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Studies of the medicinal effects of the unique compounds produced by hop have led to interest 
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effort has gone into developing genomic resources. H. lupulus is a highly heterozygous, repeat-
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transcripts using deep learning. The combination of these manuscripts provides a framework for 

the future of hop genomics.
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CHAPTER 1: INTRODUCTION 

 

In this thesis, we focus on the process of annotating a new and complex genome. Genome 

annotation requires a number of steps. Typically researchers begin with sequencing. DNA-

sequencing has traditionally been the most powerful method of annotating a genome. It is 

possible to identify genes from sequence content alone. More recently, it also has been possible 

to partially annotate a genome using RNA-sequencing. This method lacks the ability to sequence 

untranslated regions. In the chapters to come, we address the issues of genome annotation, not 

only applied to hop, but also theoretical work using newer statistical models for annotating long 

intergenic non-coding RNAs (lincRNAs). 

 

 

1.1 History of Hop Breeding and genetics 

 

Hop (Humulus lupulus L.) is a traditional herb that has been used for thousands of years as a 

medicinal agent (Chopra et al. 1986a). In India, it was used as a sleep aid as a method of 

reducing anxiety. However, the use of hop as a bittering agent in beer is relatively new. Although 

the first use of hop in beer is disputed, the first written report of hop being used in beer was in 

877 AD by a French monk, Abbot Adalhard (Delyser and Kasper 1994). Adalhard left a recipe 

for making a porter that included using hop cultivated in the monasteries garden. However, it 

was not until the 20th century that humans became interested in breeding of hop. 

 

The first hop breeder was Professor Ernest Salmon of Wye College, England. Wye College 

established a breeding program in 1906, and Professor Salmon quickly began working on 

releasing hop varieties (Salmon 1917). Salmon has a collection of publications discussing the 

genetics of hop, breeding of new cultivars, and about the challenge of disease faced by growers. 

Particularly of interest was the cultivar Brewer’s Gold. Brewer’s Gold was a cross with a 

European hop and a wild Canadian hop; it is notable for not only being a great hop in brewing, 

but also it is the ancestor of most high-bittering potential hop varieties used in brewing today. 
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While hop breeding was beginning to take off in Europe, World War I marks a massive growth 

of the hop industry in the states. Much of the agriculture in Europe was destroyed, opening the 

door for hop production in the United States (Tomlan 2013). There was a significant industry for 

hop growing in the Willamette valley throughout the late 19th century and pre-prohibition 20th 

century. Prohibition affected hop growers hard, and many were forced to switch to growing a 

different crop or shut down entirely (Landis 1939).  

 

The USDA-ARS hop-breeding program was initiated at the end of prohibition. Stanley Brooks 

was the first USDA hop breeder, with the objective of breeding downy mildew resistant hop. 

Although the breeding program was initiated in 1933, the first hop cultivar released was Cascade 

in 1974 (Brooks et al. 1972). Cascade is one of the most cultivated hop varieties today (USDA 

2016), and marked the beginning of the “hop heavy” beer styles.  

 

Shortly after the release of Cascade, triploid (3X=30) varieties Willamette and Columbia were 

released. These two varieties have also had a large impact on the brewing industry (Haunold et 

al. 1976a; Haunold et al. 1976b).  Willamette and Columbia were released out of the polyploid 

hop breeding project (Haunold 1972). Triploid hop have not been used much outside of the 

USDA breeding program, although the New Zealand breeding program has released and 

continues to release triploid hop varieties. 

 

 

1.2 Brief history of molecular breeding in Hop 

 

Hop has been studied for cytogenetic research for more than half a century (Ono, 1962). The 

unusual diversity of chromosome counts made it a popular target for using cytological 

techniques to study sex chromosomes (Ono 1962a; Karlov et al. 2003a). Although these methods 

were very successful, the limited capabilities of early cytogenetics did not answer questions 

about the genotype of different hop cultivars. 

 

Just recently, molecular breeding has become popular among hop breeders. The first reported 

identification of molecular markers in hop was in 1995 – as a simple study of genetic diversity 
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and heritability of different traits (Brady et al. 1996; Pillay and Kenny 1996). With the ability to 

quickly genotype different hop cultivars, a natural progression was to develop genetic maps. 

Developing a genetic map is the process of using recombination as a measure of genetic distance 

among individual molecular markers. Using these genetic distances, which correlate closely to 

physical distances, it is possible to determine which traits are genetically linked. However, 

constructing a genetic map is very similar to a well-known NP-complete problem, the minimal 

Hamiltonian-path problem (Crescenzi and Kann 1997). 

 

There have been several genetic maps published, beginning as early as 2000, and most recently 

2015 (Seefelder et al. 2000; Koie et al. 2004; Cerenak et al. 2006; Henning et al. 2011; Henning 

et al. 2015b).  A challenge in developing linkage maps is the lack of guidance for arranging 

markers along a physical map. Without a reference genome, it is impossible to know the 

accuracy of a given genetic map. Due to the non-linearity and NP-hardness of the problem, it is 

unlikely that any of the published maps are 100% accuracy with respect to the physical distances 

of each marker. 

 

Most recently, genome wide association studies (GWAS), quantitative trait loci (QTL), and 

RNA-sequencing studies have gained popularity within the hop breeding community. QTL 

studies for many different traits have been performed, and as the genomic resources increase, the 

quality of these studies should improve as well (Patzak et al. 2012; Clark et al. 2013a; Jakse et al. 

2013; McAdam et al. 2013; Henning et al. 2015a). An obvious extension of these works is to 

develop QTLs using only markers that fall within coding regions of genes. Although no work has 

been published on this, there is data available and manuscripts in preparation regarding the 

subject. 

 

Finally, in 2014 the release of a draft hop genome assembly was released for the cultivar 

Shinsuwase (Natsume et al. 2014a). The following chapters in this thesis not only use this 

resource, but they also extend it to include a gene annotation and provide an alternative genome 

assembly. The work in this thesis is meant as a resource and tool to continue the development of 

hop genomic resources. Although the resources are not perfect and lack a finished reference 



 

 

4 

assembly, the number of genomic resources available for hop has significantly increased in just 

the past two years. 

 

 

1.3 Machine learning in plant genetics 

 

Machine learning has a rich history in plant genetics. Some of the most common uses of 

regression in plant breeding are: heritability estimation, genotype by environment interaction, 

genome wide association studies, quantitative trait loci discovery, and genomic selection (Smith 

and Kinman 1965; Henderson 1975; Wright 1976; Seaton et al. 2002; Listgarten et al. 2012). It is 

easy to understand why that is true; plant breeders are involved in an intense multi-objective 

optimization problem. In fact, it is very easy to model the problem of plant breeding as a Markov 

decision process (MDP) --  a known class of problems which involves sequential decision 

making. Many statistical and computational frameworks already exist for MDP problems 

(Anantharam et al. 1987).  

 

Linear regression provides some major advantages for plant breeders. It’s stable, online, and has 

a closed form solution that is guaranteed to be optimal if the problem is convex.  

If the optimization problem is non-convex, linear regression is only guaranteed to converge on a 

local minimum. This is particularly troubling considering biochemical pathways are often a 

combination of genes producing different compounds required for the production of a certain 

chemical. Similarly, traits related to size and yield are far too complex to model with a linear 

method. An example of these phenomena in hop is the prenylated-flavonoid Xanthohumol. 

Although the biochemical pathway is well understood, regulation is unknown and there is some 

evidence suggesting that the Humulone pathway plays a role in the regulation of Xanthohumol 

(Stevens et al. 1997a). Linear regression would almost certainly fail on a trait like Xanthohumol 

due to the multiplicity of pathways and control involved in its production. Recently, there has 

been some work to incorporate newer non-linear statistical models to plant breeding, Although 

they have been consistently more successful than linear models, the majority of quantitative 

genetics software packages are still centered around linear regression (Spindel et al. 2015). 
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1.4 Machine learning in genomics 

 

While machine learning in plant breeding is often focused around regression, genomics typically 

relies on generative models to represent some unknown distribution. A generative model will try 

to model the underlying distribution directly, contrary to discriminative models, which are only 

interested in modeling p(y = 1|x). These models have the advantage of interpretability, and a 

natural fit within genomic frameworks.  

 

Hidden Markov Models (HMMs) find their place in a diverse array of genomic problems, 

including both base-calling during sequencing, and gene finding while annotating a genome 

(Stanke et al. 2006a; Timp et al. 2012). Bayesian nets and other probabilistic models are the 

dominating method of discovering regulatory pathways (Hecker et al. 2009). The speed and 

interpretability of the models makes them easy to debug and adapt to new problems. 

 

Discriminative models also have their place in genomics. There are many different instances 

where classification is an important task. Typically discriminative models problems are sub-

problems of things modeled using generative models (Abrusán et al. 2009a). A generative model 

can be defined as a model trying to directly model the joint distribution, P(x, y). By doing this, 

you implicitly also learn P(y=1| x), given that one has the prior P(x). While discriminative 

models may not be as interesting as generative models, they still are vital in the process of 

genome annotation. Perhaps most importantly, they are much easier to train, requiring less data 

and learn a more simple representation of the data. 

 

 

1.5 Deep Learning in Bioinformatics 

 

Deep learning refers to “stacked”, or multi-layered neural networks. A neural network can 

simply be seen as a linear model with a non-linear transformation as the last step. In the simplest 

case, linear regression can be transformed into a single-layer neural network by adding a sigmoid 

function to the linear output of the model. Functions applied to the output of the regression 



 

 

6 

model are called activation functions. The sigmoid function transforms the regressor into a 

classifier by forcing the values into the range of [0, 1]. The simplest way to think about a multi-

layer neural network is by taking the output of a linear model, and applying it as input to another 

linear model. However the non-linear activation functions transform the models into non-linear 

models. Training these models is done with a first-order technique known as stochastic gradient 

descent. 

 

Deep learning initially gained popularity in the 1980s with the invention of multi-layer 

perceptron (MLP). A MLP is like the model described above, the output of each linear model is 

passed as input to the next, and the final activation is a sigmoid function that transforms the 

output into a probability. This probability can be used for classification, however by using the 

identity matrix as an activation function, you construct a multi-layer regressor. 

 

In 2012, Alex Krizhevsky brought deep learning to the front of scientist’s attention by winning 

the ImageNet competition. Krizhevsky and his team beat competition by having an error rate 

10% lower than the second place team (Krizhevsky et al. 2012). This kind of margin of error is 

rare for classification competitions; deep neural networks dominated almost every subsequent 

computer vision competition. Other fields in machine learning and computer science quickly 

began adopting neural networks. Convolutional neural networks, as used by Krizhevsky in the 

ImageNet competition, began gaining large amounts of momentum in every field interested in 

classification. Shortly after Krizhevsky’s win in 2012, recurrent neural networks also began to 

gain popularity. In 2008, Alex Graves published his PhD dissertation titled “Recurrent neural 

networks for sequence labeling.” Although this paper did not immediately make a large impact, 

it did lead to the now-common use of recurrent neural networks (RNN).  

 

Recurrent neural networks can be thought of as feed forward neural networks (described 

previously), except that each “layer” is represented by a step in time. There is a special “hidden 

layer,” which is computed by combining the previous hidden layer and the input at the current 

step in time. This kind of model lends itself favorably to any sort of temporal model, but also 

towards models that want a sequence of outputs rather than a single output. Long short-term 

memory is the dominant model used for recurrent neural networks. Long short-term memory 
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applies two separate set of gates which exist simply to aid the optimization process through 

stochastic gradient descent (Hochreiter and Schmidhuber 1997).  

 

In bioinformatics, deep learning is a relatively new concept. It is starting to gain traction as a tool 

for feature extraction. That is, use a deep neural network to understand cellular biology. The 

most successful use of deep learning is a program called DeepBind (Alipanahi et al. 2015). 

Although this model used a convolutional neural network (CNN), it only used a single layer and 

the primary finding in the paper was the use of perturbation techniques to understand the features 

that the CNN learned.  

 

Similarly, a program called DeepSEA used a single-layer convolutional neural network to 

understand non-coding variants. DeepSEA is an excellent example of the strengths of deep 

learning. The authors trained the model to predict the chromatin state at each nucleotide. While 

this is not directly useful, observing changes in the chromatin level predictions when changing 

nucleotides provides information about the effect of each mutation. Not only did they abuse the 

interaction between chromatin state and functionality, they also achieved extremely high 

accuracy on a dataset not included during training (Zhou and Troyanskaya 2015).   

 

Recurrent neural networks have yet to gain much traction in bioinformatics. An extension of the 

DeepSEA model was published as a program named DANQ. The models have the same goal, 

same underlying model, same unique training method, however, DANQ uses a bi-directional 

Long short-term memory (LSTM ) model after the convolutional layer (Quang and Xie 2015).  

 

Recurrent neural networks fit naturally as a replacement for the generative models currently 

being used. They are robust to long-term state dependencies, easy to train (fewer parameters), 

naturally fit the sequential nature of DNA, and can be parallelized using modern graphics 

processing-unit (GPU) technologies. However, no such publication has incorporated these 

models into bioinformatics pipelines. There is a natural fit in gene finding, base calling, 

regulatory network identification, sequence classification, and sequence modeling or labeling. 

The last chapter of this thesis is devoted to recurrent neural network models for transcript 

classification; the first work of it’s kind. 
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Chapter 2: HopBase: A unified resource for Humulus Genomics 

 

 

 

 

 

Steven T. Hill, John Henning, Ramcharan Sudarsanam, and David Hendrix 
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2.1 ABSTRACT 

 

Hop is a plant of great cultural significance, used as a medicinal herb for thousands of years, as 

well as flavoring and preserving beer. Studies on the medicinal effects of the unique compounds 

produced by hop has led to interest from pharmaceutical, healthcare and animal livestock 

industries. Recent developments in hop genomics research include published draft genome and 

transcriptome assemblies. Although research into the genomics of hop have gained interest, there 

is a critical need for centralized online genomic resources. To support the growing research 

community, we report the development of an online resource “HopBase.org.” In addition to 

providing a gene annotation to the existing ‘Shinsuwase’ draft genome, HopBase makes 

available genome assemblies and annotations for both the cultivar ‘Teamaker’ and male hop 

accession ‘USDA 21422M’. These genome assemblies, gene annotations, along with other 

common data, coupled with a genome browser and BLAST database enable the hop community 

to enter the genomic age. 
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2.2 INTRODUCTION 

 

Hop is a large, climbing, dioecious plant in the Rosid class that has been used for medicinal, 

brewing, and preservative activities for millennia (Hamel and Chiltoskey 1975; Chopra et al. 

1986b; Neve 2012). The Humulus genus contains three species, Humulus japonicus, Humulus 

lupulus, and Humulus yunnanensis, two of which, Humulus japonicus and Humulus lupulus, are 

known to produce compounds with beneficial pharmaceutical properties (Sung et al. 2015).Little 

is known about Humulus yunnanensis and it may be extinct, even though there has been effort to 

find a living plant (Boutain 2014). Humulus also has three typical sex chromosome 

configurations: Humulus lupulus (2n = 18 + XY), Humulus lupulus var. cordifolius (2n = 16 + 

X1X2 Y1Y2), and Humulus japonicus (2n = 14 + XY1Y2) (Ono 1962b). The simplicity of H. 

lupulus var. lupulus makes possibly the more tractable of these configurations for genome 

assembly. These configurations provide an interesting platform for studying sex chromosome 

evolution in plants and several research projects have been focused around this already (Karlov 

et al. 2003b; Hill et al.). 

Cytogenetic research and genome assembly suggest that the hop genome is approximately 2.8Gb 

and highly repetitive (Danilova et al. 2003; Natsume et al. 2014b). Large amounts of repetitive 

DNA cause difficulties in short-read genome assembly due to the inability to assemble through 

repetitive regions. As a result, the repeat regions are larger than current mate-pair technology and 

require expensive long-read sequencing methods to assemble. Efforts using short-read 

sequencing techniques have been extensive and exhaustive and the resulting assemblies, while 

incomplete, are now available (Natsume et al. 2014b).  

Currently, there exists published work on a high-marker-density genetic map (Henning et al., 

2015), several RNA sequencing datasets (Clark et al. 2013b; Natsume et al. 2014b), a draft 

genome assembly, a plethora of research surrounding the essential oils (Stevens et al. 1997b; 

Miranda et al. 1999; Aron and Shellhammer 2010), and many other secondary resources. 

Furthermore, we have deep-sequenced, assembled, and annotated another female hop variety, 

‘Teamaker’, The assembly was used to guide the assembly of the first male hop genome (USDA 
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21422M) coupled with the identification of male specific DNA and pseudo-autosomal regions of 

the sex chromosomes (chapter 3). None of these resources include a public annotation, and no 

attempt has been made to consolidate this information into a single resource. Standardizing data 

and providing a unified access has been a challenge in genome annotation and bioinformatics for 

some time. The consolidation of information allows for a much cleaner and easier flow of 

information among hop researchers. The objective of our work was to assemble both a male and 

female hop genome and to couple the information from these assemblies along with all other 

online hop genome information into a single resource available to hops researchers and breeders 

alike. 

  



 

 

13 

2.3 MATERIALS AND METHODS 

2.3.1 Teamaker Genome assembly. 

The Teamaker genome assembly used libraries selected in accord to the ALLPATHS-LG recipe 

(Gnerre et al. 2011). Reads were adapter trimmed and filtered for a mean quality of at least 30 

using the program Skewer (Jiang et al. 2014). Duplicated reads were removed using a custom 

C++ program (https://github.com/hillst/dedup_paired_reads). This resulted in an estimated 

coverage of 109x (Table 2.6.1). Assembly was performed using the ALLPATHS-LG assembly 

with ploidy as 2 and using a minimum contig size of 500. Lower values resulted in unfeasible 

computation time and memory usage. The resulting assembly was gap filled using GapCloser 1.0 

(Luo et al. 2012).  

 

2.3.2 Transcript guided assembly. 

In addition to the above mentioned assembly, we used SOAPdenovo-trans to perform a de novo 

transcriptome assembly (Xie et al. 2014). RNA-seq reads were acquired from Shinsuwase 

assembly (Natsume et al. 2014b). All libraries corresponding to the cultivar Shinsuwase were 

downloaded from the DNA Databank of Japan ID: DRA002630. The resulting assembly was 

1,102,071 scaffolds with an N50 of 431, indicating many broken transcripts. The contigs were 

filtered to a minimum length of 1000-bp in order to remove most of the fragmented transcripts. 

Remaining contigs were then filtered for contaminants using BLAST against the NR database 

(Pruitt et al. 2005). Hits that were not plants were removed. This resulted in 43926 scaffolds with 

2765 N50. Transcripts that did not align to the genome assembly were noted for future use. 

Genes were then assembled using a transcript guided gene space assembly method. The method 

is similar to a previously noted method, by Aluome et al (2016) with the addition of contig 

ordering and gap closing. Transcript guided assembly revolves around the idea that transcripts 

contain order information about the genome, similar to a mate-pair read. To make use of this 

information, the assembled mRNA sequences needed to be assembled in the context of the 

genomic gene space. This results in an assembly of the transcripts, which contains partial or 

complete 5’ promoter regions, 3’ flanking sequence, and introns.   
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Whole genome reads were aligned to these transcripts using BLASTN. These reads were then 

assembled using Velvet with a K of 51 and no other parameters (Zerbino and Birney 2008). The 

resulting contigs were aligned back to the original transcript using Exonerate (Slater and Birney 

2005). The result was considered to be the “order” of the assembled contigs. Contigs were 

ordered and scaffolded together with N’s separating each contig. The gaps were then filled using 

GapCloser 1.0. This process was repeated five times for each transcript. The result was a final 

assembly of 1,766,890,029-bp with an NG50 of 41,006-bp.  

 

2.3.4 Repeat library construction. 

Novel repeats were constructed according to a process whereby k-mers that have a high copy 

number selected to assemble a repeat and used library (Li and Waterman 2003). Jellyfish was 

used with k=31 to identify high copy k-mers (Kurtz et al. 2008). The 173 bp library was used for 

this method. The k-mers that had more than 120 copies were called repetitive, as this was 

roughly 6 times the expected coverage. These k-mers were then assembled using velvet to give 

an initial set of repeat sequences. Sequences of less than 64-bp were removed. The remaining 

sequences were blasted against the MIPS eudicot repeat database and NR (Nussbaumer et al. 

2013). Chloroplast, mitochondria, and rRNA were placed into their own categories. Sequences 

with a functional annotation to plants that were not repeats were also removed from the library 

and marked for future analysis. The final set of repeats had an N50 of 212 and contained 9615 

repeats. These repeats were then annotated using pretrained models of TEclass (Abrusán et al. 

2009b). TEclass uses hierarchical classification; it classified 98% of repeats, 85.8% of the 

retrotransposon class and 14.2% of the DNA transposon class (Table 2.6.4). This is in 

accordance with other angiosperms. This library was combined with the MIPS Eudicot repeat 

database to create the final repeat library for use in masking. 

 

2.3.5 Shinsuwase and Teamaker assembly annotation. 

The genome annotation was performed in a multi-step fashion. First, the genome was masked 

using RepeatMasker along with the previously described repeat database. The remaining genome 
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was then used (Smit et al. 1996). The RNA-seq reads described previously in the transcriptome 

assembly were aligned to the genome using HISAT and were assembled using StringTie (Kim et 

al. 2015; Pertea et al. 2015). The result had far too many genes, likely due to the unusually high 

volume of RNA-seq. Most of the genes were single exon with low read coverage and were thus 

called noise. Genes were filtered using outlier detection via one-class SVM trained using scikit-

learn (Pedregosa et al. 2011). Outliers were then called genes and used as the first set of genes. 

MAKER-P was then run on the masked genome with the StringTie transcripts used as external 

information. Augustus and SNAP were used as gene finders with the provided Arabidopsis 

models (Korf 2004; Stanke et al. 2006b). Finally, the peptide sequences of the remaining genes 

were extracted and aligned to the TAIR10 Arabidopsis mitochondria and chloroplast protein 

sequences using BLASTP (Rhee et al. 2003; Johnson et al. 2008). Genes that matched and had 

an E-value > 0.0001 were removed and called pseudo-genes. After reviewing the annotation, it 

became clear the masking of the genome assemblies was not sufficient. Thus, another pass was 

made, removing all genes that contained the keywords “gag”, “pol”, “Retrotransposon”, and 

“Retroelement.” 

 

The remaining genes were then scanned for functional annotations using BLASTP against a 

database of known hop genes, TAIR 10, and against Uniprot (Rhee et al. 2003; UniProt 

Consortium 2008). The annotation with the highest e-value was chosen. This gave a set of 

22,201 and 16,161 annotated genes in the Shinsuwase and Teamaker annotations respectively 

(Table 2.6.3). The difference in total genes and annotated genes can be characterized by the 

difference in assembly methods. ALLPATHS-LG is known to be a conservative assembler, 

possibly excluding highly heterozygous genes or broken genes. Similarly, an aggressive 

assembler may include these genes as two separate scaffolds. In any case, it is clear much work 

needs to be done before the hop draft genome can be called complete. 

 

2.3.6 21422M Annotation. 

The genome assembly of 21422M was the same used in the next chapter. The genome was 

annotated in a simpler fashion, as the identification of complete genes is not likely in a genome 
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with low sequencing coverage (approximately 18X). The RNA sequencing reads from the 

previously published transcriptome assembly were quality filtered with a mean quality of 30 and 

adapters were removed using Skewer (Clark et al. 2013b; Jiang et al. 2014). Reads were then 

aligned using HISAT to the 21422m assembly (Kim et al. 2015; Hill et al.). Reads were 

assembled using StringTie v1.0. The result was annotated using alignments to TAIR10 protein 

coding genes using BLASTX. Alignments with an e-value < 0.0001 were included. This resulted 

in 22,754 genes. 
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2.4 RESULTS 

Genome assemblies for both a male and female hop accession were developed and fully 

annotated to the degree possible given the repetitive nature of the hop genome and the 

difficulties associated with said assembly. Overall sequencing depth for Teamaker was 209X 

prior to read processing (Table 2.6.1). Fragment library’s (101-bp) had insert sizes of 143-bp, 

173-bp and 250-bp. This resulted in 63.1X coverage after removal of duplicates and quality 

control. In addition, mate-pair, paired-end reads (101 bp) with insert sizes ranging from 3000 – 

9000 bp were sequenced for an additional coverage of 46X. Sequencing libraries with insert 

sizes outside normal library preparation of approximately 250-bp insert size proved difficult to 

develop and losses due to quality control reflected this. Ultimately, the total coverage for 

sequencing Teamaker after removal of duplicated reads and quality control was approximately 

109X.  

The Teamaker genome assembly compares with that published for the Shinsuwase genome with 

each having their respective strengths and weaknesses (Table 2.6.2) (Natsume et al. 2014b). The 

Teamaker assembly has slightly higher alignment to transcriptome assembly while alignments to 

Public EST data is slightly higher with the Shinsuwase genome. The Shinsuwase genome also 

has a slightly higher alignment to CEGMA core genes than Teamaker. It is likely that the higher 

alignment of Teamaker with public transcriptome data is due to the use of transcriptome-guided 

genome assembly as an aid to assembling the genome. Finally, the Teamaker genome (with N’s) 

is closer to actual size than that observed for Shinsuwase. Gene annotation was more successful 

using the Shinsuwase genome assembly with the exception of Stringtie Transcripts (Table 2.6.3).  

One feature common to both assemblies is the presence of large numbers of DNA repeats (Table 

2.6.4). These repeats varied in size from 100-bp to greater than 300-bp. The vast majority of 

repeats consisted of long terminal repeats (LTR) and retro-transposons. The next group, long-

interspersed-nuclear-elements (LINE’s) made up the majority of repeat sequences that were 

greater than 300-bp in length. Finally, large numbers of DNA transposons were observed with 

most ranging in size from 100 – 200-bp. It is likely that much of the missing portion of both 

genomes are repetitive elements. It is observed that regions on the boundary of scaffolds had a 
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much higher copy number than portions in the center of scaffolds. This is not surprising as 

assemblers have a very hard time with repeat regions. 

In-house development of genetic linkage maps demonstrated Teamaker as superior for use in 

identifying SNP markers that are map-able to linkage groups. One means to ascertain the quality 

of marker placement in a genetic map is to calculate the nearest neighbor (NN) fit value for all 

markers in a map. There was no statistical difference between average NN fit values for markers 

between the map developed using Teamaker versus the map developed using Shinsuwase 

(NN_Teamaker average fit = 0.107; NN Shinsuwase average fit = 0.109).  However, the linkage 

map obtained using SNPs identified using the Teamaker genome covered a larger portion of the 

genome (761.05 cM) with a shorter average distance between markers (0.5 cM) than that 

obtained from the Shinsuwase genome (470.76 cM with average distance between markers of 0.7 

cM). Genetic maps for a population segregating for short stature hops were made using SNPs 

identified using reference-guided TASSEL v 3.0 pipeline (Bradbury et al. 2007). In the case of 

SNP markers identified using the Shinsuwase genome, only 677 markers mapped to 10 different 

linkage groups (data not shown). Use of Teamaker genome assembly for SNP identification 

under the same default conditions as used for Shinsuwase resulted in a genetic map with 1530 

markers mapped to 10 different linkage groups (data not shown). The same phenomenon was 

observed in the development of a genetic map for a population segregating for downy mildew 

resistance (data not shown). These observations are reported not as a means of accessing 

assembly quality but as a suggestion for use in identifying markers for linkage or association 

mapping studies. 
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2.5 DISCUSSION 

It is likely that much of the missing portions of both genomes are repetitive elements. It is 

observed that regions on the boundary of scaffolds had a much higher copy number than portions 

in the center of scaffolds. This is not surprising as assemblers have a very hard time with repeat 

regions. The creation and unification of hop genomic resources paves the way for a complete 

genome assembly. The accessibility and centrality of the software is vital for the application of 

3rd generation sequencing and assembly. Furthermore, it is possible to compare and contrast the 

different draft genomes and even ultimately repair and clean them when a complete genome 

assembly is available. 

There are stark differences between the two assemblies. The Shinsuwase assembly ultimately 

was annotated to have a higher number of genes. In addition, the RNA-seq dataset had a higher 

percentage of alignments. Perhaps the simplest explanation is the format of the genome 

assemblies themselves. The Shinsuwase assembly was published with all gaps reduced to a 

single “N”, which could cause spurious gene isoforms called from the different gene finders.  

Another explanation for the discrepancy between the two cultivars is lineage. Shinsuwase was an 

offspring of open pollenated Saazer grown in Japan. It is possible that the male plant contains 

pedigree from the Humulus lupulus var cordifolius subspecies. Genetic distances computed from 

SNPs within the deep sequencing of Teamaker, USDA 21422M, Shinsuwase, and Humulus 

lupulus var cordifolius suggest that this is the case. Shinsuwase is by far the cultivar most closely 

related to the wild Japanese hop (Supplemental data). 

We propose the discrepancy between the two assemblies as a result of the different assembly 

methods. The Shinsuwase assembly was performed using CLC assembly cell and the SSPACE 

scaffolder. In contrast, the Teamaker assembly was performed using ALLPATHS-LG. It is well 

known that ALLPATHS-LG is a more conservative assembler and scaffolder than the 

combination of CLC assembly cell and SSPACE. Groups who used CLC or SSPACE (no group 

used both) and participated in Assemblathon 2 performed worse in quality metrics on average 

than groups which used ALLPATHS-LG (Bradnam et al. 2013). In contrast, these groups 

performed as well or better than ALLPATHS-LG groups when measured on continuity (N50). In 
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other words, ALLPATHS-LG will produce higher quality, yet smaller and shorter genome 

assemblies (conservative), while alternative methods will result in lower quality yet longer and 

larger assemblies (greedy).  

This can explain the discrepancy in the number of genes. Perhaps the simplest explanation is the 

format of the genome assemblies themselves. If an assembler is more conservative about 

separating different haplotypes – especially large insertions or deletions – it would be less likely 

to duplicate genes which appear only once within the genome. On the contrary, a more 

conservative assembler would be less likely to correctly separate genes, which have a copy 

number higher than one.  

While both approaches could be argued as “better,” it is more useful and constructive to consider 

the cases in which each is useful. The greedy approach is more useful when researchers are 

interested in knowing what exists within the true hop genome. An example could be RNA-seq 

quantification. The more conservative method is when you need high resolution of the hop 

genome. An example would be researchers who are interested in the genotypes of different hop 

cultivars. 

The final difference between assembly methods is related to the transcriptome guided genome 

assembly of missing genes from the Teamaker assembly. Since the target genes were directly 

taken from the transcriptome (which as filtered for contaminants), it is expected that the 

Teamaker assembly would contain a higher number of EST and transcriptome alignments. On 

the contrary, a less stringent filtering of contaminants from the transcriptome assembly could 

have provided higher scores for the Shinsuwase assembly. Since the data was generated by the 

same experiment, it would not be surprising for the whole genome sequencing reads to contain 

scaffolds from non-plant organisms. 
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SUPPLEMENTAL MATERIALS AND METHODS 

SYSTEM IMPLEMENTATION 

The server itself is a 32 AMD-x64 CPU machine with 32 Gigabytes of RAM and a 10 

Gigabit/second pipe to the Oregon State University ISP. The HopBase stack consists of, Linux 

CentOS 6.6 final, Apache2, PHP5, Symfony2, Bootstrap3, and AngularJS. The liberal use of 

modern front-end libraries, specifically AngularJS 1.0 and Bootstrap provides a modern look-

and-feel for HopBase while Symfony provides maintainable backend architecture using a mature 

MVC framework. The three assemblies available are USDA 21422M, Shinsuwase, and 

Teamaker (Henning et al. 2008; Natsume et al. 2014; Hill et al. 2016). Each assembly includes 

an annotation using the RNA sequence data provided by Natusme et al. 

The BLAST web tool is implemented using SequenceServer (Priyam et al. 2015). 

SequenceServer is a standalone tool for interfacing with the command line NCBI BLAST. The 

databases included on the website correspond to each genome assembly, coding sequences, 

predicted protein sequences, and other specialty databases. In particular, the male specific region 

is a standalone BLAST database. Access to an easy-to-use BLAST interface specific to hop will 

greatly help the hop research community. 

The resources page host’s raw data for bulk download: that is, files for genome assemblies, 

various annotation formats, and other processed resources (VCF, BAM, gene expression). It also 

includes the standardized ID format for submission from users. Downloading and accessing the 

raw files for bioinformatics can be a challenge, especially when there are multiple resources 

present as well as locations for these resources. A central location containing each of the 

abovementioned files provides scientists an easy starting point for working on Humulus 

genomics. 

The JBrowse server is hosted on the same machine at jbrowse-hopbase.cgrb.oregonstate.edu 

(Skinner et al. 2009). Each genome assembly is provided as a separate tab within the front-end 

framework. This allows for quickly switching between contexts and allowing for the data to be 

loaded in the background. Each JBrowse includes the final annotations, the StringTie 

annotations, repeat annotations, gene expression for each available tissue type, as well as 

predicted motifs for known plant transcription factor binding sites. In addition, JBrowse includes 
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RNA-seq experimental expression data for genes and known transcripts across several different 

hop varieties. 

The HopBase mailing list provides for rapid information regarding updates when pushed to 

production. If a new annotation is produced, or a new draft of the genome is available, it is easy 

to notify users of this information. This provides a convenient alternative to frequently checking 

the website for updates. 

SNPs were called from 15x of whole genome sequencing reads for the cultivars Teamaker, 

Shinsuwase, USDA 21422M, and Cordifolius. SNPs were all called using GATK and the 

corresponding best practices pipeline. Co-ancestry was computed using the relatedness phi as 

implemented in vcftools; Large negative values indicate individuals from different populations, 

where as positive values within a population is an approximation of the kinship coefficient (Li et 

al. 2009; Manichaikul et al. 2010; Danecek et al. 2011). From these statistics, the fact that 

Shinsuwase, Teamaker, and USDA 21422M are from the same population is a given, and is 

widely accepted among hop breeders. In addition, Teamaker and USDA 21422M are clearly 

from a different population than Cordifolius, which again is accepted among Hop breeders. 

However, Shinsuwase and Cordifolius have a relatedness score of nearly 0, which indicates 

unrelated individuals within a population. While the sample number is low, the genotype data 

suggests a relationship between Cordifolius and Shinsuwase that is not shared among other 

cultivated hops. 
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2.6 TABLES 

Table 2.6.1 Sequencing libraries. 

Mate Pair insert 

Size (bp) 

Number of 

raw reads 

Number of 

Dedup + QC 

Reads 

Portion lost from 

dedup + QC 

Estimated 

Coverage 

9000 796503434 164452668 0.793531753 6.090839556 

6000 363664930 96117630 0.73569728 3.559912222 

5000 830281020 611993950 0.262907455 22.66644259 

3000 618181114 379821668 0.385581896 14.06746919 

Mate pair Total 2608630498 1252385916 0.519906742 46.38466356 

     Fragment library insert size (bp) 

   143 1655421082 708994796 0.571713322 26.25906652 

173 1176857672 606418512 0.484713805 22.45994489 

250 419621690 388494910 0.074178196 14.38870037 

Fragment total 3251900444 1703908218 0.476026943 63.10771178 

 

Table 2.6.2: Comparison of Shinsuwase assembly and Teamaker assembly. 

 Shinsuwase v1 

(Natsume et al. 

2015) 

Hopbase Teamaker 

v1 

(current) 

Transcriptome 

Assembly 

70% 76% 
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alignments 

Public ESTs 

alignments 

94% 96% 

CEGMA genes 89% 85% 

NG50 (without N’s) 5,050 9,231 

NG50 (with N’s) N/A 41,006 

Assembly size (with 

N’s) 

2,049,209,000 2,770,850,934 

Assembly size 

(without N’s) 

1,775,776,000 1,766,890,029 

 

Table 2.6.3: Gene annotation for Shinsuwase and Teamaker assemblies. 

 

Shinsuwase Teamaker 

Stringtie Transcripts 1120693 1137597 

StringTie w/ SVM Transcripts 97288 77118 

MAKER genes 46735 39831 

MAKER after pseudogene 

removal 39672 28434 

MAKER after repeat removal 35482 24919 

Unknown protein  13281 8758 

Annotated genes 22201 16161 

Total remaining genes 35482 24919 
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Table 2.6.4: Distribution of repeats in Teamaker assembly by length. 

 

100-200 201-300 301+ Total 

LTR 2094 780 353 3227 

Unclear 155 51 52 258 

DNA Transposon 1024 240 60 1324 

Retro 1533 545 212 2290 

LINE 303 601 618 1522 

SINE 621 62 3 686 

nonLTR 235 67 6 308 

LTR + Retro 3627 1325 565 5517 

 

Table 2.6.5: Relatedness of different individuals with WGS reads. 

INDV1 INDV2 

N_AaA

a 

N_AAa

a N1_Aa N2_Aa PHI 

USDA21422

M 

USDA21422

M 316418 0 316418 316418 0.5 

USDA21422

M Cordifolius 26110 79853 316418 53545 -0.361106 

USDA21422

M Shinsuwase 237926 1821 316418 389779 0.331754 

USDA21422
Teamaker 245479 18564 316418 324193 0.325238 
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M 

Cordifolius 

USDA21422

M 26110 79853 53545 316418 -0.361106 

Cordifolius Cordifolius 53545 0 53545 53545 0.5 

Cordifolius Shinsuwase 20020 20108 53545 389779 -0.0455558 

Cordifolius Teamaker 23928 55859 53545 324193 -0.23241 

Shinsuwase 

USDA21422

M 237926 1821 389779 316418 0.331754 

Shinsuwase Cordifolius 20020 20108 389779 53545 -0.0455558 

Shinsuwase Shinsuwase 389779 0 389779 389779 0.5 

Shinsuwase Teamaker 247013 963 389779 324193 0.343273 

Teamaker 

USDA21422

M 245479 18564 324193 316418 0.325238 

Teamaker Cordifolius 23928 55859 324193 53545 -0.23241 

Teamaker Shinsuwase 247013 963 324193 389779 0.343273 

Teamaker Teamaker 324193 0 324193 324193 0.5 
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Chapter 3: Genomics of the Hop Pseudo-Autosomal Regions 
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3.1 ABSTRACT 

Hop is one of the few dioecious plants with dimorphic sex chromosomes. Because the entire 

Cannabaceae family is dioecious, hop and other members of this family are thought to have a 

relatively older sex chromosomal system than other plant species.  Hop cones are only produced 

in female hops with or without fertilization. This has lead to most genomic research being 

directed toward female plants. The work we present provides genomic resources surrounding 

male plants. We have produced a draft genome for the male hop line USDA 21422M using a 

novel genome assembly method. In addition, we identified a 1.3Mb set of scaffolds, which 

appear to be the male specific region based upon specificity with male hop accessions. This set 

includes a smaller high confidence total length18Kb set of scaffolds, which are supported by 

over 500 individuals, including the USDA world collection of hop varieties and two mapping 

populations, with genotyping-by-sequencing. We also have identified a portion of the Teamaker 

x 21422M linkage map to be associated with the pseudo-autosomal region (PAR).  Within the 

genomic scaffolds, we identified a set of genes that are sex-linked and likely located in the PAR. 
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3.2 INTRODUCTION 

Humulus lupulus L. var. lupulus (European hop) is a dioecious (2n = 2X = 18A + XX /XY), 

perennial, climbing plant that is harvested for its female flowers. Its primary use is as flavoring 

and bittering additive in beer. Females Hops produce lupulin glands, which in-turn produce more 

than 1000 known essential oils (Eri et al. 2000) as well as the bittering acids responsible for beer 

bittering. Although males do not produce cones, they do produce lupulin glands (with much 

lower production) in both flowers and on leaves (Figure 1). This suggests female versus male 

differences in fitness and evolutionary function of these compounds.  Because of the importance 

of the female flower, breeding and genomic work has been almost entirely focused on females. 

Less than 6% of all flowering plants are dioecious, and only a few of these are documented as 

heterogametic like hop_ENREF_6 (Ming et al. 2011). In the family Cannabaceae, Cannabis sativa 

(2n = 18 + XY), Humulus japonicus (2n = 14 + XY1Y2), and Humulus lupulus (2n = 18 + XY) 

all have heterogametic sex chromosomes.  

Although hop typically has two sex chromosomes, there are six systems known to exist, 

spanning from one to three pairs of sex chromosomes with various sizes of the Y-chromosome. 

Differences primarily occur within var. cordifolious (Table 3.6.1) (Ono 1961).  Humulus lupulus 

is furthermore one of the only plants to have flowers that morphologically diverge early in 

development (Shephard et al. 2000). These characteristics contribute to the hypothesis that 

Cannabaceae possesses a relatively well-established and presumably older sex chromosome 

system (Charlesworth 2015).  

Hop is sometimes known to exhibit pseudo-monoecious flowering, however male flowers on 

pseudo-monoecious hop plants have never been reported to produce viable pollen. Hop is known 

to have an X:A ratio for sex determination, suggesting the structural genes are located on the 

autosomes, while the genes responsible for completing pollen development are in the sex 

determining region (SDR), that is the region specifically responsible for determining sex 

(Shephard et al. 2000). 

Thus far, there have been several cytogenetic experiments involving the sex chromosomes of 

Hop, Humulus japonicus, and Hemp (Divashuk et al. 2014), (Grabowska-Joachimiak et al. 

2011), (Divashuk et al. 2011). Additionally, a SSR marker was developed for screening male 
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hops at a young age (Jakse et al. 2008). However no work has been done to unravel the control 

of sex determination in hop using genomics.  

Traditionally, sex chromosomes have been studied in animals. More recent studies have focused 

upon the evolution of sex chromosomes and floral development in plant species. The primary 

difference between sex determination in plants and mammals is that morphological differences 

between sexes appear very late in the life cycle of plants. Most research on sexual differentiation 

and sex chromosomes has been done on Silene, papaya and Rumex (Liu et al. 2004); (Filatov 

2005); (Hough et al. 2014). Unlike Rumex, the Y-chromosome is essential in hop for 

development of pollen in male plants (Shephard et al. 2000). Nevertheless, Humulus remains 

largely unstudied, even though plants in this family show evolutionary advanced stages of sex 

chromosomes, particularly, between stages 5 and 6 (Divashuk et al. 2011). Stage five is 

recognized by a small, degenerating Y-chromosome undergoing heavy recombination 

suppression that is enriched with repetitive elements. Stage 6 occurs with the loss of the Y-

chromosome and an X:Autosome sex determination ratio (Ming et al. 2011).  

The pseudo-autosomal region (PAR) is defined as the recombining region of sex chromosomes. 

Recombination within PAR does not follow normal segregation patterns as in autosomal 

chromosomes – portions of the region may be genetically linked to the sexual determining region 

causing recombination suppression of the alleles near the SDR. This leads to major differences in 

allelic frequency between sexes for loci in the PAR near the SDR boundry. This can cause an 

aggregation of genes with different fitness levels for both sexes. Genes with different allele 

frequencies in each sex may then gain tighter linkage to the SDR causing a cascade effect until 

the loci is ultimately subsumed by the SDR. Loci in the SDR undergo recombination suppression 

due to a lack of pairing during meiosis and are considered completely sex linked. 

While several cytogenetic studies on hop sex chromosomes exist there are no studies on the 

molecular basis for sex determination.  The objectives of this study were to identify the pseudo-

autosomal region in hop sex chromosomes as well as identify male specific regions of the Y-

chromosome along with putative genes located on these regions 
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3.3 MATERIALS AND METHODS 

3.3.1 Plant Material, DNA Extraction and Library Preparation. 

All accessions used in the study were maintained at the USDA-ARS Hop Breeding and 

Genomics program located outside Corvallis, OR.  Rhizome cuttings were obtained from each 

accession and grown out under clean conditions in a glasshouse at Oregon State University 

(Corvallis, OR) with disease and insect infestations controlled with regular chemical 

applications.  Young leaves of approximately 4 cm2 were collected and placed under ice until 

prepared for DNA extraction in the lab.  DNA extraction was performed immediately after leaf 

tissue samples were collected.  Qiagen Plant DNAeasy Kits (Qiagen Inc, USA) were used with 

modifications to the protocol as outlined by Henning et al (2015).  These modifications resulted 

in samples possessing high quality DNA samples with large fragment sizes of approximately 25 

kb.  Library preparation for genotyping by sequencing (GBS) was performed as reported by 

(Elshire et al. 2011). GBS sequencing was performed on the Illumina HiSeq 2000 platform 

(Illumina Inc) with 48 genotypes per lane.  A total of 511 accessions were GBS-sequenced to a 

depth on average of 5X (Table 3.6.2).  

 

3.3.2 SNP Identification. 

All SNPs utilized in the study were identified using TASSEL 3 (Glaubitz et al. 2014) GBS 

pipeline and two different hop genome assemblies.  SNP identification was performed twice, 

once against the variety ‘Shinsuwase’ assembly (Natsume et al. 2015) and another against the 

21422M MSR (see below).  Default settings for TASSEL GBS pipeline were used for SNP ID. 

This provided two sets of SNPs (male specific and autosomal) for further analysis. The resulting 

data sets provided initial SNP sets of 1,098,285 SNPs for Shinsuwase-based and 80,168 SNPs 

for 21422M MSR. Further filtration of the raw SNPs for both data sets was utilized so that only 

SNPs present in 80% of all accessions were obtained: 260,318 for Shinsuwase and 23,943 for 

21422M MSR. 

 

3.3.3 21422M genome assembly. 
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The genome for 21422M was assembled using a novel method called “transcriptome guided 

genome assembly”, which uses transcript sequences as a guide for local gene-space genome 

assembly. The transcripts used for this process were taken from the transcriptome assembly 

present on HopBase.org. Reads for the HopBase.org transcriptome assembly were acquired from 

the DNA Databank of Japan (DDJP) id: DRP002426. RNAseq reads corresponding to cultivar 

‘Shinsuwase’ tissue types leaf, flower, immature cone, intermediate cone, mature cone, and 

lupulin glands.  Reads were cleaned and QCed using Skewer v0.1.120 with a mean quality score 

required of 30 (Jiang et al. 2014). The HopBase transcriptome was assembled using 

SOAPdenovo-trans v1.03 with a K-value of 23 and default settings (Xie et al. 2014). Contigs 

smaller than 1000 were removed, as they were most likely fragmented transcripts. This resulted 

in a set of 37,324 contigs. Contigs were then filtered for contaminants using BLAST against the 

NCBI non-redundant database (NR) (Johnson et al. 2008). After removing all non-plant hits, this 

resulted in a remaining set of 36,808 contigs.   

Our implementation of transcript guided assembly, called Cantina (Hill et al unpublished) is 

available at (https://github.com/hillst/Cantina). The assembly resulted in .081 Gb out of the 

estimate 2.8 for Humulus lupulus cv 21422M with an N50 of 3654. The small size is due to the 

focus of assembly around the known gene space. A total of 25,185 out of 36,808 transcripts were 

successfully assembled. This is likely due to the low coverage of genomic sequencing, however 

it is still a valuable resource for investigating the male hop plant and is included in this 

publication. 

 

3.3.4 Male Specific Region identification. 

The male specific region (MSR) is defined as regions of the male genome that do not contain 

alignments from any female cultivars, yet contain alignments from many or most male cultivars.  

The whole genome sequencing reads from 21422M, a single lane of paired-end HiSeq 2000 with 

a 250bp insert size, were assembled using velvet v1.2.10 (Zerbino and Birney 2008). A K-value 

of 51 was used with exp_cov set to auto and scaffolding enabled. The resulting scaffolds were 

filtered for contigs > 200bp.  
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Contigs that contained alignments from sequencing reads from female whole-genome 

sequencing were used to filter out regions shared by both sexes. Paired-end whole genome 

sequencing reads from Teamaker, 21422M, and from Shinsuwase were down-sampled to 10x to 

match 21422M and decrease computation time. These reads were then aligned to the scaffolds 

from Teamaker, 21422M and Shinsuwase.  Loci with no reads from the female libraries 

(Teamaker and Shinsuwase) were called male specific. This resulted in an assembly of 

20,202,198 bp. This resulting set was used for calling SNPs as described above. These regions 

were then further filtered using GBS reads to identify high confidence loci and to remove loci in 

which GBS reads from female samples aligned. Alignments were performed using BWA v 

0.7.12 with default settings (Li and Durbin 2009). The difference in number of male and female 

samples is due to the focus of sequencing on females and the uneven distribution of males and 

females within a population (Table 3.6.2). Contigs containing any female GBS alignments were 

removed, resulting in a set of 1.3Mb. This set is denoted our putative SDR, although it is 

severely limited by the fragmented MSR assembly for 21422M and has much room for 

improvement. Contigs containing alignments present in at least 80% of the male accessions were 

called male specific with high confidence due to the large number of samples. Due to limited 

GBS cut sites within the MSR, these contigs resulted in a small total length of 18 Kb, these loci 

are the best candidates for molecular male markers. 

SNPs used for identifying the linkage group from Henning et al. (2015) containing the PAR 

region were selected from the data set consisting of 35,922 SNPs, each SNP belonged to one of 

the 10 linkage groups. These were ultimately chosen for use in mixed linear models (MLM) 

analysis in TASSEL v5.21.  Kinship and Q-matrices were not utilized for MLM as the 

population had a clearly defined genetic make-up consisting of a full-sib family from the 

mapping population between ‘Teamaker x 21422M’.  The statistical threshold for marker 

significance of 5.85 on the –log10 scale was determined by Bonferroni correction (Dunn 1961).  

See Supplementary Figure 1 for a workflow diagram of the above procedures.  
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3.4 RESULTS AND DISCUSSION  

3.4.1 Male Specific Region (MSR) identification. 

Male specific regions are typified by large stretches of repeat DNA and retrotransposons (Zhang 

et al. 2008); (Oyama et al. 2010); (Divashuk et al. 2014).  These regions do not undergo 

recombination with the X-chromosome and therefore genes located in this region will be fixed.  

It is presumed that borders between MSR and PAR are regions where sexually antagonistic 

genes are located and are undergoing evolution (Oyama et al. 2010); (Charlesworth 2015); 

(Hough et al. 2014).  Nonetheless, little is known about the function (if any) of the repeat DNA 

and retrotransposons in hop.   

Our study identified a 1.3 Mb set of DNA scaffolds that appear to be unique to male hop 

accessions.  This DNA set contains a subset totaling18 Kb in length of DNA that were validated 

by lack of alignment from 385 female lines present in our GBS data set as well as alignments 

from 80% of the 117 males making up the GBS set.  The MSR (and putative SDR) identified 

herein provides a set of DNA useful for both the development of male markers for selection, and 

the exploration of markers related to sex that are shared among males and females.  It may be 

possible to use this region as a basis for identifying molecular mechanisms for sex determination 

as proposed by Zhang et al. (2008).  In addition, while several publications have cited the 

identification of “male markers” (Polley et al. 1997; Seefelder et al. 2000; Danilova and Karlov 

2006; Jakse et al. 2008; McAdam et al. 2013), most have been identified by means of 

segregating loci—meaning recombination with the X-chromosome.  A preferable marker system 

would be one utilizing a male marker located on the MSR of the Y-chromosome where no 

recombination occurs and marker evaluation could be a simple inexpensive PCR 

“presence/absence” of the marker. 

Divashuk et al. (2011) identified the long arms of both the X and Y-chromosomes as the PAR for 

hop sex chromosome.  It follows that the MSR we’ve identified would reside upon the short-

arms and potentially covers the centromere.  The cytogenetic research by Divushuck et. al (2011) 

identified the regions showing X-Y pairing to be external to the centromere.  Thus, linkage maps 

in Humulus species would not show markers from the MSR as one of the linkage groups but 

would only show markers present in the PAR.  Linkage maps are developed through genetic 
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marker data for loci segregating in the population.  Linkage distance between loci is calculated 

based upon the recombination rate in the population.  If X- and Y-chromosomes do not pair and 

undergo chiasma, no recombination will be possible.  Thus, only a portion of the long arms of 

the X- and Y-chromosome pair and undergo chiasma.  Those regions not pairing would be 

considered the MSR on the Y-chromosome while those regions that do pair, show recombination 

and are thus the PAR. 

 

3.4.2 Pseudo-autosomal Region (PAR) identification. 

The natural follow-up to identifying the MSR was to attempt to find sex-linked SNPs in the 

female genome assembly. The only linkage group in Henning et al (2015) that contained sex-

linked SNPs was also the clearly sex enriched linkage group, linkage group 4 (LG4) (Figure 2).  

Only LG4 contained GBS markers that were significantly associated with sex.  To explore this 

relationship further, SNPs hypothesized to be present within the PAR were identified by 

performing a mixed linear model (MLM) by using the TASSEL v5.21 GUI on the sexual 

phenotypes of all the GBS individuals previously mentioned. The SNPs were also tested against 

the Teamaker x 21422M linkage map (Henning et al. 2015). LG4 was statistically enriched for 

sex-associated SNPs and thus concluded to be the pseudo-autosomal region—presumably 

carrying alleles from the X and Y-chromosome (Figure 3.7.2).   

The identification of the PAR opens the door for further sex chromosome studies in Humulus. 

Humulus lupulus is in an advanced stage of sex chromosome evolution showing relatively small 

estimated PAR sizes compared to other dioecious plants with heterogametic sex chromosomes 

(Divashuk et al. 2011Divashuk et al. 2011). The size of Linkage group 4 after including genomic 

scaffolds is only 5Mb, however this number is much lower than expected due to the fragmented 

genome assembly. The nature of the genes within the PAR (Supplementary Table 3.6.1), in 

addition to the identification of cytogenetic markers, may pave the way for understanding the 

unusual distribution of sex determination in the Humulus genus. 

 

3.4.3 Sexually antagonistic selective genes. 



 

 

36 

In addition to observing an increase in pairwise diversity across the PAR, albeit missing the SDR 

genes, we also expect to observe genes acting in a sexually antagonistic fashion as we near the 

SDR boundary (Hough et al. 2014; Otto et al. 2011). To identify sexually antagonistic genes we 

first identified markers from the overall pool of all GBS markers that were > 95% homozygous 

in females and at least 50% heterozygous in males (Figure 3.7.3).  These markers were then 

scanned for flanking genes to identify genes located nearby with the presumption that they act as 

sexually antagonistic genes (Supplementary Table 3.6.2). 

Not every gene contains the ApeKi cutsites used by GBS; many genes did not even have the 

possibility of being identified in the previous analysis. To explore potentially excluded genes, the 

PAR (LG4) was also scanned for genes. These genes were then added to our list and are 

putatively sex-linked, but more specifically noted as PAR genes (Supplementary Table 1).  

Although some of the genes identified in this step showed homology to other plant species, most 

of the genes had unknown function, likely due to the lack of quality annotation for hop. 

Specialization occurring within this region could be particularly interesting to plant breeders. If 

there are genes associated with any of the flavoring components, favorable alleles should be 

fixed on males (on the haploid X chromosome). This sort of information would allow for a 

nearly guaranteed inheritance of a desirable allele by selection and utilization of male parental 

lines possessing the desirable alleles. These regions may also be of interest for genetic 

engineering.  If a locus is tightly linked to sex, the trait will recombine less frequently and show 

little change from parent to offspring. In particular, the WRKY1 transcription factor, known to 

be responsible for the last step of prenylation in the Xanthohumol pathway and involved in 

disease resistance (Majer et al. 2014), is located on LG4 (HL.SW.v1.0.G043711). Additionally a 

WRKY domain binding protein also exists on the PAR (HL.SW.v1.0.G020812). This further 

suggests female-specific specification occurring within the PAR. 

One of the sex-linked genes identified within the PAR region is annotated as Acetyl-CoA 

carboxylase 1 (Supplementary Table 1). This gene codes for a protein that helps catalyze the first 

step of the humulone biosynthesis pathway. Interestingly, humulone is a compound produced 

predominantly in females, with trace amounts being found in male flower. This suggests that 

there is some specialization occurring in the PAR involving the bitter acid biosynthesis. We then 

used the whole genome sequence alignments described earlier to try and identify a copy number 
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variation occurring within the genome. However, the results showed evidence of only one copy 

(Figure 3.7.4).  Interestingly, there was a sharp spike near the middle of the gene, showing 7 

copies in females, and 14 copies in males. We then took this gene and looked for conserved 

protein coding domains through InterProScan5.  

The peak at about 2000bp in Figure 3.7.4 corresponded perfectly with the biotin-lipoyl 

attachment domain, which is known to be critical for the function of Acetyl-CoA carboxylase 1 

(Russell and Guest 1991). This suggests that the biotin-lipoyl coding domain is either extremely 

important for male hops, or that the region is duplicated many times on the Y-chromosome—

potentially in the MSR. The latter has been observed in humans (Skaletsky et al. 2003) where 

there is a set of genes that are palindromic and high copy number. Although there is no direct 

evidence, the tight linkage of these genes with the male sex suggests it is near the MSR 

boundary. By further analyzing the gene family containing the biotin-lipoyl attachment domain, 

it may be possible to phylogenetically unravel the evolution of sex chromosomes in the 

Cannabaceae family. 
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3.5 CONCLUSION 

The work described in this study offer a beginning for the understanding of dioecy mechanisms 

in Humulus.  Unfortunately, the hop genome assembly is quite rudimentary and much of it is not 

assembled with only 1.8 Gb out of 2.7 Gb assembled and annotated  (http://hopbase.org/).  Most 

of the assembly resides around gene space with little or no information covering large repetitive 

regions that could potentially be responsible for gene regulation (Hill, unpublished data).  With 

this in mind, it follows that the MSR for the Y-chromosome would not be included in the current 

hop assembly due to the theoretical presence of large regions of repetitive DNA that cannot be 

assembled into scaffolds using current short-read, massively-parallel sequencing.  GBS data was 

obtained using these rudimentary genome assemblies and as such also are missing potentially a 

large number of SNPs and alignments that cover the whole genome. New attempts at sequencing 

using third generation sequencing technology are planned with the hope of covering the 

remaining genome and ultimately unraveling SDR and identifying sexually antagonistic genes. 

The results of this study, including the limited MSR and sex-linked genes, are available at 

http://resource-hopbase.cgrb.oregonstate.edu/HopBase/v1.0/IHS/.  
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3.6 TABLES 

Table 3.6.1, List of sex chromosome systems in Humulus lupulus 

 

Name Sex Chromosomes Description 

Winge XX/XY 2:1 X-Y size ratio 

New Winge XX/XY 1.25:1 X-Y size ratio 

Heteromorphic XX/XY Very small Y-chromosome 

Sinoto X-A-A-X/X-A-A-Y 14:12:10:7 XAAY size ratio 

New Sinoto X-A-A-X/X-A-A-Y 13:11:10:3 XAAY size ratio 

 

 

Table 3.6.2. List of hop accessions utilized for genotyping-by-sequencing (GBS) 

 

Type Males Females 

Unnamed Cultivars 72 119 

Named Cultivars 0 138 

Dwarf pop 27 64 

Downy Mildew pop 18 73 

Total 117 394 
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3.7 FIGURES 

Figure 3.7.1 Male and female flowers.  Male flowers (left) typically shed pollen prior to female 

flowers (right) are receptive for pollination. 

 

Figure 3.7.2 Manhattan plot of mixed linear model analysis from TASSEL 5.21 showing markers 

with significant association with sex (females coded as “0”, males coded as “1”).  Linkage group 

4 was saturated with highly significant markers for sex. 
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Figure 3.7.3 Sex linked markers found on LG4 from mapping population “Teamaker x 21422M” 

segregating for downy mildew resistance (Henning et al. 2015) as observed across the USDA-

ARS world collection of hop germplasm 
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Figure 3.7.4 Depth of read coverage across the gene space of Acetyl-CoA carboxylase 1 
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Chapter 4: Featureless RNA coding prediction with Deep Learning 
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4.1 ABSTRACT 

Differentiating protein-coding transcripts (mRNAs) from long intergenic noncoding RNAs 

(lincRNAs) is an area of growing interest in bioinformatics. LincRNAs have been shown to play 

an important role in gene regulation, however they are difficult to distinguish from classical 

mRNAs due to the presence of spurious sequences that bear similarity to open reading frames. 

Traditionally, lincRNA identification is performed by manually selecting features to consider 

during classification. This “feature engineering” leads to bias and poor performance on 

lincRNAs that are unusual. In the past year, natural language processing has made large strides 

by using deep neural networks and recurrent neural networks. Natural language and RNAs are 

both are represented by a sequence of characters; hence recurrent neural networks are a natural 

fit for analyzing RNA sequences. Here we present a coding prediction tool, DeepLinc, which 

uses recurrent neural networks with gated recurrent units (GRUs) for non-biased classification 

and modeling of lincRNAs and mRNAs. Neural nets bypass the bias introduced by manual 

feature selection. This is the first reported use of recurrent neural networks for DNA or RNA 

analysis. DeepLinc achieved state-of-the-art scores in accuracy in the classification of protein-

coding RNAs. It also distinguished unusual lincRNAs from mRNAs, previously difficult due to 

bias. Furthermore, DeepLinc allows for identification of novel sequence features that may be 

biologically important for distinguishing lincRNAs from mRNAs in the cell, and could shed new 

light on the process of translation.   
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4.2 INTRODUCTION 

The portfolio of features that distinguish coding transcripts (coding RNA sequences) from true 

noncoding transcripts is currently incomplete. By what physical mechanism do RNA sequences 

dictate whether or not it will be translated into a functional peptide or protein product? Some 

research groups have identified elements, such as the Kozak sequence and length of the open 

reading frame (ORF), to be important for translation in eukaryotes (Zur and Tuller 2013). 

However, these alone are insufficient for accurate RNA classification. Bioinformatics software 

cannot yet always unambiguously determine whether RNA encodes a protein based on sequence 

alone. Such ambiguity presents a problem for researchers trying to classify transcripts in 

organisms without extensive proteomic data (databases of real, observed protein and peptide 

sequences), and occasionally in well-annotated transcriptomes. For example, Wilhelm, et al. 

recently found 430 high quality peptides in massive proteomic data matching open reading 

frames (ORFs) from transcripts annotated as lincRNAs (Wilhelm et al. 2014). In addition, 

Calviello et al. discovered a number of actively translated ORFs in the annotated human ncRNA 

database. These examples suggest that prediction methods could be improved. 

One such program, which attempts to classify transcripts as either lincRNAs or mRNAs is 

Coding Potential Assessment Tool (CPAT). CPAT is among the newest software used in 

classification of protein coding genes (Wang et al. 2013). CPAT relies on a linear classification 

model using ORF coverage, ORF length, FICKETT score – which uses the combination of GC 

content and codon usage, and finally, Hexamer frequency. These features are thoroughly 

discussed in the CPAT publication. It is obvious that this set of features would struggle with 

extremely long lincRNAs, which may have a non-coding reading frame by chance, and short 

mRNAs that may contain a small ORF. 

Natural language processing (NLP) and biological sequence analysis have much in common. 

Both fields rely on standard algorithms such as edit distance, grammar parsing, and language 

modeling. However, the two fields often innovate independently of each other. Transcript 

classification and modeling is similar to sentence modeling in classification; therefore, NLP 

methods may be valuable for application to biological sequence analysis. Traditionally, sentence 
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classification has utilized bag-of-words (BOW) and n-gram models. BOW models can be simply 

a binary vector representing the presence or absence of words in a given vocabulary, or a vector 

of counts of the words. An n-gram model is equivalent to a k-mer model in bioinformatics, 

where a sentence of length n (or k) is the unit of analysis. That is, n-consecutive words are 

represented together. Often generative models such as Naïve Bayes (NB) or Hidden Markov 

Models (HMMs) are used with both representations. 

 

Beginning in 2014 however, higher order models began to gain popularity. The landmark 

publication of the field was Alex Graves’ dissertation, published in 2008 (Graves 2012). 

Recurrent neural networks with long short-term memory (LSTM) schemes couples with gradient 

learning began to gain popularity over more simple models such as Hidden Markov Models 

(HMMs) (Hochreiter and Schmidhuber 1997). These models are used for tasks such as machine 

translation, parts-of-speech tagging, sentiment analysis, and language modeling. Perhaps the 

most important invention was that of word embeddings. Word embeddings take a one-hot word 

vector, or a sparse vector in which each word has a unique vector of all zeros except in index i, 

where i represents the word, and converts them into a lower dimensional dense vector. The 

training of these embeddings allowed word vectors to have an idea of context. An important 

example involves using vector math with embedding vectors, “king” – “man” + “woman” ≈ 

“queen”. The combination of LSTMs and word embedding lead directly to state of the art 

accuracy in sentiment analysis and other sequence labeling tasks. 

In bioinformatics, we often also want to label and model sequences. Grammar parsing is used to 

predict RNA folding and protein structure prediction. Approaches for part of speech tagging are 

similar to gene finding. Finally, sentiment analysis is similar to transcript classification. 

Sentiment analysis performs nearly as well with character level models as with word embedding 

models. We can expect transcript classification to also succeed using character (nucleotide) level 

models. 

Although neural networks have been gaining popularity in bioinformatics, they are typically 

shallow networks using a convolutional layer instead of a multiplication layer. Recently, 

DeepBind has been developed as a general-purpose model used for detecting RNA – DNA 
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binding motifs in a sequence (Liu 2012; Bahdanau et al. 2014; Pennington et al. 2014; Dyer et al. 

2015). A model was trained for each motif with a single layer convolutional neural network to 

predict if a transcript would bind or not to a given DNA sequence. The authors then perturbed 

the DNA sequence through mutation, under the model that mutations that disrupt the score 

indicate information relevant to the binding motif. DeepSEA (Zhou and Troyanskaya 2015) used 

a similar idea to predict the effect of noncoding variants, that is, single nucleotide variation in the 

DNA sequence outside of translated gene regions. The authors train a convolutional neural 

network to predict the chromatin state of each noncoding sequence, and then perturb the model 

to identify the effect of a single SNP. This idea of training a model, and then perturbing the input 

data provides powerful means of understanding the high level features represented in a neural 

network model. Although HMMs have had much success with applications in bioinformatics, 

recurrent neural networks have not been frequently used in bioinformatics, and they have never 

been used at the nucleotide level. 
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4.3 RESULTS 

4.3.1 Network model. 

The DeepLinc model can be simply described a Recurrent Neural Network (RNN). However, the 

model has 3-layers, and the recurrent portion is layered through time. The network can be 

described as follows: 

 

𝑃(𝑠	 = 	𝑚𝑅𝑁𝐴	|	𝑠) 	= 	𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑁𝑁(𝐺𝑅𝑈(𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑠)))	

𝑆𝑐𝑜𝑟𝑒(𝑠	 = 	𝑚𝑅𝑁𝐴	|	𝑠) 	= 	𝑁𝑁(𝐺𝑅𝑈(𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑠))	

 

The embedding layer, or embedding, is a one-to-one mapping of a one-hot encoding of a 

transcript to a higher dimensional vector. This layer enables the model to learn more weights 

associated with each nucleotide. The embedding layer is followed by the recurrent layer, which 

is referred to as the GRU. 

A recurrent neural network (RNN) can be thought of as a conventional feed-forward neural 

network with some modifications that allow it to accept a variable-length sequence input and 

place a dependence on the concept of time. This is made possible by the presence of a recurrent 

hidden state whose output, sometimes called ”activation”, at each time depends on the previous 

time’s recurrent hidden state.  

The Gated Recurrent Unit (GRU) is a modification to recurrent neural networks that allows for 

the gradient to travel farther through time (Chung et al. 2014). The GRU computes the next 

hidden state, ℎ>?@, by interpolating between the candidate hidden state,	ℎ>, and the previous 

state, ℎ>A@ (Equation 1). Two “gates” control this interpolation, by scaling the contribution from 

the hidden and candidate hidden states. The first is an update gate, z, which directly controls the 

interpolation of the previous state and candidate state. The second “gate”, r, is a reset gate, which 

is used to compute the candidate hidden state by interpolating between the previous state and a 

set of network weights. Each portion of the gated recurrent unit has their own set of network 

weights that are shared through the time dimension. The final layer of the network is the 



 

 

50 

classification layer. It is simply a fully connected neural network, where the weights of the final 

hidden state in the RNN are fully connected to a single output. This output is put through a 

sigmoid activation function in order to represent the final output as a probability, ranging from 0 

to 1. The “score”, noted from here out, is simply the output before the activation function, it is 

bounded by 32-bit floating point precision between -19 and 19 and will more accurately 

represent changes in the networks prediction. 

 

𝑟> = 	𝜎(𝑊D𝑥> + 𝑈Dℎ>A@) 

𝑧> = 	𝜎(𝑊H𝑥> + 𝑈Hℎ>A@) 

ℎ> = tanh 𝑊M𝑥> + 𝑈M 𝑟>×ℎ>A@  

ℎ> = 1 − 𝑧> ×ℎ>A@ + 𝑧>×ℎ> 

𝑠> = 𝑊Pℎ> + 𝑏P 

𝑝> = 	𝜎 𝑠>  

 

Equation 1: Recurrent neural network with Gated Recurrent Units. Here the symbol “×” 

denotes element-wise multiplication. 

 

4.3.2 Training DeepLinc. 

For training, we developed a implementation strategy such that DeepLinc used equal sized 

samples of mRNAs and lincRNAs. Transcripts in the training set were required to be at most 

1000 nucleotides in length and the length distribution between mRNAs and lincRNAs must be as 

similar as possible. These restrictions force the model to learn something other than transcript 

length and enables to model to be trained efficiently (Figure 4.6.1). To train the models, a voting 

ensemble of five classifiers were trained using 10,000 randomly selected mRNAs and lincRNAs 

from the Ensembl human annotations v38 release 82. The testing and validation select were 
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sampled before training was sampled. The test set contained 200 transcripts of each class and the 

validation set contained 800 transcripts of each class. The model was trained with stochastic 

gradient descent using the ADAM update algorithm (Bottou 2010; Kingma and Ba 2014). 

 

4.3.3 State of the art accuracy – performance metrics. 

DeepLinc achieved a 6% improvement on true positive rate among human samples. While this 

may not seem like a large number, when accuracy is high, it becomes much more challenging to 

improve. Performance on mRNAs with short ORFs and lincRNAs with long ORFs improved 

drastically. This improvement is clearly seen in Table 4.5.1, as accuracy on mRNAs with short 

ORFs went from 11% (CPAT) to 80% (DeepLinc). DeepLinc also performed consistently, 

almost every individual model in the ensemble outperformed CPAT. 

DeepLinc has diminished performance on other organisms when trained on humans. This can be 

expected to some degree since different species have differences in codon usage, and other 

sequence features that may affect accuracy. One of the fundamental assumptions of machine 

learning models is that the training and test datasets are independently and identically distributed. 

Deep learning models are sensitive to very minute differences between datasets, and the rules for 

translation may change quite a bit among organisms. However, these types of models were 

designed for use on larger datasets, and a linear or rule-based model would be much better for 

any non-model organism. 

 

4.3.4 Model learns length. 

Early on during development of the DeepLinc implementation, it was apparent that the model 

had learned that longer transcripts were mRNAs and shorter transcripts were lincRNAs (Figure 

4.6.1). While this may seem remarkable considering that DeepLinc was only trained on 

sequences shorter than 1000 nucleotides and there is a true difference between mRNAs and 

lincRNAs, there is a significant variation of lengths between the two classes of transcripts even 

when restricted to 1000 nucleotides or less. The model could represent this difference by simply 

scaling all of weights in the model down. This sort of transformation would favor longer 
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sequences to be classified as mRNAs. Since learning length as a feature could bias classification 

toward longer sequences, the length normalization during training must be enforced. Length 

normalization improved the classifiers accuracy on the test set for sequences of varying lengths. 

 

4.3.5 Interpreting DeepLinc. 

In order to interpret what the DeepLinc model is “thinking” while reading a sequence, we 

computed the score at each position during prediction. We selected transcript ENST000379359 

for its compact length, presence of a single open reading frame, and the fact that it was in our 

testing set. By mutating individual features of the transcript, we can ask the model what opinion 

it has on different mutations. While no individual mutation lowered the score enough for the 

model to think the transcript was a lincRNA, it clearly has a brief dip in score for each of the 

major mutations added. To investigate this further, we systematically mutated every base in the 

transcript to each other possible base. 

 

4.3.6 Model learns the reading frame. 

The mutations that decrease the score the most both introduce an in-frame stop codon near the 

second methionine codon. In addition, mutations occurring after the true stop codon and before 

the initial start codon appear to have little effect on the score of the transcript. After applying one 

of the mutations, the stability of the transcript decreases drastically, after applying the second 

mutation; the transcript is no longer predicted to be an mRNA.    

 

4.3.7 Shuffling Analysis. 

To measure the effect of different mRNA regions on coding score, we shuffled different parts of 

10,000 mRNAs in the 5’ UTR, CDS, 3’ UTR, 5’ UTR + CDS, 3’ UTR + CDS, and 5’ UTR + 3’ 

UTR. We compared this to a background model of a randomly shuffled mRNAs. The model is 

clearly more sensitive to the shuffling of the whole sequence than any of the individual parts of 
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the transcript. However, shuffling a single UTR along with the CDS has a higher impact than 

shuffling the entire sequence (Table 4.5.2). 

 

4.3.8 Computational performance. 

In order for DeepLinc to be useful, the model must scale well to longer sequences and larger 

datasets. A prediction from an RNN can be done in linear time O(n), where n is the length of the 

transcript. In addition, the use of a graphics processing unit (GPU) speeds up the matrix 

multiplication by more than 100 fold. This allows the model to perform each multiplication in 

parallel, placing the upper bound of performance purely on the length of the transcript. In 

addition, prediction can be done in batches, further parallelizing the predictions. Batches can be 

scaled until the VRAM is entirely used on the hardware being used. For the purposes of our 

experiments, all predictions and training were done on two NVIDIA GeForce 980s  
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4.4 METHODS 

4.4.1 Network description. 

The DeepLinc model was implemented using Passage 

(https://github.com/IndicoDataSolutions/Passage), a recurrent neural network library built on top 

of the expression language, Theano (Team et al. 2016). For input, the DeepLinc accepts a 

sequence of indices, corresponding to sparse one-hot vectors where A = 1, T = 2, C = 3, G = 4, 

N=0. In this case, the zero-vector is used to represent a no-op. It can be used to train in batches 

with variable length transcripts. These vectors are transformed by the embedding layer into a 256 

dimensional sparse vector. Finally, these vectors are passed into the recurrent layer. The 

recurrent layer is a gated recurrent unit with a hard-sigmoid inner activation (gate 

transformation) and a tanh outer activation. To get the final score and coding probability, the 

hidden state within the GRU is passed into a fully connected neural network. The score is given 

by the output of this linear equation, and the coding probability is given by the sigmoid 

activation applied to the score (Equation 1). The output of each layer passed through a dropout 

layer, which randomly chooses to ignore (replace with a 0) certain network weights. Dropout has 

been shown to reduce overfitting (Srivastava et al. 2014). 

 

4.4.2 Network parameter selection. 

For hyper parameter tuning, each model was trained for 30 epochs on the same dataset. We 

optimized the following parameters:  

• Embedding layer size, s ∈ [5, 12, 128, 256, 512]  

• Size of hidden layer, h ∈ [64, 128, 256, 512, 1024]  

• Dropout probability, pd ∈ [0.1, 0.2, 0.3, 0.4, 0.5]  

 

After many days of training each model, we found the best results were:  
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• Embedding layer size, 256  

• Size of hidden layer, 512  

• Dropout probability, 0.4  

 

In particular, we observed that the sizes of the embedding and hidden layers would do no better 

or would decrease in performance from the values we have selected. Dropout values lower than 

0.2 would often not converge, however in some cases they performed well. A dropout 

probability value of 0.4 had the best accuracy on the test set while maintaining time to 

convergence and train accuracy.  

 

4.4.3 Training – Dropout, mini-batches, updater. 

During full training, each model was trained for 100 epochs. The model was then evaluated 

against a small subset of the test set, called the validation set, in order to evaluate the model after 

various epochs. The model with the best accuracy was kept. Mini-batches of size 32 were used 

during training. Although larger mini-batches can speed-up the computational performance, they 

also increase the bias of the model. The ADAM update rule was used during stochastic gradient 

descent (Bottou 2010; Kingma and Ba 2014).  

 

4.4.4 Performance for different sized datasets. 

To understand how much data was needed for good performance, we evaluated the model on 

datasets of size 1000, 2500, 5000, and 10000. Large datasets performed better in general 

compared to smaller datasets. This aligns with common machine learning theory. To learn a high 

dimensional representation, the model needs large amounts of data (Table 4.5.3).  

 

4.4.5 Pre-training evaluation. 
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If DeepLinc is going to be useful for genome annotation, either there must be a way to 

incorporate outside datasets or useful features must be extracted from the model. To circumvent 

the curse of dimensionality on the Zebrafish dataset, we pre-trained the model using the weights 

from the best Human model. After loading these weights, training continued for 20 epochs using 

Zebrafish data. The result did not improve accuracy, however it did find a better balance between 

true positive and true negative rate (81% and 82%). Although the performance on zebrafish 

using pre-training alone is poor, accuracy greatly improves when the score from DeepLinc is 

used as a feature in the logistic regression classifier. In order to effectively evaluate this, we 

trained the logistical regression classifier on the test set for Zebrafish, holding out an additional 

800 transcripts to be used when testing the logistic regression classifier. It is important to 

consider that the classifier was only trained seeing 800 transcripts in both instances, as this could 

account for the poor accuracy using logistic regression. Accuracy without using DeepLinc’s 

score as a feature (DLScore) is 83.5%, accuracy when using DLscore is 87.7% 

 

4.4.6 K-mers analysis. 

K-mer models correspond to using a k-sized window of nucleotides instead of single nucleotides. 

These types of models are useful when you need to capture contextual information within your 

model, and they are a staple in traditional lincRNAs classification. However, recurrent models 

handle this with the way the model is constructed itself. The hidden state captures the relevant 

contextual information. Without surprise, the model performed worse on 3-mers and 6-mers than 

it did on single nucleotides. 

 

4.4.7 Ensembling. 

The stochastic nature of training neural networks lends favorably to ensembling. An easy way to 

improve a model is to build a small voting-ensemble of slightly different models. To do this, you 

simply train several models and when making predictions choose the class label which had the 

majority of votes. Ensembling the DeepLinc model increased the accuracy from roughly 90% to 
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93%. We also explored ensembling up to 20 classifiers. The results peak at about 94% accuracy 

with an ensemble size of five.  

 

5.1 DISCUSSION  

Transcript classification is perhaps the simplest use of recurrent neural networks in 

bioinformatics. Recurrent neural networks are a natural fit for sequence analysis. Similar to how 

we read a sentence or spell words, the RNN-based models look at the sequence throughout the 

time dimension. The success of DeepLinc can be used as a model for other applications of 

recurrent neural networks, both in discriminative and generative contexts. While this paper 

explores using RNNs as a discriminative classifier, much work has been done using them as a 

generative model. In particular, adversarial generative networks have been gaining much 

popularity (Goodfellow et al. 2014; Radford et al. 2015). 

Discriminative versions of RNNs can also be used for sequence-to-sequence learning. This is a 

natural fit for ab initio gene finding. It is easy to imagine a model which simply takes in a genic 

region, and outputs a sequence of equal length labeling each nucleotide with exon, intron, UTR, 

or intergenic. A natural follow-up to the transcript classification done in this paper would be to 

try and classify mRNAs based on their functional annotation. The underlying model would 

represent features that discriminate the different functional classes. Taking this even further, 

sequences of these transcript vectors could be used to model time course gene expression.  

Although DeepLinc achieves state of the art accuracy on our human test dataset, most organisms, 

including model organisms, lack the quality and quantity of data to make deep learning viable as 

a stand-alone classifier. We have shown that combining deep learning with a logistic regression 

classifier can help improve this performance – even in the presence of limited data. Although we 

trained the two models separately, it is also possible to train this sort of network end-to-end, 

using the standard CPAT features combined with the score from DeepLinc to produce a final 

classification module as the last layer of the network. 

In addition, CPAT is not designed to explore new features for transcript classification. To 

circumvent this, we have put together a python package based loosely on CPAT. The software 
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contains both a command-line front end with pre-trained models, and a programmatic backend 

for adding new features to the classifier. This model could be combined with downstream work 

to further interpret the models produced by DeepLinc. 

While this work used recurrent neural network models that are commonly used by data scientists, 

their use in practice is rarely applied to something as long as an RNA transcript. The long-term 

dependency problem, while solved in some settings, could still cause problems for something as 

long as transcripts (Hochreiter and Schmidhuber 1997). The computational performance is 

bounded by the length of the transcript, and parallelism is mostly lost when working on a single 

long transcript. Future work should be done to explore more efficient ways to train and use 

RNNs for very long sequences. 
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4.5 TABLES 

Table 4.5.1: Performance of DeepLinc and CPAT on different datasets when trained on 

Human. 

Test Set DeepLinc Accuracy CPAT Accuracy 

Human mRNAs 0.931 0.873 

Human lincRNAs 0.949 0.943 

Human mRNAs with short ORFs 0.805 0.111 

Human lincRNAs with long ORFs 0.837 0.91 

Mouse mRNAs trained on Human 0.917 0.951 

Mouse lincRNAs trained on Human 0.814 0.915 

Zebrafish mRNAs trained on Human 0.93 0.845 

Zebrafish LincRNAs trained on Human 0.62 0.915 

 

Table 4.5.2: Results of shuffling different parts of mRNAs. 

 

Mean Median Std Z-score 

AllBases -9.806693702 -10.55759062 5.300471231 -1.850155066 

CDS -11.38982757 -11.85603901 6.335669261 -1.797730768 

CDS+3'UTR -11.95715383 -12.42043036 6.038115398 -1.980279117 

5'UTR+CDS -11.2854429 -11.74899201 6.184087012 -1.824916577 

3'UTR -0.904051686 -0.6787737 2.580438923 -0.350348027 

5'UTR+3'UTR -0.66165051 -0.379995 3.251621147 -0.203483272 



 

 

60 

5'UTR -0.096465968 0 2.735610334 -0.035263051 

Table 4.5.3 Accuracy based on dataset size. 

Training Size (per 

class) Accuracy 

1000 0.565 

2500 0.8075 

5000 0.84 

10000 0.92 

 

Table 4.5.4 Model accuracy when using K-mers. 

Size of k-mers mRNA Accuracy lincRNA Accuracy 

k = 1 0.88 0.92 

k = 3 0.85 0.83 

k = 6 0.75 0.76 
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4.6 FIGURES 

4.6.1 DeepLinc’s accuracy as a function of transcript length. 
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4.6.2 DeepLinc converges on both training and testing set. 
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4.6.3 DeepLinc predicts in linear time with respect to transcript length. 
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Chapter 5: General Conclusions 

In this thesis there are three main contributions to the scientific community. A draft hop genome 

was produced, along with an annotation for two different cultivars. A web resource is now 

available for scientists interested in working on hop. Using these resources, we showed the 

ability to data mine and interpret previously unknown biology. For the first time, the hop sex 

chromosomes were characterized at the genomic level. 

In addition, we provide a new form of transcript annotation. Recurrent Neural Networks have not 

yet been used in any annotation context. By using them on a relatively simple task, we show the 

power and natural ability of these models to operate on genomic and transcriptomic sequences. It 

is possible not only to use the models as we have, but also to interpret these models and gain 

biological insight. Although we provided an annotation for putative hop protein coding genes, 

not a single lincRNA is characterized. By using the random forest classifier we presented in 

chapter 4, it is possible to bootstrap a method of lincRNA annotation when no such data exists. 

We propose the following process for hop: 

1) Identify the "obvious" lincRNAs. These are transcripts with very short ORFs (less than 

50 amino acids), no homology to known protein coding domains, and no homology to 

known plant proteins. 

2) Train a classifier to predict mRNAs and lincRNAs using the now annotated mRNAs with 

the features, Hexamer frequency, and Fickett score.  

3) Make predictions on the remaining transcripts with know known protein coding domain 

or homology to plant proteins. Use a very conservative threshold for predicting lincRNAs 

4) Bootstrap steps 1-3 until a reasonably sized dataset is achieved (See chapter 4 for details), 

and train a DeepLinc model. Finally, use DeepLinc to predict the remaining unannotated 

putative noncoding RNAs.  

With the conclusion of this work, a framework is in place for more sophisticated sequencing 

technologies. HopBase will function with any genome provided, with any future update to the 

assembly, including a new cultivar or a more complete assembly, the website's functionality will 

stay the same. 
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