AN ABSTRACT OF THE THESIS OF

Adel M. Halawa for the degree of Doctor of Philosophy in Statistics

presented on February 9, 1989,

Title: Testing for Location After Transformation to Normality

Redacted for Privacy

David S. Birkes

Abstract approved:—

In the problem of testing the median using a random sample from a
certain distribution, and if no other parametric family is suggested,
the t-test is known to be the optimal procedure when this distribution
is normal. If the sample appears to be non-normal, one has the choice
either to consider a non—parayetric approach or to try to correct for
non-normality before applying:the t-test.

In this thesis we investigate the effect of applying certain power
transformations as an action to correct for non-normality before
applying the t-test. Also we investigate the effect of applying a
power transformation then trimming a certain proportion from the data
on each tail as a double action to correct for non-normality. This
problem is first considered b& Doksum and Wong (1983), who apply the
Box-Cox power transformations to positive, right-skewed data when
testing for the equality of qistributions of two independent samples.

In the present work we provide results for the one-sample case
using two alternatives to the Box-Cox power family which are applicable

to all data sets. Whenever it can be assumed that the data is a random



sanple from a symmetric distribution with heavy tails, it is shown that
the John-Draper family of modﬂlus power transformations, with the
transformation parameter being positive and smaller than 1 , is
appropriate to correct for non-normality and the t-test based on the
transformed data is asymptotically more efficient and has better power
properties than the t-test based on the data in its original scale.
When the data is thought to have a skewed distribution and can assume
negative as well as positive values, a new family of transformations,
referred to as the two-domain family, is introduced. It is shown that
the t-test based on the data after applying this new transformation is
also asymptotically more efficient and has better power properties than
the t-test in the original scale. A simulation study shows that
trimming a certain proportion on each tail of the data transformed by
one of the above two transformations then applying the t-test to the
trimmed samples yields a considerable gain in power compared to the

t-test in the original scale.
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TESTING FOR LOCATION AFTER TRANSFORMATION TO NORMALITY

1. INTRODUCTION

Let Y,, Y5, ..., Y, Dbe a sample of independently and identically
distributed random variables with distribution function F . The
problem we are concerned about in this thesis is the one of testing a
statistical hypothesis concerning the median of F . If F is assumed
to be normal, then the t-test is the optimal testing procedure to
consider, since it is the uniformly most powerful unbiased test. If F
is not normal but has a symmetric distribution with a finite variance,
the Central Limit Theorem will then insure that the t-statistic for
testing the median (= mean) is asymptotically valid in the sense that
it asymptotically gives the correct level and power. However, in this
situation many researchers have shown that if F has heavier tails
than a normal distribution, the t-test tends to be conservative for
small samples and hence has poor power properties compared to the
normal situation. Also, under the same situation it is known from the
literature that, even asymptotically, the t-test is not as efficient as
other robust or nonparametric procedures.

From the discussion above we conclude that the optimality of the
t-test procedure is restricte& to the situation where the data are
approximately normally distributed. Therefore if one suspects that a
set of data departs from normality, one might consider some procedure

that corrects for such departure and brings the data into approximate



normality. Two common procedures that can be considered in such cases
are transforming the data and trimming a certain proportion from the
extreme values of the data on each side. These two procedures can be
combined by first transforming the data then trimming the extreme
observations.

Doksum and Wong (1983) consider the problem of testing equality of
the means of two independent samples from distributions that are skewed
to the right. They only consider positive data sets. To each data set
they apply a Box-Cox power transformation and then trim the extreme
observations on each side. They investigate the efficiency and power
of the t-test statistic based on such corrected data relative to the
t-test in the original scale. In a technical report, Doksum and Wong
(1980) report that their results are valid for testing any statement
about the means of more than two populations as long as this statement
is in the form of a contrast. On the other hand they state that their
asymptotic results are not valid for the single-sample case.

In the present work, we go along the lines of Doksum and Wong
(1983) with two alternative families of power transformations that may
be used instead of the Box-Cox transformation in cases where the latter
does not work well. These two families are the John-Draper family of
modulus transformations, which is suitable for dealing with heavy
tailed symmetric distributions, and a new family of transformations
which we refer to as the two-domain family and which is suitable for
dealing with nonsymmetric data by dealing differently with each tail of
the distribution of the data. The main advantage of these two
alternative families is that they are applicable to all data sets which

may assume negative as well as positive values. Also these two



families provide asymptotic results for the one-sample problem.

This thesis contains both asymptotic and simulation results. For
the asymptotic results, expressions of Pitman's asymptotic relative
efficiency of the transformed t-test relative to the t-test without
transformation are derived under the John-Draper family for symmetric
models and under the two-domain family for skewed models. These
expressions include expectations that cannot be evaluated analytically,
and so numerical integration techniques are used to evaluate them. It
is shown that the transformed t-test using consistent estimators of the
transformation parameters is asymptotically much more efficient than
the t-test in the original scale. The asymptotic results concerning
the two-domain family are derived using the normal maximum likelihood
estimators of the transformation parameters. Also throughout the
simulation study the normal maximum likelihood procedure is used to
estimate the transformation parameters. We include in the thesis a
proof of the consistency and asymptotic normality of these estimators
under the two-domain family; similar results for the John-Draper family
follow as special cases. For the simulation results under symmetric
models we simulated the level and power for six test statistics. These
are: the t-test in the original scale of the data, the t-test after
transformation, the t-tests from data trimmed by .10 and .20 on each
tail and the t-tests from data that is first transformed then trimmed
by .10 and .20 on each tail. These percentages of trimming are the
same as those considered by Doksum and Wong (1983). For skewed models
we simulated the level and power for the first four test statistics
mentioned above. The simulation results show that, under the normal

model, the transformed t-test has almost the same level and power as



the t-test in the original scale (the uniformly most powerful unbiased
test). Under this model the trimmed tests, whether transformed or not,
cannot compete with the two untrimmed tests. Also, the simulation
results show that under some heavy-tailed distributions the transformed
t-test is more powerful than the t-test in the original scale, which
supports the asymptotic efficiency results. Under such non-normal
distributions it is always the case in our simulations that the trimmed
t-tests are more powerful than the two untrimmed tests. In some
situations the difference in simulated powers between the trimmed tests
and the transformed then trimmed tests is slight and in some other
situations there is a considerable difference in favor of the
transformed then trimmed tests.

The thesis, besides this introduction, contains four other
chapters and six appendices.

In Chapter 2 we discuss some of the testing procedures appropriate
for testing a location parameter. We also discuss four families of
transformations: the Box-Cox family of power transformations and its
effect in removing skewness from right-skewed positive data; the
shifted Box-Cox power family and the problem of estimating the shift
parameter; the John-Draper family of modulus transformations and its
effect on symmetric heavy-tailed data; and a new family of
transformations called the two-domain family. The chapter also
includes a discussion about the effect of using a data-based estimator
of the transformation parameter on subsequent analysis. The chapter is
concluded with a brief review of the work of Doksum and Wong (1983).

In Chapter 3 we derive the asymptotic relative efficiency under

symmetric models for the t-test in the original scale relative to the



transformed t-test, using the John-Draper transformation and a
consistent estimator of the transformation parameter. This includes
proving that both of these two tests are Pitman regular. The
definition of a Pitman regular test statistic and the derivation of
Pitman's asymptotic relative efficiency under a general setting
constitute the material of Appendix B. In this chapter and the next
one, the transformed t-test assuming the transformation is known, is
considered to be the basic test to which we relate the asymptotic
results. This means that we first derive the asymptotic relative
efficiency of the t-test in the original scale relative to the basic
test and then we show that the asymptotic relative efficiency of the
transformed t-test using a consistent estimator of the transformation
parameter relative to the basic test is one. We give proofs of the
main required results in the body of the chapter and proofs of
intermediate results are given in Appendix C . Also the chapter
includes some tables of asymptotic relative efficiency under some
transformed models.

In Chapter 4 we go through the main lines of Chapter 3 with skewed
instead of symmetric models and the two-domain transformation instead
of the John-Draper transformation. The results of Chapter 4 are not as
general as those of Chapter 3. The results of Chapter 3 are valid
under the situation where there exists a transformation that can
transform the data to a symmetric model. The results of Chapter 4 are
restricted to the situation where there exists a transformation that
can transform the data into a normal model. Arguments similar to those
given in this chapter would be needed for each alternative to the

normal model. On the other hand it is the transformation to normality



that is of most interest when the problem is to test the mean or the
median of a certain distribution. As in Chapter 3, some of the proofs
are given in the body of the chapter and the rest are given in Appendix
D. Also in this chapter we rely on the material of Appendix E which
covers the consistency and asymptotic normality of the maximum
likelihood estimators of the transformation parameters of the
two~-domain family.

In Chapter 5 we discuss the simulation study. The chapter
includes tables of the simulated power and level under different
symmetric and skewed models. A list of the programs used in simulating
the power under different models is given in Appendix F, which also
contains the programs that calculate the asymptotic relative
efficiencies of both Chapters 3 and 4.

Appendix A contains some facts and theorems about convergence in
probability and convergence in law which are frequently used in
Chapters 3 and 4 with or without reference to their places in the

appendix.



2. HYPOTHESIS TESTING OF LOCATION AFTER TRANSFORMATION

Let Y,,Yy,...,Y, be a random sample with a distribution function
Fﬂ,c where @ denotes the median of Y and ¢ is a scale parameter.
In the problem of testing the null hypothesis H,: ¢ = 00 against the
alternative H,: ¢ > 6, one can either consider a nonparametric
approach where no distributional assumptions are required or a
parametric approach where some underlying model should be assumed.
Under the parametric approach if the normality assumption can be made,
then the t-test is the uniformly most powerful unbiased test for
testing the above hypothesis. On the other hand, if the data suggest
some sort of departure from normality, and if no other parametric model
is suggested, it may be recommended to consider some procedure to
correct for the non-normality of the data before calculating the
t-statistic. To determine what procedure should be considered to
correct for the non-normality we distinguish between two types of
departures from normality. In the first type, while most of the data
seem to be from a normal model, a few outlying observations exist on
one or both tails. In this case trimming a certain proportion from the
smallest and/or the largest observations will be the appropriate action
to correct for the non-normality. 1In the second type, the whole data
set may indicate departure from normality, such as when the
distribution has heavier tails than a normal or the distribution is
skewed. A power transformation may be recommended to correct for this
type of departure. Also, there may be cases in which both trimming
and transforming should be considered together.

In Section 2.1 we discuss the properties of the t-test and the



consequences of applying the t-test to non-normal data. Also we
introduce the trimmed t-test. In Section 2.2 we discuss families of
power transformations, their properties and their effects on the
distribution of data. The families we consider are the Box-Cox and the
shifted Box-Cox families, the family of modulus power transformations
(John-Draper family) and a new family of transformations which we call
the two-domain family. In Section 2.3 we discuss the problem of using
data-based estimators of the transformation parameters on subsequent
analysis. In Section 2.4 we review the work of Doksum and Wong (1983)
who were the first to consider the t-test after applying the Box-Cox

power family.

2.1 Procedures for Testing a Location Parameter and their Properties

In this section we discuss the t-test and the trimmed t-test

procedures for testing
Ho: 6 = 6, against H;: 6> 6, . (2.1.1)

with emphasis on the consequences of using the t-test when the data are

actually not normally distributed.

2.1.1 The t-test

The t-test statistic for testing the null hypothesis in (2.1.1) is

defined as

t={n(T-0,) /0 (2.1.2)

-

n n
where ¥ = (1/n) Y. and ¢2= (Y, -Y)%(n-1) . If Y is
i=1 * ¥ ?

distributed as N(G,ag) , then Y is distributed as N(G,v%/n) ,

-

(n—1)a§/¢$ is distributed as x2(n-1) , and Y and 03 are



independent. It follows that t has a noncentral t-distribution with

n-1 degrees of freedom and noncentrality parameter {no(8- )/ oy
which is zero if and only if H; is true. Under the above setting the
test procedure that rejects H, for values of t larger than the
(1-2)100% percentile of the t-distribution with n-1 degrees of
freedom is the uniformly most powerful unbiased level-g test.

Although normality is an appealing assumption in many statistical
inference problems, it is generally believed that one will never
observe a random sample that is exactly normally distributed. It is
more practical to assume that the data have some sort of departure from
normality which may be due to the existence of some outliers in one or
both tails, or due to heavy tails or skewness of the distribution of
Y.

Now we consider the problem of assuming that a set of data is
normally distributed when in fact it deviates from normality due to one
of the above reasons. We address this problem in terms of four
questions:

1. How are the level and the power of the t-test affected by
non-normality of the data in large samples?

2. How does the power of the t-test compare with other tests for
non-normal data in large samples?

3. How are the level and power of the t-test affected by
noﬁ—normality in small samples?

4. How does the power of the t-test compare with other tests for

non-normal data in small samples?
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For the answer of the first of these questions we refer to Lehmann
(1986, Section 5.4) and Tiku et al. (1986, p.2-3 and Chapter 4) who use
the Central Limit Theorem and consistency of ;é to show that the
t-test is asymptotically robust-valid in the sense that in the limit it
gives the correct level and power no matter what the distribution of Y
is, as long as the variance of Y is finite. With respect to the
second question, they state that the t-test is not robust-efficient in
the sense that some other test procedures like the trimmed t-test or
the Wilcoxon signed-rank test are more powerful than the t-test under
some non-normal models.

There are many papers in the literature that deal with the third
question. For example, Tan (1982) gives a list of 55 references that
deal with the distribution of the t-statistic whemn Y is not normal.
Geary (1947) gives approximate formulas for the first four moments of
the distribution of the t-statistic listed as F1 through F4 below. Let
p(Y) denote the kth central moment of Y and let /J;(Y) and
f2(Y) denote the coefficient of skewness and the coefficient of
kurtosis respectively. That is,

BilY) = ag (V) (pa (Y372, Bo(Y) = p, (V) /(py(¥)) 2 .

Under the assumption & = 4, ,

F1. E(t) =-1/2 f,(¥)/n - o(n~!"%)

F2. var(t) =1+ 1/4 (8 + T4,(Y))/n + 0(n"?)

F3. f,(t) =-2 4,(V)/{m-0m"?

FA. f,(t) =3 +2(3 - fo(Y) + 64,(V))/n + 0(n"?).

Using these approximations, it is easy to see the following relations

between the shape of the distribution of Y and the shape of the
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distribution of the t-statistic.

1. From F4, /A,(t) 1is inversely related to #,(Y) and hence the
heavier the tails of the disfribution of Y are the lighter the tails
of the distribution of t will be and vice versa. This led Yuen and
Murthy (1974) to state that "It is also well known that the usual
Student's t-test is conservative and hence less powerful when the
underlying distribution is long tailed.”

2. From F1 and F3, if f,(Y) > 0, then E(t) and /,(t) are
both negative which means that the distribution of t will be skewed
to the left if the distribution of Y is skewed to the right, and vice
versa. Hence, with a rejection region of the form {t: t > ¢} , if the
distribution of Y is skewed to the right, one would expect the t-test
to be conservative, and if the distribution of Y is skewed to the
left, it will be expected that the actual level of the test will always
be greater than the nominal level.

3. From the order of convergence of the above approximations to
the exact moments of the t-statistic under normality note that both the
variance and kurtosis coefficient are o(n-2) while A (t) is
o(n-"% and E(t) is 0(n~!°%) , which means that the variance and
kurtosis coefficient are less affected by departure from normality.

The fourth question, about how the power of the t-test compares
with other tests in small samples, can be investigated by simulation.
Among others, Tiku (1980) and Doksum and Wong (1983) give some
simulation results about the power of the t-test and the power of other
nonparametric and robust test procedures for testing statistical
hypotheses concerning some location parameter of a variety of nonnormal

distributions.
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2.1.2 The trimmed t-test

This test is based on a studentized version of the trimmed mean.
To understand the rationale behind this test we give the following
premise from Tiku (1980): "Non-normality essentially comes from the
tails and once the extreme observations (representing these tails) are
censored, there is hardly any difference between a normal sample and a
non-normal sample."” Our point of view about this premise is that it is
most meaningful under the case where the majority of the data appear to
be normally distributed except for some outliers in one or both tails.
Trimming a few observations from each tail may correct for such type of
departure from normality. However, when the majority of the data do
not appear to be normally distributed, then changing the scale of Y
by applying some power transformation, or by both transforming and
trimming, may be more meaningful.

Let Y(1y . Y(2) + «-. . Y(n) denote the order statistics
corresponding to Y; , Y2 , ... . Yo and let & be any positive
number smaller than .5 such that r = né is an integer. The

§-trimmed mean is defined as

n~-T
Y., =. 2 Y / (n-2r) . (2.1.3)

T j=ret
If the distribution of Y is symmetric about ¢ , Lehmann (1983,
p.361) gives the asymptotic distribution of { n (¥, - §) as
N(O,r%) where

£(1-9)

2 2 2 2
= [J y? fly) dy + §£4(1-8)]
8" TZn? o

where £(§) is the unique value for which F[{(d)] = § . Stigler

(1973) in proving the asymptotic normality of the trimmed mean shows
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that uniqueness of £(8) is both a necessary and sufficient condition

for the distribution of J—; ( ¥,, - #) to be asymptotically normal.

Let
n}-:r
. r( Yoo ~ §tr)2 + oiaret( Y4y - Yt:r)2 tr( Y. - Y1:1')2
o2 =
8
(n - 2r - 1)

(2.1.4)

Buber (1970, p.453-463) shows that under certain regularity conditions

‘6/ ;6 P, { n/(n-2r) .

Hence,
— ?tr - 00
t,,=4n-2r (———) (2.1.5)
’s

is an asymptotically valid test statistic for testing the hypotheses
given by (2.1.1) in the sense that its limiting distribution is N(0,1)

when ¢ =14, .

2.2 Families of Power Transformations

There has been considerable literature on the subject of power
transformations since they were introduced by Box and Cox in (1964).
Power transformations are considered when there is evidence that some
of the model assumptions associated with a certain data analysis
procedure are violated and such violation can be removed if the random
variable is expressed in a different scale. Most of the literature
considers power transformations in a regression model setting. The
main goal in the regression setting is to achieve linearity, constancy

of variance, or some distributional assumption. However, since we are
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considering a single sample model, our main interest is to achieve
normality. Investigating transformations to normality under regression
or analysis-of-variance models may not be effective due to what
Weisberg (1985, p.157) and Quesenberry and Quesenberry (1982) call the
super-normality of residuals where the residuals show a normal trend
even if the actual distribution of the errors is not normal. In the
following we consider a definition of a power transformation and the
properties it should satisfy so that the normality assumption is valid.
Then, we discuss four families of power transformations each of which
is valid to deal with a certain type of data.

We may define a transformation to normality of a random variable
Y as a function

h) : Y — Y(4) = h)(Y)

such that Y(A) is (approximately) normally distributed. The domain
of hj is the sample space of the original variable Y and its range
is the space over which we assume that the transformed variable will be
normally distributed. It would be desirable to have the domain of the
transformation be the whole real line in order to be applicable to all
data sets and to have its range be the whole real line in order for the
normality assumption to be completely valid. The parameter 1 could
be a vector as Box and Cox (1964), Andrews (1971) and Carroll and

Ruppert (1984) mention.

2.2.1 The Box-Cox family of power transformations

Box and Cox (1964) introduce this family for positive random
variables Y as
ah -/ dfado
Y(4) =
lny if A=0

. (2.2.1)



15

Note that Y(J) is monotone increasing in Y , continuous in 4 ,
bounded below by -1/1 if 1 is positive and bounded above by -1/4
if 1 is negative. A weakness of the Box-Cox family is that it cannot
handle negative data. This drawback is eliminated by introducing a
location parameter yielding the family of shifted power

transformations.

2.2.2 The family of shifted power transformations

Box and Cox (1964) extend the above family when the random
variable Y can assume hegative values by introducing a shift
parameter 7 greater than the negation of the smallest value of Y ,
so that Y+7 is positive for all Y and then apply the family in

(2.2.1) to the shifted data.

(¥ +p? =170 it 4o
Y(1.4) = ) (2.2.2)

In (Y+7) if A=0

If a set of data includes both negative and positive numbers and some
transformation needs to be considered, it is always recommended in the
literature to apply the shifted power transformation. This
recommendation is appropriate if there is a natural lower bound for Y
which can then be used as a shift parameter. If there is no such lower
bound, like for example the c#se with differences in paired samples,
and 7 has to be estimated from the data, Atkinson (1983, 1985) showed
that the family of shifted power transformations will not work well in
general because the likelih004 used in estimating the parameters is
unbounded as 7 approaches tﬁe minimum value of Y . This leaves the
problem of how to deal with negative data unsolved.

As mentioned earlier, frém a theoretical point of view it would be
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desirable for the range of the transformation to be the whole real line
in order for the normality assumption to be valid. For the Box-Cox or
the shifted Box-Cox transformations this will be true only if A is
zero; otherwise the range of the transformation is bounded as shown
above and the normality assumption cannot hold. However, from the
practical point of view it may be the case that over a bounded region
the distribution of the transformed variable may appear to be more
close to a normal distribution than the distribution of Y . The
following theorem shows the effect of applying the Box-Cox

transformation to a set of data that is skewed to the right.

Theorem 2.2.1 Suppose Y is a positive random variable and

suppose that 0 < A ¢ 1 . Let Z = hA(Y) where h) denotes the
Box-Cox transformation. Then #,(2) £ ,(Y) , where /4, denotes the
coefficient of skewness.

Proof Note that the inverse transformation of 2z = h)(y) is

y = h]l(z) = (1 + }2)1/)
oA

o

2 -
PY | o(1-h) (4 + k) YV2
po)

2
Hence for 0 ¢ A ¢ 1 , we have 0%y > 0 . Therefore, the inverse

iz

transformation y = h;l(z) is a convex function. The result follows
from Theorem 2.2.1 of Van Zwet (1964). (]

Hence, when the Box-Cox transformation with 0 ¢ A < 1 is applied
to a set of positive data that is skewed to the right, the transformed
variable will have a distribution that is more symmetric than the

distribution of the original variable. A similar description about the
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effect of the Box-Cox family in removing skewness from right-skewed
data is given by Hoaglin, Mosteller and Tukey (1983, p.100) and by

Carroll and Ruppert (1988, Section 4.2).

2.2.3 The family of modulus power (or John-Draper) transformations

This family has the form

sign(Y) ((]Y[|+1)
Y()) =
sign(Y) 1ln(|Y]+1) if A=0

Aoy if Ao

. (2.2.3)

John and Draper (1980) introduced this family for a set of difference
data (in an analysis-of-variance context) when they recognized that the
shifted Box-Cox transformation failed to improve the residual plots.
These plots showed a symmetric distribution of residuals with longer
tails than a normal pattern should show. Although in their comments
John and Draper state that "The modulus transformation is clearly an
alternative which may work well in circumstances in which the power
transformation would be inappropriate ...", this family has never been
in use since the time it was first introduced. We propose to use this
family with 0 ¢ A ¢ 1 for data that is assumed to be symmetrically
distributed with longer tails than that of a normal distribution and to
use it with J > 1 for data that is assumed to be symmetrically
distributed with shorter tails than that of a normal distribution. We
will not study the case 1 ¢ 0 , because then the transformed variable
is bounded.

Adding a centrality parameter to allow the center of symmetry to

be equal to some number @, the John-Draper family can be written as

sign(Y-0) (([v-0}+1% - 1/4  if ) 40
Y(0,0) = . (2.2.0)

sign(Y-6) 1ln(|Y-8|+1) if 1=0
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In addition to being applicable to all data sets, we next show that
this family can deal succe#sfully with problems in the tails of
symmetric distributions.

Definition A real-valued function g on an interval I is said

to be antisymmetrical on I if g(y,ty) + g(y,~y) = 2 g(y,) for some

Yo €I and all y,+ty and Yy,-Y in I .

Definition An antisymmetrical function g on I is said to be

concave-convex on I if g is concave for all y £y, and convex for

all y 2y, and y € I . the point ¥y, is called the central point

of g .

Theorem 2.2.2 Let hJ denote the John-Draper transformation and

suppose that 0 ¢ 4 ¢ 1 . Let Z="h,(Y) . Then fa(2) < fy(Y) where

f, denotes the coefficient of kurtosis.

Proof Using the inverse transformation and Theorem 2.3.2 of Van Zwet

(1964), it suffices to show that Y is an antisymmetrical
concave-convex function of Z with central point Z, = 0 . The inverse

transformation of z = hJ(Y) is
1/} _

y = b}l2) = sign(z) (1 + Afz|) 1 .
For z > 0,

1/ _ 1/)

njlo+z) = (1+42) 1  and h]l(o—z) =1 - (1+iz)

since h}1(0) = 0 , then njl(o+z) + nto-z) = 2 o =0. a
similar argument holds for 2z ¢ 0 . Therefore Y is an
antisymmetrical function of Z with central point 0 .

a1 (z)
For z <O , A i ey -V 1 o,
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92071 (2)
A . .
then ¢ 0 . Therefore Y is a concave function of Z for
all z < 0 . Similarly for z > O
-1
#*n " (2) _
A T ca-h as i
oz

which is positive if 0 < A ¢ 1 . Therefore Y is a convex function
of Z for all 2 > 0. (]

Although the family of modulus power transformations solves the
problem of how to deal with negative data and, by the above theorenm,
can be used to squeeze the tails of heavy-tailed symmetric
distributions so that they become more normal, yet there are some other
situations under which it is expected that the John-Draper
transformation cannot be appropriate. For example it may be the case
that both tails are heavy but to different degrees. In such a case we
would want a transformation that squeezes the two tails differently.

In some other cases we may want to leave one tail as is and change only
the other tail. For such situations we introduce a new family of
transformations which we call the two-domain family and which may be
expected to deal properly with types of data like those described in

the two cases above.

2.2.4 The two-domain family of transformations

This family is a generalization of the John-Draper family in which

l is a two-dimensional vector.

1-(0-Y+13/4, for Y< O
"2 (2.2.5)

Y(8,4¢,49) =
-1)/A for Y»> ¢

(Y- 8+1)
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This formula is used if J; #0 and A2 #0 . If 1y =0, then
replace (1 -'(0-Y+1)}‘)/J| by -ln(6Y+l) . If Jp =0 , then replace

A2 _ 1)/l2 by 1ln(Y-#+1) .

((Y-6+1)

Note that the two-domain family is monotone increasing in Y and
is continuous at Y = 6 . Also note that the domain of both the
John-Draper and the two-domai? transformations is the whole real line,
so they are applicable for ali data sets. Also, when A; and A2 are
both positive, the range of the transformation is the whole real line,
which allows the normality assumption of the transformed variable to be
valid.

The notion of using a different transformation (shape) parameter
for each tail is also considered by Stukle (1988) in a different
setting, where he considers different shape parameters in defining the

negative and positive parts of the logit link function of a Bernoulli

random variable under a generalized logistic regression model.

2.3 The Problem of Estimating the Transformation Parameter

In the analysis of any statistical inference problem based on
normal-theory techniques, if it were known that the data come from a
certain known transformation of a normal random variable, then
certainly the analysis of the problem based on the data that are
transformed back to normality will be optimal. Unfortunately, when
there is some evidence that some transformation should be considered,
one never knows the true valu; of the transformation parameter. The
best that can be done is then to consider a data-based estimator of the
transformation. Usually the Box-Cox maximum likelihood procedure or

Hinkley's estimator are considered in this instance. But what is the
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effect of using such an estimate of the transformation parameter,
instead of the true unknown transformation on the underlying
statistical analysis? This question was raised by Hinkley (1977, p-69)
who said "no published results exist concerning the effect of
transformation estimation on subsequent analysis". Since then, a
number of papers largely inspired by Bickel and Doksum (1981), have
studied this issue for estimation in a model which is assumed to be a
linear model after a power transformation. Bickel and Doksum argued
that there is a high correlation between the estimate of the
transformation parameter and estimates of the other model parameters.
Such a correlation leads to inflation of the variances of the model
estimates compared to the situation in which the transformation is
known. On the other hand, Box and Cox (1982), Hinkley and Runger
(1984), Carroll and Ruppert (1984) and Taylor (1986) argued that,
although there may be some effect due to considering a data-based
estimate of the transformation parameter, it is not as severe as
pictured by Bickel and Doksum. Doksum and Wong (1983) pointed out that
the reason for the argument given by Bickel and Doksum (1981) is that
they neglect the Jacobian of transforming ¥y into h}(y) and an
agreement with the other argument can be obtained if this Jacobian is
considered. The t-test statistic being invariant under multiplication
by constants Doksum and Wong (1983) were able to prove some asymptotic
results concerning the transformed t-test as discussed in the next

section.

2.4 Testing for Location when the Original Data are Transformed

Doksum and Wong (1983) consider the problem of testing the
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equality of distributions from two independent samples. They were able
to prove that the transformed t-test using a consistent data-based
estimator of the transformation parameter is asymptotically as
efficient as the transformed t-test when the transformation is known.
So whatever results hold for the known transformation situation are
asymptotically valid for the estimated transformation situation. Using
the asymptotic theory thus made available they found that there is a
considerable gain in efficiency of the transformed t-test relative to
the t-test in the original scale under the log-normal,
log-double-exponential, Student's t, contaminated normal, gamma and
exponential models. In their simulation work, Doksum and Wong found
that there is indeed some gain in the simulated power when the
transformed t-test is used compared to the simulated power of the
t-test of the original observations, but for smaller samples the gain
is not substantial. The simulated power of a transformed 7-trimmed
t-test for 7 = .10 and .20 was much higher than both the transformed
and the untransformed t-tests.

Doksum and Wong (1980) state that the asymptotic argument they
give is valid for the comparison of two means or more generally under
an analysis-of-variance model when the hypothesis of interest is in the
form of a contrast. On the other hand this argument fails for single

random sample problems.
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3. ASYMPTOTIC RESULTS FOR TEST STATISTICS UNDER

SYMMETRIC MODELS

In Section 2.1 we showed that the t-test is conservative when
applied to a set of data that has a symmetric distribution with heavy
tails, and hence does not have good power properties relative to other
testing procedures. Theorem 2.2.2 shows that when the John-Draper
family of transformations is applied with 0 < A ¢1 to a heavy-tailed
set of data, it symmetrically squeezes both tails so that the
distribution of the data in the transformed scale has lighter tails.
In this case it would be expected that the t-test from the transformed
data is less conservative than that from the original data and hence
has better power properties.

In this chapter we derive the Pitman asymptotic relative
efficiency of the t-test in the original scale of Y relative to the
transformed t-test using the John-Draper transformation. The
asymptotic results indicate that there is a considerable gain in
efficiency if the transformed t-test is used for data with heavy-tailed
symmetric distributions.

In Section 3.1 to simplify reference we reintroduce the
John-Draper family and the different test statistics involved
throughout this chapter. In Section 3.2 asymptotic properties of the
t-statistic assuming the true transformation is known are derived.
Section 3.3 deals with the asymptotics when the transformation is
unknown. In Section 3.4 we use numerical integration to evaluate the
asymptotic relative efficiency for the transformed-normal, the

transformed-contaminated-normal and the transformed-Student's-t models.
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3.1 Definitions and Notation

Throughout this chapter we use )* to denote the true value of
the transformation parameter J . We assume that J* is greater than
zero. We use 30 to denote the maximum likelihood estimator of 1,
which is shown to be consistent and asymptotically normal in Appendix
E. 0 is used to denote the médian of Y . The asymptotic results are
derived for the problem of testing the hypotheses given by (2.1.1).
Similar results for testing against 8 ¢ 8, or @ # 0, can be derived
along the lines of this chapter.

The derivation of the Pitman asymptotic relative efficiency is
based on testing the null hypothesis against local (contiguous)
alternatives, that is, alternatives of the form H,: & = &, where

0, = 0, + x/{n k>0 (3.1.1)
so that in the limit @, tends to 4, .

Recall that the John-Draper transformation with central parameter

¢ is defined in (2.2.4) for 1 #0 as

h(Y-6,4) = sign(Y-o)[(|Y-0|+1)A - 11/1 .
The main assumption under this transformation is that for some ¢, 7
and A,

h(Y-4,1) = se (3.1.2)

where ¢ has a standard symmetric distribution, that is,

b4
i. e=- ¢ ii. E(e) =0 iii. E(e?) =1 (3.1.3)

and also satisfies
iv. the cdf Fe is continuous at 0 .
A test statistic denoted by Tn(l) is defined as follows:

T () = {T B, (0, 0/ 7,080, 0)
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where,

Ba(05,H =2 b(¥;=05, ) /n -

02(8,, 0 = ii::l(h(vi-oo,» - B8, ) /a1
Since h(Y-4,,1) = Y-8, , thus T, (1) is used to denote the t-test in
the original scale. Tn(J*) is used to denote the t-test when the true
transformation is known and Tn(;n) is the t-test using the MLE of 4 .
On the other hand if we use ¢ instead of ;n(OO,J) we denote the
test by En(i) . Weuse ¥ (0 and 72(f) to denote either
Eo(Tn(J)) and varo(Tn(J)) , or some approximations of them such that

the regularity conditions C1 and C2 in Appendix B hold in the limit.

3.2 Asymptotics When 1 is Known

In this section we derive the asymptotic properties of the test
statistics Tn(J*) and T,(1) under both the null and contiguous

alternative models and show that both of them are Pitman regular.

3.2.1 Asymptotic distribution of Tn(J*) under H

Assume that under H, and for some J* . h(Y-0°,J*) satisfies the
assumption of model (3.1.2), that is,

where ¢ satisfies (3.1.3). Since 50(00,)*) = ¢ ¢ and since by the

WLLN ¢ -2, 0 , hence
by (0. h) —2—=0 . (3.2.1)

n
Since by the WLLN .El Ef/n —P .1, hence
i=
n 9 20 2 2
(1/n),21h (Yi-oo,i*) = 7 Zl €; /n 24, (3.2.2)
1= 1=
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2 2
Now (3.2.1) and (3.2.2) imply that o, (8,,4) —2 4 ¢ and by Fact 4

of Appendix A

AU RIS (3.2.3)
By the CLT
T,(0) = 5 B,(8,,4) /0 —£5N(0,1) . (3.2.4)

Using (3.2.3), (3.2.4) and Fact (2-ii) of Appendix A we conclude that

T,(0) = {5 8,005,007 s,(85,0) —<N(0,1) . (3.2.5)

3.2.2 Asymptotic distribution of T, (4,) under contiguous alternatives

As mentioned earlier we only need to consider local alternatives
as those defined in (3.1.1), that is, alternatives of the form
Hy: §=0,= 0, +Xk,/{n, for some k; > 0 . Under such alternatives
we assume that Y_ ,, Y,,, ..., Y,, are independently and identically

distributed (iid) with distribution function FO which depends on n .
n

We also assume that for a given n

h(Yni-On,)*) =0 €, (3.2.6)
where €,,, €49, .-+, €y, are iid F_ which does not depend on n .
The safest way to deal with Y ; so that the double subscripts do not

cause confusion is to transform Y ; to ¢ Since the distribution

ni °
of ¢€,; does not depend on n , it is safe to write ¢,; as ¢; . In
the proofs of parts (i) and (ii) of Lemma 3.2.1 we will use double
subscripts but thereafter we change to single subscripts since double
subscripts are too cumbersome.

The first step in deriving the asymptotic distribution of Tn(A*)

under contiguous alternatives is to express h(Y-90,A*) in terms of

h(Y-On,)*) . For Y £ #, we can write
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A A
h(Y-05,4) = T - (6,141 QL = (/4T ) /(B 0+1)) 170
The Maclaurin expansion of (l-t)A for |t] <1is
A o .-t .
1-t)"=1-t+ ¥ (-7 [ (4m)] I . (3.2.7
j=2 - m=0
jt

Since we are interested in asymptotics we can suppose kllli'( 1.

Since Y € 0, implies Y ¢ § hence for all Y < &, , 0,-Y+1 > 1

"*
and a Maclaurin expansion of (1 - (k,/{n )/(6,-Y+1)) is absolutely

n ’

convergent. Therefore

A1
R(Y-05,4) = h(¥Y-68,, ) + (k/{0 ) (6,-Y;+1) -
1] J- . j—l "*-j
(1/3*)j§2((-k,/JE') /J!)(mgo(i*-m))(en—Y+1)
(3.2.8)

Similarly for Y 2> #, it can be shown that
A1
h(Y-05,4) = h(Y-6,,4) + (k/fn) (Y-8,+1) +

) . j-1 A3
(173 j§2((kl/ﬁ)J/j!)(mljo(,l*-m) (Y-8 +1)
(3.2.9)
Let
A, ={Y : 0, <Y < 0,} (3.2.10)
and let Ag denote the complement of A, . From (3.2.8) and (3.2.9)

and for all Y ¢ A; we express h(Y-Oo,A*) as
A1
h(¥-65,4) = h(Y-6,,4) + (k/{n ) (|Y-6,]+1) +
o . . o1 A3
. j-1 3, ] %

_¥2s1gn(v-o,,) ((k /40 ) 730 ﬂl(J*-m)) (JY-6,|+1) . (3.2.11)
i m*=

Note that under model (3.2.6) we can write,

1/4,
v - g, +1=1(1+ J*alel) . (3.2.12)

Also note that sign(Y-0,) = sign(€¢) . Using (3.2.11) and (3.2.12) we
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express h(Y-0,,4) as a function of ¢, for Y € A5 . in the
following two forms that we will need later:
1. h(Y-¢ ,J*) = gt Rl(e,}*,n) (3.2.13)

where

00 s . j-l
R (€, dy0) = ‘E‘{(sign(e))J Lo w3 TG
i® m®

1"‘.']/**)
(144 _sle]) }. (3.2.14)
1-(1/4,)
2. h(Y-0p,4) = ee+ (k/fn ) (1 + dole]) + Ryle, 4 ,n)
(3.2.15)
where
o i-1 I -t
Role,dn) = 3 {(sign(e)) ((ky/{n) /3%) O (4 -n)
j=2 m*1
1'(j/J*)
(1+d _sle]) . (3.2.16)
Let
, Ay
B, = {e: [1-(1+k,/{@) 1/A o ¢ <0 }. (3.2.17)

Under the model (3.2.6) it is easy to see that Y € A, iff € €B_ .
The results of the following two lemmas will be used in deriving
the asymptotic distribution of Tn(J*) . The proofs of these lemmas

are given in Appendix C.

Lemma 3.2.1 Let A, and B, be as defined in (3.2.10) and
(3.2.17) respectively. Then under model (3.2.6) as n — w ,
i. Pr{v €A} =Pr{e €B,} — 0
ii. {8 {(1/n)Y % h(Y;-0p,40} —E=0
i“n

2
iii. (1/n) T h (Y;-05,4) —E—=0
Y€,

iv. {fli/n % €1 —E=o0

€;€B,
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v. (1/n) X e?—p-»o
€;€By
1-1/4,
vi. (1/n) T (1 + Ayr|e;]) 2.0
€;€By

Lemma 3.2.2 Let Rl(e,J*,n) and Rz(e,J*,n) be as defined in

(3.2.14) and (3.2.16) respectively. Then, as n — w ,
i. (/) T eR(eg,dm —Lso0
€;6B,

. 2 p
ii. (1/n) X Rl(ei,J*,n) —0
eiEB;

iii) {5 (/) T Ryle;d m) —2o .
€;6B5

Theorem 3.2.1 Under the alternative model (3.2.6) 30(00,3*) is

a consistent estimator of s .

Proof: From (3.2.14) write

2 2 2 2
h (Y;-05,4) = ¢ ¢; +20¢R (€;,4,,0) + R, 4,,n)
and hence
2 2 2
(1/n) X h (Yi-00,1*) -¢(/n) T ¢ =
YIEA; fiEB;
26(1/0) & eR(e;,d m) + (1/0) T Ri(e;, A .m) .
61@; f@;

1

It follows from Lemma (3.2.2) parts i and ii that

2
(/m) B B (¥-0,,d) - c/m T & —Bao0. (3.2.18)

By the WLLN and Lemma 3.2.1(v),

(/m) 2= (m) Be2-wm 3 & —RPai-0.
ey i

1 n

(3.2.19)

By Fact (1) Appendix A, (3.2.18) and (3.2.19) imply

2
(m) T Br=0,0) —Ba s . (3.2.20)

Y;€A]
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Write

a 2
(/m En’ (05,00 = (/) S B (Y-850
1=1 Y‘EA *
1 n

2
+ (1/n) 2 h (Yi'ao:)*) . (3.2.21)
Y;i€Ag

Then Lemma 3.2.1 (iii) , (3.2.20) and (3.2.21) imply that

n 2 P p)
(1/n) Zh (Y;-0,,4) — ¢ . (3.2.22)
1=1 *
A similar argument shows that ﬁn(OO,A*) —2_, 0 and hence, by Fact
(4) in Appendix A, that
P 0. (3.2.23)

B3(6,.4)

Formula (3.1.4) can be expressed as
7050 = (/@1 [(0/m) B 07 (¥;-06,4) - 826,001
(3.2.24)
Now (3.2.22), (3.2.23) and (3.2.24) imply #2(f,,d) —2— #® and hence

;n(ﬂo,)*) 2, i

In the following theorem we prove the asymptotic normality of the

(3.2.25)

transformed t-test under contiguous alternatives.

Theorem 3.2.2

1-1/3,
Let ¥ = (k,/0) E[(1 + )*alel) ] . Under contiguous

alternatives

Tn()*) - ’ —z_"’N(opl) -

Proof: Since

T () - = (a/5)[T,(dy) - W + [(e/i) -11 ¥,
and since (c/?n) 2, 1 by Theorem 3.2.1, it suffices to show
in()*) - ¥ —£,N§(0,1) . since

fBh,(00,4) - @3 h(¥;-f,0)/m=4n % n¥i-6,4)/n,
Y.€A Y.€A

1 n 1 n
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by Lemma 3.2.1 (ii)

JEEa(0,,4) - (Ja/m) T h(¥;-65,4) —E—=0 . (3.2.26)
Y.€AS
i n
Similarly Lemma 3.2.1 (iv) implies
cfie,-odn (/02 €) 2,0 (3.2.27)
€;6,
Finally Lemma 3.2.1(vi) implies
n 1—1/3* 1—1/:‘*
(k,/n)i§1(1+l*clei|) - (k,/n) % c(1+J*c|eiD
EiEBn
2 ,0. (3.2.28)
By the CLT,
- 2
s i, —=N(0,0) . (3.2.29)
By the WLLN
n 1-1/4 1-1/4,
(ky/n) 3 (1+d_s|e]) —— & E[(1+4_s|€]) 1=,
(3.2.30)

A proof that the above expectation is finite is given in Lemma C.1 of

Appendix C. From (3.2.15) we can write

1-1/4
B2 (¥, A)/n-eofdE e/n- (k/n) B (A+d sfe;]) "
LA €;6B, €;€B,
= {u (1/n) I Rale;,dm) . (3.2.31)
€,6B,

Apply Lemma 3.2.2 (iii) to conclude that the right hand side of
(3.2.31) converges in probability to 0 . The result of the theorem
follows from a chain of substitutions of (3.2.26) through (3.2.30) in

(3.2.31). ]

3.2.3 The transformed t-test is Pitman regular

The following theorem shows that the transformed t-test statistic

using the John-Draper transformation is Pitman regular.
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Theorem 3.2.3 The test statistic Tn(J*) is Pitman regular with
1-1/:1* 9
1} .

Proof: We first need candidates for in(ﬂ) and rg(ﬂ) in Appendix B.

2
R,(6,) = (n/e%) {EL(1+ s|€])

These are obtained as approximations for the functions Eo(;n(i*)) and
varo(%n(i*)), respectively. Since we are interested only in contiguous
alternatives, we approximate the above two functions for ¢ in a
neighborhood of f#, . Consider a Taylor expansion of %n(J*) about

b, = 0,

_ : _ (fxn(o,,l*)
(o7 )b, (65.d) = (Ja/a)h (0.4 + (E/a)T (0,-0) -

Under model (3.1.2) h(Yi—o,J*) = g €; ans so

- - n 1-1/1*
T,(1,) =o€+ (Jﬁ7¢)(9—9°)[(1/n£§1(1+1*¢|6il) 1.

(3.2.32)

Taking the expectation of the right side of (3.2.32) we define

1-1/4,
¥.(0) = ({n/0) (8-0,) E[(1+]) s|€]) 1. (3.2.33)

Taking the variance of the first term only, we define
2 = P, =
72(8) =var({n ) = 1. (3.2.34)
We now verify the seven regularity conditions of Appendix B.
Cl. Note that ¥ (f,) = 0 . The asymptotic normality follows from
(3.2.5).

C2. For @ =06, (3.2.33) beconmes

1-1/4,
¥.(8,) = (x;/0) E[(1 + ) o|€]) 1=9,

where ¥ is as in Theorem 3.2.2. So the result of the theorem
verifies the asymptotic normality under contiguous alternatives.

C3. From (3.2.33) ¥ (0 is differentiable for all g .

1-1/2,
ca. ¥.(0 = ({n/e) EL (1+l,a]e]) 1 ={n ¥k, .



33

1-1/4,
Since (1+A,s]€|) > 0 for all € € R' , hence

1-1/1,
E[(1+), |e]) 1>0. so ¥(&H >o0.
cs. ¥:.(6,)/{n =¥k >0.
c6. ¥.(0 is the same for all f hence

%
sup ¥ (8)/9(68,) -1} =0 for all n .
0o$ o*s 0' a'“n n'’0 l

n

C7. r1,(8,)/1,(8) =1 for all n .

Hence the test statistic Tn(J*) is Pitman regular and from Appendix B

1-1/,

R2(8,) = n {E [(1+Ae]e]) 1V . (3.2.35)

(

3.2.4 Asymptotics for the t-test in original scale

In the following we derive the asymptotic distribution of the
t-test statistic in the original scale denoted as T, (1) under both
the null and alternative models and show that it is Pitman regular.
Recall that the test statistic in the original scale is defined as

T, (1) = Jo (Y - §,)/s (3.2.36)

Y

- n n - 2

where Y = _ElYi/n and sé = _El(Yi -Y) /(n-1) . We can write
1= 1=

To(1) = (6,/8,)T,(1) where

T (1) = {5 (3-0,)/ny (3.2.37)

and o2 denotes the true variance of Y . Under model (3.1.2)

Y
h(Y—o,I‘*) = & €
/)"

Y = 0+ sign(e)[ (1+1,7]€]) 1] (3.2.38)

Note that under symmetric distributions of ¢ ,

1/

sign(e) [(1+4,0]¢€|) is an odd function and hence has zero

expectation. Hence
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1/,
02 = var(Y) = var(# + sign(e) [(1+d,r|€]) -1])

Y
e 4
= B[ [(1+d,0]¢]) -1171 . (3.2.39)

Under Hy, the CLT implies T,(1) —%- N(0,1) . We know s /5, — 1
and so

T,(1) —£- N(0,1) . (3.2.40)
Under Hl, 0=20,=0y+ k/JEJ and

- {a(¥-0,+k/ {m) Jixi-au)+ (x/{m

T (1) =
Ty Ty Ty

By the CLT, JE'(?-HH)IJY —£ , N(0,1) . Hence

To(1) —— N(k/#y,1) under H,. (3.2.41)

Theorem 3.2.4 The test statistic T, (1) is Pitman regular with

Ra(0y) = /ey .
Proof : We will verify the seven conditions of Appendix B using
¥,(0) = ({n/e,) (6-0p) and r;(ﬂ) =1.
Cl. since ¥,(6;) =0 ,?Cl follows from (3.2.40).
C2. Note ¥.(4) = k/s, for all n . C2 follows from (3.2.41).
c3. §.(0 = (JEYJY)(ﬂ-HQ) is differentiable with
¥.(0) = JHYJY .
C4. {n/ey > 0.
5. ¥,(0)/{n=1/ey> 0.
6. ¥.(M/9(0) =1 for all ¢ and all n .
C7. r71,(6) =1 for all @ and all n .
Therefore T (1) is Pitman rggular and from Appendix B

2 2 9, 5
Ro(8y) = ¥, (8,)/75(8,) = n/ag 0 (3.2.42)

Now we compute the asymptotic relative efficiency of the t-test in the

original scale, T,, = T,(1) relative to the transformed t-test,
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1-1/4

. . x .2
Ty, = Taldy . From (3.2.35), RE, = (n/¢%) {EU(1+A,e]€]) 1} and
from (3.2.42) R? = n/a% . Therefore
ARE(T (1) , T,(4)) = lim R} /R
n 4 o
2 1-1/4,
= ¢/ sg{EL(A+h,o]€]) 1} (3.2.44)
where c; can be evaluated using (3.2.39) .

3.3 Asymptotics When 1 is Unknown

In practice the true value of the transformation parameter 4, will
not be known and a data—basedjestimator }n of 1 (such as the MLE)
may be considered. In this section we show that if ;n is a
consistent estimator of J, then the test statistic Tn(;n) is
asymptotically equivalent to éhe test statistic T, (4,) where

T_(3,) = {8 B, (80,49 /5,08y, ) (3.3.1)
By the asymptotic equivalence of the two test statistics Tn(}n) and
T,(l,) ve mean that the difference between them converges to 0 in
probability under both the null and contiguous alternative models.

Lemma 3.3.1 Under both H, and H,,

i. B (65,4 - By(f,,4e) —2—0 (3.3.2)

n 92 - n 2
ii. (1/0) 30 (V=65 dg) - (1/m) T b (Y=, 4, 2.0 (3.3.3)
1= ) 1=

The proof of the above lemma is given in Appendix C.

-2 -
Theorem 3.3.1 Under both H, and H,, ¢,(d,,4;) is a consistent

2
estimator of o7 .

Proof: Note

-2 - n 2 - =9 -
7q(86,45) = 1/ (-1 31 (¥;-0q,d) - nb3(fp.d) 1 .

In Section 3.2.1 and Theorem 3.2.2 we showed that Jﬁ'ﬁn(ﬂo,l*)/a
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has a limiting normal distribution under the null and alternative
models respectively. Dividing by Jﬁ'and applying Fact 2(i) in Appendix
A we conclude that

B (05,40 —E—=0 .
By (3.3.2) and Fact 1 in Appendix A

B (6,1 —E—o0 .
By Fact 4 in Appendix A we conclude that

R2(8,,1) —2o0 . (3.3.4)

From Section 3.2.1 and Theorem 3.2.1 we have-

n 92 2
(1/0) T h (Y;-0,,4,) —E— ¢
1=1
under both the null and alternative models. Hence by Lemma 3.3.2 (ii)

n 2 - P 2
1/ Zn (70, ) 2o o (3.3.5)
1=

The result of the theorem follows from (3.3.4) and (3.3.5). (]
- -
d hn(ﬂo,Jn)
ke

probability under both the null and alternative models.

- |
Lemma 3.3.2 If A, —P , ), ., then is bounded in

Lemma 3.3.3 Under both the null and alternative models

b (8,4,
dA

The proofs of these lemmas ar% given in Appendix C.

_p_.go.

Theorem 3.3.2 Under both H, and H, the test statistics T,(4,) and

Tn(J,) are asymptotically equivalent in the sense that
T,y - T,(h) —E—0 .

Proof:

Recall that

Tn(:ln) = ﬁﬁnwo':‘;)/ ;n(OO’:ln)
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T,(Ay) = JT b (05,4007 a,(05,0,) -
In Section 3.2 we showed that ;n(eo,l*) is a consistent estimator of
¢ under both hypotheses and a similar result for }n(Oo,}n) is
obtained in Theorem 3.3.1 above. Hence by Theorem A.2 of Appendix A

the result follows if we show that
JE b (8,,1) - {5 b,(0,4) —2—0

under both models.

Consider a Taylor expansion of Jﬁ'ﬁn(ﬂo,ln) about 1 = 4,
dh,(0y,4,)
—_— %

FB.(0,,0) = fTh, (8,4, + {8 (3, = 4 ~

) 9% (8,,1)
_ 9 n'’0f’" n
o, - 1) D (3.3.6)
where A_ is such that |[A, - A,| < |4, - A.| - From Appendix E

n

1 -2, A, and {E'(in - ) —P , N(0,1(A,)) , where I(},) denotes

n

the information of 1 . Hence, by the above two lemmas
A (6,4, ) %8 (8,,4)
MR AR o (A2 a7 T P,

5 (A -4 e

Therefore

BB, - T B,(8,,00 20 .

Theorem 3.3.3 If A, is the MLE of 1 then T,(J)) is Pitman

n

regular and ARE(Tn(}n).Tn(J*)) =1.

Proof:

Let ¥.(64,),) and 7,(6,4,) be as defined in (3.2.33) and (3.2.34)
respectively. Since by Theorem 3.2.3 T, (4,) is Pitman regular then,
the result of the present theorem follows from Theorem 3.3.2 above and

Theorem A.3 in Appendix A. (]
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3.4 Examples

In this section we use the derived formula of Pitman efficiency
given by (3.2.44) and Theorem 3.3.3 to evaluate the asymptotic relative
efficiency of T (1) relative to Tn()n) for the transformed-normal ,
transformed-contaminated-normal and transformed-Student's t models.
Recall that in (3.1.2) we assume that var(e¢) =1 . Except for the
normal model we need to rescale ¢ so that this assumption is met. In
all models we vary A over the set {1/4, 1/3, 1/2, 1} . For the
transformed normal model ¢ varies over the set {1/2, 1, 2, 3, 4, 5}.
For the rest of the models ¢ assumes the above values multiplied by
the factor required to make var(¢) = 1 . We use numerical integration
methods (Simpson rule) executed on GAUSS software to evaluate the two

expectations involved in (3.2.44). Appendix E contains the program

used under each model .

3.4.1 Transformed-normal model

The p.d.f. of ¢ is given as

— g2
£l =1/{zre /"

and var(e) =1 .
Table 3.1 below gives the results of evaluating ARE(T,(1) , T,(4)))

for the above proposed values of A and ¢
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Table 3.1 ARE(T_(1),T,(4;)) of the

transformed-normal model

>\\J 1/4 1/3 1/2 1
.5 | 0.9092 0.9329 0.9667 1
1 0.7294 0.8044 0.9075 1
2 0.4043 0.5584 0.7906 1
3 0.2172 0.3884 0.6969 1
4 0.1214 0.2790 0.6244 1
5 0.0716 0.2076 0.5675 1

From the above table note that:

1. There is a considerable gain

of T,(1) is used.

2. The gain increases as

in efficiency when T (4 ) instead

A decreases and/or ¢ increases.

3. The differences among the entries in the first row,

corresponding to ¢ = .5 , are not as much as those in the other rows.

This gives an indication that when

approximately linear in y .

s 1is small, h(y.d) 1is

So, no matter what transformation is

applied we get results that are close together.

3.4.2 Transformed-contaminated-normal model

Suppose that X has a contaminated normal distribution with

contamination variance g , that is,

X = (1-B) Xy + B X2

2
where X; . N(0,1) , X5 - N(0,7) and B . Bin(l,p) . It follows that

the p.d.f. of X 1is given as
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f(x) = (1-p) p(x1) + p p(x2/M)/7
where ¢ is the p.d.f. of N(0,1). It can be shown that

var(X) = (1-p) + p 12 .
Let ¢ = X/ax . where 95 refers to the standard deviation of X .
Then var(e¢) =1 . Tables 4.2 through 4.5 below give the asymptotic

relative efficiency ARE(T,(1),T,(J,)) for the different combinations

2
of p=.1and .2, and y = 16 and 25 .

Table 3.2 ARE(Tn(l),Tn(Jn)) of the transformed-contaminated-

2
normal model p= .1, 5 =16

)\\a 1/4 1/3 1/2 1

.5 0.2236 0.3364 0.5550 1

1 0.0464 0.1248 0.3651 1
2 0.0050 0.0319 0.2132 1
3 0.0011 0.0130 0.1514 1
4 0.0004 0.0068 0.1186 1

5 0.0002 0.0041 0.0984 1
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Table 3.3 ARE(T,(1),T,(4,)) of the transformed-contaminated-

2

normal model p = .2 , 7 = 16

)\\5 1/4 1/3 1/2 1
.5 0.2042 0.3114 0.5273 1
1 0.0421 0.1138 0.3411 1
2 0.0046 0.0292 0.1976 1
3 0.0010 0.0120 0.1403 1
4 0.0003 0.0063 0.1010 1
5 0.0001 0.0038 0.0913 1

Table 3.4 ARE(Tn(l).Tn(Jn)) of the transformed-contaminated-

2

normal model p = .1 , g = 25

)\\) 14 | 1/3 1/2 1
.5 0.1182 0.2128 0.4335 1
1 0.0177 0.0636 0.2573 1
2 0.0015 0.0139 0.1382 1
3 0.0003 0.0053 0.0948 1
4 0.0001 0.0027 0.0728 1
5 0.0001 0.0016 0.0597 1
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Table 3.5 ARE(T,(1),T,(4;)) of the transformed-contaminated-

2
normal model p = .2 , 3 = 25

R‘ 1/4 1/3 1/2 1

.5 0.1136 0.2053 0.4221 1
1 0.0173 0.0618 0.2500 1
2 0.0015 = 0.0137 0.1349 1
3 0.0003 0.0053 0.0929 1
4 0.0001 0.0027 0.6244 1

5 0.0001 = 0.0016 0.0589 1

From the above tables we note‘that

1. The entries in all tables show that Tn(in) is asymptotically
much more efficient than Tn(l? , and as above the efficiency increases
as ¢ 1increases and/or 1 decreases.

2. Comparisons of Table 3.2 with Table 3.4 and Table 3.3 with
Table 3.5 show that there is not much difference in efficiency between
the two proportions of contamination.

3. Comparisons of Tables 3.2 and 3.3 with 3.4 and 3.5 show that
the gain in efficiency increaées as the contamination variance

increases.

3.4.3 Transformed Student's-t model

Suppose that X has a Stu¢ent's—t distribution with v degrees of
freedom. The p.d.f. of X is then given by

T(r+1)/2
T'(v/2)

-(p+1) /2

—_ 2
f(x) = 1/ Jux (1+t/v)
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and var(X) = v/(»~2) , v> 2. Let €=2XJ (»12)/v then,
var(e¢) = 1 . Tables 3.6, 3.7 and 3.8 below contain the asymptotic
relative efficiency for the t-model with » equals 10 , 20 and 30

respectively.

Table 3.6 ARE(T_ {(1),T,(4,)) of the transformed-Student's
t model » = 10

j‘\x 1/4 1/3 1/2 1

.5 0.7828 0.8338 0.9067 1
1 0.4991 0.6286 0.8056 1
2 0.1661 | 0.3436 0.6490 1
3 0.0591 0.2009 0.5440 1
4 0.0246 | 0.1277 0.4707 1

5 0.0117 0.0869 0.4172 1
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Table 3.7 ARE(T,(1),T,(4,)) of the transformed-Student's

t model v =20

>\\g 1/4 1/3 1/2 1
.5 0.8594 0.8931 0.9422 1
1 0.6367 0.7318 0.8647 1
2 0.2983 0.4637 0.7290 1
3 0.1396 0.3014 0.6289 1
4 0.0704 0.2061 0.5550 1
5 0.0385 0.1479 0.4988 1

Table 3.8 ARE(T,(1),T,(1,)) of the transformed-Student's

t model v =30

)\\} 1/4 1/3 1/2 1
.5 0.8782 0.9080 0.9513 1
1 0.6710 0.7586 0.8804 1
2 0.3358 0.4975 0.7512 1
3 0.1658 0.3317 0.6531 1
4 0.0870 0.2311 0.5796 1
5 0.0490 0.1680 0.5230 1

From the above tables we note that the same directions for the

previous two models continue to hold for the t-model. Further it may

be noted that the ARE is smaller for smaller v and vice versa.
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4. ASYMPTOTIC RESULTS FOR TEST STATISTICS UNDER

SKEWED MODELS

In Chapter 3, the performance of the transformed t-test relative
to the untransformed t-test was investigated under the assumption that
the original observations have a heavy-tailed symmetric distribution.
In that chapter we considered the John-Draper family of transformations
which symmetrically deals with both tails and hence we get a symmetric
distribution for the transformed variable.

In the present chapter we drop the symmetry assumption and assume
that when the two-domain transformation is considered, there exists
some value of the transformation parameters that bring the transformed
variable into normality. As in Chapter 3, the main purpose of this
chapter is to evaluate the Pitman asymptotic relative efficiency of the
t-test in the original scale relative to the transformed t-test using
the maximum likelihood estimators of the transformation parameters. Ve
use the transformed t-test assuming the true transformation is known as
the basic model to which we relate the asymptotic results of both the
untransformed test and the transformed test using the MLE's of the
transformation parameters. In Section 4.1 we introduce some notation
that will be frequently used throughout the chapter. Section 4.2
contains proofs of the different asymptotic results required for the
derivation of the Pitman efficiency of the untransformed t-test
relative to the t-test after applying a known transformation. 1In
Section 4.3 we derive the asymptotic results for the transformed t-test
using the maximum likelihood estimators of the transformation

parameters and the asymptotic relative efficiency of this test relative
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to the t-test with a known transformation. The chapter is concluded in
Section 4.4 with some numerical evaluations of the asymptotic relative
efficiency under the transformed normal model for different

combinations of the transformation parameters.

4.1 Definitions and Notation

Throughout this chapter h(Y-4,)) is used to denote the

two-domain transformation introduced in Section 2.2 for J #0 as

)
(1 - (6-¥+1) /), Y <8

n(y-6,)) = Ay
((Y-8+1) - 1)/4, Y)> 4

where 4 denotes the 2x1 vector of transformation parameters (A,,}2)t.
We always assume that both A, and ), are positive. As in Chapter 3, ¢
is used to denote the median of the distribution of Y .
The main model we assume in this chapter is
h(Y-8,4,) = s¢ (4.1.1)
where, for some A, , fand 7, ¢ 1is assumed to have a standard
normal distribution. The asymptotic results are developed for the
problem of testing
Hy: 0= 0, versus H: 0=26,> 8,
where
0, = 0y + k/{0 (4.1.2)
for some positive number k;.
The test statistics we consider in this chapter are the same as
those introduced in Section 3.1 with h(Y-6,)) being the two-domain
family instead of the John-Draper family. Let fY(y,H,J*,a) denote

the pdf of Y ,
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(ﬁl(Y-e.J*)
£,y 0.4y, 0) =(1/0) £ iy-0,0)/0) —— . (4.1.3)
where fe(Z) is the pdf of the standard normal distributio.

Let #= (),0) and let U(e,4) denote the 3x1 score vector with

x-th component given by
d(1n fY(y,B,J.a))
dUk‘

U (e, @) =

-

Let I(«#) denote the 3x3 ianrmation matrix with (j,k) entry given by

3% (1n fY(y.ﬂ.J.a))
Ijk(“’) = E{‘ HH, 0”]{ } e

Let IJJ(H) denote the upperjleft 2x2 block of I‘l(u) . Let U,(e)

X
denote U(€,«,) and let I  denote IJJ(U*) where o, = (4,,0).

4.2 Asymptotics When 4 is Known

In this section we derive the asymptotic properties of the
transformed t-test T () and the t-test in the original scale T, (1)
under both the null and alternative models and show that both of them

are Pitman regular. Also, we give an expression for ARE(T (1),T (4,)).

4.1.1 Asymptotic distribution of T,(},) under H,

Assume that under H, and for some 4, and o
h(Y-0,,4,) = o€ (4.2.1)
where ¢ has a standard norm#l distribution. Then
T (3 = {8 8,005,400/ 0,080,00 = {8 € /0, .
By the CLT and the fact that ;E/J —— 1 , it follows that
|

{5 &, /7, —2N(0,1) . Therefore under K,

T (4 —E N(0,1) . (4.2.2)
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4.2.2 Asymptotic distribution of T (A,) under contiguous alternatives

Given k; > 0 , under the alternative model, we assume that
h(Y-6,,4,) =7 €. (4.2.3)
The first step in deriving the asymptotic distribution of Tﬂ(é*)
under the alternative model is to express h(Y-9o,§*) in terms of

h(y-6,,4,) . For Y £ 0,
Ayx Apx
1 - (0,-Y+#1) 1/ A= [1 - (6,-¥+1-k(/{m)  1/4,,

A A
[1-(0-v+1) Q1 - Xy,

(8,-Y+1)

h(Y- 00:!*)

1% =

Since we are considering asymptotic results, we can assume kI/Jﬁ'( 1.

Since Y-6, < 0 implies Y-§, < 0 hence, a Maclaurin expansion of

Aty
(1 - ——Eliii;—) is absolutely convergent and
(8,-Y+1)

Jixel
h(Y-0,.4,) = h(Y-0,,4,) + (k/{0 ) (8,-Y+1)

o h] j-1 Ayxd
- 1/ .5_32((-k,/5) /30 (I Gy mm)) (6,-Y 41) .
- .

Similarly for Y > @, it can be shown that,

1‘2*_1
h(Y-8,,4,) = h(Y-0,,3,) + (k;/{n ) (¥-0,+1)

i) J j-1 Agx'j
+ (1/494) 22((1:,/5) /i) ( ﬂou“-m))(v-oﬂu) .
j= m=
Let A, and B, be defined as in (3.2.10) and (3.2.17) respectively.
Under model (4.2.3) and for all Y,€ A, we can write
h(Y-8,4,4,) = g¢ + Rz(¢€, Ay, n) (4.2.4)

where
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i j -1 1‘j/)|*
Rs(f;i‘*;n) = ‘(1/)1*) @l{(("kllﬁ) /j!)(nl-lo(Jl*-m))(1_)1*‘6)
j= ! =
® b j-t 1-3/44
I(e) }+ (1/4y) 3 {(xy/{m) /3D (T (dy,-m) (144, 0€) I (e}
(~m,0) i®1 ‘ m=0 (0, w)
(4.2.5)
or we can Write |
h(Y-8,,4,) = ge + (k/{D)(g(c, A,)) + Ry(€, Aym) (4.2.6)
where
1-1/} 1-1/14,,
gle, d) = (1-4,,0¢) I (¢) +(1+h,,0¢) I (¢
(-, 0) (0, »)
(4.2.7)
and
o j i1 l'jljlm
R4(€;£*;n) = _,22{((—kl/4—n—) /j!)(mﬂl(ﬂl*-m))(l‘ﬂl*df)
i | =
® j -1 1-3/49x
I (e }+ 3 {(ky/fm) /39 CH (hgumm) (1+4y 7€) I(e)}.
(-0,0)" %2 m=1 (0, )
(4.2.8)

In the following two theorems we show that under the alternative
model ;0(00,4,) is a consistent estimator of ¢ and T,(4,) tends

to a normal distribution.

Theorem 4.2.1 Letting 33(00,4,) be defined as in (4.1.3), then

under the alternative model given by (4.2.3) 30(00,5*) is a

consistent estimator of s¢ .

Proof From (4.2.4) write

2 1 2
h (Y-6,4.4,) = e2el+ 20¢ Rg(€, A,,n) + Rgle, A, m)

hence,
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2 2 2
(1/a) 5 B (Y0440 - (6 /n) T & =

2
(2¢/n) I €Ryle;, 40 + (1/n) I Rglej dym) . (4.2.9)
€;€Bg | €;€Bg

2
From (4.2.5) note that the cross product term in Rg(€;,4,,n) is 0

since I (€;) I (¢;) =0 for all ¢; . Also, from (4.2.5) note that
(-mlo) (0: o)

each component of Rs(ei,g,,nﬂ has the same form as that of

Ry(€;,A,,n) given by (3.2.14). Hence from Lemma 3.2.2(i) ve get

(1/m) 3 eRyle;,dyn) —E=0

€;6B,
and from Lemma 3.2.2(ii) we get

(1/n) T R3(e;.d,.m) 2 ,0.
eiGBc

n

Therefore it follows from (4.2.9) that

2 2
(1/n) % h (Y,-0,,40) - (¢s/0) % e —Boso. (4.2.10)
Yeg €;B,

n 2 ‘
By the WLLN (1/n) ¥ ¢; /n —P 41 and by Lemma 3.2.1(v),
i=1 ‘

n o2 2 p
(1/n) Y ¢; /n - (1/n) ¥ ¢ ——0
e €;€Bq

hence,

2 2 2
(¢/n) & ¢ —2ays (4.2.11)

[od
eiEBn

From a similar argument like khat of Lemma 3.2.1(iii) we can show
|

n 9 ! )
(1/n) b (Y;-0,,4,) - (1/n) B b (¥;-65,40 —E—=0 .
1=t Y;€Aq

| (4.2.12)
|
Hence by (4.2.10) , (4.2.11) and (4.2.12) we get

n 2
(1/n) S0 (¥;-0,,4) —B o .
11

i=

—2
Also, it can be shown that, h (f,,4,) —2 40 . Therefore under
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-9 2 . .
contiguous alternatives 0, (05, 45) P L. By Fact 4 in Appendix A

}n(oo,g,) 2,5 . 01

Theorem 4.2.2 Let ¥ = &k;/v) E{g(e,A,) } where g(e, 1)) is

defined in (4.2.7). Under th& alternative model given by (4.2.3)
T,(4) - ¥ —S5 W(0,1) .

Proof As argued in the proof of Theorem 3.2.2 it suffices to show

T (M) - ¥ =24 N(0,1) .

o 3 h(Yi—Ho,il,)(n= ool T e;/n) +k; ¥ gle;,A)/n
€rS €,6BS €;6B§

i

4+ (/M) X R,(€;,An) . (4.2.13)
€;€B,

Since each component of R,‘(qi,il,,,n) as defined in (4.2.8) has the
same form as Ry(€;,A,,n) given by (3.2.16), hence by Lemma 3.2.2(iii)
(1/{5)6 ) . Ry(€;,4,.0) _P ,0. From (4.2.13)
o ¥ h(Y;-6,.} ,.)/n -ofn ¥ e/m-kxi ¥ gle; d)/n
Y,EAp €;6BS €,6B5
I (4.2.14)
In the proofs of parts (ii), (iv) and (vi) of Lemma 3.2.1 replace 1,

by 1l,. to conclude

b (0,4 - J“ $ h(Y;-6,4,)/n —2=0, (4.2.15)
EAc
jo ¥ ¢€;/n 2N N(O 1) , (4.2.16)
€;,6BS
and
ki 5 gle; d)/n —2— x, E{gle; 40} . (4.2.17)
€63

(4.2.14) through (4.2.17) imply,

o b, (0,40 -k, E{gle;, 40}
Taldy) - ¥ = bk : 2 N0 .

{l



4.2.3 The test statistic T (4,) is Pitman regular

D)
We first derive candidates for ¥ (6) and r7.,(6) in

Appendix B. Consider a Taylor expansion of Tu(j,) about 4, = ¢ , where

¢ is in a neighborhood of 4, .

_ _ dh (8, 4)
(n7a) h (65,4, zi(ﬁla) h (0,4,) + (Jn/0o) (050
- | o Apal
= (1/0){n b, (6,4,) - ({n/a) (6-8,) _El[-(()—Yiﬂ) I (Y-b)
1= (-, 0)
12*-1
- (Y;-6+1) I (Y;))l/n
(6, m)

Under the model h(Y;-4,1,) = s¢;

- _ n
T,(4) = {0 ¢, + (JEYJ)(0—00)(1/n.?lg(ei,j,)) .
| 17

Define

¥ (0 = (Jn/ o) (6-6,) E{gle, 1)} (4.2.18)
where g(e,4,) 1is given by (ﬂ.2.7), and define
| (4.2.19)

2
(8 =1.
2
Theorem 4.2.3 Let ¥_.(4,i,) and r1,(8, ),) be as defined in

(4.2.18) and (4.2.19) respect&vely then, T_(4,) is Pitman regular and

R.(8,) = (n/e®) {Elg(e,d01}2 .

Proof To prove the theorenm wr verify the seven regularity conditions

of Appendix B.
Cl. Note that ¥ (8, =0 and T (4,) —% , N(0,1) . Therefore,

from (4.2.2)
T, - 9,00 |,
-+ N(0,1) .

Tn( 00)
C2. Under H,, &= 0, and (4.1.18) becomes
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¥ (6,) = k| E{g(e,A,)}/s =¥, where ¥ is as in Theorem 4.2.2.
Hence the result of this theorem verifies the asymptotic normality
under contiguous alternatives.

C3. From (4.2.18) ¥, (6) is differentiable for all a.

ca. ¥.(0 = (yu/o) E{fgle, A0} = {n ¥/kx, . From (4.2.7),

1-1/4 1-1/ Ay,
gle, d,) = (1-1,,0¢) I (e + (1+h,,0€) I (¢)
(_mlo) (01 m)

Which is positive every where. Hence E{g(e,A,)} > 0 and ¥:(8) > 0 .
cs. ¥ (6)/{n =¥k > 0.
c6. ¥.(6 is the same for all 4 hence,

sup |i5(0:)/§;(00) -1 =0 for all n.

CT. r,(8,)/71,(64) =1 for all n .

Therefore T_(i,) is Pitman regular and from Appendix B

2
R (8,) =n {Elgle, 4 )1}2/e? . 0 (4.2.20)

4.2.4 Asymptotics of the t-test in the original scale

Recall that the t-test in the original scale is given by

T,(1) = JE'(?—eo)/;Y . Under the model h(Y-#4,1,) = se we can express

Y as
172«
- [ (1-2;,00) -1] €<0
Y= .
6+ [ (1+J2,ae)1/12* -1] €>0
This can be written as
Y-0 = (1-d o) | I (€) + (1+d,,0¢) I (e .
(-mw,0) (0, w)

(4.2.21)
Define {(A, ) = E,(Y-0) .

Theorem 4.2.4 Let ¥,(6) = ({0/s)[(8-05) + {(d,,0)] and let
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2 - . . .
rn(ﬂ) = 1 . Then, the test statistic T,(1) is Pitman regular with,
2
R, (6,) = n/a% .

Proof The test statistic is Pitman regular if it satisfies the seven

regularity conditions of Appendix B .
Cl. Under By ¥,(8,) = {n/¢, {(A,, @) . hence
'{n— (? - 00) - 56(_‘_*,‘)

T (1) - ¥9,(0,) =

Ty Ty
[T - (8,+E(dy, 1)) (¥ - Ep (1]
- . - 5 " .

Hence by the CLT
T_(1) - 9,(0,) —5 N(0,1) .
C2. replace 00 by 0n in the above argument for Cl1 .
c3. ¥,(6 is differentiable for all ¢ .
Cd. ¥ () ={n /e, > 0.
c5. ¥,(f,)/{n =1/0,> 0 .
C6. from C4 ¥;(6) is the same for all ¢ hence,

sup  |¥,(0)/¥,(6) - 1] =1 for all n .

2
€C7. r1,() =1 for all n and 6.
Hence T, (1) is Pitman regular and from C4 and C7 ,
2
- 2
From (4.2.20) and (4.2.21) we get the Pitman asymptotic relative
efficiency of the untransforméd t-test relative to the transformed
t-test with a known transformation as,
ARE(T,(1),T (},)) = ¢%/ E*{g(e, A} (4.2.23)
oy

where g(e,4,) and ag follow from (4.2.7) and (4.2.21) respectively.
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4.3 Asymptotics when 1 is Unknown

In this section we show that if 1, is the maximum
likelihood estimator of J , then the test statistic T, (4,) is Pitman
regular and we derive an expression for ARE(Tn(J*),Tn(Jn)) .

Lemma 4.3.1 Under both H, and H,,
i. B2(8,,3,) - 820,40 —2 0
n 2 - n 2 P
ii. (1/n) Eh (Y;=6,,1) - (1/n) T h (¥Y;-0,,4,) —— O
i=1 i=1

The proof of this lemma is given in Appendix D.

Theoren 4.3.1 ;0(00,Jn)‘ is a consistent estimator of ¢ under

both the null and alternative models.

Proof Since by the results of Sections 4.2.1 and 4.2.2

/2(8,,4,) —2 o2

under both the null and alternative models, the proof is immediate from

Lemma 4.3.1.

Lemma 4.3.2 If 1, 1is a consistent estimator of J , then
n azh(yl_ 001A|n) n azh(yl_ 001 Agn)

(1/n) ¥ and (1/n) X are bounded in

i=i ajf izl 942

probability under the null and alternative models.

Lemma 4.3.3 Under both the null and alternative models

ml(Yi-oo,J*)
(1/n)

1

n M

p converges in probability to the same limit,

1 A

E{ [-4;2(1-4 ,0€)In(1-}, 0€) - Ajcoell (&) }

s18te, 4] = [ (=, 0)
E{ [Ag (1+)y,06)In(1+4y,06) - A5oelI (&) }

(0, w)

The proofs of the above two lemmas are given in Appendix D.



56

Theorem 4.3.2 Let ¥ =0 and let

2 t_*
r = var[e + U,I E{S(€,4,) }/7]
X
where U, and I are defined in Section 4.1. Under the null model

T (A) - ¥

T

L, N(0,1) .

-

Proof Consider a Taylor expansion of h,(f,,4,) about A1 =1, .

n - n - ¢ o B(Y;=05. 4,
E.Elh(Yi_oo’Jn)/n = ﬁzlh(Yi—oo,é*)/n + E(L‘n_é*) ( ElT)/n
1= 17 l=

. 9h (Y ~8,, ) .)
n [N |
+ (fi720) (b y=hy ) 2 3 A

i=t a)?
- n azh(Yl_OOljln)
+ (J0/2n) (Ayp-dp )2 2 (4.3.3)
i=1 A2

where }ln and }20 are such that, |iln—Jl*| < |iln—11*| and
|}2n-12,| < |)2n—12,| . Since by Appendix E ()kn—lk*) —2 40 and
Jﬁ'(jkn—Jk*) has a limiting normal distribution, and by Lemma 4.3.3
the second order derivatives in the above expansion are bounded in
probability, therefore the two terms including these derivatives tend
in probability to 0 . Denote the sum of these two terms by R, so

that R, L, 0 . Under H,

n - -

& 3 800,30 /n = fE/m) _§laei + B/ (G-d
1° 13

(ﬁl(Yi—ﬂo,J*)

1 A

u Mo

(

1

)/n + R, . (4.3.4)

Let
n ‘ -
Q, = {n(1/n) X se; + {m(i,-4) : E{(S(e, 40} . (4.3.5)
i=1

Since by Lemma 4.3.3
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ﬁl(Y'-e 'L‘ )
(1/n) _i':l—‘a;—'— - E{s(e. 40} —B—0 ,
l=

hence subtracting (4.3.5) from (4.3.4) and noting that Jn (A -4,)°

tends to a limiting normal distribution by Theorem E.l1 in Appendix E we

get
o X
iy _glh(vi-ao,gn)/n -, —2—0. (4.3.6)

Let

W= e, + U(e; ) I'E {s(e. 4} (4.3.7)
From Lemma E.5 we have JE'(QL-&,) - JE'IJJiglU(ei,g,)/n 2 ,0.
From (4.3.5) and (4.3.7) by subtraction we get

{0 (1/n) élwi -9, —2—0. (4.3.8)
From (4.3.6) and (4.3.8) we get

J5(1/ m) ié‘h(vi-ao,;n) - [m(1/m) ig‘lwi 2 ,0. (4.3.9

Since it is assumed that E(¢;) = 0 and it is known that

E{U(¢;,A))} = 0, hence E{¥;} =¥=10 . From (4.3.7) var(¥;/a) = 7’
n
By the CLT {m(1/m) ¥ V¥, —5— N(0,1) . From (4.3.9)
11
(T 2 h(Y,-0,,1)/0) /(s 1,(6)) — N(0,1) .
11

Since by Theorem 4.3.1 4(8,,4,)/¢ —2—= 1 , therefore,

U - %
- -+ N(0,1) . (]
Theorem 4.3.3 Let ¥ = (k\/¢) E{g(e,4,)} where, gle, },) is

*
defined in (4.2.7) and let 72 = var(e + U;I E{S(€,4,)}/s) . Under the

|
contiguous alternative model (4.2.3)

T (3 - ¥

T

£ L N(0,1) .
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Proof

Consider the Taylor expansion given by (4.3.3). Since the result
of Lemma 4.3.3 holds under the alternative hypothesis, hence using the
same argument as in the previous theorem the two terms including the
second order derivatives go in probability to 0 . As in the proof of
Theorem 4.2.2, under the alternative model

JE B (6,,40/0 - T ¢, + (ki/E{g(e, 40} —E—0 .

By Lemma 4.3.3 under the alternative model,
n h(Y;-0,.4,)
(1/n) E ——f— - E{(S(e, 4} —2—0 .
i* aJ
Using an argument similar to that given in the proof of the previous

theorem we can write
- - : n -
Jﬁ'hn(9o.ﬁn)/¢ = Jﬁ?l/n)_g‘[fi + Ut(fi,J*)I 1(J*)E{S(E.J*)}/Jl

+ (kl/U)E{g(f,J*)} + Rﬂ ’
where R, -2, 0 . Let

W, =€, +U%e;, ) )IEB(&,QNa+(kMﬂE@(EAQ}

i i
then,

E(W,) = ki/¢ E{g(e, 20}
and

var(W;/s) = r? .
Hence Theorem 4.3.1 and the CLT imply,

T,0) - ¥
- - N(0,1) (]

Theorem 4.3.4 The test statistic Tn(Jn) is Pitman regular.

Proof

let ¥ (6 = (Jn/0) (6-6,) E{g(e, 1)} and let

2
7,(0) = var(e + U} I*E{S(f,j)}/a] . Note that ¥,(0) and r,(6)
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under H, and H; are the same as those defined in Theorems 4.3.2
and 4.3.3 respectively. HeJce conditions €1 and C2 of Appendix B
follow by these two theorems qespectively. It remains to verify C3
through C7.

|
c3. ¥,(6) is differentiable for all ¢

| dh, (8,4,)
ca. ¥,(h = (1/0E{g(e, 4 )} > 0 , because gle,4,)= - ———5;————
vhich is positive everywhere.i
¥ (8,) E{g(e, A" Y/ o
CS. = > 0.
®
o (8 [var( ¢ + U: I E{S(f,il,.‘)}/a]l/2
c6. ¥:(f is the same for all ¢ hence,
sup | i;(bn)/i;(ﬂo) -1]=1 for all n
005- ons on
cl. ri(ﬂn)/r:(ﬂo) =1 for all n
Therefore Tn(;n) is Pitman ;egular. (]
From Appendix B
2 n EXgle, AW Yo
Rgn = (4.3.10)
®
[var(e + U: I E{S(€,4,) }/7)
From (4.2.20) and (4.3.8) we get,
ARE(T, (), T, (1)) = var(se + UL E{S(e, ) ] (4.3.11)

0.2

4.4 Examples

In this section we use numerical integration to evaluate the
!
asymptotic relative efficiency of the t-test in the original scale
relative to the transformed t-test using the MLE of the transformation

parameters. The model we comsider is the transformed-normal model by
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the two-domain family. This is done in two steps. In the first step
we evaluate the asymptotic relative efficiency of the t-test in the
original scale relative to the transformed t-test when the
transformation is known. Next, we evaluate the asymptotic relative
efficiency of the transformed t-test when the transformation is unknown
and the MLE's of the transforﬂation parameters are used, relative to
the corresponding test when tﬁe transformation is known. the product
of the above two efficiencies gives the required efficiency. Tables
4.1 through 4.4 below give thé asymptotic relative efficiency for fixed
do and different values of j, and ¢ . From these tables note that:

1. There is no gain in efficiency when the transformed t-test is
used with small values of ¢ . The gain starts to be considerable if
¢ is at least 1/2 .

2. The gain in efficiency as J, varies has a parabolic shape
with the smallest gain being when A, is slightly greater than Ay .

3. When Jl, = i, the two-domain family reduces to the
John-Draper family and the columns representing this situation are the

same as those of Table 3.1.



Table 4.1 ARE(T,(1),T,(d,)) A, = 1/4

’\\ii 1/4 1/3 1/2 3/4

0.1 0.9955 0.99%6 0.9965 0.9965 0.9955

0.25 0.974 0.9769 0.98 0.979 0.973
0.5 0.9092 0.92; 0.9296 0.9236 0.9023
1 0.7294 0.76{5 0.7814 0.752 0.6935
2 0.4043 0.4596 0.4688 0.3964 0.3145
3 0.2172 0.2668 0.257 0.1866 0.1289
4 0.1214 0.15&1 0.1407 0.089 0.0549
5 0.0716 0.0971 0.0797 0.0449 0.0252

Table 4.2 ARE(T,(1),T,(1,)) 4y = 1/3

’\\{i 1/4 1/3 1/2 3/4

0.1 0.9960 0.9965 0.9972 0.9973 0.9965

0.25 0.9769 0.9802 0.9842 0.9844 0.9794
0.5 0.9200 0.9329 0.9464 0.9449 0.9270
1 0.7615 0.8044 0.8412 0.8265 0.7741
2 0.4596 0.55?4 0.6218 0.5650 0.4671
3 0.2668 0.3834 0.4512 0.3677 0.2683
4 0.1581 0.2790 0.3313 0.2411 0.1577
5 0.0971 0.2483 0.1625 0.0966

o.zops
!
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Table 4.3 ARE(T,(1),T.(d,)) 4, = 1/2

;\\{} 1/4 1/3 1/2 3/4
0.1 0.9965  0.9972  0.9981  0.9986  0.9981
0.25 | 0.9800  0.9842  0.9897  0.9922  0.9891
0.5 | 0.9296  0.9464  0.9667  0.9740  0.9631
1 0.7814 o.s4ﬁ2 0.9075  0.9241  0.8893
2 0.4688  0.6218  0.7906  0.8137  0.7268
3 0.2570  0.4512  0.6969  0.7145  0.5882
4 0.1407 o.33i3 0.6244  0.6315  0.4801
5 0.0797  0.2483  0.5675 0.5629 0.3972
Table 4.4 ARE(T,(1),T,(d0)) 4y =1
;\\ii 1/4 1/3 1/2 3/4 1
0.1 0.9955  0.9965  0.9981  0.9995 1
0.25 | 0.9730  0.9794  0.9891  0.9975 1
0.5 | 0.9023  0.9270  0.9631  0.9920 1
1 0.6935  0.7741  0.8893  0.9774 1
2 0.3145  0.4671  0.7268  0.9447 1
3 0.1289  0.2683  0.5882  0.9135 1
4 0.0549  0.1577  0.4801  0.8851 1
5 0.0252 0.3972 0.8593 1

0.0966
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Tables 4.5 through 4.8 below give the asymptotic relative
efficiency of the transformed t-test using the MLE's of the
transformation parameters relative to the corresponding test using a
known transformation. In this situation it should be expected to find
that the resulting asymptotic relative efficiency is at least 1 but, as
the tables show we always get the evaluated efficiency smaller than 1 .
The program given on page 169 of Appendix F used to evaluate this
efficiency have been written in two different ways to make sure that it
does not have any mistakes an#.we get the same results. Also each
statistic calculated in the program including the asymptotic relative
efficiency itself have been simulated for the special case where
A =dy=0r=1 using 20,000 #uns of samples of size 100 . It was
found
that every simulated formula lies within 1 standard error of its
corresponding true value. When we tried to add some more terms to the
Taylor expansion given by (4.3.6) and on which (4.3.10) is based we
found that all higher order tgrms tends to 0 in the limit and does not
have any effect on the involvbd expressions. We tried to neglect the
adjustment due to estimating ¢ when IAA is evaluated but we get the
same type of result. This unusual result can be added to a similar

type of results discussed by Freedman and Stephen (1984).



Table 4.5 ARE(T,(J,),T,(3,)) J4s = 1/4

JY. 1/4 1/3 | 1/2 3/4

0.1 0.8556  0.8553  0.8548  0.8542  0.8536

0.25 | 0.8533  0.8538  0.8518  0.8505  0.8496
0.5 | 0.8500 0.8490  0.8475  0.8459  0.8449
1 0.8443  0.8428  0.8408  0.8394  0.8393
2 0.8356  0.8336  0.8315  0.8315  0.8334
3 0.8289  0.8267  0.8251  0.8265  0.8301
4 0.8236  0.8213  0.8202  0.8230  0.8280
5 0.8191  0.8168  0.8162 0.8202  0.8265

Table 4.6 ARE(T,(Ay),T () A2 = 1/3

;\\in 1/4 1/3 1/2 3/4

0.1 0.8553  0.8551  0.8546  0.8539  0.8533

0.25 | 0.8528  0.8522  0.8511  0.8499  0.8488
0.5 | 0.8490  0.8480  0.8463  0.8445  0.8434
1 0.8428  0.8411  0.8387  0.8368  0.8363
2 0.8336  0.8310  0.8281  0.8270  0.8280
3 0.8267  0.8236  0.8206  0.8205  0.8230
4 0.8213  0.8178  0.8149  0.8157  0.8194
5 0.8168  0.8131  0.8103 0.8120 0.8167
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Table 4.7 ARE(TB(J,).Tn(in)) 4, = 1/2

;\\ii 1/4 1/3 1/2 3/4

0.1 0.8548  0.8546  0.8541  0.8534  0.8527

0.25 | 0.8518  0.8511  0.8500  0.8486  0.8475
0.5 | 0.8475  0.8463  0.8443  0.8422  0.8408
1 0.8408  0.8387  0.8356  0.8328  0.8315
2 0.8315  0.8281  0.8236  0.8206  0.8202
3 0.8251  0.8206  0.8153  0.8125  0.8129
4 0.8202 o.s149 0.8091  0.8065  0.8076
5 0.8162  0.8103  0.8041 0.8018 0.8035

Table 4.8 ARE(T,(4,),To(d)) 4p =1

;\\{. 1/4 1/3 1/2 3/4

0.1 0.8536  0.8533  0.8527  0.8520  0.8513

0.25 | 0.8496¢  0.8488  0.8475  0.8458  0.8443
0.5 | 0.8449  0.8434  0.8408  0.8378  0.8356
1 0.8393  0.8363  0.8315  0.8267  0.8236
2 0.8334  0.8280  0.8202  0.8130  0.8091
3 0.8301  0.8230  0.8129  0.8042  0.7999
4 0.8280 0.8194  0.8076  0.7979  0.7934
5 0.8265  0.8167  0.8035 0.7930 0.7883
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Multiplying each entry of Table 4.1 by its corresponding entry of

Table 4.5 and so forth, we get the last 4 tables which give the
asymptotic relative efficiency of the t-test in the original scale

relative to the transformed t-test under the two-domain family.

Table 4.9 ARE(T,(1),T,(})) g = 1/4

;\\{1 1/4 1/3 | 1/2 3/4

0.1 0.8517  0.8519  0.8519  0.8512  0.8497
0.25 | 0.8311  0.8331  0.8347  0.8327  0.8267
0.5 | 0.7728  0.7811  0.7879  0.7813  0.7624
1 0.6159 o.s4i8 0.6570  0.6312  0.5820
2 0.3378  0.3831  0.3898  0.3296  0.2621
3 0.1800 o.zz?s 0.2121  0.1542  0.1070
4 0.1000  0.1298  0.1154  0.0733  0.0455
5 0.0587  0.0793  0.0650 0.0368 0.0208




Table 4.10 ARE(T,(1),T,(d,)) 42 = 1/3

N 14 1/3 1/2 3/4

0.1 | 0.8519 0.8521  0.8522  0.8516  0.8503

0.25 | 0.8331 0.8354  0.8377  0.8366  0.8313
0.5 | 0.7811  0.7911  0.8009  0.7980  0.7819
1 0.6418  0.6766  0.7055  0.6916  0.6474
2 0.3831  0.4640  0.5149  0.4672  0.3867
3 0.2206  0.3199  0.3703  0.3017  0.2208
4 0.1298  0.2282  0.2700  0.1967  0.1292
5 0.0793  0.1688  0.2012  0.1319  0.0789

Table 4.11 ARE(T (1),T.(A)) 4, = 1/2

AVIRZ 1/3 1/2 3/4

0.1 | 0.8519  0.8522  0.8524  0.8522  0.8511

0.25 | 0.8347  0.8377  0.8413  0.8419  0.8383
0.5 | 0.7879  0.8009  0.8163  0.8203  0.8098
1 0.6570  0.7055  0.7583  0.7696  0.7395
2 0.3898  0.5149  0.6511  0.6677  0.5961
3 0.2121  0.3703  0.5682  0.5806  0.4781
4 0.1154  0.2700  0.5052  0.5093  0.3877
5 0.0650 0.4563  0.4513  0.3191

0.2012
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Table 4.12 ARE(To(1),To(dg)) 4y =1

Ni| 14 1/3 1/2 3/4

0.1 0.8497 0.8503 0.8511 0.8516 0.8513
0.25 | 0.8267  0.8313  0.8383  0.8437  0.8443
0.5 0.7624 0.78]79 0.8098 0.8311 0.8356
1 0.5820  0.6474  0.7395  0.8080  0.8236
2 0.2621 0.3867 0.5961 0.7681 0.8091
3 0.1070 0.2208 0.4781 0.7347 0.7999
4 0.0455 0.1292 0.3877 0.7062 0.7934
5 0.0208  0.0789  0.3191  0.6815 0.7883
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5. SIMULATION STUDY

In this chapter we present the results of simulations of the level
and power of the testing procedures discussed in the previous chapters
to test for the median of a certain distribution. These are: the t-test
calculated from the original observations, the transformed t-test using
the John-Draper or the two-domain family, the trimmed t-test and the
trimmed transformed t-test with 10% and 20% of the observations on each
side being trimmed. This simulation study is intended to serve two
purposes. The first is to use finite sample sizes to support the
asymptotic results of Chapters 3 and 4 . This is done by comparing the
simulation results of the first two test statistics above. The second
purpose is to try to give some general trends through overall
comparisons among the different testing procedures. For example, given
some implications from the data about symmetry, tail heaviness and
degree of spread, can we state that a certain test may be recommended
because it is the best or because it is safer under the set of data at
hand?

In Section 5.1 we give a general description of the simulation
study. Section 5.2 contains a discussion of the conclusions that can be
drawn from the study. These conclusions are based on a large number of
runs. Details of only a part of these runs are given in the remaining
three sections of this chapter. Section 5.3 is devoted to the simulated
power and level of the different test statistics under the normal model.
Section 5.4 is devoted to symmetric non-normal models transformed by the
John-Draper transformation. In Section 5.5 we consider skewed models

where the two-domain family is applied.
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5.1 Description of the Simulation Study

As mentioned above we report the level and power of the different
testing procedures as output of the simulation runs. The input for each
run is some combination of a number of factors. In the following we
discuss each of these factors.

1. The model used to generate the data. The simulation results

are reported both for symmetric models where the John-Draper family is
applied and for skewed models where the two-domain family is applied.
The symmetric models we consider are, the normal model, the transformed
normal model, the contaminated normal model, the transformed
contaminated normal model, the Student's t model and the transformed
Student's t model. Under the transformed models mentioned above the
data are generated by applying the inverse of the John-Draper
transformation for some 4 smaller than 1 to the associated symmetric
model so that we generate data sets with heavier tails than those from
these symmetric models. The skewed models we consider are the
transformed normal model, the Gamma model and the extreme-value model.
The data for the transformed normal model in the last case is generated
by applying the inverse of the two-domain family to normal data using
different values of the transformation parameters J, and 4, .

2. Transformation parameters. For symmetric transformed models,

A is chosen to be some value from the set {0 , 1/4 , 1/3 , 1/2} . Note
that A = 0 corresponds to the log-transformation and the case A=1
corresponds to the no-transformation situation. For the transformed
normal model under the two-domain family, we fix i, at 1/4 and run

successive runs for 4, equal 1/2 , 3/4 and 1.
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3. Scale parameter. Recall that our model assumption under

transformations is h(Y-4,1) = sc¢ where ¢ has some specified
distribution. When ¢ has a standard normal distribution, 7
represents the standard deviation of h(Y-4,4) . In this case, to study
the effect of the degree of spread of the data, ¢ is taken to be 2, 8,
- 18, 32 and 50 . The reason fﬁr this choice is to get some results for
data that represents the difference between two normal samples each with
standard deviation respectively 1, 2, 3, 4, and 5 . Under
non-normal distributions of ¢ , ¢ is taken to be 1 , 2 or 3 , which
represents some variety of scale multipliers of the standard deviation
of € to allow for models with different spread.

4. Sample size. Differ?nt runs are made for samples of size 10 ,
20 and 50 . These sizes are chosen to represent small, moderate and
large samples.

5. Alternative models. !In each run we start by simulating the

significance level corresponding to the .05 nominal level. Then we
simulate the powers under alternative models obtained by successively
adding to the data .2 or .1 times the standard deviation of the
generated random variable, until the simulated power is over .95 .

6. Number of simulations. The number of simulations under the

null model is 30,000 . This ﬁakes the standard error of the simulated
.05 nominal level under a normal model approximately equal to .00125 so
that the limits of a 99% confidence interval for the level are
approximately (.0467 , .0533)/ . Given the above number of simulations
we may consider any test with simulated level in this interval to have
correct level. Any test with simulated level considerably greater than

the upper limit may be considered as an invalid test. The number of
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simulations under alternative models is 5,000 . This makes the maximum
estimate of the standard error of the simulated power under a normal
model, when it is .5 , equal to .0071 with * .0183 giving the limits of
a 99% confidence interval. The only exception from the above rule
occurs under the Student's t with two degrees of freedom model where its
variance is infinity and we calculate the power by successively adding
.2 to the data. To make a pairwise comparison between any two of the
test statistics we propose to use McNemar's test for paired data.

The GAUSS software is used to generate the data under the different
models specified above and to run all programs. All data sets from the
above models can be generated from normal or uniform random variables.
GAUSS has a normal random number generator based on the fast
acceptance-rejection algorithm (see Kinderman and Ramage, 1976). Also,
GAUSS has a uniform random number generator based on the multiplicative
congruential method (see Kennedy and Gentle, 1980). All data sets are
generated using the number 9831815 as an initial seed. The maximum
likelihood estimators of the transformation parameters under both the
John-Draper and the two-domain families are evaluated by solving for
values of the parameters at which the first derivative of a normal
loglikelihood is zero. The equations are solved using module 10 of the
GAUSS procedures, which finds the roots of a system of nonlinear

equations using Broyden's secant method (see Dennis and Schamble, 1983).

5.2 General Simulation Results

As mentioned earlier the details given in the next three sections

are only a part of the full simulation study. In this section we try to
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give the main conclusions from the whole study without including a large
number of tables. The results listed below are classified according to
the models they represent as, results for the normal model, results for

symmetric non-normal models and results for skewed models.

5.2.1 Normal model

Under the normal model the t-test in the original scale of the data
is the optimal test procedure to consider. Comparisons of other test
procedures with this optimal test give an indication about the
performance of these alternative procedures under the true model.
Although it is not expected that such alternative procedures will
perform as good as the optimal procedure under normality, it may be
required that they perform reésonably well with the hope that they would
have a better performance under non-normal situations.

We simulated the level and power of the different procedures using
normal data with variance 2 aﬁd 50 for the three sample sizes 10 , 20
and 50 . The main results from these simulations are as follows:

1. The simulated significance level is found to belong to the 99%
confidence interval (.0467 , L0533) under all situations except in two
cases corresponding to the trimmed and to the transformed-trimmed tests
with proportion 20% (see Tables 5.1 and 5.2) .

2. The power of the transformed t-test is almost the same as that
of the optimal test. The maximum difference in all runs is about .008 .

3. Trimming under normality is somewhat harmful. It decreases the
power by as much as .03 for lb% trimming and as much as .105 for 20%
trimming.

The above results indicate that the 20% trimmed tests are the worst
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procedures under the normal model. Also, an experimenter may be
reluctant to discard 40% of the data. However, as will be shown latter
there are some situations in which these two tests have the best
simulated powers.

5.2.2 Symmetric non-normal models

The results we report heFe correspond to the models considered in
Section 5.4. These models ar; all symmetric with distributions that
have tails heavier than those of a normal distribution. 1In the
following we give-an outline of the general trends found from the
simulation runs, then we discuss the effect of the different factors
considered in Section 5.1 on the level and power of the different
testing procedures.

1. The maximum simulated significance level under all the
simulated models and all the different testing procedures is found to be
.0529 which indicate that allithese procedures have approximately the
correct level.

2. Under very heavy tailed models like the transformed Student's t
and the transformed contaminated-normal models the untransformed tests
appear to be very conservative. In some runs the simulated significance
levels of these tests were as low as .02 and in many cases they are
found to be around .03 .

3. The simulated significance level of the transformed t-test and
the transformed, 10% trimmed t-test always appear to be fairly close to
the nominal level; the smalleEt simulated level is found to be greater
than .047 . The simulated level of the transformed, 20% trimmed t-test
is sometimes as low as .04113; however, in most cases it is also found

|
to be close to .05 .
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4. The t-test in the original scale under non-normal heavy-tailed
symmetric models is found to be the worst testing procedure. Under the
very heavy-tailed models referred to above, and for samples of size 20 ,
the simulated power of the transformed t-test is sometimes more than 6
times that of the t-test in the original scale. This result supports
the results of Chapter 3. Hovever, under other models and for some
special values of the parametérs, as will be discussed latter, there is
almost no difference among all the different testing procedures.

5. A comparison of the #ransformed t-test with the trimmed tests
shows that the trimmed tests have more power than the transformed t-test
especially when the proportion of trimming is 20% . When the proportion
is 10%, it is sometimes the c%se that the transformed t-test has more
simulated power than the trimmed test for alternatives that are close to
the true model.

6. From a comparison between the trimmed test and the transformed-
trimmed test with 10% proportion of trimming it is found that under
heavy-tailed models like the contaminated normal and Student's t models
there is a slight difference *etween the two tests. Under such models
the simulated power of the transformed-trimmed test exceeds that of the
trimmed test by at most .03 . However, under transformed heavy-tailed
models and under the transformed normal model, the simulated power of
the transformed-trimmed test éould be above that of the trimmed test by
as much as .20 .

7. Comparisons of the trimmed test and the transformed-trimmed
test with proportion 20% show that the trimmed test has more simulated
povwer than the transformed-trimmed test for samples of size 10 . The

difference in powers could be as much as .07 . Under larger sample
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sizes this difference does not exceed .02 . However, under transformed
heavy-tailed models and transformed normal models the simulated power of
the transformed- trimmed test with proportion 20% could be greater than
that of the corresponding trimmed test by as much as .125 .

8. In a trial to investigate the effect of small values of the
scale parameter, a simulation run of the transformed normal model with
1=.5 and 2 = .25 showed that all the six testing procedures perforn
about equally well.

We now discuss the effect of the different factors involved in the
simulation model on the results. It is found that the differences
between the simulated powers of the transformed tests and those of the
untransformed tests increase with the sample size. They also increase as
the heaviness of the tails of the distribution used to generate the data
increases. Note that, for the transformed-symmetric distributions,
smaller values of the transformation parameter produce heavier tails.
Also, these differences increase as the degree of spread of the data
increases.

To conclude our discussion we state that the superiority of the
transformed tests over the untransformed tests appears under certain
combinations of all the above factors together, and in particular under
large values of the scale parameter (to increase the spread of the data)
with small values of the transformation parameter.

5.2.3 Skewed models

The simulation results given in this part correspond to the skewed
models of Section 5.5 . These are the Gamma models with shape
parameters 3 , 4 , and 5, the extreme value model and the transformed-

normal model using the inverse of the two-domain family. Before
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summarizing the simulation results associated with these models, we give
some implications about two problems that arise under skewed models.

The first problem concerns the location parameter the hypothesis
statement involves. That is, are we interested in testing the mean or
the median? Under symmetric models both are the same and this
distinction need not be considered. However, under skewed models they
differ and what is valid for one need not be valid for the other. For
example, if we are testing for the mean using the t-test, even if the

distribution of the original observations is skewed, the Central Limit

Theorem implies that the t-statistic J_H (¥ - #)/ o converges in law to

N(0,1). If the mean p is replaced by the median ¢ and ¢ # s then

{n (¥ - 0 /s diverges in the direction of -0 .

The second problem concerns what type of alternative is considered.
That is, are we considering right-sided alternatives (RHA) or left-sided
alternatives (LHA). Under symmetry such a distinction need not be made.
However, as indicated in Chapter 2, under skewed models the distribution
of the t-statistic is skewed and hence it will be expected that for omne
type of alternative the t-test will be conservative while for the other
type the t-test may not be valid in the sense that its level may be far
greater than the nominal level.

Table 5.1 below gives the simulated significance levels of the
transformed t-test and the t-test in the original scale under both types

of alternatives and for the different models of Section 5.5.
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Table 5.1 Simulated significance level corresponding

to .05 nominal level

Original Transformed
MODEL RHA LHA RHA LHA
Transforme-normal 0.0332 0.0712 0.0339 0.0265
A1=.25 A9=.5
Transforme-nornal 0.0235 0.0983 0.0245 0.0261
11=.25 49=.75
Transforme-normal 0.0181 0.1279 0.0243 0.0259
1i=.25 19=.5
Gamma (4) 0.1343 0.0177 0.0177 0.0226
Gamma (5) 0.1219 0.0195 0.0220 0.0298
Extreme-Value 0.0168 0.1326 0.0266 0.0224

Note that the Gamma models are skewed to the right while the rest
of the models have their longer tail to the left. The table shows that
the simulated levels for alternatives in the direction of the longer
tail is always much higher than the nominal level and the t-test may be
judged to be invalid under this situation. For this reason we made our
runs for alternatives in the other direction.

In the following we summarize the main results of Sectiom 5.5.

1. Although the simulated level of the transformed t-test is a
little bit greater than that of the t-test in the original scale, both

are much smaller than .05 .
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2. The transformed t-test has level < .05 under both types of
alternatives (see Table 5.1) .

3. The transformed-trimmed test with proportion 10% has better
level. In all runs it ranged over the interval (.041 , .054) . The
corresponding test with proportion 20% in two cases gave simulated
levels .057, and .055 .

4. The transformed t-test always has better simulated power than
that of the test in the original scale. The difference under the Gamma
and the extreme value models could as much as .05 and under the
transformed normal model could be as much as .10 .

5. The transformed-trimmed tests have better simulated power than
the untransformed tests by as much as .20 .

6. There does not appear to be much difference in simulated power
between the transformed-trimmed tests using the two proportions of
trimming.

7. 1In some runs powers of the trimmed test, using equal proportion
of trimming on each tail, are simulated. Comparisons of these powers
with those of the transformed-trimmed tests indicate that the
transformed-trimmed tests have better simulated powers under
alternatives that are close to the true model. Otherwise, they are
almost the same.

5.3 Simulation Results for the Normal Model

Tables 5.2 , 5.3 and 5.4 below present the simulated level and
power of the different test statistics applied to normal data. The
column corresponding to the test T (1) presents the simulated pover

for the uniformly most powerful unbiased test. The reason for giving
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these tables is to check the performance of the different test
statistics when no correction for departure from normality is needed.
From these tables note the following:

1. The simulated level of the test statistic T.Q(i) in Table 5.2
is .0451 and that of T.2(1) in Table 5.3 is .0542 which are
respectively somewhat smaller and greater than the .05 nominal level.
Except for these two cases the simulated levels are close to .05 .

2. The simulated power of the transformed t-test is almost the
same as that of the uniformly most powerful unbiased test. The maximum
difference between both tests in Table 5.3 is .0082 .

3. For the trimmed tests with proportion 10% there is almost no
difference (¢ .01) in the simulated power between the transformed and
the untransformed tests. However, the simulated power of these two
tests could be smaller than that of the untrimmed tests by as much as
.04 .

4. The trimmed tests with proportion 20% have the worst simulated
powers in all three tables. This power could be below that of the
untrimmed tests by as much as .085 .

5. When the McNemar test is used to compare the simulated level
and power,the t-test in the original scale and the transformed t-test,

there does not appear any significant difference between the two tests.
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Table 5.2 Normal model ¢2 =2 n =20 a= .05
e | TL) Th T () T.‘(:l) T () T.z(:l)
0 0.0488  0.0489  0.0492  0.0492  0.0512  0.0451
0.2 0.2112  0.2076  0.2024  0.2038  0.2006  0.1792
0.4 0.5330  0.5322  0.5088  0.5102  0.4702  0.4384
0.6 0.8228  0.8218  0.7954  0.7972  0.7594  0.7362
0.8 0.9622 0.9616  0.9468  0.9480  0.9294  0.9186
1 0.9962  0.9954  0.9934  0.9934  0.9864  0.9836
1.2 0.9994  0.9992  0.9994  0.9992  0.9982  0.9980
Table 5.3 Normal model ¢2 =50 n=10 a= .05
e | T, T T T (b T ) T ()
0 0.0480  0.0478  0.0505  0.0523  0.0542  0.0505
0.2 0.1396  0.1392  0.1396  0.1434  0.1406  0.1274
0.4 0.3166  0.3130  0.3042  0.3080  0.2732  0.2574
0.6 0.5386  0.5348  0.5120  0.5188  0.4646  0.4482
0.8 0.7558  0.7476  0.7166  0.7240  0.6510  0.6370
1 0.8960  0.8912  0.8630  0.8690  0.8032  0.7972
1.2 0.9652 0.9632  0.9464  0.9482  0.9086  0.9038
1.4 0.9908  0.9898  0.9804  0.9812  0.9624  0.9582
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Table 5.4 Normal model ¢% =50 n =50 a= .05
os | ToD  TH T (M T (b T T

. . .2 .

0 0.0500 0.0496 0.0508 0.0503 0.0512 0.0513
0.1 0.1650 0.1640 0.1614 0.1624 0.1580 0.1584
0.2 0.4026 0.4000 0.3798 0.3792 0.3552 0.3564
0.3 0.6650 0.6622 0.6450 0.6460 0.6148 0.6168
0.4 0.8744 0.8740 0.8552 0.8542 0.8240 0.8242
0.5 0.9706 0.9698 0.9612 0.9602 0.9446 0.9446

0.6 0.9974 0.9976 0.9940 0.9938 0.9878 0.9878

5.4 Simulation Results for Symmetric Non-Normal Models

5.4.1 Transformed normal model

The data used in simulating the power of the test statistics in
Tables 5.5 through 5.10 below are generated as follows:

Let ¢ denote a random variable with a standard normal
distribution. For some 1 and ¢ let

Y =101, A0

where h is the John-Draper transformation. In Tables 5.5 through 5.8
) =1/3 , in Table 5.9 J = 1/2 and in Table 5.10 4 =0 . ¢ equals 2
in Table 5.5 and 50 in the rest of the tables. The sample size n is
10 and 20 in Tables 5.6 and 5.7 and is 50 otherwise. From the above
specification of the parameters, a comparison of Table 5.5 and Table 5.8

reflects the effect of changing the variance (spread). Comparisons
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among tables 5.6, 5.7 and 5.8 reflect the effect of the different sample
sizes. Finally, comparisons of Tables 5.8, 5.9 and 5.10 together give
an indication about the effect of the different values of the
transformation parameter. From these tables note that:

1. The simulated significance levels of the transformed tests are
close to .05 while they are generally smaller than .05 for the
untransformed tests. Table 5.10 represents an extreme case due to the
combination of small value of A (= 0) with large value of ¢ (= 50)
resulting in very small simulated significance levels for the
untransformed tests.

2. Except for Table 5.6 the transformed t-test in general has more
simulated power than the t-test in the original scale over the range of
alternatives covered by this study. For example in Table 5.5 where
#2 = 2 we could observe a difference in these two powers by as much as
.085 while from Table 5.8 this difference could be about .30 . Under
the extreme case of Table 5.10 where there does not appear to be any
power for the t-test the wide difference between the powers is very
clear.

3. In Table 5.6 the power of the transformed t-test under
alternatives that are closer to the true model exceeds that of the
t-test in the original scale by as much as .06 . Under alternatives
that are far from the true model it is observed that the power of the
untransformed t-test exceeds that of the transformed test by about .04 .
The average percentage of observations more than the hypothesized value
8/¢ > 6 is calculated and is found to be at most 15% . Under such
situations we are almost applying the shifted Box-Cox transformation

with shift parameter 1 rather than the John-Draper transformation.
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4. The simulated power of the transformed-trimmed test with
proportion 10% is always greater than that of the corresponding
untransformed-trimmed test. The difference in some cases is not
considerable as in Table 5.5 . In some other cases it could be as much
as .18 like in Table 5.8 or even much more as in Table 5.10 .

5. Tables 5.8 and 5.10 %how situations under which the
transformed-trimmed test with proportion 20% has more simulated power
than the corresponding untransformed-trimmed test. This happens when
the value of the transformatiqn parameter is small, the variance is
large and the sample size is large. Although the tables below show that
the former test is better than the second, this is not always the case.
There are situations in which|the trimmed test has more simulated power
than the transformed-trimmed test as the tables of Section 5.3 indicate.

6. A comparison of Table 5.5 with Table 5.8 shows that except for
the simulated level the entries in the second table are much smaller due
to changing the variance from 2 to 50 . However, a significant
difference in simulated power between the transformed and untransformed
tests is associated with the large variance.

7. From Tables 5.6 , 5.7 and 5.8 which correspond to samples of
size 10 , 20 and 50 respectively, note that larger sample sizes increase
the gap between the simulated‘power of the transformed tests and the
untransformed tests.

8. From Tables 5.9 , 5.8 and 5.10 which correspond to J equal to
1/2 , 1/3 and O respectively,?note that better simulated powers of the
transformed tests over the untransformed tests are associated with
smaller values of the transformation parameter.

9. When the McNemar test statistic is calculated for the
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differences between the simulated powers of the transformed t-test and
the t-test in the original scale it is always found that differences as

small as .01 are statistically significant.

Table 5.5 Transformed normal model 1 = 1/3 g2 = 2
n=50 a= .05

oo | T, Th T T ()T () T ()

. . .2 .

0 0.0490 0.0493 0.0495 0.0503 0.0492 0.0482
0.2 0.1714 0.1996 0.2064 0.2216 0.2366 0.2384
0.4 0.4098 0.4824 0.5156 0.5410 0.5752 0.5784
0.6 0.6654 0.7496 0.7992 0.8184 0.8494 0.8504
0.8 0.8568 0.9112 0.9452 0.9546 0.9688 0.9680

1 0.9590 0.9798 0.9924 0.9944 0.9968 0.9970




Table 5.6 Transformed normal model A=1/3 2 =50

n=10 a= .05

o | T T T (T T ) JN

0 0.0340 0.0480 0.0292 0.0523 0.0211 0.0494
0.4 0.0544 0.0870 0.0638 0.1120 0.0666 0.1170
0.8 0.0816 0.1286 0.1160 0.1806 0.1446 0.2068

1.2 0.1158 0.1724 0.1810 0.2444 0.2422 0.2920
1.6 0.1598 0.2210 0.2530 0.3144 0.3338 0.3690
2 0.2072 0.2660 0.3218 0.3778 0.4204 0.4432
2.4 0.2536 0.3094 0.3854 0.4374 0.4964 0.5036
3 0.3250 0.3706 0.4780 0.5192 0.5912 0.6258
3.6 0.3926 0.4290 0.5632 0.5962 0.6750 0.6976
4.2 0.4606 0.4790 0.6402 0.6640 0.7376 0.7512
4.8 0.5204 0.5252 0.7000 0.7170 0.7918 0.7964
5.4 0.5794 0.5698 0.7484 0.7592 0.8312 0.8342
6 0.6228 0.6068 0.7892 0.7998 0.8638 0.8654
6.6 0.6666 0.6426 0.8276 0.8330 0.3398 0.8872
7.2 0.7010 0.6770 0.3558 0.8614 0.9094 0.9060

7.8 0.7342 0.7054 0.3800 0.8822 0.9256 0.9230

8.4 0.7624 0.7292 0.8976 0.8996 0.9390 0.9334
9 0.7912 0.7518 0.9134 0.9112 0.9494 0.9432
9.6 0.3084 0.7698 0.9244 0.9238 0.9584 0.9520

10.2 0.3300 0.7894 0.9354 0.9338 0.9646 0.9572




Table 5.7 Transformed normal model A =1/3 2 =50

n=20 a= .05

e | T, T T @ T (h T (M T

0 0.0428 0.0489 0.0356 0.0490 0.0296 0.0519
0.2 0.0542 0.0692 ;0.0522 0.0818 0.0590 0.0904
0.4 0.0648 0.1008 :10.0778 0.1258 0.1020 0.1464
0.6 0.0818 0.1358 0.1072 0.1678 0.1558 0.2086

0.8 0.0986 0.1712 ,0.1470 0.2190 0.2192 0.2744

\
1 0.1200 0.2074 10.1892 0.2746 0.2938 0.3414

1.2 0.1382 0.2470 0.2376 0.3262 0.3636 0.4096
1.4 0.1672 0.2842 0.2870 0.3806 0.4344 0.4684
1.6 0.1972 0.3232 0.3408 0.4340 0.5002 0.5318
1.8 0.2292 0.3580 0.3906 0.4822 0.5566 0.5816

2 0.2606 0.3882 0.4458 0.5276 0.6162 0.6308
2.2 0.2880 0.4186 0.4910 0.5660 0.6648 0.6726
2.4 0.3172 0.4460 0.5352 0.6126 0.7114 0.7142

3 0.4042 0.5386 0.6622 0.7182 0.8184 0.8276
3.6 0.4928 0.6126 0.7590 0.7972 0.8860 0.8908
4.2 0.5794 0.6732 0.8268 0.8520 0.9272 0.9284
4.8 0.6502 0.7248 0.8750 0.8920 0.9522 0.9512
5.4 0.7068 0.7672 0.9124 0.9224 0.9694 0.9704

6 0.7590 0.8100 0.9378 0.9444 0.9816 0.9812

6.6 0.8046 0.8400 | 0.9580 0.9582 0.9866 0.9866




Table 5.8 Transformed normal model 1 =1/3 o

88

2 =50
n=5 a=.05
oo | 0 T, T @ 1 bt T
0 0.0478 0.0496 0.0438 0.0505 0.0400 0.0512
0.2 0.0574 0.0912 0.0712 0.1084 0.0850 0.1178
0.4 0.0788 0.1516 0.1136 0.1836 0.1604 0.2182
0.6 0.1044 0.2182 0.1686 0.2744 0.2580 0.3420
0.8 0.1314 0.2948 0.2346 0.3734 0.3788 0.4730
1 0.1660 0.3668 0.3090 0.4812 0.5042 0.5914
1.2 0.2036 0.4436 0.3984 0.5786 0.6138 0.6982
1.4 0.2410 0.5104 0.4844 0.6588 0.7124 0.7792
1.6 0.2928 0.5784 0.5692 0.7326 0.7920 0.8406
1.8 0.3360 0.6398 0.6406 0.7950 0.8496 0.8912
2 0.3818 0.6920 0.7094 0.8424 0.8964 0.9252
2.2 0.4308 0.7350 0.7654 0.8798 0.9272 0.9498
2.4 0.4746 0.7762 0.8124 0.9090 0.9498 0.9658
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Table 5.9 Transformed normal model 1 =1/2 ¢° =750
n=5 a= .05
e | T, T T ) Tt W T O
0 0.04943 0.0496 | 0.0487 0.0505 0.0476 0.0511
0.2 0.0934 0.1244  0.1184 0.1380 0.1374 0.158
0.4 0.1756 0.2412  0.2350 0.2834 0.2950 0.3324
0.6 0.2896 0.3914 | 0.3992 0.4738 0.5026 0.5434
0.8 0.4262 0.5498 | 0.5782 0.6466 0.6964 0.7306
1 0.5526 0.6858  0.7252 0.7846 0.8392 0.8542
1.2 0.6798 0.7918 0.8454 0.8842 0.9262 0.935
1.4 0.7872 0.8728 | 0.9226 0.9432 0.9680 0.972
1.6 0.8644 0.9276 | 0.9664 0.9754 0.9902 0.9906
1.8 0.9238 0.9630 0.9866 0.9916 0.9972 0.9976
2 0.9618 0.9830 0.9962 0.9976 0.999%4 0.999%4
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Table 5.10 Transformed normal model 4 =0 % =50
n=5 a=.05

o | T, TMh T T T T
0 0.0067 0.0493 10.0023 0.0505 0.0025 0.0510
0.4 0.0076 0.0830 0.0026 0.0950 0.0040 0.1178
0.8 0.0076 0.1172 0.0026 0.1438 0.0076 0.1890
1 0.0076 0.1328 0.0028 0.1642 0.0092 0.2210
2 0.0076 0.2024 0.0028 0.2656 0.0272 0.3706
3 0.0076 0.2532 0.0036 0.3480 0.0525 0.4888
4 0.0076 0.2950 i0.0044 0.4160 0.0850  0.5690
5 0.0076 0.3342 0.0048 0.4734 0.1204 0.6376
6 0.0076 0.3682 0.0062 0.5262 0.1642 0.6934
7 0.0076 0.3968 i0.0074 0.5658 0.2026 0.7374
8 0.0076 0.4210 0.0088 0.5980 0.2450 0.7692
9 0.0076 0.4454 0.0098 0.6302 0.2758 0.7986
10 0.0076 0.4662 0.0120 0.6576 0.3100 0.8232
16 0.0076 0.5584 0.0264 0.7726 0.4720 0.9022
20 0.0076 0.6002 1 0.0396 0.8152 0.5568 0.9328
24 0.0076 0.6330 10.0540 0.8488 0.6228 0.9486
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5.4.2 Contaminated-normal model

Tables 5.11 and 5.12 below present the simulation results for the
contaminated-normal model. From these two tables we note that:

1. Except for the simulated level of the t-test in the original
scale from Table 5.11 all the levels are fairly close to .05 .

2. There appears to be ; significant difference between the
simulated power of the transformed t-test and that of the t-test in the
original scale. This differe?ce from Table 5.11 could be as much as
.085 and from Table 5.12 could as much as .11 .

3. Within the trimmed tests the differences in simulated powers

among the transformed and untransformed tests are always within .02 .

Table 5.11 Contaminated-normal Y = .9N(0,1)+.1N(0,25)
n=20 A=1 a= .05

oe | T Th T T (b T @ T (D

. - .2 -

0 0.0423 0.0481 0.0462 0.0482 0.0500 0.0523
0.1 0.1342 0.1536 0.1610 0.1654 0.1626 0.1536
0.2 0.2962 0.3408 0.3704 0.3814 0.3630 0.3478
0.3 0.4906 0.5458 0.6208 0.6318 0.6184 0.5980
0.4 0.6336 0.7160  0.8222 0.8290 0.8178 0.8070
0.5 0.7484 0.8362 0.9320 0.9346 0.9330 0.9258
0.6 0.8226 0.9032 0.9718 0.9740 0.9840 0.9810
0.7 0.8824 0.9388 30.9860 0.9882 0.9954 0.9942
0.8 0.9220 0.9568 0.9936 0.9936 0.9986 0.9982

0.9 0.9522 0.9684 0.9970 0.9956 0.9988 0.9996
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Table 5.12 Contaminated-normal Y = .8N(0,1)+.2N(0,25)

n=20 A=1 a= .05

os | T Tuh T (D) T T @ T ()

0 0.0450 0.0477 0.0408 0.0468 0.0474 0.0513
0.1 0.1344 0.1630 0.1732 0.1898 0.1838 0.1916
0.2 0.2860 0.3574 0.4164 0.4390 0.4410 0.4530
0.3 0.4462 0.5560 0.6760 0.6964 0.7112 0.7278
0.4 0.5940 0.7066 0.8364 0.8476 0.8894 0.8938
0.5 0.7202 0.8098 0.9176 0.9258 0.9654 0.9664
0.6 0.8146 0.8698 0.9570 0.9624 0.9874 0.9876
0.17 0.9318 0.9332 0.9890 0.9882 0.9984 0.9984

Tables 5.13 through 5.16 below give the simulation results for the
transformed-contaminated-normal data. The transformation parameter used
in applying the inverse of the John-Draper family is 1/3. 1In the last
two tables, before applying the inverse transformation we multiply the
data by 3 to allow for more dispersion. From the tables note that:

1. The simulated levels of the untransformed tests are
considerably smaller than .05 which indicates that the untransformed
tests are conservative under the present model. On the other hand the
simulated level of the transformed tests are fairly close to .05 .

2. 1In all the four tables there is a wide gap between the
transformed t-test and the t-test in the original scale. This

difference starts to appear for alternatives that are close to the true
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model, and could be as much as .60 in Table 5.16.

3. Within the trimmed tests with proportion 10% the transformed
tests has more simulated power than the untransformed test. This
difference could be as much as .24 like in Table 5.16.

4. Within the trimmed tests with proportion 20% , there is not
much difference between the simulated powers of the transformed test and
the untransformed test in Tables 5.13 and 5.14. The difference is clear

in Table 5.16 where it could be as much as .085 .

Table 5.13 Transformed-contaminated normal ¢ = .8N(0,1)+.2N(0,16)
Y = h;‘(e) n=20 A=1/3 a= .05

oo | T, T, T T (T ) T_(h

0 0.0298 0.0476 0.0350 0.0474 0.0411 0.0504
0.2 0.0962 0.1930 0.1986 0.2452 0.2510 0.2798
0.4 0.2118 0.4120 0.4734 0.5416 0.5914 0.6138
0.6 0.3300 0.5876 0.7060 0.7658 0.8280 0.8418

0.8 0.4254 0.7084 0.8338 0.8816 0.9438 0.9466

1 0.5010 0.7818 0.9040 0.9354 0.9786 0.9788
1.2 0.5730 0.8282 0.9384 0.9626 0.9902 0.9904
1.4 0.6288 0.8602 0.9562 0.9740 0.9954 0.9948

1.6 0.6718 0.8786 0.9686 0.9826 0.9984 0.9984




Table 5.14 Transformed-contaminated normal

€ = .8N(0,1)+.2N(0,16)
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Y=hj'te n=50 A=1/3 a= .05

oo | T, T T ()T )T () T

0 0.0392 0.0499 0.0404 0.0477 0.0447 0.0493
0.1 0.0730 0.1582 0.1490 0.1838 0.1902 0.2100
0.2 0.1220 0.3324 0.3660 0.4448 0.4756 0.4982
0.3 0.1832 0.5496 0.6060 0.6958 0.7352 0.7574
0.4 0.2500 0.7238 0.7836 0.8636 0.9034 0.9154
0.5 0.3150 0.8380 0.8932 0.9498 0.9722 0.9788
0.6 0.3776 0.9148 0.9458 0.9826 0.9922 0.9936
0.7 0.4372 0.9548 0.9730 0.9944 0.9980 0.9980




Table 5.15 Transformed-contaminated normal ¢ = .8N(0,1)+.2N(0,16)
Y = h:"(3f) n=20 }=1/3 a= .05

e | T, Th T T h T ) T_(h

. . .2 .

0 0.0216 0.0474 0.0262 0.0474 0.0306 0.0507
0.2 0.0406 0.1278 0.0892 0.1566 0.1344 0.1904
0.4 0.0656 0.2322 0.2042 0.3102 0.3244 0.3858
0.6 0.0998 0.3376 0.3358 0.4754 0.5192 0.5696
0.8 0.1356 0.4334 0.4630 0.6156 0.6764 0.7138

1 0.1744 0.5052 0.5692 0.7030 0.7836 0.8076
1.2 0.2102 0.5598 0.6534 0.7870 0.8630 0.8802
1.4 0.2436 0.6064 0.7238 0.8342 0.9102 0.9188
1.6 0.2746 0.6470  0.7756 0.8730 0.9414 0.9484
1.8 0.3062 0.6780 0.8078 0.8996 0.9620 0.9650

2 0.3308 0.7060 0.8366 0.9196 0.9710 0.9750

2.2 0.3562 0.7242 0.8578 0.9342 0.9790 0.9814
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Table 5.16 Transformed-contaminated normal € = .8N(0,1)+.2N(0,16)
Y=hj'(3e) n=50 A=1/3 a= .05

e | T T T M T T T ()

- . - .

0 0.0339 0.0495  0.0332 0.0475 0.0389 0.0491
0.1 0.0402 0.1122 10.0724 0.1270 0.1082 0.1444
0.2 0.0478 0.2012 0.1430 0.2596 0.2436 0.3132
0.3 0.0596 0.3046 10.2400 0.4214 0.4154 0.5012
0.4 0.0742 0.4236 j0.3546 0.5746 0.5872 0.6706
0.5 0.0852 0.5324 0.4682 0.7068 0.7196 0.7906
0.6 0.0984 0.6192 0.5736 0.7998 0.8232 0.8824

0.7 0.1128 0.6970  0.6690 0.8670 0.8922 0.9330

5.4.3 Student’'s t model

Tables 5.17 and 5.18 below give the simulation results for the
Student's t model with 2 and 3 degrees of freedom respectively. From
these tables we note that:

1. The simulated significant levels are not too far from .05 .
However, the levels of the transformed t-test and the transformed-
trimmed with proportion 10% are closer to the above nominal level.

2. In Table 5.17 there lis some difference in the simulated power
between the transformed t-test and the t-test in the original scale. 1In

Table 5.18 this difference does not exceed .04 .



among the simulated powers of the transformed tests and the

3. Within the trimmed tests there are only small differences

corresponding untransformed tests.
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Table 5.17 Student's t model df =2 n =20 a= .05

¢ | T, Tuh T (T (b T @ T ()
0 0.0419 0.0488 0.0443 0.0495 0.0471 0.0456
0.2 0.1176 0.1380 0.1414 0.1528 0.1576 0.1548
0.4 0.2444 0.2908 0.3330 0.3516 0.3556 0.3484
0.6 0.4086 0.4844 0.5632 0.5778 0.5974 0.5814
0.8 0.5692 0.6598 0.7510 0.7660 0.7930 0.7818

1 0.6928 0.7780 0.8758 0.8846 0.9044 0.8954
1.2 0.7858 0.8680 0.9406 0.9456 0.9620 0.9572
1.4 0.8432 0.9146 0.9742 0.9752 0.9862 0.9830
1.6 0.8858 0.9462 0.9884 0.9894 0.9950 0.9942
1.8 0.9130 0.9628 0.9938 0.9934 0.9974 0.9972




98

Table 5.18 Student's t model df =3 n =20 a= .05

o/¢ | T, (1) T, () T T T W T
0 0.0445 0.0467 0.0451 0.0476 0.0469 0.0430
0.1 0.1238 0.1338 0.1418 0.1474 0.1466 0.1380
0.2 0.2736 0.2928 0.3170 0.3236 0.3176 0.3032

0.3 0.4652 0.4906 0.5370 0.5456 0.5470 0.5288

0.4 0.6386 0.6774 0.7368 0.7422 0.7530 0.7380
0.5 0.7854 0.8156 0.8752 0.8784 0.8810 0.8696
0.6 0.8728 0.8964 0.9486 0.9486 0.9538 0.9470
0.7 0.9294 0.9452 0.9834 0.9824 0.9854 0.9822

0.8 0.9586 0.9730 0.9954 0.9952 0.9956 0.9944
0.9 0.9742 0.9834 0.9982 0.9984 0.9992 0.9988

1 0.9828 0.9922 0.9992 0.9990 0.9992 0.9992

Tables 5.19 through 5.23 below represent the simulation results for
the transformed Stﬁdent's t model where the inverse of the John-Draper
transformation is applied to the t with 2 degrees of freedom data.

The value 4 = 1/3 1is used in Tables 5.19 , 5.20 and 5.21, 4 = 1/2 in
Table 5.22 and A = 0 in Table 5.23. From these tables note that:

1. while the simulated levels of the transformed tests appear to
be close to .05 , those of the untransformed tests are considerably
smaller than .05 especially the simulated level of the t-test in the
original scale.

2. The gap between the simulated powers of the transformed t-test and

the t-test in the original scale is very wide in all the tables.
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3. Within the trimmed tests with proportion 10% , the simulated
power of the transformed test is always greater than that of the
untransformed test. The maximum difference could be as much as .30 or
.35 as Tables 5.22 and 5.23 show.

4. Within the trimmed tests with proportion 20% , in some cases
there is not much difference between the simulated powers of the
transformed and untransformed tests like in Tables 5.19 and 5.22 . 1In
some other cases the difference could be as much as .10 like in Tables

5.21 and 5.23

Table 5.19 Transformed Student's t model df = 2
A=1/3 o#=1 n=50 a= .05

oo | T, om0 T (T ()T ) T

.1 . .

0 0.0287 0.0502 0.0419 0.0506 0.0441 0.0475
0.1 0.0430 0.0950 0.0846 0.1050 0.1030 0.1114

0.2 0.0608 0.1580 0.1498 0.1926 0.1936 0.2120

0.3 0.0786 0.2446 0.2364 0.3004 0.3208 0.3408
0.4 0.0988 0.3354 0.3388 0.4256 0.4664 0.4888
0.5 0.1218 0.4298 0.4454 0.5506 0.5988 0.6246
0.6 0.1500 0.5286 0.5556 0.7670 0.6212 0.7448
0.7 0.1784 0.6196 0.6534 0.8678 0.7166 0.8366
0.8 0.2058 0.7054 0.7378 0.8416 0.8880 0.9032

1 0.2656 0.8338 0.8618 0.9346 0.9634 0.9698

1.2 0.3176 0.9068 0.9262 0.9760 0.9890 0.9916




Table 5.20 Transformed Student's t model df = 2
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A=1/3 #=2 n=50 a= .05

ore | T,(1) TR T (1) T.n(}) T (1) T-g(:”

0 0.0247 0.0500 0.0364 0.0506 0.0400 0.0477
0.1 0.0310 0.0846 0.0638 0.0930 0.0824 0.0994
0.2 0.0370 0.1280  0.1010 0.1570 0.1444 0.1708
°.3 0.0444 0.1886 0.1476 0.2336 0.2236 0.2674
0.4 0.0542 0.2546 0.1994 0.3198 0.3270 0.3852
0.5 0.0616 0.3228 0.2670 0.4198 0.4336 0.4960
0.6 0.0686 0.3888 0.3354 0.5160 0.5422 0.5992
0.7 0.0804 0.4600 0.4032 0.6032 0.6326 0.6940
0.8 0.0910 0.5274 0.4738 0.6854 0.7216 0.7756

1 0.1144 0.6478 0.6088 0.8118 0.8444 0.8838
1.2 0.1406 0.7452 0.7132 0.9900 0.8252 0.9504
1.4 0.1660 0.8220 0.8002 0.9418 0.9620 0.9736
1.6 0.1878 0.8750 0.8578 0.9679 0.9790 0.9887
1.8 0.2188 0.5109 0.9000 0.9822 0.9896 0.9956




Table 5.21 Transformed Student's t model d4f = 2
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A=1/3 ¢=3 n=5 a=.05

oo | T, T T (M T (b T ) T

0 0.0233 0.0502 0.0331 0.0502 0.0362 0.0477
0.1 0.0258 0.0804 0.0512 0.0858 0.0696 0.0904
0.2 0.0294 0.1104 0.0742 0.1364 0.1088 0.1476
0.3 0.0330 0.156 0.1026 0.1970 0.1708 0.2262
0.4 0.0382 0.2082 0.1356 0.2634 0.2370 0.3122
0.5 0.0418 0.2612 0.1702 0.3358 0.3174 0.4106
0.6 0.0468 0.3142 0.2132 0.4136 0.4018 0.5006
0.7 0.0514 0.3644 0.2624 0.4898 0.4846 0.5806
0.8 0.0554 0.4144 0.3126 0.5606 0.5608 0.6546

1 0.0660 0.5164 0.4076 0.6826 0.6984 0.7828
1.2 0.0792 0.6026 0.5026 0.7812 0.8012 0.8658
1.4 0.0912 0.6820 0.5940 0.8498 0.8698 0.9258
1.6 0.1060 0.5022 0.6712 0.9030 0.9240 0.9584
1.8 0.1186 0.7980 0.7334 0.9356 0.9518 0.9732

2 0.1332 0.8408 0.7872 0.9580 0.9688 0.9852
2.2 0.1500 0.8682 0.8298 0.9716 0.9790 0.9926




Table 5.22 Transformed Student's t model df = 2
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A=1/2 7=2 n=20 a=.05

oo | T, Th T (T (b T ) T

0 0.0293 0.0488 0.0359 0.0495 0.0381 0.0456
0.2 0.0554 0.0978 0.0814 0.1164 0.1020 0.1194
0.4 0.0892 0.1726 0.1672 0.2184 0.2256 0.2484
0.6 0.1394 0.2642 0.2778 0.3472 0.3768 0.3976
0.8 0.1874 0.3540 0.4012 0.4838 0.5220 0.5386

1 0.2454 0.4472 0.5270 0.5974 0.6622 0.6654
1.2 0.3022 0.5308 0.6224 0.6954 0.7714 0.7700
1.4 0.3604 0.5984 0.7086 0.7710 0.8422 0.8384
1.6 0.4120 0.6536 0.7720 0.8272 0.8920 0.8876
1.8 0.4518 0.7022 0.8250 0.8680 0.9238 0.9200

2 0.4958 0.7428 0.8668 0.9074 0.9508 0.9470
0.2 0.5338 0.7730 0.8976 0.9274 0.9654 0.9614




Table 5.23 Transformed Student's t model df = 2
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=0 &¢&=2 n=20 a=.05
oo | T, Th T ()T ()T ) IR0
0.2 0.0070 0.0784 0.0182 0.0838 0.0436 0.0932
0.4 0.0086 0.1036 0.0260 0.1308 0.0728 0.1624
0.6 0.0094 0.1356 '0.0442 0.1848 0.1342 0.2498
0.8 0.0114 0.1736 0.0646 0.2454 0.1988 0.3240
1 0.0122 0.2092 0.0904 0.2998 0.2734 0.3996
1.2 0.0148 0.2424 0.1184 0.3548 0.3406 0.4640
1.4 0.0164 0.2736 0.1442 0.4054 0.4020 0.5200
1.6 0.0188 0.2968 0.1724 0.4472 0.4566 0.5674
1.8 0.0216 0.3248 ‘0.2002 0.4918 0.5068 0.6116
2 0.0244 0.3516 0.2278 0.5272 0.5548 0.6456
2.2 0.0270 0.3770 0.2544 0.5596 0.5914 0.6818
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5.5 Simulation Results for Skewed Models

As pointed out earlier, the distribution of the t-statistic is not
symmetric about 0 when the distribution of the data is skewed. In this
section, besides reporting the results of the simulated level and power
of the different test statistics, we give some examples of the frequency
and cumulative distributions of the t-statistic in the original scale
and the t-statistic after transformation.

5.5.1 Transformed-normal model

The data used in the runs under this model are generated from a
standard normal variable by applying the inverse of the two-domain
transformation for some A, and }, . Ve fix A, = 1/4 and consider rums
for J, =1/2 , 3/4 and 1 . Table 5.24 below gives the frequency and
cumulative distributions of the t-statistic calculated from the original
and the transformed data, for 4, = 1/4 and Ay, = 3/4 and Figure 5.1

gives the shape of the frequency distributions.
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Table 5.24 Frequency and cumulative distributions of the t-statistic

under the transformed-normal model A, = 1/4 1A, = 3/4

transformed original
values
of T freq. cum. freq. cum.
(-o , -4) 0 0 0.0002 0.0002
(-4,-3.5) 0 0 0.0009 0.0011

(-3.5,-3) 0.0002 0.0002 0.0030 0.0042
(-3,-2.5) 0.002 ‘ 0.0022 0.0124 0.0166
(-2.5,-2) 0.0091 0.0113 0.0397 0.0563
(-2,~1.5) 0.0313 0.0426 0.0948 0.1511

(-1.5,-1) 0.0777 0.1203 0.1676 0.3187

(-1,-.5) 0.1538 0.2741 0.2029 0.5216
(-.5, 0) 0.2254 0.4995 0.1855 0.7071
(0 , .5) 0.2241 0.7236 0.1346 0.8417
(.5, 1) 0.1563 0.8789 0.0811 0.9229

(1, 1.5) 0.0793 0.9592 0.0418 0.9647
(1.5 , 2) 0.0301 0.9893 0.0207 0.9854
(2 , 2.5) 0.0087 0.9980 0.0093 0.9947
(2.5 , 3) 0.0017 0.9997 0.0034 0.9981
(3 , 3.5) 0.0003 1 0.0012 0.9993
(3.5 , 4) 0 1 0.0005 0.9998

(4 , 0 1 0.0002 1
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From the above table and figure note the following:

1. The distribution of the t-statistic in the original scale is
not symmetric about Q . The median from Table 5.24 is about -.55 .

2. The distribution of the transformed t-statistic is fairly
symmetric about 0.

3. The distribution of the transformed t-statistic has shorter
tails than those of a Student's t-distribution with 19 degrees of
freedom. For example, while Pr(t(19) < -2.5) = .0109 , the
corresponding simulated probability is only .0022 , and while
Pr(t(19) ¢ -2) = .0300 , the corresponding simulated probability is
.0113 . On the upper tail, the simulated probabilities of t > 2 and
t > 2.5 are .0107 and .0020 respectively.

Tables 5.25 through 5.27 below give the simulated level and power
of the t-test in the original scale, the transformed t-test and the
transformed-trimmed t-test. From these tables note that:

1. The simulated levels of the untrimmed tests are considerably
smaller than .05 . The simulated level of the transformed-trimmed test
with proportion 20% is close to the nominal level.

2. the simulated power of the transformed t-test exceeds that of
the t-test in the original scale. The difference between the two
simulated powers could be as imuch as .084 in Table 5.25, .075 in Table
5.26 and .12 in Table 5.27.

3. The transformed-trimmed test statistics have their simulated
powers considerably greater éhan that of the t-test in the original
scale and also greater than that of the transformed test without

trimming.
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Table 5.25 Transformed-normal model ¢“ =1 n = 20
Ay =.25 1, =.5

o/e | T, (1) T"J(:“ T (hooT b
0 0.0332 0.0339 0.0417 0.0489
0.2 0.2254 0.2730 0.3322 0.3532
0.3 0.4014 0.4766 0.5494 0.5772
0.4 0.5842 0.6682 0.7388 0.7574
0.5 0.7406 6.8098 0.8594 0.8806
0.6 0.8506 0.9014 0.9284 0.9426
0.7 0.9242 0.9494 0.9668 0.9762
0.8 0.9618 0.9800 0.9878 0.9894

Table 5.26 Transformed-normal model ¢2 =1 n = 20
Ay =.25 4, =.75

oo | T, T, T () T ()

0 0.0235 ‘0.0240 0.0421 0.0492
0.2 0.1988 0.2364 0.3156 0.3528
0.3 0.3738 0.4366 0.5312 0.5752
0.4 0.5608 ‘0.6374 0.7258 0.7588
0.5 0.7214 '0.7876 0.8490 0.8804
0.6 0.8398 0.8854 0.9226 0.9438
0.7 0.9170 ‘0.9430 0.9622 0.9756
0.8 0.9584 0.9744 0.9842 0.9870

108
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Table 5.27 Transformed-normal model e2=1 n=20

b= .25 dy=1

6/¢ | T, (1) T, (4) T T 2(J)

0 0.0181 0.0242 0.0424 0.0495
0.2 0.1766 0.2460 0.3286 0.3610
0.3 0.3488 0.4534 0.5498 0.5842
0.4 0.5386 0.6534 0.7422 0.7652
0.5 0.7046 0.8000 0.8592 0.8840
0.6 0.8308 0.8952 0.9292 0.9472

0.7 0.9078 0.9498 0.9664 0.9772

5.5.2 Gamma model

In this subsection we present the simulation results for the Gamma
models with shape parameters 3 , 4 and 5 . Table 5.28 and Figure 5.2
below give the frequency distribution of the t-statistic under the
original and transformed scales. Note that:

1. The distribution of the t-statistic is not symmetric about 0 .
The median from Table 5.28 is‘about .65 .

2. The median of the distribution of the t-statistic from the
transformed data is about -.06 .

3. The frequency distrigution of the transformed t-test appears to
be much more symmetric than that obtained from the data in the

original scale. However, the tails appear to be shorter than those of
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Table 5.28 Frequency and cumulative distributions of the t-statistic

under the Gamma model with shape parameter 4

transformed original
values
of T freq. cum. freq. cum.
(-m,—-4) 0 0 0.0002 0.0002
(-4,-3.5) 0 0 0.0007 0.0009

(-3.5,-3) 0.0003 0.0003 0.0009 0.0019
(-3,-2.5) 0.0029  0.0032 0.0025 0.0043
(-2.5,-2) 0.0112 0.0144 0.0060 0.0103
(-2,-1.5) 0.0373 0.0517 0.0151 0.0254
(-1.5,-1) 0.0879 0.1396 0.0323 0.0578
(-1,-.5) 0.1683 0.3079 0.0636 0.1214
(-.5, 0) 0.2291 0.5370 0.1129 0.2343
(0 , .5) 0.2135 0.7505 0.1747 0.4090
(.5, 1) 0.1437 0.8942 0.2105 0.6195

(1, 1.5) 0.0681 0.9623 0.1840 0.8035

(1.5 , 2) 0.0259 0.9882 0.1149 0.9184
(2 , 2.5) 0.0087 0.9969 0.0541 0.9724
(2.5 , 3) 0.0029 0.9998 0.0195 0.9919
(3 , 3.5) 0.0002 1 0.0063 0.9982
(3.5 , 4) 0 1 0.0014 0.999¢

(4, w 0 1 0.0004 1
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a student's t distribution with 19 degrees of freedom.

In Tables 3.29 through 3.31 we give the simulated power of the
different test statistics forithe three Gamma models mentioned above.

We subtract the true median from each observation so that the null
hypothesis is to test & = 0 . From these tables note that:

1. The simulated levelsiof the transformed-trimmed tests are
somewhat over the nominal level in two of the tables especially when 20%
from the observations on each tail are trimmed.

2. The transformed t-test has greater simulated power than that of
the t-test in the original scale for alternatives that are close to the
true model. The difference in the simulated powers decreases as the
value of the shape parameter increases. Under alternatives that are
away from the true model the t-test in the original scale becomes
slightly better than the transformed t-test.

3. The test statistics based on the trimmed-transformed samples
have considerably greater simulated powers than the untrimmed tests.
There is not mﬁch difference in the simulated power between the two

percentage of trimming.



Table 5.29 Gamma model with shape parameter 3
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median = 2.67406 n = 20 .05
0/ s T,(1) Tn(l) T l(,I) T 2(J)
0 0.0132 10.0322 0.0544 0.0571

0.2 0.1640 0.2182 0.2964 0.3018

0.3 0.3314 0.3932 0.4900 0.4936

0.4 0.5188 '0.5824 0.6730 0.6774

0.5 0.7036 0.7404 0.8084 0.8112

0.6 0.8594 0.8668 0.9154 0.9198

0.7 0.9296 0.9360 0.9560 0.9584

Table 5.30 Gamma model with shape parameter 4
median = 3.67206 n = 20 = .05

0/ e T,(1) T,(4) l(J) T 2(J)

0 0.0177 0.0226 0.0377 0.0469
0.2 0.1792 0.2205 0.3153 0.4134
0.3 0.3500 0.3846 0.4796 0.4844
0.4 0.5532 0.5660 0.6602 0.6638
0.5 0.7332 0.7336 0.8042 0.8104
0.6 0.8682 0.8512 0.8972 0.9002
0.7 0.9422 0.9326 0.9570 0.9582
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table 5.31 Gamma model with shape parameter 5

median = 4.670913 n =20 a = .05

oe | T L) T (R T (T

0 0.0195 0.0298 0.0517 0.0551
0.2 0.1898 0.2126 0.2856 0.2946
0.3 0.3688 0.3986 0.4870 0.4864
0.4 0.5750 0.5880 0.6692 0.6750
0.5 0.7566 0.7562 0.8124 0.8144
0.6 0.8806 0.8586 0.9010 0.9026
0.7 0.9534 0.9322 0.9548 0.9606

0.8 0.9826 0.9714 0.9844 0.9848

5.3.3 Extreme-Value model

Table 5.32 below gives the frequency and cumulative distributions
of the t-test in the original scale and the transformed t-test under the
extreme-value model. Figure 5.3 gives the shape of the frequency
distributions of the above two tests. We can conclude the following:

1. The distribution of the t-statistic in the original scale is
not symmetric about 0 . Its median is about -.7 .

2. The frequency distripution of the transformed t-statistic
indicates that the distribution of the frequencies is not far from

symmetry about 0 . The mediah is approximately .0558 .
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Table 5.32 Frequency and cumulative distributions of the t-statistic

under the Extreme-Value model

value transformed original

of T freq. cum. freq. cum.
(-00,-4) 0 0 0.0003 0.0003
(-4,-3.5) 0 S0 0.0014 0.0017

(-3.5,-3) 0.0001 0.0001 0.0051 0.0068
(-3,-2.5) 0.0010 0.0011 0.0185 0.0253
(-2.5,-2) 0.0053 ' 0.0064 0.0515 0.0768

(-2,-1.5) 0.0268 0.0332 0.1176 0.1944

(-1.5,-1) 0.0742 0.1074 0.1849 0.379%4
(-1,-.5) 0.1469 ' 0.2543 0.2113 0.5907
(-.5, 0) 0.2203 | 0.4746 0.1731 0.7638
(0 , .5) 0.2268 0.7014 0.114 0.8778
(.5, 1) 0.1658 0.8672 0.0662 0.944

(1, 1.5) 0.0913 0.9585 0.0319 0.9759

(1.5 , 2) 0.0331 0.9916 0.0131 0.9891

(2 , 2.5) 0.0073 0.9989 0.007 0.996
(2.5 , 3) 0.0009 = 0.9998 0.0025 0.9986
(3 , 3.5) 0.0002 1 0.0008 0.9993
(3.5 , 4) 0 1 0.0002 0.9995

(4 , o 0 o1 0.0005 1
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Table 5.33 gives the simulated power and level of the test
statistics under the extreme value model. This table shows that the
same conclusions we made under the transformed~normal and Gamma models
hold for the present model. The transformed t-test is more powerful
than the t-test in the original scale. The trimmed test statistics are
considerably better than the untrimmed tests and the simulated power is

not affected by the percentage of trimming.

Table 5.33 Extreme~Value median = 1ln{(ln(2)) n = 20

0/¢ | T, (1) T_ () T T
0 0.0168 0.0224 0.0390 0.0478
0.2 0.0996 10,1398 0.2020 0.2116
0.3 0.1908 0.2432 0.3246 0.3348
0.4 0.3120 0.3620 0.4702 0.4772

0.5 0.4600 10.5160 0.6160 0.6240
0.6 0.6104 0.6514 0.7286 0.7414
0.7 0.7350 0.7558 0.8194 0.8316
0.8 0.8262 0.8448 0.8926 0.8984

0.9 0.8970 ,0.9060 0.9404 0.9432
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APPENDIX A

Some Asymptotic Results

In this appendix we present some facts and theorems about
convergence in probability and in law which are frequently used in the
proofs given in Chapters 3 and 4. Proofs of the stated facts can be

found in Rao (1973, p.122-124).

Let {An ' Bn}, n=1,2,... be a sequence of pairs of random
variables.
Fact 1 If A, -B, —E—+0 and if B, —=— B then
¥

A ——B

Fact 2 If A, —P A and B, —2 b then

i. A B, —E— b
ii. A./B. —P % asb (b40)
hd n n

iii. A, +B, — £+ A +b

Fact 3
i. A, P, imply A, -\
ii. (A, —B—a iff A, —2 4 2) iff A is constant
Fact 4 Let g be a continuous function. If A, - B, ~2 4,0 and if

B, —2— B then

i. g(B) —E— g(B) ii. g(a) —E— g(B)

Lemma A.1 If B ——2—*‘b then B_ 1is bounded in probability.
n n

Proof Since B, P, b then given § > 0 there exists n such that

Ppr{ B, -b| <1} 21-§.

If b>0 let M = b+l otherwise, let M = |b - 1| . It follows that
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Pr{|B,| < ¥} 21-¢§.
Lemma A.2 If Pr{A,} —— 1 and if Pr{B,} — 1 then
pr{a [18,} — 1.
Proof Pr{a,[1B,} = Pr{a,} - Pr{a, (1B} 2 Pr{a,} - Pr{B3} — 1 . |,

Lemma A.3 If AB, is bounded in probability and B, —F— b ,

then A, is bounded in probability.

Proof A B, 1is bounded in probability implies that for some M’

Pr{laB,| <¥'} — 1. B, —P—b implies Pr{[B,| <b/2} — 1.
Therefore
pr{|a,| <M} 2 Pr{|AB,| < ¥' and |B,| < Db/2}

= Pr{|a,| <M'/|B,| and |B,| < b/2}

> Pr{|a,| < 2M'/|b| and [B,| < b/2} — 1. .

Theorem A.1 If A, —P 0 and if for some ¥ > 0
pr {|B,| <¥} —E— 1 then
P
AB, — 0.

Proof: Since A, —L 40 , given ¢ and 4§ there exists n; such

that Pr {|a ]| < e/M} > 1-6/2 for all n 2n, . Since

Pr {|B,| < ¥} —— 1 there exists n, such that

pr {|B,] < M} > 1-§/2 for all n > n, .
Let n, = max(n;,np) then for all n 2 n,

Pr {|A,| <M} > 1-6/2 and Pr {[B ] <M} 21 - é&/2.
since |A | < /M and |B | <M imply |AB,| < €, therefore

Pr {| AB,| < €} 2Pr {|a,] < /M, |B,| <M}

=1-pr { [A,] S /M, [By] <M )°
> pr {|Ag| < e/} + Pr {|B,] < ¥} - 1

>1- §/2+1-62-1=1-4§ 0
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Theorem A.2 Let T,, =A,,/B,, and T,, = Ay,/B,, . Suppose

that B,, - B, —P 4,0 and B,, P44 (B,,.B,, and f are

n
£

positive for all n). If A, - A,, —L2 »0 and A, —— A then

Ty, - Togy —— 0 -

Proof:

Tin = T2n = Aqp /Biy = Rgy /By,
= (1/By, = 1/By,) Ay, + 1/By, (R4, - Ay,)

L s a/p-1uUpar+1/0 =0. S

Theorem A.3 Suppose T, is a test statistic that is Pitman

regular (Appendix B) with ¥ () = E#(Tln) and r:(p) = varF(Tln) .

Suppose further that 7 (p) 2, r(p) >0 . If T, is another test

statistic of the same hypothesis then

i. T4, is Pitman regular ii. ARE (T,, , Ty,) =1.

Proof:

For T,, choose the sané ¥ (p) and T:(p) as those for T,,
then, C3 through C7 of the regularity conditions of Appendix B are
satisfied by the assumption that T,, is Pitman regular and the choice
of ¥ (s) and r:(p) . It remains to check Cl and C2 . Since

(Tgy - (@) /ro(p) = (T =~ $ (@) /7,(p) = (Tyy = Tan)/7,(p)
hence

(Tgy = (/7 (p) =~ (T = E (@) /1 (p) = (Ty, = Tag)/7,(p)
By assumption

r(p —B @ 0 and T,, - Ty, 2,0
hence

(Tyy - (W) /7o(p) = (Tyy = G (g /() —2—0 .

T, is Pitman regular implies that it satisfies condition Cl of
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Appendix B ,that is
(T, - ¥o(po))/Tolpg) —= N(0,1)
By fact 1 above we conclude that
(Tog - 9o(po))/ Tolpg) —= N(0,1) .
Hence T,, satisfies condition C1 . Similar argument holds for

condition C2. Therefore T,, is Pitman regular.

Since the asymptotic relative efficiency as shown in Appendix B
depends only on
2 , P
Ry = (¥ (o) /7,(po))
2
and since R, is the same for both test statistics hence, we conclude

ARE (T, , Tap) =1 . [
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APPENDIX B

Pitman Asymptotic Relative Efficiency

Let Y,,Yy,...,Y,,... be a sequence of independent and identically
distributed random variables with distribution Po ., 6 €0, an
interval of R'. Let T, = T“,(Y,,...,Yn) be a test statistic for
testing Hy: 0 = 6, vershs H: 0> 6, .

The sequence {T,} is called Pitman-regular for testing the above

hypotheses if there exist functions in(ﬂ and Tn(t9) satisfying the
conditions C1-C7 below.

Let Z be a standard normal random variable, and let
w(0) Ty - in(oo) der P d w(n) Ty - in(on) der P
on = ——— under an on = ——— under
7 (8) o r.(6,) b
where 0, = 6, + k/Jn for some k > 0 .
{0) P
Cl. Vop —*Z as n — o .

{n) ¢
Cc2. Vln —Z as n — o .

c3. ¥ (0) is differentiable with respect to 6 in an open
interval containing [6,,6,] .

c4. ¥.(05) >0 .

¥, (6,)
Cc5s. — + ¢ as n —— o for some ¢ > 0 .
{n 7, (8
(0
C6. sup |n—-1 ——+0 as n —
YR EEE ATN
r,(0,)
Cc7. +1 as n— .
7,(8,)

Let 0 ¢ a <1 and let Z(a) be such that

Pr(Z > Z(a)] =1 - ®(Z(a)) = a .
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T, - ¥,(6,)
Let Wy, = ———— with no distribution specified. Define a
T, (8)
rejection region R as
R, = { Wop > 2(@) }.
The level of R  is

(0)
P[ won > Z(a) ] .

a, = Poo[Rn] = Poo[ ;HOn > Z(a) ]

and the power of R, is

(n)
P[ Wy, > 2(a) ]

nn=P0 [Rn] =P0[w0n > Z(a) ]
n n
{0) : (n)
vhere W, denotes W, under P”o (as above) and W, denotes

¥o

under P .
n 9n

Lemma B.1 o —— a4 as n — o .

(0) P’
Proof: By C1, W,, — 2, so

0)
a, = P[ w;n > 2(a) ] — PlZ)> Z(a)] = a. |4

Lemma B.2 I, —— 0 as n —— o where I =P[Z)> Z(a) - kc].

)
Proof: I = P[Wy. > Z(a)] and Il = P[Z + ke > Z(a)] .

(n)
It suffices to show W, '_ET* Z + ke .

(n)
w To- (8 ()W + 8,00 - ¥,(0))
Won = =
r,(8) ,(8)

Tn(an) (n) tn(an) - tn(ao)

In

_— +
Tn(go) Tn(go)
We can write
¥.(0) = ¥ (6,4K/{T) = 9,(8y) + (k/{T)¥,(6,)

for some 6, such that 4, < 6, <, . Hence

§.(0) - 9.(8) k%6, ¥(0,) 9,00,
k

r,(6,) o (6, o r (6, 9,06,
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¥, (0,) ¥,(6,)
By C5 and C6, k -+ kc as n —r o .
'Ff Tn(Bo) 13(90)
Tn(an) .
By C7, +1 as n —— o . Thus
7,(8,)
(n)
"On =a; Nyg + l:’n

where a, —* 1 and bn —‘—o kc .

£

(n) ‘
By C2, W, Z , and so

(n) (n) e
Woop =3, W, +b, — Z + kc . 0
For each sample size n ‘suppose we have two test statistics T,
and T,, . Suppose {T,,} and {T,,} are both Pitman regular for
testing H,: 6= 68, versus H: 6> 6, . Let k, , ¢, , ky and c, be
the constants referred to in ¢he regularity conditions. The asymptotic

relative efficiency of {T,,} relative to {T,,} is defined to be the

ratio

Dy

ARE(T |/ Taq) = 5

where n, and n, are sample sizes such that the two tests Tln‘ and

T2n2 have identical power with respect to identical alternatives.
k ky

= A

The alternatives are identical if and the powers

are identical if k¢, = koc, .
Therefore

Dy
n,

ARE(T ,,T,,) = —= (fBg/{n) % = (ky/k )2 = (¢ /cy)? .

Define R,(8,) = ¥,(8,)/7,(0,) . Then C5 says 1lim R,/{0 =c .
0+

Hence
2
R2n(90)

ARE(Tln’T2n) = 11m S
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APPENDIX C

Proofs of Chapter 3

This appendix contains proofs of the different lemmas given in

Chapter 3 along with some préliminary lemmas needed in the proofs.

Lemma C.1 Let ¢ be a‘random variable with finite moments of all
orders. Then for all b and all a > 0, (i) E[(1+a|6|)b] ( ®

(ii) E[(+a|e]® 1n(1+ale])] ¢ o (iii) E[|e[(1+a|ePP] ¢ w .

Proof Since 1+a|e| 21 for all €, hence (1+a|e|)b is an

increasing function of b . If b > 0, let [b] = the smallest
integer greater than or equal b . Then for all ¢,

| (1+a|e|)b < (1+a|e|)[b] .
But (1+a|e|)[b] is a polynomial of degree [b] in |e| and hence has
a finite expectation. Therefore E{(1+a|e|)b} is finite. If b <0 ,
then (1+a|e|)b <1 and (i) is immediate.
Since 1+aje| 21 for all €, hence ln(l+aje|) < 1l+aje] . Therefore,

(1+a|e|)b1n(1+a|e|) < (1+a|e|)b+1

and (ii) follows from (i). For (iii) note that

|e|(1+a|e|)b < |e|(1+a|e|)[b] which is also a polynomial in |e] . 0

Lemma C.2 For all n let U ,, U, ..., U be continuous and

nl’ nn

iid. with distribution function F, . Let 'An be a measurable subset
of R!. set P, =Pr {UnI € An} . Suppose that P, — 0 asn — o .

Then,
5 P
$, = (1/n) i§1 IAn(uni) L 50

where IA denotes the indicator function of A, .
n



Proof:

In Proposition 5.3.4 of ﬁaha and Rohatgi (1979, p.319) let

Xni = (lln)IAn(Unl) i

and

According to the proposition, S, —L2 40 if the following three

conditions hold for any & > 0 :

i. ner{ |x,| 26} —0
n

ii. Y E(X,;) —0
1*1

n
iii. X var(X,;) —— 0
1%l

By definition of X ; .

Pri|X;| 2 6} = Pr{T, W, 2nd}.

Note that the first condition follows because Pr{IA (U,;) 2né} =
n

for n > 1/6 .

since X, ,.X,9s --. (X,, are i.i.d and P, = E[IAD(Uni)] '

nis on
therefore

ii::ls(xni) =n (P/n) = B, —— 0
and
i§lvar(xni) =n (P (1-P,)/n%) —— 0

Therefore conditions (ii) and (iii) hold. [

Proof of Lemma 3.2.1

A
(i) Let L, = [1 - (1+k,/{n) *]/ A,¢ so that (3.2.17) becomes

B, = (Ln,O) . Define

129
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o)
]

Pr{Y € A,} . More prcisely,

L =Pr{¥,, €A} =Pr{e,, €B,}=Pr{c €B8,}

o
[

Pr{L, ¢ € ¢ 0} =F (0) - F (L) .
Since L, —— 0 as n — o, hence Pn——-ol?e(O) -Fe(O) =0 .

(ii) Using the indicator funétion of the set A, , write

n
JE'[(1/n)Y S (Y, ;-0p.0] = JE'[(1/n)iglh(vni-oo,J,)IAn(vni)] .

n1Tn

Since 4, ¢ Y ; < 9

, for all Y ;€A , and h(Y,;-0,,4,) is monotone

increasing in Y therefore

ni ’
)
0 ¢ h(Yy -0y h) ¢ (LK /{E) - - 1)/hy (c.1)
for all Y ; €A, .

Multiplying (C.1) by /(llﬁ)ih (Y;) and taking the sum over i we
n
get

n
0 < i [(1/n) 3 h(Y¥,;,po, ) I, (¥ ;)] <
1*1 n

A n
JT [k /4T) -11/ )y (21 0r,0/m) . (c.2)
1~ n
From part (i) above and Lemma C.2 we have
3 P
_2 IA (Y,;)/n — 0 . (c.3)
171 “n

Let x = 1/{0 so that
A, Ay
o [+k/4m) - 11/, = [(+kx) - 11/(4x)
Apply L'Hopital's rule to obtain

Ao A1
lim [(1+kx) - 1]/(J*x) = lim [k, (1+k;x) l=k ¢
x-'O | x_,o

(C.4)
(C.2), (C.3) and (C.4) imply

JT[(1/n) I n(¥,;-0,40]1 —E—0 .
Y,i€A,
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(iii) Since
n
(1/n) T h%(Y;-0,.4,) = (1/n) Z (Y-8, 401, (Y))
YieAn 1*1 n

and since from (C.1l) we have

"*
0 < h2(Y;-6,.4) < [(+x/fm) - 1144,

hence

n 'l n
0 ¢ (1/m) ZBY;=00 ATy () ¢ (L1 /{E) 1122 21 (x)/m.
1

By the argument given in part (ii) above it suffices to show that

A
[(1+k,/{m) - 11%/A] is bounded as n —— w . This is true since

for all i, 0

A 2 2
0 < [(+k/{T)  -11/dy ——0 as n — w .

To prove parts (iv), (v) and (vi), first note that by an argument
similar to the one used in parts (ii) and (iii), the following is true.
If |g,(e)] <M for all ¢ €B, and all n 2 n, , then

(1/n) I g, le;) —B—o0 .
€;€B,

A
(iv) g (€) = Jme . since |e| ¢ [(14k,/{n) *‘1]/(J*J) for

€ € B, , hence

)
Hie| = {5 €] <47 Lk /7)) -11/00y0) —— k,/0 .

(v) g,le) = €2 . From (iv)
A

0 ¢ €2 ¢ [(14k/{F) -11%(hn? — 0
1-1/4,
(vi) g,(e) = (1 + Ayole]) .
)1 A A

g le) € (1+k,/yn) ‘* < (14k,/40) T ¢ (1+k ) v 0



Proof of Lemma 3.2.2

(i) From (3.2.14) since

l(l/n) EC fiR‘(fi,‘J*,n)I

€y

[+ ] .
<(/m) T el B (xm)II5N
€. 6B Tl

i~’n

i-t
| I (em) | 1+ Aeole;
1-1/4,

< (/A /m B _|e;|(+d 0| ))

eiEBn

o . j-l
(|(_El(k,/JE')J/j!) I Gy )
J= m=

From a result similar to Lemma 3.2.1 (vi)

n 1-1/1

(1/n) I |e;|(A+d r]€; ]
i®1

€Dy

.__.’L...;o.

Since by the WLLN and the result of Lemma C.1 (iii)

1-1/4,

n
(1/n) 2 Je;|(1+derle; ) —B o E{]e|(1+A,0]e]
l=

and since
A

o . o1
S 0503750 1 Om) = (kg5 -1 —— 0 as
j=| m=

therefore from (C.5) (1/n) X _ €;R;(€;,4,,n) —2,0.

[

€iy

(ii) Note
(1/n) 2 . R¥(e; hyem) =
€;6B,
fi'1) ._1 l-j/J*
(1/0) % [ X (sign(e;))I 7 (1+h,0)e;])
€,€85 171

l-llJ* [+ ]

<A/ T (A+d,e]e; ] 120 2 ((x/{m)?
. : j=1

el n

Yo m B e e ])

1-(3/4.)

132

(C.5)

1-1/4,

1-1/4,

}<Cw,

n—— o,

j-t
/3N T (A-m1?,
mn=0

. j-t
(/4523750 0 (Ayrm) ]2
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1-3/4, 1-1/4,
because (1+i,s]€;|) < (1+A,0]€; ) for all j 21 .
From Lemma 3.2.1(vi)
1-1/4, o 1-1/ds |
(1/m) 2 _(+he|e;] - @/m X a+dele ) 2.0.
i

€;cb,
It follows from the WLLN and the result of Lemma C.1(i) that

n ]1_1/11* p 1‘1/:‘*
(1/n) I (1+A,o]e; ) —— E{(1+A,a]€; ) } ¢ w
i1

[1 1] . j-1
As before, X ((k,/{i')J/jl)*ﬂo(J,-n) ——— 0 as n —— o , and
i:l m=

therefore (1/n) X R¥(e., A, /n) —E— 0 .
€;€Bg

(iii) From (3.2.16) write

({o /n) B Ro(€;,A,n) =k} v/ (A 40) (C.6)
€;€B,

where
[11] s s i=1
veam 33 (signlep) ok gm0 T 0
€;6Bg 172 B 1-(3/4)
(1+J*F|€i|)
To show that the left hand side of (C.6) tends in probability to 0 , it

suffices to show that |V| is bounded in probability.

Note that
l_j/:‘* 1—2/:‘*
(1+d,0)e; ) < (+A o), ) for all j > 2.
Therefore,
1‘2/:‘* 11} ._2 j_|
V] < [/m) X (+do]e;]) 102 (/@ )37 %50 | 1 (Aem) |
fl@: 12 m=0

By a result similar to Lemma 3.2.1(vi),
1-2/4,
(1/0) T (1+d,e)e; ] —L2 40, s
c

6ienn
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n 1-2/ A 1-2/4,
(1/n) T (144 e]e;]) - (/m) I (e ]) —La0.
i®l

eiean

By the WLLN and Lemma C.1(i)
n 1-2/4, 1-2/4,
(1/n) T (1+d,ofe;]) L2, {(1+A,e]e; ) } ¢
i}
So, it remains to show that
® j-2, j-1
Q= X (x,/n)° /5t | D (Aym)| < m .
ji=2 m=0
Since we are assuming that i, is positive,
[11] J-_2 j-l
Q< X (x,/{m)7 %/ 3 N (A4m) .
j=2 m=0

Let q = [4,] . Then

I

] j-2 ji-t
Q< X (k/fm ) °/7 3t 1 (q+m)
j*? ‘ m=0

) j-2 qtj-1
'2_:2(1:,/5) (
r

1! -

Since we are proving an asymptotic result, we can suppose

T k(13142173 = k,(a+2)/3 . (c.m
We now use this assumption and the ratio test for convergence of
infinite series to show that the series bounding Q is convergent and
hence Q is finite. Let ffj) denote the term indexed by j in the
expansion of the above series. Then

f(i+1)/£(3) = Kk, (q+j) ! (g-1)! 3!

{5 (@-1)1(G+1)!  (q+i-1)!
(k /4T ) (q+i)/(3+1)

(k,/{5 ) (1 + (q-1)/(j+1))

I

(k,/{n') (1 + (q-1)/3) for all j > 2

k,/{n (q+2)/3

<1 (from (C.7)). 0
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Lemma €.3 Given b > 0 , there exist functions g (€,b) , m = 0,1,
not depending on n , such that
(i) Under Hy, (|Y-0°|+1)b <iggle,b)

(ii) Under H,, (|¥-8,|+1)® < g (e,b) for all n >k} .
n

Also, these functions are such that (1/n) ¥ g (€;,b) , m = 0,1, is
i

bounded in probability.

Proof
1/A,
(1) (|Y-8,| + 1) = (1 + A,o|e) '
b b/,
(|[¥-0p] + 1) = (1 + Aya|e])
(b/A,]
<1+ Aya|e]) = gyole,b) . (C.8)
i
where as defined in this thesis, [x] = (integral part of x) + 1 .
(k,/A,]
Let G, = E{(1+),e|¢€[) } . By Lemma C.1, G4 ¢ o . By the WLLN
n
(1/2) 2 gole;,) B, . (c.9)
l=

n
From Lemma A.1 we conclude that (1/n) X gol€;.b) is bounded in
isl

probability.

Under H,

(ii) For Y < 6,

b b
(JYy-0|+1) T (V) = (f,-Y+1 -Xk/{n) I (V)
(-ml oo) (-ml 00)
b
< (8,-7+41) T (Y)
(-, 00)
= (1-A,0¢) I (e) £ (1-A,0¢) I (e
(=o,L,) (=0, L)
A

where L, = (1 - (1+k,/{n) *)/J* .
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For #, < Y < 8, note that |Y-6,|+1 ¢ 1+k,/Jn and hence

b b
(Y-8, |+1) ¢ (1+k,/{&) . For n > ki, this implies,

. b b
(Jv-64|+1) T () <21 (-¢e) .
(001 00) (Lnlo)

For Y 2 8,

b b
(JY-6,|+1) T (V) = (Y-6,+1+k,/Jn ) I (Y)
(8,, ) (0,,)

b b
(Y-6,+#1) [1+k/({n(Y-6,+1)]1 1 (V) .
(8,0

Since J{n(Y-6,+1)I (Y) > 1 , hence
(0, m

b b b
(Y-8, |+1) T (Y) < (Y-6,+41) (1+k)) I (Y)

(8, m | (8, o

b/, b
(1+A,0¢) (1+k,) I (e)
‘ (0 , )

[b/4,] b
(1+),70¢) (1+k,) I () .
(0 , )

A

Let g,(€,b) = (1-4,0€) I () +2°1I (¢) +
(‘m,Ln) (Lnlo)

[b/A,] b
(1+),0¢) (1+k;) I (¢) . (c.10)
: (0, w)
[b/4,] [b/4,] b
Let G, = E{(1-A,¢s¢) I (& + (1+d,0¢) (1+k,) I (¢) } .
(-w,L,) (0, )
Then
n |
(1/0) 2 g, (€;.ky) —B6, ¢ m (c.11)
izt

. ‘
From Lemma A.1 (1/n) X g,(€;,b) is bounded in probability.
i=1
Lemma C.4 Given 0¢< §, ¢ A, , under H, (m = 0,1), there exist

n
functions M ,(€¢) , m = 0,1 and k = 1,2,3 , such that (1/n) I M (€;)
151
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is bounded in probability for all m and k and such that for all n ,
%(Y =05, 0

n

(i) (1/n) X sup < (1/n) E Mo (€ .
i1 |J-J,]55°|_”]—l i

(ii) (1/n) 3 sup |__a]—| < (1/n) E Mo, (e) .
it A=A, ]44,

n 02h$Yi-0o,J) n
(iii) (/) 3 sup |—————| < (1/n) T M 4(€)) .
i=1

1A=, ]<6, 9’

Proof Since

i) ——ay—= J_lsign(Y+0°)[(|y-9° [+1) 1n(]y-6,]+1) -
[n(Y-64. 0 |1, (C.12)
hence
swp |——1—I| ¢
[4-4x[ <4y
-1 Ayt b, TR
(A=6y)  (|Y-8,[+1) In(|Y=0, [¥1) + (4,-8,) “2[(|¥-0,]+1) - 1]
Atdytl A t8,
< (A=) ~H(|Y-0,|+1) + (A=80) "2(|Y-4,|+1) (C.13)

because [Y-f,|+1 > 1n(]Y-6,]+1) .

Under H the result follows f;om Lemma C.3 with

Mo (€)= (A-8y) g (€, A +6p+1) + (M=80) "2 g (€, 1, +6p) (C.14)
M2(Y-9,, 1 o (Y-8,, )
(11) Since —r—— = 2h (Y- 90'“_5]_ and since
(A+84)
sup  |h(¥=84, D) | < (A,=8,) ~'(|Y-0,[|+1) .
IJ_J*lSJO i
(A td,)
therefore multiplying (C.13) by Z(J,—Jo)"(lY—ﬂo |+1) we get

alz(Yl_eo,J)

s |1 ¢
[4-24]< &

2(A, 46041 2(1,+4,)
(A=8g) “2(|Y-0, |+1) + (A= 8g) T3 |- 6, [+1) .
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Under H_ the result follows from Lemma C.3 with

Mo, (€) = 2(00,-8,) "3 g (€,2(0,480)) + 2/ (A,=8g) "2 g (e, 2(A,+80)+1) .

(C.15)
(iii) It is easy to see that
3h (Y ;- 0, D) oh(Y; o A
—| = (2/20) |———| + (1/A2) (|T-6, |+1) (1n( Y-8, |+1)) 2

12 A

(C.16)
and hence under H  the result' follows with
M_o(€) = (2/(A,=8p)) My () + (1/(A=8) %) gple, A +65+2) . (€.17)

Since the functions M, () for all m and k are linear combinations of

the functions g (¢) m = 0,1 , hence from (C.9) and (C.10)
n i

(1/n) ¥ M_, (€;) are bounded in probability for all m and k . 0
i*l

Proof of Lemma 3.3.1

(i) Consider a Taylor expansion of En(Bo,An) about 1= 1, .

_ . _ . n Oh(Y;- oo,x )
hn(oollln) = hn(oo"lt) + (lln - J*) [ (1/n) 2—7}_

vhere ) is such that |]n-J,| < |in—J,| . Hence

n

. n (Y-8, )
B (6,4 - B, (8,40 = (A-d9) [ (1/n) 2—51—

From Lemma C.4 (i), since under H_ (m = 0,1)

(1/n) —31___ I (4a) < (1/n) sup —r
n - " -
(Ae=8g0 Ayt 6g) i*1 k-1, Jol |
n
< (1/n) .2_21 My, (€;)
i
n (Y- 00,,1 ) -
we see that (1/n) E I—(ﬂ—II (An) is bounded in

probability. Since Pr[|4, - Ay] € 851 —— 1, hence
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I (in) —2 4,0 and so by Lemma A.3 we conclude that
(J*"6°,J*+6o) :
n ﬁl(Yi-%,-jn)

(1/n) | ¥ —————| is bounded in probability. (Note that this
i=l

assumes measurability of A . If J, is not measurable, the argument

might still go through using outer measure as in Huber (1967, p. ).

Since A, S A, . therefore from Theorem A.1l in Appendix A with

- n &(Yi_oo’-jn)
A, = A -1, and B_ = (1/n) igl—ﬂ— ., we conclude

En(oo,in) - in(oo,J*) —p-00 -

(ii) From a similar argument using a Taylor expansion of

n - -
(1/n)i§lh2(Y—9o,Jn) about A = ), and the functions M ,(¢) in Lemma
C.4(ii), it can be shown that

(m Ea2v-0,,) - (m Sarv-0,,00 Lo .
in1 | i1

i
Proof Lemma 3.3.2 From Lemma C.4(iii)

021'1 (Y i— 00; /”

n 02h(Yi'0°;J) -~ n
(1/n) & |—— |1 (4o <(/m) ¥ swp |
it 942 (Ay=8y, A+ 8o) i1[a-4,]<4, 12

n
< (1/n) T M_g(e)) .
i<l

n 09?h(Y;-8,, 1) .
Therefore (1/n) ¥ | T (An) is bounded in
iz 912 (dy= 80 At 6g)

probability. The proof proceeds as in Lemma 3.3.1. (]

Proof of Lemma 3.3.3 Since

m(Y —901 J*) J
———— = (1/4,)sign(¥-6;) [(|¥-0, |+1)
| [n(¥-65.40 11 .

*ln(lY—9°|+1) -

therefore under :
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ﬁl(Y "00:J*) J*
—r—— *° (1/42)sign(e) [(1+A,0]€]) 1n(1+A,a]e]) - Ayo|e]l .
(C.18)
! &(Y -0011*)
Under symmetric distributions of ¢ , E[ 7 ] = 0 Dbecause
(C.18) is an odd function of ¢ . Therefore by the WLLN
dﬁn(Oo,J,)
T —p" 0 .
Under H, from a Taylor expansion about &, we can write
(Y -0,,4,) (Y 0,4, (Y-8, 4,) ;
7 = —gr——* Ul —rgg—+ 0eS0ulby -

n m(Y -0nfj*)
As for Hy,, (1/n) X — —P ,0 . so, it suffices to show

i*1

azh (Y"- *)
that (1/n) E R [ is bounded in probability.
32h(Y- 0, J*) i J‘l
W— = -(IY‘0|+1) ln( IY‘0|+1) -
Therefore

(’211 (Y" 01 J*) J

—am—l £ (lY*—0|+1)

‘amo Ay A

x
| < (|Y—0 [+1) .
From the triangular inequality we have
- Ay ‘ Ay Ay
(JY-0,]+1) < (JY-6,[+1)  + (|Y-6,]+1) .

A
Under H, (|Y-4,]+1)

Auo|€|+1 . Therefore it suffices to show that

there exists some function M(¢) with E[M(¢)] < « and such that for

J*
all n, (|Y-6,]+1) < M(e .

[Y-0,|+1 = |Y-0,+k/{n |+1 < |Y-0,|+k/{n +1 < |Y-0,|+k+1 .

Therefore



1, 1, d, Ay
([T-0p[#1) < ([T-0,[414K) = [(L+hyole])  + K]
1/4, (]
< {Q+d,o]e] + x} .
Let m = [1,] , then |
1/ (1] a iy
{tdyele T4k} T =3 G ehaleh” R
j=

Let
(374 ,_.
» km 3j

m O
M(e) = B (59 +dyefe])

then M(¢) is a polynomial in |e| with a finite expectation.

]

141
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APPENDIX D

Proofs of Chapter 4

Proof of Lemma 4.3.1

From a Taylor expansion of ﬁn(ﬂo,jn) about A, , = 4,, and
"2n = "2*

$ M-, 40y (g
T} Baee—

Ba(fy, da) - Balfg, ) = (h4mdyy) (1/m)

0"‘ ("m, bO)
+ gy = Ay (1/n) § h(¥i-0g.da) 4 (Y, (p.1)
’ i1 " (fgym )

dAy
where JAn is such that [A,, - Ay, | € |44 - Aix| and

|40 = dax] € |42n — Aax| - The result follows if the LHS of (D.1)

tends in probability to zero. Consistency of the maximum likelihood

estimator of 1 (follows from Appendix E ) implies, 4, -2, Al
and JA,, -2, Ayy. Hence by Theorem A.1 of Appendix A it suffices to

show that there exist M, such that under H , n=1l,2 ,

a |m(Yi_0°l;n)
||

Pr{(1/n) X l <M} —P2+1 as n — 0 k=1,2.
i
9y

ﬁl(Y"ao,J) , kK = 1’2

o,

To show that there exists such M, ., note that

is the same as the first derivative with respect to 1 under the
John-Draper transformations. Therefore we define the function M,, from
(C.12) upon replacing A« by A;, . sSimilarly, we define the function

M,, from a replacement of A, imn (C.12) by 4,, and so forth. 0

Proof of Lemma 4.3.2 Note that

A

02h(Y-0°,£) {
|— + 1/3,(6,-Y+1) 1n(f,-¥41) .

m(v"eol_'!)
| = 2/4, |
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This is the same as (C.16) in Appendix C when ) there is replaced by
Ay . Therefore the result follows from (C.17) and (C.18) under H, and
H, if A, in these two equations is replaced by Ayxe

9*h(Y-6,, )

A similar argument holds for | ——| 0
242
Proof of Lemma 4.3.3
Since
m(Y_OO,_‘_*) J|*
-— (-lljl*) [(00"Y+1) 1n(0°‘Y+1) + h(Y‘ooni‘*)]I (Y) ’
aJ| (_m, 00)
hence under H,
%(Y-oo.}_*) 9
—————— = [(-1/}}) (-2 ,06)1n(1-A;,0€) - oe/A ;] I (€) .
5J| ("CIJ,O)
Therefore
n (Y-85, 4, n 2 Aix
(1/n) X = (1/n) X [(-1/},,) (-}, ,¢€;) 1n(1-},,0¢;) -
i= dA, i=t
in/Jl*] I (fi) .
(_mlo)
Note that
o Ae n Aixtl
(1/n) ¥ (1-A,,0¢;)  1n(1-A,,ve)I (€;) < 1/n X (1-4,,0¢;) I (€))
i1 (-2,0) 1%l (-, 0)
n [, ]+
< (1/n) % (1-2 40¢)) I () .
1=1 (-, 0)
(4,141
But (1~ ,0c;) I (¢;) 1is a polynomial of a normal variable and

("CIJ,O)

n
hence has a finite expectation. Also, (1/n) ¥ €;I (¢;) has a finite
=1 (_CIJ,O)

expectation. Therefore by the WLLN, under H, for Y £ 6,
n al(Y-oo,_‘_*) J

2
(1/n) 3 ———— —B o E{ [(-1/)],) (1~} ,0¢})

1%
In(1-4 ,0¢;) -
i1 ar

ge./A LI () }= <.

(~2,0)
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From a similar arguemnt for Y > 6, it can be shown that

n ﬁl(Yi—ao,é*) 2 J2‘
(1/n) $ —————— P L E{ [(1/4,4) (1+4,,0€;)  1n(1+hy,0€;) -
i1 dd,

06,/ 33,01 (€;) } C .
(0, m)
Therefore under H,

dh(8,.4,) |
_ﬂ_—-.p E[S(€,44)] where

- E{ [—J;i(l—]l,lre)ln(l—,l“te) - Ajs0elI (60}

E[S(e,4,)] = | (7. 0)
_E{ [Agy(1+)y,0)In(1+dy,06) - AjloelI (0 } _
(Orm)
Under H, as we did in proving iLeuuna 3.3.3. we write
dh(Y-0,,4,) (Y-8,,]4,) | d*h(Y-0,,4,) -
= + (0n—0°) _—_, 0,0,<8, .
A A ) a6

[+ al(Y'_ﬂ ' )
As for Hy, (1/n) X ;a-u*— P, E[s(e,4,)] .
il J

Since 8 -0, = k;/{f —— 0 as n — w , so it suffices to show

*n(Y-8,,1,) ’h(Y-6,,1,)
that the functions ———— —— and ————— are both bounded in
ﬁ)l(” (7)200

probability. This follows the same steps given in the proof of Lemma

3.3.3. (]



145

APPENDIX E

Consistency and Asymptotic Normality of ), the MLE of }

Let h(y-f,,4;,4;) denote the two-domain transformations. Since
we are assuming that J,* and 1,, are positive, the parameter space is
defined as

ﬁ =le=(A, A0t 4,50, 4,50, 0501 .
Any « € ] is an element ofian open set I contained in )} of the
-form

I=(u:a,<),<b,',a2<J2<b2,a3<¢r<b3} (E.1)

for some positive numbers a. < b i=1,2,3. Without loss of

1 1!
generality for i=1,2 we assume that bi/ai € 2 . Under the model
h(y-0,,4;,45) = oc the pdf of Y with ¢ assumed to have a standard

normal distribution is given by,

£40¥,41,05.0) = 1/6 £ _(hly-6y, 4,050/ 0) J(Ay, )y) (E.2)
vhere, ‘
| g ~172 2
1/¢ ff(h(y—ﬂo,Jl,J2)/¢) = (270%) exp{-1/206°h*(y-0y, 4,4, }
A
-1/2 1—( 00_Y+1)
=(27x52) exp{—1/202[( 1 ) 21 (vy) +
! (—ml 00)
(y-8,+1) 421
T )21 (y) 1} (E.3)
2 (00,13)
and, |
a](y_oongl)2)
J(J|:)2) = -
'
= (f,-y+1) I (y) + (y-0,+1) I (y) (E.4)
(_m. 00) (001 m)

For a given y the loglikelihood as a function of «# is given by,
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A
1-(0y~-y+1) !
LUy o) = -1/2 1a(e?) - 120" {{——7 T )
('m: 00)
by
(Y‘0°+1) _1
+ ( )21 () 1} + 1n (3(A,,4,)) (E.5)

12 | (90:@)

lemma E.1 Let L(A,,),,#) be as defined in (E.5) and let

0 £y, A1 b2, 0) denote the kP partial derivative of fY(y,JI,A2,J)
dAT 043 o6t

differentiated r-times, s-times and t-times with respect to 4, , I,
and ¢ respectively where, X =1,2,3 and r,s,t = 0,1,2,3 are such

that r+s+t = k . There exist functions M . ,(y) such that,

k
la Ey didadd |y (y) for all v € I
1T 213 oet
and
M y)dy £ o forall k, r,sandt
Proof

It is more convenient to give the proof in terms of the

loglikelihood by noting that for any three times differentiable

function g(7,v)

Iﬁq('r.v) I = It?ln(g(:r. v)) I Ig('r.u) | (E.6)
a7 dr

|M| < Ia 1n(g(7” Hg(1.v)| + Il?ln(g(’r.u))llaln(g('r.u))

d7 ov dr 0u 7 >

|g(7,u)| (E.7)

and
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l63g(1,v)| < |631ng(1.v)| lg(7'”)| + 2ldzln(g(%l/))l

97z ov v dr dv
[Antg(r.m) | otz | + {”21'“;‘-’;7'””| |atatr, )|
BKZ 7 B
|9(1,v)| + |ﬁln(g(1,v))|2 |61n(g(1,v))| Ig(1,v)| (E.8)
a7 ' v

*
We first start to look for some function f (y) that dominates

fY(y,)l,J2,v) over I that is, fY(y,J,,J,,:) < f*(y) for all w € I

k
d LA, 4q,9)

<
aTaNs aet | Fraely)

then we find functions G, . ,(y) such that,

for all # € I and such that, [ G _ ,(y) f*(y) dy ¢ @ . The results will
then follow with M__, (y) taken to be some linear combination of the
functions Gijl(Y) for some 1i,j,l1 determined from equations (E.7)
and (E.8) and from which partial derivative is considered.

We give below some upper bounds over I for the different terms

k
(3 L(J],Jz, 7)
TIN; Ot

included in the functions f,(y,4,4,,s) and so that

*
if every term is replaced by its upper bound we get f (y) and G __.(y)
1/h, < 1/ay , 1/4y <1l/a, , 1/¢ ¢ 1/ag , =-1/¢ < -1/b3

(1),,-,,+1)Jl < (90-y+1)b‘ . (y—(),,+1)Jz < (y—00+1)b2

R e R PIP BT S VAL
X : by
(y-0,+1)12-1, 4 (y-0,+1)22-1, 4
- ( 0 )4 - ( 0 )
2 ‘ b

1. An integrable upper bound for fY(y,Jl,Jz,J)

From (E.3)
-2 9
£ (h(y-0,,4¢,45)/0) < (22) exp{-(1/2b3)
1-(8,-y+1) ! (y-8,+1) 12-1

[@ /b2 (—F——) (D + (ay/by) H— )2t (1} .
! ("m, 00) 2 ( 00, m)
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Let r = max(b‘b3, bobs ) then,
a‘ 32

-1/72
£ (hiy-05,4.4)/¢) < (27 exp{ - 1/72 h?(y-0,.a,,a,) }

hence

fe(h(y-ﬂo,Jl,Jz)lc)‘s T (/1€ (h(y-05,a;,25)/7) (E.9)
From (E.4)

J(dy,Ag) € J(by,by) (E.10)
let,

£ (y) = /a3 (1/7 £ _(hiy-05,a,,35)/7) J(b,,by)
then it follows from (E.2) , (E.9) and (E.10) that

£ ¥ Ay dge o) S £ (1) for all v € I (E.11)

° *x
It remains to show that, f t*(y) dy ¢ m . Note that f (y) can be
i

written as,
*
£ (y) =£.(y,a;,a, 7 [1/a3 J(bj-a,+1 by-aytl)] . (E.12)

Let

| 2,
1-(6,-Y+1) ‘ (Y-6,41) -1
X= e I (Y) + —a I (Y) (E.13)
1 (‘G), 00) 2 ( 00,41))
From (E.12) observe that fx(x,al,az,r) is a normal density with mean
zero and variance 72 . In proving the integrability of f*(y) and
later each of the functions Grst(y)f*(y) we express each of these
functions in terms of X and then show that the resulting expression
is some function of a normal random variable with a finite expectation.
From (E.4),

biraip (g 4 (y-0,41)°7722 ()

J(bl-a|+1,b2‘32+1) = (0°-Y+1)
(-ml 00) (0°lm)

from (E.13) note that (f,-y+1) = (1-a,x)1/a' I (x) and
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(y-0,+1) = (1+a2x)1/az I (x) . Hence
(0,0 .

J(b,-a +1,by-a ) = (1-a,x)Pt/2art

I (x) + (1+4a,mP227 1 ()
(~m,0) (0, m)

Therefore under the assumption that bj/a; € 2 we get,

[ 1] o
[ £ dy € /(a3 {277D) { [ (1-a;x) exp[-x%/277] ax
“~a “~a
[ 1]
+ [ (1+a,x) exp[-x2/27%] dx }
0

( ® ! (E.14)
2. An integrable upper bound for A d2, 0
Ay
From (E.5) note that,
A
| (6y-y+1) _
Hlhid2 | o (n(gy-v+1) + (174,67 [(°—I—1)
Ay 1
| A
(8,~Y+1) = 1n(0p-Y+1) + (— )2} 1 (Y) . (E.15)
‘ 1 -
; ( @, 00)
Let
b,
1’(90°Y+1)
Gioo(Y) = {ln(0y-v+1) + (1/a,ad) [( < )% -
1
by
1-(8,~y+1) 1 b,
————) (8,-¥+1)  In(4-v+1)1} 1 (V) (E.16)
t ("mp 90)
which implies that,
Bldid2. 0| ¢ 5 ) . (E.17)
al

Let, M,40(y) = G o0(y) £ (y); then from (E.6) ,(E.11) and (E.17)
ll?fY(Y,'I',Jz, 7)
a1,

S Mi00lY) for all w €I (E.18)

00
We now show that [ G,q,(y) £ (y) dy < o
~o
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[11] [11]
J Grooly) £1(1) dy = [ {In(6p-Y+1) + (1/a,ad)
=a =a
b ) b,
1-(0,-y+1) 1-(0,-y+1)
[( : )2 - | : ) (0°—Y+1)b‘ 1n(6,-Y+1)]}
1 {

[7/ag J( by-a +1 ,b ,-ay+1 )] £y, 4,, 4y, 0) dy

Note that G,,,(y) is defined over (-», 8,) hence , the integral over

the positive co-domain will vanish. Hence,

@ o
[ 6o £ (y) dy = [ {In(;-¥+1) + (1/ajad)
=00 =00
b
1-(00-y+1)

|
2 _
[« P )‘ ( a,

1-(9 +1)bl b
-(0 -y
2 ) (6,-Y+1) l 1n(8,-Y+1)1}

a
bl-al al-l 1—(0°-y+1) !
[r/a3(0,-Y+1) 1(8,-Y+1)  expi-1/27%( 1 )2}/ 2777 dy
t

then from (E.13),

) x o
I Gloo(y) f (Y) dy = I {ln(l-alX)/al +
- -m
bl/al bl/al b /a

(rraap 2™ ey (mam Tl g

a, a,

hllal-l
In(1-ax)/a,}} (1-a;x) exp{-x%/27%}/| 277’ ax

Since a, > 0 and X < 0 imply (1-a;x) > 1 and 1ln(l-ax) < (1-a;x)

then by the assumption that b,/a, < 2

@ o
[ Gloo £ (y) dy < [ (1-a,x)/a, + (r/atad)

[(1-a,x) 2-1) (1-a,x) 3 + (1-a;x)2-1) %] (1-a;x)

exp{-x2/272}/{ 277 dx (E.19)
The right hand side of (E.19) is the expectation of a polynomial of
degree 6 defined over the negative region of a normal random variable

and hence is finite. Therefore,
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¢ 1] w
[ Migo(¥) d¥ = [ G 00(y) £ (¥) dy ¢ ®  for all & € I.

=m -m
(E.20)
3. An integrable upper bound for d(Ay, Az, o)
1 dle
From (E.5)
Ay
|M = {In(g-04#1) + [(———) (1=0,+1)  /(Ays?)
dlo 2
Ay
‘ (Y_oo"'l) -1
ln(y-,+1) + (— )21} 1 (y)
2 (84, )
Let
b,
‘ (Y_0°+1) -1
Goyo(¥) = In(y-6,+1) + {(1/a,ad) [( 2 )
b,
(y-05+1) “ln(y-8y#1) + (— )21} 1 (v (E.22)
3 2 (64, m)
which implies that
Whide | 6 (o) . (E.23)
A9 :

Let, My(o(y) = Goyo(y) £ (¥) then from (E.6) ,(E.11) and (E.23)

|0fY(Y,J|,'|2, o)
s

< Myoly) for all w €1 . (E.24)

From a similar argument like that given in 1 , it can be shown that,

® o

J Mgioly) dy = oj Gyioly) f*(y) dy ( for all w €I
1} ;

(A, A, o)

4. An integrable upper bouqd for
‘ do

From (E.5)
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A
1-(64-y+1)
0!1()1.)2.5) =1/,+1/‘3 {[( 0/‘ )21 (Y) +
t -
do (-, 8,)
Ay
(- 6o+ Lyap () (E.25)
Aq (84,
Let,
b
1—(90'Y+1)
Gooy(¥) = 1/a, + 1/a3 [(—31_)2 +
b,
(¥ B5*1)  “Ly2p () } (E.26)
32 (00,(11)
and 1et, HON(Y) = G°°|(Y) fT(Y) . Then
Mlhid2 9| ¢ 5o0t0) (E.27)
de ‘
By (E.6) , (E.11) and (E.27),
ﬁf(Y,Jl,Jz,f) | Snoo‘(y) (E.28)
de

00 00 *
We next show that, [ Mg,,(y) dy = [ Goqo((¥)E (¥) dy < m .

® * ® Toxs2 4
[ Goo (E (¥) dy = 1/a4 [ £ (y)dy + (1/] 27x7°%) r/aj
a0

o 0,-y+ P b-1 1-(¢ H
{ A 2 (giyey  expl-(m YD) 275,276y 4
1] a, a|
b, a
0 _ _ b2_1 - 2_
N ot1) -1, (y-0,+1) exp [-( ¥t Y2212 1 ay }
32 ‘ a2

under the variable transforma;ion defined in (E.13)

[ 1] * [ 1] *
J Goo((Y)E (v) dy = 1/a, [ £ (y) dy +
1} =a
r/ag{ [ (1-(1-ax) )%/a? (1-ax) exp{-x?/2} dx
a0
+of ((1+a,x) -1)2/a; (1+a,x) exp{-x2/2} dx }/{ 2772
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By the assumption that b,/a, {2 and b,/a, £ 2,

® V] 0 9-(1- 2
[ Goo (WE (y) dy < 1/ag [ £ (y) dy + maf { f (T17%) )2
- -~

-0 al

® 2_ _
(1-a,x) exp{-x2/2} dX +,f (*2a2X) "1y 2 (140 %) exp{-x?/2} dx}/{ 277"
! a 2

(E.29)

The right hand side of (E.29) is the expectation of a polynomial of

degree 5 of a normal random variable and hence it is finite.

521!(11112' ’)

do?

5. An integrable upper bound for

From (E.25)

|52L(JI'J217)

da2

-1/0) + 1/4% .

=3¢ (lab(ll.lz.v)
do

Let Ggoo(y) = 3/ay (G4o,(y) - 1/a5 ) + 1/a} then it follows that,

|02L(11112")

*x

4
Let

Mooa(y) = 3/a3 (Mge,(y) - 1/asf (y)) + 1/a? £ (y) +
620, (V£ (y) (E.30)

From part 3 above, it easy to see that

2
IﬁL(J;.Jzyf) f,(¥iddg, 0 < Gaoy(y) f*(Y)
I

00
and that J G2,,(y) £ (¥) < @ . (E.7) and (E.30) imply ,
-0

Iazf(Y,Jl,Jz, 7)

fly,A,,4,,0 <M (y)
. I (¥, 4.4y oo2'Y

x
Since Moo (¥) , G3g,(¥Y)E (y) and £"(y) are integrable then, it

follows from (E.30) that M,,,(y) is integrable.
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2
6. An integrable upper bound for J L(;;'Az")
i - a1z
: 1
PLA, b, 0 d J
From (15) 11220 7 = 1/702{4/23((0,-Y+1) -1) (8,-Y+1)
— ar
| Jl 21!
In((6,-Y+1) + 1742 [(8p-y+1) (1n(0,~y+1)) 2+ 2(8,-y+1)
A
(1n(f,-y+1)) " + 3/2% ((6,-y+1) ' - 1)?) (E.31)
Let,
b, b,
Gagoly) = 1/a2 {4/a3 ((8p-y+1) - 1) (65-y+1)  1In((8,-y+1)
hl 2hl
+ 1/a? [(05-y+1) (1n(8p-y+1)) 2+ 2(0-y+1)  (1n(6,-y+1)) %]
b,
+ 3/at ((8-y+1) - 1%} (E.32)
then,
2
Ia L‘;"*2"’ < Gygoly) for all v € I (E.33)
Ik
1

Using the variable transformation given by (E.13) and the assumption
that aj/b; 2 for 1i=1,2 it can be shown that,
] % | o 4
| Gagoly) £ (y) dy < f (r/afad) {4((1-a @)% -1) (1~a;x)3 +
~00 ~00
(1-ax)* + 2 (1~ax) % + 3 (1-ax)2 - 1%}
(1-a;x) exp{ -x%/2 } Jax/{| 2772 ¢ (E.34)

From (E.15)it can be shown that,

(A, A, )
i

2

< G{oo(y) (E.35)
and

® : o
[ 62,00 £ (y) dy < [ (r/adad)l a2(1-a,x) + ((1-a,x)%-1)
00 00

(1-a,x) ¥ + ((1-a;x)2-1) 212 (1-a,x) exp{-x%/27%} ax/| 277°

< (E.36)
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Let
Ma00(Y) = Gagoly) f*(y) + G250(¥) f*(y) (E.37)

azf(Yl'lll'l2l 7)

then by (E.7) , (E.33) and (E.35)
?

{ My00(y) and from

® |
(E.34) and (E.36) [ Mgga(y) dy < o .
had |

From a similar argument it can be shown that the absolute value of
the second partial derivative of f(y,Ad,,4,,9) differentiated twice
with respect to 1, is dominated by the integrable function M,,,(y)
where M,,,(y) is defined as ‘H200(y) given by (B.37) with a, and b,
replacing a, and b,; respectively.

For the third partial derivatives of £(y,A,,4,,¢) we show for
one case only that there exist integrable functions M __,(y) such that

k
d £y, M. A2, 0

AT 045 det Mo (¥ for all v €1
H 2 ’

The rest of the cases can be treated similarly, however note that
whenever both r and s are different from zero the resulting
derivative will be zero due to the multiplication of the two indicator

functions I (y) and I (y) .
(oOIm) (oofm)
a3f (Y:Jlf'IZ: 7)
dr; ds

7. An integrable upper bound for

From (E.31) note that,

0L (Ay, de, )
_—
an

53f (YIJll J2: 7)
dA7 de

=2/0 I

|02L(11.Jz.a)

Let Gzol(y) = 1/33 G200(Y) . since aJZ
1

< Ga49(y) and

1/¢ < 1/a3 hence
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ashul.}z, ‘)

4 Gz l(Y) . (E.38)
ﬁ)f de ?

From (E.36)

o * o *
IG”,(Y) £ (y) dy = 1/a, I Gogoly) £ (v) dy ¢ @ (E.39)

From (E.15) note that,

02L(Ay, A, 0
dA, de

LAy, Ay, 9)
——
Ay, A2, 0)
——

=2/v ( - 1n(8,-y+1))

2/¢

From (E.17) we conclude that,;

621.(}1,}2, g)
dd, ds

S 2/&3 Gloo(y) (E.40)

From (E.19)

Gloo(Y) S {(l’aIX)/Fl + 1/3?[((1—alX) 2’1) (l‘aIX) 3+

(1-ax)2-1) 4} (%) (E.41)
(-, 0)
where x 1is given by (E.13) . From (E.29)
‘ — (11— 2
Gooy (1) € 1/ag + 1723 (113X 2 1 (4
aj (-0,0)
N 2_
o (A he by ) (E.42)
ay (0 ,m)
From (E.11) , (E.27) and (E.40) ,
2
LAy, 22, 0) lﬁL“:,)z,U) £(3, (. dq,0)
dh, de ds
< 2/a3 G1go(¥) Gooy (W) £ (¥) (E.43)

Note that the integration of the product of the right hand sides of
(E.14) (E.41) and (E.42) under the normality of x represents the
expectation of a polynomial of degree 10 of a normal random variable.

Hence,
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1]
12/33 Gloo(Y) GOO‘I (y) f*(Y) dy ( o (E.44)

=00
0[:(]1,0‘2, ,)

.

From (E.17) since € Gio0ly) . Hence,

|dL(J|,Jz,¢)
dA

2
< 6go(¥) (E.45)

(E.11) , (E.27) and (E.45) imply that,

Iﬁb(ll,lzll) 2 (A, Aq,0) £(y,0,, 0y, 0) < Gfoo(Y) Goo, (1) f*(y)
ak, de
(E.46)
From (E.41)
cfoo(y) < {(1-a;x)/a, + 1/a} [((1-ax) 2-1) (1-a;x) 3 +
((1-a;x)2-1)21}% . (E.47)

Note that the integration of the product of the right hand sides of
(E.14) (E.46) and (E.47) under the normality of x represents the
expectation of a polynomial of degree 15 of a normal random variable.

Hence,

o 9 %
{ GioolY) Ggoy(y) £ (y) dy ¢ o (E.48)

From (E.11) , (E.27) and (E.33),

321-(11./‘2: ')

£(y,A;,4,,0)
XY

Iall()l'JZ: ')
de

< Gagol¥) Gooyly) £ (¥) (E.49)
From (E.34) it can be seen that,
Gggol¥) £ 1/a} {4((1-a,x)2 - 1) (1-a;x)3 + (1-a;x)*+
2 (1-ax)¥ ((1-am? - 1)?} (E.50)
Note that the integratign of the product of the right hand sides
of (E.14), (E.42) and (50) under the normality of X represents the

expectation of a polynomial 6f a normal random variable. Hence,
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f11]
[ Gagoly) Gooy (W) £ (¥) dy ¢ w . (E.51)

Let,
Maq(¥) = { Gggy(¥) + [4/a3 Gygqo(¥) + 6F5o(¥) + Gyooly)]
Gooy(¥) } £ (1)
then from (E.8), (E.38), (E.43), (E.46) and (E.49) we conclude that,

an (YIJll J2r )

< Mgy (¥)
2
0Jl de

and from (E.39), (E.44), (E.48) and (E.51) we conclude that,
11}
jnzol(Y) dy o .
hd ]

This concludes Lemma E.li. (]

Lemma E.2 For some « € I where I is as defined in (E.1) let U(v)
denote the score vector of « and let I(4) denote the information
matrix of «# that is I(«) = var(U(«)) then,
-PL(A, A9, 0 )

du dut

i. E(U(a)) =0 ii. I(w) = E {

Proof

By THeorem 10.3 of K.T. Smith (1971, p.330) and by Lemma E.1, the
first and second derivatives of fY(y,)l,Az,J) can be obtained under
the integral sign. The resu%ts are then immediate from Lemma 2.6.1 of
Lehmann (1983, p.118).

oL oL L

Lemma E.3 Let R #nd
_ M Ay do

derivatives of the loglikelihood defined in (E.5) then these partial

denote the first partial

derivatives are affinely independent with probability 1 .

Proof

Fron (E.5) we get,
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A
1-(0y-y+1) *!
el {Qar7x,;¢® [ ( ; ) (9°-y+1)*‘1n(9°-y+1)
dA !
i
1-(f,-y+1) !
+ (YR 2y 1n(g,-ye) } I
]] (_ml 00)
Y (y—0°+1))2-1 A
= {1/03y6%) [ - (— ) (y-0,+1) “21n(y-f4+1)
! 2
FIP
(y-8,+1) 12-1
+ (70T )21 + ln(y-0,+41)} I (y)
]2 (OOIm)
=-1/e+ 1/ {[(—F—) 1 (V) +
de ! ! (-, 8,)
(y-00+1))2-1
(——)1 M1} .
2 (04, )

Under the variable change given in (E.13) with i, and A, in place
of a; and a, respectively,ithe above derivatives can be written in

terms of x as

Z“ = {(1/3,¢} [x(1-1;x) 1n(1-4;x)/A, + x%]
Ay
+ In(1-Ax)/A,} I (x) (E.52)
(-, 0)
L {(174,6%) [-x(1+4,x) 1n(1+4,x)/4, + x?]
dAs
+ In(1+A,x) /2y }I (%) (E.53)
1 (0, m)
& -1/¢ + 1/4% x2 (E.54)
ds

To show that the above derivatives are affinely independent with

probability 1 we show that, for any real numbers a, , a, a, and a,

Pr {a, + a, a o, a, &, a, 4 0} =0

5) ] ﬁ) 2 50’

unless ao, = a; = a, = ag = 0.
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Pr{a, + a, &, a, a o, a, & 0} =
a,l, ‘ 6,12 64
Pr{ag + a, &, ag & - 0 and x< 0 }+
dh do
Pr{a, + a, &, ag A _ 9 and x>0 }
dda dr
On the domain { x: x ¢ 0 } and from (E.52) and (E.54) let,
g(x) = ay + a, &, ag &
i dr

=ay+a; {(1/4;¢Y) [x (1-4;x) 1n(1-A;x)/A + x%]
+1n(1-4,x)/ 4} + a; {-1/¢ + 1/43 2%}
hence,
g(x) = (ag-az/o) + (a,/h e? + az/ed) x?

+ (a /MY x (1-4;x) 1In(1-4;x)/}; + a;/A; 1n(1-)\x )

Note that g(x) is an analytic function on the domain { x: x ¢ 0 }

hence if g(x) is not identically 0, then the set {x: g(x) = 0} is

density

']

countable and hence has Lebesgue measure O . Since x has
with respect to Lebsegue measure hence,

Pr {g(x) =0} =0

Now suppose g(x) is identically 0 . Expand g(x) in a power

series in a neighborhood of x = 0 . Its coefficients must all be O.

In(1-4,x) = -A,x - A%/2 x2 - 2373 x3- ...

x(1-3,x)1n(1-4 ;%) = -A,x? + (A2-0%/2)x3 + (A}/2-A3/3x* +...
hence,

g(x) = (ag - ag/a) + a; /A (=h)x + [a /A 0% + ag/s+

(a,/A3a2) (-4 + a /A (=4372)] =% + ...}

Since

aj/A;(-4)) =0 imply a, =0

[a, /4 o + az/ o3+ (a,/Afa2)(-A,) + a,/A,(—Af/z)] 0 imply

I
o

azg =0 az=0 and (ay - ag/e) = 0 imply a, =
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From a similar argument on the domain { x: x> 0 } we get a, =0 .

Therefore,

Pr{g(x) =0 } =0 unless a, = a, = a, = ag.
(]

Lemma E.4
Let the pdf of the random variable Y (assume 90 =0 ) be given as

A

-1/2 —-(1=- {

fY(y,J,,Jz,v) = (2702) : exp{-1/2¢r2 [(1 (1-y) )21 (y) +
| Jl (-m,O)

"
(DL ) 1) [a-p AT @)+ e 2T () )
T2 (0, ) (-m,0) (0, w

and let ) denote the parameter space defined in Section 4.1 . If &’

and «” are any two points in f{l such that fY(y,u’) = fY(y,u”) then

Proof

Over the domain {y: y > 0} suppose that fY(y,u’) = fY(y,u”) . Then

s 131
g} exp{—1/2t’2((1+y) - 1)2}(1+y) =

————
L

e
)
v”"exp{-l/Zc”z((1+yl 1)2 ) (14
2

ayr-1

that is,
Ag Ay

“ln(e’/e™ + (A= AD In(1+p - /2o~ L2 () -1,y

A3 Ay

= 0 (E.55)

Ag Ay
Expand 1ln(1l+y) , (1+y) and (1l+y) as a povwer series. For

ly] <1 we get,
-ln(e’/e™ + (AJ- M) [y -v¥/2 +y3/3 + ...1 -2/62 [A)y +

M1 /2 y2+..02 - 2/e™ Ay + M) A-1)/2 v+ .12 =0 .
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r

For these series to be 0 , the coefficients of y° must be zeros for

iff ¢’ = o

[}
o

r=0,1,2,... . For r =0, -ln(s’/c”)
For r=1, (A-A))y=0 iff  AJ) = A .

From a similar argument over the set { Y: Y < 0 } we can show
that A} = A . Therefore ¢’ = 4"

(1
Theoren E.1

Let J, denote the maximum likelihood estimator of A under the

two-domain family of transformations. Let I(#) be as defined in

Lemma E.2 above and let IJAdenote the upper (2x2) block diagonal

matrix of I_l(u) then,

i. J, 1is a consistent estimator of i, .

ii. fF U, -d) —2— N0, 1.

Proof

The proof follows from Tpeorem 6.4.1 of Lehmann (1983, p.429) if
we show that the regularity c;nditions stated in the theorem hold.
Condition (A,): The distributions PO of the observations are distinct
follows from Lemma E.4. Cond?tions (A,) and (A,): Under the model
h(y-0,.4,.4,) = s¢ with ¢ ;ssumed to have a standard normal
distribution we get the support of the distribution of Y the whole
real line and the observations Y,Y,,...,Y, are iid with pdf with
respect to Lebesegue measure.

Condition(A): As we claimed before every point in (! can be made a
point of an open rectangle contained in {} . In particular this is true
for the true parameter point &, . Also since fY(y,)l,}2,a) is

differentiable with respect to A, , 1, and ¢ to any order for all Y

and all ¢ hence, all the third partial derivatives exist for # in an
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open subset of {} containing w, .
Condition (B): Follows from Lemma E.2
Condition (C): Follows from Lemma E.3

condition (D): follows from Lemma E.1 .

[

Lemma E.5

Let &, denote the maximum likelihood estimator of « where,

t
= (A,A,,9) and let U,(¢) and I(¢) denote, respectively the
score vector and the information matrix of « for one observation.

Then, {f(4, - 4x) - I L(4y) (L/{T Uyle)) —2 0

Proof

In the proof &, , @, and ¢; will be used to mean 4, , A, and «

n
respectively. Also if Lj(«) = X 1n( £, (y;,¢ ) then Li(&) ,
i=i i

L;°(«) and L;s‘(u) are used to denote, respectively the first partial

th

derivative of the loglikeliho?d with respect to the r component of

¢ , the second partial derivative with respect to the r and sth

components and the third partial derivative with respect to the r , s
and t'P components of ¢ . Consider a Taylor expansion of L (a,)

about «, . Since by definition L[(#,) = 0, then we get

3 -
L;(H*) + SE (o

3 3 -
(¥ns = @) Li%(w,) + 1/2 E’ t;l(unt = Wyy)

(;ns - W JLESE(e) = 0 (E.S6)

where &, is such that |e, - uxg| < |

n ns ns ~ Yxg| for s =1,2,3.

t
Note that according to our notation U(«,) = (L;(u,),Lg(u,),Lﬁ(u,)) .

xx
Let L, (4) be the 3x3 matrix with (r,s) entry L;°(«¢) and let

XKt

L, («) be the 3x3 matrix with (r,s) entry LESt(U). Now equation

(E.56) can be written as
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x % -~ 3 - xRt - -
U (a,) + Lp (@) (6y-a,) + 1/2t§l(unt-a,t)bn (@) (0,-@y) =0

(E.57)
From (E.57) we can write
1T U (ay) + B, T (4, - 4y) = 0 (E.58)
where
Ho = (Lo (0)/n + 1/2 t)i:'(bnt - 4yy) Ln (43 /n) (E.59)

For a matrix A = {a;;} let |A| denote the maximum of the absolute

values of the elements A th§t is
[A] = max {]a;;}-
ie]
Then it follows that

3 - xxt -~ 3 - xxt -~
t§l(unt - W) L, (¢g)/n ¢ tEjl(unt - Uyt) |L, (¢)] /n
Since by Theorem (E.1) &, ——%—» ¢, then there exist an open rectangle

V and n, such that for some &> 0 and for all n > n,

PrU*{Hn €EV}>1- 4.

- a

Since |w,, - wag] < |9

os ns ~ Uxs| for s =1,2,3 . Hence w, €V .

Therefore with probability exceeding 1-é we have

rs

xxt 3 3 t
(o) | Sr§| s§ sup | L, (&)]

xxt ~
L, (@) ] € sup | L,

wEV Lvev
n 3 3 @ 1n( £(y;, @)

< X ¥ Y su I .
1=t r=l s=1 4, ey do. du, du,

By the results of Lemma E.1 we have

3 3
E {¥ X sup

} = Cp( m.
@y 'r=1 s=1 WEV

I63 In( £(y;, @)
du, du, du,

Hence by the WLLN

P

kg - n 3 3
b, (é)|/n <E % X sup /n ——=C, ¢

1=l r=1 S=IH €V

laa In( f(yl,U))
du, du_ e,
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Since v, . = Wy, —2 4 0 . ‘Therefore,
3 - xxt -~ P
t{:l(unt = H*t) Ln (Un)/n —_— 0 (E.60)

xx n
Let L, (4,) =_2|wi where W; is the 3x3 random matrix with (r,s)
1=

P1n(f(y . oy))
entry ' . Then by Lemma E.2 we have E(W;) = -I(«,) and

dur dus

by the WLLN for the vector case ( a matrix can be regarded as a

double-indexed vector) we get

(1/0) Lo (0y) —B— -I(uy) (E.61)
From (E.59) , (E.60) and (E.61) we get,

B, —— -I(4,) (E.62)

Now the result follows from (E.58) and (E.62).
[]
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APPENDIX F

Asymptotic Relative Efficiency and Simulation Programs

A. Asymptotic Relative Efficiency

1. Transformed normal model using John-Draper

@ INITIALIZE THE MODEL PARAHETER e

PITEF=2EROS(8,1); II=0; DO WHILE II < 4; II=II+1;

LAMDA= 1/4|1/3|1/2]1; L = LAMDA[II,.]; ARE = 0 ; JJ = 0;

DO WHILE JJ < 7; JJ =JJ +1; SIGMA = .25] .5] 1| 2| 3] 4] 5;

SIG = SIGMA [JJ,.]; C1 = 1/(SQRT(2*PI)); Al=SIG*L ; A2 = 2;

A3 = 1-1/L; Ad = 1/L;

@ EVALUATE EXPECTATIONS @

PROC MYF(X,A);

RETP((A[.,1]+A[.,2).*X) " (A[.,4)) .*EXP(-X"A[.,3])./A[.,3]))*C1; ENDP;
LB=0; UB=10; A=1"A1"A27A3; Y = INTSIMP(&MYF,LB,UB,A,1E-8);
PROC VF(X,R);
RETP(((A[.,1]+A[.,2].*X) "A[.,5)-A[.,1]) “A[.,3]) .*EXP(-X"A[.,3]./A[.,3]))
*C1; ENDP; LB=0; UB=10; A=1"A1"A2"A3"C4;

ZZ=INTSIMP (&VF,LB,UB,A,1E-8); 22=2%2Z; E2=(2*Y) "2;

AR= SIG"2/(ZZ*E2); ARE=ARE |AR;

ENDO;

PITEF=PITEF"ARE;

ENDO;

FORMAT/RZ 9,5;

PITEF;

END;
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2. Transformed contaminated normal models using John-Draper

@ INITIALIZE THE MODEL PARAMETER @

PITEF=ZEROS(8,1); P=.2; 'vi=1; v2=25; VY=(1-P) *V1+P*V2;

~e

SDY=SQRT (VY) ; VV=SQRT(V2); II =0
DO WHILE II < 4; II=II+1;
LAMDA=1/411/3|1/2]|1; L = LAMDA[II,.]: ARE=0; JJ=0;

DO WHILE JJ < T; JJ=JJ+1;  SIGMA = .25| .5| 1] 2] 3] 4] &;

SIG = SIGMA[JJ,.]*SDY; C1=1/ (SQRT (2*PI)); C2=S1G*1; €3=1-1/L;
C4=1/L; PROC MYF1(X,A);
RETP(A[.,2].*(A[.,1]+A[.,3].*X) “(A[.,5]) .*EXP (- (X.*A[.,6]) "A[.,4]./
A[..4]).*A[.,6]); ENDP;

LB=0; UB=15; A=1"C1°C2727C37SDY; Yi=

INTSIMP (&MYF1,LB,UB,A,1E-8);

PROC MYF2(X,A);
RETP(A[.,2].*(A[.,1]+A[.,3].*X) " (A[.,5]) .*EXP (- (X.*A[.,6]./A[.,7])"
A[.,4]./A[..4]) .*A[.,6]./A[.,7]); ENDP;

LB=0; UB=15; A=1"C17C2727C3"SDY"VV;

Y2=INTSIMP (&MYF2,LB,UB,A,1E-8); PROC VF1(X,A);
RETP(A[.,2).*((A[.,1]+A[.,3].*X) "A[.,6]-A[.,1]) "A[.,4] .*EXP (- (X.*A[., 7]
) “Al.,4]./AL.,4]) .*A[.,7]); ENDP; LB=0; UB=15;
A=1"C17C2727C3"C4"SDY; Z1=INTSIMP(&VF1,LB,UB,A,1E-8);

PROC VF2(X,A);

RETP(A[.,2] .*((A[.,1]+A[.,3].*X) "A[.,6]-A[.,1]) "A[.,4]

.*EXP (- (X.*A[.,7]/A[.,8]) "A[.,4]./A[.,4]) .*A[.,7]./A[.,8]); ENDP;
LB=0;  UB=15; A=1'c1'c2F2'c3'c4'snY'vv;

Z2=INTSIMP(&VF2,LB,UB,A,1E-8); 2Z=2*((1-P) *21+P*22) ;
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E2=(2* ((1-P) *Y1+P*Y2)) "2; AR= SI1G"2/(ZZ*E2); ARE=ARE [AR; ENDO;

PITEF=PITEF ARE; ENDO; FORMAT/RZ 9,5; PITEF; END;

3. Transformed Student' t model using John-Draper

@ INITIALIZE THE MODEL PARAMETER @
vv=10 20 |30; JJ=0; DO WHILE JJ < 3; JJ=JdJd+1; K=Vv([jj,1]:
B=SQRT (K/ (K-2));

@EVALUATION OF THE GAMMA FUNCTION INVOLVED IN THE CONSTANT®@

F1=K/2; IF (F1-FLOOR(F1)) > O; NUM=((K-1)/2)!; DEN=1;
DO WHILE F1 > 1 ; F1=F1-1; DEN=DEN*F1; ENDO;

R=NUM/(DEN*SQRT(PI));  ELSE;  DEN=(K/2-1)!;  F2=(K+1)/2;
NUM=1; DO WHILE F2 > 1; :F2=F2—1; NUM=NUM*F2;  ENDO;
R=NUM*SQRT (PI) /DEN;  ENDIF;  C4=-.5%(K+1);  CC=1/SQRT(K*PI);
PITEF=ZEROS(8.1);  II=0; DO WHILE II < 4;  II=IIs1;

LAMDA = .25| 1/3| .5| 1;  L=LAMDA[II,.];  ARE=0;  KK=0;

DO WHILE RK < 7;  KK=KRK+1;  SIGMA = .25| .5| 1| 2| 3| 4| 5;
SIG=SIGMA[KK,1]*B; Cl=L*SIG;  C2=1/L;  C3=1-1/L;

PROC MYF(X,A);

RETP ((A[.,11+A[.,2].*X) "A[.,3].*(A[.,1]+(X.*A[., 7)) "A[.,6]/A[.,4])"
AL.,S].*AL.,7]);  ENDP;  LB=0; UB=50;  A=1"C1°C3"K™C4"27C5;
Y= INTSIMP (SMYF,LB,UB,A,1E-8);  PROC VF(X,A);

RETP ( ((A[.,11+A[.,2].*A) "A[.,61-A[.,11) “A[., 7] .*(A[.,1]+(X.*A[.,8])"
A[.,71/A[.,41)"A[.,5] .*A[.,8]);  ENDP;  LB=0;  UB=50;
A=1°C1-C3"K-C4"C2-2"B;  ZZ=INTSIMP(&VF,LB,UB,A,1E-8);
22=2%CC*R*2Z;  E2=(2*CC*R*Y)"2;  AR= SIG2/(ZZ*E2);  ARE=ARE |AR;

ENDO; PITEF=PITEF ARE; ENDO; FORMAT/RZ 9,5; PITEF; ENDO; END;
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4. Transformed normal model using the two-domain family

LAMDA= 1/4| 1/3| 1/2} 3/4] 1;

III=0; DO WHILE III ¢ 5; ' III=III+1; L2=LAMDA[III,.];
PIT1=2EROS(9,1); PIT2=ZEROS(9,1); II=0; DO WHILE II < 5;
II=II+1; L1=LAMDA[II,.]; ARE1=0; ARE2=0; FORMAT/RZ 10,6; J=0;
DO WHILE J < 8; J=J+1; SIGMA= .1] .25] .5] 1} 2| 3] 4] 5:
SIG=SIGMA[J,.]; C1=SQRT(2*PI); Al=1;  A21=L1*SIG;
A22=L2*SIG; A3=2;  Adl=1-1/11; A42=1-1/12; A51=1/L1;
A52=1/L2;

A=A1"A21"A3"A41"A427A227A517A52; LB=0; UB=10;

PROC MM1(X,A);

RETP(((A[.,1]+A[.,2].%X) "A[.,4]+(A[.,1]+A[.,6] .*X) “A[.,5]) .*
EXP(~-X"A[.,3]./A[.,3])); ENDP;

GG=INTSIMP (&MM1,LB,UB,A,1E-8)/C1;

PROC MY2(X,A);

RETP((((A[.,1]+A[.,2].*X) "A[.,7]-A[.,1])-((A[.,1]+A[.,6].%*X)"
A[.,8]-A[.,1])).*EXP(-X"A[.,3]./A[.,3])); ENDP;

Y1=INTSIMP (&MY2,LB,UB,A,1E-8)/Cl;  CLEAR X;

PROC MY3(X,A);
RETP((((A[.,1]+A[.,2].*X) "A[.,7]-A[.,1]) "A[.,3]+((A[.,1]+A[.,6].%X)"
A[.,8]-A[.,1]) "A[.,3]) .*EXP(-X"A[.,3]./A[..3])); ENDP;

Y2=INTSIMP (&MY3,LB,UB,A,1E-8)/C1;

AR1= SIG"2/((Y2-(Y1"2))*(G6"2)):; ARE1=ARE1 |AR1; LB=-10; UB=0;
PROC FF1(X,A);

RETP(X.*(A[.,1]-A[.,2].*X) .*LN(A[.,1]-A[.,2] .*X) . *EXP(-X"A[.,3]./

A[.,3])); ENDP; Z1=INTSIMP(&FF1,LB,UB,A,1E-8)/C1; CLEAR X;



PROC FF3(X,A);

RETP (X.*(A[.,1]-A[.,2] .*X) .*(LN(A[.,1]-A[.,2].#*X)) "A[.,3]
.*EXP(-X"A[.,3]./A[.,3])): . ENDP;

Z3=INTSIMP (&FF3,LB,UB,A,1E-8) /Cl; CLEAR X;

PROC FF5(X,A);
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RETP(((A[.,1]-A[.,2].*X) .*LN(A([.,1]-A[.,2] .*X)+A[.,2].*X) "A[., 3] .*EXP (-

X“A[.,3]./A[.,3]1)); ENDP;

Z5=INTSIMP (&FF5,LB,UB,A,1E-8) /Cl1; CLEAR X;

PROC SS5(X,A):;
RETP(((A[.,I]-A[.,Z].*X).*LN(A[.,I]-A[.,Z].*X)+A[.,2].*X)
.*EXP(-X"A[.,3]./A[.,3])): ‘ENDP;
S1=-INTSIMP(&SS5,LB,UB,A,1E-8) /(C1*L1°2);
I11=1/(SIG*L1"3) *(~23+2*Z1+L1*SIG) +25/ (L1 4*SI1G"2);
I113=2/(SIG*L1) “2*Z1+1/(SIG*L1);

A=A1"A227A3; LB=0; UB=10;

PROC FF10(X,A); RETP(X.*(A[.,1]+A[.,2].*X) .*LN(A[.,1]+A[.,2].*X)
.*EXP(-X"A[.,3]./A[.,3])): ENDP;
Z10=INTSIMP(&FF10,LB,UB,A,1E-8)/C1; CLEAR X;

PROC FF12(X,A);
RETP(X.*(A[.,1]+A[.,2] .*X) .*(LN(A[.,1]+A[.,2].%*X)) "A[.,3]
.*EXP(-X"A[.,3]./A[.,3])); ENDP;
Z12=INTSIMP(&FF12,LB,UB,A,1E-8) /Cl1; CLEAR X;

PROC FF14(X,A);

RETP(((A[.,1]+A[.,2].*X) .*LN(A[.,1]+A[.,2].*X)-A[.,2] .*X) "A[.,3] .*EXP(-

X“al.,31./A(.,30)); ENDP;

Z14=INTSIMP (&FF14,LB,UB,A,1E-8)/C1;



PROC SS14(X,A);

RETP ( ((A[.,1]+A[.,2).*X) .*LN(A[.,1]+A[., 2] .*X)-A[., 2] .*X)
.*EXP(-X"A[.,3]./A[..3])); ENDP;

S2=INTSIMP (&SS14,LB,UB,A,1E-8)/(C1*L2"2) ;
122=1/(SIG*L2"3)*(Z12-2*210+SIG*L2) +Z14/ (L2 4*SIG"2) ;

123=-2/ (SIG*L2) *2%210+1/ (SIG*L2) ;

133=2/S16"2; S=S1|s2; I=(I11707I13) |(0"I227123) |(I137I237133);
INVI=INV(I); ILL= INVI[1:2,1:2]; IS=ILL*S; CLEAR X,A;
A4=SIG;  AS51=IS[1,1]1/SIG°2;  AS52=IS[2,1]1/SIG"2; A61=SIG/L1°2;
A62=SIG/L2"2; A71=SIG"2/L1;  A72=SIG"2/L2; A81=1IS[1,1]/L1;
A82=1S[2,1]/L2; LB=0; UB=10;
A=A1"A22"A3"A4"A52"A62"A72"A82"A21"A51"A61°AT17A81; PROC UU1(X,R);
RETP ((A[.,4] .*X-A[.,5).*(A[.,6].*X.*(A[.,1]+A[.,2].*X) .*LN(A[., 1] +A[.,2
].*X)-A[.,7].*X"A[.,3])+A[.,8] .*LN(A[.,1]1+A[.,2] .*X)) "A[.,3] .*EXP(-X"
A[.,3)./A0.,3])): ENDP;

U1=INTSIMP(&UU1,LB,UB,A,1E-8) /C1; LB=-10; UB=0; PROC UU3(X,A);
RETP ((A[.,4] .*X+a[.,10]).*(a[.,11]) .*x.*(a[.,1]-a[.,9].*x) .*1n(a[.,1]-
al.,9].*x)+a[.,12] .*x"a[.,3])+a[.,13] .*In(a[.,1]-a[.,9].*X)) “a[.,3]
.*EXP(-X"A[.,3]1./A[..31)): ENDP;

U3=INTSIMP (&UU3,LB,UB,A,1E-8)/C1; AR2=(U1+U3) /SIG"2;

ARE2=ARE2 |AR2;  ENDO; PIT1=PIT1"AREl; PIT2=PIT2"ARE2; ENDO;
FORMAT/RZ 8,4; PRINT" LAMDA2 = " L2;

PRINT" EFFICIENCY OF ORIGINAL TO KNOWN TRANSF. "; LAMDA';

SSS=0 |SIGMA; SSS”PIT1;

PRINT" EFF. OF KNOWN TRANF. TO UNKNOWN TRANSF. " ; LAMDA';
SSS”PIT2; PRINT " EFF. OF ORIG TO UNKNOWN TRANSF. ";

LAMDA'; SSS”(PIT1.*PIT2);  ENDO; END;
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B. SIMULATION

1. Program for evaluating the MLE of A under tHe John-Draper family

and power of different test statistics from symmetric models

@ INITIALIZE THE MODEL PARAMETERS @

SIGMA2= ;  AA=0; DO WHILE AA ¢ 3; AA=AA+l; NS= 10| 20| 50;
N=NS[AA,1]; NNK= 250| 250| 100; NK=NNK[AA,1]; L=
SIG=SQRT(SIGMA2);  UU=-.2; | DO WHILE UU < 1.4; UU=UU+.2;
MU=SIG*UU; S=9831815; IF MU==0; NSIN=30000; ELSE; NSIN=5000;
ENDIF; KSIM=NSIM/NK; LAM1=0; LAM2=0; ISIM=0; OF01=0;
OF05=0; TFO01=0; TFO05=0; K2=0; TR11501=0; TR11S05=0; TR21501=0;
TR21505=0; TTR11S01=0; TTR11S05=0; TTR21S01=0; TTR21505=0;

DO WHILE ISIM < KSINM;
GET THE DATA FROM THE GENERATE THE DATA PART BELOW

J=0; DO WHILE J<NK; J=J+1; Y=YY[.,J]; Y=SORTC(Y,1);
@ TEST AND SIG LEVEL IN ORIGI&AL SCALE @
YB=MEANC(Y);  TO=SQRT(N)*YB/STDC(Y); SLO=CDFTC(TO, (N-1));
IF SLO<.01; OF01=0F01+1; ENDIF; IF SLO<.05; OF05=0F05+1;
ENDIF;
R=.1*N; R1=R+1; NR=N-R; ﬂTR=Y[R1:NR,1]; MTR=MEANC (YTR) ;
VTR=(SUMC ( (YTR-MTR) “2) +R* (YTR[1,1]-MTR) " 2+R* (YTR[ (NR-R) ,1]-MTR) "2)/
(NR-R1); TTRH=HTR*SQRT((NRLR)/VTR); SLTR11S=CDFTC(TTRM, (NR-R1));
IF SLTR11S¢.01; TR11501=TR11S01+1; ENDIF;
IF SLTR11S<.05; TR11S05=TR11S05+1; ENDIF;

i

R=.2*N; R1=R+1; NR=N—R;‘ YTR=Y[R1:NR,1]; MTR=MEANC (YTR) ;
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VTR=(SUMC ( (YTR-MTR) “2) +R* (YTR[1,1]-MTR) “2+R*(YTR [ (NR-R) ,1]-MTR) "2)/
(NR-R1); TTRM=MTR*SQRT ( (NR-R) /VTR) ; SLTR21S=CDFTC(TTRM, (NR-R1));
IF SLTR21S<.01; TR21$01=TR21$Q1+1; ENDIF;

IF SLTR21S<.05; TR21S05=TR21S05+1; ENDIF;

@ ESTIMATION OF LAMDA USING HbDULE 10 (NLSYS) @

Z=ABS(Y)+1; SGN=ABS(Y)./Y; LNZ=LN(Z):;

CONVTOL=0; PRNTIT=0; PRNTOUT=0; FNAME=&F ; GRADNAME=&GRAD1;
JCco=0; X0=.5; VF=ZEROS(111); PROC F(X); LOCAL X1;
X1=X[1,1};

VF[1,1]=-N*(((Z"X1-1)'( Z°X1.*LNZ-(Z2°X1-1)/X1))/(Z2°X1~-1) ' (Z2°X1-1))
+SUMC (LNZ) ; RETP( VF ); ENDP;

X1=NLSYS (FNAME, X0, JC0,CONVTOL, PRNTIT, PRNTOUT) ;

LAM1=LAM1+(X1-L); LAH2=LAH2+(XI—L)'2;

@ TRANSFORMED MODEL USING THE}HLE Xl @

TV=SGN.* (Z°X1-1)/X1; TT=SQRT (N) *MEANC (TV) /STDC(TV) ;
SLT=CDFTC(TT, (N-1)); IF SLT<.01; TF01=TFO01+1; ENDIF;

IF SLT<.05; TF05=TF05+1; ENDIF; TV=SORTC(TV,1);

R=.1*N; R1=R+1; NR=N-R; ' TVTR=TV[R1:NR,1]; MTR=MEANC (TVTR) ;
VTR=(SUMC ( (TVTR-MTR) “2) +R* (TVTR[1,1]-MTR) “2+R* (TVTR[ (NR-R) ,1] -MTR) "2)
/ (NR-R1) ; TTRM=MTR*SQRT ( (NR-R) /VTR) ; SLTR11S=CDFTC (TTRM, (NR-R1) ) ;
IF SLTR11S<.01; TTR11S01=TTR11S01+1; ENDIF;

IF SLTR11S<.05; TTR11805=TFR11805+1; ENDIF;
R=.2*N;R1=R+1;NR=N-R; TVTR=TV[R1:NR,1]; MTR=MEANC (TVTR):
VTR=(SUHC((TVTR—HTR)‘2)+R*(TVTR[1,1]—HTR)'2+R*(TVTR[(NR—R),1]—HTR)'2)
/ (NR-R1) ; TTRM=MTR*SQRT ( (NR-R) /VTR) ; SLTR21S=CDFTC (TTRM, (NR-R1) ) ;
IF SLTR21S<.01; TTR21S01=TTR21S01+1; ENDIF; IF SLTR21S5¢.05;

TTR21S05=TTR21505+1; ENDIF; ENDO; ISIM=ISIM+1; ENDO;
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PRINT " NUMBER OF SAMPLES WITH SL < .05 ";

PRINT " ORIG TRAN OR.1TR OR.2TR T.1TR T.2TR ";
OFOS'TFOS'TRllSOS'TR21SOS'TT&IISOS'TTRZISOS7

PRINT " NUMBER OF SAMPLES WITH SL < .01 ";
OFOl'TFOI'TRIISOI'TRZISOI'TTRilSOl'TTRZISOI;

PRINT "BIAS

" LAM1/NSINM;

PRINT " MSE = " LAM2/NSIN; ENDO; ENDO; END;

@ GENERATE THE DATA @

TRANSFORMED NORMAL DATA

A=RNDnS (NK,N,S) '; SGN=ABS(A)./A; A=ABS(A);

YY=MU+SGN.*(( 1+SIG*L*A) " (1/L)-1);

STUDENT'S T DATA WITH NU D.F.:

!
NU= ; VAR = NU/(NU-2); SIG=SQRT(VAR):; A=RNDNS (NU+1,N*NK, S) ;
Al=A[1,.]:; A2=A[2:NU+1,.]:; A3=SUMC(A2°2)/NU; T=Al'./SQRT(A3):;

J=0; DO WHILE J<NK; JY=0; K1=0; Y=MU+T [J*N+1: (J+1)*N,1];

CONTAMINATED NORMAL DATA WITH CONTAMINATION RATIO=P , VARIANCE = SIGMA2

SIGMA2= ; P=; VAR= (1-P) + P*SIGMA2; SIG=SQRT(VAR);
A=RNDnS (nK,N,S)'; B=RNDUS (NK,N,S) ': J=0; DO WHILE J < NK;
J=J+1; JY=0; K1=0; Yi=A[.,J]; Ul=B[.,J]: NN=0;

DO WHILE NN < N; NN=NN+1; IF U1[NN,1])< P;
Y1[NN,1]=SQRT(SIGMA2) *Y1[NN,1]; ENDIF; ENDO;

Y1=ABS (Y1) ./Y1l.*((1+L*ABS(yl)) " (1/L)-1); Y=MU+Y1; Y=SORTC(Y,1);

2. Program for evaluating the MLE of A, and A, of the two-domain

family and power of different test statistics from skewed models

SIG=1; N=20; NK=250;
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L1= ; L2= ; AAA=L1|L2; @ INITIALIZE THE MODEL PARAMETERS @

UuU=-.2; Ul=1; U2=.2; DO WHILE UU < Ul; UuU=UU+U2;

MU=SIG*UU;

5§=9831815; IF MU==0; NSIM=30000; ELSE; NSIM=5000; ENDIF;

KSIM=NSIM/NK; LAM1=0; LAH2=O; LAM11=0; LAM21=0;
ISIM=0; OF05=0; TF05=0;  LHSTF05=0 ; LHST1T05=0; TTR105=0;
TTR205=0; LHST2T05=0; CleO; CN2=0; Fri1=0; F2=0; F3i=0;
F4=0; F5=0; F6=0; F7=O;‘ F8=0; F9=0; F10=0; F11=0;
F12=0; F13=0; F14=0; F15=0; F16=0; F17=0; F18=0;

DO WHILE ISIMCKSINM;
GET DATA FROM GENERATE DATA PART

@ TEST AND SIG LEVEL IN ORIGINAL SCALE @

YB=MEANC(Y);  TO=SQRT(N)*YB/STDC(Y); SLO=CDFTC(TO, (N-1));

IF SLO<.05; OF05=0F05+1; ENDIF;

@ ESTIMATION OF LAMDA USING MODULE 10 (NLSYS) @

Y11=Y.*(Y.< 0); K1=SUMC(Y11./Y);

Y21=Y.*(Y.> 0); K2=SUMC(Y21./Y) :

IF K1>=17; CN1=CN1+l; LHSTFOS5=LHSTF05+1; LAST1TO5=LHST1TO5+1;
LHST2T05=LHEST2TO05+1; GOTO ST;

ELSEIF K2 >=17; TFO05=TF05+1; TTR105=TTR105+1; TTR205=TTR205+1;
CN2=CN2+1; GOTO ST; ENDIF;

Y1=1-Y11; Y2=Y21+1; LNY1=LN(Y1); LNY2=LN(Y2) ;

CONVTOL=0; PRNTIT=0; PRNTOUT=0; FNAME=&F; GRADNAME=&GRAD1;

JC0=0;X0=.4|.4; VF=ZEROS(2,1); PROC F(X): LOCAL X1,X2;

X1=X[1,1]; X2=X{2,1]:

VF{1,1]=N*((1-Y1°X1) "' ((Y1"X1) .*LNY1+(1-Y1°X1)/X1)/(X1°2))/((1-Y1°X1)"
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(1-Y1°X1) /(X1°2) +(Y2"X2-1) ' (Y2"X2-1) /(X2"2) ) +SUMC (LNY1) ;
v£[2,1]=-N*((Y2"X2-1) ' ((Y2"X2) .*LNY2- (Y2 X2-1) /X2)/(X2°2))/((1-Y1"X1)"'
(1-Y1°X1)/(X1°2) +(¥2°X2-1) ' (Y2"X2-1)/ (X2"2) ) +SUMC (LNY2) ;
RETP( VF ); ENDP; X1=NLSYS$ (FNAME,XO0,JCO,CONVTOL,PRNTIT, PRNTOUT) ;
L1=X1[1,1]; L2=X1[2,1]; £AH1=LAH1+L1-AAA[1,1];‘
LAM2=LAM2+L2-AAA[2,1];
LAM11=LAM11 + (L1-AAA[1,1])°2; LAM21=LAM21+(L2-AAA[2,1]) "2;
YiL=Y1'L1; Y2L=Y2"L2; YITL(I—YIL)/LI; Y2T=(Y2L-1) /L2;
TV=(Y1T+Y2T) ;
@ TRANSFORMED MODEL USING THE MLE X1 X2 @
TT=SQRT(N)*HEANC(TV)/STDC(TV); SLT=CDFTC (TT, (N-1));
LHSSL=1-CDFTC(TT, (N-1)); IF SLT<.05; TF05=TFO05+1; ENDIF;
TV=SORTC(TV,1); IF MU > 0; GOTO NEXTST; ENDIF;
IF LHSSL<.05; Lnswros=Lnsrfos+1; ENDIF;
IF TT<-4; Frl=Fril+l; ELSEIF TT<-3.5; F2=F2+1; ELSEIF TT(-3;
F3=F3+1; ELSEIF TT<-2.5; F4=F4+1; ELSEIF TT<-2; F5=F5+1; ELSEIF
TT<-1.5; F6=F6+1; ELSEIF TT<-1; F7=F7+1; ELSEIF TT(-.5; F8=F8+1;
ELSEIF TT < 0; F9=F9+1; ELSEIF TT(.5; F10=F10+1; ELSEIF TT(1;
F11=F11+1; ELSEIF TT< 1.5; F12=F12+1; ELSEIF TT< 2; F13=F13+1;
ELSEIF TTC 2.5; F14=F14+1; ELSEIF TTC 3; F15=F15+1; ELSEIF TT(3.5;
F16=F16+1; ELSEIF TT< 4; F17=F17+1; ELSE; F18=F18+1; ENDIF;
SSA=SEQA(-4,.5,18);  NEXTST:;
R=.1*N;R1=R+1;NR=N-R; TVTR=TV[R1:NR,1]; MTR=MEANC(TVTR);
VTR=(SUMC ( (TVTR-MTR) "2) +R* (TVTR[1,1]-MTR) "2+R* (TVTR [ (NR-R) , 1] -MTR) “2)
/ (NR-R1) ; TTRM=MTR*SQRT ( (NR-R) /VTR) ; SLTR115=CDFTC (TTRM, (NR-R1) ) ;
IF SLTR115¢.05; TTR105=TTR105+1; ENDIF;

LHSSL=1-CDFTC (TTRM, (NR-R1) ) ; IF LHSSL<.05; LHST1TO5=LHST1TO5+1;



177

ENDIF; R=.2*N;R1=R+1;NR=N-R; TVTR=TV[R1:NR,1]; MTR=MEANC(TVTR):

VTR=(SUMC ( (TVTR-MTR) “2) +R* (TVTR[1,1] -MTR) “2+R* (TVTR [ (NR-R) ,1]-MTR) " 2)

/(NR-R1);  TTRM=MTR*SQRT( (NR<R)/VTR); SLTR21S=CDFTC (TTRM, (NR-R1)) ;

IF SLTR21S¢.05; TTR205=TTR205+1; ENDIF;

LHSSL=1-CDFTC (TTRN, (NR-R1)) ; | IF LESSLC.05; LHST2TO5=LHST2TOS+1;

ENDIF; ST:; ENDO; stp:; isim=isinm+1; ENDO;

PRINT " NUMBER OF SAMPLES WITH SL ¢ .05 ";

PRINT " ORIG TRAN | T.1TR T.2TR ";
(OF05~TFO5 TTR105 TTR205) /NSIM;

PRINT " NUMBER OF SAMPLES NOT REJECTED BY SIGN TEST = " CN1;

PRINT " NUMBER OF SAMPLES REJECTED BY SIGN TEST = " CN2;

PRINT "BIAS1 MSE1l= " ; (LAM1°LAM11)/NSIN;

PRINT "BIAS2 MSE2= " ; (LAM2"LAM21)/NSIN;

IF MU > 0; GOTO NST; ENDIF;

PRINT " SIG LEVEL UNDER LHS. TEST " ; LHSTF05 LHST1TO05 LHST2TO0S;

PRINT " FREQUENCY DIST OF THE TRANS. T-STAT. ";

FREQ=(Frl |F2 |F3 |F4 |F5 |F6 |[F7 |F8 |[F9 |[F10 |[F11 |F12 |F13 |F14 |[F15 |F16 [F17 |[F18)/

NSIM; CUM=ZEROS(18,1); CUMF=0;K=0;

DO WHILE K(18; K=K+1; CUMF=CUMF+FREQ[K,1]; CUM[K,1]=CUMF;ENDO;

SSA"FREQ"CUM; NST:; ENDO; ENDO; END;

@ GENERATE THE DATA @

TRANSFORMED NORMAL DATA

A=RNDnS (nK,N,S)';  J=0;

DO WHILE J< NK; J=J+1; JY=0; KK1=0;
EPS=A[.,J];

L1=AAA[1,1]; L2=AAA[2,1];

EPS1=MU+1-(1-L1*SIG*EPS.*(EPS.<=0)) " (1/11);
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EPS2=MU-1+(1+L2*SIG*EPS.*(EPS.>0)) " (1/12);

Y=EPS1+4EPS2;

EXTREME VALUE DATA

MED=LN(-LN(.5)); SIG=B*PI/SQRT(6);
A=LN(-LN(1-RNDUS (NK,N,S)'));

J=0;

DO WHILE J<NK; J=J+1;

Y=MU+A[.,J]-MED;

GAMA WITH 5 D.F. DATA

=~LN(1-RNDUS (NK,N, S) ') -LN (1-RNDUS (NK,N,S) ') -LN (1-RNDUS (NK,N,S) ')
~LN(1-RNDUS (NK,N,S) ') -LN (1-RNDUS (NK,N,S) ') ;

Y=-MU+A[.,J]-MED;



