATE is the re-writing procedure. 74.

R

k)
and PG

(k)
denote

the number of symbols (variables) on the ricnt hand side to be re-written

during the k
th

step (call of UPDATE) and number of production rules

deriving terminal strings during this step respectively, then UPDATE

makes the following number of comparisons:

at line 44 S
R

S
R
`k)at line 49

at line 53

and at line 59

P
G
(k)

P
(k)

,

Summing up over k we have a total number of comparisons

N

2* E (SR(k) + PG(k)) < 2*SR + 2*PG
k=0

Now, the SELECT procedure operates slightly differently: Let H
(k)

be the number of variables with terminal strings at step k.

SELECT handles the cases k= 0 and k 0 separately.

For k = 0, it makes PG(o) comparisons at line 84, at line 88 or

98 it makes H
(0)

comparisons, while at lines 108 and 118 it makes H
(0)

comparisons to select the shortest length and the elements in VIP re-

spectively. Thus we have a total of

(0) (0)
P
G

+ 3*H comparisons
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For k 0, the relevant comparisons are made at lines 139, 151,

and 161. At each of these lines a total of H (k)
comparisons are made..

Again we have a total of

3*H
(k)

comparisons

Adding we have

(0) H(k) < 3* N(N-1)=
k=o

since H
(k)

< N-k. And usually H(k) < < N-k.

Thus from both procedures we have at most

N(N-1)
comparisons2*S

R
+ 3*P

G
+ 3*

2

+ ,

which by the earlier inequalities involving Sp, PG and N is 0(SR + N
2).

Except in very sparse cases, that is very few production rules per

variable and each production rule having very few symbols on the right,

SR N
2

(in most cases greater than).

Therefore, we have finally 0(SR).

Lemma 4.4: If there are no production rules of the type A::=B, A,B E VN

in G and if for every K, 0 < K H(K)=N - K then

N (N + 1)
S
R

>
2

Proof: We impose the condition no production rules of the type A::=B --

A,BE VN to insure that LK < LK+1, 1 < K < N. LK is the minimum length

at step K.

H
(0)

= Neil A. E V
N
there is a production rule

.Aj.:=a ct (V )
j T '

1 < j < N. We number the variables in increasing order of magnitude of

aji. If we can show that jai! 1 < j < N, then the lemma

follows; since
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SR > 2 la41 > E j N (N + 1)

j1 --j1 2

We shall agai n a ssume ;aji 0.

Since H (K) =N - K, 0 < K < N, it follows that IVIP1 = 1 at each

step and in particular only 1a11 = minla.1. Therefore ;alb > 1.

0

If for j, 1 < j < r < N, kcjI > j,we claim lar+11 > r + 1.

Suppose not, since lat.' > r then r < ;art < lar+11<r + 1 -4

ar+11 = r = lark This means lail = j, 1 <_ j < r and L1 = j.

Since L
r
= r =

'-r+1
1 L

r+1
= L

r
. This contradicts the fact

that L
r+1

> L. Therefore the lemma follows.

With this lemma we have now shown that our Algorithm is 0(Sp).

We give an example in which the set SS has N-k elements at the kth

step, 0 < k < N.

Al:: = a

A2:: = bA
I
lab

A3:: = bba1A1A2

A4:: = aaaaly2A3

A5:: = baabalA4Alb

N = 5, N2 = 25, SR = 25, N (N2+ I) 15

k UPDATE SS

0 A
1

-+ a A
1

.4- a

A
2

-÷ ab A
2

ab

A3 -4- bba A3 bba

A
4

aaaa A
4

aaaa

A5 - baaba A5 -+ baaba

L VIP WSS

1 A
2

-* ab

A
3 -4-

bba

A4 aaaa

A_ baaba



1 A2 ba A a,-4- b 2 A2 ab bba

A3 -4- aA2 A3 -4- bba A4 aaaa

A4 -4- aA
2

A3 A4 -4- aaaa A5 .4- baaba

A
5 4

A .ab A5 baaba

A3 aab A3 -4. bba 3 A3 -+ bba A4 -* aaaa

A4 --- aabA
3

A4 -4- aaaa A5 -- baaba

,A baabaaaba
D

3 A4 aabbba A
4

aaaa 4 Aa baaaaAr baaba

A5 baaba

5

aaaaab A5 -4- baaba 5 A5 baaba 0*

0 0 0

37
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V. CONCLUSIONS

Our algorithm is completely independent of the order of arrangement

of the variables, and the production rules. This again is an added

advantage.

In such cases as referred to in section 4.4 as exceptional cases

the number of variables with terminal strings at each step is very small

so that H
(k)

< < N-k. Therefore the overall order of the new algorithm

is valid and should be expected to perform faster than the Mclean and

Johnston Algorithm under most conditions.

It is not unlikely that absorbing part of the selection process

done by the procedure SELECT in UPDATE itself might help step up the

algorithm, whether this can improve upon the time complexity we are not

sure.

So far we have not analyzed the expected time of both algorithms.

A thorough analysis of this will no doubt be very informative; because

an algorithm with the best worst case complexity is not necessarily the

best algorithm as far as a expected time complexity is concerned.

We believe therefore analyzing the expected time complexity might

lead to further improvements.
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APPENDIX I

THE COMPUTER PROGRAM FOR THE MCLEAN AND JOHNSTON ALGORITHM

We now give the computer program for the Part I of the Mclean and

Johnston Algorithm as contained in [9].

1. PROCEDURE PART I (PP, D, N, P, L)

2. COMMENT THIS PROCEDURE IMPLEMENTS PART I OF THE

3. ALGORITHM;

4. INTEGER ARRAY PP, 0, P, L;

5. BOOLEAN ARRAY E;

6. INTEGER N;

7. BEGIN

8. INTEGER ARRAY G, LINK [1:N];

9. INTEGER X, I, J, K, OLDI, LASTCHANGED, SUMG, COUNT, SHORTEST;

10. BOOLEAN CHANGED, FIRST, FOUND;

11. FORI:=1 STEP 1 UNTIL N DO

12. BEGIN

13. G [I]:=0;

14. E[I]:=FALSE

15. L[I]:=0;

16. LINK[I]:=I+1;

17. END;

18. LINK[N]:=1;

19. I:=N;

20. LASTCHANGED:=N;

21. Ll: OLDI:=I;
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22. FIRST:=TRUE;

23. CHANGED:=FALSE;

24. IF I=1

25. THEN J:=1

26. ELSE J:=D[I-1] 1;

27. L2: IF J < D[I] THEN

28. BEGIN

29. COMMENT WE PROCESS ANOTHER PRODUCTION RULE

30. ASSOCIATED WITH I.

31. COUNT STORES THE LENGTH OF SHORTEST TERMINAL STRING

32. KNOWN SO FAR TO BE PRODUCEABLE FROM CURRENT

33. PRODUCTION RULE.

34. SUMG STORES THE ESTIMATED LOWER BOUND FOR THE

35. LENGTH OF THE SHORTEST TERMINAL STRING PRODUCEABLE

36. FROM CURRENT RULE;

37. COUNT:=0;

33. SUMG:=0;

39. FOUND:=TRUE;

40. K:=J;

41. L3: X:=PP[K];

42. K:-K+1;

43. IF X# 0 THEN

44. BEGIN

45. COMMENT WE HAVE NOT REACHED THE END OF

46. CURRENT PRODUCTION RULE;

47. IF X IS A TERMINAL THEN

48. BEGIN
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49. SUMG:= SUMG + 1;

50. COUNT:= COUNT 1;

51.

52.

53.

54.

55.

56.

57.

END

ELSE

BEGIN

END;

SUMG:= SUMG + G [X];

IF E [X]

THEN COUNT:= COUNT LEX

ELSE FOUND:= FALSE

59. GO TO L3;

60. END;

51. IF FIRST THEN

62. BEGIN

63. COMMENT WE HAVE FOR THE FIRST TIME IN THIS

64. ROUND REACHED THE END OF A PRODUCTION RULE

65. ASSOCIATED WITH I;

66. FIRST:=FALSE;

67. SHORTEST:=SUMG;

63. END

69. ELSE

70. IF SUMG < SHORTEST THEN

71. BEGIN

72. COMMENT SHORTEST STORES THE CURRENT

73. ESTIMATE OF THE MINIMUM OF ESTIMATED LOWER

74. BOUNDS OF THE LENGTH OF A SHORTEST TERMINAL

75. STRING DERIVABLE FROM I;
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76. SHORTEST:=SUMG;

77. END;

78. IF FOUND AND NOT (E[I] AND COUNT < L[I]) THEN

79. BEGIN

30. COMMENT A TERMINAL STRING SHORTER THAN THE

81. PREVIOUS ONE HELD FOR I HAS BEEN FOUND;

82. L[I]:=COUNT;

33. E[I]:=TRUE;

34. P[I]:=J;

35. CHANGED:=TRUE;

36. END;

37. =K

38. GO TO L2;

89. END;

90. IF SHORTEST G[I] THEN

91. BEGIN

92. COMMENT THE LOWER BOUND OF THE LENGTH OF

93. A SHORTEST TERMINAL STRING DERIVABLE FROM I

94. HAS INCREASED;

95. G[I]:=SHORTEST;

96. END;

97. IF E[I] AND G[I] = L[I] THEN

98. BEGIN

99. COMMENT A SHORTEST TERMINAL STRING HAS

100. BEEN FOUND FOR I;

101. IF I = LINK_EIj THEN

102. GO TO FIN

103. ELSE
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104.

105.

BEGIN

COMMENT DELETE I;

106. LINK [OLDI]:=LINK[I];

107. I:=LASTCHANGED:=OLDI;

108. GO TO Ll;

109. END;

110. IF CHANGED THEN

111. BEGIN

112. LASTCHANGED:=I;

113. GO TO L1;

114. FND

115. ELSE

116. IF LASTCHANGED I THEN

117. GO TO Ll;

118. LAIO,

FIN: END;
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APPENDIX II

THE PART II OF THE MCLEAN AND JOHNSTON ALGORITHM

Having obtained for each variable A the length of a shortest

terminal string and a production rule P(A) that can be used for deriving

a shortest terminal string, if one exists, the derivation tree of the

string is constructed as follows:

(A.II.1) IF A IS A TERMINAL THEN

OUTPUT SYMBOL A

ELSE

BEGIN

LET P(A) BE THE RULE

A::=A1A2...Am

FOR K:=1 STEP 1 UNTIL M DO

CONSTRUCT THE SHORTEST TERMINAL STRING OF AK;

END;

REPEAT FOR ALL VARIABLES A FOR WHICH E(A) IS TRUE;


