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HYDRODYNAMIC FORCES ON A HORIZONTAL CYLINDER
UNDER WAVES AND CURRENT

1. INTRODUCTION

1.1 Horizontal Cylinder in Waves

Wave induced forces on cylinders have been investigated mostly

for vertical cylinders or horizontal cylinders in planar oscillatory

flow. Little research has been done on horizontal cylinders in waves

in spite of the common use of horizontal members in many offshore

structures and ocean pipelines.

The significant difference between a horizontal cylinder in

waves and a vertical cylinder (or a horizontal cylinder subjected to

planar oscillatory flow) is that the former experiences orbital

motion of the fluid particles around the axis of the cylinder.

In wavy flow, the wake formed over a horizontal cylinder will

rotate around the cylinder. It will be swept back and forth in an

oscillatory way only for cylinders near the sea bottom or in shallow

water. The stagnation point on the cylinder will rotate around the

horizontal cylinder as the waves pass.

For vertical smooth cylinders, the vertical force component par-

allel to the cylinder axis is probably negligible compared to the in-

line force and the transverse vortex force. However, for the hori-

zontal cylinder, the vertical force component due to the orbital

motion of the water particle is significant.
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The presence of a vertical velocity will affect the hydrodynamic

force. By increasing the ratio of water particle velocity ampli-

tudes, wm/um, where wm is the maximum vertical velocity and um is the

maximum horizontal velocity, the drag force and drag coefficient for

the horizontal cylinder will be reduced. Maull and Norman (1978)

examined the hydrodynamic forces on the horizontal cylinder under

waves, and showed the above results. Ramberg and Niedzweki (1982)

obtained the same trend and their results agreed well with those from

Maull and Norman, which will be shown later.

From preliminary studies by Sarpkaya (1982) for cylinders oscil-

lating normal to harmonic planar flow, Sarpkaya and Isaacson (1981)

state that the force coefficients, Cd and Cm, for wm/um=1 and K=20

are about one half of those for wm/um=0. Thus, the use of force

coefficients from planar oscillatory flow may overpredict the actual

forces on a stationary horizontal cylinder in waves by as much as

100%. This conclusion was also indicated by Ramberg and Niedzwecki

(1982). It was shown that a similar trend was experienced for exper-

imentation reported in Nath (1982) and reiterated herein.

1.2 Current Effect

In the open sea, there are currents generated by wind, earth

gravity, tide and waves. Ocean waves in general propagate on cur-

rents, not on still water. There are two major categories when the

waves and current problem is studied. What are the kinematics and
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dynamics in the flow field when, (i) a wave train of given height and

period propagates from still water into a current field; and (ii) a

wave height and period are specified in the combined state with the

current. It is known that the characteristics change [for category

(i)] due to the hydrodynamic interactions when a wave encounters a

current. That is, if the current is in the direction of the wave,

the wave amplitude decreases and the wave length increases. But, if

the current opposes the waves, the wave length decreases and the

amplitude increases, making the wave steeper (Longuet-Higgins and

Stewart, 1961). Due to some certain difficulties, very few papers in

the open literature have discussed how to separate current from waves

when the waves and current condition is given [category (ii)]. But,

if the linear superposition principle is assumed, it will be easier

to separate the current velocity from the waves. When dealing with

the waves and current problem one should state clearly the coordinate

systems involved. There are three coordinate systems that can be

used to describe the flow field under waves and current: (1) sta-

tionary (fixed) coordinate system, (2) coordinate system moving with

the surface current velocity, and (3) coordinate system moving with

the wave celerity.

An excellent review on the interaction of wave and currents was

presented by Peregrine (1976) who gave appropriate physical and math-

ematical details on almost all kinds of conditions for wave-current

interaction.
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Hydrodynamic forces on marine structures are directly related to

the kinematics and dynamics of water particles, and are significantly

affected by the presence of currents. Hedges (1979) and Dalrymple

(1973) indicated that neglecting the current in a wave field can give

rise to a significant error in the evaluation of the kinematics and

in the wave force analysis. Tung and Huang (1973) examined the com-

bined effects with spectral analysis. They concluded that the pres-

ence of a current can bring considerable change to the hydrodynamic

forces and omission of the current will cause underestimates because

the force spectral peak with current is greater than without current.

In the past, the phenomenon of wave-current interaction was usu-

ally ignored because it was not fully understood. Because it is dif-

ficult to generate currents in conjunction with laboratory waves, we

do not have much experimental data to test existing interaction

theories. In addition, forces on cylinders from waves and current

are also difficult to evaluate. In the present study, towing a cyl-

inder in the wave tank is used as an alternative to providing a cur-

rent with waves. It will be seen that this is equivalent to the

superposition principle.

Frequently, the Morison equation is used by superimposing the

current velocity on the wave-induced horizontal water particle veloc-

ity for predicting hydrodynamic forces from waves and current. There

is a bias to the wake structure because of the mean flow. It affects

the time-dependent forces, thence the force coefficients. So, the
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force coefficients for waves and current may be different from those

obtained under planar oscillatory flow (Sarpkaya, 1976) wavy flows

(Nath, 1982) and ocean tests (Kim and Hibbard, 1975) and need to be

determined.

1.3 Scope of the Present Study

The main consideration of this study is the hydrodynamic force

on a horizontal circular cylinder under waves and current [category

(ii) defined above]. The force coefficients for a horizontal cylin-

der, either in waves or under waves and current, are determined

experimentally for Reynolds number up to 5x105. Some differences of

wave force coefficients between a horizontal cylinder in waves and in

planar oscillatory flow (or a vertical cylinder in waves) are

shown. Whether the wave and force data are well-conditioned for

determining the drag and/or the inertia coefficient should be deter-

mined before these coefficients are adopted. A method with associ-

ated criteria is proposed for evaluating the suitability of the data

under waves and wave plus current.

The kinematics for the linear superposition of waves and current

are compared to those for waves plus towing on the basis of theory

and experimentation. The results for waves plus towing can be used

for waves and current if the linear superposition principle is

assumed.

The differences between using total acceleration and local

acceleration in the inertia term are examined for both waves only and

the waves and current condition.
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2. THEORETICAL CONSIDERATIONS

2.1 Combined Flow Field under Waves and Current

When the Morison equation is used to predict hydrodynamic forces

on offshore structures, the kinematics related to the design wave and

current condition need to be known. Force coefficients determined

from experimental measurements are very dependent on the flow kine-

matics used. In this section, the combined flow field under waves

and current is discussed.

The combined flow field is considered with respect to the fixed

coordinate axes and the coordinates moving with the current velocity

U (see Fig. 2-1). When the current is in the direction of the waves,

Wave Velocity,C Wave Velocity,Cr

U

)'x

Coordinate System
Fixed Coordinate System

Moving with Current

x =x' +Ut

11///////1111/ilililMilillaililffigil/////1/1/11/1/1/11/////fillA

Fig. 2-1 Definition Sketch for Waves and Current



the wave celerity relation between these two coordinate systems is:

C = Cr + U

7

(2.1)

in which C is the wave celerity with respect to the fixed coordinates

and C
r

is the relative wave celerity with respect to coordinates mov-

ing with U (or quasi-still water).

By introducing C = L/T and Cr = L/Tr, the following expression

can be obtained.

w = a + kU (2.2)

in which w is the frequency with respect to the fixed coordinates, a

is the frequency with respect to the moving coordinates and k = 2n/L

is the wave number.

For generality, Eq. (2.2) can be written as

a = w ±kU (2.3)

in which the negative sign is taken when current follows with the

waves and the positive sign is taken as the current opposes the

waves.

If linear wave theory is applied, the dispersion relation of

this flow field can be obtained as follows:

a2 = (w±kU)2 = gk tanh kh (2.4)
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When evaluating the kinematics and dynamics under the combined

flow field of waves and current Ltor category (ii), with specified

wave height and wave period, there are two possible considera-

tions: (1) including the interactive effect and (2) considering the

linear superposition principle.

Considering the interactive effect, Dalrymple (1973) proposed a

stream function model for nonlinear waves on shear currents in which

the shear current can be represented with a linear or bilinear

(formed by two straight lines) velocity profile. The stream function

perturbation series for the linear current model was assumed as

(Us-Ub)(h+z)2
T(x,z) = (C-Ub)z

2h

NN+1
2-ff(n-1)x

+ E X(n) sinh
27(n-1)(h+z)

cos

n=2
(2.5)

in which the X(n)s are unknowns and NN represents the order of the

wave theory. The current velocity in Ub and Us are at the bottom and

surface respectively. Dalrymple (1973) defined an objective function

(OF) with two Lagrangain multipliers, Al and A2.



OF = E1 + X1E2 + X2E3

2
L/2

= LQ(x)-0J2dx +.a1
2 rL/2

1 y: n(x)dx + Ln(0)
(LI

0 0
2 -nkT Hi

9

(2.6)

L/22in which Q is the Bernoulli constant, Q = f Q(x)dx, and n is
L 0

the free surface elevation. By minimizing the OF, with respect to

L,T(x,n), Al, A and all the X(n)s, small corrections to these

unknown coefficients, may be found and then are added to the previous

iterative estimates for the unknowns. The process must be iterated a

number of times for proper convergence. After evaluating the stream

function, 'y(x,z), the components of water particle velocity under

waves and current can be found by

u = - +
@Z

in which the derivative of 'i'includes the interactive effect.

(2.7)

(2.8)
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Neglecting the interactive effect, the linear superposition

principle can be used to predict the kinematics under waves and cur-

rent. The kinematics are then expressed as

and

u(x,z,t) = U(z,t) + uw(x,z,t) (2.9)

w(x,z,t) = ww(x,z,t) (2.10)

in which the uw and ww are the kinematics caused by waves alone and

can be obtained by using one of two different methods. One method is

by using the wave period from the fixed coordinate system in conjunc-

tion with the still water condition. The other method is to use the

moving coordinate system (quasi-still water) in order to evaluate uw

and ww. The second method should yield a better estimate for L than

the former one.

Although the importance of the interactive effect of the waves

and current has been known for a long time (c.f. Longuet-Higgins and

Stewart 1961, Dalrymple 1973, Tung and Huang 1973), the linear super-

position principle is still widely used for both research (c.f.

Bishop 1978, Dean 1979, Bernitsas 1979) and the design of offshore

structures. The reasons researchers and designers use the simple

superposition principle instead of some other theory are:

(I) The complex fluid-mechanic phenomenon, where the interaction

of waves and current is taken into consideration, may not be fully
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understood, and for laboratory studies it is difficult to generate

waves and current simultaneously. In addition, it is difficult to

verify the accuracy of, thence the validity of, existing wave-current

theories.

(II) From the engineering design point of view, the linear

superposition principle may be sufficient and valid with a suitable

factor of safety and design experience.

(III) When an analytical theory or equation is derived, the cur-

rent effect will be easily observed by using the superposition prin-

ciple. Also, it is convenient for deriving. For other models, the

current effect is implicit in the combined kinematics.

(IV) With measured force data only, the current velocity can be

evaluated if the superposition principle is assumed (see Dalrymple

1973).

Dalrymple (1973) compared the horizontal velocity profile pre-

dicted by his stream function shear current model to that by the

superposition principle where the wave kinematics from still water

(fixed coordinates) were added to the current. (That is, the wave

period was NOT modified to that in quasi-still water.) He found the

differences between these two are small in deep water (1.1% under

wave crest and 11.1% under wave trough) and the error becomes larger

for shallow water (13.9% under wave crest and 29.5% under trough in

his example).

In this study, linear superposition principle is used.
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2.2 Modified Morison Equation

Morison et al (1950) proposed a mathematical equation to calcu-

late the forces on a vertical pile exerted by unbroken surface waves,

the so-called Morison equation. This equation represents a sum of

drag force (FD) and inertia force (F1).

1 ryrr

2
au

F = C
d 7 pDului + Cm 4 at

where F = horizontal force per unit length

D = pile diameter

P = water mass density

C
d

= drag coefficient

Cm = inertia coefficient

u = horizontal component of water particle velocity

au
= horizontal component of water particle local

at
acceleration

(2.11)

Wave Forces on a Horizontal Cylinder

The Morison equation can be extended to evaluate wave forces on

a horizontal cylinder. Under this circumstance, the elliptical

orbits of water particles should be considered, so the vector form is

utilized to describe the hydrodynamic forces on a horizontal cylin-

der. The kinematics and related forces are assumed to be aligned as

shown in Fig. 2-2.

Because the direction and period of the lift force are ambiguous
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Fig. 2-2 Kinematics and Forces on a Horizontal

Cylinder

the lift force is ignored in the following and its effects are consi-

dered to be included into the drag and inertia components.

The vector form of the Morison equation can be expressed as fol-

lows (see Nath, 1982):

r = rD rI

1 p+ q
carD2

q+= C Dq I +C i
d 2 m 4

(2.12)

where i = u + w, 4/. + , u and w are the horizontal and ver-

tical components of velocity, u' and w' are the two components of
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acceleration (the total, or material derivative of the velocity).

The drag and inertia component of the hydrodynamic forces can be

decomposed into the horizontal (x) and vertical (z) components

respectively.

r r
Dx

r
Dz

+ r
Ix

+ r
Iz

= Cd pDu 141 + Cd ppDw 141 + C
m

pirD2
w'wi

+ rz rD
(2.13)

where r
D

= r
Dx

+ r
Dz

and r
I

t
Ix

4- r
Iz'

After rearranging, we

have

D2
F
x

= C
d
1 pD u + C

m

0
u'

4

0 D2
Fz Cd pDw 141 + Cm -27 w'

(2.14)

(2.15)

1

and F = (Fx
2

+ Fz
2

)

2
.

Sarpkaya and Isaacson (1981, pp. 297) cautioned that the writing

of the Morison equation in vector form, i.e. Eq. (2.12), does not

necessarily imply that the behavior of the wake can be correctly

represented because of the neglect of the higher harmonics, which

occur from vortex shedding and other turbulence.
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Hydrodynamic Forces under Waves and Current

If a uniform and steady current, U, is introduced to the wave

field, we can modify the vector form of the Morison equation for the

case of a horizontal cylinder subjected to waves and current. In the

present study, the current is assumed to be in the direction of wave

propagation as sketched in Fig. 2-3.

z

/7///illliamti

j.k...\ u=U+u
w

horizontal cylinder

> x

Fig. 2-3 Definition Sketch for a Horizontal Cylinder

under Waves and Current

Since the linear superposition principle is assumed, we have the

following water particle velocity components as described in Eq.

(2.9) and Eq. (2.10) for a uniform and steady current.

u(x,z,t) = U + uw(x,z,t) (2.16)

w(x,z,t) = ww(xz,t) (2.17)
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and cl = u + w (2.18)

in which uw and ww are water particle velocities induced by waves

only.

Also, if the total acceleration is used instead of the local

acceleration in the inertia force, the acceleration will be modified

by introducing a current in the wave field as follows

and

auw au
w

auw
u

/

at + (u w+ u
)

ax + ww az

aw
w

aw aw
w

W = (11
w

U) w
at ax w az

Da' +I ..,.

q = = u + wi
Dt

= +uli+w-g
3t ax az

=A+u -±U - +w
at w ax ax w az

(2.19)

(2.20)

(2.21)

With the above relations, the hydrodynamic forces on a horizon-

tal cylinder under waves and current can be described by

04 pirD
2

= C
c

m 4
(2.22)
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1

in which 141 = (u
2
+ w 2 )7

.

Eq. (2.22) can be decomposed into the horizontal (x) and verti-

cal (z) component as Eq. (2.14) and Eq. (2.15).

2.3. Dimensional Analysis

Some insight into the appropriateness of the Morison equation

and the force acting on a submerged cylinder by waves and current can

be gained through dimensional analysis. The instantaneous force per

unit length, F, on a stationary horizontal circular cylinder under

waves and current whose propagating direction is perpendicular to the

cylinder axis is

F= f(D, e,p,v,H,T,L,h,U,uwm, wwm, e, d, g, t) (2.23)

where the cylinder is characterized by its diameter and roughness

height, D and e respectively. The pertinent fluid properties are the

density, p, and the kinematic viscosity, v. If the fluid flow field

is under waves and current, it may be completely characterized by the

wave height, H, wave period, T (with respect to the fixed coordinate

system), wave length, L, water depth, h, and the current velocity,

U. The maximum horizontal and vertical component of the wave water

particle velocities, uwm and wwm, are considered for quasi-still

water and depend only on H, h and L. The distance from the ocean

bottom to the lowest point of the cylinder is denoted by e. The dis-

tance between the highest point of the cylinder and the still water

surface is denoted by d. Note that h=d+e+D.
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The linear superposition principle is assumed. The current is

also assumed to be steady and uniform. The maximum total horizontal

velocity, i.e., um = uwm + U if the current is in the direction of

waves, could be used instead of the maximum horizontal velocity

induced by waves only in the parametric analysis. Thus, Eq. (2.23)

can be rewritten as

F = f (D, e, p, v, H, T, L, h, um, wwm, U, e, d, g, t) (2.24)

Through dimensional analysis, one possible set of dimensionless

parameters is

uDHDu
m
Theedw u

m
Ut

wm

pDu2
f

1 v ' 1:' IT' Ti' T5' um'igd' um' T) (2.25)

Nath and Yamamoto (1974) summarized and graphed the results from

Havelock (1936) and Ogilvie (1963). They concluded that the free

surface effects for the forces on a horizontal cylinder are negli-

gible if the submergence is greater than about four cylinder diame-

ters, i.e., d>4D. In this study, the horizontal cylinder is sub-

merged deeper than 40, so d/D and um/gd can be ignored. Sarpkaya

(1977) showed that the effect of wall-proximity is to increase the

force coefficients for relative gaps e/D less than about 0.5, i.e.,

e/D <0.5. Also, it can be observed from the experimental data

obtained by Yamamoto and Nath (1976) that there is no significant
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difference in force coefficients if e/D>1.0, especially for large

Reynolds numbers (say R>1x105). The parameter e/D can be removed

from Eq. (2.25) because e/D always is greater than 1.0 in this

study. The parameters H/L and h/L can be used for determining the

water particle velocity amplitudes um and wm. Because the cylinder

considered is slender, i.e., D<20L, D/L can be ignored. Now, Eq.

(2.25) can be reduced to

or

um D um T E U w
wm

t
-

pDuwm
2

z

2( v ' D '
T)

U wm t

f
2
(R, Ty,

Urn' T)
pDuwm2

(2.26)

(2.27)

in which R is the Reynolds number, K is the Keulegan-Carpenter

number, e/D is the relative roughness, U/um is the ratio of the cur-

rent to the maximum horizontal velocity, wm/um is the water particle

velocity ratio, and t/T is the time history.

Combining Eq. (2.22) and Eq. (2.27), we have

E U w

C = f (R, K, wm)
d d D' u ' u

m m

E U W
wm

C
M

= f (R, K, , --u- --u--

wm

(2.28)

(2.29)
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The time-variation term, t/T, is ignored in the above relation

because the force coefficients C
d

and C
m are considered in the pre-

sent study to be time-averaged values over one wave cycle.

The velocity in the Reynolds number and Keulegan-Carpenter num-

ber can be noted as qm, which is the maximum value of the total velo-

city vector. But, the total water particle velocity is maximum at

the time of the maximum horizontal component. Thus, qm = um, so u
m

is used in R and K instead of qm for convenience.

In order to examine the current effect on hydrodynamic forces,

the current velocity and wave-induced water particle velocity (in

quasi still water) can be considered separately. Every non-

dimensional parameter in Eq. (2.26) including the maximum velocity um

can be decomposed into two components concerned with uwm and U

respectively, i.e., um = uwm + U. Thus, more dimensionless parame-

ters can be derived which could measure the behavior of the force

coefficients.

F
UD u D UT u

wm
T U wwm

)

' D' D ' uwm' uwm'
pDuwm

2
(2.30)

The first parameter on the right hand side is the Reynolds num-

ber under the influence of current only. The third parameter can be

termed the "Verley-Moe number" (VM) after being used by them

(1978). In the VM number, U/D is proportional to the eddy shedding

frequency if a steady current is considered rather than waves, and
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1/T = n is the wave frequency. Thus, the VM number represents the

ratio of wave period and wake developvement time. Combining the

second and the fourth parameter, the parameter D2/01- = a, which is

termed the "frequency parameter" by Sarpkaya (1976), is obtained.

This parameter is the ratio of the Reynolds number and the Keulagen-

Carpenter number, i.e., (3 = R/K. The fifth parameter U/uwm can be

used to examine the effect of current velocity to the wave-induced

velocity. The last parameter wm/um is an index of the water particle

orbital shape effect.

2.4. Force Coefficients Dependence on Governing Parameters

The parametric dependencies of force coefficients from previous

studies are reviewed and discussed in this section.

For steady current, Achenbach (1971) described the variation of

the drag coefficient with Reynolds number. The nature of steady flow

past a hydrodynamically smooth circular cylinder is composed of sub-

critical, critical, supercritical and post-critical regions as indi-

cated in Fig. 2-4. Roughness generally increased the rate of boun-

dary layer growth, the skin friction and the effective diameter. The

effects of roughness on the drag coefficient of a cylinder in steady

flow reported by Miller (1977) are shown in Fig. 2-5. The smooth

cylinder (an effective roughness of e/D=0.0004) and sand roughened

cylinder with E/D=0.02 test results from Nath (1983) are super-

imposed. As relative roughness increases, (i) the critical Reynolds
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number (where drag coefficient falls steeply) decreases, (ii) the

minimum drag coefficient increases, and (iii) the drag coefficient at

high Reynolds number increases.

For oscillatory flow, a lot of experiments and studies verify

the variation of Cd and Cm as functions of the Reynolds number and

Keulegan-Carpenter number. The study carried out by Sarpkaya (1976)

is probably the most comprehensive and detailed. Typical results for

a smooth cylinder in his study are shown is Fig. 2-6. The dependence

of Cd and Cm on the frequency parameter f3 was first presented in his

study as shown in Fig. 2-7.

Yamamoto and Nath (1976) and Garrison et al. (1977, 1980) con-

ducted their experiments by oscillating a cylinder sinusoidally in

still water to investigate the influence of R and K. Their results

are plotted in Fig. 2-8. To calculate Cd and Cm, Keulegan and Car-

penter used the Fourier-averaged method, Garrison used the least

square method, and Yamamoto and Nath evaluated Cd at the maximum

velocity and Cm at maximum acceleration. Although different tech-

niques were used, consistent results are seen in the figure. The

analytical consistency of Cd and Cm value determined from different

techniques is shown in Appendix A.

Sarpkaya (1976) also presented force coefficient data obtained

with sand roughened cylinders. His results are shown in Fig. 2-9.

The significant effects of relative roughness can be easily observed.
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For a horizontal cylinder in waves, the force coefficient depen-

dences are not quite the same as those for planar oscillatory flow

because of the orbital motion of the water particle around the center

of the horizontal cylinder. Ramberg and Niedzwecki (1982) presented

Cd and Cm values as shown in Fig. 2-10, based on the vector form of

Morison equation. They also examined the forces and force coeffi-

cients based on the Morison equation for each component of force

using the corresponding component of velocity and acceleration, which

are expressed in Eq. (2.31) and Eq. (2.32). As for the difference

between the scalar form and the vector form, i.e., Eq. (2.14) and Eq.

(2.15), they reported (i) the vector approach is indeed more appro-

priate, (ii) the drag coefficients obtained from the vector form are

5 -10% smaller than those for the scalar form, and (iii) the inertia

coefficient is the same in each case.

1 0
2

Fx Cd pD u lul + C
m

pn
=----

4

1 irD
2

Fz = Cd pD wiwl + C
m

p
w

(2.31)

(2.32)

Maull and Norman (1979) and Ramberg and Niedzwecki (1982) exam-

ined the forces on a horizontal cylinder by defining force coeffi-

cients based on root-mean-square values, averaging over time, as

defined in Eq. (2.33) and Eq. (2.34), which are named the in-line
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coefficient (C
x

) and the transverse coefficient (C
z

) respectively.

Their results are shown in Fig. 2-11. The difference between planar

oscillatory flow and wavy flow for the horizontal cylinder is evident

from these plots. Thus,

(F) rms
C (2.33)
x 1

2- pD (urms)

and

(F )rms
C
z 1

(2.34)

7 pp (wrms)

2

The dependence of Cd and Cm on the water particle velocity ratio

wm/um was examined by Sarpkaya (1982) and is shown in Fig. 2-12. It

can be seen that the Cd and Cm have high dependence on wm/um for two-

dimensional flow.

The results of the experiments for this study, plotted according

to the parameters discussed here, will be presented in Section 5.1.

As mentioned before, the hydrodynamic forces on cylnders under

waves and current are much more complicated than tjiose in waves only

and little research about this topic has been reported. Almost all

of the former studies dealt with the forces under planar oscillatory

flow and current only.

Verley and Moe (1978a, 1978b, 1979) conducted a sequence of

experiments by oscillating a horizontal cylinder in a current where

the plane of motion was parallel with the current flow line. In
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their studies, the following two equations were used to analyze the

data.

and

F= 1 pDCd (U-*)
1 U-* I - plrD2 (Cm-1) ic

1 2
-

1 1 2
F

2
pDC U PDCd2 (Cm - 1) Z

dl d2 -1-1
71,

(2.35)

(2.36)

where x, x and Z are the displacement, velocity and acceleration of

the cylinder. The added mass coefficient Ca.Cm-1 was used because

the cylinder was oscillated instead of generating the planar

oscillatory flow. They believed that Eq. (2.35) is the better formu-

lation and Eq. (2.36) should be applied at low value of Verley and

Moe number U/nD in which n(=1/T) is the wave frequency. The depen-

dence of the force coefficients on VM number and velocity ratio U/uwm

were found in their studies.

Mercier (1973) also studied experimentally the forces on a cyl-

inder oscillating with large amplitude in line with a steady

stream. He found that the force coefficients are functions of VM

number (which was called reduced velocity in his study) and Keulegan-

Carpenter number.

Greenamyer (1973) investigated the forces on a cylinder immersed

in a unidirectinal periodic flow which-is characterized by



34

U + u
m

sin2Trt. He divided the total drag into steady state drag and

oscillating drag. He defined the parameter A = nD /U which is the

inverse of the VM number and found that the force coefficients

obtained by him and others are functions of A.

2.5. Accelerations in Inertia Term

Whether the inertia force term in the Morison equation should be

taken as proportional to the total acceleration or to the local

acceleration is debatable. Isaacson (1979) indicated that no formal

justification exists for adopting one or the other even though these

may differ significantly from each other in typical design waves.

At any point in a two-dimensional wave field, the relation

between total and local acceleration in the horizontal and vertical

direction can be expressed as

Du au au= w
Dt at ax az

Dw aw 3w aw

Dt at .u7(TZ az

(2.37)

(2.38)

In other words, the total acceleration is composed of a local accel-

eration and a convective acceleration.

Isaacson (1979) calculated the "effective inertia coefficient",

'

C'
m

which is defined in Eq. (2.39) by using Stokes fifth-order wave

theory in the horizontal direction. He concluded that in deep water
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the maximum values of total and local acceleration are equal. For

finite depth water waves, the local acceleration will be larger than

the total acceleration by comparing the Cli; and Cm theoretically.

Thus,

Du

C C
(5-0 max

m au
( -) max

(2.39)

For two-dimensional wavy flow, the difference between total

local acceleration in the vertical direction also should be exam-

ined. The results for this study obtained by using stream function

wave theory are given in Section 5.4.

If a steady and uniform current, U, is introduced in a wave

field, the total acceleration becomes

Du
au au au au

w w
+ (u

w
+ U) + w

wDt at ax az

Dw
aww

w
aw aww

Dt at
+ (U

w
+ U) + W

w az

(2.40)

(2.41)

Thus, the convective acceleration will be affected by the pres-

ence of the current and the influence varies linearly with the magni-

tude of the current velocity U. Because the local acceleration will

not be affected by the presence of the current, the total accelera-

tion gets smaller as U gets larger (if the current is in the direc-

tion of wave). In other words, the larger the current velocity is,



36

the bigger the difference between the total and the local accelera-

tion.

When the current velocity is large, the drag force is much

larger than the inertia force because the drag term is proportional

to the square of relative velocity. Under these circumstances, the

differences between using total acceleration and local acceleration

are not important because of the small relative magnitude of the

inertia term.
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3. EXPERIMENT

3.1. Description of the Experiment

Wave Research Facility (OSU)

The experiments in this study were conducted at Oregon State

University Wave Research Facility (WRF). The WRF is a large-scale

wave channel 342 feet long, 12 feet wide and 15 feet deep in the test

section. The hinged wave board is driven by an MTS Servo hydraulic

piston. Periodic waves can be generated with wave periods of from

about 1 to 8 seconds and wave heights of up to 5 feet high and break-

ing. Random waves can also be generated using the on-site PDP-11

computer to generate the wave spectrum and transfer function for the

board motion.

Test Cylinder

The test cylinder is 0.719 feet in diameter and 8.7 feet long.

The two feet long test section is located at the center portion of

the cylinder and two sides (right and left) are dummy sections used

to minimize end effects. Fig. 3-1 shows the arrangement of the spec-

imen on the towing carriage in WRF.

The two-feet long test section is suspended from two 5/8-inch

diameter aluminum rods that were milled on the ends to receive strain

gauges in such a manner as to measure the total horizontal and verti-

cal forces on the test section. The gauging length of each rod is 8
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inches, and the construction resulted with this gauge length being a

fixed ended beam. There are four beams total and the strain gauges

are arranged to eliminate any influences from torsion or from off-

centered loadings of the hydrodynamic forces.

With the towing carriage stationary, waves are imposed on the

cylinder so that hydrodynamic forces on test cylinder in wavy flow

can be obtained. The towing carriage is powered with an electric

motor which can control tow speed from 1 cm/sec to about 300

cm/sec. In this study, the combined effect of waves and current on

the test cylinder is simulated by towing the test cylinder with the

carriage into wavy flow. This simulation will be discussed in the

following section.

Two kinds of cylinders are used in this study: a smooth cylin-

der and a sand roughened cylinder with relative roughness e/D = 0.02.

Measurement and Calibration

Eleven channels of information were measured at times: the

water surface elevation, three current meters with two directions

each, the carriage speed, the horizontal acceleration of the cylin-

der, and two forces (horizontal and vertical) from the test section

of the cylinder.

Wave heights (wave profiles) were measured with two sensors that

measure the travel time of sound from gauge to the water surface and

return. Nath (1981a) stated that static calibrations of the wave
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profiler have been made in the past and they were quite linear. The

water surface fluctuation should be measured directly above the test

cylinder. Therefore, the wave sensor was mounted in an opening of

the wave carriage at this location.

The water kinematics (velocities) were measured with Marsh-

McBirney current meters. Through the steady state tow tests, Nath

(1981a) reported the static sensitivity of the meter is 20.47, i.e.,

u = 20.47 x (Volts). Obviously, with the cylinder present, it is

impossible to measure water particle kinematics at the position of

the center of the cylinder. The best that can be done under such

circumstances is to measure the kinematics at some distance from the

cylinder. However, some theories must then be used to account for

the attenuation or phase shift of the kinematics due to differences

in position. In present experiment, the current meter was placed

2.01 feet above the center of the test cylinder. The kinematics were

measured together with wave profile and force data for each test

run. The consistencies between measured and predicted kinematics for

waves only were verified by Nath (1981a). The similarity between

measured and predicted kinematics for waves plus towing will be exam-

ined in Section 5.3.

The force dynamometer was calibrated by means of providing known

forces in each of four directions (up, down, south, north) using very

low friction pulleys, weights, and buckets before and after the

test. Table 3-1 gives the calibration constants for each test condi-



Cylinder Run Number
Test

Condition

Horizontal
Direction

Vertical

Direction
Actual

Constants
UsedNorth South Up Down

Smooth Waves:
Run 278-305
Run 313-350

Waves + Towing
Run 366-376

Before Test 31.95 33.64 31.95 31.95

32.55
After Test 32.31 32.32 31.54 31.92

Sand
Roughened

Waves:
Run 379-410

Waves + Towing
Run 422-437

Before Test 32.14 32.31 31.22 31.79

32.14
After Test 32.11 31.54 31.88 31.62

Table 3-1

Summary of Force Dynamometer Calibration Constants
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tion and actual calibration constants used for the data reduction.

The details of the calibrations can be found in Nath (1981a).

Data Recording

Transducer outputs were recorded on digital magnetic tape and strip

chart records. A PDP-11 minicomputer provided software for multi-

plexing and initial recording on disk. After an experiment, data

were transferred from disk to tape.

The original approach to digitize the data is to keep the time

interval small enough to avoid aliasing in the frequency domain with

respect to the fundamental wave frequencies and the higher harmonics

for any frequencies under consideration. Because the Fast Fourier

Transform algorithm which was developed for processing the data was

to be used, each wave fundamental period should be digitized at 2N

intervals for convenient use later. In this task, data were recorded

at the rate of 210 = 1024 points per wave period for a total of four

waves, starting at an arbitrary time during an experiment.

All of the digital recording data and strip chart records can be

converted to data with physical units by multiplying respective scale

constant.
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Test Conditions

Both of the smooth and sand roughened cylinder were tested for

the following conditions.

(I) Waves only: Wave periods were from 2.50 seconds to 6.00

seconds. Wave heights were from 0.8 feet to 4.7 feet.

(II) Waves plus towing: Wave periods were from 2.50 seconds to

6.00 seconds. Wave heights were from 3 feet to 4.6 feet. Towing

speed was designated in two parts: (a) low range: U = 0.6 to 0.9

ft/sec. and (b) high range: U = 3.3 to 6.5 ft/sec.

3.2. Similarity between "Waves and Towing" and the Linear Superposi
tion Principle.

o study the hydrodynamic forces on marine structures under

waves and current, three possible kinds of experimental techniques

can be used besides the one that generates waves and current simul-

taneously:

(I) By generating the flow characterized by U + um sine in a

water tunnel (e.g., See Greenamyer 1973).

(II) Oscillating a cylinder periodically in a uniform flow

(e.g., see Verley and Moe 1978, 1979, Moe and Verley 1978, Mercier

1973).

(III) Towing a cylinder with uniform speed in a wave field.

The first two methods are for current superimposed onto planar

oscillatory flow. That means the vertical component of kinematics
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and forces are neglected. The third method can take account of the

orbital motion of water particles for determining the hydrodynamic

forces on cylinders. This method is used in the present study.

If a cylinder is towed with speed U in waves, the period exper-

ienced by the cylinder is different from the actual wave period T and

is called the apparent period Tap.

T

T
ap

1
U

(3.1)

in which C is the wave velocity, and U is negative when the cylinder

is towed opposite to the waves and is positive when towed in the same

direction as the waves. Also, the time scale in one wave cycle can

be related as

t

t
ap U17

(3.2)

But the phase angle 6 is still unchanged according to the following

relation.

27t
27 t

ap
e =

T T
ap

(3.3)

The instantaneous kinematics experienced by the towed cylinder are

u(o) = u (o) + U

w(0) = ; (0)

(3.4)

(3.5)
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where u (0) and w (0) are determined by a suitable wave theory

using the actual wave period, wave height and water depth.

The conclusion can be drawn that the kinematics experienced by

the towed cylinder in waves and those predicted by linear superposi-

tion are similar.

Because the period experienced by towing the cylinder is the

apparent period, the apparent period should be used for all the

dimensionless parameters, such as Reynolds number and Keulegan-

Carpenter number, with the kinematics obtained from the actual wave

period.
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4. DATA ANALYSIS

4.1. Determination of Force Coefficients

The modified Morison equation Eq. (2.12) and Eq. (2.22) were

used to predict hydrodynamic forces on the horizontal cylinder.

Before using these equations, the diameter of the cylinder, the kine-

matics at the center of the cylinder if the cylinder was absent and

the associated force coefficients must be known or estimated.

Nath (1981a) stated that the stream function theory compares

quite well with the measured kinematics and is adequate for predict-

ing the velocities and accelerations of water particles at the center

of the cylinder. As mentioned in Section 2.1, the linear superposi-

tion principle is assumed to be valid for predicting the kinematics

under waves and current. In the last section, the similarity of

kinematics between the linear superposition principle and towing a

cylinder in a wave field was described and examined. Therefore, the

stream function theory with superposition principle is used to quan-

tify the kinematics in this study. The total acceleration is used in

the modified Morison equation.

With known cylinder diameter, water density, kinematics and mea-

sured force data, the force coefficients can be evaluted. Many tech-

niques can be used to determine the force coefficients with given

sets of known data, such as the least squares method, the Fourier

averaging technique, the two points method (maximum velocity and
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acceleration, maximum force and zero force), mean square method

(Bishop, 1978), phase method (Nath, 1981a), drag and inertia dominate

method (Kim and Hibbard, 1975), etc. The least square method is

probably the most applicable and commonly used technique and is used

in the present study.

Least Square Method

The least square method consists of the minimization of the

error between the measured forces and calculated forces. The errors

in the horizontal and vertical direction and total errors can be

defined as follows:

E = F -FEx xm xp

E = F -F
z zm zp

E
2 = E

x
2+E

z
2

Where F
xm

and Fzm represent the instantaneous measured force in the x

and z directions respectively, and F
xp

and F
zp

represent the pre-

dicted forces in x and z direction

The mean square error can be obtained by integrating Eq. (4.3)

with respect to phase angle (0) over one wave cycle, i.e., o40427,

and then dividing by 27.
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(4.4)

Because Fxp and F
zp are functions of C

d
and Cm, E

2
also is a

function of Cd and Cm. The technique to determine the force coeffi-

cients Cd and Cm is to minimize the mean squre error by setting the

derivative with respect to Cd and Cm equal to zero respectively.

Then, two simultaneous equations with unknowns Cd and Cm can be

obtained. The force coefficients Cd and Cm are obtained from Eqs.

(4.5) and (4.6):

Cd
d 1/2pDLUCC)(BB)-(DD)2]

(AA)(BB)- (DD)(EE)

(CC)(EE)-(AA)(DD)

m 10pD2LUCC)(BB)-(DO)2]

in which
2r

AA = f [F_

Am

u + F
zm
w]lilde

0

BB =

CC =

de

de

27

DD = f [uu' + ww']Iilde
0

2r

EE =
0

f [F

xm

ul + F
zm
W]de

(4.5)

(4.6)
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Note that u = uw + U for waves and current. For waves only con-

dition (U=o), u = uw and um = uwm.

Three major computer programs, named WAVES, FDATA and LABTEST,

are used to process the data obtained from the Wave Research Facility

in OSU and recorded on magnetic tape. The procedure for data reduc-

tion and the listing of these programs can be found in Nath (1981a)

and Wankmuller and Nath (1982).

4.2. Conditioning of Force Coefficients

Usually, force coefficients obtained from laboratory experiments

or ocean field tests have a wide range of scatter. This will cause a

major difficulty in applying the Morison equation to predict hydro-

dynamic forces on marine structures. The major factors that cause

scatter are:

(I) Validity of the two term Morison equation: Although the

Morison equation has been widely used to predict hydrodynamic forces

since it was proposed in 1950, the applicability of this equation is

still in question. The main reason caused this question is that

Morison equation does not take into account the vortex shedding

forces and time history of the fluid flow.

(II) Accuracy of fluid particle kinematics: The fluid particle

kinematics are usually determined from some theory or from direct

measurement. Existing wave theories always predict the velocity and

acceleration with some errors. The difference between predicted
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values and true values depend on both the quality of the theory used

and the quality of the wave produced. If the kinematics are measured

directly, there will also exist some error between the measurements

and the actual kinematics.

(III) Experimental errors: Errors can result from instrumen-

tation sensitivity, calibration of the transducers, measurement of

the water surface or fluid particle kinematics, or other variables

during periods of small waves, etc.

Dean (1976) showed that depending on the wave and cylinder char-

acteristics, data can be well-conditioned or poorly-conditioned for

resolving drag or inertia coefficients. It is believed that much of

the scatter in the reported coefficients may be from data that were

poorly conditioned for resolving them. In general, if the drag

forces tend to dominate, then the data are better conditioned for

determining the drag coefficient and the inertia coefficient would

tend to be contaminated by the errors of various sources noted

before. Conversely, if the inertia force dominates, then errors can

contaminate the drag coefficient. If the drag and inertia forces are

nearly the same magnitude, then a reasonable resolution for both

coefficients can be expected.

Dean (1976) proposed the idea of an "error surface" to evaluate

the suitability of wave and wave force data. His work was intended

for a vertical cylinder wherein the flow is oscillatory. It's now

extended to a horizontal cylinder in waves and current.
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According to the Taylor expansion (to second order), the mean

square error E
2

, which is defined in Eq. (4.4), associated with the

minimum error value can be expressed as follows:

aE
2

E
2

(E
2
)min +

3C
d

a
2
E
2

ac
m
2 min

a2E2

min
AC

d
+

ac
d
2

(AC,m )
2

2-7
a E

2 a Cd a Cm

(ACd)2 3E2

min
2 aCm

min
(ACd)(ACm)

min
AC
m

Because the minimum slope of the error surface is zero, the

least square method gives
3E2

aCd
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2 a
2
E
2
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= (E)m.n +

1 ac
d
2

3
2
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2
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d
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(AC
d
)2

a
2
E
2

min 2
3C
m
2

(4.7)

min
0, and Eq. (4.7)

2

min 2

(ACd)(ACm) (4.8)

From Eq. (4.4) (4.3) and Eq. (2.14), (2.15), the following

relations can be obtained.

2
E
2

2
(Pp,

2
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2'
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(4.9)
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(4.10).

(4.11)

Eq. (4.11) is always zero if linear wave theory is applied. The

analytical integration is tedious but results can be easily obtained

numerically and graphically. Thus,

2,r
1 11

E
2

= (E
2
)mid +

pD
7," I iql

4
] do (ACd)

2

` 0

(pirD

2
,

4 )

2

211T f
2
+ w

12
] dO (ACm)2

0

(4.12)

Regarding ACd and ACm as variables, the above equation forms an

ellipse with

IE2 - (E2) min
n 2 27 ,4

IPul i Oil ] dO
21 7

0-

and I j - (j)min

(I 2
21

271.

[dr2.1. w'2]do

7 0

as the length of the two axes of
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the ellipse.

Defining RR as a measure of the relative suitability of data for

determining force coefficients, this value is provided by the ratio

of the axes of the ellipse.

Ac
m 2

AzRR = =

2n
4

J ]do
0

WI] 2
do

0

(4.13)

If linear wave theory and linear superposition principle are

applied, we have the following relations

u = uwm cos wt + U

w = wm sin wt

q2 u2 w2

u = -w uwm sin wt

w = w wm cos wt

w2
[uwm2

2 2sin wt + wm cos wt]

By substituting Eq. (4.14) into Eq. (4.13), RR becomes

tCm T
RR

AC
d D7

2

(4.14)

3
-g Uwm

4 3
g Wm4++ -4- Uwm

2
wm2+ U
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+ 3u 2U
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If there is no current in the wave field, i.e. U=0, the ratio is

for horizontal cylinder in waves only.

RR
Dirt

3 4 $ 4 1 2 2
uwm + wm + uwm wm

1
[uwm

2
+ wm2]

(4.16)

For deep water conditions, the water particle orbit is circular,

i.e. u
wm

= wm u
m,

the ratio becomes

1 Tu
m

RR =
2 D

7

= 0.101 K (4.17)

where K is the Keulegan-Carpenter number associated with the maximum

horizontal water particle velocity only.

For planar oscillatory flow, such as wavy flow near the bottom

in shallow water, the vertical velocity wm is zero. Thus,

Tum

2 4
RR = \P[

D
Tr

= 0.088 K (4.18)
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Equation (4.18) is the same as Dean's result (see Dean 1976, Eq.

34). Dean also suggested in his study that if RR is smaller than

1/4, the data are relatively well-conditioned to determine the

inertia coefficient. Conversely, the data are relatively suitable

for determining drag coefficient if RR is larger than 4. If the

ratio is between 1/4 and 4, the data are well-conditioned for deter-

mining both Cd and Cm. A criterion for the smooth horizontal

cylinder in waves (or waves and current) is proposed in Section 5.1.
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5. RESULTS AND DISCUSSION

5.1 Hydrodynamic Forces on a Horizontal Cylinder in Waves

A summary of the test run and results for a smooth horizontal

cylinder in waves is presented in Table 5-1. The force coefficients

C
d

and Cm are plotted against the Reynolds number in Fig. 5-1 with

those data obtained under planar oscillatory flow by Sarpkaya

(1976). Besides the variation due to the different Keulegan-

Carpenter numbers K and different water particle ratio, wm/um, there

still exists some scatter in this figure. This scatter may be due

to:

(1) The lack of a term accounting for vortex shedding in the

Morison equation.

(2) The differences between actual water particle kinematics and

the predicted kinematics obtained from stream function wave theory.

Nath (1981a) reported the root-mean-square errors for the kinematics

are from 8% to 22%. However, the wave test profile were excellent

because the root-mean-square errors between measured profiles and

those obtained by stream function wave theory were only from 2% to

7%.

(3) According to the report of Nath (1981a, 1982), a return cur-

rent exists in the wave tank. This current will affect the real

kinematics around the test cylilnder. An approximation was given for

estimating the return flow, based on a limited amount of data. So,
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Run No. T(sec) H(ft) R K wm/um Cd Cm RR

278 2.50 1.18 0.38 2.59 0.916 0.54 0.96 0.253

280 1.75 0.56 3.84 1.39 1.65 0.375

283 3.79 1.18 8.06 0.52 1.22 0.812
284 3.70 0.99 0.38 3.86 0.681 0.53 0.97 0.343

285 2.16 0.84 8.52 0.61 1.18 0.749

286 3.35 1.31 12.24 0.55 0.79 1.162

287 4.59 1.78 17.95 0.27 1.17 1.592

288 4.64 1.80 18.13 0.35 1.13 1.609

289 4.61 1.03 0.42 5.32 0.552 0.57 0.93 0.455

290 1.85 0.78 9.76 0.67 1.11 0.818

291 3.57 1.53 19.20 0.58 0.73 1.578

292 4.40 1.88 23.63 0.40 0.99 1.945

293 5.29 0.88 0.37 5.36 0.482 0.94 0.89 0.452

294 1.59 0.69 9.95 0.51 0.79 0.818

295 2.98 1.34 19.28 0.31 0.81 1.532

296 3.71 1.67 24.16 0.53 0.87 1.908

297 6.00 1.18 0.52 8.51 0.426 1.04 1.26 0.696

298 2.01 0.92 1.506 0.67 1.00 1.186

299 2.66 1.24 20.31 0.64 1.07 1.569

300 3.01 1.41 23.14 0.63 1.22 1.776

301 3.13 3.84 1.39 11.82 0.788 0.54 1.14 1.101

302 4.17 3.85 1.58 17.99 0.609 0.58 1.18 1.524

303 5.00 4.04 1.78 24.34 0.510 0.46 0.99 1.953

304 5.56 2.86 1.30 19.77 0.459 0.60 1.12 1.553

305 3.13 4.03 .145 12.37 0.788 0.32 1.18 1.155

313 2.50 1.16 0.37 2.55 0.916 0.34 1.04 0.249

315 1.57 0.51 3.45 1.21 1.39 0.336

316 2.84 0.91 6.17 1.14 1.16 0.608

318 3.54 1.11 7.59 0.19 1.44 0.758

319 3.70 0.91 0.35 3.54 0.681 0.46 0.89 0.316

320 1.93 0.75 7.60 0.70 1.19 0.669

321 3.70 2.75 1.08 10.86 0.681 0.58 1.28 0.954

323 4.22 1.64 1.658 0.55 1.29 1.464

324 4.61 0.89 0.36 4.58 0.552 0.47 1.02 0.394

325 1.77 0.74 9.32 0.77 0.90 0.783

326 3.28 1.40 17.62 0.57 1.12 1.450

327 4.26 1.82 22.89 0.48 0.90 1.884

328 5.29 0.92 0.39 5.61 0.482 0.81 0.69 0.473,

329 1.71 0.74 10.74 0.77 0.91 0.879

331 3.89 1.76 25.34 0.54 0.79 2.000

332 6.00 1.28 0.57 9.28 0.426 0.74 0.88 0.755

Table 5-1

Summary of Data for a Smooth Horizontal Cylinder in Waves
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Run No. T(sec) H(ft) R K wm/um Cd Cm RR

334 2.68 1.25 20.47 0.77 1.25 1.581

335 2.92 1.37 22.42 0.67 1.09 1.723

337 4.17 4.35 1.78 20.27 0.609 0.43 1.13 1.722

338 5.00 3.85 1.70 23.19 0.510 0.30 1.23 1.861

339 5.56 3.58 1.65 24.95 0.459 0.36 1.13 1.944

341 3.70 0.95 0.37 3.70 0.681 0.35 0.91 0.329

342 4.61 0.87 0.36 4.47 0.552 0.67 1.02 0.385

343 5.29 0.96 0.41 5.87 0.482 0.84 0.65 0.494

344 6.00 1.31 0.58 9.51 0.426 1.05 1.25 0.773

345 3.70 2.84 1.11 11.23 0.681 0.56 1.01 0.985

346 4.61 3.42 1.46 18.39 0.552 0.57 0.86 1.512

347 6.00 2.69 1.26 20.55 0.426 0.61 1.12 1.587

349 5.29 3.71 1.67 24.16 0.482 0.35 1.13 1.908

350 4.61 4.12 1.76 22.15 0.552 0.32 1.22 1.822

Table 5-1
(Continued)

Summary of Data for a Smooth Horizontal Cylinder in Waves
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the approximate nature of the return flow estimate may influence the

scatter.

In spite of the scatter, it is evident that the force coeffi-

cients for a horizontal cylinder in waves are smaller than those for

a cylinder under planar oscillatory flow. Thus, an over-estimate of

forces can be expected if force coefficients obtained from planar

oscillatory flow are used to predict the wave forces on a horizontal

cylinder in waves.

The value of Cd and Cm with 25 > K a 18 are plotted against Rey-

nolds number in Fig. 5-2 [repeated from Fig. 25 of Nath (1982) with

values multiplied by 1.03 for a calibration correction] with those

obtained by Sarpkaya (1976) for K = 20 and Holmes and Chaplin (1978)

for K = 24. Sarpkaya obtained his data by using the U-shape tube to

generate planar oscillatory flow with wm/um = 0. Holmes and Chaplin

modelled experimentally circular orbital flow around a cylinder with

w
m
/u

m
= 1 by moving a cylinder around a circular path in still

water. The force coefficients obtained from the present study with

0.92 a wm /um a 0.43 almost fall between the values from Sarpkaya

(wm/um = 0) and Holmes and Chaplin (wm/um = 1). This indicates the

ratio wm /um plays an important role in determining force coefficients

for horizontal cylinder in waves and force coefficients could be

functions of the ratio w
m
/u
m$

which will be further discussed

later. There are two more reasons for the differences shown in Fig.

5-2: (1) different methods were applied to evaluate the water
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particle kinematics; and (2) different techniques were used to

determine C
d
and Cm.

To examine the dependence of C
d

and Cm on the water particle

velocity ratio wm/um' data are plotted against K in Fig. 5-3. A

trend is difficult to discern, nevertheless some similarity to the

trend for a cylinder in planar oscillatory flow, noted by Sarpkaya

(1982), does exist.

For small waves (or small K number), the wave forces are dom-

inated by the inertia force and the test condition is not suitable

for determining Cd values accurately. Thus, for small K value, Cd

may not be accurate. It was considered by Nath (1981a,. 1982) that

the Cm could be low and inaccurate because the test cylinder was not

solid and not sealed. For the unsealed cylinder, the water pressure

could be transmitted to the inside of the cylinder through the

gaps. It is still uncertain if the gaps affect the pressure trans-

mission and the C
m

values.

The present data with those obtained by Ramberg and Niedzwecki

(1982) are plotted in Fig. 5-4. The Cd values obtained by Ramberg

and Niedzwecki seem to form an upper bound for the present data for

12 < K. One reason for this trend may be that the frequency param-

eter a (=02/vT) is an important parameter for evaluating force coef-

ficients, as indicated by Sarpkaya (1976). The a for the present

study is from 6110 to 14665 and is from 300 to 700 for Ramberg's

study. It is on the order of 5 x 104 for prototype conditions (e.g.,



1.6

1.4

1.2

C
d

LO

0.8

0.6

0.4

0.2

0 4 8 12 16 20 24

1.6

1.4

Cm

1.2

1.0

0.8

0.6

0.4

0 '.0'7/9

0.681

A 0.552 Present Result

o 0 0.4260 0

0

o
A

A

Sarpkaya (1982)

0

wm/um .6

A

A

A

A

A

0 4 8 12 16 20
K

24

Fig. 5-3 (a)Drag and (b)Inertia Coefficients vs. Keulegan-Carpenter Number for Various Values of

w
m
/u
m for a Smooth Horizontal Cylinder in Waves



2.2

2.0

1.8

C
d 1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

O

O

O

o 00

0
O 0

O Present data, 8=6000-14000

O Ramberg(1982), 8=300-700

Sarpkaya(1976), 8=5260 & 8370

O 0 0
o

o

0

80 0
0

000 o

0

0000°

0
0
0

111111111111E1
0 2 4 6 8 10 12 14 16 18 20 22 24 26

K

c
m

2.2

0.4

0.2

0

00
0

8-5260

0

0
° 0 0

0

0
0

o

0 2 4 6 8 10 12 14 16 18 20 22 24 26

K

Fig. 5-4 (a)Drag and (b)Inertia Coefficients vs. Keulegan-Carpenter Number for a Smooth Horizontal

Cylinder in Waves



65

T = 10 sec., D = 8 feet). As mentioned above, the data were not

well-conditioned for determining Cd value for small K, so the data

from Ramberg and Niedzwecki for K 4 vary from 1.6 to 2.2. Comparing

with the results obtained by Sarpkaya (1976) for planar oscillatory

flow, the present data are still reasonable in spite of the

scatter. As for the Cm values, the present data and those of Ramberg

and Niedzwecki seem to have the same order for K 4 6. For K > 6, the

differences between the present data and Ramberg's result are signi-

ficant. Again, this phenomenon may be due to a values being differ-

ent for these two experiments. It is observed that for both sets of

data in waves the Cm values are smaller than those from planar oscil-

latory flow with the same order of a values. This again indicates

that the force coefficients for a horizontal cylinder in waves are

smaller than those for a vertical cylinder in waves (or horizontal

cylinder in planar oscillatory flow).

Both Maull and Norman (1978) and Ramberg and Niedzwecki (1982)

represented the hydrodynamic forces on a horizontal cylinder in waves

by root-mean-square (r.m.s.) coefficients which are defined in Eq.

(2.33) and Eq. (2.34). Comparisons between the data from their stud-

ies and the present results (re-computed) are presented in Fig. 5-

5. The C
x

values of these three sets of experiments agree quite

well. For K>4, the present data are higher than those from the other

two sets of experiments because of the higher a values. Except for

the data with wm/um = 0.482, the equal wm/um values contours for Cz
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seem not too difficult to trace. Comparing with Maull's and Ram-

berg's data, the present data appears to be anomalous. The reasons

are (1) different 6 values as mentioned before, and (2) different

wm/um value as shown on the figure.

The results for the sand roughened cylinder with relative rough-

ness e/D = 0.02 are presented in Table 5-2. The force coefficients

for 25 ) K > 15 are plotted against Reynolds number in Fig. 5-6 with

present results for smooth cylinder. The results obtained by Sarp-

kaya (1976) for planar oscillatory flow with the same e/D are also

shown in this figure. As expected, Cd values for the horizontal cyl-

inder in waves are smaller than those obtained in planar oscillatory

flow. This trend is the same as that for the smooth cylinder.

Dean (1976) proposed a criterion for estimating the suitability

of the data for determining Cd and/or Cm for a vertical cylinder in

waves (neglecting wm). An attempt is made here to propose a criter-

ion for a horizontal cylinder in wavy flow. In Fig. 5-7, the RR

values for a horizontal cylinder under wavy flow, as defined in Eq.

(4,15), are plotted against the ratio of maximum drag force to maxi-

mum inertia force in one wave cycle, (FD)max/(FI)max. Because the

calculated C
d

and Cm values are used to determine the above maximum

drag and inertia force, some errors will be introduced into the ratio

(F
D
)max/(F

I
)max. If (FD)max is five times ( FD)max, it may be

regarded that the drag force tend to dominate and the data are better

conditioned for determining the Cd only. Conversely, if (FD)max = 5
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Run T(sec) H(ft) wm/um Cd Cm R K

379 2.50 1.14 0.916 1.47 1.02 0.37 3

381 2.94 1.05 0.63 0.94 6

382 3.74 0.19 0.31 1.17 8

384 3.70 0.95 0.681 1.35 0.94 0.37 4

385 2.27 1.31 1.05 0.89 9

386 2.95 0.94 0.73 1.16 12

387 4.02 1.06 0.80 1.57 16

388 4.44 0.94 0.88 1.72 17

389 4.61 0.88 0.552 0.96 0.90 0.36 5

390 1.92 0.60 0.73 0.81 10

391 3.55 0.74 1.12 1.52 19

392 4.24 0.93 1.15 1.81 23

393 5.29 0.92 0.482 0.83 0.76 0.39 6

394 1.64 0.77 0.84 0.71 10

395 3.00 0.83 1.33 1.35 19

396 3.83 0.88 1.06 1.73 25

397 6.02 1.28 0.426 1.11 1.38 0.57 9

399 2.83 1.04 0.90 1.33 22

400 3.20 1.02 0.88 1.51 25

401 3.70 2.98 0.681 0.93 0.74 1.17 12

402 5.29 3.03 0.482 0.82 1.32 1.36 20

403 3.13 4.44 0.788 1.02 0.64 1.58 14

404 3.09 0.80 0.77 1.12 10

405 4.17 4.43 0.609 0.99 0.65 1.81 21

406 2.81 1.07 1.45 1.15 13

407 5.00 4.32 0.510 0.67 0.81 1.91 26

408 3.32 0.76 0.63 1.46 20

409 5.56 3.62 0.459 0.88 0.48 1.66 25

410 3.00 0.94 0.81 1.37 21

Table 5-2

Summary of Data for a Sand Roughened Horizontal Cylinder in Waves
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(FI)max, the data are well-conditioned for determining Cm only.

Based on above assumption and some conservative choices, the follow-

ing criterion for a horizontal cylinder under wavy flow is suggested.

RR

<0.4

0.4-8.0

>8.0

Relatively better conditioned to determine

Cm

C
d
and C

m

C
d

Because the roughness will affect the force coefficients, i.e.

ususally Cd increases and Cm decreases as relative roughness e/D

increases (for relatively small values of e/D), the (FD)max and

(FI)max will change with respect to E/D. This RR values vary with

the roughness and the above criterion is appropriate for smooth

cylinder only.

5.2 Hydrodynamic Forces on a Horizontal Cylinder under Waves Plus
Towing (or under Waves and Current)

The summary of the test conditions and results for both smooth

and sand roughened cylinder under waves plus towing is tabulated in

Table 5-3. In this table, the R,K and VM are defined as

qm D um D (u
wm

+U)D

R
v v

qm T um T (uwm+U)T

K
D

(5.1)

(5.2)



Run No.
I ft

H(ft) T(sec)
Tap
(sec) Cd Cm VM R K RR ll/uwmUkseci

Smooth Cylinder

366 0.67 3.13 6.02 5.80 0.48 1.36 5.41 1.82 28.75 2.89 0.23

367 0.71 3.59 5.29 5.09 0.53 0.71 5.02 1.98 27.52 2.78 0.22

368 0.82 4.30 4.61 4.40 0.48 0.91 5.02 2.26 27.05 2.80 0.23

370 0.82 3.79 2.50 2.35 0.63 1.28 2.68 1.65 10.55 1.21 0.34

371 3.45 3.00 6.02 5.05 0.50 1.97 24.24 3.17 43.71 9.93 1.25

372 3.57 3.59 5.29 4.40 0.39 2.82 21.84 3.44 41.31 8.70 1.12

373 4.24 4.57 4.61 3.69 0.44 0.76 21.78 4.11 41.42 8.76 1.11

375 6.33 3.55 6.02 4.45 0.42 0.75 39.20 4.91 59.66 12.29 1.18

376 6.33 3.76 5.29 3.89 0.43 2.38 34.26 4.93 52.31 17.38 1.90

Sand Roughened Cylinder

422 4.07 3.87 2.50 1.89 1.05 1.43 10.69 3.28 16.89 4.14 1.72

423 4.03 4.48 2.50 1.89 0.79 0.71 10.61 3.40 17.53 4.00 1.53

424 3.33 3.20 6.02 5.08 0.97 1.69 23.43 3.21 44.46 9.46 1.13

425 3.40 3.56 5.29 4.43 1.04 0.27 20.97 3.34 40.41 8.26 1.08

430 6.25 3.91 5.29 3.91 0.87 1.71 33.94 4.95 52.75 16.86 1.81

431 6.25 3.24 6.02 4.47 0.79 0.81 38.84 4.72 57.50 20.89 2.08

432 4.15 4.52 3.70 2.94 1.07 0.50 16.94 3.87 30.99 6.58 1.21

433 0.71 3.31 6.02 5.79 0.73 0.15 5.72 1.93 30.46 3.06 0.23

434 0.71 3.91 5.29 5.09 0.64 1.16 5.02 2.13 29.50 2.94 0.21

435 0.89 4.39 4.61 4.38 0.69 0.72 5.42 2.33 27.86 2.93 0.24

Table 5-3

Summary of Data for a Horizontal Cylinder
under Waves and Current (Smooth and Sand Roughened)



vm = UT

D

73

(5.3)

Hogben et al. (1977) indicated that the Keulegan-Carpenter

number, K, represents the relative magnitude of drag to inertia force

for planar oscillatory flow. He suggested that the vector sum for

the velocity should be used although the meaning and evaluation of

the K number is uncertain when a current is introduced into the flow

field. Sarpkaya and Isaacson (1981 pp. 323) also suggested using Eq.

(5.1) and Eq. (5.2) as the definition of R and K for waves and

current.

In the next section, it will be shown experimentally that the

kinematics for towing a cylinder in a wave field are the same as

those under waves and current if the superposition principle is

assumed.

For the smooth cylinder, the data are well-conditioned for

determining both Cd and Cm values for waves with low tow speed (U <

1.0) whether present criterion (proposed in Section 5.1) or Dean's

criterion (1976) is used. For the high tow speed case, the data are

suitable for determining drag coefficient only, and the inertia

coefficient values obtained under this circumstance are not

reliable. As mentioned in Section 5.1, the criterion for RR values

varies for the sand roughened cylinder, so both sets of criteria are

no longer useful. But, it still can be said that the data are

suitable for determining Cd only when the RR value is large.
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The force coefficients for a smooth cylinder under waves and

current are plotted against Reynolds number in Fig. 5-8 with those

obtained under planar oscillatory flow and the present results for

waves only. The dependence of Cd on R can be roughly observed. In

the present study for waves plus towing, the detail of Cd vs. R can

not be established because the data are insufficient. However, the

drag coefficients for waves and current are less than those for

planar oscillatory flow because the vertical component of water

particle velocity is still present. As expected, the inertia

coefficients are scattered because the data are not well-conditioned

for C
m values.

For a horizontal cylinder under waves and current, the drag

coefficients for the sand roughened cylinder are greater than those

for the smooth one as shown in Fig. 5-9. This trend is the same as

that for planar oscillatory flow and that for waves only. From Table

5-3, it shows the runs for sand roughened cylinder proceeded from

high tow speed. It is possible, but not proven, that some sand could

have been lost, which could account for some of the lower Cd value,

especially for later runs.

The drag coefficient for both smooth and sand roughened

cylinders under waves and current, together with those for steady

flow obtained by Nath (1983), are plotted in Fig. 5-10. The value

near the point represents the ratio of current velocity (or tow

speed) to the maximum horizontal wave-induced velocity U/uwm. From
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the figure, it can be interpreted that the drag coefficients for

waves and current approach the data for steady flow when U/uwm =

1.0. A conclusion can be drawn that the drag coefficient for waves

and current tends to approach the drag coefficient for steady current

as the current speed U (or U/uwm) increases. If U (or U/uwm) is

large enough, these two sets of data will coincide with each other.

In Fig. 5-10(b), the two points with high tow speed are away from

steady state flow result is inexplicable. One possible reason is

that some sand could have been removed during the first few runs (as

mentioned before).

The dependence of Cd on VM number can be observed in Fig. 5-

11. For the smooth cylinder, Cd approaches a constant 0.42 as VM

increases. For the sand roughened cylinder, the Cd are higher than

those for the smooth cylinder. These values reach 1.1 for 20 > VM

10 and then decrease as VM increases. Again, Cm values are

distributed randomly against VM.

As shown in Fig. 5-12, the dependence of the force coefficients

on K, which is defined in Eq. (5.2), is not as evident as the other

parameters (R and VM).

The r.m.s. in-line and transverse force coefficients Cx and Cz

are evaluated for a horizontal cylinder under waves and current. The

results are presented in Fig. 5-13 together with the results for

waves only. The in-line force coefficients, Cx, are consistent for
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both sets of data. For K>50, the Cx values seem to approach a con-

stant value of 0.5. For K<30, both sets of C
z

values seem to have

the same order of magnitude. For K>30, the Cz values increase

rapidly. In this region, the influence on vertical forces Fz from

vortex shedding is stronger than that for the vertical velocity.

5.3 Similarity Between "Waves and Towing" and "Linear Superposition
Principle"

For the laboratory tests, the current meters were towed with the

test cylinder in a wave field to obtain the measured kinematics. To

avoid the flow around the meters from being affected by the cylinder

the two current meters were placed 2.01 feet above the center line of

the test cylinder (See Fig. 3-1). Each component of measured water

particle velocity was recorded for both digital tape and strip chart.

The predicted kinematics under waves and current are obtained by

using the seventh order stream function wave theory with superimpos-

ing the tow speed U onto the wave-induced velocity. That is,

7
27 27 27n

u (x,z) = -E X (n) [Tn] cosh [--En(h+z)]cos[7x]+U
n=1

7
27 27 2n

w(x,z)=- E X(n) [En]sinh[ti(h+z)]sin[--rx]
n=1

(5.4)

(5.5)

Two typical measurements for horizontal water particle velocity

with associated measured wave profile are shown in Fig. 5-14. One is
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for the cylinder with low tow speed and the other is for the high tow

speed. By examining the difference between measured value and pre-

dicted value for one wave cycle, i.e., 33 points for one wave, it can

be said that the predicted horizontal velocity fits the measured one

quite well except for a few runs. Two examples of comparison betwen

predicted values and measured data are shown in Fig. 5-15, one is for

the low tow speed case and the other is for the high tow speed. The

root-mean-square error defined in the following equation is used as

one indicator to compare the predicted and measured horizontal water

particle velocity.

N
1

[1 - u
127

1
measured predicted'

Erms (u
measured) max

(5.6)

The second indicator is the ratio of maximum predicted horizontal

velocity to the maximum measured horizontal velocity, (up)max/

(um)max Actually, the mean horizontal velocity for one whole wave

cycle can be defined as the current velocity. The ratio of the mean

predicted horizontal velocity to the mean measured horizontal

velocity is used as the third indicator. The summary of the results

is presented in Table 5-4. From the comparisons of the plots and

these three indicators, it is believed that the horizontal velocity

"felt" by a towing cylinder in a wave field can be predicted by using

linear superposition principle. The root-mean-square error for the
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Run No.
T

(sec)
H

(ft)

U

(ft/sec) H/T2 h/T2 Erms(u) Erms(F )
(u)max 4.

um

1.227

(ump )max

422* 2.50 3.87 4.07 0.6192 1.8400 0.2185 0.0489 1.108

423 2.50 4.48 4.03 0.7168 1.8400 0.0315 0.0569 0.997 1.029

424 6.02 3.20 3.33 0.0883 0.3173 0.0503 0.0483 0.969 1.007

425 5.29 3.56 3.40 0.1272 0.4110 0.0373 0.0515 1.024 1.066

430 5.29 3.91 6.25 0.1397 0.4110 0.0855 0.0344 1.048 0.930

431 6.02 3.24 6.25 0.0894 0.3173 0.0476 0.0331 0.971 0.934

432 3.70 4.52 4.15 0.3302 0.8400 0.0349 0.0533 1.006 0.997

433 6.02 3.31 0.71 0.0913 0.3173 0.0664 0.1180 0.975 1.116

434 5.29 3.91 0.71 0.1397 0.4110 0.0354 0.0862 1.045 1.080

435 4.61 4.39 0.89 0.2066 0.5411 0.1265 0.1339 1.029 0.784

Mean Value (Except Run 422) 0.0573 0.0684 1.007 0.999

Standard Deviation 0.0313 0.0363 0.031 0.108

*It is obvious that there is something wrong with at least Erms(u) for Run 422. Therefore
it is excluded as calculating mean value and standard devia[Ton.

Table 5-4

Summary of Error Indicators for Horizontal Velocity
under Waves and Towing
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horizontal velocity, Erms(u) in Table 5-4, is the same order as that

for force, Erms(F). That means the small error due to the horizontal

velocity, as calculated will not have a large influence on forces and

force coefficients.

For the vertical water particle velocity, the trend between

measured record and predicted value is compared. Fig. 5-16 and Fig.

5-17 show two typical examples of vertical velocity for low tow speed

and high tow speed respectively. No major phase shift can be ob-

served. The magnitude of vertical velocity seems to be overpredicted

by up to 20% at some points for both high tow speed and low tow speed

case. It can be concluded that the vertical velocity is more or less

unchanged during towing.

5.4. Total and Local Acceleration for Force Prediction

The total and local accelerations of the water particle for all

test runs in the present study were calculated by using the seventh

order stream function wave theory. In one wave cycle, the phase

between the total acceleration and the local acceleration is

unchanged, but the magnitudes will be different. To examine the mag-

nitude difference between total and local acceleration, the following

three parameters are used.

(Dq/Dt) max_
a 41. gross acceleration rato

(aq/at) max
(5.7)
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(Du /Dt) max
t) max

ax = horizontal acceleration ratio
(a

(aw/Dat) max az

(Dw/t) max
= vertical acceleration ratio

90

(5.8)

(5.9)

The a
x

and a
z

together with the associated steepness parameter

H/T2 and depth parameter h/T2 are plotted in Fig. 5-18. From this

figure, it can be seen that both the horizontal and vertical maximum

acceleration ratios, ax and az are smaller than or equal to one.

These two ratios decrease as steepness parameter increases and depth

parameter decreases. In other words, the difference between total

and local acceleration in both horizontal and vertical component be-

come significant for shallow water waves and for steeper waves. This

trend is the same as that indicated by Isaacson (1979) for planar

oscillatory flow by using Stokes fifth-order wave theory. If linear

wave theory is applied, the gross maximum acceleration ratio, aq,

will not be greater than one because the maximum horizontal accelera-

tion occurs as the vertical acceleration is zero.

If a current is present in the wave field, the convective accel-

eration is affected by the current. The convective acceleration

increases as the current follows the waves and decreases as the cur-

rent opposes the waves. Thus, the total acceleration will be changed

and the local acceleration remains unchanged. According to Eq.

(2.40) and (2.41), the changes of convective acceleration are lin-

early proportional to the current velocity U, so the ratios ax and az

are also linearly proportional to the current under the same wave
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(1)

Run No.

(2)

T

(sec)

(3)

H

(ft)

(4)

lq.
Dt/ig.

at

(5)

(Cd)total

(6)

(Cm)total

(7)

(Cd)local

(8)

(Cm)local

(9)

(C )

(10)

RNS error

(11)

(Fp)max
(F.).,,,

MUT Walm local Total Local

278 2.50 1.18 1.008 0.54 0.96 0.54 0.96 1.00 0.16 0.15 0.87 0.87
280 1.75 1.015 1.39 1.65 1.39 1.64 1.01 0.19 0.21 0.81 0.80
283 3.79 1.004 0.52 1.22 0.52 1.23 0.99 0.25 0.24 0.72 0.74
284 3.70 0.99 1.001 0.53 0.97 0.53 0.97 1.00 0.21 0.22 0.74 0.73
285 2.16 0.992 0.61 1.18 0.61 1.19 0.99 0.27 0.26 0.69 0.71
286 3.35 0.980 0.55 0.79 0.55 0.80 0.99 0.38 0.37 0.70 0.73
287 4.59 0.966 0.27 1.17 0.27 1.17 1.00 0.30 0.26 0.80 0.85
288 4.64 0.966 0.35 1.13 0.35 1.13 1.00 0.34 0.30 0.80 0.86
289 4.61 1.03 . 0.993 0.57 0.93 0.57 0.72 1.01 0.31 0.32 0.71 0.71
290 1.85 0.989 0.67 1.11 0.67 1.10 1.01 0.31 0.31 0.31 0.68
291 3.57 0.960 0.58 0.73 0.58 0.72 1.01 0.44 0.44 0.72 0.75
292 4.40 0.943 0.40 0.99 0.40 0.96 1.03 0.40 0.39 0.85 0.90
293 5.29 0.88 0.994 0.94 0.89 0.94 0.89 1.00 0.28 0.28 0.77 0.78
294 1.59 0.984 0.51 0.79 0.51 0.78 1.01 0.34 0.34 0.68 0.70
295 2.98 0.959 0.31 0.81 0.31 0.76 1.06 0.37 0.39 0.75 0.77
296 3.71 0.939 0.53 0.87 0.53 0.83 1.05 0.30 0.29 0.92 0.95
297 6.00 1.18 0.987 1.04 1.26 1.04 1.24 1.02 0.38 0.38 0.80 0.82
298 2.01 0.975 0.67 1.00 0.67 0.98 1.02 0.32 0.32 0.86 0.88
299 2.66 0.952 0.64 1.07 0.64 1.03 1.09 0.30 0.30 0.75 0.77
300 3.01 0.949 0.63 1.22 0.63 1.16 1.05 0.29 0.29 0.87 0.89
301 3.13 3.84 0.992 0.54 1.14 0.54 1.16 0.98 0.33 0.30 0.74 0.79
302 4.17 3.85 0.963 0.58 1.18 0.58 1.16 1.02 0.37 0.36 0.94 0.98

Table 5-5

Summary of Data for a Smooth Horizontal Cylinder in
Waves by Using Different Accelerations



(1)

Run No.

(2)

T

(sec)

(3)

H

(ft)

(4)

III
Dt/aq

at

(5)

(Cd)total

(6)

(Cm)total

(7)

(Cd)local

(8)

(Cm)local

(9)

(Cm)total

(10)

RNS error

(11)

max
1F13m f-

ax

(Cm)local Total Local Total

303 5.00 4.04 0.940 0.46 0.99 0.46 0.91 1.09 0.42 0.43 0.67 0.68
304 5.56 2.86 0.955 0.60 1.12 0.60 1.09 1.03 0.29 0.28 0.92 0.95
305 3.13 4.03 0.989 0.32 1.18 0.32 1.22 0.97 0.39 0.35 0.77 0.80
313 2.50 1.16 1.008 0.34 1.04 0.34 1.04 1.00 0.14 0.14 0.86 0.85
315 1.57 1.013 1.21 1.39 1.21 1.37 1.01 0.21 0.25 0.75 0.73
316 2.84 1.017 1.14 1.16 1.14 1.17 0.99 0.29 0.28 0.70 0.70
318 3.54 1.009 0.19 1.44 0.19 1.46 0.99 0.27 0.24 0.73 0.73
319 3.70 0.91 1.001 0.46 0.89 0.46 0.89 1.00 0.29 0.30 0.62 0.62
320 1.93 0.993 0.70 1.19 0.70 1.21 0.98 0.30 0.29 0.64 0.66
321 3.70 2.75 0.988 0.58 1.28 0.58 1.28 1.00 0.33 0.32 0.76 0.79
323 4.22 0.971 0.55 1.29 0.55 1.30 0.99 0.33 0.30 0.79 0.85
324 4.61 0.89 0.994 0.47 1.02 0.47 1.01 1.01 0.31 0.31 0.69 0.69
325 1.77 0.991 0.77 0.90 0.77 0.89 1.01 0.37 0.37 0.68 0.69
326 3.28 0.965 0.57 1.12 0.57 1.09 1.03 0.38 0.38 0.82 0.85
327 4.26 0.946 0.48 0.90 0.48 0.88 1.02 0.36 0.36 0.88 0.92
328 5.29 0.92 0.994 0.81 0.69 0.81 0.69 1.00 0.30 0.30 0.70 0.70
329 1.71 0.980 0.77 0.91 0.77 0.90 1.01 0.28 0.28 0.73 0.75
331 3.89 0.937 0.54 0.78 0.54 0.75 1.04 0.31 0.30 1.02 1.05
332 6.00 1.28 0.983 0.74 0.88 0.74 0.87 1.01 0.47 0.47 0.81 0.82
334 2.68 0.951 0.77 1.25 0.77 1.21 1.03 0.23 0.22 0.87 0.89
335 2.92 0.950 0.67 1.09 0.67 1.05 1.04 0.30 0.30 0.87 0.90
337 4.17 4.35 0.953 0.43 1.13 0.43 1.09 1.04 0.45 0.45 0.84 0.88
338 5.00 3.85 0.944 0.30 1.23 0.30 1.17 1.05 0.38 0.38 0.81 0.86
339 5.56 3.58 0.942 0.36 1.13 0.36 1.09 1.04 0.27 0.26 0.90 0.94
341 3.70 0.95 1.001 0.35 0.91 0.35 0.90 1.01 0.26 0.27 0.69 0.69

Table 5-5
(Continued)



(1)

Run No.

(2)

T

(sec)

(3)

H

(ft)

(4)

PA
Dt/Ig

3t

(5)

(Cd)total

(6)

(Cm)total

(7)

(Cd)local

(8)

(Cm)local

(9)

(Cm)total

(10)

RMS error
Local

(11)

(F )max

( Cd)local

(FP)
Total MalTotal

342 4.61 0.87 0.994 0.67 1.02 0.67 1.01 1.01 0.28 0.29 0.71 0.71
343 5.29 0.96 0.994 0.84 0.65 0.84 0.64 1.02 0.35 0.35 0.83 0.85
344 6.00 1.31 0.982 1.05 1.25 1.05 .124 1.01 0.39 0.37 0.74 0.78
345 3.70 2.84 0.986 0.56 1.01 0.56 1.02 0.99 0.48 0.48 0.93 0.96
346 4.61 3.42 0.963 0.57 0.86 0.57 0.83 1.03 0.31 0.31 0.86 0.89
347 6.00 2.69 0.951 0.61 1.12 0.61 1.08 1.04 0.29 0.30 0.83 0.86
349 5.29 3.71 0.939 0.35 1.13 0.35 1.07 1.05 0.32 0.32 0.84 0.88
350 4.61 4.12 0.949 0.32 1.22 0.32 1.16 1.05 0.31 0.31 0.75 0.76

Table 5-5
(Continued)



(1)

Run No.

(2)

T

(sec)

(3)

H

(ft)

(4)

U

ift 1

(5)

Dq/Dt

(6)

(Cdl,total

(7)

(Cm)total

(8)

(Cd)local

(9)

(Cm)local

(10)

(C
m

)

total

(11)

RNS error

(12)

F max
F.,

Total ¶ocalksec/ aq/at
( Cm)local

Total Local

366 6.02 3.13 0.67 0.913 0.48 1.36 0.48 1.26 1.08 0.21 0.20 0.85 0.88

367 5.29 3.59 0.71 0.904 0.53 0.71 0.53 0.69 1.03 0.45 0.44 0.90 0.92

368 4.61 4.30 0.82 0.901 0.48 0.91 0.48 0.89 1.02 0.47 0.45 0.93 0.96

370 2.50 3.79 0.82 0.948 0.63 1.28 0.63 1.22 1.05 0.46 0.45 0.72 0.75

371 6.02 3.00 3.45 0.763 0.50 1.97 0.50 1.42 1.39 0.22 0.22 0.86 0.86

372 5.29 3.59 3.57 0.753 0.39 2.82 0.39 2.05 1.37 0.26 0.27 0.88 0.89

373 4.61 4.57 4.24 0.713 0.44 0.76 0.44 0.42 1.82 0.21 0.22 1.04 1.03

375 6.02 3.55 6.33 0.605 0.42 0.75 0.42 -- -- 0.24 0.24 0.97 0.97

376 5.29 3.76 6.33 0.606 0.43 2.38 0.43 1.09 2.17 0.20 0.21 0.99 0.98

Table 5-6

Summary of Data for a Smooth Horizontal Cylinder under
Waves and Current by Using Different Accelerations
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Although the depth and the wave height effects are not considered,

the effects of current on the acceleration ratios ax and az still can

be easily observed in Fig. 5-19.

For comparison, the Cd and Cm values are determined from the

least squares technique by using the total and local acceleration in

inertia term respectively. It can be observed from Table 5-5 that

all of the C
d

values remain unchanged no matter which acceleration is

used. This phenomenon also holds for the waves and current condition

(see Table 5-6). The C
m

values have a small variation up to 9% for

waves only. From an engineering design point of view, this small

variation may make no difference due to the use of a safety factor.

From Fig. 5-20, if ad is near 1.0, the Cm values obtained by using

the total acceleration are almost the same as those using the local

acceleration. When aq decreases, i.e., for shallow waters waves and

steeper waves, the Cm value obtained by using the total acceleration

are larger than those obtained with the local acceleration.

As a current is introduced into the wave field, the signficant

difference of the Cm values, between using the two different acceler-

ations, can be found in Table 5-6. From Fig. 5-21, it is evident

that the difference between the two sets of Cm values becomes larger

as the current velocity increases. As stated in Section 2.5, the

inertia term compared with the drag term may be neglected if the cur-

rent velocity is large enough. Under this circumstance, it is not

very important to quantify the inertia coefficient precisely. In
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Table 5-7, with the same wave period (T=6.02 sec.) and wave height

(H=3.10 ft), the ratio of drag and inertia component of maximum pre-

dicted force (Fmax)
D
/(Fmax)

I
increases from 1.30 to 27.11 as current

velocity increases from 0 ft/sec to 6.33 ft/sec. This shows the

inertia term becomes less important as the current velocity in-

creases. For U = 6.33, the ratio of the maximum drag force to the

maximum force is 1.00 and the ratio of the total drag force to the

total force is 1.00. In other words, the total force can be pre-

dicted by using the drag force only for a large current velocity and

the inertia force is negligible.

To compare the predicted force obtained by using the total

acceleration with that obtained by using the local acceleration, two

indicators are used: (1) The root-mean-square error between measured

force and predicted force for the whole wave cycle, and (2) the ratio

of maximum predicted force to maximum measured force in one wave

cycle. These two indicators for all of the test runs are shown in

Table 5-5 (Column 10 and 11) and Table 5-6 (Column 11 and 12). It

can be observed that force predictions by using the local accelera-

tion seem a little bit better than those from using the total accel-

eration for most of the runs in the present study. However, there is

no significant difference between using the total acceleration and

using the local acceleration for force prediction through the

detailed check of the force data.



T H U (Fmax)0 (Fmax)I Fmax (Fmax)D (Fmax)
-D

(F)

total

(F1)

total
total ( FD)total (FD)total

Run No. (sec) (ft) (-1) (lbs) (lbs) (lbs) (Fmax), Fmax (lbs) (lbs) (lbs) (FA
i'local Ftotal

300 6.00 3.01 0 6.59 5.08 8.27 1.30 0.80 90.42 106.69 146.11 0.85 0.62

366 6.02 3.13 0.67 8.24 5.71 8.90 1.44 0.93 85.54 118.62. 153.46 9.72 0.56

371 6.02 3.00 3.45 26.32 6.59 26.59 3.99 0.99 351.83 138.84 360.64 2.53 0.98

375 6.02 3.55 6.33 56.12 2.07 56.13 27.11 1.00 752.85 41.77 753.08 18.02 1.00

Table 5-7

Influence of Current on the Force Prediction
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6. CONCLUSIONS

The force coefficients for a horizontal cylinder in waves or

under waves and current are smaller than those obtained for a

horizontal cylinder under planar oscillatory flow due to the orbital

motion of water particles around the centerline of the cylinder.

That implies that the vertical component of water particle velocity

and the ratio wm/um play an important role in determining the force

coefficients for the. horizontal cylinder. This trend holds for both

smooth and sand roughened cylinders.

The drag coefficient for sand roughened cylinder is larger than

that for smooth cylinders in waves or in waves and current.

Except for Reynolds number, the dimensionless parameters VM and

U/um are very important for determining the force coefficients under

waves plus towing (or waves and current). The definition of

Keulegan-Carpenter number for waves and towing is still

questionable. For large VM number or U/uwm, i.e., for large current

velocity (or towing speed), the drag coefficient for waves and

current is the same as that for steady flow.

An indicator, RR, with associated criteria, is proposed to

examine whether the test condition is suitable for determining the

force coefficients of a smooth horizontal cylinder in wavy flow. For

the sand roughened cylinder, the criterion may vary with the relative

roughness e/D.
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Through theoretical and experimental examination of the kinema-

tics acting on a horizontal cylinder, it is concluded that the forces

from waves and current can be simulated by those from towing a hori-

zontal cylinder in a wave field if the linear superposition principle

is assumed.

There is little difference between the total and local accelera-

tion in deep water. The difference becomes significant for shallow

water and steeper waves. The drag coefficients are unchanged no

matter whether the total acceleration or local one is used. The dif-

ference between Cm's obtained by using these two different accelera-

tions is small for waves only and increases as the current velocity

(or towing speed) increases. However, there is no evident difference

for the force prediction.
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APPENDIX A.

Comparison of Force Coefficients Obtained through
Different Techniques

Consider the Morison equation for one-dimensional flow.

F = C ±7 Dui 1

T.,2

ui+ C P1 1J
au

d2 l

m 4 Tt-'

If linear wave theory is used, we have the following relations:

u = um coswt

311

-5T
= -u Sinwt

107

(A.1)

In which um is the maximum horizontal velocity and w = 27/T is the

angular wave frequency.

Substituting Eq. (A.2) and Eq. (A.3) into Eq. (A.1), we have

2
7

F = C
d 2

212.
L - u

m
2

coswticoswti- CI i
D

Lwu
m
sinwt (A.4)

Because the total force is composed of drag force and inertia

force, the following expression can be used if linear wave theory is

used.

F= F
Dm

coswt Icoswt1+ F
Im
sinwt (A.5)
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in which Fpm is the maximum drag force in one wave cycle and F/m is

the maximum inertia force.

Three different techniques for determining the force coeffi-

cients Cd and Cm are discussed: (i) Fourier-averaged method, (ii)

Least square method, and (iii) Maximum kinematics and dynamics

method.

(I) Fourier-averaged Method:

Multiplying both sides of Eq. (A.4) by coswt and integrating

over one wave cycle (from 0 to 2w), the Cd can be obtained.

3
2w

F coswt
Cd

Jo
pLu

2D
dwt (A.6)

Again, multiplying Eq. (A.4) by sinwt and integrating from 0 to

2w, the Cm value is determined

C

-2u
m
T 27.

F sinwt
dwt

m J

it 1) o pLu
m
2
D

If Eq. (A.5) is introduced into Eq. (A.6) and Eq. (A.7), we have

C
d 4

1

2
f [F

Dm
coswt I coswt I + F

Im
sinwt] coswt dwt

pLu
m

D o

2

pLum
2
D

Dm

(A.7)

(A.8)



109

-2u
m
T

1
27

C
m

f [F
Dm

coswt Icoswt1+ F
Im
sinwt] sinwt dwt

7
3
D pLu

m
2
D o

2T
F

7
2
D
2
pLu

m
Im

((A.9)

(II) Least Square Method:

The mean square error betwen the measured and predicted force is
defined as

2
27

I 27
E = --- f (F-F

p
)2 dwt

0

where the predicted force Fp is evaluated by Eq. (A.4).

To determine C
d

and Cm, the E2 is minimized by taking the

derivative with respect to each coefficient. That is

and

2.
aE

aE
2

= 0
ac
m

Through some calculations, the following results are obtained.

8
21.

F coswt Icoswt1
Cd =
d 37

o pOLu
m

2

(A.10)

(A.11)

(A.12)

(A.13)
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-2u
m
T

r

27
F sinwt

C
m

dwt
o7

3 J

D pU
m

2
LD
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(A.14)

Again, substituting Eq. (A.5) into Eq. (A.13) and Eq. (A.14), we

have

27

C
18

d 37
f [FDITIcoswt Icoswt1 + F

Im
sinwt] coswt coswt dwt

pDLu
m

o

2

pDLu
m

2 Dm

C
m

-2u

m
T

1

2 f

27

Foincoswt Icoswt1 + F
Im
sinwt] sinwt dwt

7
3
D pLu

m
0

2T
F
Im

ir

2 2
pLu

m

(A.16)

(III) Maximum Kinematics and Dynamics Method:

This method assumes that when the velocity is maximum (accel-

eration is zero according to linear wave theory), only drag force

exists. And only inertia force exists when acceleration is maximum

(velocity is zero).



When velocity is maximum (e = 0° in our case),

F = C
d 2

PI) L u m2 and F = FDm Thus

2
C
d

=

pDLu
m

2
F
Dm

When acceleration is maximum (e=90° in our case),

n2

F= C
m 4

LWu
m

and F = F
Im*

Thus

4
C F

Im
1:m0

2
Lu W

2T

or
2
D
2
Lu

m

F
Im
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(A.17)

(A.18)

Comparing the Cd values [Eq. (A.8), (A.15) and (A.17)] and Cm

values [Eq. (A.9), (A.16),(A.18)], conclusion can be drawn that

although these three different techniques are used, the Cd and Cm

values should be the same if linear wave theory is used.
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APPENDIX B

LIST OF NOTATIONS

a Wave amplitude

a() Wave amplitude in quasi-still water

C
d

Drag coefficient

Cm
Inertia coefficient

C
r

Relative wave velocity with respect to coordinates
moving with U

C
x

In-line force coefficient [Eq. (2.33)]

C
z

Transverse force coefficient [Eq. (2.34)]

C Wave celerity (C=w/K)

Cg Group velocity (Cg = dw/dk)

D Diameter of circular cylinder

d Distance between water surface and upper face of

cylinder

E Total error

E Wave energy

E rms Root-mean-square error [Eq.(5.6)]

E
x

Error is x direction

E
z

Error in z direction

E
2 Mean square error

e Distance between bottom and lower face of cylinder

F Wave force

F
X'

F
Z

Wave force in horizontal and vertical direction

F
D

Drag force
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F
Dx'

F
Dz

Drag force in horizontal and vertical direction

F
I

Inertia force

F
Ix'

F
Iz

Inertia force in horizontal and vertical direction

Fxm, Fzm
Measured force in horizontal and vertical direction

F
xp,

Fzp
Predicted force in horizontal and vertical direction

f Wave frequency

g Gravitational acceleration

H Wave height

h Water depth

K Keulegan-Carpenter number (-

u
mT

)

k Wave number (= 27r/L)

L Wave length

L
o

Wave length in deep water

The order of stream function wave theory

n Wave frequency (=1/T)

OF Objective function [Eq. (2.6)]

P Pressure

Q Bernoulli constant

q Total velocity

Total acceleration

R Reynolds number (=uD/v)

RR Ratio to examine the suitability of data for

determining force coefficients

T Wave period

Tap Apparent wave period [Eq. (3.1)]
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t Time scale

tap Apparent time scale [Eq. (3.2)]

U(z) Horizontal current at vertical elevation

U
b

Current velocity at the bottom

U
s

Current velocity at the free surface

u Horizontal component of water particle velocity

um Maximum horizontal velocity

u
w

Horizontal velocity induced by waves only

uwm Maximum wave-induced horizontal velocity

u
I Horizontal component of water particle acceleration

VM Verley and Moe number (= UT/D)

w Vertical component of water particle velocity

w
m

Maximum vertical velocity

w
w

Vertical velocity induced by waves only

wwm
Maximum wave-induced vertical velocity

w ' Vertical component of water particle acceleration

x Horizontal Coordinate

X(n) Stream function coefficients

z Vertical coordinate, direction measured positive
upwards from still water level

aq Gross acceleration ratio [Eq. (5.7)]

a
x

Horizontal acceleration ratio [Eq. (5.8)]

az Vertical acceleration ratio [Eq. (5.9)]

13 Frequency parameter (=D2/vT)



115

Y Specific weight of water

E Surface roughness of the cylinder

n Water surface elevation

O Phase angle (=2.1rt/T)

A Parameter (inversion of VM)

X
1'

A
2

Lagrangian multipliers

Kinematic viscosity

P Density of water

o Velocity potential

ii Stream function

a Relative wave frequency

w Angular wave frequency (=27r/T)

II Dynamic viscosity


