
AN ABSTRACT OF THE THESIS OF

Joohee Kim for the degree of Doctor of Philosophy in

Industrial Engineering presented on June 27, 1988.

Title: An Expert System for Flexible Manufacturing

System Scheduling: Knowledge Acquisition and Develop-

ment

Abstract approved:

/"/

Redacted for Privacy
Eugene F. Pichter

Expert systems have been suggested as a solution

for difficult problems, including FMS scheduling. As

one of the aspects of artificial intelligence (AI), ex-

pert systems have achieved considerable success in re-

cent years in medical science, chemistry, and engineer-

ing. However, building an expert system is a difficult

task, the most crucial problem being that of knowledge

acquisition. Obtaining expert knowledge is a difficult

and time-consuming process. Moreover, since FMSs rep-

resent a relatively new technology, experts capable of

FMS planning and scheduling are generally unavailable.

One possible solution for this problem is to train

a non-expert operator, allow the operator to practice

with a simulated system and accumulate experience, and

then build an expert system using the newly acquired

knowledge. To this end, an interactive graphic simu-

lation method for the effective utilization of human

pattern-recognition ability is proposed. Once the

required knowledge is elicited through an interactive

graphic simulation model, an expert system is developed

from acquired rules. The method includes an FMS simu-

lation model, a Gantt chart-based schedule, a simula-

tor, an expert system, and a human operator. First, an

initial schedule is simulated, utilizing the expert

system to determine the loading sequence and a dis-

patching rule. The schedule is then updated by an ex-

pert system and/or human operator with the capability

of maximizing schedule objectives, while at the same

time saving reasons for changes as new production

rules, which are subsequently generalized and added to

the expert system knowledge base.

The system is implemented in Smalltalk/V on an IBM

PC/AT and the implementation is based upon a detailed

sample problem. It was determined that a human opera-

tor can obtain near-optimum schedules in short time

periods, at the same time gaining valuable experience

in use of the scheduling process. Furthermore, it was

determined that this model can be a useful training

device for inexperienced operators and a time-saving

decision-making aid for expert schedulers.

An Expert System for Flexible Manufacturing System
Scheduling: Knowledge Acquisition and Development

by

Joohee Kim

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Completed June 27, 1988

Commencement June 1989

APPROVED:

Redacted for Privacy- Li . - -

Profes r of Industrial and Manufacturing Engineering

Redacted for Privacy
Head of Department\of Industrial and Manufacturing

Engineering

Redacted for Privacy
Dean of Gr auua wet Dunoul

Date thesis is presented June 27, 1988

Typed by B. McMechan for Joohee Kim

Acknowledgements

I wish to express sincere gratitude to my major

professor, Dr. Eugene F. Fichter, for his continuous

guidance, advice and most friendly assistance during

the preparation of this thesis.

I also wish to express gratitude to Dr. Kenneth H.

Funk of the Department of Industrial and Manufacturing

Engineering for his valuable suggestions and comments.

Special thanks go to the faculty members in the

Department of Industrial and Manufacturing Engineering:

Dr. West, Dr. McDowell, Dr. Safford, and Dr. Randhawa;

and to my committee members for their helpful advice:

Dr. David S. Birkes of the Department of Statistics,

Dr. William S. Bregar of the Department of Computer

Science, and Dr. James C. Rawers of the Department of

Mechanical Engineering. In particular, Dr. West pro-

vided me with financial support and valuable experi-

ence.

My thanks are extended to friends and colleagues

in the Department of Industrial and Manufacturing Engi-

neering for the many discussions which helped me to

formulate some of the ideas presented: Tony Chou,

Bauji Zhou, Joongnam Kim and Sunuk Kim.

Finally, I would like to thank the members of the

Corvallis Korean Church for the love and faith that I

will live with.

"For God, who commanded the light to shine out of

darkness, hath shined in our hearts, to give the light

of the knowledge of the glory of God in the face of

Jesus Christ. But we have this treasure in earthen

vessels, that the excellency of the power may be of

God, and not of us."

2 Corinthians 4:6-7

To my parents, brother and sisters, and my wife,

Sooyoun Kim, for their love, encouragement, and

sacrifice, without which I would not have been able to

finish my graduate work.

Table of Contents

Page

1.0 INTRODUCTION
1

1.1 FMS Background
1

1.2 Contribution of This Research 7

2.0 FMS MODEL AND PRODUCTION CONTROL PROBLEMS 12
2.1 General System Design and Specifications 12

2.1.1 Size of FMS 12
2.1.2 Job Arrival 13
2.1.3 Size of Batch 14
2.1.4 Number of Part Types 14
2.1.5 Number of Operations and Processing

Time 15
2.1.6 Transportation/Material Handling

Systems 16
2.1.7 Buffer Limitations/Storage Capacity 16
2.1.8 Scheduling Period 17
2.1.9 Measure of System Performance 18
2.1.10 Other Factors 19

2.2 FMS Production Control Problems 19
2.3 FMS Model Example 21
2.4 Assumptions 23

3.0 EXISTING APPROACHES TO FMS SCHEDULING 26
3.1 Characteristics of FMS Scheduling 26
3.2 Analytical Methods 28

3.2.1 Queueing Theory 29
3.2.2 Mathematical Programming 31
3.2.3 Mixed Integer Program Formulation 31

3.2.3.1 Noninterference Restrictions 32
3.2.3.2 Sequencing Restrictions 33
3.2.3.3 Specific Delivery Requirement 33
3.2.3.4 Overall Delivery Requirement 33

3.2.4 Computation Results 34
3.3 Heuristic Methods 37
3.4 Computer-Aided Methods 44

3.4.1 Simulation Studies 45
3.4.2 Decision Support Systems (DSS) 49
3.4.3 Interactive Methods 53

Table of Contents (continued)

Page

4.0 EXPERT SYSTEM APPROACH 60
4.1 Overview of Expert Systems 61

4.1.1 Components of Expert System 62
4.1.2 Constructing an Expert System 64

4.1.2.1 Problem Definition 64
4.1.2.2 Knowledge Acquisition 65
4.1.2.3 Knowledge Representation 66
4.1.2.4 Development of an Inference

Engine 69
4.1.2.5 Implementation and Evaluation 70

4.1.3. Types of Expert Systems 72
4.2 Benefits and Problems in Building an

Expert System for FMS Scheduling 72
4.3 Development Procedure for an FMS Scheduling

Expert System 79

5.0 IMPLEMENTATION AND OPERATING PROCEDURE 86
5.1 Implementation 86
5.2 Smalltalk and Protocol Description 87

5.2.1. Introduction to the Smalltalk System 88
5.2.2 System Protocol Description 89

5.2.2.1 Simulation Classes. 90
5.2.2.2 Graphic Layout Classes 96
5.2.2.3 Gantt Chart Class 96
5.2.2.4 Overall System Control Class 96
5.2.2.5 Expert System Classes 99

5.3 Operating Procedure 103
5.4 Rules 116

6.0 SUMMARY, CONCLUSIONS, AND SCOPE FOR FUTURE
RESEARCH 124

BIBLIOGRAPHY 127

APPENDICES
Appendix A: MPOS Program Code 135
Appendix B: Results of MPOS 139
Appendix C: Results of the Proposed

Expert System Approach 142

List of Figures

Figure Page

1.1 Integrated view of FMS scheduling system ..9

2.1 FMS model 22

3.1 Optimum Gantt chart schedule for the
example 35

3.2 Layout of Caterpillar Tractor FMS 40

3.3 Schematic of a dual loop FMS 42

3.4 Interaction process between an operator
and DSS 51

3.5 Interactive simulation model 56

3.6 Interactive factory scheduling system 58

4.1 General architecture of an expert system 63

4.2 Knowledge acquisition methods 76

4.3 Expert system development procedure 81

4.4 Knowledge acquisition procedure in
scheduling an FMS 82

5.1 Schedule generator system classes. 91

5.2 Initial stage of FMS simulation model ...104

5.3 Job-matrix information window 106

5.4 Selecting a dispatching rule 108

5.5 End of simulation 110

5.6 Final schedule 114

5.7 Consulting the editing expert system 115

List of Tables

Table Page

2.1 Number of FMS and Corresponding Number
of Machines in Operation 13

2.2 Distribution of FMS Technology 13

2.3 Number of Part Types Processed 15

2.4 Job Type and Processing Time Information 24

3.1 Results of Hurrion's Model 56

4.1 Generic Tasks of Expert Systems 73

5.1 Definition of basic Smalltalk terms 88

5.2 "SimulationObject" instance protocol 93

5.3 "Simulation" instance protocol 94

5.4 "Layout" instance protocol 97

5.5 "LoadingScreen" instance protocol 97

5.6 "GanttChart" instance protocol 98

5.7 "FMSExecutive" instance protocol 99

5.8 "Expert" instance protocol 101

5.9 "Fact" instance protocol 101

5.10 "Rule" instance protocol 102

5.11 "InferenceEngine" instance protocol 102

5.12 Job-matrix information commands 107

5.13 Dispatching rules in Figure 5.3 109

5.14 Results of simulation 111

5.15 Commands in Gantt chart pane 112

5.16 Rules for selecting a dispatching rule 118

List of Tables (continued)

Table
2112..

5.17 Key attributes in the data base dic-
tionary for the loading expert system ...119

5.18 Rules for determining the loading
sequence 120

5.19 Partial results of the simulation 121

5.20 Rules for editing the Gantt chart 123

AN EXPERT SYSTEM FOR FLEXIBLE

MANUFACTURING SYSTEM SCHEDULING: KNOWLEDGE

ACQUISITION AND DEVELOPMENT

1.0 INTRODUCTION

1.1 FMS Background

In recent years a great deal of research has been

undertaken concerning the need for improved productiv-

ity in the mid-volume manufacturing area. For example,

about 75 percent of all metalwork manufacture is in-

volved with the batch production of a variety of prod-

ucts in mid-volume quantities (Cook, 1975) and a number

of studies have suggested that the ideal production

system for this environment is a flexible, computer-

integrated manufacturing system. This type of system

is often referred to as a flexible manufacturing sys-

tem, or FMS.

An FMS is an integrated system of machine modules

and material handling equipment placed under computer

control for the automatic processing and manufacturing

of parts (Chen & Talavage, 1982). The major components

of an FMS include:

2

1) Work stations. Machine tools that perform re-

quired manufacturing operations and which are

typically numerically controlled machines,

e.g., CNC mills and lathes.

2) Material handling systems which transport work-

pieces from one work station to the next, in-

cluding conveyors, stacker cranes, tow-carts,

and automated guided vehicles.

3) Auxiliary equipment, including such facilities

as inspection stations, in-process storage ar-

eas, loading/unloading stations, or washing and

heat treatment stations.

4) Control systems responsible for automatic moni-

toring, i.e., controlling and scheduling the

operations of other components of the system.

Examples of existing FMSs have been analyzed and

described by Groover (1984), Ranky (1983), Stecke

(1983), and Stecke and Solberg (1981). In 1982,

Dupont-Gatelmand surveyed the different types of FMSs

used for machining and assembly operations, focusing

upon three categories of systems: (1) flexible modules

and units, (2) flexible transfer lines, and (3) un-

aligned flexible systems. Within each of these cate-

gories there are several sub-groups, classified in ac-

cordance with the type of operating mode and material

handling system in use. Whatever the specific purposes

3

of flexible manufacturing systems, they share one com-

mon purpose: To produce a wide variety of parts, using

the same set of facilities. An FMS can be programmed

to suit a variety of production requirements, thereby

fully utilizing resources for processing of a broad

range of products. Some of the benefits realized

through the application of an FMS include:

1) Reduced direct labor costs,

2) Improved machine utilization,

3) Reduced work-in-process inventories,

4) Consistency of product quality, and

5) Product and process flexibility, allowing rapid

response to changes in demand.

Flexibility is the most important aspect of an FMS

in terms of productivity. Increased manufacturing

flexibility can offer greater efficiency and increase

levels of productivity. However, at the same time the

use of an FMS does make the process of production con-

trol more complex and difficult since an FMS consists

of many interconnected hardware and software compo-

nents, as well as other manufacturing resources, in-

cluding tools, pallets, and fixtures that may be in

short supply. Therefore, any decision to allocate re-

sources to the production of one workpiece may affect

the quantities of resources available to the production

of others (Surf & Whitney, 1984). For this reason, FMS

production control requires software which is capable

4

of assisting the FMS operator in planning, scheduling,

and monitoring the system.

The literature of operations research has in re-

cent years focused considerable attention upon FMS pro-

duction scheduling, which in other terms is a special-

ized instance of job shop scheduling (Blackstone et

al., 1982; Buzacott, 1982; French, 1982). It is gener-

ally accepted in the field of operations research that

the problem of computerized job shop scheduling is at

best difficult, meaning that to date no one has been

able to achieve a polynomially-bound software solution

(Lenstra & Rinnooykan, 1978). In other words, no prac-

tical method exists which guarantees generation of an

optimum schedule. Common operations research ap-

proaches have included:

1) Analytical methods, using mathematical program-

ming, such as linear programming, mixed integer

programming, and queueing theory.

2) Heuristic rules, such as the "first-come-first-

served" rule, the "shortest processing job

first" rule, or the "earliest due date" rule.

3) Simulation studies to test and evaluate system

performance.

The problem is that most of these techniques have

encompassed a level of computer technology which is too

time-consuming for a decision-making environment, or

5

the systems have been limited in their ability to cap-

ture critical system detail. For example, in queueing

theory the interarrival time and service time should be

exponentially distributed and the processing order

should be first-come-first-served, which is usually not

realistic. Many similar heuristic rules have been de-

veloped, but they are static rules and are not gener-

ally suitable for dynamically changing situations.

Knowledge-based expert systems (KBES), one aspect

of artificial intelligence (AI), have been suggested as

approaches to the solution of the difficult problem of

FMS scheduling. Several researchers have undertaken

the study of the representation of scheduling in AI.

Bullers et al. (1980) demonstrated how predicate logic

and theorem proving techniques, using resolution tech-

niques, could be used in a manufacturing environment.

However, predicate logic has been widely criticized for

lacking the expressiveness necessary for the represen-

tation of complex knowledge (Fikes & Kehler, 1985).

Fox (1983, 1984) used frames to construct a complex job

shop modeling system, ISIS. ISIS is a constraint-

directed reasoning system for scheduling a job shop,

adopting a heuristic approach to schedule generation.

In this sense, knowledge consists mainly of the aware-

ness of constraints and the expertise of the scheduler

since expert knowledge can be used to relax constraints

6

and to determine the proper bounds of solutions. Sub-

sequently, Bruno et al. (1986) used production rules

for knowledge representation and developed a production

scheduling expert system using OPS5.

Most of the papers reviewed have dealt with knowl-

edge representation methods and/or efficient search

techniques to obtain useful solutions for the use of

the least possible production times, but they have

failed to confront the problem of elicitation of expert

knowledge. Hart (1985) analyzed the difficulties of

interviewing human experts for the transfer of know-

ledge to computer programs. The principal problem is

not only to find expert knowledge, but that the process

is so time-consuming. Furthermore, expert knowledge is

often unavailable since in many cases experts simply do

not exist. One possible alternative to the solution of

this problem might be to train a non-expert operator,

allowing the operator to practice with a simulated sys-

tem, accumulate experience, and then build an expert

system using this newly acquired expertise.

The objective of this study is to demonstrate how

to develop an expert system for scheduling an FMS,

based upon a feasible means of knowledge acquisition.

This project is organized as follows. The structure of

an FMS model and FMS production control problems are

illustrated in Chapter 2. In Chapter 3, characteris-

tics of scheduling problems and some of the existing

7

approaches are discussed. Chapter 4 encompasses a de-

scription of the benefits, as well as the problems, of

building an expert system for FMS scheduling, in the

process demonstrating a general framework for the de-

velopment of an expert system with knowledge acquisi-

tion. Chapter 5 presents an implementation of the de-

veloped system, using an example problem to examine the

system in detail and illustrate the rules that have

been collected through experimentation. Conclusions

and the scope of future research needs are provided in

Chapter 6.

1.2 Contribution of This Research

Software and hardware advances in computer tech-

nology provide areas for investigation which may lead

to further improvements in FMS performance. Even

though a number of investigations have been completed

in this area during the past few years, an operational

software system for the control of an FMS, which is (1)

intelligent, (2) experience-based, and (3) self-

improving (Blessing & Watford, 1987), has not been de-

veloped to date.

The current study presents an original way of

building an intelligent FMS scheduling system and im-

plements a prototype model. The system is intelligent

8

in the sense that it is capable of accessing and uti-

lizing several system knowledge bases. It is also

experience-based because the system uses past experi-

ence from previous simulation experiments to form rules

for better system performance in the future. Research

is ongoing and the system is undergoing improvement as

additional experiments are performed. Although the

prototype does not have self-improvement capability, it

is possible to improve and expand its knowledge bases

with human operator assistance, as the operator accumu-

lates experience through use of the simulated system.

In general sense, this investigation demonstrates

the synergistic application of knowledge related to:

1) the FMS and its control problems,

2) the use of simulation models,

3) the use of management science and operations

research techniques,

4) the application of AI techniques,

5) human factors for the man-machine interface of

using computer graphics, and

6) the use of interactive problem-solving methods.

The main research contribution of the current

study is development of an integrated FMS system, in-

cluding the application of expert systems, simulation

modeling, and computer graphics for FMS scheduling.

Figure 1.1 illustrates an integrative view of the FMS

scheduling system with the other necessary components.

9

Expert
System

Simulation
Modeling

FMS Interactive
Functions

User
Interf ace

Graphics

Figure 1.1 Integrated view of FMS scheduling system.

10

Simulation modeling is one of several requirements for

an effective application, along with the development of

effective tools for a graphic representation user in-

terface in which the interface is tailored to parti-

cular scheduling applications addressing the needs of

human schedulers. A more productive view of the appli-

cation of expert systems is to utilize them as a compo-

nent of the total scheduling environment for the sup-

port of the decision-making process of generating a

schedule. The interactive functions of the system al-

low the operator to control the entire system, provid-

ing all of the advantages of an integrated approach

without excessive computational requirements. Sched-

ules may be updated frequently and unexpected events,

such as machine failures or similar occurrences, may be

dealt with immediately.

The principal differences of the prototype system

from other intelligent scheduling systems are that it

may be used to generate feasible schedules much more

rapidly than other systems and that it may be used as a

knowledge acquisition method. Most other intelligent

systems use some type of search method to generate a

feasible schedules and their computation time tends to

increase exponentially with the size of the knowledge

base. However, the proposed system uses a simulation

method for schedule generation, requiring only linearly

increased computation time as the size of the problem

11

increases. With respect to use of the system as a

knowledge acquisition method, other intelligent expert

systems require an intensive human interviewing process

to elicit expertise and build the system knowledge

base. The proper prototype system combination of com-

puter graphic simulation modeling and interactive func-

tions allows the operator to test many different situa-

tions while at the same time accumulating experience.

This process eliminates the time-consuming human inter-

view process, thereby facilitating the knowledge acqui-

sition process.

12

2.0 FMS MODEL AND PRODUCTION CONTROL PROBLEMS

2.1 General System Design and Specifications

Guidelines for system design and specifications

are described for the purpose of simulation model de-

velopment. To make the simulation model as realistic

as possible, these guidelines are based on published

reports on related issues (Shanker & Tzen, 1985).

2.1.1 Size of FMS

In the publication, "Collection of European and

American FMS," the Japanese Production Technology In-

vestigation Society (1981) collected data on 79 exist-

ing FMS in the United States and Europe. Table 2.1 in-

dicates how many of these FMS employ a given number of

machines. Table 2.2, based upon a recent survey by

Darrow (1986), indicates the worldwide distribution of

FMS technology by region.

With these figures in view, four machines have

been included in the simulation model implemented for

this study. This number of machines should provide for

sufficient interaction and combinational complexity for

experimental purposes, while keeping the program simple

enough to be practical.

13

Table 2.1 Number of FMS and Corresponding
Number of Machines in Operation.

No. of
Machines

No. of
FMS

No. of
Machines

No. of
FMS

1 4 10 8
2 6 11 1

3 4 12 4
4 7 13 2
5 10 15 1

6 11 16 1

7 8 28 1

8 4 29 1
9 5 80 1

Table 2.2 Distribution of FMS Technology
(based on number of systems and number of
machine tools employed).

Region Systems
Machine
Tools

Eastern Europe 23 192
Western Europe 107 485
Japan 59 462
United States 64 330

Totals: 253 1,469

2.1.2 Job Arrival

There does not seem to have been any specific

study undertaken to report on the distribution of in-

terarrival times of jobs for FMS. From the study on

job shops, exponential or Erlang distributions are

mostly used as the candidate distribution system, part-

ly due to its ease of application in mathematical mod-

els based upon queueing or network theory. However, in

14

real FMS situations, jobs are usually available at the

beginning and are loaded into the system one by one,

each with its own setup time.

2.1.3 Size of Batch

One of the major economic forces which has lead to

the rapid implementation of small batch manufacturing

FMS is the well-recognized need to reduce work-in-

process inventories, while at the same time increasing

machine utilization. In particular, this need has been

pointed out in the area of the metalwork manufacture of

lots of less than 50 pieces (Cook, 1975).

While reviewing several new FMS instituted in

Japan in the early 1980s, Ito (1981) mentioned batch

sizes ranging from 6 to 30. However, the batch size

chosen for the model used in this study is assumed to

be based on unit processing. Since setup time is sig-

nificant in the FMS and the jobs in one batch are simi-

lar in nature and processed continuously, we can con-

sider each batch as one job.

2.1.4 Number of Part Types

Jaikumar (1984) conducted a survey of 28 FMS and

observed that 25 of them manufactured between 4 and 22

part types, while the remaining 3 systems each produced

more than 100 different parts. Smith et al. (1986)

surveyed 22 FMS operations in the U.S. and investigated

several aspects of FMS characteristics, including the

15

Table 2.3 Number of Part Types Processed.

Part Types
Percent of

Total Response

1-10 22
11-20 14
21-30 7

31-50 14
51-100 7

above 100 36

number of part types processed, batching of part types,

system costs and scheduling criteria. Table 2.3 shows

the results of the survey question for the number of

part types processed. For the purposes of this study,

10 part types are considered insofar as it is believed

that this number provides sufficient complexity for

experimental purposes.

2.1.5 Number of Operations and Processing Time

There have been no specific reports of practical

instances regarding the number of operations and pro-

cessing times for FMS jobs. However, since very little

direct labor time is required for the set-up and/or

running of individual FMS machine tools, processing

times are highly predictable and nearly deterministic.

The exception is downtime, which occurs randomly. In

the model developed for this study, the number of oper-

ations for each job is set up and is distributed from

two to four. Processing time for each operation is

16

assumed to be constant for planning and scheduling pur-

poses.

2.1.6 Transportation/Material Handling Systems

It has been demonstrated empirically that parts in

conventional manufacturing systems spend about 95 per-

cent of their time in a waiting state between opera-

tions (Carter, 1971). Parts-waiting time in a job shop

is high because of the large queues and larger batches.

For an FMS, transportation time is important and is

partially dependent upon the utilization and speed of

the material handling system. There can be capacity

restrictions on the material handling system, i.e., a

finite number of AGVs or tow-line carts. Conveyors may

be less restrictive with respect to capacity, but are

at the same time less flexible in terms of how they may

be used.

Estimating the expected value of travel time is

also an important factor. In the model used for this

study, an average travel time of 10 minutes between two

work stations was used since the focus of concern was

with system planning and scheduling.

2.1.7 Buffer Limitations/Storage Capacity

FMS material handling facilities are automated,

which often places limits on the amount of work-in-

process of finished parts that can be held in the sys-

tem. In-process inventory can be held either in

17

centralized storage, in buffers provided at the indivi-

dual machines, or in an automated storage and retrieval

system. Conventional job shop scheduling overlooks

this aspect, assuming that all necessary storage is

available. However, the issue of storage is often a

critical constraint in FMS scheduling. Finite buffers

or storage capacities can lead to blocking and system

starvation, which must be considered in real-time FMS

parts scheduling.

2.1.8 Scheduling Period

One manner of dealing with the scale and complex-

ity of the scheduling problem is to decompose it into

interacting levels or problem hierarchies, according to

the scheduling period (Ammons, 1985; Suri & Whitney,

1984):

1) High or strategic level: production planning;

2) Intermediate or tactical level: release

scheduling; and

3) Low or operational level: item movement.

High level production planning problems, including

the tasks of part-mix changes, system modifications,

and expansion, must be solved at regular intervals of

relatively long duration, usually on the order of

weeks. Intermediate release scheduling problems, in-

cluding the division of production into batches, bal-

ancing the workload, and responding to changes in

18

production plans and material availability, must be

solved daily or hourly, dependent upon the nature of

upper level production planning decisions. The lowest

level in the hierarchy makes moment-to-moment routing

decisions for items within the production systems and

is concerned with detailed decision-making requirements

for real-time FMS operations, including the material

handling system. The time horizon is typically a few

minutes or hours, and the decisions involved are (1)

part movement and material handling system, (2) tool

management, (3) system monitoring and diagnostics, and

(4) reacting to disruptions, including machine fail-

ures. In this study, a scheduling problem for a one-

day period is considered since it is important to use

short-term scheduling periods in an FMS with a dynamic

environment in which frequent changes are possible.

2.1.9 Measure of System Performance

Job shop research uses various criteria to measure

the performance of scheduling algorithms. For the per-

formance measurements of an FMS, since most are capital

intensive systems, throughput time, system output,

meeting due dates, total processing time, or machine

utilization are used. Of these, total processing time

is taken as the criterion of system performance for the

model.

19

2.1.10 Other Factors

There are also limited numbers of pallets and fix-

tures of different types in an FMS. These resources

can affect both planning and scheduling problems and

must also be considered.

2.2 FMS Production Control Problems

The aim of an FMS is to achieve efficient and au-

tomated high-volume mass production while retaining the

flexibility of a manual job shop to simultaneously ma-

chine several part types. Because the concept and

technology of automated manufacturing are still in

their infancy, problems have been encountered in plan-

ning and controlling the systems. Managing production

for an FMS is more difficult than production line or

job shop management because:

1) Each machine is versatile and capable of per-

forming many different operations;

2) The system can machine several part types si-

multaneously; and

3) Each part may have alternative routes through

the system.

These additional capabilities and planning options

increase both the number of decision variables and con-

straints associated with setting up an FMS. To best

20

utilize the capabilities of an FMS, careful set-up is

required prior to production since set-up decisions

must incorporate options which reflect new or altered

production requirements. This contrasts with a mass

production system where set-up is part of the design

process and few changes occur following implementation.

Stecke (1983) identified five inter-related pro-

duction control problems which must be solved prior to

system operation:

1) Part type selection problem: From a set of

part types that have production requirements,

determine a subset for immediate and simultane-

ous processing.

2) Machine grouping problem: Partition the ma-

chines into groups in a way that each machine

in a particular group is able to perform the

same set of operations.

3) Production ratios problem: Determine the rela-

tive ratios at which the part types selected in

problem (1) will be produced.

4) Resource allocation problem: Allocate the lim-

ited number of pallets and fixtures for each

type among the selected part types.

5) Loading/scheduling problem: Allocate the oper-

ations and required tools for each selected

part type among the machine groups, subject to

21

technological and capacity constraints of the

FMS.

Assuming the solution of part type selection, ma-

chine grouping, production ratios, and resource alloca-

tion problems, loading and scheduling problems are con-

sidered, including selection of a subset of jobs from

the job pool and, in the ensuing planning period, as-

signing these subsets to appropriate machines to

achieve production objectives while meeting system con-

straints. Given the capital intensive nature of FMSs,

a sound return on investment can be achieved only when

productivity is maximized and idle time is minimized.

A more detailed treatment of this problem is included

in Chapter 3.

2.3 FMS Model Example

An FMS simulation model was developed to provide

the means to study control and scheduling problems.

The model consists of four machining centers (Figure

2.1), each with an input buffer for parts setup and

queueing. Use of an automatic transportation system

has been assumed in the model so that parts can be

moved freely from one machining center to another.

The model includes 10 part types for processing;

each part is designated by a part identification

22

Machine 1 Machine 2

Loading
station

Machine 3 Machine 4

Unload
station

Figure 2.1. FMS model.

23

symbol, e.g., Al, A2,...J1, J2, J3, and is categorized

according to part type, in which parts in each category

are assumed to be identical. The letter in the identi-

fication symbol indicates the part type, while the num-

ber following the letter is used to identify the speci-

fic part within the type category. Note that the sys-

tem's status at the point in time represented by Figure

2.1 indicates that parts Al, Bl, and C2 are being pro-

cessed at machining centers #1, #2, and #4, respec-

tively, and parts A2 and A3 are waiting in the input

buffer at machining center #1, while parts B3, Cl, and

C2 are waiting in the input buffer at machining center

#2.

The FMS model also includes loading and unloading

stations, each with a holding capacity of one part. It

is assumed that it takes 10 minutes to load, set up,

and transfer each part from load station to machining

center or from one machining center to another. Table

2.4 shows the job types and their processing time in-

formation. For example, the sequence for part A is ma-

chining center #1 -. #2 - #3 -. #4, the operations for

which take, respectively, 90, 60, 60, and 120 minutes.

2.4 Assumptions

The scheduling problem to be addressed in this

study may be defined as follows:

24

Table 2.4 Job Type and Processing Time
Information.

Part
Type

Operation
Sequence
(machining
center no.)

Processing Time
(minutes)

A 1, 2, 3, 4 90, 60, 60, 120
B 2, 4 90, 60
C 4, 2, 3 30, 60, 90
D 3, 4, 1, 2 120, 90, 60, 60
E 2, 1 60, 90
F 3, 1, 4 120, 90, 60
G 4, 3, 2, 1 120, 90, 60, 90
H 1, 4, 2 60, 60, 60
I 2, 4, 1 60, 90, 120
J 1, 3, 2, 4 60, 90, 120, 150

1) The scheduling objectives are to process all

jobs and to minimize the total processing time.

2) Although the job is composed of distinct opera-

tions, no two operations for the same job may

be processed simultaneously.

3) Each operation, once started, must be completed

before another operation may be started on that

machine.

4) Each job must be processed to completion.

5) There is no randomness. In particular,

a) the number of jobs is known and fixed, and

b) the processing times are known and fixed.

6) A job represents the processing of one part

type and a job order represents a set of jobs.

25

7) A loading sequence represents the system parts

loading priorities in the job order.

8) The scheduling of transportation systems is not

considered since they are always available.

26

3.0 EXISTING APPROACHES TO FMS SCHEDULING

In this chapter existing approaches to FMS

scheduling are described and their advantages and dis-

advantages are discussed. More detailed discussion of

various aspects of FMS, as well as scheduling proce-

dures, appears in Rachamadugu and Stecke (1986) and

Buzacott and Yao (1986). The purpose of this section

is two-fold: first, to review the work on FMS model-

ing, with particular focus on scheduling problems, and,

second, to examine some of the implications of an FMS,

including the new and challenging problems the FMS

poses to production planning and control. These are

problems which must be solved in order to encourage the

future adoption and effective use of the FMS.

3.1 Characteristics of FMS Scheduling

FMS operational control is directed at the effec-

tive scheduling of parts. It is exercised at the in-

termediate level of detailed FMS decision-making and is

part of day-to-day system operation. To a greater de-

gree than a conventional job shop manufacturing system,

27

an FMS must have short-term scheduling and planning fa-

cilities because of the variability and dynamic changes

which take place within the system.

Although there are a significant differences be-

tween an FMS and a conventional job shop, FMS control

is conceptually similar to job shop manufacturing and

may be regarded as a special case of standard job shop

scheduling. In essence, an FMS is a job shop system

with an automatic material handling system.

There are literally hundreds of published studies

concerned with scheduling and in addition thousands of

individual firms have generated their own scheduling

techniques for which there is no published knowledge.

Baker (1974) and Conway, Maxwell, and Miller (1967)

have provided excellent surveys of the entire sched-

uling topic, while Day and Hottenstein (1970) and

Graves (1979) have provided surveys of the available

scheduling techniques.

A job shop scheduling problem (see Chapter 1) is

an NP-complete, hard problem, meaning that no polynomi-

ally-bound solutions exist (RinnooyKan, 1976). In many

job shop manufacturing systems, including the FMS, the

preferred sequence of operations on one job may be a

function of the sequence Of operations chosen for one

or more other jobs. In this case, in order to deter-

mine the preferred job sequence, it is generally neces-

sary to determine the preferred sequence for all jobs

28

simultaneously. As a result, the sequencing problem

can become one of considerable size and complexity.

For example, in a hypothetical case of N jobs and M

machines, the number of possible solutions is (NOM.

If N = M = 5, then (5!)5 = 24,883,200,000. Even with

all of the processing power available today, it is not

practical to search exhaustively through a solution set

of this size. The problem of discovering preferred se-

quences in the larger and more complex setting of the

typical factory is clearly even more difficult.

Since an FMS is an extremely complex manufacturing

system, interconnecting many components, it is unlikely

that one single procedure could be developed that would

encompass most of the possible situations. Therefore,

several approaches are analyzed in the following sec-

tions of this chapter.

3.2 Analytical Methods

Various analytical techniques have been used to

model the job shop, surveys of which may be found in

Conway et al. (1967) and in Graves (1979). Detailed

algorithms are provided in Johnson and Montgomery

(1974). The job shop has been viewed as sets of jobs

and machines, e.g., 2-jobs/5-machines. However, the

analytical results have been restricted to simple prob-

lems with not more than 10 tasks and 10 machines. One

29

of the earliest and most popular approaches to the

scheduling problem was developed by Henry L. Gantt.

This graphic approach, the Gantt chart, is a bar chart

which displays job operations over time for each ma-

chine. The main drawback of the chart is its depend-

ence on the scheduler's intuition in the improvement of

the scheduling process.

In 1956, Jackson extended Johnson's (1954) algo-

rithm with minimum makespan as the criterion, solving

the n-jobs/2-machines flow shop scheduling problem.

Later, operations research techniques, including inte-

ger linear programming, dynamic programming, and

branch-and-bound technique, were used to obtain optimal

schedules. Jackson's (1957) Decomposition Principle

can be regarded as one of the most significant analyti-

cal studies in the area of scheduling. Modeling the

shop as a network of queues, this principle is used to

establish sufficient conditions for decomposition of

the network into a set of independent queues. However,

as Conway et al. (1967) have mentioned, this technique

was not useful in the solution of large scale problems.

3.2.1 Queueing Theory

Since a job shop can be viewed as a network of

queues, queueing theory techniques have been widely

used in studies of job shops. Unfortunately, since

jobs pass through the network in a large variety of

30

patterns, the use of this method for scheduling is ex-

tremely complex for even small job shops. The basic

assumptions of the model are as follows:

1) The interarrival time and processing time are

exponentially distributed and parts are pro-

cessed with first-come-first-served queue dis-

cipline;

2) The jobs are routed to a machine by a fixed

probability transition matrix; and

3) The capacity of the in-process storage space is

implicitly bound by specifying a finite number

of parts loaded into the system and is assumed

to be sufficient to accommodate all jobs in the

system in order to avoid blocking.

Based on these assumption, a closed queueing net-

work model, CAN-Q was developed by Solberg (1977). It

is a closed queueing network in the sense that the num-

ber of parts circulating in a system is at all times

constant. This model has been widely used for the pre-

liminary design of FMSs and for the study of some pro-

duction planning issues in which exact details are not

available and in which tolerances for error are not

critical. For example, the effects of routing policies

on the throughput and in-process inventory of an FMS

has been examined in a number of investigations (Sol-

berg 1981; Buzacott & Shanthikumar, 1980). As a design

tool, the queueing model is suitable for a "first-pass"

31

when details about the system are either unavailable or

lack clarity. However, when a system description is

available, more precise methods of analysis, including

computer simulation, are preferred.

3.2.2 Mathematical Programming

The job shop scheduling problem has been formu-

lated as a mathematical program for over 20 years and

many investigators have applied integer programming

techniques to the problem. Stecke and Solberg (1981)

and Stecke (1983) have modeled scheduling problems for

a real FMS as an integer program. Several alternative

objective functions have been proposed since no single

set of objective functions can be applied universally

to different production situations. For example, Ku-

siak (1985) formulated an algorithm for FMS loading

problems, and Shanker and Tzen (1985) proposed an inte-

ger programming formulation of the operation allocation

problem. In the following section, a mixed integer

program formulation is presented, along with example

problem results.

3.2.3 Mixed Integer Program Formulation

Several attempts were made to solve the job shop

scheduling problem with the objective function of mini-

mizing total processing time, mostly through use of an

integer program using 0 to 1 variables as the main var-

iables. In these attempts, efficiency differed

32

according to the method used to express the constraint

that each machine is limited to processing one job at a

time. Historically, three formulations for the use of

the cutting plane method (Bowman, 1959; Manne, 1960;

Wager, 1959) have been developed and, in particular,

Manne's formulation has a comparatively small number of

variables and constraints. Integer programming formu-

lation based upon Manne's method uses the following

notation:

Tik = Variable indicating the time at which task i

is to begin at machine k.

Aik = Processing time for job i at machine, k.

B = Arbitrary big number for penalty.

Yijk = Integer variable, either 0 or 1.

Di = Due time for job i.

The constraint equations and objective function are as

follows.

3.2.3.1 Noninterference Restrictions

Given that jobs i and j require, respectively, Aik

and Ajk processing time units at machine k, if they are

to be prevented from occupying the same machine simul-

taneously, one of the two must precede the other by a

time period sufficient to allow completion of one job

before the second can begin, i.e., either

Tik Tjk > Ajk , or

Tjk - Tik > Aik (1)

33

In order to convert this condition into a linear

inequality, it is convenient to define a new integer-

valued variable, Yijk, with the following written re-

strictions:

(B + Ajk)Yijk + (Tik - Tjk) > Ajk , (2)

(B + Aik)(1 - Yijk) + (Tjk - Tik) > Aik , (3)

where B is a large number, i.e., B >> ITik Tjk(, and

Yijk = 0, if job j precedes job i at machine k, or

Yijk = 1, if job i precedes job j at machine k.

Equations (2) and (3) ensure that the first job will be

initiated in sufficient time to be completed before the

beginning of the second job.

3.2.3.2 Sequencing Restrictions

Once the noninterference stipulations have been

written, the remainder of the formulation automatically

follows. If the operation at machine k for job i is to

precede the operation at machine 1, this means that the

operation at machine 1 will be performed at least Aik

time units later than the operation starting time at

machine k. This condition becomes:

Tik + Aik < Tii (4)

3.2.3.3 Specific Delivery Requirement

If operations at machine p for job i is the last

operation which the shop is to perform on the item, and

the specified due time of the item is Di, then this re-

quirement may be written

Ti + A < DiTip ip

34

3.2.3.4 Overall Delivery Requirement

Minimizing the total processing time is employed

as the performance measurement. If the total process-

ing time is denoted by Fmax, the problem consists of

the minimization of Fmax with respect to the nonnega-

tive integers, Tik and Yijk, subject to constraint

equations (2) through (5) and

Tik + Aik < Fmax (i = 1, 2,...n and

k = 1, 2,...m) . (6)

3.2.4 Computation Results

The mixed integer program, based on the example

job order (A 1 B 1 C 1 D 1) for the FMS model presented

in Chapter 2, ws formulated and solved using a branch

and bound algorithm in a multi-purpose optimization

system (MPOS) on the CYBER 720 mainframe computer. The

MPOS program code is shown in Appendix A and the pro-

gram output is shown in Appendix B. A Gantt chart of

the summary schedule is shown in Figure 3.1.

However, even for small-sized problems the number

of constraints and/or variables becomes very large in

any integer linear program formulation and this method

is not very effective. Mathematical programming fails

to provide real-time control for even small-sized prob-

lems, due to excessive computational requirements. In

some instances, mathematical programming has been

35

machine 1

machine 2

machine 3

A

B

D

A C

D

machine 4 c

A

D

C

B A

3 9 15 24 36

Figure 4. Gantt chart schedule for (A 1 B 1 C 1 D 1)

Figure 3.1 Optimum Gantt chart schedule
for the example.

36

applied with some success to aggregate, long-term plan-

ning problems.

Moreover, optimization procedures, including inte-

ger programming, have not been used successfully with

problems of practical size due to their NP completeness

and formulation difficulty in the problem. Davis

(1973, p. 306) has noted that,

even if more efficient integer linear program al-
gorithms were available, the application of the
approach might not be feasible because the task of
writing the objective function and constraint
equations is in itself a formidable one.

This simple example illustrates the complexity of

the mathematical programming approach. A comparison

was made with the results of the proposed expert system

approach in Appendix C. It is normally insufficient to

draw any conclusion based on one single comparison, but

it is possible to offer a number of observations drawn

from the comparison. Since an 8-job example was one of

the trials used for the model, the same example job was

tried for formulation and solution of the problem using

a mixed integer program. The CYBER 720 mainframe com-

puter could not handle the problem due to core memory

limitations, calculated as follows for a mixed integer

program:

IntVar * ((M + 2) * (N + 1) + M + 1)

where IntVar is the number of integer variables, M is

the number of constraints, and N is the number of total

variables, including integer variables. In the case of

37

the 8-job example, the number of constraints is 260 and

the number of variables and integer variables are, re-

spectively, 257 and 224. The total core memory re-

quirement, therefore, is 16,319,968 bytes, a require-

ment which exceedsn the CYBER 720 core memory of 640

Kbytes. Furthermore, even if the core memory were

available, excessive amounts of computation time would

be required to solve the problem. Consequently, a sim-

pler 4-job example was solved and compared with the re-

sults of the proposed expert system approach.

This complexity has motivated a number of investi-

gations based upon polynomial time and space methods

and sub-optimal solutions have been obtained. These

heuristics are a more practical approach to real-size

resource scheduling problems.

3.3 Heuristic Methods

A number of studies for developing proper heuris-

tic rules have been completed for the control and oper-

ation of FMS and the job-shop manufacturing environ-

ment. As discussed in the previous section, FMS sched-

uling problems can be formulated analytically as 0-1

integer programming problems, but the size of the re-

sulting problem is too complex to solve day-to-day

scheduling problems and uncertainties in production,

such as machine breakdown, preclude the use of these

38

methods. Therefore, most FMS control systems use heur-

istic rules to schedule production.

Heuristic methods can involve either priority

rules or heuristics, or a combination of the two. Pri-

ority rules based upon selective criterion are used to

assign numerical attributes to each waiting job and to

determine the processing order at a machine, e.g., the

first-come-first serve rule, the shortest processing

time rule, the earliest due-date rule, or the most-

work-remaining rule. "Heuristics" in this sense means

"rule of thumb," a meaning which has evolved as heuris-

tic programming has been applied to management prob-

lems. Heuristics refer to methods justified for rea-

sons of their internal logic and because they have been

empirically tested and found to perform reasonably

well. Some examples of heuristics programming include

(1) alternate operations, (2) look ahead, (3) insert

operations, and (4) exchange operations (Gere, 1966).

In this section, the work of Stecke and Solberg

(1981) and Denzler and Boe (1987) on real-time systems

is reviewed. A more detailed survey of heuristic rules

may be found in Blackstone et al. (1982). Panwalker

and Iskander (1977) have comprehensively surveyed

scheduling rules, including a summary of 113 dispatch-

ing rules derived from a cross-index of 36 technical

publications in the field. Performance criteria and

the rules developed for each of the referenced

39

investigations, including treatments of their heuristic

dispatching rules and the manufacturing environments

for which they have been tested, are included.

In exploring alternative FMS loading and control

strategies, Stecke and Solberg (1981) examined the FMS

at Caterpillar Tractor Company, which consists of four

5-axis machining centers, three 4-axis machining cen-

ters, two vertical turret lathes and an inspection ma-

chine. Each machine has a limited capacity tool maga-

zine and two straight-track transporters, which carry

parts from one center to another. The 16-station

load/unload area also provides a queueing area for in-

process inventory (see Figure 3.2). The system was

designed to machine four prismatic parts for automatic

transmission housings. In scheduling parts, each oper-

ation was assigned to an individual machine tooled to

perform that task, thereby creating fixed routing for

each part. In their design tests of loading and con-

trol decision rules, alternate routings were created by

assuming increased tool flexibility.

Using a simulation model, 16 loading and control

decision rules were tested under 5 different possible

sets of manufacturing conditions. Results indicated

that a parts loading rule based upon first loading the

part with the shortest processing time/total processing

time ratio, produced results superior to those of other

decision rules tested under all 5 conditions. These

40

VTL VTL66
<

Inspection
station

DO al 0 0 0 0 0 0 0 0 0 0
Load Unload station

VTL: vertival turret lathe
OM : 5 axis machining center
OD : 4axis machining center

Figure 3.2 Layout of Caterpillar Tractor FMS
(from Stecke & Solberg, 1981).

41

results were from 8 to 24 percent better than those ob-

tained when using the plant's existing scheduling rule.

Although these results appear to indicate a significant

production improvement, what is not clear is the extent

to which further improvement would have been possible.

The study did not report on attempts to develop ana-

lytic solutions using integer programming, and the ap-

plicability of these findings to FMS based upon differ-

ent design characteristics is unknown.

Denzler and Boe (1987) investigated the effective-

ness of heuristic parts scheduling rules used to oper-

ate another real-time FMS, a system comprised of 5 in-

dexers, 11 moduline machining stations, 2 loading sta-

tions, and 2 unloading stations and directed at the

manufacture of 8 prismatic automatic transmission hous-

ings. A schematic illustration of the system is shown

in Figure 3.3.

The system has 37 carts and 51 pallet fixtures and

each of its machines has the capacity to store two

parts prior to and two parts following processing on a

machine shuttle system. Once placed on a machining

center, the parts are processed on a first-come-first-

serve basis. There is no common work-in-process inven-

tory storage capacity within the FMS, other than that

obtained by cycling a part around the system on a cart.

42

Load
Station

Unload
Station

Unload
Station

Load
Station

D C Machine B A A B Machine
1 9

D C Machine B A A B Machine
2 10

D C Machine B A D C Machine B A
3 11

A B Machine C D D C Machine B A
4 12

A B Machine C D D C Machine B A
5 13

A B Machine C D D C Machine B A
6 14

A B Machine C D D C Machine B A
7 15

A B Machine C D D C Machine B A
8 16

Note: Machines 1,2,3,9 and 10 are head indexes. All other machines are
moduline machining centers. A and B are upstream inventory holding posi-
tions. C and D are downstream inventory holding positions

Figure 3.3 Schematic of a dual loop FMS
(from Denzler & Boe, 1987).

43

The scheduling of all parts, carts, and machines

is controlled by a software package based upon three

decision rules: (1) A parts load rule directing the

loading of the part onto a pallet; (2) A parts launch

rule directing the loaded pallet to the first available

machine; and (3) A parts routing rule which determines

which available machine can perform the next operation.

Six loading rules were tested through simulation exper-

iments, comparing the performance of alternative sched-

uling heuristic rules under conditions of high and low

flexibility. Results indicated that the "smallest pro-

portion of job launched" rule, which loads the part

with the smallest proportion of its batch among parts

in the system, and the "reload with alike product" rule

performed slightly better than others when a sufficient

number of empty pallets were available. The effective-

ness of the parts loading rules were also analyzed,

comparing their performance with the upper bound ma-

chine utilization rate achieved by the analytical mod-

el. The rules developed as outlined above were able to

schedule the FMS model at a machine utilization rate

within 20 percent of the theoretical upper bound.

These results clearly indicate that the use of

heuristic rules can result in schedules within 20 per-

cent of the upper bound machine rate of utilization.

However, it should be noted that the parts loading

rules Stecke and Solberg (1981) reported as the best

44

performers did not perform as well as the rules exa-

mined by Denzler and Boe (1987). Since the two systems

are configured in significantly different ways and the

performance of heuristic rules is highly system depen-

dent, the differing results indicate that each system

should be individually studied by means of simulation

for various loading and real-time control strategies in

order to determine which system offers the best re-

sults. Even though heuristic methods are generally

found to be useful and relatively economical in their

utilization of computational resources, compared to the

use of optimization techniques, care must be taken be-

cause rules which appear to bear positive results can

at the same time lead to unexpected performance deter-

ioration.

3.4 Computer-Aided Methods

Recent research concerning the impact of computers

upon managerial decision-making have focused attention

on computer-based information systems, developing sig-

nificant insights that have gained public attention.

One of the areas of inquiry, based upon software devel-

oped for use on personal computers, has been directed

at computer-aided scheduling methods as follows:

1) Simulation studies (El Maraghy, 1982; Steudel,

1986);

45

2) Decision support systems for manufacturing con-

trol (Chen & Talavage, 1982; Suri & Whitney,

1984); and

3) Development of interactive scheduling methods

(Godin, 1978; Hurrion, 1978, 1980; Hodgson &

McDonald, 1981; Jones & Maxwell, 1985).

The principal contributions of these approaches is

that they allow the operator to quickly and easily re-

view and revise a number of schedules. As a result,

scheduling control of dynamic production systems can

become more responsive and effective.

3.4.1 Simulation Studies

To accomplish the complex quantitative analysis

and the interaction of production and production con-

trol procedures, including their interaction, a high

level of knowledge of the system's dynamic behavior is

required. This can be obtained either through trial

and error implementation or by simulation. It is gen-

erally accepted that the control of any process depends

upon the availability of a model of the process that

permits projection of the results of a contemplated ac-

tion before it is taken. For purposes of FMS control

and scheduling, the characteristics and operation of

individual components making up complex and dynamic

manufacturing systems are relatively well known, but

there is little data available on the integrated system

46

operation of these components. Thus, simulation would

appear to be a logical option under all but the most

unusual circumstances.

Simulation models have already played an important

role in the development of integrated manufacturing

systems and in the organizational and technological de-

sign of FMS. FMS simulation has been used mostly to

verify design concepts, evaluate alternative configura-

tions, assist in selecting machinery and material han-

dling hardware, and to test system control strategies.

The quick feedback provided by the simulation of a giv-

en design enables the operator to measure the merits

and shortcomings of a system, make the necessary revi-

sions, and arrive at efficient decisions. What is most

clear is that the role of simulation in designing and

evaluating future factories will increase in importance

as more companies become involved in implementing ad-

vanced manufacturing technologies (Ballakur & Steudel,

1984; El Maraghy, 1982; Steudel, 1986). At present,

over 100 simulation languages have been developed and

used for modeling manufacturing systems, including

TESS/SLAM-II, CINEMA/SIMAN, GPSS, GASP-IV, SIMSCRIPT

11.5, PCModel, SEE WHY, and XCELL. For a comparative

discussion of simulation .languages, see Shannon and

Phillips (1983)

In the simulation of manufacturing systems, it is

usually necessary to account for every individual

47

entity in the system and arrange for its status

changes. The result is known as a discrete event simu-

lation, a simulation in which system status changes

only at specified times, remaining at the new values

for subsequent time units. The length of the time unit

may be as brief as necessary in order to capture addi-

tional details of system operation, but this should be

done only at the expense of longer computer run times.

Scheduling problems can be solved all at once, as

done with the use of analytical methods, or they can be

solved sequentially, over time. In the latter case,

logical rules ("dispatching rules") are used to select

the next job for processing when a machine becomes

available. Most studies based upon the use of dis-

patching rules have employed simulation, rather than

analytical techniques.

Simulation studies provide greater insight into

manufacturing systems and offer the flexibility neces-

sary to allow the evaluation of different decision-

making alternatives. But this is accomplished at the

expense of additional modeling complexity since manu-

facturing simulations usually require tailoring to the

specific system and, for full scale simulation models,

they are expensive and time consuming to build and run.

Therefore, a simulation should be performed only when

the solution of a problem is more difficult to obtain

by use of a conventional analytical method. Simulation

48

is not an exact method and its utility is apparent only

when all of the prerequisites, assumptions, con-

straints, and possible sources of errors are taken into

consideration. The most important advantage of simula-

tion lies in the almost unlimited variations of real

processes which can be investigated when process behav-

iors must be known. This can be done independently of

the process and without disturbing it and in most

cases, other alternatives may be investigated with lit-

tle additional effort.

However, the operator should bear in mind that

simulations are statistical in nature and results

should be treated with due care since they are subject

to misinterpretation. Since it is possible to output

the value of a parameter with a high degree of accu-

racy, the inexperienced user may obtain a false sense

of accuracy when interpreting the results. Problems

may also arise in cases where models are graphically

displayed. For example, a user may view the travel of

parts on an output screen, observing queue information,

the processing of parts at machine stations, and the

interaction of system components. However, assumptions

concerning travel time speed and processing time may

falsify the entire simulation run.

49

3.4.2 Decision Support Systems (DSS)

While several advanced FMSs have been installed

around the world, the capacity of these systems has

been underutilized. This has occurred because the ef-

ficient operation of an FMS can be very difficult for

even the most experienced shop floor supervisor. Due

to the complexity of FMS structures, the task of FMS

production control cannot rely singularly upon human

efforts. In view of the capital intensive nature of

the FMS, it is imperative that they be designed to op-

erate as efficiently as possible. Thus, for further

applications of an FMS, the concept of computer-based

decision support systems (DSS) has been suggested to

provide production managers with a basic planning and

operational framework (Chen & Talavage, 1982).

The DSS is a trol which helps the FMS operator

evaluate the consequences of various alternative ac-

tions, primarily at the level of day-to-day operations.

However, the role of the DSS can be more broadly con-

ceived, applying it to all organizational levels that

interact with the FMS and to the investigation of the

utility of the FMS for other operations in the organi-

zation. The DSS can assist with both short-term and

long-term decisions, offering not only an evaluative

function but also a generative function. Given its ca-

pacity as a powerful computational system, the DSS can

50

propose alternative actions, selecting the best option

for creation of a recommended course of action. In

summary, the DSS provides control capability for struc-

tured problems which are anticipated and occur repeat-

edly, as well as decision-making support processes for

unstructured problems which cannot be anticipated and

which arise only occasionally.

Suri and Whitney (1984) have analyzed a simplified

DSS, illustrating its basic DSS framework and showing

how a DSS can assist the decision-maker in controlling

production processes in an FMS machine shop. The con-

cepts and issues underlying the DDS were based on expe-

rience gained during the installation of FLEXPLAN, a

DSS installed with an FMS at Hughes Aircraft Company.

Chen and Talavage (1982) have presented the development

of the basic DSS logic structure required for an FMS

facility. Figure 3.4 shows the interactions between

the'operator and the DSS. The entire process may in-

voke the following steps:

1) The operator identifies the problem after re-

ceiving alert information;

2) The operator consults the relevant data on sys-

tem status information and establishes feasible

alternatives to solve the problem;

3) Through access to the models available in a

DSS, and his own experience, the operator eval-

uates the alternatives; and

51

PDSS

Alert Information

Decision Maker

Reference Data &
System Status

Identify Problem

Analytical Models

Establish
Feasible Alternatives

Feedback Data &
Information

Evaluate Alternatives

Implement
Selected Decision

Figure 3.4 Interaction process between
an operator and DSS.

52

4) Through the DSS control, the selected alterna-

tive is implemented on the system and feedback

information and data are generated and re-

ported.

Many of the ideas and algorithms included in a DSS

are not new and the question arises of why they have

not lead to a greater number of practical implementa-

tions. The answer would seem to be that in the past

data bases were not developed to the extent that they

could easily exercise control of manufacturing data.

Additionally, computational power was not available in

the manufacturing environment where it was needed. At

present, both of these restrictions have been mitiga-

ted: manufacturing data is being captured and organ-

ized and computational power, nearly unlimited in ex-

tent, is available many forms, including those adapt-

able to the shop floor. This is a significant change

of approach from earlier years. Since understanding

human decision processes has proven to be much more

difficult than originally believed, the goal is no

longer to replace human thought processes, but rather

to supplement them. With this constraint in view, it

is feasible to give practical consideration to comput-

erized solutions for large-scale manufacturing proces-

ses, based upon the pace of the current development of

hardware and software technology.

53

Although the subject of scheduling is not the ma-

jor focus of a DSS, the more widespread application of

DSS concepts will ultimately be of benefit in the

scheduling area. Since many scheduling problems are

the type of complex, unstructured decision-making situ-

ations which can be significantly aided by a DSS, it is

reasonable to hypothesize that improved DSS design and

increased DSS utilization in the future will certainly

include more scheduling applications.

3.4.3 Interactive Methods

The age of interactive man-computer problem solv-

ing systems commenced in 1960 with Licklider's, "Man-

Computer Symbiosis." It was hypothesized that a symbi-

otic relationship between humans and computers would

lead to greater problem solving capabilities than could

either humans or machines left to rely solely upon

their own resources.

Problem solving based upon an interactive system

has been widely used in several design areas, such as

electronic circuits and chemical processes. In the

area of scheduling, however, relatively little work has

been done. The progress that has taken place is out-

lined below.

Ferguson and Jones (1969) developed an interactive

scheduling system for a job shop of six machines. Sys-

tem interaction took place on a teletype or other

54

similar type of hard-copy terminal. By selecting the

appropriate values of a number of operating parameters,

the operator had the option of arriving at decisions on

his own or of having the computer provide an option.

An interactive job shop model developed by Hol-

loway and Nelson (1973) also used a hard-copy terminal

to permit the scheduler to monitor the progress of the

computer as it attempted to set schedules based upon

heuristic rules. If the computer had trouble finding a

useful solution, the scheduler was allowed to inter-

cede, pointing it in a new direction by altering the

system state and then return control to the scheduling

heuristics.

Godin and Jones (1969) developed an operational

interactive scheduling system for Western Electric in

North Andover, Massachusetts. A wire-winding shop su-

pervisor was provided with access to a current andcom-

plete shop data base, as well as deterministic simula-

tion capabilities with which to explore scheduling al-

ternatives. A dedicated IBM 360/50 computer was uti-

lized since there were no time-sharing facilities at

that time and for this reason the computer was not al-

ways available for use. Furthermore, utilizing the

system console as the interactive device proved awkward

and after running for less than a year, the system was

discontinued.

55

These systems are noteworthy only because of the

symbiotic nature of the man-machine relationship. The

machine raced through the large numbers of computations

implicit in the embedded scheduling heuristics, but

when it failed to find useful solutions, a human opera-

tor was at hand to provide assistance. However, these

systems were not successful in real-time implementa-

tions. System hardware was not that advanced and the

costs associated with a graphic and interactive system

were at the time prohibitive.

Hurrion (1978) investigated visually interactive

simulation models for job shop scheduling problems and

carried out experimentation on four different sizes of

problems. An example of his graphic display is shown

in Figure 3.5, followed by a summary of the results for

the four different problem sizes in Table 3.1. The re-

sults show that the visually interactive approach con-

stituted an improvement to the problems of job shop

scheduling, but as may seen in Figure 3.5, the graphic

capabilities of the system were still poor. Moreover,

the use of a keyboard for interactive functions was far

from an ideal solution to the problem.

Finally, in 1985 Jones and Maxwell developed an

interactive factory scheduling system using computer

graphics. The system, written in FORTRAN 77, was im-

plemented on a VAX 11-780 computer; graphical output

was provided by a color display; and a digitizing

56

JOB NUMBER 2 ON CUTTER

JOB 8 2 38
GRINDER

GRINDQ
JOB 6 2 4
JOB 7 9 31

JOB 10
JOB 9
JOB 5
JOB 2
CUTTERQ

CUTTER

5 10
7 9
4 6
7 16

JOB SHOP

TIME = 7

JOB 3 1 24
LATHE

LATHEQ

JOB 4 7 16
MILLQ

MILL
JOB 1 6 12

COMPLETE
STREAM NUMBER = 2
LOWER BOUND = 63

Figure 3.5 Interactive simulation model
(from Hurrion, 1978).

Table 3.1 Results of Hurrion's Model.

Problem No. of % above L.B. Improved
Jobs/Mach.Problem Batch Interact. %

10/4

20/4

20/6
25/10

10

10

10

10

18

3

14

9

3

0

4

4

15

3

10

5

57

tablet was used for input. Figure 3.6 shows the graph-

ic representation of the system and interactive menu

selection items. In this instance, the computer graph-

ics involved not only pictorial output, but a more

practical and highly interactive means of input. In

particular, the user interaction for the implementation

is provided through use of a digitizing tablet and on-

screen menus. The right hand side of the display in

Figure 3.6 displays menus for the model and current

schedule. The system was tested by over 200 students

at Cornell University, indicating that it could be used

to create reasonably complex models (e.g., 25 proces-

ses, 25 inventories, and 10 machines) and, within an

hour, an initial feasible schedule. However, this sys-

tem does not use optimization algorithms to generate

schedules and for implementation the operator must in-

put schedules by hand.

The use of man-computer interactive methods have

been principally employed in complex and large design

problems for engineering applications, where the finan-

cial costs may be more easily justified. However, the

continuing reduction in the cost and size of computers

and computer display terminals makes this type of ap-

proach feasible for the management of manufacturing job

shop scheduling. Using a visual display unit or a com-

puter graphics terminal enables the status of a model

to be displayed in the most convenient form for the

GRASS: SCHEDULE

WORKER

MILL

NUM

TIME
1 2 3 4 5 6 7 8 9 10

INVENTORY PROJECTIONS

WIDGET

MAT2

100%

0%

ADD

DELETE

MODIFY

INTERCHANGE

INSERT

COPY

QUERY

EVALUATE

DISPLAY

MACH 1 INVE

-4-- SCROLL -4-
ZOOM +

HARDCOPY

LIBRARY

MODEL

HELP EXIT

Figure 3.6 Interactive factory scheduling
system (from Jones & Maxwell, 1985).

58

59

operator. At present, however, the value of graphics

representation for the components of an interactive

scheduling system still remain to be empirically

tested.

60

4.0 EXPERT SYSTEM APPROACH

Management scientists and operations researchers

are faced with the challenge of developing and imple-

menting new methodologies to deal with the rapidly

emerging technology of automated manufacturing systems.

Even though considerable effort has been expended dur-

ing the past several decades to develop scheduling and

sequencing algorithms which will aid in process flow

through the manufacturing facility, available sched-

uling methodologies are not adequate for integrated

computer-aided manufacturing systems. Goldhar and Jel-

inek (1985) have pointed out that most of the tradi-

tional management science and operations research tech-

niques are irrelevant for the factory of the future.

Mathematical solutions tend to become intractable, and

the use of heuristics is fraught with problems. For

example, the selection of the appropriate heuristic is

not only a difficult decision, but it is also system

dependent.

The expert system has emerged as a new tool for

the design and operation of manufacturing systems. As

one of the aspects of artificial intelligence (AI), the

61

expert system has achieved considerable success in re-

cent years. Though most of the systems initially de-

veloped belonged to the medical diagnostic realm, e.g.,

MYCIN (Shortliffe, 1976), PUFF (Kunz, 1978), and IN-

TERNIST (Pople, 1977), interest has in recent years ex-

panded into other areas, including mineral explorations

(PROSPECTOR, Duda et al. 1978), computer configuration

(R1 or XCON, McDermott, 1980), and management decision-

making, planning and control (ISIS, Fox, 1983).

In the following sections, an overview of expert

systems and the process of building them is provided,

followed by an analysis of the benefits and problems of

applying an expert system to FMS scheduling and its de-

velopment procedure.

4.1 Overview of Expert Systems

An expert system is a computer program which con-

tains the expertise required to solve a specific,

domain-related problem. The expertise to solve a prob-

lem depends on the available knowledge. Hayes-Roth et

al. (1983) define knowledge as "public" and "private,"

which indicate, respectively, published literature or

individual expertise. The ability of an individual ex-

pert lies in the capacity to analyze problems both in

the exact and inexact realms. Expert systems try to

capture the essence of the expertise, both public and

62

private, related to a problem domain and use it for

problem solving and explanation.

4.1.1 Components of Expert System

The general architecture of an expert system, as

shown in Figure 4.1, typically includes four main com-

ponents:

1) The knowledge base: This is an information

data base which contains declarations of facts

and specifications and problem-solving logic,

and which may also contain various if-then

rules, heuristics, and decision guidelines.

The knowledge base is limited to a specific,

usually narrow, domain. There are different

techniques for knowledge representation, but

most expert systems apply programs that are

pattern invoked, e.g., patterns of known facts

which lead to solutions.

2) The inference engine specifies how the knowl-

edge must be applied in order to derive solu-

tions to given problems. Control strategies in

the inference engine vary from state-space

search techniques to problem reduction schemes.

3) An interface through which users can add to or

modify the system knowledge, specifying problem

details in order to obtain advice or informa-

tion.

63

(Justifier

CConsistency

enforcer

User interface

Inference
engine

Knowledge
base

Global
Data base

User

/ Input
data

Figure 4.1 General architecture of an
expert system.

64

4) Peripheral systems, such as (a) a consistency

enforcer, which adjusts previous conclusions

when new data or knowledge alters their basis

of support and maintains a consistent represen-

tation of the emerging solution, and (b) a jus-

tifier, which rationalizes and explains the

system's behavior.

A crucial issue is that these components are very

difficult to program with conventional programming lan-

guages. The reason is that for the problems of inter-

est to this study, the exact procedural solution steps

may not be known. For instance, different sets of log-

ic rules could be applied in different instances. As a

result, unlike conventional computer programs, the sol-

ution logic must be separate from the solution proce-

dure.

4.1.2 Constructing an Expert System

The expert system building phase is time-consuming

and not a trivial task. The construction of an expert

system takes place in the following five phases:

4.1.2.1 Problem Definition

The problem definition phase involves understand-

ing the problem, identifying problem characteristics,

outlining the objectives of the problem solving pro-

cesses, and clearly defining the methodologies required

to solve the problem. During this phase, the knowledge

65

engineer and the domain expert proceed toward identifi-

cation of the problem under consideration, involving an

informal exchange of views on various aspects of the

problem, its definition, characteristics, key elements,

and sub-problems. The objective is to characterize the

problem and its supporting knowledge structure so that

the development of the knowledge base may proceed.

4.1.2.2 Knowledge Acquisition

The prerequisite for an intelligent system is rel-

evant knowledge. To build the dictionary of knowledge,

the analyst constructing the expert system must acquire

knowledge and incorporate it into the system. Knowl-

edge about the problem domain is acquired either from

the study of published literature or from human experts

in the domain. The expertise to be elucidated is a

collection of specialized facts, procedures, and judge-

mental rules about the narrow domain area, rather than

general knowledge about the domain or common sense

knowledge about the world. This knowledge extraction

process is termed "knowledge acquisition." The trans-

fer and transformation of knowledge required to repre-

sent expertise for a program may be automated or par-

tially automated in some special cases. For the most

part a second person, called a knowledge engineer, is

required to communicate with the expert and the system.

66

4.1.2.3 Knowledge Representation

The acquired knowledge must be represented in a

computer implementational form. There is a standard

set of knowledge representation techniques, any of

which can be used alone or in conjunction with others

to build expert systems. Each technique provides the

program with certain benefits, such as improving effi-

ciency, making it more easily understood and easier to

modify. The most widely used techniques in current ex-

pert systems are logic, semantic nets, production sys-

tems, and frames.

First order predicate calculus is used as a logi-

cal representation scheme. The description of the real

world is given in term of logic clauses. For example,

the fact that all birds have wings can be represented

as

Vx Bird(x) HasWings(x) ,

which reads: for any object x in the world, if x is a

bird, then x has wings. Logic representations are

useful in providing formal proof procedures (Nilsson,

1971), information retrieval (Reiter, 1978), and seman-

tic constraint checking (Nicholas & Yazdanian, 1978).

They offer clarity, are well-defined and are easily un-

derstood. Each fact needs to be represented only once,

regardless of repeated usage. However, logic schemes

offer difficulty in procedural representation and if

67

the number of facts becomes too large, there is a com-

binatorial explosive situation in the possibilities of

which rules to apply to which facts at each step of

proof.

Semantic nets were developed by Quillian (1968) as

an explicit psychological model for human associative

memory. Semantic nets describe the world in terms of

nodes, representing objects, concepts, and events, with

links between nodes representing their interrelation-

ships. Consider, for example, the simple net:

BIRD

has_part

WI GS

where BIRD and WINGS are nodes representing objects and

has_part is the name of the link specifying their rela-

tionship. The statement, "all birds have wings" is

among the many possible interpretations of this net.

According to a semantic net representation, knowl-

edge is a collection of objects and associations repre-

sented as a labeled graph. Semantic nets are easily

understood, but they are difficult to implement. Since

there are no conventions about their meaning, the im-

plementation of net structures depends solely on the

program that manipulates them. Therefore, inferences

drawn by manipulation of the net are not assuredly

valid, in the sense that they are assured to be valid

in a logic-based representation scheme.

68

Production systems, developed by Newell and Simon

(1972) for their models of human cognition, are a modu-

lar knowledge representation that has become increas-

ingly popular in large AI programs. The basic concept

underlying these systems is that the database consists

of rules, called productions, in the form of condition-

action pairs: "IF the condition occurs THEN do this

action." The utility of the formalism comes from the

fact that the conditions in which each rule is applica-

ble are made explicit and the interaction between rules

is minimized. Production systems have been found use-

ful as mechanisms for controlling the interaction be-

tween statements of declarative and procedural knowl-

edge. Because they facilitate human understanding and

the modification of systems with large amounts of know-

ledge, production systems have been used in several

large expert system applications, such as DENDRAL,

MYCIN, and PROSPECTOR.

The most recently developed AI knowledge represen-

tation scheme is the frame. Since Minsky (1975) origi-

nally proposed its use, the notion of the frame has

played a key role in knowledge representation research.

Basically, a frame is a data structure that includes

declarative and procedural information in predefined

internal relationships. Several kinds of information,

such as how to use the frame, what can be expected to

happen next, and what to do if these expectations are

69

not confirmed, are attached to each frame as slots and

fillers. Consequently, the frame system is the most

difficult to implement because it contains a greater

degree of structural complexity than do other forms of

representation. It is necessary to determine what

kinds of frames the system needs, what kinds of slots

each frame will require, and how all the frames fit to-

gether in a hierarchical structure. An excellent sum-

mary of this technique can be found in the Handbook of

Artificial Intelligence (Barr, 1981).

4.1.2.4 Development of an Inference Engine

The main purpose of developing an expert system is

to generate alternate paths that lead to an inference.

In order to accomplish this task, the procedures built

into the system should act upon the knowledge base in

an efficient manner and derive conclusions. This pro-

cess, generation of alternate paths via a reasoning

mechanism through the knowledge base to derive conclu-

sions, is termed "Inference."

One of the most variable characteristics of expert

systems is the way that they search for solutions. The

choice of search method is affected by many different

domain characteristics, including the size of the solu-

tion space, errors in the data, and the availability of

abstractions. However, this method must be decided

upon when the system is designed. Inference is at the

heart of a reasoning system and failure to organize it

70

properly can result in problem-solvers that are hope-

lessly inefficient, naive, or unreliable. As a conse-

quence, search and/or inference mechanisms are among

the most critically studied topics in AI and expert

systems.

4.1.2.5 Implementation and Evaluation

The first step in implementation is to determine

which programming language can be used. Most expert

systems are based on LISP (Winston and Horn, 1984);

however, PROLOG (Clocksin and Mellish, 1981) is gaining

in popularity. LISP offers a high degree of flexibil-

ity for writing rules and the expert system builder can

specify his own framework of rules. PROLOG is based. on

Horn clauses of logic and rules need to be written ex-

plicitly in formal logic. PROLOG has a built-in back-

ward chaining mechanism, which makes it more conve-

nient. However, caution needs to be exercised while

using the backtracking mechanism in PROLOG. Further-

more, neither PROLOG nor LISP may be convenient for

handling mathematical computations.

Several expert system building tools are currently

available, including EMYCIN (van Meile et al., 1981),

KAS (Duda et al., 1979), EXPERT (Wiess & Kulikowski,

1979) and OPS-5 (Forgy, 1981).

One important consideration in the implementation

phase is that of user interface. Since the expert sys-

tem is expected to help the novice user, it should be

71

user-friendly. In addition, it should be conversa-

tional in its approach and so far as possible, visual

graphics should be used and explanations should be con-

cise, clear and follow the reasoning chain.

Finally, evaluation involves testing the perfor-

mance and utility of the prototype program and revising

it as necessary. The domain expert typically evaluates

the prototype and helps the knowledge engineer make re-

visions. As soon as the prototype runs accurately for

a few examples, it should be tested on a variety of

problems to evaluate its performance and utility. This

evaluation may uncover missing concepts and relations,

knowledge represented at the wrong level of detail, or

unwieldy control mechanisms. These problems may force

the developers to recycle through the various develop-

mental phases, reformulating concepts, refining the in-

ference rules, and revising the control flow.

The expert system must be refined and tested be-

fore it can be released for field testing. However,

when it is tested by the user on real problems, new

complications will arise which may take some time to

correct. Users in the field demand more than just

high-quality performance; they want a system to be

fast, reliable, easy to use, easy to understand, and

very forgiving when they make mistakes. Thus, the ex-

pert system needs extensive testing before it will be

ready for commercial use. More detailed explanations

72

of building an expert system may be found in Buchanan

and Shortliffe (1985) and Hayes-Roth et al. (1983).

4.1.3. Types of Expert Systems

Stefik et al. (1982) pointed out some domain char-

acteristics that affect expert system design: large

search spaces, a need for tentative reasoning, time

variations, and noisy data. These four characteristics

were elaborated in 11 case studies, along with addi-

tional guidelines for expert system construction. This

information constitutes helpful assistance for expert

system designers in the clarification of domain charac-

teristics and the development of conceptual system de-

signs. Ten generic tasks which can be handled by ex-

pert systems are summarized in Table 4.1.

Moreover, a number of studies describing expert

system applications in the manufacturing environment

can be found in Bernold (1985), Falster and Mazumder

(1984), Faught (1986), and Lu and Komanduri (1986). A

thorough survey of expert systems is provided by Nau

(1983).

4.2 Benefits and Problems in Building an Expert System

for FMS Scheduling

With the increasing popularity of AI and expert

systems, there have been many attempts to build expert

73

Table 4.1 Generic Tasks of Expert Systems (from Hayes-
Roth 1983)

Task Problem Addressed

Interpretation

Diagnosis

Monitoring

Prediction

Planning

Design

Debugging

Repair

Instruction

Control

Analysis of data to determine
their meaning

Fault-finding in a system based on
data interpretation

Continuous interpretation of signal
data in order to trigger an alarm
when action is necessary

Forecast of future events based on
past and present data

Creation of programs that can be
executed to attain given goals

Determination of specifications to
create objects that satisfy given
requirements

Prescribing remedies for malfunc-
tions

Executing a plan to administer a
prescribed remedy

Diagnosing, debugging, and repairing
student behavior

Interpreting, predicting, repairing,
and monitoring system behaviors

systems without considering whether an expert system

really helps the problem-solving process. In many

cases it may be possible to solve the problem by direct

analytical means and in such cases an expert system may

not be appropriate. An expert system is ideally suited

for situations (1) when problems in the domain cannot

74

be well-defined analytically; (2) when problems can be

formulated analytically, but the number of alternate

solutions is large, as in the case of combinatorial ex-

plosive problems; or (3) the domain knowledge is vast

and relevant knowledge needs to be used selectively.

If a problem fits into any of these categories, it will

be worthwhile to construct an expert system (Kumara,

1986).

The scheduling problem for manufacturing systems

is one of these problems. The problem of scheduling is

a combinatorial problem, belonging to the class of NP

complete, hard problems. In this study the reason for

using an expert system for FMS scheduling has been to

provide a computerized scheduler that has the same ex-

pert knowledge of qualitative measures that a human

scheduler possesses, thus reducing the number of avail-

able alternatives and simplifying selection of the best

schedule.

The potential advantages of using an expert system

for scheduling include:

1) the ability to produce feasible schedules

rapidly;

2) the ability to quickly accommodate changes

within a dynamic environment;

3) the ability to be intelligible to the operator

of the system;

75

4) the ability to be consistent in decision-making

to exercise control of an FMS; and

5) the ability to store expertise and use it as a

training tool.

Although the expert systems approach to FMS

scheduling appears promising, building an expert system

for manufacturing system scheduling is a time-consuming

and tedious process. Among the five phases of con-

structing an expert system described in section 4.1.2,

knowledge acquisition is the major bottleneck (Hart,

1985; Hayes-Roth et al., 1983) because of its difficult

and time-consuming nature. Hayes-Roth et al. described

four different methods of knowledge acquisition (see

Figure 4.2):

1) interviews with human experts;

2) an intelligent editing program;

3) an induction program; and

4) a text understanding program.

In the first method, a knowledge engineer inter-

views the expert and extracts the appropriate exper-

tise. In the second method, the knowledge engineer's

role is replaced by an intelligent editing program,

which has dialogue capabilities and knowledge of the

structure of the knowledge base. In this method, the

expert converses directly with the editing program in

order to structure his knowledge. In the third method,

the role of the expert is replaced by a computer pro

76

(1) Expert

(2) Expert

Knowledge engineer

Knowledge base

Intelligent editing program

Knowledge base

(3) Data , Induction program Knowledge base

(4) Textbooks Text understanding program
Knowledge base

(Source : F. Hayes Roth, et a1.,1983, Building Expert Systems, chapter 5)

Figure 4.2 Knowledge acquisition methods.

77

program capable of generalizing specific cases in order

to draw conclusions. Finally, a textbook understanding

program which has the capability of reading and under-

standing text could in the future be used as a method

of knowledge extraction.

Most of the current expert systems have been de-

veloped by interviewing human experts. However, expe-

rience has shown that it is often difficult to obtain

an expert's true opinion and that when the problem is

new, acceptable expert knowledge does not exist. Bell

(1985) has explained that an expert systems approach

can fail because proper knowledge cannot be acquired

for one or more of the following reasons:

1) An expert is not available, though expert

knowledge does exist;

2) The expert is unable to communicate his ideas;

3) The expert is unwilling to communicate his

ideas; or

4) There is no expert.

In building an expert system for the control of an

FMS, the problem of acquiring expert knowledge was en-

countered in the preparation of this study. Since the

FMS reflects relatively new technology, and since most

systems are custom designed for specific operations,

more often than not an expert human scheduler is un-

available. Furthermore, the complexity of the FMS lim-

its the effectiveness of human decision-making, i.e.,

78

human operators may often and unknowingly repeat mis-

takes. The complex and dynamic nature of the FMS envi-

ronment has made it difficult to develop human exper-

tise, which may prevent the FMS from achieving optimal

or near optimal performance on a consistent basis.

Therefore, no human expertise is available on how to

control an FMS and there is no one to consult and glean

rules from in the conventional sense of building an ex-

pert system.

Thus, other methods should be designed to obtain

the knowledge required for an FMS expert system. To

this end a detailed account of a knowledge acquisition

method fundamental to the development of an FMS

scheduling expert system is given in Kim et al.

(1988a). It is generally accepted that humans have

good pattern-recognition and inductive-logic capabili-

ties, usually superior to those possessed by a machine.

Therefore, a model which can effectively utilize the

human's unique information processing abilities can be

used for knowledge acquisition. For this purpose, an

interactive graphic simulation model has been devel-

oped. It is graphic-based because humans perform bet-

ter in pattern-recognition when graphic information is

used in place of text information. Moreover, the

graphics environment may be interactively matched to

the human's information processing speed. If the com-

puter processing is faster than human information

79

processing, then a human operator would obtain little

information from the computer model. Thus, the human

operator should be given control of the system. In the

following section, this method of building an expert

system is described in greater detail.

4.3 Development Procedure for an FMS Scheduling Expert

System

While human operators are unable to handle the in-

formation load required for FMS scheduling problems,

computer systems offer unique capabilities for con-

fronting this challenge. The problem of remembering

previous circumstances upon which further decisions

must be based is an ideal application for knowledge

based expert systems. The challenge is to develop a

computer-based FMS control system, responsible both for

controlling the flow of jobs through the FMS and for

formulating decisions based on the results of simula-

tion experiments.

A new method for developing an expert system for

FMS scheduling is described in this section (Kim et al.

1988b). There are five components in the method:

1) A graphic simulation model of an FMS;

2) A Gantt chart-based schedule;

3) Simulator;

4) An expert system; and

80

5) An operator.

The method requires considerable interaction with a hu-

man operator; a graphic representation, illustrating

the interaction process between the system and the op-

erator, is shown in Figure 4.3.

The entire procedure is as follows: Upon arrival

of a new job order or a rescheduling request from the

FMS system, the simulator generates an initial schedule

which considers the operator's objective and the cur-

rent system status. As the initial schedule is genera-

ted, expert systems are consulted to determine the

loading sequence for the new job order, to select a

dispatching rule which will be used in the simulation,

and to edit the initial schedule. The process of gen-

erating the schedule is shown in Figure 4.4. The pro-

cess involves the following steps:

1) The expert system/human operator determines a

loading sequence for the job order;

2) The expert system/human operator selects a dis-

patching rule;

3) The simulator runs a simulation of the model;

4) The simulator generates an initial schedule in

the form of a Gantt chart;

5) The expert system/human operator edits the

Gantt chart according to scheduling objectives;

and

81

New job order arrival
Current system status

Rescheduling request

Simulator

Expert System

Scheduling
objectives

FMS

Schedule
(Gantt chart)

Add rules

'Edit and change
the schedule

Operator
(Save the reason to change

as a rule form)

Figure 4.3 Expert system development procedure.

82

New job order
t (Loading rules)

Determine loading sequence

Select a dispatching rule

Perform initial simulation

Generate an initial schedule
in Gantt chart form

Edit Gantt chart -
Simulate the new schedule

to test its feasibility

(Dispatching rules)

Scheduler
(Human operator/

Expert system)

(Editing rules)

Figure 4.4 Knowledge acquisition procedure
in scheduling an FMS.

83

6) The human operator runs the simulation accord-

ing to the new schedule to test its feasibil-

ity.

The first step is the development of a good initi-

al loading plan, or determining the order in which jobs

are introduced into the system, and a dispatching rule,

deciding which job to start next at each machine. From

the loading plan, an initial schedule is derived

through simulation. The development of a good loading

plan and determination of a good dispatching rule are

important because the value of the final schedule is

dependent on their formulation in an initial schedule.

Then, the initial schedule is inspected by the opera-

tor, who is able to change the schedule to maximize its

objectives and to save reasons for the change as a new

production rule, i.e., in the form of an "IF condition

THEN action." The collected rules are subsequently

generalized and added to the knowledge base of the ex-

pert system. The process is repeated until the opera-

tor no longer needs to change the schedule. In Figure

4.4, it may be seen that three different kinds of know-

ledge are supplied to obtain a final schedule: (1)

knowledge for determining a loading sequence; (2) know-

ledge for selecting a dispatching rule; and (3) know-

ledge for changing a preliminary schedule.

The key element of this method is use of a Gantt

chart, which can be easily manipulated, for scheduling.

84

By selecting a black of operations in the Gantt chart

with a mouse pointing device, the operator can easily

change the schedule and analyze the effects of the

change. This interactive facility, based upon graphi-

cal representation of the simulation, allows the opera-

tor to view many aspects of the system. It not only

reflects the state of the system, but helps the human

operator determine the causes of problems.

This system is also used to acquire the rules to

build the expert system. A human operator controls the

model until enough rules are collected to form the

knowledge base of the expert system. Whenever the op-

erator selects the next job in determining the loading

sequence, the system asks the operator the reason for

his/her selection. This reason, with the current state

of determination of a loading sequence, is recorded in

a file. These records are inspected after simulation,

analyzed by the operator and added to the knowledge

base of the loading expert system. The editing rules

are collected similarly, i.e., the operator can record

the change in a file after editing and testing the

schedule. These facilities are always available so

that new rules can be developed as the need arises.

Separate decision aids are supplied for each type

of knowledge acquisition. A job matrix window is used

to help the scheduler determine the loading sequence.

Several dispatching rules are supplied for selection

85

and an editable Gantt chart is produced for schedule

arrangement. In the next chapter, a detailed descrip-

tion of the model is given, accompanied by some example

results.

86

5.0 IMPLEMENTATION AND OPERATING PROCEDURE

5.1 Implementation

The system was implemented in Smalltalk/V on an

IBM PC/AT. Smalltalk/V (1986) is a dialect of the

Smailtalk language, an object-oriented language devel-

oped at Xerox (Goldberg and Robson, 1983). Over the

past few years, the Smailtalk programming language has

attracted considerable interest in the AI programming

community since it has not only the flexibility of a

general-purpose programming language, but the power of

a simulation language for modeling physical objects and

their behaviors.

In fact, Smailtalk is much more than a programming

language. It is an entire environment, including edi-

tor, compiler, debugger, and many other tools to aid in

software development. Smalltalk's major strengths in-

clude: an excellent user interface, a powerful pro-

gramming development environment, graphics capabili-

ties, and a single, powerful conceptual metaphor--the

sending of messages to objects. The metaphor is power-

ful because it is both simple and general. In addi-

tion, Smailtalk uses a clean embodiment of abstraction

in its object concept, assisting programmers in writing

87

safer and more robust software which requires less de-

bugging. Smalltalk also has the powerful and useful

characteristic of using the principle of inheritance,

which allows many types of objects to share the same

methods and variables. Smalltalk's only serious weak-

ness is its demand for a fast processor and a great

deal of memory. However, due to the rapid development

of computer technology over the past five years, an ef-

ficient implementation of Smalltalk or another object-

oriented programming language on a microcomputer is now

available. For these reasons, Smalltalk has been suc-

cessfully used for simulation, expert systems, and in-

tegrated programming environments.

In the following two sections, the fundamentals of

the Smalltalk system, with descriptions of the func-

tions of objects and classes, and the system operating

procedure, accompanied by an example problem, are in-

troduced. A detailed description of the system and its

operating procedure is given in a Schedule Generator

Manual (Kim, 1988c) and a demonstration videotape is

available (Kim, 1988d).

5.2 Smalltalk and Protocol Description

In this section, the fundamental concepts of the

Smalltalk system, with a description of the functions

of objects and classes, is introduced.

88

5.2.1. Introduction to the Smalltalk System

In Smalltalk, system components are represented by

objects which interact through message transmissions.

The messages, in turn, cause the execution of the meth-

ods prescribed within each class. These objects and

messages are used to implement the entire programming

environment, i.e., programming in Smalltalk consists of

creating objects and classes, and specifying message

exchanges sequences among the objects. Table 5.1 pro-

vides definitions for the basic Smalltalk terms.

Table 5.1 Definition of basic Smalltalk terms.

Object Everything in Smalltalk is represented as an object, each
consisting of an amount of dedicated memory and a set of
operations.

Message A request for an object to carry out one of its operations.
The message does not specify how the function will be per-
formed and the receiver of the message determines how to
accomplish the requested function. A set of message repre-
sents interactions between system components.

Method Describes how an object performs one of its operations as
requested by a specific type of message.

Class Describes the implementation of a set of objects, all of
which represent the same kind of system component. It de-
scribes the form of the dedicated memory for each instance,
providing instructions on how to carry out operations.

Instance Object which is a member of a class.

The most important Smalltalk program design con-

sideration is the determination of the kinds of objects

to describe and message names which provide a useful

89

interaction vocabulary among these objects. The appro-

priate choice of objects is consequently dependent upon

the chosen purpose of each object and the granularity

of the information to be manipulated. However, there

is no definitive manner of choosing objects and, as

with any design process, this is an acquired skill.

Different choices provide different bases for extending

the use of an application's objects for other purposes.

5.2.2 System Protocol Description

Golberg and Robson (1983) present three ways of

describing the implementation of object and class func-

tions, including:

1) A "protocol description" lists the messages in

the instances' message interface. Each message

is accompanied by a comment describing the op-

erations an instance will perform when the spe-

cific message is received.

2) An "implementation description" shows how the

functionality described in the protocol de-

scription is implemented, giving the form of

each instances' private memory and the set of

methods that describe how each instance per-

forms its operations.

3) A system browser can be used to present classes

in a interactive view. The browser is a part

90

of the programming interface used in a running

Smalltalk system.

In this section, the protocol description format is

used to show the functions of objects and classes. The

implementation description can be accessed by a system

browser.in the "Schedule Generator" (Kim, 1988c).

The system includes a set of classes for each sys-

tem component. Figure 5.1 presents a diagram of the

classes used without the Smalltalk system classes.

Lines are drawn around groups of related classes;

groups are labeled to indicate the sections in which

the protocol description of each class can be found.

The Smalltalk system was also developed using the

same sequence. First, a simulation model was developed

through simulation of classes, including "Simulation

Object" and "Simulation". Then, graphical representa-

tions of the simulation model (class "Layout" and

"LoadingScreen") and a Gantt chart (class "GanttChart")

were added to the simulation model, while at the same

time the overall control class ("FMSExecutive") was de-

veloped. These four groups consisted of an interactive

graphic simulation system used as a knowledge acquisi-

tion tool. Finally, expert system classes were added

to the system.

5.2.2.1 Simulation Classes.

The objects used in computer simulations operate

more or less independently of one another. Therefore,

91

Object
4 FMSExecutive
3 Gantt Chart

5

2

1

GanttChartExpert
Inference Engine

Expert
Fact
Rule

--ayout
Loading Screen
Delayed Event
Resource
Resource Provider
Simulation

FMSSystem
Simulation Object

Event Monitor
PartA
PartB
PartC
PartD
PartE
PartF
PartG
PartH
Partl
PartJ

Static Resource

Figure 5.1 Schedule generator system classes.

92

it is necessary to consider the problem of coordinating

the activities of the various simulated objects, which

are typically coordinated through the mechanism of mes-

sage passing. This section describes the classes that

provide the basic protocol for "SimulationObject" and

"Simulation", which were initially implemented by Gold-

berg and Robson (1983) and modified for the "Schedule

Generator" (Kim, 1988c).

The class "SimulationObject" describes a general

type of object that might appear in a simulation, i.e.,

one with a set of tasks, such as entering, processing,

waiting at queue, or leaving the system. The class

message provides a framework for carrying out the task.

An instance of the class "Simulation" maintains the

simulated clock and the queue of events. The major

messages that simulation objects can use to describe

their tasks are provided in Table 5.2.

The purpose of the class "Simulation" is to manage

the topology of simulation objects and to arrange

scheduling to occur in accordance with simulated time.

Instances of the class "Simulation" maintain a refer-

ence to a "SimulationObject" collection for the current

simulated time and to a queue of events waiting to be

invoked. "Simulation" advances time by checking the

queue to determine when the next event is scheduled to

take place and by obtaining the instance variable for

93

Table 5.2 "SimulationObject" instance protocol.

initialize

startup

tasks

finishUp

holdFor: aTimeDelay

acquire: amount
ofResource: resourceName

release: aStaticResource

inquireFor: amount
ofResource: resourceName

resourceAvailable:
resourceName

acquireResource:
resourceName

resource: anEvent

stopSimulation

Initialize instance variables, if any.

Inform the simulation that the receiver is
entering, then initiate the receiver's tasks.

Define the sequence of activities that the
receiver must carry out.

The receiver's tasks are completed. Inform
the simulation.

Delay carrying out the receiver's next task
until "aTimeDelay" length of simulated time
has passed.

Ask the simulation to provide a resource re-
ferred to by the string "resourceName". If
one exists, ask it to give the receiver
"amount" of resource.

The receiver has been using the resource re-
ferred to by the argument, "aStaticResource".
It is no longer needed and can be recycled.

Answer whether or not the simulation has at
least a quantity, "amount", of resource re-
ferred to by "resourceName".

Answer whether or not the simulation has a
resource referred to by "resourceName".

Ask the simulation to provide a resource sim-
ulation object that is referred to by the
"resourceName".

The receiver has been servicing the resource
referred to by the argument, "anEvent". The
service is completed and the simulation ob-
ject can continue its tasks.

Tell the simulation in which the receiver is
running to stop. All scheduled events are
removed and nothing more can occur in the
simulation.

94

the time associated with that event. The major mes-

sages in the "Simulation" class are described in Table

5.3.

Table 5.3 "Simulation" instance protocol.

initialize

defineArrivalSchedule

defineResources

schedule: actionBlock at:
aTimeInteger

scheduleArrival0f:
aSimulationObjectClass

accordingTo:
aProbabilityDistribution

startingAt:

aTimeInteger

includesResourceFor:
resourceName

time

startUp

proceed

finishUp

enter: anObject

exit: anObject

Initialize the receiver's instance variables.

Schedule simulation objects to enter the sim-
ulation at specified time intervals, based on
typical probability distribution functions.

Specify the resources that are initially en-
tered into the simulation.

Schedule the sequence of actions in "action-
Block" to occur at a particular simulated
time, "aTimeInteger".

Schedule simulation objects that are in-
stances of "aSimulationObjectClass" to enter
the simulation at specified time intervals,
based on the probability, distribution,
"aProbabilityDistribution". The first such
instance should be scheduled to enter at
time, "aTimeInteger".

Answer if the receiver has a resource,
"resourceName".

Answer the receiver's current time.

Specify the initial simulation objects and
the arrival schedule of new objects.

This is a single event execution. The first
event in the queue, if any, is removed, time
is updated to the time of the event, and the
event is initiated.

Release references to any remaining simula-
tion objects.

The argument, "anObject", informs the re-
ceiver that it is entering.

The argument, "anObject", informs the re-
ceiver that it is exiting.

95

In implementing the scheduling mechanism, there

are several problems that must be solved in the design

of class "Simulation", i.e., how is an event stored

that must be delayed, how can the operator be certain

that all processes initiated at a particular time are

completed prior to updating the clock, and how can the

request to repeat a sequence of actions for simulation

objects by schedule be implemented?

To solve these problems, the class simulation

maintains a queue of all scheduled events and the ele-

ments of each event are sorted with respect to the sim-

ulated time in which they must be invoked. Each event

in the queue is handled by the class "DelayedEvent" and

processed by the classes for a Smalltalk multiple inde-

pendent processor.

The framework presented above for specification of

event-driven simulations does not include methods for

gathering simulation statistics while running. This is

accomplished by creating a subclass of "Simulation0b-

ject", the "EventMonitor". The class "Resource" and

its subclass "ResourceProvide" manage and maintain the

required simulation resources. When simulation objects

require resources, the requests are queued and ordered

with respect to priority. Each time a resource request

is made, "Resource" and "ResourceProvide" check to see

if one or more of the pending requests can be satis-

fied.

96

5.2.2.2 Graphic Layout Classes

There are two classes for representation of the

graphical interface. The class "Layout" displays the

FMS model layout in the main simulation window and the

class "LoadingScreen" displays the job-information ma-

trix window used in determining an initial loading se-

quence. The methods used in these classes are shown,

respectively, in Tables 5.4 and 5.5.

5.2.2.3 Gantt Chart Class

The Gantt chart is also a graphical representation

in the main simulation window. The instances of this

class display not only an object part as it runs

through the simulation, but also manipulate the result-

ing Gantt chart schedule generated by the simulation.

Table 5.6 shows the protocol description of the princi-

pal methods used in this class.

5.2.2.4 Overall System Control Class

The class "FMSExecutive" controls and directs all

system processes and operations, starting the simula-

tion, opening windows, specifying the menus to be used,

and performing the administrative functions necessary

to interface corresponding objects and classes. The

methods used in the class are listed in Table 5.7.

97

Table 5.4 "Layout" instance protocol.

initialize

display: aPoint

move: aPoint

erasePart

part

Initialize the instance variable and display
the physical layout in the main simulation
window.

Display the receiver part type on the layout.

Determine the next location of the receiver
part type and move to that location.

Answers the erase part form.

Answer the part form.

Table 5.5 "LoadingScreen" instance protocol.

initialize

setGrid: aMachine
with: aSequence

display: aTime
sequence: aSequence
machine: aMachine

displayDelete: aTime
sequence: aSequence
machine: aMachine

deleteJob

selectA

SelectJ

Initialize the instance variable and display
the job information in matrix form.

Find the location for "aMachine" with the

corresponding sequence, "aSequence", of the
operator of the receiver part type.

Display the updated processing time informa-
tion, "aTime", at the corresponding location,

"aMachine", and sequence, "aSequence", as
each part is selected in the initial loading
sequence.

Delete the last selected job information in
the loading screen window.

Delete the selected job in the loading se-
quence.

Select the corresponding part type for the
job. Order and add the corresponding part
type to the initial loading sequence.

98

Table 5.6 "GanttChart" instance protocol.

initialize

display: aMachine
at: aTime
with: aTimeDelay
for: aPartlD

move: aPoint

redisplay: aBox
withSeq: i

automatic

manual

precedenceCheck

Initialize the instance variables and draw
the basic frame of the Gantt chart.

Display an operational block of part,
"aPartlD ", in the location, "aMachine", at

time, "aTime", with the processing time
length set in "aTimeDelay".

Select the operational block to be moved by
checking the current location of the mouse
pointing device. Erase the selected block
and relocate it in the Gantt chart.

Following editing, recalculates the correct
location of the operational block and re-
places it at the operator's command to redraw
the Gantt chart.

Perform an automatic simulation according to
the updated Gantt chart schedule to test the
feasibility of the new schedule.

Perform a manual simulation according to the
updated Gantt chart schedule.

Checks the precedence constraint of the part.
Reports an error if a part violates its
precedence constraint.

99

Table 5.7 "FMSExecutive" instance protocol.

initialize

assignSelectedRule:
aDispatchingRule

cancelSelectedDispatchingRule

consultDispatchingElpert

consultLoadingExpert

ganttChartMenu

jobSelectionMenu

layoutMenu

ruleMenu

newLoadingSequence

openWindow

openJobMatrixWindow

quit

runTheSimulation

start

Initialize the instance variables and the
job information dictionary.

Assign the selected dispatching rule.

Cancel the selected dispatching rule.

Call the dispatching expert system.

Call the loading expert system.

Answer the Gantt chart menu for system
control.

Answer the job selection menu in the job
matrix information window for system con-
trol.

Answer the system layout for system con-
trol.

Answer the rule listing menu to select a
dispatching rule.

Determine a new loading sequence.

Open the main simulation window for the
FMS simulation.

Open the job information matrix window
for determining an initial loading se-
quence.

Stop the simulation.

Start the simulation.

Start the program by drawing the layout
and the Gantt chart in the main simula-
tion window.

5.2.2.5 Expert System Classes

The expert system application is implemented by

the classes "Expert", "Fact", and "Rule". For organi-

zational reasons, all three are subclasses of a new

class, "InferenceEngine". The methods used in these

classes are presented, respectively, in Tables 5.8,

100

5.9, 5.10, and 5.11. A brief description of these

classes is as follows.

Each instance of the class "Expert" is self-

contained with respect to the rules, which when com-

bined with the facts, represent the knowledge base of

the expert system. All instances of the class "Expert"

share one dictionary of "Facts". The result of this

arrangement is that different expert systems can ex-

change information through the same fact space.

A "Fact" is something known to be true by the ex-

pert system, either as a given fact or as an inferred

fact, consisting of a pattern and a verbal description

of the pattern. Each instance of the class "Expert"

contains a collection of rules for its knowledge base,

each of which is represented as an object of the class

"Rule". When a "Rule" is executed, its conditional

part is evaluated as a block of Smalltalk code normally

determined from the "Facts" dictionary. If the evalua-

tion answer is true, the action part of the rule is

evaluated as another block of code.

Additional methods are described in the class

"InferenceEngine", which was initially an abstract

class without a method. Subsequently, methods may be

added to this class to update system parameter values

which are changed as new jobs are selected in an ini-

tial loading sequence.

101

Table 5.8 "Expert" instance protocol.

initialize

addDispatchingRule

addLoadingRule

selectDispatchingRule

selectNextJob

explainDispatching

explainLoading

Initialize rules as an empty OrderedCollec-
tion.

Build rules known to the dispatching expert
system.

Build rules known to the loading expert sys-
tem.

Check the knowledge base of the expert system
and select the proper dispatching rule for
the arriving job order.

Considering the state of system parameters,
select the next loading job from the jobs
waiting in the job order.

Explain the reason for selecting the dis-
patching rule.

Explain the reason for selecting the next job
in the loading sequence.

Table 5.9 "Fact" instance protocol.

initialize

is: aPattern

add: anArray
description: aString
rationale: factCollection

It is an one-time initialization for the
"Fact" class.

Answer true if "aPattern" matches an exist-
ing fact; otherwise answer false.

Set the content of the receiver fact to
"anArray", the description to "aString", and
the rationale to "factCollection". Then en-
ter the receiver fact into the "Facts" dic-
tionary, answering false if it is already in
"Facts", otherwise answering true.

102

Table 5.10 "Rule" instance protocol.

action

fire

number: ruleNumber
condition: condBlock
action: actBlock
description: aString

Evaluate the action part of the receiver rule
and add the result as a fact.

Answer true if the condition part of the rule
is true and the action part is valid; other-
wise answer false.

Answer a new rule with its contents initial-
ized. The "ruleNumber" helps identify the
rule. When "condBlock" is executed and the
answer is true, "actBlock" will be fired to
create a new fac, which is described in
"aString".

Table 5.11 "InferenceEngine" instance protocol.

initialize

readInputData

selectAllRemainingJobs

selectJobByLastOperation

selectJobForIdleMachine

Initialize a loading sequence and all
the parameters in the system.

Read the new arriving job order and
calculate the values of the system
parameters, including total work load,
the number of jobs in the job order,
and the number of part types.

Select all the jobs left in the job
order.

Check the system parameters of the job
number finished at each machine, se-
lecting the next job according to its
last operation.

Check the system parameters of current
machine status, selecting the next job
which can be started at an idle ma-
chine.

selectJobWithTotalProcessingTime Select the next job with longest pro-
cessing time.

updateFacts: aCurrentJob Update the system parameters after the
job, "aCurrentJob", is selected.

103

5.3 Operating Procedure

The operating procedure for the system is de-

scribed in the following example problem. Figure 5.2

shows the initial display. The window consists of

three panes: the upper pane is the Gantt chart

schedule pane used to display an initial schedule and

allow the operator to change the schedule; the lower

left pane is the system layout pane, used to display

system status and part locations during simulation; and

the lower right pane is the event-information pane,

used to display simulation events and other information

about the system. The Gantt chart schedule pane and

the system layout pane are graphic panes and the event-

information pane is a text pane.

When the operator moves the cursor to the system

layout pane and clicks the mouse button, the system

layout menu is popped-up. The menu includes three com-

mands, "quit," "start," and "run Simulation," as shown

in Figure 5.2. The "quit" command stops the system and

returns to the Smailtalk environment. The "start" com-

mand initializes the system and asks the operator for a

new job order. The "run Simulation" command initiates

the simulation, after the operator determines the load-

ing sequence and the dispatching rule.

104

OMR inn a

nachl

ach2

mach3

ach4
1 2 2 4 $ 6 7 8 9 101 uit

machine 1 ma
run Simulation

-a

O
machine 3

--ta-0 S.
machine 4 --C:3--

1 7 1 8 1 9 2 9 21 22 23 24

4;Input.Vie.inetr:rarrimjitgejob
A2B2CDE2)1

Figure 5.2 Initial stage of FMS
simulation model

105

When the operator selects the "start" command from

the menu, a prompt window asking for a new arriving job

order is popped-up (Figure 5.2). The operator inputs

the new job order, in the example, (A 2 B 2 C D E 2),

meaning that the newly arriving job order contains two

of part A, two of part B, and one of part C and D, and

two of part E.

The job-matrix information window then appears on

the screen (Figure 5.3), also consisting of three

panes. The upper pane displays job processing informa-

tion, the lower left pane displays the newly arriving

job order, and the lower right pane displays the se-

lected jobs in sequence. This window provides a work-

ing ground for determining the loading sequence of the

new job order for the scheduler. As shown in Figure

5.3, job information is displayed in a matrix form.

For example, the operating sequence of part J is ma-

chining center #1 #3 #2 -4 #4 and the processing

time is 60, 90, 120, and 150 minutes, respectively.

The operator can select the next job by either an-

alyzing the main matrix, which shows the total workload

at each machining center, and comparing the job pro-

cessing information among the waiting jobs, or by con-

sulting the loading expert system. If the operator se-

lects the next job manually, the system asks the reason

why the job is selected. The reason, with current sys-

tem information, is stored in a file for later

106

MS Simulation

= .= Joli,HatrbcInformAtion:_for-Lp-dingl$040gnce, A 1,04Allil,

mc Part A Part B Part C Initialize

Main Matrix

1

2

3

4

9 . SelectA
SelectB
SelectC
SelectD

a 6am 9 6

6 9

12 U 6ma 3ama
9 9

6

6

12

Part E Part F Part G SelectE
SelectF

SelectG
SelectH
SelectI

Select)

1

2

3

4

9UU m 9um UNU 9
6

6 6U
12 9

6
6 12

Part I Part J
12Consult ES

Explain
1 12 6

2 6 12
9 6 6 12

Delete
3 9 Return
4 9 15

Ile arriving job :
'(A 2B2CDE2)1
waitingJobs =
($A $B $B $C $D $E $E)

loadingSequence :
($A)

<= LoadingRule 1 fired

Figure 5.3 Job-matrix information window.

107

analysis. Each time the operator selects the next job,

by either of these two methods, updated information on

the selected jobs in sequence and the total workload at

each machine in the main matrix are displayed. Figure

5.3 shows what the scheduler may see at one time while

determining the loading sequence. The commands in the

menu shown in Figure 5.3 are described in Table 5.12.

Table 5.12 Job-matrix information commands.

Initialize Initializes the procedure and shows the arriving job in
the lower left pane.

SelectA Selects the corresponding job, part A through part J,
one at a time, and updates the main matrix; if the op-.

erator uses these commands, the system asks the oper-
SelectJ ator the reason for the selection.

Consult ES Selects the next job by consulting the loading expert
system.

Explain Explains the reason why the last job was selected.

Delete Deletes the last selected job and updates the main mat-
rix.

Return Returns to the main window.

After determining the loading sequence, the opera-

tor returns to the main window (Figure 5.4). Before

the simulation can be run, the system asks the operator

for a dispatching rule to be used in the simulation. A

list of dispatching rules is shown in Table 5.13. As

in the previous step, the operator can select a dis-

patching rule or ask the dispatching expert system to

select one. In addition to the six dispatching rules,

there are two other commands in Figure 5.4: "ExSys"

108

FMS Simulation

machi

mach2

mach3

mach4

1 3 4-5 "6-7-8-9-1011 12 13 14 15 16 17 18 19 20 21 22 22 '24

machine 1

O

machine 3

FCFS
LCFS

machi spT

LPT

LUR
MUR

--(a-- Emma

machine 4

dingSequence =
$D $C $B $A $B $E $E)
Select a dispatching rule

Figure 5.4 Selecting a dispatching rule.

109

Table 5.13 Dispatching rules in Figure 5.3.

FCFS First Come First Served

LCFS Last Come First Served

SPT Shortest Processing Time job first

LPT Longest Processing Time job first

LWR Least Work Remaining job first

MWR Most Work Remaining job first

consults the dispatching expert system and selects the

one among the six rules which will usually minimize to-

tal processing time; "Explain" pops-up the explanation

window and shows the reason why the dispatching rule

was selected.

As the system runs the simulation, it shows the

position of each part in the system layout pane and

draws a Gantt chart in the Gantt chart schedule pane.

At the same time it also prints the time and simulation

event in the event-information pane. Figure 5.5 shows

the end of the simulation. In the example, the total

processing time was 620 minutes for the job order (A 2

B 2 C D E 2), with a loading sequence of (A D C B A B E

E) using the MWR dispatching rule. The results of sim-

ulation runs using other dispatching rules for two

other examples are shown in Table 5.14. Clearly,

110

PIS Simulation-

machl

mach2

mach3

mach4

ULU- taNSLt.11111

...HINIMP.1111111111MINSWOMMADVIII

-amiss UIKal. WSW
ag UMAIMMMUMMEMMMW

machine 1 machine 2

machine 3 machine 4

manualSimulation
automaticSimulation
editChart.;,-

redrawChart k

jobPrecedenceCheck
addEditingRule
consult EditingES
odateNewChart

CI528.88 sjobInformation
be

538.80 $E2 requests machinet
538.88 $E2 obtained machinel
538.08 $E2 releases queuel
538.88 $E2 will hold for 98.00
568.88 $C1 releases machine3
568.08 $C1 exits.
588.88 $D1 releases machinel
580.00 $D1 exits.
688.88 $A2 releases machine4
608.08 $A2 exits.
620.88 $E2 releases machinel
620.88 $E2 exits.
*** Simulation Finished ***
Total processing time = 628.11

Figure 5.5 End of simulation.

111

Table 5.14 Results of simulation.

Job Order
Loading (A 2B2CDE 2) (D 2 G 3 I 2 J 2)
Sequence (ADCBABE E) (DGIJDGIJ G)

FCFS

LCFS

SPT

LPT

LWR

MWR

780

650

750

780

780

620 4- min

1110

1310

1040 4- min

1210

1310

1110

selection of the best dispatching rule is dependent

upon job characteristics.

The purpose of determining the loading sequence

and selecting a better dispatching rule for a given job

order is to generate a good initial schedule for the

operator, since it will subsequently reduce the opera-

tor's effort when generating the final schedule. The

initial schedule is shown in the Gantt chart schedule

pane in Figure 5.5. Since this schedule was generated

through the simulation, we can be certain that it is a

feasible schedule. The Gantt chart schedule pane also

contains nine commands in the menu, as shown in Figure

5.5. The function of each command is described in

Table 5.15.

112

Table 5.15 Commands in Gantt chart pane.

manualSimulation

automaticSimulation

editChart

redrawChart

jobPrecedenceCheck

addEditingRule

consult EditingES

updateNewChart

jobInformation

This command simulates the system according to the
Gantt chart schedule as the scheduler moves the
cursor by hand along the time axis. In this way,
the operator can control the speed of the simula-
tion.

Instead of manually updating the clock, the system
automatically updates the clock and simulates the
system according to the schedule. The purpose of
simulation is to check the feasibility of new
schedules.

This allows the operator to change the schedule.
The scheduler can pick up a block of the schedule
and move it to another place, using the mouse.

Once a schedule has been changed, the operator
should redraw the Gantt chart to update its sched-
ule. As it redraws, it also checks the overlaps of
the blocks of jobs in the Gantt chart and locates
them in the correct place. In this way, the opera-
tor need not worry about moving the block to the
exact place; this command will do it for the opera-
tor.

The redrawChart command cannot check the job pre-
cedence constraint. This command checks all jobs
for their precedence constraints in the schedule.
If some job violates its precedence constraints,
the command reports it to the event-information
pane, e.g., "A3 - Job precedence constraint vio-
lated !!"

Once selected, this command asks the operator the
specific condition of the current state of the sys-
tem and action the operator performed, information
saved in a file, along with the general condition
of the system.

This command first opens another window for a new
schedule and consults the editng expert system to
update the existing schedule.

This command updates the edited schedule and re-
draws it on the main window.

This command pops-up a separate window for job in-
formation in the event-information pane. The
scheduler can access this information any time dur-
ing editing.

By observing the Gantt chart, the operator can de-

termine how to improve the initial schedule to minimize

113

total processing time. For example, since there are

gaps between D1 and El, and between El and E2 at ma-

chining center #1, the operator may check whether he

can reduce or eliminate the gaps. To reduce the gaps,

the operation of El and E2 at machining center #1

should be initiated earlier. This means that the pre-

vious operations of part E at machining -center #2

should be performed earlier. Since job B2 does not af-

fect total processing time whether it is processed ear-

lier or later, the operator can delay the processing of

part B and process other jobs ahead of it. This re-

sults in the final schedule shown in Figure 5.6.

While the operator edits the initial schedule,

changes can be recorded in a file by selecting the

"addEditingRule" menu. Then, the system asks the oper-

ator for the condition of the system and the action to

be performed. The system stores these comments in a

file with the current state of the system.

Instead of manual editing, the operator can con-

sult the editing expert system by selecting "consult

EditingES" (see Figure 5.5). Then, another window is

opened for a new schedule and the operator can compare

the new schedule with the old one as the editing expert

system edits the Gantt chart schedule, as shown in Fig-

ure 5.7.

The simulation results show that the total pro-

cessing time is 590 minutes, which is 30 minutes less

114

FMS Simulation

machl

mach2

mach3

mach4

DI1IIN-42.111R 1.0111111111M1111

-ommimmwsmumarammumaw

-MOM UR- Mit -Walt

i "2' 3 4 1r 6 -1-0-9-4111"12-13'14".15'16'1?-18'19 '20 22 22 24

568.08
idle Di idle B2

machine 1 machine 2 570.88

idle Di idle B2

570.00
idle Di idle B2

588.88
idle idle idle B2
588.00

idle idle idle B2

598.08
idle idle idle idle

590.00
idle idle idle idle

machine 3 machine 4

Figure 5.6 Final schedule.

115

MS Simulation

mach'

ma°112

Mach3

mac h4

r111--MINI KIWI UM *UM

...pi MIMI WO X =MEI *NM 11:1:MM1 lit

larliNi- Mr UM -KEW

i. 2 l'-'4-5-6-7-2-9 1011 "12 12' 14".15"1.6 -1?"18"19 "20"21."22' 22'24
New Schedule .- -,-: '''fl

ma c /11

ma ch2

"ac h3

"ach4

tallL-CaMIL la1311milE

pi UMPIIMI3 IIIMBI *NMI' f:PAMIII U.

-laiNIM UK DM WM
... 1:1=411M:11111/MERVIIIIIIIR:311.

Initialize
rearrangeGanttChart
removeFreeGaps'

exchangeOperat ions

returnToMain
cancel

.1 1 1: 1 2s 2 2 24

Redrawing the new Gantt chart moving forward all posiible operations.

0 --Ca

1:1"

3rd operation at ' rnachineTI

.

machine 3 machine 4

Figure 5.7 Consulting the editing expert system.

116

than the best result of using the MWR dispatching rule

shown in Table 5.14.

5.4 Rules

Expert system rules for determination of initial

loading sequence and for editing the Gantt chart were

developed by having several graduate students in the

Department of Industrial and Manufacturing Engineering

at Oregon State University conduct trials with the

"Schedule Generator" (Kim, 1988c).

The interactive graphic simulation model of the

"Schedule Generator" (Kim et al., 1988a), which facil-

itated the knowledge acquisition process, was given to

each subject, who in turn was asked to record actions

to be taken in determining the loading sequence. Each

time the subjects selected the next job among those

waiting in the job order (see Figure 5.3), the system

asked the subject to provide reasons for the selection.

The typed-in reasons and current system status were

saved in a text file for later analysis.

These comments were analyzed by the system devel-

oper, converting them into the form of production

rules. For instance, most of subjects agreed that the

job with the longest processing time should be selected

first since the scheduling objective was to minimize

total processing time and this method usually minimized

117

total processing time. This reason was converted to

the first loading rule, "selectJobWithTotalProcessing

Time", shown in Table 5.16. Once the first job was

selected, subjects usually selected the next job to

start its first operations at an idle machine. Reasons

provided by the subjects were converted to the second

loading rule, "selectJobForIdleMachine", shown in Table

5.16. Other rules were similarly developed and several

key attributes in the data base dictionary for the

loading expert system were considered. Their descrip-

tions are shown in Table 5.17.

After the loading expert system was built, rules

for selection of dispatching rules (see Table 5.18)

were collected by running the simulation for different

job orders based upon use of six different dispatching

rules. For this purpose, the system was operated in

automatic mode without the intervention of a human op-

erator. Table 5.19 shows a small part of the results

of this simulation, which were analyzed for consistency

with other existing rules, generalized in production

rule form, and added to the knowledge base of the dis-

patching expert system when found to be appropriate.

After the loading and dispatching expert systems

were built, subjects were asked to find reasonable

rules for adjusting and manipulating the Gantt chart

schedule. It has been alleged that human operators,

118

Table 5.16 Rules for determining the loading sequence.

LoadingRule
number: 1
condition: [#(objective minimizeTotalProcessing Time)

isFact & #(waitingJob notNil)isFact
& #(selectedJob nil) isFact]

action: [#selectJobWithTotalProcessingTime fireRule
description: 'select the first job in the job order"

LoadingRule
number: 2
condition: [#(objective minimizeTotalProcessing Time)

isFact & #(waitingJob notNil) isFact
& #(machineHasStartingJob

(status status status status)) isFact
action: [#selectJobForldleMachine fireRule
description: 'select the next job starting at the machine of

machineHasStartingJob = false"

LoadingRule
number: 3
condition: [#(objective minimizeTotalProcessingTime)

isFact & #(waitingJob notNil) isFact
& #(numberOfJobFinishedAtMachine

(number number number number)) isFact
action: [#selectJobByLastOperation fireRule]
description: 'select the next job which finishes its last

operation at the machine having the maximum value
of array numberOfJobFinishedAtMachine"

LoadingRule
number: 4
condition: [#(numberOfWaitingJobType 1) isFact
action: [#selectAllRemainingJob fireRule]
description: 'select all the remaining job in the job order

since they are all same type"

LoadingRule
number: 5
condition: [#(waitingJob Nil) isFact
action: [#returnToMainSystem fireRule]
description: 'all remaining jobs are selected"

LoadingRule
number: 6
condition: [#(waitingJob notNil) isFact

& #(ruleFired false) isFact]
action: [#askScheduler fireRule
description: 'ask the scheduler the next job since there is not

proper rule to select the next job"

119

Table 5.17 Key attributes in the data base dictionary
for the loading expert system.

totalWorkLoad

machinellasStartingJob

numberOfJobFinishedAtMachine

numberOfWaitingJobs

numberOfSelectedJobs

number0fPartA

numberOfPartJ

Array in which each element shows the
total work load at each machine.

Array in which each element shows a
machine status whether the machine has
starting job or not.

Array which shows how many jobs are
finished at each machine.

Shows the number of waiting jobs in the
job order.

Shows the number of selected jobs in
the loading sequence.

Shows how many part A are in the job
order.

Shows how many part J are in the job
order.

120

Table 5.18 Rules for selecting a dispatching rule.

DispatchingRule
number: 1
condition: [#(numberOfJob 2) isFact]
action: #selectMWR fireRule]
description: 'select the MWR rule"

DispatchingRule
number: 2
condition: [#(numberOfJob 3) isFact]

& #(numberOfPartBMoreThan 2) isFact]
action: [#selectLCFS fireRule]
description: 'if the job order includes more than two B and the

number of jobs is 3, then select the SPT rule"

DispatchingRule
number: 3
condition: [#(jobOrderInclude (A B D E)) isFact
action: #selectSPT]

description: 'if the number of jobs is 4 and the job order
includes (A B D E), then select the SPT rule"

DispatchingRule
number: 4
condition: [#(jobOderInclude (B C C E)) isFact
action: [#selectLCFS]
description: 'if the number of jobs is 4 and the job order

includes (B C C E, then select the LCFS rule"

DispatchingRule
number: 5
condition: [#(jobOrderInclude (C C E E)) isFact]
action: [#selectLCFS]
description: "if the number of jobs is 4 and the job order

includes (C C E E), then select the LCFS rule"

DispatchingRule
number: 6
condition: [#(numberOfJob 4) isFact

& #(numberOfPartBMoreThan 2) isFact 3
action: [#selectLCFS fireRule]
description: 'if the job order includes more than two B and the

number of jobs is 3, then select the SPT rule"

DispatchingRule
number: 7
condition: [#(jobOrderInclude (A B C C E)) isFact 3
action: [#selectLCFS fireRule]
description: 'if the job order includes (A B C C E) and the

number of jobs is 5, then select the LCFS rule"

DispatchingRule
number: 8
condition: [#jobOrderInclude (A B C D E)) isFact]
action: L #selectLCFS fireRule 3
description: 'if the jub order includes (A B C D E) and the

number of jobs is 5, then select the LCFS rule"

DispatcingRule
number: 94
condition: [#(ruleSelected false) isFact]
action: #selectMWR 3
description: 'if rule is not selected, then select the MWR rule

as a default rule"

(Other rules are similar to the above rules.)

121

Table 5.19 Partial results of the simulation.

Job
No. Job order Job sequence FCFS LCFS SPT LPT LWR MWR

147 (ABBCCCC) (A C B C C C B) 670.0 610.0 620.0 830.0 800.0 670.0
148 (ABBCCCD) (A D C B C C B) 660.0 590.0 630.0 750.0 750.0 620.0
149 (ABBCCCE) (A C B C C B E) 680.0 620.0 650.0 680.0 770.0 640.0
150 (ABBCCDD) (ADCBBDC) 580.0 560.0 560.0 570.0 660.0 560.0
151 (ABBCCDE) (A D C B B C E) 720.0 590.0 690.0 720.0 720.0 590.0
152 (A B B C C E E) (A C B B C E E) 740.0 580.0 700.0 740.0 740.0 610.0
153 (ABBCDDD) (A D C B D D B) 670.0 790.0 790.0 670.0 670.0 670.0
154 (ABBCDDE) (ADCBBDE) 630.0 590.0 590.0 630.0 630.0 580.0
155 (A B B C D E E) (A D C B B E E) 690.0 590.0 650.0 690.0 690.0 560.0
156 (A B B C E E E) (A C B B E E E) 710.0 580.0 680.0 710.0 710.0 610.0
157 (ABBDDDD) (A D B D D D B) 750.0 810.0 870.0 750.0 870.0 750.0
158 (ABBDDDE) (A D B D D B E) 660.0 720.0 780.0 660.0 660.0 660.0
159 (A B B D D E E) (A D B B D E E) 650.0 550.0 560.0 650.0 650.0 590.0
160 (A B B D E E E) (A D B B E E E) 680.0 580.0 620.0 650.0 650.0 620.0
161 (ABBEEEC) (ABBEEEE) 700.0 570.0 670.0 700.0 700.0 660.0

utilizing some form of Gantt chart, can employ various

heuristic adjusting procedures which give them an

advantage over machine competition (Conway et al.,

1967). Although the system made it possible for the

subjects to group orders and easily distribute them

over the available machines, while building schedules

that were better than the initial schedule generated

through the loading and dispatching expert systems,

considerable time was still required for analysis of

the Gantt chart schedules. Some of subjects suggested

that the process would have been facilitated if the

system had provided automatic functions or rules for

the adjustment of existing schedules at the operator's

request. Since the subjects usually checked whether

the last operation in the schedule could be initiated

122

earlier, or whether the gap before the last operation

could be reduced, in order to further minimize total

processing time, a function was programmed to determine

the gap and rearrange the Gantt chart ("rearrangeGantt

Chart" in Table 5.20). Once the schedule was changed,

new gaps developed. These were reduced or eliminated

without constraints by development of the "removeFree

Gaps" shown in Table 5.20.

The subjects frequently tried to exchange the se-

quence of operations at specific machines to determine

whether or not this would reduce total processing time.

This function was added to the expert editing system

("exchangeOperations" in Table 5.20) as rules which are

fired at the operator's request. Even though it is

relatively easy for a human operator to determine a

pattern for firing a rule when using the Gantt chart

schedule, it is extremely difficult to explicitly state

the conditions for rule-firing.

Through further testing and experimentation some

very specific firing rules were developed, including

edit rules 4 and 5 in Table 5.20. These rules exchange

the particular operations at a machine if specific con-

ditions are met. Even though it is possible to gener-

alize the kind of specific rules listed in Table 5.20,

building explicit statements of reasonably general

rules for manipulation of the Gantt chart is still a

very difficult task. Additional experimentation and

123

Table 5.20 Rules for editing the Gantt chart.

EditRule
number: 1
condition: [#(objective minimizeTotalProcessing Time) isFact

& #(gapInSchedule true) isFact]
action: [#rearrangeGanttChart fireRule]
description: 'if the scheduling objective is to minimize the

total processing time and there is a gap in the
schedule, then check the gap whether it is
reducible or not"

EditRule
number: 2
condition: [#(gapReducible true) isFact]
action: [#removeFreeGaps fireRule]
description: 'if there is a reducible gap, reduce the gap and

rearrange the new Gantt chart"

EditRule
number: 3
condition: [#(gapReducible false) isFact

& #(switchableJob found) isFact 3
action: [#exchangeOperations fireRule
description: 'if there is no reducible gap, then ask operator

which two jobs will be exchanged and receiving an
input from operator, perform operator's direction"

EditRule
number: 4
condition: [#(objective minimizeTotalProcessingTime) isFact]

& #(numberOfJob 7) isFact
& #(hasSequenceInMachine (part A part B machine 2))
isFact

action: [#swtichOpeations fireRule]
description: 'if part A is processed before part B at machine 2,

switch the operation"

EditRule
number: 5
condition: [#(objective minimizeTotalProcessingTime) isFact]

& #(numberOfJob 7) isFact]
& ChasSequenceInMachine (part D part B machine 4)
isFact 3

action: [#switchOperations fireRule]
description: 'if part D is processed before part B at machine 4,

switch the operation"

(Other rules are similar to rules 4 and 5 and additional rules will be
generated through experimentation.)

study will be required to help operators articulate the

condition state and generalize a group of specific

rules.

124

6.0 SUMMARY, CONCLUSIONS, AND

SCOPE FOR FUTURE RESEARCH

This paper presents an expert system for FMS

scheduling problems, as well as an interactive

graphics-based computer model for a knowledge acquisi-

tion method which effectively utilizes human pattern-

recognition abilities. Through testing and implementa-

tion of the model, it was found that a human scheduler

can obtain an optimum or near-optimum schedule in short

periods of time, while gaining valuable experience and

knowledge in scheduling problems. Furthermore, it was

determined that this model can be a useful training de-

vice for inexperienced schedulers and a decision-making

aid for expert schedulers.

Four different areas for future research have been

identified. First, the relaxation of assumptions im-

posed in this study can be considered, namely:

1) The use of other scheduling objectives, such as

minimizing the number of late jobs or minimiz-

ing average job tardiness, or the use of multi-

ple objectives;

2) Expansion of the scheduling time horizon;

125

3) Consideration of other system constraints, such

as the number of pallets, fixtures, tools, and

the material handling system;

4) Allow flexible job processing sequences; and

5) Allow batch processing and job splitting.

Dealing with different types of constraints will gener-

ate new knowledge and alternative sets of rules.

Second, the model developed for this study can be

expanded and be applied to the real-time control of an

FMS. Operations in an FMS are initiated one-by-one,

taking instructions from a planned schedule while

progress is continuously checked. The actual progress

data for operations are compared with the planned

schedule each time a new operation is begun and is com-

pleted. If the difference exceeds a specified limit,

or if certain abnormal events occur, such as a machine

breakdown, a signal is issued alerting the scheduler

and a new schedule is generated which considers current

system status.

Third, an automatic rule generation program should

be considered. At present, the rules are collected,

analyzed, and added to the knowledge base of an expert

system by the human operator. Developing a type of in-

duction program capable of inducing general principles

or rules from a set of specific examples, in order to

automate the manual rule-adding process, will consti-

tute a challenging research problem.

126

Finally, the approach implemented in this study

can be applied to other problem domains, such as pro-

cess planning, other production controls in addition to

scheduling, and to fault diagnosis problems.

127

BIBLIOGRAPHY

Ammons, J.C., 1985, "Scheduling Models for Aiding Real
Time Control," IEEE CH2253-3/85, pp185-189.

Baker, K.R., 1974, Introduction to Sequencing and
Scheduling, John Wiley, New York.

Ballakur, A. and Steudal, H., 1984, "Integration of Job
shop Control Systems: State-of-the-art Review,",
J. Mfg. Sys. Vol. 3, No. 1, pp71-79.

Barr, A. and Feigenbaum, E.A.(eds), 1981, The Handbook
of Artificial Intelligence, Vol. 1, William Kauf-
mann.

Bell, M.Z., 1985, "Why Expert Systems Fail," J. Opl.
Res. Soc., Vol. 36, No. 7, pp613-619.

Bernold, T., 1985, Artificial Intelligence in Manufac-
turing, North Holland.

Blackstone, J.H., Jr, Philips, D. T., and Hogg, G.L.,
1982, "A State-of-the-art Survey of Dispatching
Rules for Manufacturing Job shop Operations," Int.
J. Prod. Res., Vol. 20, No. 1, pp27-45.

Blessing, J.A., and Watford, B.A., 1987, "INFMSS: An
Intelligent FMS Scheduling System," IEE Conference
Proceedings on World Productivity Forum, pp476-
482.

Bowman, E. H., 1959, "The Schedule-Sequencing Problem,"
Operations Res. Vol. 7, pp621-624.

Bruno, G., Elia, A., and Laface, P., 1986, "A Rule-
Based System to Schedule Production," Computer,
Vol. 19, No. 7, July, pp32-39.

Bullers, W. I., Nof, S. Y., and Whinston, A. B., 1980,
"Artificial Intelligence in Manufacturing Planning
and Control," AIIE Trans., Dec., Vol. 12, No. 4,
pp351-363.

Buchanan, B. G. and Shortliffe, E. H., 1985, Rule-Based
Expert Systems, Addison-Wesley.

128

Buzacott, J. A., 1982, "Optimal Operating Rules for
Automated Manufacturing Systems," IEEE Trans.:
Automation and Control, Vol. AC-27, No. 1, pp80-
86.

Buzacott, J. A. and Shanthikumar, J.G., 1980, "Models
for Understanding Flexible Manufacturing Systems,"
AIIE Trans., Vol. 12, pp339-350.

Buzacott, J.A., and Yao, D. D., 1986, "Flexible Manu-
facturing Systems: A Review of Analytical Models,"
Management Science, Vol. 32, No. 7, July, pp890-
905.

Carter, C. F., Jr, 1971, "Trends in Machine Tool De-
velopment and Application," Proceeding of the Sec-
ond International Conference on Product Develop-
ment and Manufacturing Technology," University of
Strathclyde, pp125-141.

Chen, P. H. and Talavage, J., 1982, "Production Deci-
sion Support System for Computerized Manufacturing
Systems," J. Mfg. Sys., Vol. 1, No. 2, pp157-166.

Clocksin, W. F. and Mellish, C. S., 1981, Programming
in Prolog, Springer-Verlarg.

Conway, R. W., Maxwell, W. L., and Miller, L. W., 1967,
Theory of Scheduling, Addison-Wesley, Reading,
Massachusetts.

Cook, N. H., 1975, "Computer-Managed Parts Manufactur-
ing," Scientific American, Feb., pp21-29.

Darrow, W. P., 1986, "A Survey of Flexible Manufactur-
ing Systems Implementations," US Department of
Commerce, National Bureau of Standards (NBSIR86-
3413).

Day, J. E. and Hottenstein, M. P., 1970, "Review of Se-
quencing Research," Naval Research Logistics Quar-
terly, Vol. 17, pp11-40.

Denzler, D. R. Boe, W. J., 1987, "Experimental Investi-
gation of Flexible Manufacturing System Scheduling
Decision Rules," Int. J. Prod. Res., Vol. 25, No.
7, pp979-994.

Duda, R. 0., Gashing, J. G., Hart, P. E., Konolige, K.,
Reboh, R., Barret, P., and Slocum, J., 1978,
"Development of the PROSPECTOR Consultation System

129

for Mineral Exploration," Final Report, SRI pro-
ject 5821 and 6415, SRI International Inc., Melno
Park, CA, USA.

Dupont-Gatelmand, C., 1982, "A Survey of Flexible Manu-
facturing Systems," J. Mfg. Sys., Vol. 1, No. 1,
ppl-16.

ElMaraghy, H. A., 1982, "Simulation and Graphical Ani-
mation of Advanced Manufacturing Systems," J. Mfg.
Sys., Vol. 1, No. 1, pp53-63.

Falster, P. and Mazumder, R. B., 1984, Modelling Pro-
duction Management Systems, NorthHolland.

Faught, W. S., 1986, "Application of AI in Engineer-
ing," Computer, Vol. 19, No. 7, July, pp17-31.

Ferguson, R. L. and Jones, C. H., 1969, "A Computer
Aided Decision System," Management Science, Vol.
15, No. 10, June, pp550 -561.

Fikes, R. and Kehler, T., 1985, "The Role of Frame-
based Representation in Reasoning," CACM, Vol. 28,
No. 9, Sep., pp904-920.

Forgy, C. L., 1981, "The OPS5 User's Manual," Technical
Report CMU-CS-81-135, Computer Science Department,
Carnegie Mellon University, Pittsburgh, PA, USA.

Fox, M. s., 1983, "Constraint-Directed Search: A Case
Study of Job-Shop Scheduling," CMU-RI-TR-83-
22/CMU-CS-83-161, Carnegie Mellon University, PhD
Thesis.

Fox, M. S. and Smith, S. F., 1984, "A Knowledge-based
System for Factory Scheduling," Expert Systems
Journal, Vol. 1, No. 1, July, pp25-40.

French, S., 1982, Sequencing and Scheduling: An Intro-
duction to the Mathematics of the Job-shop, John
Wiley & Sons.

Godin, V. B., 1978, "Interactive Scheduling: Historical
Survey and State of the art," AIIE Trans., Vol.
10, No. 3, Sep., pp331-337.

Godin, V. B. and Jones, C. H., 1969, "The Interactive
Shop Supervisor," Industrial Engineering, Vol. 1,
No. 11, Nov., pp16-22.

130

Goldhar, J. D. and Jelinek, M., 1985, "Computer Inte-
grated Flexible Manufacturing: Organizational,
Economic, and Strategic Implications," Interfaces,
Vol. 15, No. 3, May-June, pp94-105.

Goldberg, A. and Robson, D., 1983, Smalltalk-80: The
Language and Its Implementation, Addison-Wesley.

Graves, C. S., 1979, "A review of Production Schedul-
ing: Theory and Practice," Technical Report 169,
Operations Research Center, MIT.

Groover, M. P. and Zimmers, E. W., Jr., 1984, Computer
Aided Design and Manufacturing, Prentice Hall.

Hart, A., 1985, "The Role of Induction in Knowledge
Elicitation," Expert Systems Journal, Vol. 2, No.
1, Jan., pp24-28.

Hayes-Roth, F., Waterman, D. A., and Lenat, D. B.,
1983, Building Expert Systems, Addison-Wesley.

Hodgson, T. J. and McDonald, G. W., 1981, "Interactive
Scheduling of a Generalized Flowshop Part I: Suc-
cess through Evolutionary Development," Inter-
faces, Vol. 11, No. 2, pp

Holloway, C. A. and Nelson, R. T., 1973, "Alternative
Formulation of the Job-shop Problem with Due
Dates," Management Science, Vol. 20, No. 1, Sep.,
pp65-75.

Hurrion, R. D., 1978, "An Investigation of Visual In-
teractive Simulation Methods Using the Job-Shop
Scheduling Problem," J. Opl. Res. Soc., Vol. 29,
No. 11, pp1085-1093.

Hurrion, R. D., 1980, "Visual Interactive (Computer)
Solutions for the Travelling Salesman Problem," J.
Opl. Res. Soc, Vol. 31, No. 6, pp537-539.

Ito, Y., 1981, "Japanes FMS - present and a future
view," handout of seminar on FMS, R.O.C.

Jackson, J. R., 1957, "Networks of Waiting Lines," Ops.
Res., Vol. 5, pp518-522.

Jaikumar, R., 1984, "Flexible Manufacturing Systems: A
Managerial Perspective," working paper No. 1 -784-
078, Harvard Business School, USA.

131

Japanese Production Technology Investigation Society,
1981, Collection of Europe and American FMS, pp30-
41.

Jones, C. V. and Maxwell, W. L., 1986, "A System for
Manufacturing Scheduling with Interactive Computer
Graphics," IIE Trans. Sep., pp297-303.

Johnson, S. M., 1954, "Optimal Two and Three Stage Pro-
duction Schedules with Set-up Times Included,"
Naval Research Logistics Quarterly, Vol. 1, PP61-
65.

Johnson, L. A. and Montgomery, D. C., 1974, Operations
Research in Production, Scheduling, and Inventory
Control, John Wiley and Sons, New York.

Kim, J., Funk, K. H., and Fichter, E. F., 1988a,
"Towards an Expert System for FMS Scheduling: A
Knowledge Acquisition Environment," Second Inter-
national Conference on Expert System and Leading
Edge in Production Planning and Control, May 3-5,
Charleston, SC, USA.

Kim, J., Fichter, E. F., and Funk, K. H., 1988b,
"Building an Expert System for FMS Scheduling,"
ASME conference, U.S.A.-Japan Symposium on Flexi-
ble Automation, July 18-20, Minneapolis, MN, USA.

Kim, J., 1988c, "Schedule Generator: Operator's Man-
ual," Department of Industrial and Manufacturing
Engineering, Oregon State University, Corvallis,
OR, USA.

Kim, J., 1988d, Videotape (demonstration) for "Schedule
Generator: Operator's Manual," Department of In-
dustrial and Manufacturing Engineering, Oregon
State University, Corvallis, OR, USA.

Kumara, S. R. T., Joshi, S., Kashyap, R. L., Moodie, C.
L., and Chang, T. C., 1986, "Expert Systems in In-
dustrial Engineering," Int. J. Prod. Res., Vol.
24, No. 5, pp1107-1125.

Kunz, J., 1978, "A Physiological Rule Based System for
Interpreting Pulmonary Function Test Results,"
Heuristic Programming Project, Report No. HPP-78-
19, Computer Science Department, Stanford Univer-
sity.

132

Kusiak, A., 1985, "Loading Models in Flexible Manufac-
turing Systems," in Raouf, A. and Ahmad, S. I.
(eds), Flexible Manufacturing: Recent Developments
in FMS, Robotics, CAD/CAM, CIM, pp119-132.

Lenstra, J. K. and Rinnooykan, A. H. G., 1978, "Com-
plexity of Scheduling under Precedence Con-
straints," Operations Research, Vol. 26, No. 1,
Jan-Feb. pp22-35.

Licklider, J. C. R., 1960, "Man-Computer Symbiosis,"
IRE Trans, on Human Factors in Electronics, HFE-I,
Vol. 1, March, pp4-11

Lu, S. C-Y. and Komanduri, R. (eds), 1986, Knowledge-
Based Expert Systems for Manufacturing, The Ameri-
can Society of Mechanical Engineers.

Manne, A. S., 1960, "On the Job-Shop Scheduling Prob-
lem," Operations Research, Vol. 7, pp219-223.

McDermott, J., 1980, "Rl: A Rule Based Configurer of
Computer Systems," Technical Report CMU-CS-80-119,
Carnegie-Mellon University.

Minsky, M. 1975, "A Framework for Representing Knowl-
edge," in Winston, P. (ed), The Psychology of Com-
puter Vision, McGraw-Hill, New York.

Nau, D. S., 1983, "Expert Computer Systems," IEEE Com-
puter, Feb., pp63-73.

Newell, A. and Simon, H. A., 1972, Human Problem Solv-
ing, Prentice-Hall, Englewood Cliffs, NJ

Nicholas, J. M. and Yazdanian, K., 1978, "Integrity
Checking in Deductive Databases," in Gallaire, H.
and Minker, J. (eds), Logic and Databases, Plenum
press, New York.

Nilsson, N., 1971, Problem Solving Methods in Artifi-
cial Intelligence, McGraw Hill, New York.

Panwalker, S.S., and Iskander, W., 1977, "A Survey of
Scheduling Rules," Operations Research, Vol. 25,
No. 1, January-February, pp45-61.

Pople, H., 1977, "The Formation of Composite Hypotheses
in Diagnostic Prolem SOlving - An Exercise in Syn-
thetic Reasoning," Proceeding of IJCAI-5, Vol. 5,
pp1030-1037.

133

Quillian, R., 1968, "Semantic Memory," in Minsky, M.
(ed), Semantic Information Processing, MIT press,
Cambridge.

Rachamadugu, R. and Stecke, K. E., 1986, "Classifi-
cation and Review of FMS Scheduling Procedures,"
working paper, The University of Michigan, Gradu-
ate School of Business Administration, Ann Arbor,
Michigan.

Ranky,P., 1983, The design and Operation of FMS,
North-Holland

Reiter, R., 1978, "Deductive Question-Answering on Re-
lational Database," in Gallaire, H. and Minker, J.
(eds), Logic and Databases, Plenum pressm New
York.

Rinnooykan, A.H.G., 1976, Machine Scheduling Problems:
Classification, Complexity and Computations,
Nijhoff, The Hague, Holland.

Shannon, R. E. and Phillips, D. T., 1983, "Comparison
of Modelling Language for Simulation of Automated
Manufacturing Systems," Autofact 5 conference pro-
ceedings, Society of Manufacturing Engineers.

Shanker, K. and Tzen, Y. J., 1985, "A Loading and Dis-
patching in a Random Flexible Manufacturing Sys-
tem," Int. J. Prod. Res., Vol. 23, No. 3, pp579-
595

Shortliffe, E. H., 1976, Computer Based Medical Consul-
tation: MYCIN, American Elsevier, New York.

Smith, M. L.,Ramesh, R., Dudek, R. A., and Blair, E.
L., 1986, "Characteristics of US Flexible Manufac-
turing Systems - A Survey," in Stecke, K. E. and
Suri, R. (eds), proceedings of the second
ORSA/TIMS conferences on FMSs: Operations Research
Models and Applications, Elsevier Science, Amster-
dam, The Netherland, pp478-486.

Smalltalk/V: Tutorial and Programming Handbook, 1986,
Digitalk Inc.

Solberg, J. J., 1977 "A Mathematical Models of Comput-
erized Manufacturing Systems," proceedings, 4th
international conference on Production Research,
Tokyo, Japan.

134

Stecke, K. E. and Solberg, J. J., 1981, "Loading and
Control Policies for an FMS"," Int. J. Prod. Res.,
Vol. 19, No. 5, Sep-Oct., pp481-490.

Stecke, K. E., 1983, "Formulation and Solution of Non-
linear Integer Production Planning Problems for
FMS," Management Science, Vol. 29, No. 3, March,
pp273-288.

Stefik, M., Aikius, J., and Balzer, R., 1982, "The
Organization of Expert Systems, A Tutorial," AI,
Vol. 18., pp135-173.

Steudel, H. J., 1986, "SIMSHOP: A Job Shop/Cellular
Manufacturing Simulator," J. Mfg. Sys., Vol. 5,
No. 3, pp181-189.

Suri, R. and Whitney, C. K., 1984, "Decision Support
Requirements in Flexible Manufacturing," J. Mfg.
Sys., Vol. 3, No. 1, pp61-69.

van Meile, W., Shortliffe, E. H., and Buchanan, B. G.,
1981, "EMYCIN: A Domain Independent System that
Aids in Constructing Knowledge Based Consultation
Programs," Machine Intelligence, Infotech state of
the art report 9, No. 3, pp281-287.

Wagner, H., 1959, "An Integer-Programming Model for Ma-
chine Scheduling," Naval Research Logistic Quar-
tely, Vol. 6, pp131-139.

Waterman, D. A., 1986, A Guide to Expert Systems,
Addison-Wesley.

Wiess, S. M. and Kulikowski, C. A., 1979, "EXPERT: A
System for Developing Consultation Models," pro-
ceedings of IJCAI-6, pp942-947.

Winston, P.H., and Horn, B.K.S., 1984, LISP (2nd ed.),
Reading, MA: Addison-Wesley Publishing Co.

APPENDICES

Appendix A

MPOS Program Code

S
1 MPOS VERSION 4.0 NORTHWESTERN UNIVERSITY

88/02/04. 04.26.24. PAGE 1

MPOS

VERSION 4.0

MULTI-PURPOSE OPTIMIZATION SYSTEM

PROBLEM NUMBER 1

BBMIP
TITLE
...EXAMPLE JOB SHOP SCHEDULING PROBLEM...

INTEGER VARIABLES

INTEGER
YAB2 YAB4
YAC2 YAC3 YAC4
YAD1 YAD2 YAD3 YAD4
YBA2 YBA4 YBC2 YBC4 YBD2 YBD4
YCA2 YCA3 YCA4 YCB2 YCB4 YCD2 YCD3 YCD4
YDA1 YDA2 YDA3 YDA4 YDB2 YDB4
YDC2 YDC3 YDC4

VARIABLES

VARIABLES

TA1 TA2 TA3 TA4

TB1 TB2 TB3 TB4
TC1 TC2 TC3 TC4

TD1 TD2 TD3 TD4

FMAX

OBJECTIVE FUNCTION

135

136

MINIMIZE
FMAX

CONSTRAINTS

CONSTRAINTS

STARTING TIME OF LAST OPERATION + PROC. TIME > FMAX

1. -TA4 + FMAX .GE. 12
2. -TB4 + FMAX .GE. 6
3. -TC3 + FMAX .GE. 9
4. -TD2 + FMAX .GE. 6

NONINTERFERENCE CONSTRAINTS

I=A, J=B
5. 109YAB2 + TA2 - TB2 .GE. 9

6. 106YAB2 - TB2 + TA2 .LE. 100
7. 106YAB4 + TA4 - TB4 .GE. 6

8. 112YAB4 - TB4 + TA4 .LE. 100

I=A, J=C
9. 106YAC2 + TA2 - TC2 .GE. 6

10. 106YAC2 - TC2 + TA2 .LE. 100
11. 109YAC3 + TA3 - TC3 .0E. 9

12. 106YAC3 - TC3 + TA3 .LE. 100
13. 103YAC4 + TA4 - TC4 .GE. 3

14. 112YAC4 - TC4 + TA4 .LE. 100

I=A, J=D
15. 106YAD1 + TA1 - TD1 .GE. 6

16. 109YAD1 - TD1 + TA1 .LE. 100
17. 106YAD2 + TA2 - TD2 .GE. 6

18. 106YAD2 - TD2 + TA2 .LE. 100
19. 112YAD3 + TA3 - TD3 .GE. 12

20. 106YAD3 - TD3 + TA3 .LE. 100
21. 109YAD4 + TA4 - TD4 .GE. 9

22. 112YAD4 - TD4 + TA4 .LE. 100
I=B, J=A

23. 106YBA2 + TB2 - TA2 .GE. 6

24. 109YBA2 - TA2 + TB2 .LE. 100
25. 112YBA4 + TB4 - TA4 .GE. 12

26. 106YBA4 - TA4 + TB4 .LE. 100

I=B, J=C
27. 106YBC2 + TB2 - TC2 .GE. 6

28. 109YBC2 - TC2 + TB2 .LE. 100
29. 103YBC4 + TB4 - TC4 .GE. 3

30. 106YBC4 - TC4 + TB4 .LE. 100

I=B, J=D
31. 106YBD2 + TB2 - TD2 .GE. 6

32. 109YBD2 - TD2 + TB2 .LE. 100
33. 109YBD4 + TB4 - TD4 .GE. 9

34. 106YBD4 - TD4 + TB4 .LE. 100

137

35.

36.

I=C, J=A
106YCA2 + TC2 - TA2
106YCA2 - TA2 + TC2

.GE.

.LE.

6

100
37. 106YCA3 + TC3 - TA3 .GE. 6

38. 109YCA3 - TA3 + TC3 .LE. 100
39. 112YCA4 + TC4 - TA4 .GE. 12

40. 103YCA4 - TA4 + TC4 .LE. 100

I=C, J=B
41. 109YCB2 + TC2 - TB2 .GE. 9

42. 106YCB2 - TB2 + TC2 .LE. 100

43. 106YCB4 + TC4 - TB4 .GE. 6

44. 103YCB4 - TB4 + TC4 .LE. 100

I=C, J=D
45. 106YCD2 + TC2 - TD2 .GE. 6

46. 106YCD2 - TD2 + TC2 .LE. 100

47. 112YCD3 + TC3 - TD3 .GE. 12

48. 109YCD3 - TD3 + TC3 .LE. 100

49. 109YCD4 + TC4 - TD4 .GE. 9

50. 103YCD4 - TD4 + TC4 .LE. 100

I=D, J=A
51. 109YDA1 + TD1 - TA1 .GE. 9

52. 106YDA1 - TA1 + TD1 .LE. 100

53. 106YDA2 + TD2 - TA2 .GE. 6

54. 106YDA2 - TA2 + TD2 .LE. 100
55. 106YDA3 + TD3 - TA3 .GE. 6

56. 112YDA3 - TA3 + TD3 .LE. 100

57. 112YDA4 + TD4 - TA4 .GE. 12

58. 109YDA4 - TA4 + TD4 .LE. 100
I=D, J=B

59. 109YDB2 + TD2 -TB2 .0E. 9
60. 106YDB2 - TB2 + TD2 .LE. 100

61. 106YDB4 + TD4 - TB4 .GE. 6

62. 109YDB4 - TB4 + TD4 .LE. 100

I=D, J=C
63. 106YDC2 + TD2 - TC2 .GE. 6

64. 106YDC2 - TC2 + TD2 .LE. 100

65. 109YDC3 + TD3 - TC3 .GE. 9

66. 112YDC3 - TC3 + TD3 .LE. 100
67. 103YDC4 + TD4 - TC4 .GE. 3

68. 109YDC4 - TC4 + TD4 .LE. 100

PRECEDENCE CONSTRAINTS

69. -TA1 + TA2 .GE. 9
70. -TA2 + TA3 .GE. 6
71. -TA3 + TA4 .GE. 6
72. -TB2 + TB4 .GE. 9
73. -TC4 + TC2 .GE. 3
74. -TC2 + TC3 .GE. 6
75. -TD3 + TD4 .GE. 12
76. -TD4 + TD1 .GE. 9
77. -TD1 + TD2 .GE. 6

138

BOUNDS
YAB2,YAB4,YAC2,YAC3,YAC4,YAD1,YAD2,YAD3,YAD4 .LE. 1
YBA2,YBA4,YBC2,YBC4,YBD2,YBD4 .LE. 1
YCA2,YCA3,YCA4,YCB2,YCB4,YCD2,YCD3,YCD4 .LE. 1
YDA1,YDA2,YDA3,YDA4,YDB2,YDB4,YDC2,YDC3,YDC4 .LE. 1
PRINT
OPTIMIZE

139

Appendix B

Results of MPOS

1 MPOS VERSION 4.0 NORTHWESTERN UNIVERSITY
88/02/04. 04.26.24. PAGE

PROBLEM NUMBER 1

USING BBMIP
...EXAMPLE JOB SHOP SCHEDULING PROBLEM...

--- NEW INTEGER-FEASIBLE SOLUTION ---

46

VARIABLE
TAG NAME

SUMMARY OF RESULTS

OBJECTIVE FUNCTION =

BASIS/ INTEL/
BOUNDS CONTIN

AT ITERATION 194

36.0000000000

ACTIVITY OPPORTUNITY
LEVEL COST

2 YAB4 IF 0.0000000 0.0000000
3 YAC2 IF 1.0000000 0.0000000
5 YAC4 IF 0.0000000 0.0000000
8 YAD3 IF 0.0000000 0.0000000

13 YBC4 IF 0.0000000 0.0000000
19 YCB2 IF 0.0000000 0.0000000
22 YCD3 IF 0.0000000 0.0000000
24 YDA1 IF 0.0000000 0.0000000
25 YDA2 IF 0.0000000 0.0000000
28 YDB2 IF 0.0000000 0.0000000
30 YDC2 IF 0.0000000 0.0000000
32 YDC4 IF 0.0000000 0.0000000
31 YDC3 IF 1.0000000 0.0000000
17 YCA3 IF 0.0000000 0.0000000
26 YDA3 IF 1.0000000 0.0000000
29 YDB4 IF 0.0000000 106.0000000
14 YBD2 IF 1.0000000 0.0000000
15 YBD4 IF 1.0000000 0.0000000
12 YBC2 IF 1.0000000 0.0000000
1 YAB2 IF 0.0000000 0.0000000
7 YAD2 IF 1.0000000 0.0000000

140

4 YAC3 IF I 1.0000000 0.0000000
6 YAD1 IF I 1.0000000 0.0000000
9 YAD4 IF I 0.0000000 109.0000000

10 YBA2 IF I 1.0000000 0.0000000
11 YBA4 IF I 1.0000000 0.0000000
16 YCA2 IF I 0.0000000 0.0000000
18 YCA4 IF I 1.0000000 0.0000000
20 YCB4 IF I 1.0000000 0.0000000
21 YCD2 IF I 1.0000000 0.0000000
23 YCD4 IF I 1.0000000 0.0000000
27 YDA4 IF I 1.0000000 0.0000000
49 FMAX B C 36.0000000 -
-2 -SLACK B C 21.0000000 --

-65 -SLACK B C 73.0000000 --
36 TA4 B C 24.0000000 --
-5 -SLACK B C 3.0000000 --
-6 -SLACK B C 88.0000000 --
-7 -SLACK B C 9.0000000 --
-8 -SLACK B C 85.0000000 --
-9 -SLACK B C 94.0000000 --
-73 -SLACK B C 15.0000000 --
-11 -SLACK B C 91.0000000 --
-12 -SLACK B C 3.0000000 --
-13 -SLACK B C 21.0000000 --
-14 -SLACK B C 76.0000000 -
-15 -SLACK B C 76.0000000 --
-16 -SLACK B C 15.0000000 -
-17 -SLACK B C 82.0000000 --
-18 -SLACK B C 12.0000000 --
-19 -SLACK B C 6.0000000 -
-20 --SLACK B C 82.0000000 -
-22 -SLACK B C 91.0000000 -
-23 -SLACK B C 88.0000000 --
-24 -SLACK B C 3.0000000 -
-25 --SLACK B C 85.0000000 -
-26 -SLACK B C 9.0000000 --
-69 -SLACK B C 3.0000000 --
-28 - SLACK B C 9.0000000 -
-29 -SLACK B C 6.0000000 -
-30 --SLACK B C 91.0000000 MIMS.

-31 -SLACK B C 70.0000000 --
-32 -SLACK B C 21.0000000 --
-33 -SLACK B C 94.0000000 --
-34 -SLACK B C 0.0000000 -
-36 -SLACK B C 94.0000000 --
-37 -SLACK B C 3.0000000 --
-38 -SLACK B C 91.0000000 --
-39 -SLACK B C 76.0000000 --
-40 -SLACK B C 21.0000000 --
-41 -SLACK B C 9.0000000 --
-42 -SLACK B C 82.0000000 --
-43 -SLACK B C 91.0000000 --
-44 -SLACK B C 6.0000000 --

141

-45 -SLACK B C 88.0000000 -
-46 -SLACK B C 6.0000000 --

-47 -SLACK B C 15.0000000 -
-48 -SLACK B C 73.0000000 -
-49 -SLACK B C 85.0000000 --

-50 -SLACK B C 12.0000000 -
-51 -SLACK B C 15.0000000 --

-52 -SLACK B C 76.0000000 -
-53 -SLACK B C 12.0000000 -
-54 -SLACK B C 82.0000000 -
-55 --SLACK B C 82.0000000 --

-56 -SLACK B C 6.0000000 --

-57 -SLACK B C 91.0000000 -
-58 -SLACK B C 0.0000000 -
-59 -SLACK B C 21.0000000 -
-60 --SLACK B C 70.0000000 -
-75 -SLACK B C 3.0000000 -
-62 -SLACK B C 94.0000000 -
-63 -SLACK B C 6.0000000 --

-64 -SLACK B C 88.0000000 --
-74 -SLACK B C 3.0000000 -
-66 -SLACK B C 15.0000000 -
-67 -SLACK B C 12.0000000 -
-68 -SLACK B C 85.0000000 -
34 TA2 B C 12.0000000 --
35 TA3 B C 18.0000000 -

-27 -SLACK B C 82.0000000 -
40 TB4 B C 9.0000000 -
42 TC2 B C 18.0000000 --
43 TC3 B C 27.0000000 -
48 TD4 B C 15.0000000 -
45 TD1 B C 24.0000000 -
46 TD2 B C 30.0000000 -
39 TB3 NB C -- 0.0000000
-1 -SLACK NB C -- 0.0000000

-3 -SLACK NB C -- 0.0000000
-72 -SLACK NB C -- 1.0000000

47 TD3 NB C -- 0.0000000

37 TB1 NB C -- 0.0000000

-61 -SLACK NB C -- 1.0000000
-77 -SLACK NB C -- 1.0000000

-21 -SLACK NB C -- 0.0000000
-70 -SLACK NB C -- 0.0000000

41 TC1 NB C -- 0.0000000

-71 -SLACK NB C -- 0.0000000

-76 -SLACK NB C -- 1.0000000

33 TA1 NB C -- 0.0000000

38 TB2 NB C -- 1.0000000

-35 -SLACK NB C -- 0.0000000

-4 -SLACK NB C -- 1.0000000

-10 -SLACK NB C -- 0.0000000

44 TC4 NB C -- 0.0000000

142

Appendix C

Results of the Proposed Expert System Approach
for the Example in Chapter 3, Section 3.2.4

FMS Simulation

mach'

mach2

mach3

mach4

wit

A_
.raimm_

tql...Laglaillianit.
-I .".21""5""iir'''0""9 1011-12"13 -14-15 -it; '17 "18 -19 20 2i 22 27-74

111 machine 1 machine 2

idle D1 idle Al
340.00
idle D1 idle Al
340.00

idle D1 idle Al

350.00
idle D1 idle Al
350.00
idle Dl idle Al
360.00
idle D1 idle idle
360.00
idle idle idle idle

--

machine 3 machine 4

