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In the problem of testing the median using a random sample from a

certain distribution, and if no other parametric family is suggested,

the t-test is known to be the optimal procedure when this distribution

is normal. If the sample appears to be non-normal, one has the choice

either to consider a non-parametric approach or to try to correct for

non-normality before applying the t-test.

In this thesis we investigate the effect of applying certain power

transformations as an action to correct for non-normality before

applying the t-test. Also we investigate the effect of applying a

power transformation then trimming a certain proportion from the data

on each tail as a double action to correct for non-normality. This

problem is first considered by Doksum and Wong (1983), who apply the

Box-Cox power transformations to positive, right-skewed data when

testing for the equality of distributions of two independent samples.

In the present work we provide results for the one-sample case

using two alternatives to the Box-Cox power family which are applicable

to all data sets. Whenever it can be assumed that the data is a random



sample from a symmetric distribution with heavy tails, it is shown that

the John-Draper family of modtlus power transformations, with the

transformation parameter being positive and smaller than 1 , is

appropriate to correct for non-normality and the t-test based on the

transformed data is asymptotically more efficient and has better power

properties than the t-test based on the data in its original scale.

-When the data is thought to have a skewed distribution and can assume

negative as well as positive values, a new family of transformations,

referred to as the two-domain family, is introduced. It is shown that

the t-test based on the data after applying this new transformation is

also asymptotically more efficient and has better power properties than

the t-test in the original scale. A simulation study shows that

trimming a certain proportion on each tail of the data transformed by

one of the above two transformations then applying the t-test to the

trimmed samples yields a considerable gain in power compared to the

t-test in the original scale.
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TESTING FOR LOCATION AFTER TRANSFORMATION TO NORMALITY

1. INTRODUCTION

Let Y1, Y2, ..., Yo be a sample of independently and identically

distributed random variables with distribution function F . The

problem we are concerned about in this thesis is the one of testing a

statistical hypothesis concerning the median of F . If F is assumed

to be normal, then the t-test is the optimal testing procedure to

consider, since it is the uniformly most powerful unbiased test. If F

is not normal but has a symmetric distribution with a finite variance,

the Central Limit Theorem will then insure that the t-statistic for

testing the median (= mean) i$ asymptotically valid in the sense that

it asymptotically gives the correct level and power. However, in this

situation many researchers have shown that if F has heavier tails

than a normal distribution, the t-test tends to be conservative for

small samples and hence has poor power properties compared to the

normal situation. Also, under the same situation it is known from the

literature that, even asymptotically, the t-test is not as efficient as

other robust or nonparametric procedures.

From the discussion above we conclude that the optimality of the

t-test procedure is restricted to the situation where the data are

approximately normally distributed. Therefore if one suspects that a

set of data departs from normality, one might consider some procedure

that corrects for such departure and brings the data into approximate
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normality. Two common procedures that can be considered in such cases

are transforming the data and trimming a certain proportion from the

extreme values of the data on each side. These two procedures can be

combined by first transforming the data then trimming the extreme

observations.

Doksum and Wong (1983) consider the problem of testing equality of

the means of two independent samples from distributions that are skewed

to the right. They only consider positive data sets. To each data set

they apply a Box-Cox power transformation and then trim the extreme

observations on each side. They investigate the efficiency and power

of the t-test statistic based on such corrected data relative to the

t-test in the original scale. In a technical report, Doksum and Wong

(1980) report that their results are valid for testing any statement

about the means of more than two populations as long as this statement

is in the form of a contrast. On the other hand they state that their

asymptotic results are not valid for the single-sample case.

In the present work, we go along the lines of Doksum and Wong

(1983) with two alternative families of power transformations that may

be used instead of the Box-Cox transformation in cases where the latter

does not work well. These two families are the John-Draper family of

modulus transformations, which is suitable for dealing with heavy

tailed symmetric distributions, and a new family of transformations

which we refer to as the two-domain family and which is suitable for

dealing with nonsymmetric data by dealing differently with each tail of

the distribution of the data. The main advantage of these two

alternative families is that they are applicable to all data sets which

may assume negative as well as positive values. Also these two
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families provide asymptotic results for the one-sample problem.

This thesis contains both asymptotic and simulation results. For

the asymptotic results, expressions of Pitman's asymptotic relative

efficiency of the transformed t-test relative to the t-test without

transformation are derived under the John-Draper family for symmetric

models and under the two-domain family for skewed models. These

expressions include expectations that cannot be evaluated analytically,

and so numerical integration techniques are used to evaluate them. It

is shown that the transformed t-test using consistent estimators of the

transformation parameters is asymptotically much more efficient than

the t-test in the original scale. The asymptotic results concerning

the two-domain family are derived using the normal maximum likelihood

estimators of the transformation parameters. Also throughout the

simulation study the normal maximum likelihood procedure is used to

estimate the transformation parameters. We include in the thesis a

proof of the consistency and asymptotic normality of these estimators

under the two-domain family; similar results for the John-Draper family

follow as special cases. For the simulation results under symmetric

models we simulated the level and power for six test statistics. These

are: the t-test in the original scale of the data, the t-test after

transformation, the t-tests from data trimmed by .10 and .20 on each

tail and the t-tests from data that is first transformed then trimmed

by .10 and .20 on each tail. These percentages of trimming are the

same as those considered by Doksum and Wong (1983). For skewed models

we simulated the level and power for the first four test statistics

mentioned above. The simulation results show that, under the normal

model, the transformed t-test has almost the same level and power as
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the t-test in the original scale (the uniformly most powerful unbiased

test). Under this model the trimmed tests, whether transformed or not,

cannot compete with the two untrimmed tests. Also, the simulation

results show that under some heavy-tailed distributions the transformed

t-test is more powerful than the t-test in the original scale, which

supports the asymptotic efficiency results. Under such non-normal

distributions it is always the case in our simulations that the trimmed

t-tests are more powerful than the two untrimmed tests. In some

situations the difference in simulated powers between the trimmed tests

and the transformed then trimmed tests is slight and in some other

situations there is a considerable difference in favor of the

transformed then trimmed tests.

The thesis, besides this introduction, contains four other

chapters and six appendices.

In Chapter 2 we discuss some of the testing procedures appropriate

for testing a location parameter. We also discuss four families of

transformations: the Box-Cox family of power transformations and its

effect in removing skewness from right-skewed positive data; the

shifted Box-Cox power family and the problem of estimating the shift

parameter; the John-Draper family of modulus transformations and its

effect on symmetric heavy-tailed data; and a new family of

transformations called the two-domain family. The chapter also

includes a discussion about the effect of using a data-based estimator

of the transformation parameter on subsequent analysis. The chapter is

concluded with a brief review of the work of Doksum and Wong (1983).

In Chapter 3 we derive the asymptotic relative efficiency under

symmetric models for the t-test in the original scale relative to the
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transformed t-test, using the John-Draper transformation and a

consistent estimator of the transformation parameter. This includes

proving that both of these two tests are Pitman regular. The

definition of a Pitman regular test statistic and the derivation of

Pitman's asymptotic relative efficiency under a general setting

constitute the material of Appendix B. In this chapter and the next

one, the transformed t-test assuming the transformation is known, is

considered to be the basic test to which we relate the asymptotic

results. This means that we first derive the asymptotic relative

efficiency of the t-test in the original scale relative to the basic

test and then we show that the asymptotic relative efficiency of the

transformed t-test using a consistent estimator of the transformation

parameter relative to the basic test is one. We give proofs of the

main required results in the body of the chapter and proofs of

intermediate results are given in Appendix C . Also the chapter

includes some tables of asymptotic relative efficiency under some

transformed models.

In Chapter 4 we go through the main lines of Chapter 3 with skewed

instead of symmetric models and the two-domain transformation instead

of the John-Draper transformation. The results of Chapter 4 are not as

general as those of Chapter 3. The results of Chapter 3 are valid

under the situation where there exists a transformation that can

transform the data to a symmetric model. The results of Chapter 4 are

restricted to the situation where there exists a transformation that

can transform the data into a normal model. Arguments similar to those

given in this chapter would be needed for each alternative to the

normal model. On the other hand it is the transformation to normality
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that is of most interest when the problem is to test the mean or the

median of a certain distribution. As in Chapter 3, some of the proofs

are given in the body of the chapter and the rest are given in Appendix

D. Also in this chapter we rely on the material of Appendix E which

covers the consistency and asymptotic normality of the maximum

likelihood estimators of the transformation parameters of the

two-domain family.

In Chapter 5 we discuss the simulation study. The chapter

includes tables of the simulated power and level under different

symmetric and skewed models. A list of the programs used in simulating

the power under different models is given in Appendix F, which also

contains the programs that calculate the asymptotic relative

efficiencies of both Chapters 3 and 4.

Appendix A contains some facts and theorems about convergence in

probability and convergence in law which are frequently used in

Chapters 3 and 4 with or without reference to their places in the

appendix.
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2. HYPOTHESIS TESTING OF LOCATION AFTER TRANSFORMATION

Let YI,Y2,...,Yn be a random sample with a distribution function

0,,
where 0 denotes the median of Y and r is a scale parameter.

In the problem of testing the null hypothesis Ho: 9 = 0 against the

alternative HI: 8 > 00 one can either consider a nonparametric

approach where no distributional assumptions are required or a

parametric approach where some underlying model should be assumed.

Under the parametric approach if the normality assumption can be made,

then the t-test is the uniformly most powerful unbiased test for

testing the above hypothesis. On the other hand, if the data suggest

some sort of departure from normality, and if no other parametric model

is suggested, it may be recommended to consider some procedure to

correct for the non-normality of the data before calculating the

t-statistic. To determine what procedure should be considered to

correct for the non-normality we distinguish between two types of

departures from normality. In the first type, while most of the data

seem to be from a normal model, a few outlying observations exist on

one or both tails. In this case trimming a certain proportion from the

smallest and/or the largest observations will be the appropriate action

to correct for the non-normality. In the second type, the whole data

set may indicate departure from normality, such as when the

distribution has heavier tails than a normal or the distribution is

skewed. A power transformation may be recommended to correct for this

type of departure. Also, there may be cases in which both trimming

and transforming should be considered together.

In Section 2.1 we discuss the properties of the t-test and the
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consequences of applying the t-test to non-normal data. Also we

introduce the trimmed t-test. In Section 2.2 we discuss families of

power transformations, their properties and their effects on the

distribution of data. The families we consider are the Box-Cox and the

shifted Box-Cox families, the family of modulus power transformations

(John-Draper family) and a new family of transformations which we call

the two-domain family. In Section 2.3 we discuss the problem of using

data-based estimators of the transformation parameters on subsequent

analysis. In Section 2.4 we review the work of Doksum and Wong (1983)

who were the first to consider the t-test after applying the Box-Cox

power family.

2.1 Procedures for Testing a Location Parameter and their Properties

In this section we discuss the t-test and the trimmed t-test

procedures for testing

Ho: 0 = 00 against HI: 0 > 00 , (2.1.1)

with emphasis on the consequences of using the t-test when the data are

actually not normally distributed.

2.1.1 The t-test

The t-test statistic for testing the null hypothesis in (2.1.1) is

defined as

t =4 n (Y- 00 ) / ry (2.1.2)

n . n

where i = (1 /n) E Y. and 02 = E (Y. i )2/(n-1) . If Y is

i=1 1 Y i=1 1

distributed as N(0, op , then Y is distributed as N(0, q/n) ,

(n-1);2/0.2 is distributed as X2(n -1) , and Y and /2 are
Y
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independent. It follows that t has a noncentral t-distribution with

n-1 degrees of freedom and noncentrality parameter ,J n (0 00)/ ,,

which is zero if and only if H0 is true. Under the above setting the

test procedure that rejects H0 for values of t larger than the

(1-6)10096 percentile of the t-distribution with n-1 degrees of

freedom is the uniformly most powerful unbiased level-a test.

Although normality is an appealing assumption in many statistical

inference problems, it is generally believed that one will never

observe a random sample that is exactly normally distributed. It is

more practical to assume that the data have some sort of departure from

normality which may be due to the existence of some outliers in one or

both tails, or due to heavy tails or skewness of the distribution of

Y .

Now we consider the problem of assuming that a set of data is

normally distributed when in fact it deviates from normality due to one

of the above reasons. We address this problem in terms of four

questions:

1. How are the level and the power of the t-test affected by

non-normality of the data in large samples?

2. How does the power of the t-test compare with other tests for

non-normal data in large samples?

3. How are the level and power of the t-test affected by

non-normality in small samples?

4. How does the power of the t-test compare with other tests for

non-normal data in small samples?
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For the answer of the first of these questions we refer to Lehmann

(1986, Section 5.4) and Tiku et al. (1986, p.2-3 and Chapter 4) who use

the Central Limit Theorem and consistency of tr4 to show that the

t-test is asymptotically robust-valid in the sense that in the limit it

gives the correct level and power no matter what the distribution of Y

is, as long as the variance of Y is finite. With respect to the

second question, they state that the t-test is not robust-efficient in

the sense that some other test procedures like the trimmed t-test or

the Wilcoxon signed-rank test are more powerful than the t-test under

some non-normal models.

There are many papers in the literature that deal with the third

question. For example, Tan (1982) gives a list of 55 references that

deal with the distribution of the t-statistic when Y is not normal.

Geary (1947) gives approximate formulas for the first four moments of

the distribution of the t-statistic listed as Ti through F4 below. Let

#k(Y) denote the Oh central moment of Y and let fl1(Y) and

fi2(Y) denote the coefficient of skewness and the coefficient of

kurtosis respectively. That is,

flt(Y) = #3(Y)/(#2(Y)) 3/2 fl2(Y) = p4(Y)/(112(Y)) 2 .

Under the assumption 0 = 0 ,

Fl. E(t) = -1/2 fi1(Y) /n 0(n-1.5)

F2. var(t) = 1 + 1/4 (8 + 7fi1(Y))/n + 0(n-2)

F3. /JIM = -2 fl1 (Y)/4 n O(n-.5)

F4. fi2(t) = 3 + 2(3 fl2(Y) + 6fl1(Y))/n + 0(n-2).

Using these approximations, it is easy to see the following relations

between the shape of the distribution of Y and the shape of the
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distribution of the t-statistic.

1. From F4, fl2(t) is inversely related to fl2(Y) and hence the

heavier the tails of the distribution of Y are the lighter the tails

of the distribution of t will be and vice versa. This led Yuen and

Murthy (1974) to state that "It is also well known that the usual

Student's t-test is conservative and hence less powerful when the

underlying distribution is long tailed."

2. From Fl and F3, if /JOY) > 0 , then E(t) and fl1(t) are

both negative which means that the distribution of t will be skewed

to the left if the distribution of Y is skewed to the right, and vice

versa. Hence, with a rejection region of the form {t: t > c} , if the

distribution of Y is skewed to the right, one would expect the t-test

to be conservative, and if the distribution of Y is skewed to the

left, it will be expected that the actual level of the test will always

be greater than the nominal level.

3. From the order of convergence of the above approximations to

the exact moments of the t-statistic under normality note that both the

variance and kurtosis coefficient are 0(n-2) while fi1(t) is

0(n-5) and E(t) is 0(n-1.5) , which means that the variance and

kurtosis coefficient are less affected by departure from normality.

The fourth question, about how the power of the t-test compares

with other tests in small samples, can be investigated by simulation.

Among others, Tiku (1980) and Doksum and Wong (1983) give some

simulation results about the power of the t-test and the power of other

nonparametric and robust test procedures for testing statistical

hypotheses concerning some location parameter of a variety of nonnormal

distributions.
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2.1.2 The trimmed t-test

This test is based on a studentized version of the trimmed mean.

To understand the rationale behind this test we give the following

premise from Tiku (1980): "Non-normality essentially comes from the

tails and once the extreme observations (representing these tails) are

censored, there is hardly any difference between a normal sample and a

non-normal sample." Our point of view about this premise is that it is

most meaningful under the case where the majority of the data appear to

be normally distributed except for some outliers in one or both tails.

Trimming a few observations from each tail may correct for such type of

departure from normality. However, when the majority of the data do

not appear to be normally distributed, then changing the scale of Y

by applying some power transformation, or by both transforming and

trimming, may be more meaningful.

Let Y(1) , Y(2) , Y(n) denote the order statistics

corresponding to Y1 I Y2 Yn and let 5 be any positive

number smaller than .5 such that r = n5 is an integer. The

5-trimmed mean is defined as

n-r

Ytr =. E Y( i1 / (n-2r) .

l=+1

If the distribution of Y is symmetric about 9 , Lehmann (1983,

p.361) gives the asymptotic distribution of 4 n ( it, 9 ) as

N(0,f2s) where

(2.1.3)

12

=
2

I y2 f(y) dy + Sf2(1 -5)]

1-17-TF 0

f(1 -5)

where ((5) is the unique value for which F[f(S)] = S . Stigler

(1973) in proving the asymptotic normality of the trimmed mean shows
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that uniqueness of f(S) is both a necessary and sufficient condition

for the distribution of 4 n ( Y. )
to be asymptotically normal.

Let

2
45=

n-r

.2 . )2r( Y(0.1) - i) Y(1) 17)2 r( Y)

(n 2r 1)

(2.1.4)

Huber (1970, p.453-463) shows that under certain regularity conditions

Hence,

is/ is -4 4 n/(n -2r) .

itr eo

ttr = n- 2r (4
(2.1.5)

rs

is an asymptotically valid test statistic for testing the hypotheses

given by (2.1.1) in the sense that its limiting distribution is N(0,1)

when 9 = 00 .

2.2 Families of Power Transformations

There has been considerable literature on the subject of power

transformations since they were introduced by Box and Cox in (1964).

Power transformations are considered when there is evidence that some

of the model assumptions associated with a certain data analysis

procedure are violated and such violation can be removed if the random

variable is expressed in a different scale. Most of the literature

considers power transformations in a regression model setting. The

main goal in the regression setting is to achieve linearity, constancy

of variance, or some distributional assumption. However, since we are
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considering a single sample model, our main interest is to achieve

normality. Investigating transformations to normality under regression

or analysis-of-variance models may not be effective due to what

Weisberg (1985, p.157) and Quesenberry and Quesenberry (1982) call the

super-normality of residuals where the residuals show a normal trend

even if the actual distribution of the errors is not normal. In the

following we consider a definition of a power transformation and the

properties it should satisfy so that the normality assumption is valid.

Then, we discuss four families of power transformations each of which

is valid to deal with a certain type of data.

We may define a transformation to normality of a random variable

Y as a function

hl : Y Y(A) = hA(Y)

such that Y(A) is (approximately) normally distributed. The domain

of h
A

is the sample space of the original variable Y and its range

is the space over which we assume that the transformed variable will be

normally distributed. It would be desirable to have the domain of the

transformation be the whole real line in order to be applicable to all

data sets and to have its range be the whole real line in order for the

normality assumption to be completely valid. The parameter A could

be a vector as Box and Cox (1964), Andrews (1971) and Carroll and

Ruppert (1984) mention.

2.2.1 The Box-Cox family of power transformations

Box and Cox (1964) introduce this family for positive random

variables Y as

(Y
I

1)/A if A # 0

Y(A) =
ln Y if A = 0

(2.2.1)
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Note that Y(A) is monotone increasing in Y , continuous in A ,

bounded below by -1/1 if A is positive and bounded above by -1/A

if A is negative. A weakness of the Box-Cox family is that it cannot

handle negative data. This drawback is eliminated by introducing a

location parameter yielding the family of shifted power

transformations.

2.2.2 The family of shifted power transformations

Box and Cox (1964) extend the above family when the random

variable Y can assume negative values by introducing a shift

parameter y greater than the negation of the smallest value of Y ,

so that Y+7 is positive for all Y and then apply the family in

(2.2.1) to the shifted data.

((y +7)
A
- 1)/A if A #

Y(7,A)
In (Y+7) if A = 0

(2.2.2)

If a set of data includes both negative and positive numbers and some

transformation needs to be considered, it is always recommended in the

literature to apply the shifted power transformation. This

recommendation is appropriate if there is a natural lower bound for Y

which can then be used as a shift parameter. If there is no such lower

bound, like for example the case with differences in paired samples,

and 7 has to be estimated from the data, Atkinson (1983, 1985) showed

that the family of shifted power transformations will not work well in

general because the likelihood used in estimating the parameters is

unbounded as y approaches the minimum value of Y . This leaves the

problem of how to deal with negative data unsolved.

As mentioned earlier, frOm a theoretical point of view it would be
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desirable for the range of the transformation to be the whole real line

in order for the normality assumption to be valid. For the Box-Cox or

the shifted Box-Cox transformations this will be true only if is

zero; otherwise the range of the transformation is bounded as shown

above and the normality assumption cannot hold. However, from the

practical point of view it may be the case that over a bounded region

the distribution of the transformed variable may appear to be more

close to a normal distribution than the distribution of Y . The

following theorem shows the effect of applying the Box-Cox

transformation to a set of data that is skewed to the right.

Theorem 2.2.1 Suppose Y is a positive random variable and

suppose that 0 < A < 1 . Let Z = 111(Y) where hl denotes the

Box-Cox transformation. Then #1(Z) < #1(Y) , where #1 denotes the

coefficient of skewness.

Proof Note that the inverse transformation of z = h
I
(y) is

y = h
-1

(z) = (1 + Az)
1/1

#Y = (1 + Az)
(1/1)-1

az
zh u

= (1-A) (1 + Az)
(1/1)-2

(37--
a y2

Hence for 0 < A < 1 , we have > 0 . Therefore, the inverse
#77

transformation y = h
A

1
(z) is a convex function. The result follows

from Theorem 2.2.1 of Van Zwet (1964).

Hence, when the Box-Cox transformation with 0 < < 1 is applied

to a set of positive data that is skewed to the right, the transformed

variable will have a distribution that is more symmetric than the

distribution of the original variable. A similar description about the



effect of the Box-Cox family in removing skewness from right-skewed

data is given by Boaglin, Mosteller and Tukey (1983, p.100) and by

Carroll and Ruppert (1988, Section 4.2).

2.2.3 The family of modulus power (or John-Draper) transformations

This family has the form

sign(Y) ((1Y1+1)
A
- 1)/A

Y(A) =
sign(Y) ln(IYI+1)

if A 0

if A = 0

17

(2.2.3)

John and Draper (1980) introduced this family for a set of difference

data (in an analysis-of-variance context) when they recognized that the

shifted Box-Cox transformation failed to improve the residual plots.

These plots showed a symmetric distribution of residuals with longer

tails than a normal pattern should show. Although in their comments

John and Draper state that "The modulus transformation is clearly an

alternative which may work well in circumstances in which the power

transformation would be inappropriate ...", this family has never been

in use since the time it was first introduced. We propose to use this

family with 0 ( A < 1 for data that is assumed to be symmetrically

distributed with longer tails than that of a normal distribution and to

use it with A ) 1 for data that is assumed to be symmetrically

distributed with shorter tails than that of a normal distribution. We

will not study the case A < 0 , because then the transformed variable

is bounded.

Adding a centrality parameter to allow the center of symmetry to

be equal to some number 0, the John-Draper family can be written as

sign(Y-0) ((IY-81+1)
A
- 1)/A if A # 0

Y(0,A) = . (2.2.4)

sign(Y-8) ln(IY-01+1) if A = 0
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In addition to being applicable to all data sets, we next show that

this family can deal successfully with problems in the tails of

symmetric distributions.

Definition A real-valued function g on an interval I is said

to be antisymmetrical on I if g(yo+y) + g(yo-y) = 2 g(y0) for some

y0 E I and all y0 +y and y0 -y in I .

Definition An antisymmetrical function g on I is said to be

concave-convex on I if g is concave for all y < y0 and convex for

all y > y0 and y E I . the point y0 is called the central point

of g .

Theorem 2.2.2 Let h
1

denote the John-Draper transformation and

suppose that 0 < 1 < 1 . Let Z = 111(Y) . Then 02(Z) < #2(Y) where

fl2
denotes the coefficient of kurtosis.

Proof Using the inverse transformation and Theorem 2.3.2 of Van Zwet

(1964), it suffices to show that Y is an antisymmetrical

concave-convex function of Z with central point Z0 = 0 . The inverse

transformation of z = h (y) is

y = 1,11(z) = sign(z) ((1 + Alz1)1/1 - 1) .

For z > 0 ,

h 1(0+z) = (1+1z)
1/1

1 and h 1(0-z) = 1 (1+1z)
1/1

Since h 1(0) = 0 , then h
A
1(0+z) + h

1
1(0-z) = 2 h

A
1(0) = 0 . A

similar argument holds for z < 0 . Therefore Y is an

antisymmetrical function of Z with central point 0 .

2 -1
h
A

(z)

For z < 0 , = -(1 A) (1 11 z)

1/1-2
. If 0 < A < 1 ,



a2h-11,1
.A

then < 0 . Therefore Y is a concave function of Z for

ot2

all Z < 0 . Similarly for z > 0

a2h-Al(z)

which is positive if 0 ( A ( 1 . Therefore Y is a convex function

= (1 Al (1 + Az)
1/A-2
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of Z for all Z > 0.

Although the family of modulus power transformations solves the

problem of how to deal with negative data and, by the above theorem,

can be used to squeeze the tails of heavy-tailed symmetric

distributions so that they become more normal, yet there are some other

situations under which it is expected that the John-Draper

transformation cannot be appropriate. For example it may be the case

that both tails are heavy but to different degrees. In such a case we

would want a transformation that squeezes the two tails differently.

In some other cases we may want to leave one tail as is and change only

the other tail. For such situations we introduce a new family of

transformations which we call the two-domain family and which may be

expected to deal properly with types of data like those described in

the two cases above.

2.2.4 The two-domain family of transformations

This family is a generalization of the John-Draper family in which

A is a two-dimensional vector.

Y(0,A1,A2) =
((Y - 8 + 1)A2 1)/A21

(1 - (0 Y + 1)A 1) /A1 for Y < 8

for Y > 8

(2.2.5)
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This formula is used if 11 # 0 and A2 # 0 . If A, = 0 , then

replace (1 (0-Y+1)
AI

)/11 by -1n(0-Y+1) . If A2 = 0 then replace

WI-041)
A2

1)/A2 by ln(Y-014-1) .

Note that the two-domain family is monotone increasing in Y and

is continuous at Y = B . Also note that the domain of both the

John-Draper and the two-domain transformations is the whole real line,

so they are applicable for all data sets. Also, when A, and A2 are

both positive, the range of the transformation is the whole real line,

which allows the normality assumption of the transformed variable to be

valid.

The notion of using a different transformation (shape) parameter

for each tail is also considered by Stukle (1988) in a different

setting, where he considers different shape parameters in defining the

negative and positive parts of the logit link function of a Bernoulli

random variable under a generalized logistic regression model.

2.3 The Problem of Estimating the Transformation Parameter

In the analysis of any statistical inference problem based on

normal-theory techniques, if it were known that the data come from a

certain known transformation of a normal random variable, then

certainly the analysis of the problem based on the data that are

transformed back to normality will be optimal. Unfortunately, when

there is some evidence that some transformation should be considered,

one never knows the true value of the transformation parameter. The

best that can be done is then to consider a data-based estimator of the

transformation. Usually the Box-Cox maximum likelihood procedure or

Hinkley's estimator are considered in this instance. But what is the
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effect of using such an estimate of the transformation parameter,

instead of the true unknown transformation on the underlying

statistical analysis? This question was raised by Hinkley (1977, p.69)

who said "no published results exist concerning the effect of

transformation estimation on subsequent analysis". Since then, a

number of papers largely inspired by Bickel and Doksum (1981), have

studied this issue for estimation in a model which is assumed to be a

linear model after a power transformation. Bickel and Doksum argued

that there is a high correlation between the estimate of the

transformation parameter and estimates of the other model parameters.

Such a correlation leads to inflation of the variances of the model

estimates compared to the situation in which the transformation is

known. On the other hand, Box and Cox (1982), Hinkley and Runger

(1984), Carroll and Ruppert (1984) and Taylor (1986) argued that,

although there may be some effect due to considering a data-based

estimate of the transformation parameter, it is not as severe as

pictured by Bickel and Doksum. Doksum and Wong (1983) pointed out that

the reason for the argument given by Bickel and Doksum (1981) is that

they neglect the Jacobian of transforming y into hl(y) and an

agreement with the other argument can be obtained if this Jacobian is

considered. The t-test statistic being invariant under multiplication

by constants Doksum and Wong (1983) were able to prove some asymptotic

results concerning the transformed t-test as discussed in the next

section.

2.4 Testing for Location when the Original Data are Transformed

Doksum and Wong (1983) consider the problem of testing the



22

equality of distributions from two independent samples. They were able

to prove that the transformed t-test using a consistent data-based

estimator of the transformation parameter is asymptotically as

efficient as the transformed t-test when the transformation is known.

So whatever results hold for the known transformation situation are

asymptotically valid for the estimated transformation situation. Using

the asymptotic theory thus made available they found that there is a

considerable gain in efficiency of the transformed t-test relative to

the t-test in the original scale under the log-normal,

log-double-exponential, Student's t, contaminated normal, gamma and

exponential models. In their simulation work, Doksum and Wong found

that there is indeed some gain in the simulated power when the

transformed t-test is used compared to the simulated power of the

t-test of the original observations, but for smaller samples the gain

is not substantial. The simulated power of a transformed 7-trimmed

t-test for 7 = .10 and .20 was much higher than both the transformed

and the untransformed t-tests.

Doksum and Wong (1980) state that the asymptotic argument they

give is valid for the comparison of two means or more generally under

an analysis-of-variance model when the hypothesis of interest is in the

form of a contrast. On the other hand this argument fails for single

random sample problems.
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3. ASYMPTOTIC RESULTS FOR TEST STATISTICS UNDER

SYMMETRIC MODELS

In Section 2.1 we showed that the t-test is conservative when

applied to a set of data that has a symmetric distribution with heavy

tails, and hence does not have good power properties relative to other

testing procedures. Theorem 2.2.2 shows that when the John-Draper

family of transformations is applied with 0 < A < 1 to a heavy-tailed

set of data, it symmetrically squeezes both tails so that the

distribution of the data in the transformed scale has lighter tails.

In this case it would be expected that the t-test from the transformed

data is less conservative than that from the original data and hence

has better power properties.

In this chapter we derive the Pitman asymptotic relative

efficiency of the t-test in the original scale of Y relative to the

transformed t-test using the John-Draper transformation. The

asymptotic results indicate that there is a considerable gain in

efficiency if the transformed t-test is used for data with heavy-tailed

symmetric distributions.

In Section 3.1 to simplify reference we reintroduce the

John-Draper family and the different test statistics involved

throughout this chapter. In Section 3.2 asymptotic properties of the

t-statistic assuming the true transformation is known are derived.

Section 3.3 deals with the asymptotics when the transformation is

unknown. In Section 3.4 we use numerical integration to evaluate the

asymptotic relative efficiency for the transformed-normal, the

transformed-contaminated-normal and the transformed-Student's-t models.
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3.1 Definitions and Notation

Throughout this chapter we use A* to denote the true value of

the transformation parameter A . We assume that A* is greater than

zero. We use An to denote the maximum likelihood estimator of A ,

which is shown to be consistent and asymptotically normal in Appendix

E. e is used to denote the median of Y . The asymptotic results are

derived for the problem of testing the hypotheses given by (2.1.1).

Similar results for testing against 8 < eo or 8 # 0 can be derived

along the lines of this chapter.

The derivation of the Pitman asymptotic relative efficiency is

based on testing the null hypothesis against local (contiguous)

alternatives, that is, alternatives of the form HI: 0 = On where

On= 00 + kbrif k> 0 (3.1.1)

so that in the limit en tends to eo .

Recall that the John-Draper transformation with central parameter

0 is defined in (2.2.4) for A # 0 as

h(Y-0,A) = sign(Y-0)[(1Y-01+1)A - 1]/A .

The main assumption under this transformation is that for some 0 , r

and A ,

h(Y-0,A) = of (3.1.2)

where e has a standard symmetric distribution, that is,

1. e = E ii. E(e) = 0 iii. E(c2) = 1 (3.1.3)

and also satisfies

iv. the cdf F
c

is continuous at 0 .

A test statistic denoted by Tn(A) is defined as follows:

Tn(A) = 411 E0(00,A)/ ;11(00,A)



where,

io(00,A) =i1h(Yi-00,A)/n

;2(00,A) = ii(h(Yi-00,A) i(00,1))2/(n-1) .

Since h(Y-00,1) = y-90 , thus To(1) is used to denote the t-test in

the original scale. To(A*) is used to denote the t-test when the true
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(3.1.4)

transformation is known and Tn(In) is the t-test using the MLE of A .

On the other hand if we use r instead of ro(00,A) we denote the

test by To (A) . We use 411(0 and rn2(0) to denote either

E
0
(T

n
(A)) and var 9(Tn(A)) , or some approximations of them such that

the regularity conditions Cl and C2 in Appendix B hold in the limit.

3.2 Asymptotics When A is Known

In this section we derive the asymptotic properties of the test

statistics To(A*) and To(1) under both the null and contiguous

alternative models and show that both of them are Pitman regular.

3.2.1 Asymptotic distribution of To(A*) under Ho

Assume that under Ho and for some A
*

, h(Y-00'
A* ) satisfies the

assumption of model (3.1.2), that is,

h(Y-00 , A*) = o e

where e satisfies (3.1.3). Since ho(00,A*) = f e and since by the

PWLLN e ----9 0 , hence

En(e0,A.) -2-4 0 .

Since by the WLLN E 0/n ----4 1 , hence
1

n 2
-0

1

2 2

(1/n) h (Y-- -2,
1=1

01 * ) = f2 In
i=1 1

(3.2.1)

(3.2.2)
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.2 b
Now (3.2.1) and (3.2.2) imply that r. (80,,I*) --z-- - e and by Fact 4

of Appendix A

( 0
0 I

) ----0*

By the CLT

(3.2.3)

Tn(1,0) = 417110(00,1*)/17 --L4 N(0,1) . (3.2.4)

Using (3.2.3), (3.2.4) and Fact (2-ii) of Appendix A we conclude that

T.(A*) = 41-1.11n(00,A41)/ ;in(90,A*) t N(0,1) . (3.2.5)

3.2.2 Asymptotic distribution of Tn(A*) under contiguous alternatives

As mentioned earlier we only need to consider local alternatives

as those defined in (3.1.1), that is, alternatives of the form

H1: 8 = 8. = 80 + ki/41F, for some k1 ) 0 . Under such alternatives

we assume that Yni, Yn2, ..., Y.n are independently and identically

distributed (iid) with distribution function Fo which depends on n .

We also assume that for a given n

= f cni (3.2.6)

where clip env enn are iid Fe which does not depend on n .

The safest way to deal with Yni so that the double subscripts do not

cause confusion is to transform Yni to c ni . Since the distribution

of eni does not depend on n , it is safe to write efli as ei . In

the proofs of parts (i) and (ii) of Lemma 3.2.1 we will use double

subscripts but thereafter we change to single subscripts since double

subscripts are too cumbersome.

The first step in deriving the asymptotic distribution of T.(A*)

under contiguous alternatives is to express h(Y-00,A*) in terms of

h(Y-0.,1*) . For Y < 00 we can write
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h(Y-00,A*) = [1 (On-Y+1)

1*
C1 - (k1/417)/(0n-Y+1))

1*

]/A* .

The Maclaurin expansion of (1-t)
A

for It! < 1 is

.

(1(1t)'1 = 1 At + E (-1)J [

j

II

i

(Am)] ti .

j=2 m=0

3

(3.2.7)

Since we are interested in asymptotics we can suppose ki/Pr< 1 .

Since Y < 00 implies Y < On , hence for all Y < 00 , On-Y+1 > 1

14,

and a Maclaurin expansion of (1 (k1/47i)/(On-Y+1)) is absolutely

convergent. Therefore

h(Y-00,1*) = h(Y-8n,,{ *) + (k1 /4iC)(0n-Y,+1)

i j-1 A*-j

(1/A,0))E2((-k1/4i7)-/j!)(210(A*-m))(0-Y+1)

A*-1

Similarly for Y > On it can be shown that

Let

A*-1

12(Y- 90,1*) = h(Y- A*) + (k14 ) (Y-0+1)

(3.2.8)

J-1 A*-i

(1/) E ((k1/41a7)3 /j!)( II (A.m) (YOn+1)
j=2 m=0 -

(3.2.9)

An = {Y : 00 < Y < On} (3.2.10)

and let An denote the complement of An . From (3.2.8) and (3.2.9)

and for all Y e An we express h(Y-00,A) as

A*-1

h(Y- 00,1*) = h(Y-On,A*) + (ki/4171 ) (1Y-01+1) +

*i
E sign(Y-On)]-1((kibri-i)j/j!)(ini(A.-m)) (1Y-0,11+1)

j=2 m=1 ""

Note that under model (3.2.6) we can write,

1/A*

+ 1 = (1 + A*flel)

. (3.2.11)

(3.2.12)

Also note that sign(Y-On) = sign(e) . Using (3.2.11) and (3.2.12) we



express h(Y-ao,A*) as a function of e , for Y E AII , in the

following two forms that we will need later:

1. h(Y-0 ,A*) = ae+ Ri(e,A*,n)

where

where

Let
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(3.2.13)

m
R1(c,1*,n) = E f(sign(e)) 3-1 ((k1/471-)-i /j!)

i

II

l

(A -m)

i41 m=1

1-(3/4)
(1+A*,161) } . (3.2.14)

1-(1/4)
2. h(Y-00,A*) = tTE + (k1/417)(1 + A*F(CI) + R (e A n)2 r *r

m j-1 i j_1

R2(c,Aen) = E {(sign(e)) ((k1/417) /j!) II (A.-m)

j=2 m=1 -

1-(j /A*)

(1+A*riel)

(3.2.15)

(3.2.16)

A*

Bn = {e: [1-(1+k1 /417) ]/A*r < e < 0 . (3.2.17)

Under the model (3.2.6) it is easy to see that Y E An iff c E Bn .

The results of the following two lemmas will be used in deriving

the asymptotic distribution of Tn(1*) . The proofs of these lemmas

are given in Appendix C.

Lemma 3.2.1 Let An and Bn be as defined in (3.2.10) and

(3.2.17) respectively. Then under model (3.2.6) as n ----4 m

i. Pr {Y E An} = Pr* E Bn} ----4 0

{(1/n) E h(Y On, A*) 0

YiEAn

iii. (1/n) E h
2
(Y.-00,4) -2-4 0

YiEAn

iv. .F [1/n E ei] 0

ciao
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v. (1/n) E e.
2

--1-3-+ 0

fiEBn

1-1/A*
vi. (1/n) 5 (1 + A*rleil) -2-4 0

eiEBn

Lemma 3.2.2 Let Ri(e,Aen) and R2(E,A*,n) be as defined in

(3.2.14) and (3.2.16) respectively. Then, as n m ,

i. (1/n) E eiRi(ei,A*,n) -2-4 0

(1 /n) E RI(ei,A ,n) -2-4 0

cleric

iii) 4 (1/n) E R ( ,n) 0 .

ciEBEci

Theorem 3.2.1 Under the alternative model (3.2.6) #711(00, A ) is

a consistent estimator of r .

Proof: From (3.2.14) write

2 2 2
h ori-90,1*) f Ei 2reilyei,len) +

and hence

(1 /n) E h
2
(Yi-90,A*) - r

2
(1/n) E e2

YiEArci fiEB,2

2,(1/n) E eiRi(ei,Asen) + (1/n) E R7(ei,A*,n) .

It follows from Lemma (3.2.2) parts i and ii that

n
(1/n) E h

2
,A ) r

2
(1/n) E ei

2
--=-4 0 . (3.2.18)

Fief eiEBnc

By the WLLN and Lemma 3.2.1(v),

(1 /n) E

1

= (1 /n) - (1/n) E el 1 - 0 .

eienciEBtc,
i=1

By Fact (1) Appendix A, (3.2.18) and (3.2.19) imply

(1 /n) E h
2
(Yi-e0,A*) p f

2
.

Yin

(3.2.19)

(3.2.20)
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Write

n

(1/n) E h
2

(Y1-00,A*) = (1/n) X h
2

(Y1-40,A*)
i=1

Y1EA

+ (1/n) E h2(Yi-00,A*) . (3.2.21)

YiEA

Then Lemma 3.2.1 (iii) , (3.2.20) and (3.2.21) imply that

(1/n) E 0 A
*
)

2
. (3.2.22)

i
h
2

VI.- 0,

p

A similar argument shows that in(90,A*) --2-* 0 and hence, by Fact

(4) in Appendix A, that

14(00,A*) -2-4 0 .

Formula (3.1.4) can be expressed as

.2 n 2

fa( 90, A*) = (n/ (n-1)) [(1/n) jElh (Yi-90,A*) 11,21( Op, A*)] -

(3.2.24)

Now (3.2.22), (3.2.23) and (3.2.24) imply ;121(90,1*) tr2 and hence

;n(00,A*) f . (3.2.25)

In the following theorem we prove the asymptotic normality of the

transformed t-test under contiguous alternatives.

(3.2.23)

Theorem 3.2.2

1-1/A*

Let t = (A1/07) E[(1 + A*flel) . Under contiguous

alternatives

Tn(A*) - $ o N(0,1) .

Proof: Since

Tn(A*) - = Wed [T.(4) + eon) -1] ,

and since (eon) I-4 1 by Theorem 3.2.1, it suffices to show

Tn(A*) $ ---4 N(0,1) . Since

4E-Fin(00,A*) 4iTy/ii,EArich(Yi-00,A*)/n = h(Yi-00,A*)/n
YiEAn
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by Lemma 3.2.1 (ii)

4i-En(00,A*) - (417/n) E h(Yi-80,1,0) 0 . (3.2.26)

YiEJL

Similarly Lemma 3.2.1 (iv) implies

a 4Fen - a (1 /n E ci) --EL-. 0 . (3.2.27)

Finally Lemma 3.2.1(vi) implies

1-1/A* 1-1/A*

(1+1 'lei') - (k1 /n) E (1 +,4 affil)
i=1 *

By the CLT,

- 2
f En ----+ N(0,, ) .

By the WLLN

(3.2.28)

(3.2.29)

1-1/A* 1-1/A*

(ki/n)iii(l+A*riel) ki E[(1+A*siel) = .

(3.2.30)

A proof that the above expectation is finite is given in Lemma C.1 of

Appendix C. From (3.2.15) we can write

1-1/A*

4E- E h(Yi-80,.4 *)/n ei/n (k1 /n) E (1+1,0oled)

YiEkci

= 4 (1/n) E R2(ci,A*,n) . (3.2.31)

dIEB

Apply Lemma 3.2.2 (iii) to conclude that the right hand side of

(3.2.31) converges in probability to 0 . The result of the theorem

follows from a chain of substitutions of (3.2.26) through (3.2.30) in

(3.2.31).

3.2.3 The transformed t-test is Pitman regular

The following theorem shows that the transformed t-test statistic

using the John-Draper transformation is Pitman regular.
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Theorem 3.2.3 The test statistic Tn(A*) is Pitman regular with

2
1-1/A* 12

Rn(90) = (a/f2)fgE(1+A*flel) lj -

Proof: We first need candidates for $0(0) and 7-02( 0) in Appendix B.

These are obtained as approximations for the functions Eg(Tn(A*)) and

var (T
n
(A

*
)), respectively. Since we are interested only in contiguous

alternatives, we approximate the above two functions for 0 in a

neighborhood of 00 . Consider a Taylor expansion of Tn(A*) about

00 = 0 ,

An(0,A*)
(41114i.(00,A*) = (41170i1(0,1*) (4117,) (0o-0 -

dO

Under model (3.1.2) h(Yi-0,A*) = e el ans so

1-1/A.

Tn(A.) 41Tri (11110(0-00)[(1/4(1+1ilfi() .

(3.2.32)

Taking the expectation of the right side of (3.2.32) we define

1-1/A.

to( = (4717 ( 00) E[(1+A*riel)

Taking the variance of the first term only, we define

r2(0) = var(TE e) = 1 .

(3.2.33)

(3.2.34)

We now verify the seven regularity conditions of Appendix B.

C1. Note that 0E1(00) = 0 . The asymptotic normality follows from

(3.2.5).

C2. For 0 = On (3.2.33) becomes

1-1/A

t.(00) = (kilo) E[(1 + A*olei)
*
] = ,

where $ is as in Theorem 3.2.2. So the result of the theorem

verifies the asymptotic normality under contiguous alternatives.

C3. From (3.2.33) #11(0) is differentiable for all 0 .

1-1/4
C4. t;(0) = (4E/ e) BE (1+A*rlel) ] = 4i. #/k1 .
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1-1/A*
Since (1+101e1) > 0 for all e E RI , hence

1-1/A*

E[(1+A* ] > 0 . So :,(0) > 0 .

C5. #;(00)/411-= #/k1 > 0 .

C6. #;)(9) is the same for all 0 hence

sup 1#:,(0.)/t(00) 11 = 0 for all n .

00< 0*< O.

C7. r(0.)/r(00) = 1 for all n .

Hence the test statistic T.(A*) is Pitman regular and from Appendix B

1-1/A* 2 2

it,21(00) = n {E [(1+4,1e1) "
3.2.4 Asymptotics for the t-test in original scale

(3.2.35)

In the following we derive the asymptotic distribution of the

t-test statistic in the original scale denoted as Ta(1) under both

the null and alternative models and show that it is Pitman regular.

Recall that the test statistic in the original scale is defined as

T.(1) = 4iT (Y - 9o) /Sy (3.2.36)

2where Y = E Yi/n and S2 = VI. Y) /(n -1) . We can write
i=1 Y i.1

T0(1) = (fy/Sy)Ta(1) where

T.(1) 4T. (i-00)/ey (3.2.37)

and '2 denotes the true variance of Y . Under model (3.1.2)

h(Y-0,1*) = s e

Y = 0 + sign(e) [ (1+4,1E1)
1/A

1

Note that under symmetric distributions of e

sign(e)[(1+101c1) 1/I* -1] is an odd function and hence has zero

(3.2.38)

expectation. Hence



34

1/A*

f2 = var(Y) = var(9 + sign(E) [(1+A*flel) -1])

1/A* 2

= E[ [(1+Aolel) 1] (3.2.39)

Under Ho, the CLT implies Ta(1) I-. N(0,1) . We know f
Y
/S

Y
1

and so

;2(1) -21-9 N(0,1) .

Under H , 0 = 0a = 0 + kiln- and

4ili-004A/411D Tili -On) (k/41)

Ta(1) = + .

f f ,
Y Y Y

By the CLT, 4-Fi (1 -0a)//y Z--. N(0,1) . Hence

Ta(1) --4 N(k/sy,l) under HI.

(3.2.40)

(3.2.41)

Theorem 3.2.4 The test statistic Ta(1) is Pitman regular with

2 2

Rn(00) = n/oy .

Proof : We will verify the seven conditions of Appendix B using

to(0) = (4E/ fry) (0-00) and ri21(0) = 1 .

Cl. Since 90(00) = 0 , Cl follows from (3.2.40).

C2. Note 4,1(0,1) = k/fy for all n . C2 follows from (3.2.41).

C3. = (117/ii) (0-00) is differentiable with

1;1(0) = .

C4. 4i/ry > 0 .

C5. 00(0)/IE = 1/si > 0

C6. 9:(0)/%(00) = 1 for all 0 and all n .

C7. ra(0) = 1 for all 0 and all n .

Therefore Ta(1) is Pitman regular and from Appendix B

- 2
Rn( 00) =

2

( 00) / rn2 ( 00) nifY
(3.2.42)

Now we compute the asymptotic relative efficiency of the t-test in the

original scale, Tin = Ta(1) relative to the transformed t-test,
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1-1/A* 2

T2, = Ta(A*) . From (3.2.35), qn = (n/f2)1E[(1+A*flel) ]} and

from (3.2.42) Rln = n/4 . Therefore

ARE(Tn(1) , Tn(10) = lim R?n/qn
n 00

2
1-1/1* 2

= I I f IE[(1+1010 ]1

where ol can be evaluated using (3.2.39) .

3.3 Asymptotics When A is Unknown

(3.2.44)

In practice the true value of the transformation parameter A* will

not be known and a data-based estimator An of A (such as the MLE)

may be considered. In this section we show that if An is a

consistent estimator of A, then the test statistic T0(An) is

asymptotically equivalent to the test statistic Tn(A*) where

To ( In) = 411- En( 00, An) / on( 00, An) (3.3.1)

By the asymptotic equivalence of the two test statistics Tn(An) and

Tn(A*) we mean that the difference between them converges to 0 in

probability under both the null and contiguous alternative models.

Lemma 3.3.1 Under both H0 and H

1. 13.(00,A0) 110(80,A0 -2-4 0

ii. (1/n)
i=

The proof of the

Theorem 3.3

2 2

th (Yre0,A0) (1/n) jEih (Yreo,A*) --L-+ 0

above lemma js given in Appendix C.

-2
.1 Under both Ho and HI, in(00,An) is a consistent

(3.3.2)

(3.3.3)

2

estimator of f .

Proof: Note

-2 n 2

f.(00,An) = 1/(n-1)( (Yi-00,A0) ni4(00,An) ]

In Section 3.2.1 and Theorem 3.2.2 we showed that 4171in(00,A*)/f
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has a limiting normal distribution under the null and alternative

models respectively. Dividing by 4iand applying Fact 2(i) in Appendix

A we conclude that

En(80,4) 2-4 0 .

By (3.3.2) and Fact 1 in Appendix A

En(00,An) -1-4 0

By Fact 4 in Appendix A we conclude that

Eg(00,:in) I-4 0 . (3.3.4)

From Section 3.2.1 and Theorem 3.2.1 we have

2
(1 /n) E h A ) 11-4 r2

ii *

under both the null and alternative models. Hence by Lemma 3.3.2 (ii)

n
(1/n) E h

2
(31;-00,Any

p f 2

1=1

The result of the theorem follows from (3.3.4) and (3.3.5).

(3.3.5)

n
82E

n
(8

01
I
n

)

Lemma 3.3.2 If An --=-4 14, , then is bounded in
dA 2

probability under both the null and alternative models.

Lemma 3.3.3 Under both the null and alternative models

An( 00,10
P 4 n

.

dA

The proofs of these lemmas are given in Appendix C.

Theorem 3.3.2 Under both Ho and HI the test statistics Tn(An) and

Tn(A*) are asymptotically equivalent in the sense that

Tn(An) Tn(1,0) 2±4 0 .

Proof:

Recall that

Tn(An) = 4filin(00,An)/ in(001An)
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T.(,1 *) = En(90,4)/ ;.(00,A*) .

In Section 3.2 we showed that r.(00,4) is a consistent estimator of

r under both hypotheses and a similar result for r.(00,A.) is

obtained in Theorem 3.3.1 above. Hence by Theorem A.2 of Appendix A

the result follows if we show that

4E- En( eo, In) 411 En( 60,
:0

under both models.

Consider a Taylor expansion of 4i7E.(00,A.) about A. = A*

°lin( 90,

4-1 En( Bo, = 4F En( 901 + 4-6- (An A*)
as

a2in(00,A.)
IF (A. - A*) 2 (3.3.6)

dA2

where A. is such that IA. - I*1 < IA. - A*I . From Appendix E

A. -2-4 A* and IF (A. A*) -32-+ N(0,I(A*)) , where I(A*) denotes

the information of A . Hence, by the above two lemmas

An(9o,A*) d2E.(00,A.)

4ir(10-1,0) + 4-i-(.10-1*)2 -2-4 0 .

81 dA 2

Therefore

En( 90, -117 00, - 0 .

Theorem 3.3.3 If A. is the MLE of A then T.(4) is Pitman

regular and ARE(T.(In),Tn(4)) = 1 .

Proof:

Let 0.(0,4) and r.(0,1*) be as defined in (3.2.33) and (3.2.34)

respectively. Since by Theorem 3.2.3 T.(4) is Pitman regular then,

the result of the present theorem follows from Theorem 3.3.2 above and

Theorem A.3 in Appendix A. 0
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3.4 Examples

In this section we use the derived formula of Pitman efficiency

given by (3.2.44) and Theorem 3.3.3 to evaluate the asymptotic relative

efficiency of Tn(1) relative to Tn(In) for the transformed-normal ,

transformed-contaminated-normal and transformed-Student's t models.

Recall that in (3.1.2) we assume that var(e) = 1 . Except for the

normal model we need to rescale e so that this assumption is met. In

all models we vary A over the set {1/4, 1/3, 1/2, 1} . For the

transformed normal model r varies over the set {1/2, 1, 2, 3, 4, 5 }.

For the rest of the models r assumes the above values multiplied by

the factor required to make var(E) = 1 . We use numerical integration

methods (Simpson rule) executed on GAUSS software to evaluate the two

expectations involved in (3.2.44). Appendix E contains the program

used under each model .

3.4.1 Transformed-normal model

The p.d.f. of e is given as

f(e) = 1/4 2z e-E2/2 and var(e) = 1 .

Table 3.1 below gives the results of evaluating ARE(Tn(1) , Tn(An))

for the above proposed values of A and r
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Table 3.1 ARE(Tn(1),Tn(An)) of the

transformed-normal model

1/4 1/3 1/2 1

.5 0.9092 0.9329 0.9667 1

1 0.7294 0.8044 0.9075 1

2 0.4043 0.5584 0.7906 1

3

4

5

0.2172 0.3884 0.6969

0.1214 0.2790 0.6244

0.0716 0.2076 0.5675

From the above table note that:

1. There is a considerable gain in efficiency when Tn(An) instead

of T0(1) is used.

2. The gain increases as A decreases and/or o increases.

3. The differences among the entries in the first row,

corresponding to a = .5 , are not as much as those in the other rows.

This gives an indication that when a is small, h(y,A) is

approximately linear in y . So, no matter what transformation is

applied we get results that ate close together.

3.4.2 Transformed-contaminated-normal model

Suppose that X has a contaminated normal distribution with

2

contamination variance , that is,

X = (1 -B) Xi + B X2

2

where X1 - N(0,1) , X2 - N(0,, ) and B _ Bin(1,p) . It follows that

the p.d.f. of X is given as
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f(x) = (1-p) p(xt) p p(x2/0/,

where p is the p.d.f. of N(0,1). It can be shown that

2
var(X) = (1 -p) P V -

Let e = X/ex , where refers to the standard deviation of X .

Then var(e) = 1 . Tables 4.2 through 4.5 below give the asymptotic

relative efficiency ARE(Tn(1),Tn(An)) for the different combinations

2
of p = .1 and .2 , and 7 = 16 and 25 .

Table 3.2 ARE(Tn(1),Tn(An)) of the transformed-contaminated-

2
normal model p = .1 , q = 16

N A 1/4 1/3 1/2 1

.5 0.2236 0.3364 0.5550 1

1 0.0464 0.1248 0.3651 1

2 0.0050 0.0319 0.2132 1

3 0.0011 0.0130 0.1514 1

4 0.0004 0.0068 0.1186 1

5 0.0002 0.0041 0.0984 1



Table 3.3 ARE(Tn(1),Tn(10)) of the transformed-contaminated-

2
normal model p = .2 , q = 16

1/4 1/3 1/2 1

.5 0.2042 0.3114 0.5273 1

1 0.0421 0.1138 0.3411 1

2 0.0046 0.0292 0.1976 1

3

4

5

0.0010 0.0120 0.1403

0.0003 0.0063 0.1010

0.0001 0.0038 0.0913

Table 3.4 ARE(Tn(1),Tn(In)) of the transformed-contaminated-

2
normal model p = .1 , 7 = 25

(\A
1/4 1/3 1/2 1

.5 0.1182 0.2128 0.4335 1

1 0.0177 0.0636 0.2573 1

2 0.0015 0.0139 0.1382 1

3

4

5

0.0003 0.0053 0.0948

0.0001 0.0027 0.0728

0.0001 0.0016 0.0597

41
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Table 3.5 ARE(Tn(1),Tn(In)) of the transformed-contaminated-

2
normal model p = .2 , = 25

.\ 1/4 1/3 1/2 1

.5

1

2

3

4

5

0.1136 0.2053 0.4221 1

0.0173 0.0618 0.2500 1

0.0015 0.0137 0.1349 1

1

1

1

0.0003 0.0053 0.0929

0.0001 0.0027 0.6244

0.0001 0.0016 0.0589

From the above tables we note that

1. The entries in all tables show that Tn(In) is asymptotically

much more efficient than Tn(1) , and as above the efficiency increases

as a increases and/or A decteases.

2. Comparisons of Table 3.2 with Table 3.4 and Table 3.3 with

Table 3.5 show that there is not much difference in efficiency between

the two proportions of contamination.

3. Comparisons of Tables 3.2 and 3.3 with 3.4 and 3.5 show that

the gain in efficiency increases as the contamination variance

increases.

3.4.3 Transformed Student's-t model

Suppose that X has a Student's-t distribution with v degrees of

freedom. The p.d.f. of X is then given by

f(x) = 1/ 4vz
nv+1)/2

( 1 + t 2/V ) -(
v+

1)/2

r(P/2)
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and var(%) = v/(v-2) , v ) 2 . Let e = X 4 (v-2)/y then,

var(e) = 1 . Tables 3.6, 3.7 and 3.8 below contain the asymptotic

relative efficiency for the t-model with v equals 10 , 20 and 30

respectively.

Table 3.6 ARE(Tn(1),T,(An)) of the transformed-Student's

t model v = 10

u\A,
1/4 1/3 1/2 1

.5 0.7828 0.8338 0.9067 1

1 0.4991 0.6286 0.8056 1

2 0.1661 0.3436 0.6490 1

3 0.0591 0.2009 0.5440 1

4 0.0246 0.1277 0.4707 1

5 0.0117 0.0869 0.4172 1



Table 3.7 ARE(Tn(1),Tn(ln)) of the transformed-Student's

t model v =20

a\A 1/4 1/3 1/2 1

.5 0.8594 0.8931 0.9422 1

1 0.6367 0.7318 0.8647 1

2 0.2983 0.4637 0.7290 1

3 0.1396 0.3014 0.6289 1

4 0.0704 0.2061 0.5550 1

5 0.0385 0.1479 0.4988 1

Table 3.8 ARE(Tn(1),Ta(in)) of the transformed-Student's

t model v =30

.5

1

2

3

4

5

1/4 1/3 1/2

0.8782 0.9080 0.9513 1

0.6710 0.7586 0.8804 1

0.3358 0.4975 0.7512 1

0.1658 0.3317 0.6531 1

0.0870 0.2311 0.5796 1

0.0490 0.1680 0.5230 1

44

From the above tables we note that the same directions for the

previous two models continue to hold for the t-model. Further it may

be noted that the ARE is smaller for smaller v and vice versa.
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4. ASYMPTOTIC RESULTS FOR TEST STATISTICS UNDER

SKEWED MODELS

In Chapter 3, the performance of the transformed t-test relative

to the untransformed t-test was investigated under the assumption that

the original observations have a heavy-tailed symmetric distribution.

In that chapter we considered the John-Draper family of transformations

which symmetrically deals with both tails and hence we get a symmetric

distribution for the transformed variable.

In the present chapter we drop the symmetry assumption and assume

that when the two-domain transformation is considered, there exists

some value of the transformation parameters that bring the transformed

variable into normality. As in Chapter 3, the main purpose of this

chapter is to evaluate the Pitman asymptotic relative efficiency of the

t-test in the original scale relative to the transformed t-test using

the maximum likelihood estimators of the transformation parameters. We

use the transformed t-test assuming the true transformation is known as

the basic model to which we relate the asymptotic results of both the

untransformed test and the transformed test using the MLE's of the

transformation parameters. In Section 4.1 we introduce some notation

that will be frequently used throughout the chapter. Section 4.2

contains proofs of the different asymptotic results required for the

derivation of the Pitman efficiency of the untransformed t-test

relative to the t-test after applying a known transformation. In

Section 4.3 we derive the asymptotic results for the transformed t-test

using the maximum likelihood estimators of the transformation

parameters and the asymptotic relative efficiency of this test relative
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to the t-test with a known transformation. The chapter is concluded in

Section 4.4 with some numerical evaluations of the asymptotic relative

efficiency under the transformed normal model for different

combinations of the transformation parameters.

4.1 Definitions and Notation

Throughout this chapter h(Y-0,1) is used to denote the

two-domain transformation introduced in Section 2.2 for A # 0 as

A

(1 (6 LY+1) )/A,

h(Y-0,A) = A2

((Y -9+1) 1)/12

Y < 9

Y > 9

where A denotes the 2x1 vector of transformation parameters (A1,,12) t.

We always assume that both A, and A2 are positive. As in Chapter 3, 9

is used to denote the median of the distribution of Y .

The main model we assume in this chapter is

h(Y-0,10 = IC (4.1.1)

where, for some A* , 0 and i , e is assumed to have a standard

normal distribution. The asymptotic results are developed for the

problem of testing

Ho: 0 = 00 versus Hi: 9 = en > 00

where

9n= ao k

for some positive number k1.

(4.1.2)

The test statistics we consider in this chapter are the same as

those introduced in Section 3.1 with h(Y-0,A) being the two-domain

family instead of the John-Draper family. Let fy(y,O,A*,,) denote

the pdf of Y ,
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dh (7- 0, A*)

fy(y,O,A*,,r) =(1/O) f c(h(y-O,A)/ f) , (4.1.3)

where f
e
(Z) is the pdf of the standard normal distributio.

Let w = (A, O) and let U(e,u) denote the 3x1 score vector with

k-th component given by

o(in fy (y , 0, a, tr))

Uk(e,m) =
dvk

Let I(m) denote the 3x3 information matrix with (j,k) entry given by

02(ln fy(Y, tr))

Ijk(m) = El 1dui dWk

Let IA
A
(m) denote the upper left 2x2 block of I

-1
(m) . Let U*(e)

denote U(E,m*) and let I
*

denote I
AA

(m*) where u* = (A*,f).

4.2 Asymptotics When A is Known

In this section we derive the asymptotic properties of the

transformed t-test Tn(A*) and the t-test in the original scale Tn(1)

under both the null and alternative models and show that both of them

are Pitman regular. Also, we give an expression for ARE(Tn(1),Tn(A*)).

4.1.1 Asymptotic distribution of Tn(A*) under Ho

Assume that under Ho and for some A* and r

h(Y-00,A*) = re (4.2.1)

where e has a standard normal distribution. Then

Tn(A*) = lin( 00,

By the CLT and the fact that

A*) / On( 90, A*) =

1

En/ Of .

it follows thatOE/, ----4 ,

/, N(0,1) Therefore under Ho
n f

----4 .

To(A*) --L. N(0,1) .
(4.2.2)
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4.2.2 Asymptotic distribution of T (4) under contiguous alternatives

Given ki > 0 , under the alternative model, we assume that

h(Y-On,A*) = e . (4.2.3)

The first step in deriving the asymptotic distribution of Tn(A*)

under the alternative model is to express h(Y-00,A*) in terms of

h(Y-On,A*) . For Y < 00,

h(Y-00,A*) = [1 (00-Y+1)

Al*

]/ Al* = [1 (On-Y+1-k1/4Y)
Ai*

]/A1*

= [1-(9 -Y+1)

A1 *

(1 ki/1 )
Al*

]/1 1*
(On-Y+1)

Since we are considering asymptotic results, we can assume kiaii-< 1 .

Since Y-00 < 0 implies Y- On < 0 hence, a Maclaurin expansion of

Al*

(1 is absolutely convergent and

(O-Y+1)

h(Y-00,10 = h(Y-0,1,10 + (k1/417)(0n-Y+1)

(1/A10 E ((-k1/411 ) /j0(
it

(A1-m))(0n-Yi+1)

11*J

J =2
m=0

I *-1

Similarly for Y > On it can be shown that,

A2)C1
h(Y-90,A*) = h(Y-On, A*) + )(Y-On+1)

j-1 A2*-j

+ (1/.120 E /j!) ( 11 (A2*-m))(Y-On+1)

j22
m=0

Let An and Bn be defined as in (3.2.10) and (3.2.17) respectively.

Under model (4.2.3) and for all YiE An we can write

h(Y-00,A*) = fe R3(E.4,11) (4.2.4)

where
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m
i j-i

1-j/Al*

R3(f,A*,n) = -(1/A1*) E {((-k1/471)'/j!)( II (A1*m))(1-1100
J.' iii.o

m i j-1 1i/A2*
I (e) } + (1/12*) E {((k1/4T) /j) ( n (A2m)(14-120e) I (e) }

(-m,o) J-1
..0 (0,00

or we can write

where

and

(4.2.5)

h(Y-00,1*) = re + (k / (g(e,A*)) + R4(e,A*,n) (4.2.6)

1-1/A1* 1-1/A2*

g(f,A*) = (1-,110e) I (e) +(1 +A2,gre) I (e)

(-m,0) (0,m)

(4.2.7)

m
i . j-I

1-j/A1*

R4(e,A*,n) = -
jE2

{((-k /4-i-)-/3!)(
mII 1

(1(*-M))(1-10170

CO j j -1 1j/12*
I (e) } + E {((k1/4i- ) /j!) ( II (A2*-2) (14-A20e) I (e) } .

(-00,0) j -2 m=1 (0,m)

(4.2.8)

In the following two theorems we show that under the alternative

model on(80,A*) is a consistent estimator of r and Tn(I*) tends

to a normal distribution.

Theorem 4.2.1 Letting ;11(80,A*) be defined as in (4.1.3), then

under the alternative model given by (4.2.3) ra(00,A*) is a

consistent estimator of o .

Proof From (4.2.4) write

2 2

h (Y-00,10 = f2 + Zoe R3(f,A*,n) + R3(E,A*,n)

hence,



(1/n) E h
2

(Yi-00,A*)
(,2

/n) E ei
2
=

YiEArcl ciEB1c,

9

(2i /n) E fityci,A*) + (l/n) E R3(ei,A*,n) .

ciEBrci
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(4.2.9)

2

From (4.2.5) note that the cross product term in R3(ci,A*,n) is 0

since I (c1) I (ci) = 0 for all ei . Also, from (4.2.5) note that

(-m,0) (0,m)

each component of R3(ci,1,0,n) has the same form as that of

Ri(ci,A*,n) given by (3.2.14). Hence from Lemma 3.2.2(i) we get

(1/n) E eiyei,4 ,n) --E-4 0

and from Lemma 3.2.2(ii) we get

(1/n) E R3(ci,A*,n) --11-4 0 .

Therefore it follows from (4.2.9) that

(1/n) 2 h
2

(Yi-00,4) (r
2

/n) E e2 --12-4 0 . (4.2.10)

YiEkci ciEB,c1

By the WLLN (1/n) E ci2/n --L4 1 and by Lemma 3.2.1(v),
i =t

hence,

p
(1/n) ei

2

/n (1/n) Ei
2
----+ 0

1=1

2 2 2

(r In) ei

fiEB;

(4.2.11)

From a similar argument like that of Lemma 3.2.1(iii) we can show

2

(1 /n) h (Yi-00,
i=i

(1/n) E h
2

(Yi-00,4) 1-2-4 0 .

YiEA

(4.2.12)

Hence by (4.2.10) , (4.2.11) and (4.2.12) we get

p
(1/n) E h

2

(Y--90,A*) --0 12 .

i=1

Also, it can be shown that, hn(610,10 ----4 0 . Therefore under
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2 2

contiguous alternatives rn(00,A*) r . By Fact 4 in Appendix A

rn(90,A*) I .

Theorem 4.2.2 Let = Elg(e,101 where g(c,A*) is

defined in (4.2.7). Under th alternative model given by (4.2.3)

Tn(A*) N(0,1) .

Proof As argued in the proof of Theorem 3.2.2 it suffices to show

Tn(A*) - 4 -2.-4 N(0,1) .

2 h(Yi-00,A*) n = 4E( E ei/n) + ki E g(ci,A*)/n

+ (1/4i) E R4(ei,A*,n) .

ciEBrci

(4.2.13)

Since each component of R4(ci,1*,n) as defined in (4.2.8) has the

same form as R2(ei,A*,n) given by (3.2.16), hence by Lemma 3.2.2(iii)

(1/471) E R4(ei,A*,n) 0 . From (4.2.13)

eiEB

4if E h(Yi-60,A*)/n d4 E ei/n ki E g(ei,A*)/n

YiEAg.

P u (4.2.14)

In the proofs of parts (ii), liv) and (vi) of Lemma 3.2.1 replace A*

by A2* to conclude

4H-E.(00,A*) .171 E h(Yi-00,10/n IL+ 0 ,

Y1EA

4ir E ei/n ----+ N(0,1) ,

and

(4.2.15)

(4.2.16)

ki E g(ci,10/ri -2-4 ki Efg(ei,A*)} . (4.2.17)

eiEB,c2

(4.2.14) through (4.2.17) imily,

4i -130(00,A*) k1 Efg(E1,A01
Tn(A*) $ ---+ N(0,1)

0
a.
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4.2.3 The test statistic Tn(1*) is Pitman regular

2

We first derive candidates for in(8) and rn(0) in

Appendix B. Consider a Taylor expansion of Tn(I*) about 9 = 0 , where

is in a neighborhood of 00 .

An(0,1*)
(117/4 En(00,A*) cyli/f) in(0,A*) + (TIM (00-0)

00
n

= (1/9)417 En(0,1*) (411M ( 0 0 0) (- ( OLY i+1)

11*1
I (Y r)

i=t (-m, 0)

A2*-1

(Y 6+1) I (Y i)]/n

(0,m)

Under the model h(Yi-0,,l *) = trei

Tn ( 74 41-i- En + (4 f) (0-00) (1/n g(ei,A*)) .

i=1

Define

tn(9) = (4E74(0-0) E{g(e,A*)} (4.2.18)

where g(r,A*) is given by (4.2.7), and define

2

rn(0) = 1 . (4.2.19)

Theorem 4.2.3 Let tn(0,A*) and rn2(0,1*) be as defined in

(4.2.18) and (4.2.19) respectively then, Tn(4) is Pitman regular and

2

Rn( go) = (n//2) {E[g(f-,A*)] /2 -

Proof To prove the theorem verify the seven regularity conditions

of Appendix B.

Cl. Note that #n(00) = 0 and Tn(A*) --1-4 N(0,1) . Therefore,

from (4.2.2)

Tn(A*) #n(00)
N(0,1) .

rn(00)

C2. Under H1, 0 = On and (4.1.18) becomes
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'fin (9n) = k 1 Efg(c,4)1/f = , where $ is as in Theorem 4.2.2.

Hence the result of this theorem verifies the asymptotic normality

under contiguous alternatives.

C3. From (4.2.18) iin(0) is differentiable for all 9 .

C4. t(0) = (45/0 Efg(c,A*) } = 45' . From (4.2.7),

1-1/A" 1-1/A2*
g(c,A*) = (1-11 *11.0 I (c) + (1+A2*,c) I (c)

(m,0) (0,m)

Which is positive every where. Hence E{g(c,10} > 0 and t(0) > 0 .

C5. 1:(00)/45-= tat ) 0 .

C6. ti(0) is the same for all 9 hence,

sup 1,,;(0n)/t(00) 11 = 0 for all n .

On< On< On

C7. rn(0n)/rn(00) = 1 kor all n .

Therefore Tn(I*) is Pitman regular and from Appendix B

R:(00) = n {E[g(E,A*)] }2/f2 . (4.2.20)

4.2.4 Asymptotics of the t-test in the original scale

Recall that the t-test in the original scale is given by

Tn(1) = (i-00)/;y . Under the model h(Y-0,A*) = re we can express

Y as

1/At*
9 [ (1-A10c) -1

Y =
0 + [ (1+A2*fc)

1/A2*

This can be written as

E < O

> 0

1/A1 * 1/A2*
Y -9 = (1-A1 *re) I (c) + (1+A2*/c) I (c) .

(--m,0) (0,m)

(4.2.21)

Define £(A *, r) = E0(Y -9) -

Theorem 4.2.4 Let tn(49) = (4/72-/y[(0-00) + A*,f)] and let



54

2
r.(0) = 1 . Then, the test statistic Tn(1) is Pitman regular with,

R0(00) = 11/q .

Proof The test statistic is Pitman regular if it satisfies the seven

regularity conditions of Appendix B .

Cl. Under Ho to(90) = Poy £(,1 *, P) . hence

4W (Y 00) 4T e(A*,r)
Tn(1) - vin(80)

( 00+e( A*, f) )]
Eo (Y)]

1 417 dY

Hence by the CLT

T.(1) t.(0) ----+ 14(0,1) .

C2. replace 00 by On in the above argument for Cl .

C3. tn(0) is differentiable for all 0 .

C4. 4,4(e) 4-d/fy > 0 .

C5. t(00)/4E-= Vey > 0 .

C6. from C4 401(0) is the same for all 0 hence,

sup 11:2(011)/%(00) 11 = 1 for all n .

00< On< On

2
C7. rn(0) = 1 for all n and 9 .

Hence Tn(1) is Pitman regular and from C4 and C7 ,

Rn2 (00) = n/ (4.2.22)

From (4.2.20) and (4.2.21) we get the Pitman asymptotic relative

efficiency of the untransformed t-test relative to the transformed

t-test with a known transformation as,

ARE(Tn(1),Tn(10) = f2/ E2fg(E,A01 (4.2.23)

r
2

where g(c,A*) and 4 follow from (4.2.7) and (4.2.21) respectively.
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4.3 Asymptotics when A is Unknown

In this section we show that if An is the maximum

likelihood estimator of A , then the test statistic Tn(A.) is Pitman

regular and we derive an expression for ARE(Tn(A*),Tn(An)) .

Lemma 4.3.1 Under both if and H1,

i. 13,22(90, An) - 13121(00,A*) -2-4 0

ii. (l/n) h2(Yi-00,in) (1 /n) h2(Y1-00,1,0) -2-4 0
i =1 i=1

The proof of this lemma is given in Appendix D.

Theorem 4.3.1 in(61o,An) is a consistent estimator of a under

both the null and alternative models.

Proof Since by the results of Sections 4.2.1 and 4.2.2

0.2ta p f2
under both the null and alternative models, the proof is immediate from

Lemma 4.3.1.

Lemma 4.3.2 If An is a consistent estimator of , then

00,11 n) 00,12.)

(1/n) E and (1/n) E are bounded in
i=i 0,47 i" dA;

probability under the null and alternative models.

Lemma 4.3.3 Under both the null and alternative models

n A(Yi-00,1*)
(1/n) E converges in probability to the same limit,

i=l dA

E{ [-Ag(1-4001n(1-110e) AiloAI (c) }

E{ (A2*(14.12001n(1 +A200 (e) }

(0, m)

The proofs of the above two lemmas are given in Appendix D.



Theorem 4.3.2 Let $ = 0 and let

2 t

r = var[e + U*I EiS(e,A*)

where U* and I are defined in Section 4.1. Under the null model

T5(An)
-2-4 N(0,1) .

T
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Proof Consider a Taylor expansion of i5(00,An) about An = A* .

R ah(Yi0,4)
41Tilih(Yi-00,A,)/11 = 41-11 h(Yi-60,A*)/11 + 411-(4-A*)

t

( )/n
11 i= I dA

R Ph(Y coo, A in)
+ (4F/211(Ain-A1*)2

i=1 0.17

E Ph(Yi-00,Ain)

+ (4i/2n)(A2n-A202 N (4.3.3)
i=1 dal

where Ain and 125 are such that, Ilin-Al*I < lAin-A1*1 and

IA2n-A2* I < IA25 A2*I Since by Appendix E (Akn-'1k *) -2-4 0 and

41-16kn- '1k*)
has a limiting normal distribution, and by Lemma 4.3.3

the second order derivatives in the above expansion are bounded in

probability, therefore the two terms including these derivatives tend

in probability to 0 . Denote the sum of these two terms by Rn so

that R5 -2-4 0 . Under Ho

h(Yi-90,A,)/n = 417(1/n) fi lei + 411(1/n) (An-A*)

121 ial

Let

t

dh(Yi-00,A*)
( E )/n + R. . (4.3.4)

i =1 dA

45 = 411-(1/n) E rei + 117(An-A*) t Ef(S(E,A*0 . (4.3.5)

Since by Lemma 4.3.3
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n dh(Yi-00,A*)
(1 /n) / EIS(E,101 -2-4 0 ,

i=1 dA

hence subtracting (4.3.5) from (4.3.4) and noting that Fi(An-A*)t

tends to a limiting normal distribution by Theorem E.1 in Appendix E we

get

Let

.17-1 E h(Yi-90in)/A - Q. -1-4 0 .

i=i

Wi= rei+Ut(ei,A*) I
*E

{S(,A*)}

(4.3.6)

(4.3.7)

IA °
From Lemma E.5 we have (I. - 41-I E U(el,A*)/fl -2-4 0 .

i=i

From (4.3.5) and (4.3.7) by subtraction we get

fir (1/n) E Wi Q. -2-4 0 . (4.3.8)
i=i

From (4.3.6) and (4.3.8) we get

41(1/m) E h(Yi-e0,An) 417(1/1a) -2-4 0 . (4.3.9)
i=1 i=1

Since it is assumed that E(ei) = 0 and it is known that

E{U(ci,A*)} = 0 , hence Old = # = 0 . From (4.3.7) var(Wi/f) = r2.

By the CLT 4E-(1/m) E WI N(0,1) . From (4.3.9)
i2I

(417i h(Yi-90,1.)/n)/(0. rn(00)) -2-4 N(0,1) .

i2I

Since by Theorem 4.3.1 ,(00,4)/r --E-4 1 , therefore,

Tn(An)

--=-4 N(0,1) .

0

Theorem 4.3.3 Let $ = (ki/r) Efg(e,A*) } where, g(e,A*) is

defined in (4.2.7) and let r2 = var(e + U:I* EfS(e,A*)1/f) . Under the

contiguous alternative model (4.2.3)

Tn(An) -

r
N(0,1) .
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Proof

Consider the Taylor expansion given by (4.3.3). Since the result

of Lemma 4.3.3 holds under the alternative hypothesis, hence using the

same argument as in the previous theorem the two terms including the

second order derivatives go in probability to 0 . As in the proof of

Theorem 4.2.2, under the alternative model

4H 17111(00,4)/f - (417 e0 + (Itibr)Nfg(c,A.)1] -2-0 0 .

By Lemma 4.3.3 under the alternative model,

n dh(Yi-00,,y
(1 /n) E I

- Ef(S(e,A*)} -24 0.
i=1 dA

Using an argument similar to that given in the proof of the previous

theorem we can write

41-1 111(00,,111) / =

where Rn --12-4 0 . Let

then,

and

(ci + Uk(ci,A0I-1(4)EIS(e,A*) } hrl
J.,

+ (kihr)E{g(E,A*)} Rn ,

iti = ei + Ut(ei,1,0)I E{S(E,A*)}/f+ (kl/f)Elgte,41,

= 'Ea/ Efg(e, )1

var(iii/f) = r
2 .

Hence Theorem 4.3.1 and the CLT imply,

Tn(An) $
=-4 N(0,1)

fl

Theorem 4.3.4 The test statistic Tn(An) is Pitman regular.

Proof

let t11(8) = (411 /f) (8-80) E{g(e,A*)} and let

Tn2 ( B1 = var[c + U! I*0( f, A) }/ . Note that tn( (On) and rn( 0)
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under Ho and HI are the same as those defined in Theorems 4.3.2

and 4.3.3 respectively. Hence conditions Cl and C2 of Appendix B

follow by these two theorems respectively. It remains to verify C3

through C7.

C3. in(0) is differentiable for all 0

C4. t(0) = (1/f)E{g(f,1*)} > 0 , because g(e,A*)=

which is positive everywhere.

t(00) E{g(f,A*)}/r
C5. > 0 .

rn(00) [var( f + U* I
*
EIS(f,A01/4

1/2

C6. t(0) is the same for all 0 hence,

sup I t(Onl/t(00) 1 I = 1 for all n

00< On< On

2
C7. rn(0n)/rn2 (00) = 1 1

for all n

Therefore Tn(An) is Pitman regular.

From Appendix B

2
Ran

n E2Ig(e,A*)1/ r

t

[var(e + U* I
*
EiS(E,,101/47]

00

(4.3.10)

From (4.2.20) and (4.3.8) we get,

ARE(Tn(A*),Tn(An)) = var(ve + IIII*E{S(f,A)}) (4.3.11)

0'
2

4.4 Examples

In this section we use numerical integration to evaluate the

asymptotic relative efficiency of the t-test in the original scale

relative to the transformed t-test using the MLE of the transformation

parameters. The model we consider is the transformed-normal model by
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the two-domain family. This is done in two steps. In the first step

we evaluate the asymptotic relative efficiency of the t-test in the

original scale relative to the transformed t-test when the

transformation is known. Next, we evaluate the asymptotic relative

efficiency of the transformed t-test when the transformation is unknown

and the MLE's of the transformation parameters are used, relative to

the corresponding test when the transformation is known. the product

of the above two efficiencies gives the required efficiency. Tables

4.1 through 4.4 below give the asymptotic relative efficiency for fixed

12 and different values of AI and f . From these tables note that:

1. There is no gain in efficiency when the transformed t-test is

used with small values of f i The gain starts to be considerable if

f is at least 1/2 .

2. The gain in efficiency as AI varies has a parabolic shape

with the smallest gain being when Ai is slightly greater than A2 .

3. When AI = A2 the two-domain family reduces to the

John-Draper family and the columns representing this situation are the

same as those of Table 3.1.



Table 4.1 ARE(Tn(1),T0(4)) 12 = 1/4

N2 1/4 1/3 1/2 3/4 1

0.1 0.9955 0.996 0.9965 0.9965 0.9955

0.25 0.974 0.9769 0.98 0.979 0.973

0.5 0.9092 0.92 0.9296 0.9236 0.9023

1 0.7294 0.7615 0.7814 0.752 0.6935

2 0.4043 0.4596 0.4688 0.3964 0.3145

3 0.2172 0.2668 0.257 0.1866 0.1289

4 0.1214 0.1581 0.1407 0.089 0.0549

5 0.0716 0.0971 0.0797 0.0449 0.0252

Table 4.2 ARE(Tn(1),Tn(A0) A2 = 1/3

NI 1/4 1/3 1/2 3/4 1

0.1

0.25

0.5

1

2

3

4

5

0.9960 0.9965 0.9972 0.9973 0.9965

0.9769 0.9802 0.9842 0.9844 0.9794

0.9200 0.9329 0.9464 0.9449 0.9270

0.7615 0.8044 0.8412 0.8265 0.7741

0.4596 0.55134 0.6218 0.5650 0.4671

0.2668 0.3884 0.4512 0.3677 0.2683

0.1581 0.2790 0.3313 0.2411 0.1577

0.0971 0.2076 0.2483 0.1625 0.0966
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Table 4.3 ARE(Tn(1),Tn(A0) A2 = 1/2

NAl 1/4 1/3 1/2 3/4 1
r

0.1

0.25

0.5

1

2

3

4

5

0.9965 0.9972 0.9981 0.9986 0.9981

0.9800 0.9842 0.9897 0.9922 0.9891

0.9296 0.9464 0.9667 0.9740 0.9631

0.7814 0.8412 0.9075 0.9241 0.8893

0.4688 0.6218 0.7906 0.8137 0.7268

0.2570 0.4512 0.6969 0.7145 0.5882

0.1407 0.3313 0.6244 0.6315 0.4801

0.0797 0.2483 0.5675 0.5629 0.3972

Table 4.4 ARE(Tn(1),Tn(A0) A2 = 1

1/4 1/3 1/2 3/4 1

0.1

0.25

0.5

1

2

3

4

5

0.9955 0.9965 0.9981 0.9995 1

0.9730 0.9794 0.9891 0.9975 1

0.9023 0.9270 0.9631 0.9920 1

0.6935 0.7741 0.8893 0.9774 1

0.3145 0.4671 0.7268 0.9447 1

0.1289 0.2683 0.5882 0.9135 1

0.0549 0.1577 0.4801 0.8851 1

0.0252 0.0966 0.3972 0.8593 1
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Tables 4.5 through 4.8 below give the asymptotic relative

efficiency of the transformed t-test using the MLE's of the

transformation parameters relative to the corresponding test using a

known transformation. In this situation it should be expected to find

that the resulting asymptotic relative efficiency is at least 1 but, as

the tables show we always get the evaluated efficiency smaller than 1 .

The program given on page 169 of Appendix F used to evaluate this

efficiency have been written in two different ways to make sure that it

does not have any mistakes and we get the same results. Also each

statistic calculated in the program including the asymptotic relative

efficiency itself have been simulated for the special case where

AI = A2 = r = 1 using 20,000 runs of samples of size 100 . It was

found

that every simulated formula lies within 1 standard error of its

corresponding true value. When we tried to add some more terms to the

Taylor expansion given by (4.3.6) and on which (4.3.10) is based we

found that all higher order terms tends to 0 in the limit and does not

have any effect on the involved expressions. We tried to neglect the

AA
iadjustment due to estimating r when I is evaluated but we get the

same type of result. This unusual result can be added to a similar

type of results discussed by Freedman and Stephen (1984).



Table 4.5 ARE(Tn(1,),Tn(An)) A2 = 1/4

\NI 1/4 1/3 1/2 3/4 1

0.1

0.25

0.5

1

2

3

4

5

0.8556 0.853 0.8548 0.8542 0.8536

0.8533 0.8528 0.8518 0.8505 0.8496

0.8500 0.8490 0.8475 0.8459 0.8449

0.8443 0.8428 0.8408 0.8394 0.8393

0.8356 0.8336 0.8315 0.8315 0.8334

0.8289 0.8267 0.8251 0.8265 0.8301

0.8236 0.8213 0.8202 0.8230 0.8280

0.8191 0.8108 0.8162 0.8202 0.8265

Table 4.6 ARE(Tn(A*),Tn(An)) A2 = 1/3

0
NNI 1/4 1/3 1/2 3/4 1

0.1

0.25

0.5

1

2

3

4

5

0.8553 0.851 0.8546 0.8539 0.8533

0.8528 0.8522 0.8511 0.8499 0.8488

0.8490 0.8480 0.8463 0.8445 0.8434

0.8428 0.8411 0.8387 0.8368 0.8363

0.8336 0.8310 0.8281 0.8270 0.8280

0.8267 0.8236 0.8206 0.8205 0.8230

0.8213 0.8178 0.8149 0.8157 0.8194

0.8168 0.8131 0.8103 0.8120 0.8167
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Table 4.7 ARE(Tn(1,),Tn(in)) .l = 1/2

r\li 1/4 1/3 1/2 3/4 1

0.1

0.25

0.5

1

2

3

4

5

0.8548 0.8546 0.8541 0.8534 0.8527

0.8518 0.8511 0.8500 0.8486 0.8475

0.8475 0.8463 0.8443 0.8422 0.8408

0.8408 0.8387 0.8356 0.8328 0.8315

0.8315 0.8281 0.8236 0.8206 0.8202

0.8251 0.8206 0.8153 0.8125 0.8129

0.8202 0.8149 0.8091 0.8065 0.8076

0.8162 0.8103 0.8041 0.8018 0.8035

Table 4.8 ARE(Ta(A*),Ta(An)) 12 = 1

1/4 1/3 1/2

0.1

0.25

0.5

1

2

3

4

5

3/4 1

0.8536 0.8533 0.8527 0.8520 0.8513

0.8496 0.8488 0.8475 0.8458 0.8443

0.8449 0.8434 0.8408 0.8378 0.8356

0.8393 0.8363 0.8315 0.8267 0.8236

0.8334 0.8280 0.8202 0.8130 0.8091

0.8301 0.8230 0.8129 0.8042 0.7999

0.8280 0.8194 0.8076 0.7979 0.7934

0.8265 0.8167 0.8035 0.7930 0.7883
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Multiplying each entry of Table 4.1 by its corresponding entry of

Table 4.5 and so forth, we get the last 4 tables which give the

asymptotic relative efficiency of the t-test in the original scale

relative to the transformed t-test under the two-domain family.

Table 4.9 ARE(Tn(1),Tn(1n)) 12 = 1/4

\AI 1/4 1/3 1/2 3/4 1

0.1 0.8517 0.8519 0.8519 0.8512 0.8497

0.25 0.8311 0.8331 0.8347 0.8327 0.8267

0.5 0.7728 0.7811 0.7879 0.7813 0.7624

1 0.6159 0.6418 0.6570 0.6312 0.5820

2 0.3378 0.3831 0.3898

3 0.1800 0.2206 0.2121

4 0.1000 0.1298 0.1154

5 0.0587 0.0793 0.0650

0.3296 0.2621

0.1542 0.1070

0.0733 0.0455

0.0368 0.0208
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Table 4.10 ARE(Tn(1),Tn(An)) 32 = 1/3

tr\ii 1/4 1/3 1/2 3/4 1

0.1 0.8519 0.8521 0.8522 0.8516 0.8503

0.25 0.8331 0.8354 0.8377 0.8366 0.8313

0.5 0.7811 0.7911 0.8009 0.7980 0.7819

1 0.6418 0.6766 0.7055 0.6916 0.6474

2 0.3831 0.4640 0.5149 0.4672 0.3867

3 0.2206 0.3199 0.3703 0.3017 0.2208

4 0.1298 0.2282 0.2700 0.1967 0.1292

5 0.0793 0.1688 0.2012 0.1319 0.0789

Table 4.11 ARE(Tn(1),Ta(An)) A2 = 1/2

trNNI 1/4 1/3 1/2 3/4 1

0.1 0.8519 0.8522 0.8524 0.8522 0.8511

0.25 0.8347 0.8377 0.8413 0.8419 0.8383

0.5 0.7879 0.8009 0.8163 0.8203 0.8098

1 0.6570 0.7055 0.7583 0.7696 0.7395

2 0.3898 0.5149 0.6511 0.6677 0.5961

3 0.2121 0.3703 0.5682 0.5806 0.4781

4 0.1154 0.2700 0.5052 0.5093 0.3877

5 0.0650 0.2012 0.4563 0.4513 0.3191
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Table 4.12 ARE(Tn(1),T0(A0)) A2 = 1

\I 1/4 1/3 1/2 3/4 1
r

0.1 0.8497 0.8503 0.8511 0.8516 0.8513

0.25 0.8267 0.8313 0.8383 0.8437 0.8443

0.5 0.7624 0.7819 0.8098 0.8311 0.8356

1 0.5820 0.6474 0.7395 0.8080 0.8236

2 0.2621 0.3867 0.5961

3 0.1070 0.2208 0.4781

4 0.0455 0.1292 0.3877

5 0.0208 0.0789 0.3191

0.7681 0.8091

0.7347 0.7999

0.7062 0.7934

0.6815 0.7883
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5. SIMULATION STUDY

In this chapter we present the results of simulations of the level

and power of the testing procedures discussed in the previous chapters

to test for the median of a certain distribution. These are: the t-test

calculated from the original observations, the transformed t-test using

the John-Draper or the two-domain family, the trimmed t-test and the

trimmed transformed t-test with 10% and 20% of the observations on each

side being trimmed. This simulation study is intended to serve two

purposes. The first is to use finite sample sizes to support the

asymptotic results of Chapters 3 and 4 . This is done by comparing the

simulation results of the first two test statistics above. The second

purpose is to try to give some general trends through overall

comparisons among the different testing procedures. For example, given

some implications from the data about symmetry, tail heaviness and

degree of spread, can we state that a certain test may be recommended

because it is the best or because it is safer under the set of data at

hand?

In Section 5.1 we give a general description of the simulation

study. Section 5.2 contains a discussion of the conclusions that can be

drawn from the study. These conclusions are based on a large number of

runs. Details of only a part of these runs are given in the remaining

three sections of this chapter. Section 5.3 is devoted to the simulated

power and level of the different test statistics under the normal model.

Section 5.4 is devoted to symmetric non-normal models transformed by the

John-Draper transformation. In Section 5.5 we consider skewed models

where the two-domain family is applied.
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5.1 Description of the Simulation Study

As mentioned above we report the level and power of the different

testing procedures as output of the simulation runs. The input for each

run is some combination of a number of factors. In the following we

discuss each of these factors.

1. The model used to generate the data. The simulation results

are reported both for symmetric models where the John-Draper family is

applied and for skewed models where the two-domain family is applied.

The symmetric models we consider are, the normal model, the transformed

normal model, the contaminated normal model, the transformed

contaminated normal model, the Student's t model and the transformed

Student's t model. Under the transformed models mentioned above the

data are generated by applying the inverse of the John-Draper

transformation for some A smaller than 1 to the associated symmetric

model so that we generate data sets with heavier tails than those from

these symmetric models. The skewed models we consider are the

transformed normal model, the Gamma model and the extreme-value model.

The data for the transformed normal model in the last case is generated

by applying the inverse of the two-domain family to normal data using

different values of the transformation parameters Al and A2 .

2. Transformation parameters. For symmetric transformed models,

A is chosen to be some value from the set {0 , 1/4 , 1/3 , 1/2} . Note

that A = 0 corresponds to the log-transformation and the case A = 1

corresponds to the no-transformation situation. For the transformed

normal model under the two-domain family, we fix A2 at 1/4 and run

successive runs for Al equal 1/2 , 3/4 and 1 .
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3. Scale parameter. Recall that our model assumption under

transformations is h(Y-9,A) = re where c has some specified

distribution. When c has a standard normal distribution,

represents the standard deviation of h(Y-0,A) . In this case, to study

the effect of the degree of spread of the data, a is taken to be 2, 8,

18, 32 and 50 . The reason fqr this choice is to get some results for

data that represents the difference between two normal samples each with

standard deviation respectively 1 , 2 , 3 , 4 , and 5 . Under

non-normal distributions of ( , a is taken to be 1 , 2 or 3 , which

represents some variety of scale multipliers of the standard deviation

of c to allow for models with different spread.

4. Sample size. Different runs are made for samples of size 10 ,

20 and 50 . These sizes are chosen to represent small, moderate and

large samples.

5. Alternative models. In each run we start by simulating the

significance level corresponding to the .05 nominal level. Then we

simulate the powers under alternative models obtained by successively

adding to the data .2 or .1 times the standard deviation of the

generated random variable, until the simulated power is over .95 .

6. Number of simulations. The number of simulations under the

null model is 30,000 . This makes the standard error of the simulated

.05 nominal level under a normal model approximately equal to .00125 so

that the limits of a 99% confidence interval for the level are

approximately (.0467 , .0533)'. Given the above number of simulations

we may consider any test with simulated level in this interval to have

correct level. Any test with simulated level considerably greater than

the upper limit may be considered as an invalid test. The number of
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simulations under alternative models is 5,000 . This makes the maximum

estimate of the standard error of the simulated power under a normal

model, when it is .5 , equal to .0071 with * .0183 giving the limits of

a 99% confidence interval. The only exception from the above rule

occurs under the Student's t with two degrees of freedom model where its

variance is infinity and we calculate the power by successively adding

.2 to the data. To make a pairwise comparison between any two of the

test statistics we propose to use McNemar's test for paired data.

The GAUSS software is used to generate the data under the different

models specified above and to run all programs. All data sets from the

above models can be generated from normal or uniform random variables.

GAUSS has a normal random number generator based on the fast

acceptance-rejection algorithm (see Kinderman and Ramage, 1976). Also,

GAUSS has a uniform random number generator based on the multiplicative

congruential method (see Kennedy and Gentle, 1980). All data sets are

generated using the number 9831815 as an initial seed. The maximum

likelihood estimators of the transformation parameters under both the

John-Draper and the two-domain families are evaluated by solving for

values of the parameters at which the first derivative of a normal

loglikelihood is zero. The equations are solved using module 10 of the

GAUSS procedures, which finds the roots of a system of nonlinear

equations using Broyden's secant method (see Dennis and Schamble, 1983).

5.2 General Simulation Results

As mentioned earlier the details given in the next three sections

are only a part of the full simulation study. In this section we try to
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give the main conclusions from the whole study without including a large

number of tables. The results listed below are classified according to

the models they represent as, results for the normal model, results for

symmetric non-normal models and results for skewed models.

5.2.1 Normal model

Under the normal model the t-test in the original scale of the data

is the optimal test procedure to consider. Comparisons of other test

procedures with this optimal test give an indication about the

performance of these alternative procedures under the true model.

Although it is not expected that such alternative procedures will

perform as good as the optimal procedure under normality, it may be

required that they perform reasonably well with the hope that they would

have a better performance under non-normal situations.

We simulated the level and power of the different procedures using

normal data with variance 2 alid 50 for the three sample sizes 10 , 20

and 50 . The main results from these simulations are as follows:

1. The simulated significance level is found to belong to the 99%

confidence interval (.0467 , .0533) under all situations except in two

cases corresponding to the trimmed and to the transformed-trimmed tests

with proportion 20% (see Tables 5.1 and 5.2) .

2. The power of the transformed t-test is almost the same as that

of the optimal test. The maximum difference in all runs is about .008 .

3. Trimming under normality is somewhat harmful. It decreases the

power by as much as .03 for 10% trimming and as much as .105 for 20%

trimming.

The above results indicate that the 20% trimmed tests are the worst
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procedures under the normal model. Also, an experimenter may be

reluctant to discard 40% of the data. However, as will be shown latter

there are some situations in which these two tests have the best

simulated powers.

5.2.2 Symmetric non-normal models

The results we report here correspond to the models considered in

Section 5.4. These models are all symmetric with distributions that

have tails heavier than those of a normal distribution. In the

following we give-an outline of the general trends found from the

simulation runs, then we discuss the effect of the different factors

considered in Section 5.1 on the level and power of the different

testing procedures.

1. The maximum simulated significance level under all the

simulated models and all the different testing procedures is found to be

.0529 which indicate that all these procedures have approximately the

correct level.

2. Under very heavy tailed models like the transformed Student's t

and the transformed contaminated-normal models the untransformed tests

appear to be very conservative. In some runs the simulated significance

levels of these tests were as low as .02 and in many cases they are

found to be around .03 .

3. The simulated significance level of the transformed t-test and

the transformed, 10% trimmed t-test always appear to be fairly close to

the nominal level; the smallest simulated level is found to be greater

than .047 . The simulated level of the transformed, 20% trimmed t-test

is sometimes as low as .04113; however, in most cases it is also found

to be close to .05 .
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4. The t-test in the original scale under non-normal heavy-tailed

symmetric models is found to be the worst testing procedure. Under the

very heavy-tailed models referred to above, and for samples of size 20 ,

the simulated power of the transformed t-test is sometimes more than 6

times that of the t-test in the original scale. This result supports

the results of Chapter 3. However, under other models and for some

special values of the parameters, as will be discussed latter, there is

almost no difference among all the different testing procedures.

5. A comparison of the transformed t-test with the trimmed tests

shows that the trimmed tests have more power than the transformed t-test

especially when the proportion of trimming is 20% . When the proportion

is 10%, it is sometimes the case that the transformed t-test has more

simulated power than the trimmed test for alternatives that are close to

the true model.

6. From a comparison between the trimmed test and the transformed-

trimmed test with 10% proportion of trimming it is found that under

heavy-tailed models like the contaminated normal and Student's t models

there is a slight difference between the two tests. Under such models

the simulated power of the transformed-trimmed test exceeds that of the

trimmed test by at most .03 . However, under transformed heavy-tailed

models and under the transformed normal model, the simulated power of

the transformed-trimmed test could be above that of the trimmed test by

as much as .20 .

7. Comparisons of the trimmed test and the transformed-trimmed

test with proportion 20% show that the trimmed test has more simulated

power than the transformed-trimmed test for samples of size 10 . The

difference in powers could be as much as .07 . Under larger sample
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sizes this difference does not exceed .02 . However, under transformed

heavy-tailed models and transformed normal models the simulated power of

the transformed- trimmed test with proportion 20% could be greater than

that of the corresponding trimmed test by as much as .125 .

8. In a trial to investigate the effect of small values of the

scale parameter, a simulation run of the transformed normal model with

I = .5 and el = .25 showed that all the six testing procedures perform

about equally well.

We now discuss the effect of the different factors involved in the

simulation model on the results. It is found that the differences

between the simulated powers of the transformed tests and those of the

untransformed tests increase with the sample size. They also increase as

the heaviness of the tails of the distribution used to generate the data

increases. Note that, for the transformed-symmetric distributions,

smaller values of the transformation parameter produce heavier tails.

Also, these differences increase as the degree of spread of the data

increases.

To conclude our discussion we state that the superiority of the

transformed tests over the untransformed tests appears under certain

combinations of all the above factors together, and in particular under

large values of the scale parameter (to increase the spread of the data)

with small values of the transformation parameter.

5.2.3 Skewed models

The simulation results given in this part correspond to the skewed

models of Section 5.5 . These are the Gamma models with shape

parameters 3 , 4 , and 5, the extreme value model and the transformed-

normal model using the inverse of the two-domain family. Before
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summarizing the simulation results associated with these models, we give

some implications about two problems that arise under skewed models.

The first problem concerns the location parameter the hypothesis

statement involves. That is, are we interested in testing the mean or

the median? Under symmetric models both are the same and this

distinction need not be considered. However, under skewed models they

differ and what is valid for one need not be valid for the other. For

example, if we are testing for the mean using the t-test, even if the

distribution of the original observations is skewed, the Central Limit

,-- -
Theorem implies that the t-statistic n (Y - p)/er converges in law to

N(0,1). If the mean p is replaced by the median 0 and 0 # F then

n (Y 01, diverges in the direction of p- t, .

The second problem concerns what type of alternative is considered.

That is, are we considering right-sided alternatives (RHA) or left-sided

alternatives (LHA). Under symmetry such a distinction need not be made.

However, as indicated in Chapter 2, under skewed models the distribution

of the t-statistic is skewed and hence it will be expected that for one

type of alternative the t-test will be conservative while for the other

type the t-test may not be valid in the sense that its level may be far

greater than the nominal level.

Table 5.1 below gives the simulated significance levels of the

transformed t-test and the t-test in the original scale under both types

of alternatives and for the different models of Section 5.5.



Table 5.1 Simulated significance level corresponding

to .05 nominal level

Original

MODEL

Transforme-normal
Al=.25 A2=.5

Transforme-normal
Al=.25 A2=.75

Transforme-normal
A1=.25 A2=.5

Gamma(4)

Gamma(5)

Extreme-Value

Transformed

RHA LHA RHA LHA

0.0332 0.0712 0.0339 0.0265

0.0235 0.0983 0.0245 0.0261

0.0181 0.1279 0.0243 0.0259

0.1343 0.0177 0.0177 0.0226

0.1219 0.0195 0.0220 0.0298

0.0168 0.1326 0.0266 0.0224
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Note that the Gamma models are skewed to the right while the rest

of the models have their longer tail to the left. The table shows that

the simulated levels for alternatives in the direction of the longer

tail is always much higher than the nominal level and the t-test may be

judged to be invalid under this situation. For this reason we made our

runs for alternatives in the other direction.

In the following we summarize the main results of Section 5.5.

1. Although the simulated level of the transformed t-test is a

little bit greater than that of the t-test in the original scale, both

are much smaller than .05 .
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2. The transformed t-test has level < .05 under both types of

alternatives (see Table 5.1) .

3. The transformed-trimmed test with proportion 10% has better

level. In all runs it ranged over the interval (.041 , .054) . The

corresponding test with proportion 20% in two cases gave simulated

levels .057, and .055 .

4. The transformed t-test always has better simulated power than

that of the test in the original scale. The difference under the Gamma

and the extreme value models could as much as .05 and under the

transformed normal model could be as much as .10 .

5. The transformed-trimmed tests have better simulated power than

the untransformed tests by as much as .20 .

6. There does not appear to be much difference in simulated power

between the transformed-trimmed tests using the two proportions of

trimming.

7. In some runs powers of the trimmed test, using equal proportion

of trimming on each tail, are simulated. Comparisons of these powers

with those of the transformed-trimmed tests indicate that the

transformed-trimmed tests have better simulated powers under

alternatives that are close to the true model. Otherwise, they are

almost the same.

5.3 Simulation Results for the Normal Model

Tables 5.2 , 5.3 and 5.4 below present the simulated level and

power of the different test statistics applied to normal data. The

column corresponding to the test Tn(1) presents the simulated power

for the uniformly most powerful unbiased test. The reason for giving
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these tables is to check the performance of the different test

statistics when no correction for departure from normality is needed.

From these tables note the following:

1. The simulated level of the test statistic T (A) in Table 5.2
2

is .0451 and that of T (1) in Table 5.3 is .0542 which are
2

respectively somewhat smaller and greater than the .05 nominal level.

Except for these two cases the simulated levels are close to .05 .

2. The simulated power of the transformed t-test is almost the

same as that of the uniformly most powerful unbiased test. The maximum

difference between both tests in Table 5.3 is .0082 .

3. For the trimmed tests with proportion 10% there is almost no

difference (< .01) in the simulated power between the transformed and

the untransformed tests. However, the simulated power of these two

tests could be smaller than that of the untrimmed tests by as much as

.04 .

4. The trimmed tests with proportion 20% have the worst simulated

powers in all three tables. This power could be below that of the

untrimmed tests by as much as .085 .

5. When the McNemar test is used to compare the simulated level

and power,the t-test in the original scale and the transformed t-test,

there does not appear any significant difference between the two tests.



Table 5.2 Normal model 82 = 2 n = 20 8 = .05

el, T.(1) Tn(A) T (1) T (A) T (1) T (A)
-1 .1 2 2

0

0.2

0.4

0.6

0.8

1

1.2

0.0488

0.2112

0.5330

0.8228

0.9622

0.9962

0.9994

0.0489

0.2076

0.5322

0.8218

0.0492

0.2024

0.5088

0.0492

0.2038

0.5102

0.7972

0.0512

0.2006

0.4702

0.7954 0.7594

0.9616 0.9468 0.9480 0.9294

0.9954 0.9934 0.9934 0.9864

0.9992 0.9994 0.9992 0.9982

0.0451

0.1792

0.4384

0.7362

0.9186

0.9836

0.9980

Table 5.3 Normal model 82 = 50 n = 10 & = .05

811" To(1) TB(A) T (1) T (I) T (1) T (A)
1 -t 2 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.0480 0.0478 0.0505 0.0523 0.0542 0.0505

0.1396 0.1392 0.1396 0.1434 0.1406 0.1274

0.3166 0.3130 0.3042 0.3080 0.2732 0.2574

0.5386 0.5348 0.5120 0.5188 0.4646 0.4482

0.7558 0.7476 0.7166 0.7240 0.6510 0.6370

0.8960 0.8912 0.8630 0.8690 0.8032 0.7972

0.9652 0.9632 0.9464 0.9482 0.9086 0.9038

0.9908 0.9898 0.9804 0.9812 0.9624 0.9582

81
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Table 5.4 Normal model s2 = 50 n = 50 s = .05

Oir

0

0.1

0.2

0.3

0.4

0.5

0.6

Ta(1) Ta(A) T (1) T (A) T (1) T
.1 .1 2 2

0.0500 0.0496 0.0508 0.0503 0.0512 0.0513

0.1650 0.1640 0.1614 0.1624 0.1580 0.1584

0.4026 0.4000 0.3798 0.3792 0.3552 0.3564

0.6650 0.6622 0.6450 0.6460 0.6148 0.6168

0.8744 0.8740 0.8552 0.8542 0.8240 0.8242

0.9706 0.9698 0.9612 0.9602 0.9446 0.9446

0.9974 0.9976 0.9940 0.9938 0.9878 0.9878

5.4 Simulation Results for Symmetric Non-Normal Models

5.4.1 Transformed normal model

The data used in simulating the power of the test statistics in

Tables 5.5 through 5.10 below are generated as follows:

Let c denote a random variable with a standard normal

distribution. For some A and a let

Y = h
-1(e,

A, a-)

where h is the John-Draper transformation. In Tables 5.5 through 5.8

A = 1/3 , in Table 5.9 A = 1/2 and in Table 5.10 A = 0 . a
2 equals 2

in Table 5.5 and 50 in the rest of the tables. The sample size n is

10 and 20 in Tables 5.6 and 5.7 and is 50 otherwise. From the above

specification of the parameters, a comparison of Table 5.5 and Table 5.8

reflects the effect of changing the variance (spread). Comparisons
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among tables 5.6, 5.7 and 5.8 reflect the effect of the different sample

sizes. Finally, comparisons of Tables 5.8, 5.9 and 5.10 together give

an indication about the effect of the different values of the

transformation parameter. From these tables note that:

1. The simulated significance levels of the transformed tests are

close to .05 while they are generally smaller than .05 for the

untransformed tests. Table 5.10 represents an extreme case due to the

combination of small value of A (= 0) with large value of r2 (= 50)

resulting in very small simulated significance levels for the

untransformed tests.

2. Except for Table 5.6 the transformed t-test in general has more

simulated power than the t-test in the original scale over the range of

alternatives covered by this study. For example in Table 5.5 where

r2 = 2 we could observe a difference in these two powers by as much as

.085 while from Table 5.8 this difference could be about .30 . Under

the extreme case of Table 5.10 where there does not appear to be any

power for the t-test the wide difference between the powers is very

clear.

3. In Table 5.6 the power of the transformed t-test under

alternatives that are closer to the true model exceeds that of the

t-test in the original scale by as much as .06 . Under alternatives

that are far from the true model it is observed that the power of the

untransformed t-test exceeds that of the transformed test by about .04 .

The average percentage of observations more than the hypothesized value

0/, > 6 is calculated and is found to be at most 15% . Under such

situations we are almost applying the shifted Box-Cox transformation

with shift parameter 1 rather than the John-Draper transformation.
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4. The simulated power of the transformed-trimmed test with

proportion 10% is always greater than that of the corresponding

untransformed-trimmed test. The difference in some cases is not

considerable as in Table 5.5 . In some other cases it could be as much

as .18 like in Table 5.8 or even much more as in Table 5.10 .

5. Tables 5.8 and 5.10 Show situations under which the

transformed-trimmed test with proportion 20% has more simulated power

than the corresponding untransformed-trimmed test. This happens when

the value of the transformatiOn parameter is small, the variance is

large and the sample size is large. Although the tables below show that

the former test is better than the second, this is not always the case.

There are situations in which the trimmed test has more simulated power

than the transformed-trimmed test as the tables of Section 5.3 indicate.

6. A comparison of Table 5.5 with Table 5.8 shows that except for

the simulated level the entries in the second table are much smaller due

to changing the variance from 2 to 50 . However, a significant

difference in simulated power between the transformed and untransformed

tests is associated with the large variance.

7. From Tables 5.6 , 5.7 and 5.8 which correspond to samples of

size 10 , 20 and 50 respectively, note that larger sample sizes increase

the gap between the simulated power of the transformed tests and the

untransformed tests.

8. From Tables 5.9 , 5.8 and 5.10 which correspond to A equal to

1/2 , 1/3 and 0 respectively, note that better simulated powers of the

transformed tests over the untransformed tests are associated with

smaller values of the transformation parameter.

9. When the McNemar test statistic is calculated for the
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differences between the simulated powers of the transformed t-test and

the t-test in the original scale it is always found that differences as

small as .01 are statistically significant.

Table 5.5 Transformed normal model = 1/3 r2 = 2

Ola

0

0.2

0.4

0.6

0.8

1

n = 50 a = .05

Tn(1) Tn(A) T (1) T (I) T (1) T (A)

-1
-1 .2 -2

0.0490 0.0493 0.0495 0.0503 0.0492 0.0482

0.1714 0.1996 0.2064 0.2216 0.2366 0.2384

0.4098 0.4824 0.5156 0.5410 0.5752 0.5784

0.6654 0.7496 0.7992 0.8184 0.8494 0.8504

0.8568 0.9112 0.9452 0.9546 0.9688 0.9680

0.9590 0.9798 0.9924 0.9944 0.9968 0.9970



Table 5.6 Transformed normal model A = 1/3 a2 = 50

0

0.4

0.8

1.2

1.6

2

2.4

3

3.6

4.2

4.8

5.4

6

6.6

7.2

7.8

8.4

9

9.6

10.2

n = 10 s = .05

To(1) Tn(A) T (1) T (A) T (1) T (A)
t .1 2 2

0.0340 0.0480 0.0292 0.0523 0.0211 0.0494

0.0544 0.0870 0.0638 0.1120 0.0666 0.1170

0.0816 0.1286 0.1160 0.1806 0.1446 0.2068

0.1158 0.1724 0.1810 0.2444 0.2422 0.2920

0.1598 0.2210 0.2530 0.3144 0.3338 0.3690

0.2072 0.2660 0.3218 0.3778 0.4204 0.4432

0.2536 0.3094 0.3854 0.4374 0.4964 0.5036

0.3250 0.3706 0.4780 0.5192 0.5912 0.6258

0.3926 0.4290 0.5632 0.5962 0.6750 0.6976

0.4606 0.4790 0.6402 0.6640 0.7376 0.7512

0.5204 0.5252 0.7000 0.7170 0.7918 0.7964

0.5794 0.5698 0.7484 0.7592 0.8312 0.8342

0.6228 0.6068 0.7892 0.7998 0.8638 0.8654

0.6666 0.6426 0.8276 0.8330 0.8898 0.8872

0.7010 0.6770 0.8558 0.8614 0.9094 0.9060

0.7342 0.7054 0.8800 0.8822 0.9256 0.9230

0.7624 0.7292 0.8976 0.8996 0.9390 0.9334

0.7912 0.7518 0.9134 0.9112 0.9494 0.9432

0.8084 0.7698 0.9244 0.9238 0.9584 0.9520

0.8300 0.7894 0.9354 0.9338 0.9646 0.9572

86
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Table 5.7 Transformed normal model = 1/3 '2 = 50

n = 20 a= .05

01, T.(1) Tn(i) T (1) T (I) T (1) (A)

.1 -1 2 -2

0 0.0428 0.0489 0.0356 0.0490 0.0296 0.0519

0.2 0.0542 0.0692 0.0522 0.0818 0.0590 0.0904

0.4 0.0648 0.1008 0.0778 0.1258 0.1020 0.1464

0.6 0.0818 0.1358 0.1072 0.1678 0.1558 0.2086

0.8 0.0986 0.1712 0.1470 0.2190 0.2192 0.2744

1 0.1200 0.2074 0.1892 0.2746 0.2938 0.3414

1.2 0.1382 0.2470 0.2376 0.3262 0.3636 0.4096

1.4 0.1672 0.2842 0.2870 0.3806 0.4344 0.4684

1.6 0.1972 0.3232 0.3408 0.4340 0.5002 0.5318

1.8 0.2292 0.3580 0.3906 0.4822 0.5566 0.5816

2 0.2606

2.2 0.2880

2.4 0.3172

3 0.4042

3.6 0.4928

4.2 0.5794

4.8 0.6502

5.4 0.7068

6 0.7590

6.6 0.8046

0.3882 0.4458 0.5276 0.6162 0.6308

0.4186 0.4910 0.5660 0.6648 0.6726

0.4460 0.5352 0.6126 0.7114 0.7142

0.5386 0.6622 0.7182 0.8184 0.8276

0.6126 0.7590 0.7972 0.8860 0.8908

0.6732 0.8268 0.8520 0.9272 0.9284

0.7248 0.8750 0.8920 0.9522 0.9512

0.7672 0.9124 0.9224 0.9694 0.9704

0.8100 0.9378 0.9444 0.9816 0.9812

0.8400 0.9580 0.9582 0.9866 0.9866
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Table 5.8 Transformed normal model A = 1/3 r2 = 50

elf

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

n = 50 a = .05

T0(1) Tn(i) T (1) T (A) T (1) T (A)
.1 .1 .2 .2

0.0478

0.0574

0.0788

0.1044

0.1314

0.1660

0.2036

0.2410

0.2928

0.3360

0.3818

0.4308

0.4746

0.0496

0.0912

0.1516

0.2182

0.2948

0.3668

0.0438

0.0712

0.1136

0.1686

0.2346

0.3090

0.0505

0.1084

0.1836

0.2744

0.3734

0.4812

0.0400

0.0850

0.1604

0.2580

0.3788

0.5042

0.0512

0.1178

0.2182

0.3420

0.4730

0.5914

0.4436 0.3984 0.5786 0.6138 0.6982

0.5104 0.4844 0.6588 0.7124 0.7792

0.5784 0.5692 0.7326 0.7920 0.8406

0.6398 0.6406 0.7950 0.8496 0.8912

0.6920 0.7094 0.8424 0.8964 0.9252

0.7350 0.7654 0.8798 0.9272 0.9498

0.7762 0.8124 0.9090 0.9498 0.9658



Table 5.9 Transformed normal model A = 1/2 tr2 = 50

n = 50 a= .05

91.7 T.(1) Tn(i) T (1) T (A) T (1) T (A)
-I .1 .2 -2

89

0 0.04943 0.0496 0.0487 0.0505 0.0476 0.0511

0.2 0.0934 0.1244 0.1184 0.1380 0.1374 0.158

0.4 0.1756 0.2412 0.2350 0.2834 0.2950 0.3324

0.6 0.2896 0.3914 0.3992 0.4738 0.5026 0.5434

0.8 0.4262 0.5498 0.5782 0.6466 0.6964 0.7306

1 0.5526

1.2 0.6798

1.4 0.7872

1.6 0.8644

1.8 0.9238

2 0.9618

0.6858 0.7252 0.7846 0.8392 0.8542

0.7918 0.8454 0.8842 0.9262 0.935

0.8728 0.9226 0.9432 0.9680 0.972

0.9276 0.9664 0.9754 0.9902 0.9906

0.9630 0.9866 0.9916 0.9972 0.9976

0.9830 0.9962 0.9976 0.9994 0.9994



Take 5.10 Transformed normal model = 0 '2 = 50

n = 50 a = .05

0/, Tn(1) Tn(i) T (1) T (A) T (1) T (A)
-I1 2 2

0

0.4

0.8

1

2

3

4

5

6

7

8

9

10

16

20

24

0.0067 0.0493 0.0023 0.0505 0.0025 0.0510

0.0076 0.0830 0.0026 0.0950 0.0040 0.1178

0.0076 0.1172 0.0026 0.1438 0.0076 0.1890

0.0076 0.1328 0.0028 0.1642 0.0092 0.2210

0.0076 0.2024 0.0028 0.2656 0.0272 0.3706

0.0076 0.2532 0.0036 0.3480 0.0525 0.4888

0.0076 0.2950 0.0044 0.4160 0.0850 0.5690

0.0076 0.3342 0.0048 0.4734 0.1204 0.6376

0.0076 0.3682 0.0062 0.5262 0.1642 0.6934

0.0076 0.3968 0.0074 0.5658 0.2026 0.7374

0.0076 0.4210 0.0088 0.5980 0.2450 0.7692

0.0076 0.4454 0.0098 0.6302 0.2758 0.7986

0.0076 0.4662 0.0120 0.6576 0.3100 0.8232

0.0076 0.5584 0.0264 0.7726 0.4720 0.9022

0.0076 0.6002 0.0396 0.8152 0.5568 0.9328

0.0076 0.6330 0.0540 0.8488 0.6228 0.9486

90
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5.4.2 Contaminated-normal model

Tables 5.11 and 5.12 below present the simulation results for the

contaminated-normal model. From these two tables we note that:

1. Except for the simulated level of the t-test in the original

scale from Table 5.11 all the levels are fairly close to .05 .

2. There appears to be a significant difference between the

simulated power of the transformed t-test and that of the t-test in the

original scale. This difference from Table 5.11 could be as much as

.085 and from Table 5.12 could as much as .11 .

3. Within the trimmed tests the differences in simulated powers

among the transformed and untransformed tests are always within .02 .

Table 5.11 Contaminated-normal Y = .9N(0,1)+.1N(0,25)

n=20 = 1 a= .05

T.(1) To(A) T.1(1) T.16) T (1) T 6)2 -2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0423 0.0481 0.0462 0.0482 0.0500 0.0523

0.1342 0.1536 0.1610 0.1654 0.1626 0.1536

0.2962 0.3408 0.3704 0.3814 0.3630 0.3478

0.4906 0.5458 0.6208 0.6318 0.6184 0.5980

0.6336 0.7160 0.8222 0.8290 0.8178 0.8070

0.7484

0.8226

0.8824

0.9220

0.9522

0.8362 0.9320 0.9346 0.9330 0.9258

0.9032 0.9718 0.9740 0.9840 0.9810

0.9388 0.9860 0.9882 0.9954 0.9942

0.9568 0.9936 0.9936 0.9986 0.9982

0.9684 0.9970 0.9956 0.9988 0.9996



Table 5.12 Contaminated-normal Y = .8N(0,1)+.2N(0,25)

n=20 A = 1 a= .05

Olr To(1) Tn(A) T.1(1) T.1(A) T (1) T (A)2 -2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0450

0.1344

0.2860

0.4462

0.0477

0.1630

0.3574

0.5560

0.0408

0.1732

0.4164

0.6760

0.0468

0.1898

0.4390

0.6964

0.0474

0.1838

0.4410

0.7112

0.0513

0.1916

0.4530

0.7278

0.5940 0.7066 0.8364 0.8476 0.8894 0.8938

0.7202 0.8098 0.9176 0.9258 0.9654 0.9664

0.8146 0.8698 0.9570 0.9624 0.9874 0.9876

0.9318 0.9332 0.9890 0.9882 0.9984 0.9984
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Tables 5.13 through 5.16 below give the simulation results for the

transformed-contaminated-normal data. The transformation parameter used

in applying the inverse of the John-Draper family is 1/3. In the last

two tables, before applying the inverse transformation we multiply the

data by 3 to allow for more dispersion. From the tables note that:

1. The simulated levels of the untransformed tests are

considerably smaller than .05 which indicates that the untransformed

tests are conservative under the present model. On the other hand the

simulated level of the transformed tests are fairly close to .05 .

2. In all the four tables there is a wide gap between the

transformed t-test and the t-test in the original scale. This

difference starts to appear for alternatives that are close to the true
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model, and could be as much as .60 in Table 5.16.

3. Within the trimmed tests with proportion 10% the transformed

tests has more simulated power than the untransformed test. This

difference could be as much as .24 like in Table 5.16.

4. Within the trimmed tests with proportion 20% , there is not

much difference between the simulated powers of the transformed test and

the untransformed test in Tables 5.13 and 5.14. The difference is clear

in Table 5.16 where it could be as much as .085 .

Table 5.13 Transformed-contaminated normal e = .8N(0,1)+.2N(0,16)

Y = hil(e) n=20 A = 1/3 a = .05

Or Tn(1) Tn(A) T (1) T (A) T (1) T (A)
1 1 2 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.0298 0.0476 0.0350 0.0474 0.0411 0.0504

0.0962 0.1930 0.1986 0.2452 0.2510 0.2798

0.2118 0.4120 0.4734 0.5416 0.5914 0.6138

0.3300 0.5876 0.7060 0.7658 0.8280 0.8418

0.4254 0.7084 0.8338 0.8816 0.9438 0.9466

0.5010 0.7818 0.9040 0.9354 0.9786 0.9788

0.5730 0.8282 0.9384 0.9626 0.9902 0.9904

0.6288 0.8602 0.9562 0.9740 0.9954 0.9948

0.6718 0.8786 0.9686 0.9826 0.9984 0.9984



Table 5.14 Transformed-contaminated normal c = .8N(0,1)+.2N(0,16)

Y= h-1(c) n=50 A= 1/3 a= .05

ti/s Tn(1) Tn(A) T (1) T (A) T (1) T (6)

-1 -I 2 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0392 0.0499 0.0404 0.0477 0.0447 0.0493

0.0730 0.1582 0.1490 0.1838 0.1902 0.2100

0.1220 0.3324 0.3660 0.4448 0.4756 0.4982

0.1832 0.5496 0.6060 0.6958 0.7352 0.7574

0.2500 0.7238 0.7836 0.8636 0.9034 0.9154

0.3150 0.8380 0.8932 0.9498 0.9722 0.9788

0.3776 0.9148 0.9458 0.9826 0.9922 0.9936

0.4372 0.9548 0.9730 0.9944 0.9980 0.9980

94



Table 5.15 Transformed-contaminated normal e = .8N(0,1)+.2N(0,15)

Y= h-1(3e) n=20 A= 1/3 a= .05

0/, To(1) Tn(A) T (1) T (A) T (1) T (A)
1 .1 2 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0.0216 0.0474 0.0262 0.0474 0.0306 0.0507

0.0406 0.1278 0.0892 0.1566 0.1344 0.1904

0.0656 0.2322 0.2042 0.3102 0.3244 0.3858

0.0998 0.3376 0.3358 0.4754 0.5192 0.5696

0.1356 0.4334 0.4630 0.6156 0.6764 0.7138

0.1744 0.5052 0.5692 0.7030 0.7836 0.8076

0.2102 0.5598 0.6534 0.7870 0.8630 0.8802

0.2436 0.6064 0.7238 0.8342 0.9102 0.9188

0.2746 0.6470 0.7756 0.8730 0.9414 0.9484

0.3062 0.6780 0.8078 0.8996 0.9620 0.9650

0.3308 0.7060 0.8366 0.9196 0.9710 0.9750

0.3562 0.7242 0.8578 0.9342 0.9790 0.9814

95



Table 5.16 Transformed-contaminated normal E = .8N(0,1)+.2N(0,16)

Y = h-A 1(3e) n=50 = 1/3 & = .05

0/o. To(1) Tn(A) T (1) T (A) T (1) T (A)
.1 .1 2 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

96

0.0339 0.0495 0.0332 0.0475 0.0389 0.0491

0.0402 0.1122 0.0724 0.1270 0.1082 0.1444

0.0478 0.2012 0.1430 0.2596 0.2436 0.3132

0.0596 0.3046 0.2400 0.4214 0.4154 0.5012

0.0742 0.4236 0.3546 0.5746 0.5872 0.6706

0.0852 0.5324 0.4682 0.7068 0.7196 0.7906

0.0984 0.6192 0.5736 0.7998 0.8232 0.8824

0.1128 0.6970 0.6690 0.8670 0.8922 0.9330

5.4.3 Student's t model

Tables

Student's t

these tables

1. The

However, the

trimmed with

2. In

between the

Table 5.18 t

5.17 and 5.18 below give the simulation results for the

model with 2 and 3 degrees of freedom respectively. From

we note that:

simulated significant levels are not too far from .05 .

levels of the transformed t-test and the transformed-

proportion 10% are closer to the above nominal level.

Table 5.17 there is some difference in the simulated power

transformed t-test and the t-test in the original scale. In

his difference does not exceed .04 .



3. Within the trimmed tests there are only small differences

among the simulated powers of the transformed tests and the

corresponding untransformed tests.

Table 5.17 Student's t model df = 2 n = 20 a = .05

0 Ta(1) T12(A) T (1) T
1

(A) T (1) T (A)
.1 2 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.0419 0.0488 0.0443 0.0495 0.0471 0.0456

0.1176 0.1380 0.1414 0.1528 0.1576 0.1548

0.2444 0.2908 0.3330 0.3516 0.3556 0.3484

0.4086 0.4844 0.5632 0.5778 0.5974 0.5814

0.5692 0.6598 0.7510 0.7660 0.7930 0.7818

0.6928 0.7780 0.8758 0.8846 0.9044 0.8954

0.7858 0.8680 0.9406 0.9456 0.9620 0.9572

0.8432 0.9146 0.9742 0.9752 0.9862 0.9830

0.8858 0.9462 0.9884 0.9894 0.9950 0.9942

0.9130 0.9628 0.9938 0.9934 0.9974 0.9972

97
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Table 5.18 Student's t model df = 3 n = 20 a = .05

0/, T,(1) Tn(1) T (1) T (A) T (1) T
-1 -1 .2 2

0 0.0445 0.0467 0.0451 0.0476 0.0469 0.0430

0.1 0.1238 0.1338 0.1418 0.1474 0.1466 0.1380

0.2 0.2736 0.2928 0.3170 0.3236 0.3176 0.3032

0.3 0.4652 0.4906 0.5370 0.5456 0.5470 0.5288

0.4 0.6386 0.6774 0.7368 0.7422 0.7530 0.7380

0.8156 0.8752 0.8784 0.8810 0.86960.5 0.7854

0.6 0.8728

0.7 0.9294

0.8 0.9586

0.9 0.9742

1 0.9828

0.8964 0.9486 0.9486 0.9538 0.9470

0.9452 0.9834 0.9824 0.9854 0.9822

0.9730 0.9954 0.9952 0.9956 0.9944

0.9834 0.9982 0.9984 0.9992 0.9988

0.9922 0.9992 0.9990 0.9992 0.9992

Tables 5.19 through 5.23 below represent the simulation results for

the transformed Student's t model where the inverse of the John-Draper

transformation is applied to the t with 2 degrees of freedom data.

The value A = 1/3 is used in Tables 5.19 , 5.20 and 5.21, A = 1/2 in

Table 5.22 and A = 0 in Table 5.23. From these tables note that:

1. While the simulated levels of the transformed tests appear to

be close to .05 , those of the untransformed tests are considerably

smaller than .05 especially the simulated level of the t-test in the

original scale.

2. The gap between the simulated powers of the transformed t-test and

the t-test in the original scale is very wide in all the tables.
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3. Within the trimmed tests with proportion 10% , the simulated

power of the transformed test is always greater than that of the

untransformed test. The maximum difference could be as much as .30 or

.35 as Tables 5.22 and 5.23 show.

4. Within the trimmed tests with proportion 20% , in some cases

there is not much difference between the simulated powers of the

transformed and untransformed tests like in Tables 5.19 and 5.22 . In

some other cases the difference could be as much as .10 like in Tables

5.21 and 5.23

Table 5.19 Transformed Student's t model df = 2

A = 1/3 f = 1 n = 50 a =.05

Olr To(1) Tn(A) T.1(1) T.1(A) T
-2

(1) T (A)
-2

0 0.0287 0.0502 0.0419 0.0506 0.0441 0.0475

0.1 0.0430 0.0950 0.0846 0.1050 0.1030 0.1114

0.2 0.0608 0.1580 0.1498 0.1926 0.1936 0.2120

0.3 0.0786 0.2446 0.2364 0.3004 0.3208 0.3408

0.4 0.0988 0.3354 0.3388 0.4256 0.4664 0.4888

0.5

0.6

0.7

0.8

1

1.2

0.1218 0.4298 0.4454 0.5506 0.5988 0.6246

0.1500 0.5286 0.5556 0.7670 0.6212 0.7448

0.1784 0.6196 0.6534 0.8678 0.7166 0.8366

0.2058 0.7054 0.7378 0.8416 0.8880 0.9032

0.2656 0.8338 0.8618 0.9346 0.9634 0.9698

0.3176 0.9068 0.9262 0.9760 0.9890 0.9916



Table 5.20 Transformed Student's t model df = 2

I = 1/3 , = 2 n = 50 m = .05

0/, Tn(1) Tn(1) T (1) T (I) T (1) T (A)
-t -1 -2 -2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1

1.2

1.4

1.6

1.8

0.0247 0.0500 0.0364 0.0506 0.0400 0.0477

0.0310 0.0846 0.0638 0.0930 0.0824 0.0994

0.0370 0.1280 0.1010 0.1570 0.1444 0.1708

0.0444 0.1886 0.1476 0.2336 0.2236 0.2674

0.0542 0.2546 0.1994 0.3198 0.3270 0.3852

0.0616 0.3228 0.2670 0.4198 0.4336 0.4960

0.0686 0.3888 0.3354 0.5160 0.5422 0.5992

0.0804 0.4600 0.4032 0.6032 0.6326 0.6940

0.0910 0.5274 0.4738 0.6854 0.7216 0.7756

0.1144 0.6478 0.6088 0.8118 0.8444 0.8838

0.1406 0.7452 0.7132 0.9900 0.8252 0.9504

0.1660 0.8220 0.8002 0.9418 0.9620 0.9736

0.1878 0.8750 0.8578 0.9679 0.9790 0.9887

0.2188 0.5109 0.9000 0.9822 0.9896 0.9956
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Table 5.21 Transformed Student's t model df = 2

A = 1/3 r = 3 n = 50 s = .05

Or T.(1) T.(A) T (1) T (A) T (1) T (A)
1 .1 -2 -2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0.0233

0.0258

0.0294

0.0330

0.0382

0.0418

0.0468

0.0514

0.0554

0.0660

0.0792

0.0912

0.1060

0.1186

0.1332

0.1500

0.0502

0.0804

0.1104

0.156

0.2082

0.2612

0.3142

0.3644

0.0331

0.0512

0.0742

0.1026

0.1356

0.1702

0.2132

0.2624

0.0502

0.0858

0.1364

0.1970

0.2634

0.3358

0.4136

0.4898

0.0362

0.0696

0.1088

0.1708

0.2370

0.3174

0.4018

0.4846

0.0477

0.0904

0.1476

0.2262

0.3122

0.4106

0.5006

0.5806

0.4144 0.3126 0.5606 0.5608 0.6546

0.5164 0.4076 0.6826 0.6984 0.7828

0.6026 0.5026 0.7812 0.8012 0.8658

0.6820 0.5940 0.8498 0.8698 0.9258

0.5022 0.6712 0.9030 0.9240 0.9584

0.7980 0.7334 0.9356 0.9518 0.9732

0.8408 0.7872 0.9580 0.9688 0.9852

0.8682 0.8298 0.9716 0.9790 0.9926
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Table 5.22 Transformed Student's t model df = 2

A = 1/2 s = 2 n = 20 a = .05

Oli T.(1) Tn(A) T (1) T (A) T (1) T (a)
1 1 2 2

0 0.0293 0.0488 0.0359 0.0495 0.0381 0.0456

0.2 0.0554 0.0978 0.0814 0.1164 0.1020 0.1194

0.4 0.0892 0.1726 0.1672 0.2184 0.2256 0.2484

0.6 0.1394 0.2642 0.2778 0.3472 0.3768 0.3976

0.8 0.1874 0.3540 0.4012 0.4838 0.5220 0.5386

1 0.2454 0.4472 0.5270 0.5974 0.6622 0.6654

1.2 0.3022

1.4 0.3604

1.6 0.4120

1.8 0.4518

2 0.4958

0.2 0.5338

0.5308 0.6224 0.6954 0.7714 0.7700

0.5984 0.7086 0.7710 0.8422 0.8384

0.6536 0.7720 0.8272 0.8920 0.8876

0.7022 0.8250 0.8680 0.9238 0.9200

0.7428 0.8668 0.9074 0.9508 0.9470

0.7730 0.8976 0.9274 0.9654 0.9614
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Table 5.23 Transformed Student's t model df = 2

I = 0 r= 2 n = 20 e= .05

9/r Ta(1) %GI) T (1) T (A) T (1) T (A)
1 1 2 2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0.0070 0.0784 0.0182 0.0838 0.0436 0.0932

0.0086 0.1036 0.0260 0.1308 0.0728 0.1624

0.0094 0.1356 0.0442 0.1848 0.1342 0.2498

0.0114 0.1736 0.0646 0.2454 0.1988 0.3240

0.0122 0.2092 0.0904 0.2998 0.2734 0.3996

0.0148 0.2424 0.1184 0.3548 0.3406 0.4640

0.0164 0.2736 0.1442 0.4054 0.4020 0.5200

0.0188 0.2968 0.1724 0.4472 0.4566 0.5674

0.0216 0.3248 0.2002 0.4918 0.5068 0.6116

0.0244 0.3516 0.2278 0.5272 0.5548 0.6456

0.0270 0.3770 0.2544 0.5596 0.5914 0.6818
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5.5 Simulation Results for Skewed Models

As pointed out earlier, the distribution of the t-statistic is not

symmetric about 0 when the distribution of the data is skewed. In this

section, besides reporting the results of the simulated level and power

of the different test statistics, we give some examples of the frequency

and cumulative distributions of the t-statistic in the original scale

and the t-statistic after transformation.

5.5.1 Transformed-normal model

The data used in the runs under this model are generated from a

standard normal variable by applying the inverse of the two-domain

transformation for some Al and A2 . We fix Ai = 1/4 and consider runs

for A2 = 1/2 , 3/4 and 1 . Table 5.24 below gives the frequency and

cumulative distributions of the t-statistic calculated from the original

and the transformed data, for Al = 1/4 and A2 = 3/4 and Figure 5.1

gives the shape of the frequency distributions.
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Table 5.24 Frequency and cumulative distributions of the t-statistic

under the transformed-normal model Al = 1/4 .12 = 3/4

values

of T

(-m , -4)

(-4,-3.5)

(-3.5,-3)

(-3,-2.5)

(-2.5,-2)

(-2,-1.5)

(-1.5,-1)

(-1,-.5)

(-.5, 0)

(0 , .5)

(.5 , 1)

(1 , 1.5)

(1.5 , 2)

(2 , 2.5)

(2.5 , 3)

(3 , 3.5)

(3.5 , 4)

(4 , m)

transformed original

freq. cum. freq. cum.

0 0 0.0002 0.0002

0 0 0.0009 0.0011

0.0002 0.0002 0.0030 0.0042

0.002 0.0022 0.0124 0.0166

0.0091 0.0113 0.0397 0.0563

0.0313 0.0426 0.0948 0.1511

0.0777 0.1203 0.1676 0.3187

0.1538 0.2741 0.2029 0.5216

0.2254 0.4995 0.1855 0.7071

0.2241 0.7236 0.1346 0.8417

0.1563 0.8789 0.0811 0.9229

0.0793 0.9592 0.0418 0.9647

0.0301 0.9893 0.0207 0.9854

0.0087 0.9980 0.0093 0.9947

0.0017 0.9997 0.0034 0.9981

0.0003 1 0.0012 0.9993

0 1 0.0005 0.9998

0 1 0.0002 1
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From the above table and figure note the following:

1. The distribution of the t-statistic in the original scale is

not symmetric about 0 . The median from Table 5.24 is about -.55 .

2. The distribution of the transformed t-statistic is fairly

symmetric about O.

3. The distribution of the transformed t-statistic has shorter

tails than those of a Student's t-distribution with 19 degrees of

freedom. For example, while Pr(t(19) < -2.5) = .0109 , the

corresponding simulated probability is only .0022 , and while

Pr(t(19) < -2) = .0300 , the corresponding simulated probability is

.0113 . On the upper tail, the simulated probabilities of t > 2 and

t > 2.5 are .0107 and .0020 respectively.

Tables 5.25 through 5.27 below give the simulated level and power

of the t-test in the original scale, the transformed t-test and the

transformed-trimmed t-test. From these tables note that:

1. The simulated levels of the untrimmed tests are considerably

smaller than .05 . The simulated level of the transformed-trimmed test

with proportion 20% is close to the nominal level.

2. the simulated power of the transformed t-test exceeds that of

the t-test in the original scale. The difference between the two

simulated powers could be as Imuch as .084 in Table 5.25, .075 in Table

5.26 and .12 in Table 5.27.

3. The transformed-trimmed test statistics have their simulated

powers considerably greater than that of the t-test in the original

scale and also greater than that of the transformed test without

trimming.



Table 5.25 Transformed-normal model ,2 = 1 n = 20

0/r

0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

AI = .25 A2 = .5

Tn(1) T0(A) T
.

(A) T
-2

(A)

0.0332 0.0339 0.0417 0.0489

0.2254 0.2730 0.3322 0.3532

0.4014 0.4766 0.5494 0.5772

0.5842 0.6682 0.7388 0.7574

0.7406 0.8098 0.8594 0.8806

0.8506 0.9014 0.9284 0.9426

0.9242 0.9494 0.9668 0.9762

0.9618 0.9800 0.9878 0.9894

Table 5.26 Transformed-normal model 92 = 1 n = 20

Al = .25 A2 = .75

9/i T.(1) Tn(A) T
.1
6) T (A)2

0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0235

0.1988

0.3738

0.5608

0.7214

0.8398

0.9170

0.9584

0.0240

0.2364

0.4366

0.6374

0.0421

0.3156

0.5312

0.7258

0.0492

0.3528

0.5752

0.7588

0.7876 0.8490 0.8804

0.8854 0.9226 0.9438

0.9430 0.9622 0.9756

0.9744 0.9842 0.9870
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Table 5.27 Transformed-normal model ir2 = 1 n = 20

Al = .25 A2 =

01, Tn(1) Tn(A) T (A) T_ 9(A)

0

0.2

0.3

0.4

0.5

0.6

0.7

0.0181 0.0242 0.0424 0.0495

0.1766 0.2460 0.3286 0.3610

0.3488 0.4534 0.5498 0.5842

0.5386 0.6534 0.7422 0.7652

0.7046 0.8000 0.8592 0.8840

0.8308 0.8952 0.9292 0.9472

0.9078 0.9498 0.9664 0.9772

5.5.2 Gamma model

In this subsection we present the simulation results for the Gamma

models with shape parameters 3 , 4 and 5 . Table 5.28 and Figure 5.2

below give the frequency distribution of the t-statistic under the

original and transformed scales. Note that:

1. The distribution of the t-statistic is not symmetric about 0 .

The median from Table 5.28 is about .65 .

2. The median of the distribution of the t-statistic from the

transformed data is about -.06 .

3. The frequency distribution of the transformed t-test appears to

be much more symmetric than that obtained from the data in the

original scale. However, the tails appear to be shorter than those of
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Table 5.28 Frequency and cumulative distributions of the t-statistic

under the Gamma model with shape parameter 4

values
transformed original

of T
freq. cum. freq. cum.

(-m,-4)

(-4,-3.5)

(-3.5,-3)

(-3,-2.5)

(-2.5,-2)

(-2,-1.5)

(-1.5,-1)

(-1,-.5)

(-.5 , 0)

(0 , .5)

(.5 , 1)

(1 , 1.5)

(1.5 , 2)

(2 , 2.5)

(2.5 , 3)

(3 , 3.5)

(3.5 , 4)

(4 , m)

0 0 0.0002 0.0002

0 0 0.0007 0.0009

0.0003 0.0003 0.0009 0.0019

0.0029 0.0032 0.0025 0.0043

0.0112 0.0144 0.0060 0.0103

0.0373 0.0517 0.0151 0.0254

0.0879 0.1396 0.0323 0.0578

0.1683 0.3079 0.0636 0.1214

0.2291 0.5370 0.1129 0.2343

0.2135 0.7505 0.1747 0.4090

0.1437 0.8942 0.2105 0.6195

0.0681 0.9623 0.1840 0.8035

0.0259 0.9882 0.1149 0.9184

0.0087 0.9969 0.0541 0.9724

0.0029 0.9998 0.0195 0.9919

0.0002 1 0.0063 0.9982

0 1 0.0014 0.9996

0 1 0.0004 1
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a student's t distribution with 19 degrees of freedom.

In Tables 3.29 through 3.31 we give the simulated power of the

different test statistics for the three Gamma models mentioned above.

We subtract the true median from each observation so that the null

hypothesis is to test 0 = 0 . From these tables note that:

1. The simulated levels of the transformed-trimmed tests are

somewhat over the nominal level in two of the tables especially when 20%

from the observations on each tail are trimmed.

2. The transformed t -tegt has greater simulated power than that of

the t-test in the original scale for alternatives that are close to the

true model. The difference in the simulated powers decreases as the

value of the shape parameter increases. Under alternatives that are

away from the true model the t-test in the original scale becomes

slightly better than the transformed t-test.

3. The test statistics based on the trimmed-transformed samples

have considerably greater simulated powers than the untrimmed tests.

There is not much difference in the simulated power between the two

percentage of trimming.



Table 5.29 Gamma model with shape parameter 3

median = 2.67406 n = 20 & = .05

0

0.2

0.3

0.4

0.5

0.6

0.7

Tn(1) Tn(A) T (A) T 6)
-1 - 2

0.0132 10.0322 0.0544 0.0571

0.1640 0.2182 0.2964 0.3018

0.3314 0.3932 0.4900 0.4936

0.5188 0.5824 0.6730 0.6774

0.7036 0.7404 0.8084 0.8112

0.8594 0.8668 0.9154 0.9198

0.9296 0.9360 0.9560 0.9584

Table 5.30 Gamma model with shape parameter 4

median = 3.67206 n = 20 & = .05

0/i

0

0.2

0.3

0.4

0.5

0.6

0.7

Tn(1) Tn(A) T 6) T (A)
-1 2

0.0177 0.0226 0.0377 0.0469

0.1792 0.2205 0.3153 0.4134

0.3500 0.3846 0.4796 0.4844

0.5532 0.5660 0.6602 0.6638

0.7332 0.7336 0.8042 0.8104

0.8682 0.8512 0.8972 0.9002

0.9422 0.9326 0.9570 0.9582
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table 5.31 Gamma model with shape parameter 5

median = 4.670913 n = 20 a = .05

015

0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Tn(1) Tn(A) T
.1

(A) T
- 2

(A)

0.0195 0.0298 0.0517 0.0551

0.1898 0.2126 0.2856 0.2946

0.3688 0.3986 0.4870 0.4864

0.5750 0.5880 0.6692 0.6750

0.7566 0.7562 0.8124 0.8144

0.8806 0.8586 0.9010 0.9026

0.9534 0.9322 0.9548 0.9606

0.9826 0.9714 0.9844 0.9848

5.3.3 Extreme-Value model

Table 5.32 below gives the frequency and cumulative distributions

of the t-test in the original scale and the transformed t-test under the

extreme-value model. Figure 5.3 gives the shape of the frequency

distributions of the above two tests. We can conclude the following:

1. The distribution of the t-statistic in the original scale is

not symmetric about 0 . Its median is about -.7 .

2. The frequency distribution of the transformed t-statistic

indicates that the distribution of the frequencies is not far from

symmetry about 0 . The median is approximately .0558 .
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Table 5.32 Frequency and cumulative distributions of the t-statistic

value

of T

(-m,-4)

(-4,-3.5)

(-3.5,-3)

(-3,-2.5)

(-2.5,-2)

(-2,-1.5)

(-1.5,-1)

(-1,-.5)

(-.5, 0)

(0 , .5)

(.5 , 1)

(1 , 1.5)

(1.5 , 2)

(2 , 2.5)

(2.5 , 3)

(3 , 3.5)

(3.5 , 4)

(4 , m)

under the Extreme-Value model

transformed original

freq. cum. freq. cum.

0 0 0.0003 0.0003

0 0 0.0014 0.0017

0.0001 0.0001 0.0051 0.0068

0.0010 0.0011 0.0185 0.0253

0.0053 0.0064 0.0515 0.0768

0.0268 0.0332 0.1176 0.1944

0.0742 0.1074 0.1849 0.3794

0.1469 0.2543 0.2113 0.5907

0.2203 0.4746 0.1731 0.7638

0.2268 0.7014 0.114 0.8778

0.1658 0.8672 0.0662 0.944

0.0913 0.9585 0.0319 0.9759

0.0331 0.9916 0.0131 0.9891

0.0073 0.9989 0.007 0.996

0.0009 0.9998 0.0025 0.9986

0.0002 1 0.0008 0.9993

0 1 0.0002 0.9995

0 1 0.0005 1
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Table 5.33 gives the simulated power and level of the test

statistics under the extreme value model. This table shows that the

same conclusions we made under the transformed-normal and Gamma models

hold for the present model. The transformed t-test is more powerful

than the t-test in the original scale. The trimmed test statistics are

considerably better than the untrimmed tests and the simulated power is

not affected by the percentage of trimming.

Table 5.33 Extreme-Value median = ln(ln(2)) n = 20

T,(1) To(.() T
.1

(I) T. Z(A)

0 0.0168

0.2 0.0996

0.3 0.1908

0.4 0.3120

0.5 0.4600

0.6 0.6104

0.7 0.7350

0.8 0.8262

0.9 0.8970

0.0224

0.1398

0.2432

0.3620

0.0390 0.0478

0.2020 0.2116

0.3246 0.3348

0.4702 0.4772

0.5160 0.6160 0.6240

0.6514 0.7286 0.7414

0.7558 0.8194 0.8316

0.8448 0.8926 0.8984

0.9060 0.9404 0.9432
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APPENDIX A

Some Asymptotic Results

In this appendix we present some facts and theorems about

convergence in probability and in law which are frequently used in the

proofs given in Chapters 3 and 4. Proofs of the stated facts can be

found in Rao (1973, p.122-124).

Let {An , Bn}, n = 1,2,... be a sequence of pairs of random

variables.

Fact 1 If An Bn -2-4 0 and if Bn t B then

An B

Fact 2 If A ----4 A and Bn p b then

i. AnBn Ab

ii. An/Bn p A/b ( b # 0 )

iii. An + Bn -2-4 A + b

Fact 3

i. An --2-4 A imply An --12-4 A

ii. (An --12-4 A iff An --12-4 A) iff A is constant

Fact 4 Let g be a continuous function. If An - Bn --12-4 0 and if

Bn ----4 B then

i. g(Bn) p t g(B) ii. g(An) p, g(B)

Lemma A.1 If B n ----4 b then B is bounded in probability.

Proof Since Bn --E-4 b then given E > 0 there exists n such that

Pr{ 1Bn bl < 1 } > 1-5 .

If b > 0 let M = b+1 otherwise, let M = lb 11 . It follows that
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PrflBal 5. M1 / 1-6 .

Lemma A.2 If PrfAa1 ----4 1 and if Pr{BI)} ----+ 1 then

PrfAarlBal 1 .

Proof PrfAanBal = PrfAal PrfAarlB0 > PrfAal PrIBO ----4 1 .

Lemma A.3 If Ail% is bounded in probability and Bn b ,

then An is bounded in probability.

Proof AaBa is bounded in probability implies that for some M'

PrflAaBal < M'l 1 . Ba 7-E-4 b implies Pr{ lBal < b/2} ---4 1 .

Therefore

PrflAal < M1 > PrflAaBal < M' and IBal < b /2}

= PrIlAn1 MYIBal and 11301 < b /2}

> PrflAal < 211'/Ibl and 1Bal < b /2} ----4 1 .

Theorem A.1 If An --2-4 0 and if for some M > 0

Pr fiBal < M} --E-4 1 then

AaBa --12-+ 0 .

Proof: Since An ----4 0 , given c and 6 there exists ni such

that Pr flAal < c /M} > 1-5/2 for all n > ni . Since

Pr {1%1 < N} ----4 1 there exists n2 such that

Pr 11Ba1 < NI > 1-5/2 for all n > n2 .

Let no = max(ni,n2) then for all n > no

Pr flAal < M1 > 1-6/2 and Pr {OW < N} > 1 6/2 .

Since likal < c/M and 1Bal < M imply lAaBal < c , therefore

Pr %Bat < c} / Pr flAal < c/M , IBal < MI

= 1 Pr { 1%1 < c/M , 1%1 < H lc

/ Pr flAal < c /M} + Pr {1%1 5. M} 1

> 1- 8/2 + 1 - 5/2 -1 = 1 6
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Theorem A.2 Let Tin = Ain/Bin and T2n = A2n/B2n Suppose

that Bin - B2n --2-4 0 and B2n fl (B10 , B2n and ft are

positive for all n). If Ain - A2n -2-+ 0 and Ain ---4 A then

Tin T2n ---4 °

Proof:

Tin T20 = Ain A2n /B2n

= (1 /Bin 1/B2n) Ain + 1/B2n (Ain A2n)

(1/fl 1/fl) A + 1/fl (0) = 0

Theorem A.3 Suppose Tin is a test statistic that is Pitman

regular (Appendix B) with $n(p) = Ep(Tin) and r121(p) = varo(Tin) .

Suppose further that rn(p) p r(p) > 0 . If T2n is another test

statistic of the same hypothesis then

i. T2n is Pitman regular ii. ARE (Tin , T2n) = 1 .

Proof:

2

For T2n choose the same fn(p) and rn(p) as those for Tin

then, C3 through C7 of the regularity conditions of Appendix B are

satisfied by the assumption that Tin is Pitman regular and the choice

2

of On(p) and rn(p) . It remains to check Cl and C2 . Since

(T20 ti(P))/rn(#) = (T10 In(P))/rn(0) (Tin T2n)/7-11(#)

hence

(T2n $n(0)/M(0 (Tin $11(0)/M(P) = (Tin T2n)/M(P)

By assumption

rn(p) ---+ r(p) > 0 and Tin T2n

hence

(T20 In(P))/ra(#) (Tin ti(#))/rn(#) --E-4 0 -

Tin is Pitman regular implies that it satisfies condition Cl of
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Appendix B ,that is

(Tin tn(#0))/7.n(#0) 2.-4 N(0,1)

By fact 1 above we conclude that

(T2n *n00)/7.1200 N(0,1)

Hence T2n satisfies condition Cl . Similar argument holds for

condition C2. Therefore T2n is Pitman regular.

Since the asymptotic relative efficiency as shown in Appendix B

depends only on

Rn = (,;(#0)/rn(#0))2

2

and since Rn is the same for both test statistics hence, we conclude

ARE (T10 T2n) = 1
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APPENDIX B

Pitman Asymptotic Relative Efficiency

Let YI,Y2,...,Yo,... be a sequence of independent and identically

distributed random variables with distribution P , 0 E 0 , an

interval of R'. Let Tn = Tn(Y1,...,Yn) be a test statistic for

testing Ho: 0 = 00 versus H 0 ) 00 .

The sequence {Tn} is called Pitman-regular for testing the above

hypotheses if there exist functions o(0) and rn(0) satisfying the

conditions Cl-C7 below.

Let Z be a standard normal random variable, and let

(0) Tn 4n(00) (n) To 1/n(en)
Won = under P and Won = under P

r( 00) 0 rn(0.) vn

where 0o = 00 + k/ for some k > 0 .

(0) 2
Cl. Won ----4 Z as n ----4 M .

C2. Win --(n) z--4 Z as n ----4 M .

C3. tn(0) is differentiable with respect to 0 in an open

interval containing [00,0n] .

C4. #;(0) > 0 .

4;1(00)
C5. ----+ c as n ----+ m for some c > 0 .

4 n rn(00)

9. (
sup

I nC6. 1 I ----+ 0 as n ----4 m
00( 0 < 8. I ty 00)

Tn(On)

C7. ----4 1 as n ----4 M .

rn ( 00 )

Let 0 ( a < 1 and let Z(a) be such that

Pr [Z > Z( a)] = 1 i(Z ( a) ) = a .
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Tn - In(80)
Let Won - with no distribution specified. Define a

7.0( 00)

rejection region Rn as

Rn = won Z(a)

The level of RI, is

(

an = Pe [Rn] = Pe [ Won Z(a) ] = P[ Won
)

z(a) ]
0 0

and the power of Rn is

IIn = P [Rn] ] = P [ W ] = P[ W On

)
Z(a) ]

On 6n
n

(0 (n
where Wongon

)

denotes Won under Pe
o

(as above) and Won
)

denotes

Won under Pe .

Lemma B.1 on --0 a as n ---0 m .
(0) 2

Proof: By Cl, Won -- Z , so

(o)
an = 13( Won > Z(a) > Z(a)] = a

Lemma B.2 IIn --+ II as n ---- in where II = P[Z > Z(o) kc].

(n)
Proof: lin = KW°. > Z(8)] and II = P[Z + kc > Z(6)] .

(n
It suffices to show Won

) ----+ Z + kc .

)

(a) Ta in(90) rn(On)Win
(n

+ in(On) In(80)
WOn

r0( 90) r0(90)

rn(90) 00 $n(9n) tn(80)

Win
rn(90) rn( 90)

We can write

'$n (8n) = Sn(00+k/417) = n (8o) + (k/A- )1;1(8n)

for some On such that 90 < On < On . Hence

gn ( en) - 00) k It( en) t(00) t(On)

7-0( 00)

-k
117 rn( eo) 117 70( 00) S;)( 00)
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By C5 and C6, k
t( co) t(en)

----+ kc as a ----+ m .

rn ( 00) 9:2 ( 00)

7-0( en)

By C7, ----4 1 as n ----4 m . Thus

ra( 00)

in)

Won = an Wlo bn

where an 1 and bn kc .

(0
By C2, W1n

)

Z , and so

W0(n) 2
= an Win + bn Z + kc

For each sample size n suppose we have two test statistics Tin

and T2n . Suppose {T10} and IT2n1 are both Pitman regular for

testing Ho: 0 = so versus HI: 0 > 00 . Let ki , ci , k2 and c2 be

the constants referred to in the regularity conditions. The asymptotic

relative efficiency of {Tin} relative to 0'20 is defined to be the

ratio

n2

ARE(Tin,T2n)
ni

where ni and n2 are sample sizes such that the two tests Tint and

T- have identical power with respect to identical alternatives.
202

The alternatives are identical if

are identical if kici = k2c2 .

Therefore

kl k2

4 n 1 4n2
and the powers

n
2

ARE(T In,T2n) = ( 1.47r;/..x7) 2 = (k2/k 1) 2 = (c i/c2) 2 .

nl

Define Rn(00) = #;(00)/rn(00) . Then C5 says lim c .

m

Hence

2

W20( 00)
ARE(Tin,T2n) = lim .

n 4 m R10(00)
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APPENDIX C

Proofs of Chapter 3

This appendix contains proofs of the different lemmas given in

Chapter 3 along with some preliminary lemmas needed in the proofs.

Lemma C.1 Let e be a random variable with finite moments of all

orders. Then for all b and all a > 0 , (i) E[(1+alel)b] < m

(ii) E[(1+alel)b ln(l+alel)] < m (iii) E[le1(1+alel)b] < m

Proof Since 1+alel > 1 for all e , hence (1+a1ce is an

increasing function of b . If b > 0 , let [ID] = the smallest

integer greater than or equal b . Then for all e ,

(1+alel)
b

< (1+alel)
[b]

.

But (1+alel)
[b]

is a polynomial of degree [b] in lel and hence has

a finite expectation. Therefore E {(1+aIeI)b} is finite. If b < 0 ,

then (1+alel)
b

< 1 and (i) is immediate.

Since 1+alel > 1 for all e , hence ln(1 +aIeI) < 1+a lel . Therefore,

(1+alel)
b
ln(l+alel) < (1+ale1)

b+1

and (ii) follows from (i). For (iii) note that

lel(l+alel)
b

< lel(l+alel)
[b]

which is also a polynomial in lel .

Lemma C.2 For all n let UnpUn2,...,Unn be continuous and

iid. with distribution function Fn . Let An be a measurable subset

of RI. Set Pn = Pr flint E An} . Suppose that Pn + 0 as n M .

Then,

Sn = (1/n) E I (U 2-4 0
i=1 An n'

where I
A

denotes the indicator function of An
'
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Proof:

In Proposition 5.3.4 of Laha and Rohatgi (1979, p.319) let

Xni = (1/n)IA(Uni)

and

Sn = Xni

According to the proposition, Sn --12-4 0 if the following three

conditions hold for any 8 > 0 :

i. n Pr{ IRn1 > 0

E(Xni) ----4 0

iii. E var(Rni) ----4 0

By definition of Rai ,

PrI1Xnil > ij = PrfIA(Uni) 11 81

Note that the first condition follows because Pr{I
A

(Uni) > no} = 0
n

for n > 118 .

Since Xn1,Xn2, ,Xnn are i.i.d and Pn = E[IA (Und]

therefore

and

E(Xni) = n (Pn/n) = Pa ----4 0
i=i

var(Xni) = n (Pn(1-Pn)/n2) ----4 0
i=i

Therefore conditions (ii) and (iii) hold.

Proof of Lemma 3.2.1

A*

(i) Let Ln = [1 (1+1c1/4i-) ]/ Ao so that (3.2.17) becomes

B
n
= (Ln,0) . Define
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Pn = Pr {Y E An} . More prcisely,

P, = PrlYni E = Prfeni E = Prfc E

= Pr{lan < c < 0} = Fe(0) - Fe(Ln) .

Since Ln 0 as n ----+ m , hence Pn ----4 Fe(0) F
E
(0) = 0 .

(ii) Using the indicator function of the set An , write

[(1/n) E h(Yni-00,10] = 4 [(1/n) h(Yni-O0,10I
An

(Yni)]

;Ilan
i't

Since so < Yni < On for all YniE An and h(Yni-00,A*) is monotone

increasing in Yni , therefore

A*

0 < h(Yni-00,A*) < ((1 +k1/4E-) 1)/A* (C.1)

for all Yni E An .

Multiplying (C.1) by -t1/.1F)IA(Yi) and taking the sum over i we

get

0 < i [(1/n)
il

h(Y
Pi

p, ,A*) IAn(Yndl <
°

4T1[(1+k1/467)

A*

-WA* ( .

"n

From part (i) above and Lemma C.2 we have

I (Y -)/n --P+ 0 .

i.1 An n1

Let x = lair so that

(C.2)

(C.3)

[(1 +k1 /4 )A* 1] /A* = [(i+kix)

A,

1] /(4x)

Apply L'Hopital's rule to obtain

A*

lim [(1-1-kix) 1] /(4x) = lim (k1(1+kix) ] = It! < m .

3c0 x.40

(C.4)

(C.2), (C.3) and (C.4) imply

[(1/n) E h(Yni-00,A*)] -2-4 0 .

YniEAn



(iii) Since

(1/n) E h2(Yi-00,*) = (1/n) E h2(Yi-00,10I A(Y,)
YiEAn i=1

and since from (C.1) we have

A*

0 < h2(Yi-90,A*) < [(l+kibg ) 1]2/A: ,

hence
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*

0 < (1 /n)
il

h2(Yi-00,4)IAn(Yi) < ([(1411/4T) - 1] 2/4
i

) I, (Yi)/n .
i ^n

By the argument given in part (ii) above it suffices to show that

[(1+)E1/411") 1]2 /A: is bounded as n m . This is true since

for all A*) 0

2
0 < [(1+k1 bli7)

A*

-1 ]2/A* 0 as n ----4 M .

To prove parts (iv), (v) and (vi), first note that by an argument

similar to the one used in parts (ii) and (iii), the following is true.

If Igo(E) I < M for all E E BEI and all n > no , then

(1 /n) E gn(ei) -2-4 0 .

eEB.

A*

(iv) go(E) = 117E . Since lel
< [ (1+A 1/ 417 ) -1] / ( A*,) for

E E Bo , hence

A*

1417E1 = g 1E1 < [(1+kibli7) -1]/(A*,) ----+ k1 /i .

(v) go(E) = E2 . From (iv)

A*
0 < E2 _1]2/(442( [(1411/4T)

1-1/A*
(vi) gn(E) = (1 + A*01E1)

A*-1 A* A*

go(E) < (1 +k1/4 ) < (l+kibin-) < (1+k1) .



Proof of Lemma 3.2.2

(i) From (3.2.14) since

1(1/n) E eilti(ei,1*,n)

fiEB.

< (1 /n) E clfil E ((cibri)j/j!)
fiEBn i=1

i-1 1-(j /A*)

1. 11

1

(A*(Am)I (1 + A*fleil)

1-1/A*
< (1/A*)(1/10( E cleil(1+491fil)

fiES.

(I( E (k1/4i")-/j!) (A*-2) I)
j =1 ..0

From a result similar to Lemma 3.2.1 (vi)

n 1-1/A* 1-1/A*
(1/n) (1 /n) E

i=1 cia,c1

+P n----.
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(C.5)

Since by the NLLN and the result of Lemma C.1 (iii)

1-1/A* 1-1/A*

(1/n) Eflel(l+A*flel) } < m

and since

1

A*

E
j
/j!

j-
(A* -m) = (l+k1/417) -1 ----4 0 as n ----4 M ,

j=1
m=0

therefore from (C.5) (1 /n) E --1-4 0 .

ciatn

(ii) Note

(1/n) E R?(Ei,A*,11) =

EiEBn

j1 1-j/A*
i . j-I

(1/n) E [ E (sign(ei)) (1+Aolfil) ((kibli")'/3!) II (A*-m)]2
m=tfief; i=1

1-1/A* m
< (1/4)(1/0( E c(i+A*, il) l2[ E ((k1/4 )3 /j!) II (4-2)12

eie3. 11=1
m=o
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1-j/A* 1-1/A*
because (1+A*fleil) < (1+Aoleil) for all j > 1 .

From Lemma 3.2.1(vi)

1-1/A* n 1-1/A*

(1/n) E c(1 +.{111111) (l/n) (1+4,1eil) ---4 0 .

fien i21

It follows from the WLLN and the result of Lemma C.1(i) that

l-1/A* p 1-1/A*

(1 /n) E (1+A1111cil) N{(1+Aolcil) } < m
i=i

As before, E ((k1/411")3 I'll11 (A* -m) 0 as n ----+ m , and
j'l a=0

therefore (1/n) E -2-4 0 .

(iii) From (3.2.16) write

(417/n) E R2(ci,A*,n) = V/(A*417) (C.6)

where

V = (1/n) E E (sign(cd)3-1((k1/4 0-2/j!)iii(A*-m)
eys,;i=2 m=o

1-0/A0
(1+Aoleil)

To show that the left hand side of (C.6) tends in probability to 0 , it

suffices to show that Ni is bounded in probability.

Note that

1-j/A* 1-2/A*
(1+Aoleil) < (1+,{111111) for all j > 2 .

Therefore,

1-2/A* m
j 2

IVI < ((1 /n) E (1+4,1Eil] ] ( E MI/4-1TC /ji) 111 (A*-m)I
EiEBC j22 m=0

By a result similar to Lemma 3.2.1(vi),

1-2/A*
(1 /n) E (1+Ao1fi1) ----+ 0 , so

fiLEBIcl
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1-2/A* 1-2/A*

(1/n) (1 +4,1e I) (1 /n) E (14-Ao 4leil) o .

i-1 fiEoici

By the WLLN and Lemma C.1(i)

I-2/A* 1-2/A*

(1/n) li (1+4,Ifil) -1-4 E {(1+Aole1l) } < m .

iz!

So, it remains to show that

Q =
jE2

(k1/41317)j-2 /j! 1

mII0
(A*-m) 1 < m .

Since we are assuming that A is positive,

Q< E (k1/4E-02/
j

j!
1

(A=4111)
j=2 m=o

Let q = [As] . Then

Q < E (k1/4E-)
j-2

/ )!
j1

(q+m)
j22 m=0

= E (k 1/ 4737 )
*-2

(

q+j
) -

j22 q-1
1

Since we are proving an asymptotic result, we can suppose

pi> 111([A*] +2)/3 k1(q+2)/3 . (C.7)

We now use this assumption and the ratio test for convergence of

infinite series to show that the series bounding Q is convergent and

hence Q is finite. Let f(j) denote the term indexed by j in the

expansion of the above series. Then

f(j+1)/f(j) = k1 (q+j)! (q-1)! j!

(q-1):(j +1)! (q+j-1)!

= (k1/4 i7) (q+j)/(j+1)

= (k1/41T) (1 + (q-1)/(j+1))

< (kiblif) (1 + (q-1)/3)

= k1/4-1 (q+2) /3

< 1 (from (C.7)).

for all j > 2
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Lemma C.3 Given b > 0 , there exist functions gm(e,b) , m = 0,1,

not depending on n , such that

(i) Under Ho, ( 1"01+1)b <Igo(c,b)

(ii) Under H1, (1Y-$01+1)1) < g1(e,b) for all n > .

Also, these functions are such that (1/n)
i

gm(ei,b) , m = 0,1, is
mi

bounded in probability.

Proof

1/1*

(i) (IY-001 + 1) = (1 + 4,10

b b/A*
( IY- 00 1 + 1) = (1 + Aole I)

(b/A*]

< (1 + Aoki) = g0(e,b) . (C.8)

where as defined in this thesis, [x] = (integral part of x) + 1 .

pc*/1*1

Let Go = E{(1+4,10 } . By Lemma C.1, Go < m . By the WLLN

(1/n)
i1

g0(ei,b) 2-4 Go (C.9)

From Lemma A.1 we conclude that (1/n) E go(ci,b) is bounded in
i2I

probability.

Under HI

(ii) For Y < go

b b

(IY-001+1) I (Y) = (On-Y +1 ki/X) I (Y)

(-03, 00) (-m, 00)

b
< (00-Y+1) I (Y)

90)

b/A* (b/A*]

= (1-A*0.0 I (e) < I (e)

(-00,Ln) (-m,Ln)

A*

where Ln = (1 (1 +k1/4i7) )/A* .
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For 00 < Y < On note that 001 +1 < and hence

b b

(IY-17o1+1)
< (1+k1 /4i- ) . For n > Al , this implies,

(1Y-801+1) I (Y) < 2 I .

(90,0n) (Ln,0)

For Y > 0.

b b

(1Y-801+1) I (Y) = (Y-On+1+kibli7) I (Y)

(8n, m) (On, m)

b b
= (Y-9,1+1) (1 + k1 /(411(Y-0 +1))] I (Y) .

(9.,m)

Since 41-Tcy-en+1n (Y) > 1 , hence

(On,m)

b b b

(1Y-001+1) I (Y) < (Y-8n +1) (l +k1) I (Y)

(8n,m) (On,m)

b/A*
= (1+4,0 (1+k!) I (e)

(0 ,m)

(b/4]
< (1+4,f) (1+A1) I (e) .

(0 ,m)

(b/4]
Let gi(e,b) = (1-A0E) t (e) + 2bI (e) +

(-m,Ln) (Ln,0)

[b/4] b

(1+4") (e)I)(1+k .(1 +k1) (C.10)

(0,m)

[bali] [1:44] b

Let GI = E{(1-4,0 I (e) + (1+4,0 (1+A1) I (E) } .

(-m,Ln) (0,m)

Then

(1 /u) gl(fi,A*) --0 GI < m. (C.11)
it

From Lemma A.1 (1/n) E gi(ci,b) is bounded in probability.
i=t

Lemma C.4 Given 0( 60 < A* , under Hm (m = 0,1), there exist

functions Mmk(e) , m = 0,1 and k = 1,2,3 , such that (1/n) E Mmk(ei)
i=t
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is bounded in probability for all 111 and k and such that for all n

dh(Y r 901 A)
(i) (1/n) sup 1 1 < (1/n) 1±k Nmi(ei) .

1A-A*1<60 i=1

911 2 (Y 1-90, A)
(ii) (1/n) E sup I 0,1 I (1 /n) Mm2(ei) .

IA-41<50 i=1

d2h i- 00, A)
(iii) (1/n) E sup I I < (1/n) E /4m3(ei) .

i=1 l'"*I<50
#A2 = I

Proof Since

ah(y-eo, A) A

(i)
dA

= A sign(y-00)[( ly-00 1+1) 111( ly Bo 1+1)

lh (Y-60, A) 1] , (C.12)

hence

dh(Yi-Op A)
su

11-41p <Jo

I

-
(4-60)

I

( 1Y-90 1+1)
4+60

ln( 1"0 1+1) + "iris) -2E( IY eo 1+1)
4+6c$

1]

1*+150+1 4+5,
< (A*-60) -I( ly 00 1+1) + (4-50) -2( 1"0 1+1)

because 1Y- 901 +1 > ln( IY-90 1+1)

Under Hm the result follows from Lemma C.3 with

Mmi(E) = (4-80) -Igm(e,A,0+50+1) + (4-60)-2 gm(e,4+60)

ah2 (y- 00, A) ai (Y- 90, A)
(ii) Since

dA
2h(Y-00,A) (IA and since

(A *440)
sup Ih(Y-00,A) I < (A*-60)-1(1Y-901+1)

IA-A*15.60

(C.13)

(C.14)

(A*44o)
therefore multiplying (C.13) by 2 (A*-60) -1(1Y-90 1+1) we get

eh 2 (y et), A)

sup
1A-A*1 Oo

I <

2(4+60)+1 2(4+60)
(A*-60) -2( IY- 00 1+1) ( A*-460) -3( IY- 00 1+1)
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Under Hm the result follows from Lemma C.3 with

M02(e) = 2(A*-40)-3 gm(E,2(A*440)) + 2/(A*-80)-2 gm(c,2(A*+60)+1) .

(C.15)

(iii) It is easy to see that

e2wi-90,A) eh (Y 90, A)

I
I- (2/A*) I

evi

I+ (1/4) ( IY- 001+1) (1n( IT-1,0 I+1) ) 2
dA2

and hence under Hm the result follows with

Hm3 ( c) = (2/ ( A*- 50) ) Mmi ( + (1/ ( A*- 80) 2) gm( e, A*+.50+2) .

(C.16)

(C.17)

Since the functions Mmk(c) for all m and k are linear combinations of

the functions gm(c) m = 0,1', hence from (C.9) and (C.10)

(1/n) Mmk(ci) are bounded in probability for all in and k .

i'

Proof of Lemma 3.3.1

(i) Consider a Taylor expansion of En(00,An) about A.= A* .

dh(Yi-00,An)
E - n(00,:in) = 11,(00,A0 + (A, A*) [ (1/n) i2,1 oA

where A. is such that

En(80,in) Ea(

lAn-A*I < lAn-A*I

00,4) = (A0-A*)

. Hence

0 dh(Y i- 00, A.)

[ (1/n) E
I

From Lemma C.4 (i), since under Hm (m = 0,1)

al(T--00,A0)
(A0)

dh(Yi-00,A)
(1/n) E I IdA < (1/n) sup I

dAi=1 (A*-50,A*440) i" IA-A*I< 80

n

< (1 /n) E Mmi(ei)
i=1

ph(Yi-80,41)
we see that (1 /n) E I II (In) is bounded in

al
(A*-50,A*+80)

probability. Since Pr[lAn - A*I < So] ----4 1 , hence
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I (Is) 0 and so by Lemma A.3 we conclude that

(A*- 6o, A*44o)

A dh(Yi-00,An)
(1/01 E I is boUnded in probability. (Note that this

di=t A

assumes measurability of A. , If An is not measurable, the argument

might still go through using outer measure as in Huber (1967, p. ).

Since A. --12-4 A* , therefore from Theorem A.1 in Appendix A with

RI dh(Yi-00,4)
A0 = 1.-A* and Bo = (1/n)

iI
, we conclude

=1

1112(90,4) 110(90,A) --2-4

(ii) From a similar argument using a Taylor expansion of

(l/n) E h2(Y-90,A0) about as A* and the functions Mm2(e) in Lemma
i.1

C.4(ii), it can be shown that

(1 /n) E h2(Y-00,4) (1 /n) h2(Y-00,A*) 0 .
i=1 i=l

Proof Lemma 3.3.2 From Lemma C.4(iii)

n eh(Yi-00,A) d2n(Yi-00,A)

(1/n) E I II (An) < (1 /n) i' sup I
I

i=i oA2 (A*-40,A*-140) imilA-A*Igo
op

< (1/n)
i1

Nm3(fi) .

n d2h(Yi-00,A0)
Therefore (1/n) 5 I II (A0) is bounded in

i.1 0A2 (A*-60,A*+60)

probability. The proof proceeds as in Lemma 3.3.1.

Proof of Lemma 3.3.3 Since

dft(Y -00,4) A*

dA
(1/4)sign(Y-00)[(IY-001+1) ln(IY-001+1)

1h(Y-00,4) I] ,

therefore under Ho
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ah(Y -00,A*) A*

(1/ADsign(e)[(1+4,1e1) ln(l+A*elel) A*flel] .

ail

(C.18)

-40,A*)

Under symmetric distributions of e , E[
81

] 0 because

(C.18) is an odd function of e . Therefore by the WLLN

dii.(00,A*)
0

Under HI from a Taylor expansion about On we can write

amy abi(y -en,A*) Acy-en,

( en- 90) (88 <B -as as as dO

0h(Y -0 ,A*)
As for Ho, (l/n) n

dA
t --E -4 0 . So, it suffices to show

n A(y-9n,,1 *)
that (l/n)

iEi
as d0

iS bounded in probability.
m

d2h(Y-0,A*) A-1

dA de
( Y-8 +1) ln(IY-01+1) .

Therefore

d2h(Y-0,A*) A

I OA 00 I IY'-91+1)

Ph(F-en,A0 _ A*

I OA 00 I

< (IT -en I+1)
-

From the triangular inequality we have

A* A*
Im

( 1Y- gal+1) (1"o1+1) + (1Y- 0n 1+1) -

A*

Under HI (IY-801+1) = A*fle1+1 . Therefore it suffices to show that

there exists some function M(e) with E[M(E)] < m and such that for

all n , (IY-801+1) < M(e)

ly-e01+1 = iy-en+kbpi- 1+1 < ly-0.1+k/417+1 < iy-oni+k+1 .

Therefore
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A* 1* 1/A* A*

(1Y-001+1) (IY-On1+1+k) = [(1+101E1) + k]

1/1* [4]
< {(1+4,1e1) + k} .

Let m = [4] , then

1/A* [4] a a j/A*

f(1+,101E1) kJ = E (.)(1+4,1e1) km- J.
j=1 J

Let

m m [i/4]
i

M(E) = E
1

(.)(1+101e1) k J ,

=

then M(e) is a polynomial in lel with a finite expectation.



APPENDIX D

Proofs of Chapter 4

Proof of Lemma 4.3.1

From a Taylor expansion of iin(00,An) about lin = II* and

A2n = A2*

142

hn(00,In) hn(00,I*) = (11.-A10
Oh(Y--0

0,A(1/n) E r1

)

I (Yi)

0.1

121 (-m, 00)
1

(A2n A2*) (1/n) En &(i 90,1°) I (Y i) (D.1)
1=1

dA 2

(00,m )

where A, is such that Ilia - A1,01 < Ilin - II*1 and

IA2n A2*I IA2n A2*I . The result follows if the LIES of (D.1)<

tends in probability to zero. Consistency of the maximum likelihood

estimator of (follows from Appendix E ) implies, Ain --12-4 A I*

and 12,2 -2-4 A 2*. Hence by Theorem A.1 of Appendix A it suffices to

show that there exist Mkm such that under Hm, m=1,2 ,

Pr{(1/n) E
loh(Yi-

9°'.1.11)

< Mkm} ----4 1 as n m k = 1,2.

,

To show that there exists such Mkm , note that i

(Y-0 osA- )
I , k = 1,2

0Ak

is the same as the first derivative with respect to A under the

John-Draper transformations. Therefore we define the function 1410 from

(C.12) upon replacing A* by Al* . Similarly, we define the function

M20 from a replacement of A* in (C.12) by 12* and so forth.
0

Proof of Lemma 4.3.2 Note that

ai(Y-00,A) A 1

I °2h(Y-90,d9 I

2/A1 + 1/A1(00-Y+1) ln(00-Y+1) .
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This is the same as (C.16) in Appendix C when A there is replaced by

AI . Therefore the result follows from (C.17) and (C.18) under Ho and

HI if A* in these two equations is replaced by Al*.

A similar argument holds for

Proof of Lemma 4.3.3

Since

ah(Y-00,4 *)

(-1/A1*)[(00-Y+1)

A"
ln(00-Y+1) + h(Y-00,A*)]I (Y)

0A1 (-co, 00)

hence under Ho

oh(Y-90,A*) 2
((-1/A1*) (1-A00,01n(1-Aloc) of /A1,0] (e) .

oil (o)
Therefore

n a(Ii-80,A*) In 2 A I*
(1 /n) E (1/n) E ((-1/A1*) (1-Aolgrei) ln(1-Aloci)

i-1 eAl

sei/A1,0 I (fi) .
(-re,0)

Note that

Al .1 +1

(1/n) li (1-Alo
*

ci) ln(1-Aloei)I (ei) < 1/n E (1-Al*rei) I (ei)
i=1 (-03,0) P'l (-00,0)

n [A00+1
< (1/n) E (1-A1 oci) I (ei) .

i=1 (--(0,0)
[A1*]+1

But (1-A1 oci) I (ei) is a polynomial of a normal variable and
(-m,0)

hence has a finite expectation. Also, (1/n) E eiI (ei) has a finite

i=1 (-03,0)

expectation. Therefore by the WLLN, under Ho for Y < 00

n ah(Y-00,A*) 2 Al*

(1/n) E --a-4 E{ [(-1/A1*)(1-A1 oci) 1n(1-A1 *fei)

dAl

f i/ .11431 (Ed = < o0 .
(-TM



From a similar arguemnt

11 011(Yi-00,A*)

(1/n) Z

for

--E-4 E{

Y > 90 it can be shown that

2
A2*

[(1/40(1+A20Ei) ln(l+A20E1)
i=1 0,12

Therefore under Ho

A-1(00,4)

(IA

E i/ A 2 *) I (E1) } < an .
(002)

-2-4 E[S(E,A*)] where

- E{ [-AiD1-11,01n(1-A10E) - (E) }-
(-m,0)

E[S(E,A*)] =

E{ (A2*(14-12001n(1 +A20e) (E) }

(0,m)
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Under HI as we did in proving 'Lemma 3.3.3. we write

(Y- 00, ,4,0) (kt (Y- A*) (Y- 600, AO
0) oo<on<en -

aA aA al 80

dil(Yi-901A*) pAs for Ho, (1/n) E E[S(E,A*)] .

jai dA

Since On-#0 = 0 as n m , so it suffices to show

e2h(Y-00,1*) d2h (Y- 00, A*)

that the functions and are both bounded in
dA189 dA2d0

probability. This follows the same steps given in the proof of Lemma

3.3.3.
El
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APPENDIX E

Consistency and Asymptotic Normality of A the /ILE of A

Let h(y-190,A1,A2) denote the two-domain transformations. Since

we are assuming that Al* and 12* are positive, the parameter space is

defined as

0 = 1 w= (11,12,4 t: Al > 0 , A2 > 0 , c> 0 1 .

Any m E 0 is an element of an open set I contained in 0 of the

form

. I= 1 w : al < ,11 < bi , a2 < 12 < b2 , a3 < r < b3 1 (E.1)

for some positive numbers ai < bi , i = 1,2,3 . Without loss of

generality for i=1,2 we assume that bi/ai < 2 . Under the model

= re the pdf of Y with e assumed to have a standard

normal distribution is given by,

fy(y,AI,A2,f) = 1/i fe(h(Y-00,11,12)/4 .7(102) (E.2)

where,

and,

1/r fe(h(y-00,AI,A2)/r) = (2Tr2)-1/2exp{-1/2r2h2(y-00,A1,A2)}

1-(00-y+1)
AI

=(27e2)-1/2exp {-1/20.2[(
Al

) 21 (y) +
(-co, 00)

(y-00+1) 12-1
) (y) l}

A2
( 00,m)

a(Y-00, A A2)
J(A1,A2)

eY

(E.3)

11-1 112 -1

= (00-y+1) I (y) + (y-00+1) I (y) (E.4)
(-m, 00) ( 00,m)

For a given y the loglikelihood as a function of w is given by,
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Al

1-(80-y+1)

L(AI,A2,f) = -1/2 ln(i2) - 1/2,2 ) 2 I (y){[( A
1 (-°°, 90)

A2

(y-00+1) -1
+ ( )2 I (y) ]} + in (J(A,,A2))

A 2 ( 90,4

lemma E.1 Let L(A1,A2,0) be as defined in (E.5) and let

(E.5)

lc

d f(y,A1,A2,01 thdenote the x partial derivative of fy(y,A1,A2,f)

0A1 DA; aft

differentiated r-times, s -times and t-times with respect to a1 , A2

and f respectively where, k = 1,2,3 and r,s,t = 0,1,2,3 are such

that r+s+t = k . There exist functions Mrst(y) such that,

k

le f(y,AI,A20) < mrst(y) for all w E I
()A; DA; DO

and

Proof

mrst(Y) dy <
for all k, r, s and t

It is more convenient to give the proof in terms of the

loglikelihood by noting that for any three times differentiable

function g(7,Y)

lag (7, v) I = laln(g (7, v)) I Ig (7, v) I (E.6)

, ,,id2g(7,v) 5% 5. 11%g(r v) I Inn(g (7, v)) fluul(g(7, i) I

I dv I I a7 av
a7 av

Ig(7, v)
I

(E.7)

and
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a2incgc 7,0)pg(7,0 < id3lng v) I Ig (7, v) + 2 I
O7 OV472-771 I d72av

I I

a2Lricg(7,0) laincg(7,0)
I

( 7,14) 1 1lIg(71) I + I

I
1)7 2

dvd7

2

Ig(7,0 I + I 1/)) 1 I all(g(7.0 ) I 107,0 I (E.8)

dv

We first start to look for some function f*(y) that dominates

fy(y,11,A2,f) over I that is, fy(y,A1,12,4 < f (y) for all m E I

then we find functions Grst(y) such that,
Lcil,12,14

aArtaA; dot
< Grst(Y)

for all m E I and such that, 5 Grst(y) f*(y) dy < m . The results will

then follow with Mrst(Y) taken to be some linear combination of the

functions Giii(y) for some i,j,l determined from equations (E.7)

and (E.8) and from which partial derivative is considered.

We give below some upper bounds over I for the different terms

d
included in the functions f (y,11,12,f) and so that

dArld,q dot

if every term is replaced by its upper bound we get f (y) and Grst(y)

1/A, < 1/el , 1/A2 < 1 /a2 1/f < 1/a3 , -1/, < -1/b3

(00-y+1)AI < (00-y+1)bi , (y-00+1) 1 2< (y-00+1)
1)2

(1-(00-y+1)
A
1)2 < (1-(00-y+1)a1)2

AI b

((y_804.1)12_1)2
((Y -90 +1) a2 -1)

A2 b2

1. An integrable upper bound for fy(y,A,,A2,r)

From (E.3)

fe(h(Y-00,11,A2)/f) < (27)
-I/2

expl-(1/24)

1-(90-y+1)
AI

(y-80+1)
A2

-1

[(al/b1)2( )21 (Y) + (a2/b2)2(
A2
1 )2I (Y) n

(-car 00 ( 9o, co)
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Let r = max(bIb3,
b2b^

a ) then,
al a2

fe( h(y-00,A1,A2)/, ) < (24 exp{ - 1/r2 h2(y-90,al,a2) }

hence

From (E.4)

let,

yh(Y-00,A1,A2)/c) < r (1/ryh(Y-00,apa2)/r) (E.9)

J(A1,A2) < J(b1,b2) (E.10)

f (y) = r/a3 (1/r f
e
(h(y-90,ai,a2)/r) J(b1,b2)

then it follows from (E.2) , (E.9) and (E.10) that

*
fy(y,A1,A2,1) < f (y) for all u E I (E.11)

It remains to show that, f f (y) dy < m . Note that f (y) can be

written as,

Let

f (y) = fy(y,a1,a2,r) (r/a3 J(b1 -a2+1 ,b2-a2+1)] (E.12)

1-(00-Y+1)
a

1
a 2

(Y-90+1) -1

X I (Y) + I (Y)
a1 a

(E.13)

(-m, 90)
2

(90,0)

From (E.12) observe that f
X '

(x a
11
a
2'

r) is a normal density with mean

zero and variance r2 . In proving the integrability of f (y) and

*
later each of the functions Grst(y)f (y) we express each of these

functions in terms of X and then show that the resulting expression

is some function of a normal random variable with a finite expectation.

From (E.4),

J(bra1 +1,b2-a2+1) (90.101)bi-al,
(y_004.1)1)2-a2I (y)

(-m, 90) (90,m)

from (E.13) note that (90-y+1) = I (x) and
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(y-00+1) = (1+a2x)1/a2 I (x) . Hence
(0,m)

bi/a1-1,J(b1-a1+1,b2-a2+1) = (1_alx) (x) + (1+a2x)
b2/a2-11

(0,m)(-(0,0)

Therefore under the assumption that bi/ai < 2 we get,

f f
*
(y) dy < r /(a3 4i;77) { f

0

(1-alx) exp[-x2/2r2] dx

-m -m

+ f (1+a2x) exp[-x2/2r2] dx }

< m (E.14)

2. An integrable upper bound for
ai(AI,A2,f) I

I dAi

From (E.5) note that,

Let

Al

"0-1".1) -1
lawAI,A2,17) I = 1111(00-y+1) + (1/A1,2) u I )

I edit

1

A
i

AI 1-(90-y+1)

(80-Y+1) ln(90-Y+1) + ( )2} I (Y) . (E.15)

(-m, 00)

bi

1-(00-y+1)
Gloo(Y) = {ln(00 -Y +i) + (1/a0.3) [(

al
) 2 -

1-(00-y+1)
) ( 00-Y+1) ln(00-Y+1)]} I (Y)

a 1
(-m,

which implies that,

la(A11412,41 <

()AI

(E.16)

(E.17)

*
Let, M100(y) = Gloo(y) f (y), then from (E.6) ,(E.11) and (E.17)

Of (Y A A 4
I

y It 2.
< M100(Y) for all u E I (E.18)

dA,

We now show that J Gloo(y) f (y) dy < m
-m
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I Gloo(Y) f
,

(Y) 0 = f

m
fln(00-Y+1) + (1/ala3)

-m

1-(00-y+1)
bi

1-(00-y+1)
bi

[( ) 1 ( ) (00-Y +1)
bi

ln(00-Y+1)11-
at al

(r/a3 J( bi-a1+1 ,b 2-a2+1 )] fy(y,A1,A2,4 dy

Note that Gloo(y) is defined over (-m,00) hence , the integral over

the positive co-domain will vanish. Hence,

*
Gloo(y) f (y) dy

-m
b

1-(00-y+1)

[(
al

= f

0

fln(100-Y+1)

-m
bi

1-(00-y+1)
(

al

+ (1/a14)

bi

(80-Y+1) ln(00-Y+1)]}

at

bi_al a1_11- 1(00y+1)
[r/a3(90-Y+1) ](eo-y+1) expt-1/2r2( )21/4 -2;r7 dy

al

then from (E.13),

0

oloo(Y) f (Y)
f fln(1-alx)/al +

-m -m
bi/a, b /a

t- I. ab /
l

(r/ala2)[(
(1-ax) 1) 2

+ (
(1-a lx) -1

) (1 -a ix)

al a1

bi/a1-1

ln(1-alx)/a01 (1-alx) expl-x1/2r11/4 1;71 dx

Since at > 0 and X < 0 imply (1-alx) > 1 and ln(1-alx) < (1-alx)

then by the assumption that bi/a, < 2

0

J Gloo(y) f* (y) dy < f (1-alx)/al + (r/a?a3)

-m -m

[(1-alx)1-1)(1-alx)1 + (1-aix)1-1)1] (1-aix)

exp{ -x1/27.1}/4 2;7 dx (E.19)

The right hand side of (E.19) is the expectation of a polynomial of

degree 6 defined over the negative region of a normal random variable

and hence is finite. Therefore,



K100(Y) dY = f Gloo(y) f (y) dy m
-m -871

3. An integrable upper bound for
oL(11,12,f) I

I dA2

From (E.5)

Let
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for all u E I.

(8.20)

A2

(Y-90+1) -1 1 2la(A1,A2.01
= fin(y-00+1) + [( 1 )(y-00+1) /(A2,2)

1 aA2 '2

1
0+

2

11 n(Y-00+1) + ((y-BA21)

-I)

2] } I (y)

(0,m)

b2
(y-00+1) -1

G010(Y) = ln(y-00+1) + {(1/a24) [(

b2
b2 (y-00+1) -1

(y -60 +1) ln(y-00+1) + (
a2

) 2] } I (y)

D3)

which implies that

la(AI,A2,0 I < Go toy)

I (712

(E.22)

(E.23)

*
Let, Molo(Y) = Got° (y) f (y) then from (E.6) ,(E.11) and (8.23)

01

< Noto(Y)
al2

for all u E I . (8.24)

From a similar argument like that given in 1 , it can be shown that,

molo(y) dy = of Golo(Y)
f (Y)

<

m-m

4. An integrable upper bound for 16/L(11'12'41
of

From (E.5)

for all u E I



1-(80-y+1)
2

18L(11,A2,41
= 1/, + 1/f3 {I(

A
) I (y)

or 1 (-10, Bo)

Al

A2

((y- 90+1) -1
)

2
(Y)]1

A2 (00,(0)

Let,
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(E.25)

bi

1-(90-y+1)

G001(y) = 1/a3 + 1/a3 f(
)2

+

b2

(
(y- 90+1) -1)21

(E.26)

a 2 (80.00)

and let, M001(y) = Gool(y) f*(y) . Then

lal(A1,12,41)

or
By (E.6) , (E.11) and (E.27),

I

a(y11,A2,1)
I < M001(y)

ar

(E.27)

(E.28)

m m
We next show that, J Mool(y) dy = f G001(y)e(Y) dy < m

-m -m

5 Gool(y)f
*
(y) dy = 1/a3 f

m
f
*
(y)dy + (1/4 2/72) r/al

-m -m
bi at

f°(1-(00-y+1) )2 (00-y4.1)
b

1
-1

exp(-(
1-(9

0
-y+1)

)2/2r2]dy +
-m a1 a1

b2 a 2
b2-1

ofm0Y-80+1) I) 2
( -00+1) exp [-( 0

(y-9+1) -1)2/2r2 ]
}

a 2 a2

under the variable transformation defined in (E.13)

m

I G00010f
*
(y) dy = 1/a3 f f

* (y) dy +,

-m -m

0 b / b1 /a1-1

dal{ f (1-(1-a1x) )2 /a7 (1-a1x) expf-x2/21 dx
-m
m b 2/a2 b2/a2-1

+of ((1 +a2x) -1)-/a- (1+a2x) exp { -x2/2} dx }/4 2rr2
2
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By the assumption that bi/al < 2 and b2/a2 < 2,

m M
{

J

°(1-(1-alx)2 2

J Gool(l) f

*

(Y) dy < 1/a2 f f
*
(Y) dy + r/a4 13 )

-m -m -m a1

(1 -a Ix) exp { -x2 /2} dX +2fm( (1+a 2x )2-1
)
2

(1+a2x) expf-x 2/21 dx1/4 277-2

a2

(E.29)

The right hand side of (E.29) is the expectation of a polynomial of

degree 5 of a normal random variable and hence it is finite.

5. An integrable upper bound for
lo2L(AI,A2,41

a,2

From (E.25)

a2L(di A2, .7) I
I eL(A di2r 0) - 1/4 1/0.2

thr2

Let G002(y) = 3/a3 (Goo' (y) 1 /a3 ) + 1/4 then it follows that,

Let

1021,(At,A2,4 fy(y,A1,A2,4
Goo2(Y) f (Y)

I de

11002(Y) = 3/a3 (M001(Y) 1/a3e(y)) + 1/a23 f*(y) +

GLI(y)f (y)

From part 3 above, it easy to see that

IdL(AI,A2,6)12 f (ITA A f) < GO01(Y) e(Y)
e,

y If V

and that f Ggol(y) (y) < m . (E.7) and (E.30) imply ,
-m

la2f(y,A1,A2,0')
I f(y,A1,A2,0.)

< M002(Y)
I (47

Since M001(y) , Gg01(y)e(y) and f*(y) are integrable then, it

follows from (E.30) that M002(y) is integrable.

(E.30)
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6. An integrable upper bound for
Id2L(AI,A2, 9) I

dig

Let,

then,

t

AI AI

From (15)
Id2L(AI,A2,41 1/..2{4/A? i00_Y+1) -1)(00-y+1)

aA?

Al 2A1

ln((00-Y+1) + 1/A1 [(00-y+1) (1n(60-y+1))2+ 2(80-y+1)

(1n(80-y+1))
2

+ 3/At ((00-y+1)
AI

1) 21 (E.31)

G2o0(Y) = 1/a; {4/a?

b1

+ 1/al [(00-y+1)

+ 3/al ((80 -y+1)
b

((00-y+1)

b I

1) (90-y+1) In ((80 -y +1)

(1n(00-y+1))

1)21 (E.32)

2b1

2+ 2(00Y+1) (111(00-1,11))2]

1#21.01, A2, to I < Guo(y) for all uEI (E.33)

Using the variable transformation given by (E.13) and the assumption

that ai/bi < 2 for i=1,2 it can be shown that,

f G200(Y) f
*
(Y) dy < f (r/alal) {4((1 -a1x)2 1) (1-alx)3 +

(1-a1x)4 + 2 (1-a1x) 6 3 ((1 -a1x)2 1)2}

(1-a1x) exp{ -x2/2 } Idx/4 2772 < m

From (E.15)it can be shown that,

and

leL(AI,A2,4 12 <

I asl
100(Y)Y/

(E.34)

(E.35)

m * 0

f GL0(Y) f (Y) dY < f (r/a3a3)( a2(1-a
I I
x) + ((l-a x)2-1)

i 3 IM m
(1-a1x)3 + ((1 -a1x)2-1)2]2 (1 -a 1x) exp {-x2/2r2} dx/4/;7-7

( no (E.36)
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11200(Y) = G200(Y) f (Y) G12 00(Y) f* (Y)
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(E.37)

then by (E.7) , (E.33) and (E.35)
rf(y, AI, 12, tr) I w (.) and from

dAl

(E.34) and (E.36) f m200(Y) dy < m
-m

From a similar argument it can be shown that the absolute value of

the second partial derivative of f(y,,II,A2,4 differentiated twice

with respect to A2 is dominated by the integrable function M020(y)

where M020(y) is defined as M200(y) given by (E.37) with a2 and b2

replacing al and bi respectively.

For the third partial derivatives of f(y,11,A2,4 we show for

one case only that there exist integrable functions Mrst(Y) such that

lakf ty, A 1, A2, 4

aAr aAs a,t < Mrst(Y)

I 2

The rest of the cases can be treated similarly, however note that

whenever both r and s are different from zero the resulting

derivative will be zero due to the multiplication of the two indicator

functions I (y) and I (y) .

(00,m) (00,m0

7. An integrable upper bound for 1#3"Y'Al'A2'161
I aAT a,

for all m E I

From (E.31) note that,

d3f(y,i1,A2,f)

I

.
2/f I

I

I dIf d,

Let G201(y) = 1/a3 G2oo(Y)
-

since
Id2L(1,12,011 < G200(y) and

1/, < 1/a3 hence
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la3L(AI,A2,41 ( G2 1(Y) (E.38)

I dAT a, I

From (E.36)

. . ..

J G201(Y) f (Y) dy = 1/a3 5 G200(y) f (y) dy m (E.39)

-m -m

From (E.15) note that,

le2L(AI,A2,,)1
= 2/u Id6(Al,A2,,) I - 112(00-y+1))

I 8.11 di dAl

< 2/0
a6(.11,A2,41

From (E.17) we conclude that,

< 2/i3 G100(Y)
01 a,

From (E.19)

(E.40)

G100(Y) {(1-alx)/1 + 1 ia?[((l-alx)2-1)(1-alx)3+

((1-alx)2-1)2nI (x) (E.41)

(-m,0)

where x is given by (E.13) . From (E.29)

< 1/a3 I (x)

al
G001(y)

.01-(1-alx)2.2

(-m,0)

+ ( (1+a2x)2-1)2 I (x)

a2 (0 ,m)

From (E.11) , (E.27) and (E.40)

la2L(A1,A2,0)

I I

lawl.,A2,4
I

f(y,A,,A2,,)

1 oA, or or

< 2/a2 Gt00(Y) G001(Y) f*(Y)

(E.42)

(E.43)

Note that the integration of the product of the right hand sides of

(E.14) (E.41) and (E.42) under the normality of x represents the

expectation of a polynomial of degree 10 of a normal random variable.

Hence,



f 2/a3 gioo(Y) Gool(Y) f (y) dy < m
-m

MAI,A2,01 I
From (E.17) since I . Hence,

as 1

< Gioo(Y)

law,,A2,412 < GT00(y)

811

(E.11) , (E.27) and (E.45) imply that,
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(E.44)

(E.45)

loL(A1,A2,f)12 IdWAI,A2,41 < 400(y) e(y)

dAl of

From (E.41)

G200(y) < {(1-a1x)/41 + 1/aj [((1-a1x)2-1)(1-a1x)3 +
1

((1 -a1x)2-
1)211.2

(E.46)

(E.47)

Note that the integration of the product of the right hand sides of

(E.14) (E.46) and (E.47) under the normality of x represents the

expectation of a polynomial of degree 15 of a normal random variable.

Hence,

c° 2

f Gtoo(Y) G001(Y) f (y) dy < m
-m

(E.48)

From (E.11) , (E.27) and (E.33),

I

tA A2,1 I &Gil, .12,1
.L%y, /I /I2, 0.1

NT I of

Gnoo(y) Gool(y) f*(y) (E.49)

From (E.34) it can be seen that,

G2oo(Y) < 1/al {4((1 -a1x)2 1) (1-alx)3 + (1-a1x)4+

2 (1 -a 1x)'16 ((1 -a1x)2 - 1) 2} (E.50)

Note that the integration of the product of the right hand sides

of (E.14), (E.42) and (50) under the normality of x represents the

expectation of a polynomial of a normal random variable. Hence,



G200(y) Gool(Y) f (y) dy < m .

-m

Let,
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(E.51)

+ (4/a3 G100(Y)112o1(Y) = G2o1(Y) Gloo(Y) G2oo(Y)]

Goot(Y) } f (Y)

then from (E.8), (E.38), (E.43), (E.46) and (E.49) we conclude that,

let
(y, A It A2, ir) I

dA2 do

and from (E.39), (E.44), (E.48) and (E.51) we conclude that,

/4201(Y) dy < m
-m

This concludes Lemma E.1 .

Lemma E.2 For some u E I where I is as defined in (E.1) let U(w)

denote the score vector of w and let I(u) denote the information

matrix of u that is I(u) = var(U(u)) then,

i. Em(U(u)) = 0 ii. I(u) = E {
-O2L(.11.A2.14

dm dmt

Proof

By THeorem 10.3 of K.T. Smith (1971, p.330) and by Lemma E.1, the

first and second derivatives of fy(y,AI,A2,6) can be obtained under

the integral sign. The results are then immediate from Lemma 2.6.1 of

Lehmann (1983, p.118).

Oh
andLemma E.3 Let

OL
denote the first partial

dAl dA2 d.
derivatives of the loglikelihood defined in (E.5) then these partial

derivatives are affinely independent with probability 1 .

Proof

From (E.5) we get,



1-(00-y+1)
A1

dL
= 1(1/A1,2) I ( AI ) (00- y +1) '1'ln(00-y +1)

AI
(1-(00-y+1) ) 2] + In ory+10

AI (-co, Bo)

aL
(y-00+1)

A2
-1

= {1/(A2f2) [ ( ) (y-00+1)
A2ln(Y-8o +1)

A2
(Y-8 +1)( 0 1) 2] + ln(y-00+1) 1 I (y)

112
( GIB)

0112

Oh

1-(80-y+1)
= -1/r + 1/472 {I( AI

)21 (y)

of (-C13' 90)

(y-80+1)
A2-1

( A2
(Y)]1 .

(80,m)

Under the variable change given in (E.13) with A and 112 in place

of al and ag respectively,) the above derivatives can be written in

terms of x as

Al
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dL
= f(1/1102) Ix(1-A1x) ln(1-11x)/1 + x2]

+ ln(1-A1x)/A} I (x)

(-ce, 0)

dL
= {(1/A202) Ix(1+12x) ln(l+Agx)/Ag + x2]

aA 2

do

+ ln(1 +A2x)/A2 }I (x)

(0,m)

= -1/r + 1i 03 x2

(E.52)

(E.53)

(E.54)

To show that the above derivatives are affinely independent with

probability 1 we show that, for any real numbers a0 , al a2 and a3

a
Pr fa() + a

1
+ a3 = 01 = 0

a,
+

NT
42

a.
0112 do

unless ao = al = a2 = ag = 0 .
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A A
Prfao + a

1

dh
+ a 2

+ a3 = 01 =
/II 02 di

A
Pr{ao + al

di,
+ a3 = 0 and x< 0 } +

dA 1 di
A

Pr{ao + a2
di,

+ a3 =0 and x> 0 }
dA2 of

On the domain { x: x < 0 } and from (E.52) and (E.54) let,

OL A
g(x) = ao + al + a3

oll of

= ao + al {(1/A1 e2) [x (1-Aix) ln(1-Alx)/11 + x2]

+ ln(1-Aix)/A1l + a3 {-1/f + 1/f3 x2}

hence,

g(x) = (a0 -a3/f) + (al/A,
,72 a8/0.2) x2

+ (al/A?,2) x (1-Aix) ln(1-A1x)/11 + al/Al ln(1-l1x )

Note that g(x) is an analytic function on the domain { x: x < 0 }

hence if g(x) is not identically 0, then the set {x: g(x) = 0} is

countable and hence has Lebesgue measure 0 . Since x has a density

with respect to Lebsegue measure hence,

Pr {g(x) = 0} = 0

Now suppose g(x) is identically 0 . Expand g(x) in a power

series in a neighborhood of x = 0 . Its coefficients must all be O.

ln(1-Alx) = -Aix - 1?/2 x2 - 3/3 x3- ...

x(1-,1001n(1-11x) =

hence,

Since

11x2 + (A?-1 ?/2)x3 + (,1i/2 -,1 /3)x4 +...

0(x) = (a0 - a3/f) + al/Al(-Adx + [al/A1,2 + a3/61.3+

(al/A?,2)(-A1) + al/11(-AP2)] x2 + ...]

al/A1(-11) = 0 imply al = 0

[al/A1f2 + a3/f3+ (al/A21,2)(-A1) + al/Al(-A21/2)] = 0 imply

a3 = 0 a3 = 0 and (a0 a3/f) = 0 imply ao = 0
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From a similar argument on the domain { x: x > 0 } we get a2 = 0 .

Therefore,

Pr{ g(x) = 0 } = 0 unless a0 = at = a2 = a2.

Lemma E.4

Let the pdf of the random variable Y (assume 90 = 0 ) be given as

fy (y I
I' 2'

-1/2
A r) = (27,2) exp{-1/2,2 [(1-(1-Y) )2 I (y) +

At (m,0)

2
)A1-11

(Y +1)'(2
-1I

(

(y+1)
A

-1
)

2
I (Y) 1} [(1-y

A2 (0,m) (-03,0) (0,m)

and let 0 denote the parameter space defined in Section 4.1 . If w

and le are any two points in 0 such that fy(y, re') = fy(y,w1 then

Proof

Over the domain {y: y > 01 suppose that fy(y,o') = fy(y,wi . Then

FY-1 exp{-1/2,'2( 14T) 1)2}(1+y) =

A'
2

Ai'
Ai1-1

e-lexp{-1/2e2((141) -1 )2 } (1+y)

A''
2

that is,

A; A;

f") + (4- .12") ln(l+y) - 1/21'2[((1+17) 1) 2 ((1+y) -1 )2]

A;

0 (E.55)

A; A;
Expand ln(l+y) , (1+y) and (1+y) as a power series. For

lyl < 1 we get,

-1n(tr'br") + (4- A,7) [1, Y2/2 + y3/3 + ...] 2/,'2 [A; y +

4(4-1)/2 y2+...] - 2/a "2 y + A; (A2 1)/2 y2+...] 2 = 0 .
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For these series to be 0 , the coefficients of yr must be zeros for

r = 0,1,2,... . For r = 0, -1n(1011 = 0 iff r/ =

For r = 1, (12- A; ) y = 0 iff A; = A; .

From a similar argument over the set { Y: Y < 0 } we can show

that A( = Aj . Therefore w' =

Theorem E.1

Let A. denote the maximum likelihood estimator of A under the

two-domain family of transformations. Let I(s) be as defined in

Lemma E.2 above and let I
AA
denote the upper (2x2) block diagonal

matrix of I
-1

(m) then,

i. An is a consistent estimator of A* .

ii. arn (A. A.) 11(0,IAA).

Proof

The proof follows from Theorem 6.4.1 of Lehmann (1983, p.429) if

we show that the regularity conditions stated in the theorem hold.

Condition (A0): The distributions Po of the observations are distinct

follows from Lemma E.4. Conditions (A1) and (A2): Under the model

h(y-00,A,,A2) = FE with c assumed to have a standard normal

distribution we get the support of the distribution of Y the whole

real line and the observations Yi,Y2 ..... Yn are iid with pdf with

respect to Lebeseque measure.

Condition(A): As we claimed before every point in 0 can be made a

point of an open rectangle contained in 0 . In particular this is true

for the true parameter point m* . Also since fy(y,A1,A2,f) is

differentiable with respect to At , A2 and a to any order for all Y

and all v hence, all the third partial derivatives exist for m in an
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open subset of 0 containing u* .

Condition (B): Follows from Lemma E.2

Condition (C): Follows from Lemma E.3

condition (D): follows from Lemma E.1 .

[]

Lemma E.5

Let un denote the maximum likelihood estimator of u where,

= (11,4,4 and let U1(u) and I(u) denote, respectively the

score vector and the information matrix of u for one observation.

Then, 4i(un - u*) - I
-1

(u*) (1/4E-Un(u0) -2-4 0

Proof

In the proof ut , 02 and u3 will be used to mean It , A2 and I

respectively. Also if Ln(4) = E ln( f
1

) then Ltt(u) ,

i=i Yt

LErts(u) and Ltrtst(u) are used to denote, respectively the first partial

derivative of the loglikelihoOd with respect to the rth component of

u , the second partial derivative with respect to the r and sth

components and the third partial derivative with respect to the r , s

and tth components of u . Consider a Taylor expansion of gOird

about u* . Since by definition 14(un) = 0, then we get

3 - 3 3 -

14-1(M*) + sE
1

- u*,) L;sodo 4.
s 1 t 1

1/2 (mat m*t)===
(arras ii*s)LTst(Un) = 0 (E.56)

where un is such that IUDS 61*SI < IUDs u*sl for s =1,2,3.

Note that according to our notation U(u*) = (141(u*),Lti(u*),*&*)) .

**
Let Ln (0) be the 3x3 matrix with (r,$) entry 1415(u) and let

**t
Ln (u) be the 3x3 matrix with (r,$) entry LtrIst(u). Now equation

(E.56) can be written as
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3 - -
11,(1/0 + Ln

**
(u4 u *) + 1/2

t
E

1
Cm* t)Ln

**t
(un) un-m*) = 0

=

(E.57)

From (E.57) we can write

1/411- Un( + En fri- (an - ii*) = 0 (E.58)

where

** 3 . **t
Hn = (Ln (&)/n + 1/2 (E.59)ti(bint ii*t) (udln)

For a matrix A = {aii} let IAI denote the maximum of the absolute

values of the elements A that is

IAI = max {laii1}-

i.j

Then it follows that

3 - **t *t

E (m 4f*t) Ln (un)/11 < E (m m*t) ILn (mn) I int., nt t=1 nt

Since by Theorem (E.1) tin u* then there exist an open rectangle

V and no such that for some 6 > 0 and for all n > no

Pr
u*
{un E V} > 1

_ .

Since Ions u*sl < lulls u*sl for s =1,2,3 . Hence un E V .

Therefore with probability exceeding 1-6 we have

**t - **t 3 3 rst
Ilin (M0) U. sup I lin ( (0) H E E sup I Ln (m) I

r=1 s=1m E V m E V

n 3 3 111( f(yi,u))<EEEsup .

i=I "I s=I m E V our du. dut

By the results of Lemma E.1 we have

3 3 ln(

E { E E sup } = C*( m.
m* r =1 "I M E VI our du. dut

Hence by the WLLN

0 ln( f(Yi,u))
lin P C* ( m

° 3
**t

1

ILn (Mn) 1/n rtl st
V'lmstievl

dmr du. oat



Since mat - m*t -2-4 0 . Therefore,

3 - **t
E (unt m*t) Ln (wn)/n --IL-, 0
t=1

165

(E.60)

Let Lo* (w *) = Wi where Wi is the 3x3 random matrix with (r,$)
- 1.1

eln(f(y.,m0)
entry

1
. Then by Lemma E.2 we have E(Wi) = -I(0*) and

Oldrams

by the WLLN for the vector case ( a matrix can be regarded as a

double-indexed vector) we get

**
(1/n) Ln ((id I(m*)

From (E.59) , (E.60) and (E.61) we get,

Hn p -I (w *)

Now the result follows from (E.58) and (E.62).

(E.61)

(E.62)
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APPENDIX F

Asymptotic Relative Efficiency and Simulation Programs

A. Asymptotic Relative Efficiency

1. Transformed normal model using John-Draper

0 INITIALIZE THE MODEL PARAMETER *

PITEF=ZEROS(8,1); II=0; DO WHILE II ( 4; II=II+1;

LAMDA= 1/411/311/211; L = LAMDA[II,.]; ARE = 0 ; JJ = 0;

DO WHILE JJ < 7; JJ = JJ + 1; SIGMA = .251 .51 11 21 31 41 5;

SIG = SIGMA (JJ,.); Cl = 1/(SQRT(2*PI)); A1=SIG*L ; A2 = 2;

A3 = 1-1/L; A4 = 1/L;

0 EVALUATE EXPECTATIONS 0

PROC MYF(X,A);

RETN(A[.,1]+A[.,2].*X)"(A[.,4]).*EXP(-X"A[.,3]./A[.,3]))*C1; ENDP;

LB=0; UB=10; A=1"A1-A2-A3; Y = INTSIMP(&MYF,LB,UB,A,1E-8);

PROC VF(X,A);

RETPMA[.,1]+A[.,2].*XYA[.,5]-A[.,1])"A[.,3].*EXP(-X"A[.,3]./A[.,3]))

*C1; ENDP; LB =O; UB=10; A=1-Al-A2-A3-C4;

ZZ=INTSIMP(&VF,LB,UB,A,1E-8); ZZ=2*ZZ; E2=(2*Y)"2;

AR= SIG"2/(ZZ*E2); ARE=ARE1AR;

ENDO;

PITEF=PITEF-ARE;

ENDO;

FORMAT/RZ 9,5;

PITEF;

END;
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2. Transformed contaminated normal models using John-Draper

I INITIALIZE THE MODEL PARAMETER 0

PITEF=ZEROS(8,1); P=.2; V1=1; V2=25; VY=(1-P)*V1+P*V2;

SDY=SQRT(VY); VV=SQRT(V2); II = 0;

DO WHILE II < 4; II=II+1;

LAMDA=1/411/311/211; L = LAMDA[II,.]; ARE=0; JJ=0;

DO WHILE JJ < 7; JJ=JJ+1; SIGMA = .251 .51 11 21 31 41 5;

SIG = SIGMADJ,A*SDY; C1=1/(SQRT(2*PI)); C2= SIG *l; C3=1-1/L;

C4=1/L; PROC MYF1(X,A);

RETP(A[.,2].*(A[.,1]+A[.,3].*X)-(A[.,5]).*EXP(-(X.*A[.,6])"A(.,4]./

A[.,4]).*A[.,6]); ENDP;

LB=0; UB=15; A=1-C1-C2-2-C3-SDY; Y1=

INTSIMP(OYFLLB,UB,A,1E-8);

PROC MYF2(X,A);

RETP(A[.,2].*(A[.,1]+A[.,3].*10"(A[.,5]).*EXP(-(X.*A[.,6]./A[.,7])^

A[ .,4]./A[.,4]).*A[.,6]./A[.,7]); ENDP;

LB =O; UB=15; A=1-C1-C2-2-C3-SDY-VV;

Y2= INTSIMP( &MYF2,LB,UB,A,1E -8); PROC VF1(X,A);

RETP(A[.,2].*((A[.,1]+A[.,3].*XrA[.,6]-A[.,1])^A[.,4].*EXP(-(X.*A[.,7]

)"A[.,4]./A[.,4]).*A[.,7]); ENDP; LB=0; UB=15;

A=1"C1 -C2-2-C3-C4-SDY; Z1=INTSIMP(&VF1,LB,UB,A,1E-8);

PROC VF2(X,A);

RETP(A[.,2].*((A[.,1]+A[.,3].*WA(.16]-A[.,1])"A[.,4]

.*EXP(-(X.*A[,7]/A[.,8])M.,4]./A[.,4]).*A[.,7]./A[.,8]); ENDP;

LB =O; UB=15; A=1-C1-C21-2-C3-C4-SDY-VV;

Z2=INTSIMP(&VF2,LB,UB,A,1E-8); ZZ=2*((1-P)*Z1+P*Z2);
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E2=(2*((1-P)*Y1+P*Y2))^2; AR= SIG'2/(ZZ*E2); ARE=ARE1AR; ENDO;

PITEF=PITEF-ARE; ENDO; FORMAT/RZ 9,5; PITEF; END;

3. Transformed Student' t model using John-Draper

0 INITIALIZE THE MODEL PARAMETER 0

VV=10120130; JJ=0; DO WHILE JJ ( 3; JJ=JJ+1; K=VV[jj,1];

B=SQRT(K/(K -2));

*EVALUATION OF THE GAMMA FUNCTION INVOLVED IN THE CONSTANT!

F1=K/2; IF (F1-FLOOR(F1)) 0; NUM=((K-1)/2)!; DEN=1;

DO WHILE Fl > 1 ; F1=F1-1; DEN= DEN *F1; ENDO;

R=NUM/(DEN*SQRT(PI)); ELSE; DEN= (K /2 -1)!; F2=(K+1)/2;

NUM =1; DO WHILE F2 > 1; F2=F2-1; NUM=NUM*F2; ENDO;

R=NUM*SQRT(PI)/DEN; ENDIF; C4=-.5*(K+1); CC=1/SQRT(K*PI);

PITEF=ZEROS(8,1); II=0; DO WHILE II ( 4; II=II+1;

LAMDA = .251 1/31 .51 1; L=LAMDA[II,.]; ARE=0; KK=0;

DO WHILE KK < 7; KK=KK+1; SIGMA = .251 .51 11 21 31 41 5;

SIG=SIGMA[KK,1]*B; C1=L*SIG; C2=1/L; C3=1-1/L;

PROC MYF(X,A);

RETIMA(.,1]+A(.,2].*X).M.,3].*(M.,1]+(X.*A[.,7]).M.,6]/M.,4]).

A[.,5].*A[.,7]); ENDP; LB=0; UB=50; A=1-C1-C3-K-C4-2-05;

Y= INTSIMP(MF,LB,UB,A,1E-8); PROC VF(X,A);

RETP(((g.,1]+A[.,2].*Arg.,6]-A[.,1])'A[.,7].*(g.,1]+(X.*A[.,8])'

A[.,7]/A[.,4])"A[.,5].*A[.,8]); ENDP; LB=0; UB=50;

A=1"C1 -C3-K-C4-C2-2-B; ZZ=INTSIMP(&VF,LB,UB,A,1E-8);

ZZ=2*CC*R*ZZ; E2=(2*CC*R*Y)-2; AR= SIG2/(ZZ*E2); ARE=ARE1AR;

ENDO; PITEF=PITEF-ARE; ENDO; FORMAT/RZ 9,5; PITEF; ENDO; END;



4. Transformed normal model using the two-domain family

LAMDA= 1/41 1/31 1/21 3/41 1;

III=0; DO WHILE III < 5; III=III+1; L2=LAMDA[III,.];

PIT1=ZEROS(9,1); PIT2=ZEROS(9,1); II=0; DO WHILE II < 5;
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II=II+1; L1=LAMDA[II,.]; ARE1=0; ARE2=0; FORMAT/RZ 10,6; J =O;

DO WHILE J < 8; J=J+1; SIGMA= .11 .251 .51 11 21 31 41 5;

SIG=SIGMA[J,.]; C1=SQRT(2*pI); Al=1; A21=L1 *SIG;

A22=L2*SIG; A3=2; A41=1-1/11; A42=1-1/12; A51=1/L1;

A52=1/L2;

A=A1-A21-A3-A41-A42-A22-A51-102; LB=0; UB=10;

PROC MM1(X,A);

RETP(((A[.,1]+A(.,2].*Xrg.,4]+(A[.,1]+A(.,6].*XYA[.,5]).*

EXP(-X-A[.,3]./A[.,3])); ENDP;

GG=INTSIMP(OM1,LB,UB,A,1E-8)/C1;

PROC MY2(X,A);

RETP(MA[.,1]+A(.,2].*XrA[.,7]-A[.,1])-((A[.,1]+A(.,6].*XY

A[.,8]-A[.,1])).*EXP(-X-A[.,3]./A[.,3])); ENDP;

Y1= INTSIMP(&MY2,LB,UB,A,1E- 8) /C1; CLEAR X;

PROC MY3(X,A);

RETP((((g.,1]+A(.,2].*XYA[.,7]-A[.,1])^A[.,3]+((A[.,1]+A(.,6].*X)-

A[.,8]-A[.,1])^A[.,3]).*EXP(-X"A[.,3]./A[.,3])); ENDP;

Y2=INTSIMP(0Y3,LB,UB,A,1E-8)/C1;

AR1= SIG'2/((Y2-(Y1^2))*(GG-2)); ARE1=ARE1lAR1; LB=-10; UB=0;

PROC FF1(X,A);

RETP(X.*(A[.,1]-A[.,2].*X).*LN(M.,1]-A[.,2].*X).*EXP(-X'A[.,3]./

A[.,3])); ENDP; Z1=INTSIMP(&FF1,LB,UB,A,1E-8)/C1; CLEAR X;
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PROC FF3(X,A);

RETP(X.*(A[.,1]-A[.,2].*X).*(LN(A[.,1]-A[.,2].*XWA(.,3]

.*EXP(-X^A[.,3]./A[.,3])); ENDP;

Z3=INTSIMP(&FF3,LB,UB,A,1E-8)/C1; CLEAR X;

PROC FF5(X,A);

RETP(((g.,1]-1[.,2].*X).*LN(A(.,1]-A[.,2].*X)+A[.,2].*XrA[.,3].*EXP(-

X"A[.,3]./A[.,3])); ENDP;

Z5=INTSIMP(&FF5,LB,UB,A,1E-8)/C1; CLEAR X;

PROC SS5(X,A);

RETP(((g.,1]-A[.,2].*X).*LN(A[.,1]-A[.,2].*X)+A[.,2].*X)

.*EXP(-X"A[.,3]./A[.,3])); ENDP;

S1=-INTSIMP(&SS5,LB,UB,A,1E-8)/(C1 *W2);

Ill=1/(SIG*L1"3)*(-Z3+2*Z1+Ll*SIG)+Z5/(L1"4*SIG-2);

I13=2/(SIG*L1)"2*Z1+1/(SIG*L1);

A=A1"122-A3; LB =O; UB=10;

PROC FF10(X,A); RETP(X.*(A[.,1]+A[.,2].*X).*LN(A[.,1]+A[.,2].*X)

.*EXP(-X"A[.,3]./A[.,3])); ENDP;

Z10=INTSIMP(&FF10,LB,UB,A,1E-8)/C1; CLEAR X;

PROC FF12(X,A);

RETP(X.*(A[.,1]+A[.,2].*X).*(LN(A[.,1]+A[.,2].*XWA(.,3]

.*EXP(-X^A[.,3]./A[.,3])); ENDP;

Z12=INTSIMP(&FF12,LB,UB,A,1E-8)/C1; CLEAR X;

PROC FF14(X,A);

RETP(((g.,1]+A(.,2].*X).*LN(AI.,11+A[.,2].*X)-A[.,2].*XrA(.,3].*EXP(-

X^A[.,3]./A[.,3])); ENDP;

Z14=INTSIMP(&FF14,LB,UB,A,1E-8)/C1;
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PROC SS14(X,A);

RETPWA(.,1]+A(.,2].*X).*LN(A(.,1]+A[.,2].*X)-A[.,2].*Z)

.*EXP(-X"AI.,3]./AI.,3])); ENDP;

S2=INTSIMP(&SS14,LB,UB,A,1E-8)/(C1 *L2"2);

I22=1/(SIG*L2"3)*(Z12-2*Z10+S/G*L2)+Z14/(L2"4*SIG"2);

I23=-2/(SIG*L2)"2*Z10+1/(SIG*42);

133=2/SIG^2; S=S11S2; I=(111-0-113) 1(0-122-123) 1(113-123-133);

INVI=INV(I); ILL= INVI[1:2,1:2]; IS=ILL*S; CLEAR X,A;

A4=SIG; A51=IS[1,1]/SIG"2; A52=IS[2,1]/SIG"2; A61=SIG/L1-2;

A62=SIG/L2"2; A71=SIG"2/L1; A72=SIG"2/L2; A81=IS[1,1]/L1;

A82=IS[2,1]/L2; LB =O; UB=10;

A=A1-A22-A3-A4-A52-A62-A72-A82-A21-A51-A61-A71-A81; PROC UU1(X,A);

RETP((ig.,4].*X-A[.,5].*(A[.,6].*X.*(A(.,1]+A[.,2].*X).*LN(A[.,1]+A[.,2

].*X)-A(.,7].*X"A(.,3])+A(.,8].*LN(A[.,1]+A(.,2].*XWA(.,3].*EXP(-X"

A[.,3]./A[,3])); ENDP;

U1=INTSIMP( &UU1,LB,UB,A,1E-8)/C1; LB=-10; UB=0; PROC UU3(X,A);

RETP((g.,41.*X+a[.,10].*(a[.,11].*x.*(a[.,1]-a[.,9].*x).*in(a[.,1]-

a[.,9].*x)+a[.,12].*x^a(.,3])+a[.,13].*ln(a[.,1]-a[.,9].*X)ra[.,3)

.*EXP(-x"A[.,3]./A[.,3])); ENDP;

U3=INTSIMP(&UU3,LB,UB,A,1E-8)/C1; AR2=(U1 +U3)/SIG'2;

ARE2=ARE21AR2; ENDO; PIT1=PIT1-ARE1; PIT2=PIT2-ARE2; ENDO;

FORMAT/RZ 8,4; PRINT" LAMDA2 = " L2;

PRINT" EFFICIENCY OF ORIGINAL TO KNOWN TRANSF. "; LAMDA';

SSS=OISIGMA; SSS-PIT1;

PRINT" EFF. OF KNOWN TRANF. TO UNKNOWN TRANSF. " ; LAMDA';

SSS-PIT2; PRINT " EFF. OF ORIG TO UNKNOWN TRANSF. ";

LAMDA'; SSS-(PIT1.*PIT2); ENDO; END;
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B. SIMULATION

1. Program for evaluating the MLE of under the John-Draper family

and power of different test statistics from symmetric models

0 INITIALIZE THE MODEL PARAMETERS 0

SIGMA2= ; AA=0; DO WHILE AA ( 3; AA=AA+1; NS= 101 201 50;

N=NS[AA,1]; NNK= 2501 2501 100; NK=NNK[AA,1]; L=

SIG=SQRT(SIGMA2); UU=-.2; DO WHILE UU < 1.4; UU=UU+.2;

MU=SIG*UU; 5=9831815; IF MU==0; NSIM=30000; ELSE; NSIM=5000;

ENDIF; KSIM=NSIM/NK; LAM1=0; LAM2=0; ISIM=0; OF01=0;

OF05=0; TF01=0; TF05=0; K2=0; TR11S01=0; TR11S05=0; TR21S01=0;

TR21S05=0; TTR11S01=0; TTR11S05=0; TTR21S01=0; TTR21S05=0;

DO WHILE ISIM < KSIM;

GET THE DATA FROM THE GENERATE THE DATA PART BELOW

J=0; DO WHILE %MIK; J=J+1; Y=YY[.,J]; Y=SORTC(Y,1);

0 TEST AND SIG LEVEL IN ORIGINAL SCALE 0

YB= MEANC(Y); TO=SQRT(N)*YB/STDC(Y); SLO=CDFTC(TO,(N-1));

IF SLO <.01; OF01=0F01+1; ENDIF; IF SLO(.05; OF05=0F05+1;

ENDIF;

R=.1*N; R1=R+1; NR=N-R; YTR=Y[R1:NR,1]; MTR=MEANC(YTR);

VTR=(SUMC((YTR-MTR)^2)+R*(YTR[1,1]-MTR)"2+R*(YTR[(NR-R),1]-MTR)^2)/

(NR-R1); TTRM=MTR*SQRT((NR-R)/VTR); SLTR11S=CDFTC(TTRM,(NR-R1));

IF SLTR11S(.01; TR11S01=TR11S01+1; ENDIF;

IF SLTR11S <.05; TR11S05=TR11S05+1; ENDIF;

R=.2*N; R1=R+1; NR=N-R; YTR=Y[R1:NR,1]; MTR=MEANC(YTR);



VTR=(SUMC((YTR-MTR)^2)+R*(YTR[1,1] -MTR)^2+R*(YTR[(NR-R),1]-MTR).2)/

(NR-R1); TTRM=MTR*SQRT((NR-R)/VTR); SLTR21S=CDFTC(TTRM,(NR-R1));

IF SLTR21S(.01; TR21S01=TR21S01+1; ENDIF;

IF SLTR21S <.05; TR21S05=TR21505+1; ENDIF;

0 ESTIMATION OF LAMDA USING MODULE 10 (NLSYS) 0

Z=ABS(Y)+1; SGN=ABS(Y)./Y; LNZ=LN(Z);

CONVTOL =O; PRNTIT=0; PRNTOUT=0; FNAME=&F; GRADNAME=&GRAD1;

JC0=0; X0=.5; VF=ZEROS(1,1); PROC F(X); LOCAL Xl;

X1=X[1,1];

VF[1,1]=-N*(((Z"X1-1)'( Z")(1.*LNZ-(Z^X1-1)/X1))/(Z^X1-1)'(Z-X1-1))

+SUMC(LNZ); RETP( VF ); ENDP;

X1=NLSYS(FNAME,X0,JCO,CONVTOL,PRNTIT,PRNTOUT);

LAM1=LAM1+(Xl-L); LAM2=LAM2+(X1-L)^2;

0 TRANSFORMED MODEL USING THE MLE X1 *

TV=SGN.* (Z^X1 -1)/X1; TT=SQRT(N)*MEANC(TV)/STDC(TV);

SLT=CDFTC(TT,(N-1)); IF SLT<.01; TF01=TF01+1; ENDIF;
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IF SLT<.05; TF05=TF05+1; ENDIF; TV=SORTC(TV,1);

R=.1*N; R1=R+1; NR=N-R; TVTR=TV[R1:NR,1]; MTR=MEANC(TVTR);

VTR=(SUMC((TVTR-MTRY2)+R*(TVTR[1,1]-MTR)"2+R*(TVTR[(NR-R),1]-MTR)"2)

/(NR-R1); TTRM=MTR*SQRT((NR-R)/VTR);SLTR11S=CDFTC(TTRM,(NR-R1));

IF SLTR11S(.01; TTR11S01=TTR11S01+1; ENDIF;

IF SLTRUS(.05; TTR11S05=TTR11S05+1; ENDIF;

R=.2*N;R1=R+1;NR=N-R;TVTR=TV[R1:NR,1]; MTR=MEANC(TVTR);

VTR=(SUMC((TVTR-MTR)^2)+R*(TVTR[1,1]-MTR)"2+R*(TVTR[(NR-R),1]-MTR)^2)

/(NR-R1); TTRM=MTR*SQRT((NR-R)/VTR);SLTR21S=CDFTC(TTRM,(NR-R1));

IF SLTR21S(.01; TTR21S01=TTR21S01+1; ENDIF; IF SLTR21S <.05;

TTR21S05=TTR21S05+1; ENDIF; ENDO; ISIM=ISIM+1; ENDO;
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PRINT " NUMBER OF SAMPLES WITH SL < .05 ";

PRINT " ORIG TRAM OR.1TR OR.2TR T.1TR T.2TR

OF05-TF05-TRUS05-TR21S05-TTRUS05-TTR21S05;

PRINT " NUMBER OF SAMPLES WITH SL < .01 ";

OF01-TF01-TR11S01-TR21S01-TTR11S01-TTR21S01;

PRINT "BIAS = " LAM1 /NSIM;

PRINT " MSE = " LAM2/NSIM; ENDO; ENDO; END;

0 GENERATE THE DATA 0

TRANSFORMED NORMAL DATA

A=RNDnS(NK,N,S)'; SGN=ABS(A)./A; A=ABS(A);

YY=MU+SGN.*(( 1+SIG*L*A)"(1/L)-1);

STUDENT'S T DATA WITH NU D.F.

NU= ; VAR = NU /(NU -2); SIG=SQRT(VAR); A=RNDNS(NO+1,N*NK,S);

A1=A[1,.]; A2=A[2:NU+1,.]; A3=SUMC(A2-2)/NU; T=A1'./SQRT(A3);

J =O; DO WHILE J<NK; JY =O; K1=0; Y=MU+T[J*N+1:(J+1)*N,1];

CONTAMINATED NORMAL DATA WITH CONTAMINATION RATIO=P , VARIANCE = SIGMA2

SIGMA2= ; P= ; VAR= (1-P) + P*SIGMA2; SIG=SQRT(VAR);

A=RNDnS(nK,N,S)'; B=RNDUS(NK,N,S)'; J =O; DO WHILE J < NK;

J=J+1; JY =O; K1=0; Y1=A[.,J]; U1=B[.,J]; NN=0;

DO WHILE NN < N; NN=NN+1; IF U1[NN,1]< P;

Yl[NN,1]=SQRT(SIGMA2)*Y1[NN,1]; ENDIF; ENDO;

Y1=ABS(Y1)./Y1.*((l+L*ABS(y1))"(1/L)-1); Y= MU +Y1; Y=SORTC(Y,1);

2. Program for evaluating the MLE of Al and A2 of the two-domain

family and power of different test statistics from skewed models

SIG=1; N=20; NK=250;
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L2= AAA= L1IL2; 0 INITIALIZE THE MODEL PARAMETERS I

UU=-.2; U1=1; U2=.2; DO WHILE UU < Ui; UU=UU+U2;

MU=SIG*UU;

S=9831815; IF MU==0; NSIM=30000; ELSE; NSIM=5000; ENDIF;

KSIM=NSIM/NK; LAM1=0; LAM2=0; LAM11=0; LAM21=0;

ISIM=0; OF05=0; TF05=0; : LHSTF05=0 ; LHST1T05=0; TTR105=0;

TTR205=0; LHST2T05=0; CN1=0; CN2=0; Fr1=0; F2=0; F3=0;

F4=0; F5=0; F6=0; F7=0; F8=0; F9=0; F10=0; F11=0;

F12=0; F13=0; F14=0; F15=0; F16=0; F17=0; F18=0;

DO WHILE ISIM(KSIM;

GET DATA FROM GENERATE DATA PART

it TEST AND SIG LEVEL IN ORIGINAL SCALE 0

YB=MEANC(Y); TO=SQRT(N)*YB/STDC(Y); SLO=CDFTC(TO,(N-1));

IF SLO <.05; OF05=0F05+1; ENDIF;

ESTIMATION OF LAMDA USING MODULE 10 (NLSYS) 0

Y11=Y.*(Y.< 0); K1=SUMC(Y11./Y);

Y21=Y.*(Y.> 0); K2=SUMC(Y21./Y) ;

IF Ki> =17; CN1=CN1+1; LHSTF05=LHSTF05+1; LHST1T05=LHST1T05+1;

LHST2T05=LHST2T05+1; GOTO ST;

ELSEIF K2 >=17; TF05=TF05+1; TTR105=TTR105+1; TTR205=TTR205+1;

CN2=CN2+1; GOTO ST; ENDIF;

Y1=1-Y11; Y2=Y21+1; LNY1=LN(Y1); LNY2=LN(Y2);

CONVTOL=0; PRNTIT=0; PRNTOUT=0; FNAME=&F; GRADNAME=&GRAD1;

JC0=00(0=.41.4; VF=ZEROS(2,1); PROC F(X); LOCAL X1,X2;

X1=X[1,1]; X2=X[2,1];

VF[1,1]=N*((1-Y1"X1)1((Y1"X1).*LNY1+(1-Y1"X1)/X1)/(X1-2))/((1-Y1^X1)'
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(1-Y1"X1)/(X1'2)+(Y2-X2-1)'(Y2^X2-1)/(X2-2))+SUMC(LNY1);

vf[2,1]=-N*((Y2-X2-1)1((Y2-X2).*LNY2-(Y2"X2-1)/X2)/(X2-2))/((1-Y1-X1)'

(1 -Y1"X1)/(X1-2)+(Y2-X2 -1r(Y2"X2 -1)/(X2-2))+SUMC(LNY2);

RETP( VF ); ENDP; X1=NLSYS(FNAME,X007CO,CONVTOL,PRNTIT,PRNTOUT);

L1=X1[1,1]; L2=X1[2,1]; LAM1=LAM1+L1-AAA[1,1];-

LAM2=LAM2+L2-AAA[2,1];

LAM11=LAM11 + (L1-AAA[1,1])^2; LAM21=LAM21+(L2-AAA[2,1])^2;

Y1L=Y11,1; Y2L=Y2-1,2; Y1T=(1-Y1L)/L1; Y2T=(Y2L-1)/L2;

TV=(Y1T+Y2T);

0 TRANSFORMED MODEL USING THE MLE X1 X2 0

TT=SQRT(N)*MEANC(TV)/STDC(TV); SLT=CDFTC(TT,(N-1));

LHSSL=1-CDFTC(TT,(N-1)); IF SLT<.05; TF05=TF05+1; ENDIF;

TV=SORTC(TV,1); IF MU > 0; GOTO NEXTST; ENDIF;

IF LHSSL<.05; LHSTF05=LHSTF05+1; ENDIF;

IF TT<-4; Fr1=Fr1+1; ELSEIF TT<-3.5; F2=F2+1; ELSEIF TT<-3;

F3=F3+1; ELSEIF TT<-2.5; F4=F4+1; ELSEIF TT<-2; F5=F5+1; ELSEIF

TT<-1.5; F6=F6+1; ELSEIF TT<-1; F7=F7+1; ELSEIF TT<-.5; F8=F8+1;

ELSEIF TT < 0; F9=F9+1; ELSEIF TT(.5; FlO=F10+1; ELSEIF TT<1;

F11=F11+1; ELSEIF TT< 1.5; F12=F12+1; ELSEIF TT< 2; F13=F13+1;

ELSEIF TT< 2.5; F14=F14+1; ELSEIF TT< 3; F15=F15+1; ELSEIF TT<3.5;

F16=F16+1; ELSEIF TT< 4; F17=F17+1; ELSE; F18=F18+1; ENDIF;

SSA=SEQA(-4,.5,18); NEXTST:;

R=.1*N;R1=R+1;NR=N-R;TVTR=TV[R1:NR,1]; MTR=MEANC(TVTR);

VTR=(SUMC((TVTR-MTRY2)+R*(TVTR[1,1]-MTR)"2+R*(TVTR[(NR-R),1]-MTR)-2)

/(NR-R1); TTRM=MTR*SQRT((NR-R)/VTR);SLTRUS=CDFTC(TTRM,(NR-R1));

IF SLTR11S<.05; TTR105=TTR105+1; ENDIF;

LHSSL=1-CDFTC(TTRM,(NR-R1)); IF LHSSL<.05; LHST1T05=LHST1T05+1;
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ENDIF; R=.2*N;R1=R+1;NR=N -R;TVTR=TV[R1:NR,1]; MTR=MEANC(TVTR);

VTR=(SUMWTVTR-MTR)^2)+R*(TVTR[1,1]-MTR)'2+R*(TVTR[(NR-R),1]-MTR)^2)

/(NR -R1); TTRM=MTR*SQRT((NRR)/VTR); SLTR21S=CDFTC(TTRM,(NR -R1));

IF SLTR21S<.05; TTR205=TTR205+1; ENDIF;

LHSSL=1-CDFTC(TTRM,(NR-R1)); IF LBSSL(.05; LHST2T05=LHST2T05+1;

ENDIF; ST:; ENDO; stp:; isim=isim+1; ENDO;

PRINT " NUMBER OF SAMPLES WITH SL < .05 ";

PRINT " ORIG TRAM T.1TR T.2TR ";

(0F05-TF05-TTR105-TTR205)/NSIM;

PRINT " NUMBER OF SAMPLES NOT REJECTED BY SIGN TEST = " CN1;

PRINT " NUMBER OF SAMPLES REJECTED BY SIGN TEST = " CN2;

PRINT "BIASi MSE1= " ;(LAM1-LAM11)/NSIM;

PRINT "BIAS2 MSE2= " ;(LAM2'LAM21) /NSIM;

IF MU > 0; GOTO NST; ENDIF;

PRINT " SIG LEVEL UNDER LHS. TEST " ; LHSTF05-LHST1T05-LHST2T05;

PRINT " FREQUENCY DIST OF THE TRANS. T-STAT. ";

FREQ=(Frl1F21F31F41F51F61F71F81F9IF101F111F121F131F141F151F161F171F18)/

NSIM; CUM=ZEROS(18,1); CUMF=0;K=0;

DO WHILE K <18; K=K+1; CUMF=CUMF+FREQ[K,1]; CUM[K,1]=CUMF;ENDO;

SSA-FREQ-CUM; NST:; ENDO; ENDO; END;

GENERATE THE DATA (I

TRANSFORMED NORMAL DATA

A= RNDnS(nK,N,S)'; J =O;

DO WHILE J< NK; J=J+1; JY=0; KK1=0;

EPS=A[.,J];

L1=AAA[1,1]; L2=AAA[2,1];

EPS1=MU+1-(1-Ll*SIG*EPS.*(EPS.<=0))^(1/11);
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EPS2=MU-1+(1 +L2*SIG*EPS.*(EPS.>0))^(1/12);

Y=EPS1+EPS2;

EXTREME VALUE DATA

MED=LN(-LN(.5)); SIG=FOPI/SQRT(6);

A=LN(-LN(1-RNDUS(NK,N,S)'));

J =O;

DO WHILE J<NK; J=J+1;

Y=MU+A(.,J]-MED;

GAMA WITH 5 D.F. DATA

A=-LN(1-RNDUS(NK,N,S)')-LN(1-RNDUS(NK,N,S)')-LN(1-RNDUS(NK,N,S)')

-LN(1-RNDUS(NK,N,S)')-LN(1-RNDUS(NK,N,S)');

Y=-MU+A(.,J]-MED;


