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Frequency synthesizers are critical components of all communication systems. This 

thesis considers the issue of undesirable frequency spurs of a relatively recent type of 

frequency synthesis architecture called digital-to-time conversion (DTC). The DTC-

based frequency synthesis architecture has important performance benefits over older 

frequency synthesizers, such as fast frequency switching, large frequency range and 

fine frequency resolution. A DTC-based frequency synthesizer requires less power 

than a traditional direct synthesis based synthesizer with comparable frequency range, 

resolution and switching time. The DTC architecture is also easily scalable to newer 

low-cost digital complementary metal-oxide-semiconductor (CMOS) integrated circuit 

(IC) fabrication technologies. However, the DTC architecture suffers from an 

important undesirable characteristic: sub-harmonic spurious tones, hereafter, referred 

to as spurs. Spurs have undesirable effects in both the transmitter and the receiver. In a 

transmitter, spurs create an out-of-band emission of power that may breach the 

spectral emission mask set by regulatory agencies to enable co-existence of multiple 

transmitters in a crowded frequency spectrum. In a receiver, an inopportune-located 

spur in the local oscillator (LO) signal can mix an out-of-band strong interfering signal 

into the baseband on top of a mixed-down weak desirable signal. Unlike harmonic 

spurs that are known to be at multiples of the carrier frequency, sub-harmonic spurs 



 

 

 

 

 

 

are especially problematic as they have been difficult to predict as part of the design 

process. In fact, the spur patterns for most pairs of closely placed desired output 

frequencies for a DTC-based frequency synthesizer are seemingly unrelated. While 

one output frequency setting might have an output spectrum with only a few spurs, 

many other close-by output frequency settings might have output spectra with many 

weaker spurs. 

The primary contribution of this thesis is the development of spur creation models 

and analysis tools that can predict spur spectrum and spur power levels for a DTC-

based frequency synthesizer. This is an important contribution for assuring achievable 

performance of frequency synthesizer during the design process. The modeling 

approach has been successful in accounting of more than 99% of spur spectral 

locations. Predicted power levels for more than 95% are within 10 dB of actual 

fabricated DTC-based frequency synthesizer ICs. The results developed in this thesis 

allow for an understanding of the relationship between spur patterns for different 

selected output frequencies. 

In the research reported in this thesis, the spur spectrum for a selected output 

frequency is shown to be due to periodic occurrences of errors in the locations of 

rising and falling edges of the output signal. Error sequences for different selected 

output frequencies are shown to be related in a way that can be exploited by 

application of the axis-scaling property of the Discrete Fourier Transform (DFT). The 

axis-scaling property of the DFT relates the transforms of two sets of sequences that 

are predictably permutated versions of each other. Their respective transforms are also 

(differently) permutated versions of each other. One key insight made in this thesis is 

the discovery that the time-domain errors for all output frequencies can be classified 

into a very small number of error sequence classes. All error sequences within a class 

are shown to be predictable permutations of each other. This insight along with the 

DFT axis-scaling property permits the respective spur spectra to be classified into 

error spectra classes. All error spectra within a spur spectra class are predictable 

permutations of each other. There are two sources of edge errors: quantization error 



 

 

 

 

 

and buffer delay errors. This classification of spur spectra to a few classes is shown to 

be possible for both sources of errors. In this thesis, the case of quantization-only error 

is considered first. The analysis is then extended to the case when both sources of 

error are present. 

As a result of the modeling and analytical techniques developed for  spur spectra 

classification described in this thesis, design tools have been created to predict the 

spur spectra of DTC-based synthesizer designs for all possible selected output 

frequencies. 
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Modeling and Analysis of Spur Structure of Digital-to-Time Conversion 
Based Frequency Synthesizers 

Introduction and Overview 

Frequency synthesizers are critical components of all communication systems. A 

frequency synthesizer generates the local oscillator (LO) signal used by mixers to up-

convert a baseband signal in a transmitter and down-convert the RF signal to baseband in 

a receiver. Synthesizers also supply the clock signal that runs the digital systems. 

There are two types of frequency synthesizer architectures: indirect and direct. The 

indirect architecture has a feedback loop such as a phase locked loop (PLL). Traditional 

direct frequency synthesis uses a phase counter, a sine look-up table and a digital-to­

analog (DAC) converter. This thesis considers the issue of undesirable frequency spurs of 

a relatively recent type of direct frequency synthesis architecture called digital-to-time 

conversion (DTC). The DTC-based frequency synthesis architecture has important 

performance benefits over older frequency synthesizers, such as fast frequency switching, 

large frequency range and high frequency resolution. A DTC-based frequency 

synthesizer requires less power than a traditional direct synthesis based synthesizer with 

comparable frequency range, resolution and switching time. The DTC architecture is also 

easily scalable to newer low-cost digital complementary metal-oxide-semiconductor 

(CMOS) integrated circuit (IC) fabrication technologies. However, the DTC architecture 

suffers from an important undesirable characteristic: sub-harmonic spurious tones 

hereafter referred as spurs. Spurs have undesirable effects in both the transmitter and the 

receiver. For a transmitter, spurs create an out-of-band emission of power that may 

breach the spectral emission mask set by regulatory agencies to enable co-existence of 

multiple transmitters in a crowded frequency spectrum. In a receiver, an inopportune 

located spur in the LO signal can mix an out-of-band strong interfering signal into the 

baseband on top of a mixed-down weak desirable signal. Unlike harmonic spurs that are 

known to be at multiples of the carrier frequency, sub-harmonic spurs are especially 

problematic as they have been difficult to predict as part of the design process. In fact, the 

spur patterns for most pairs of closely placed settings of output frequency for a DTC-

based frequency synthesizer are seemingly unrelated. The DTC synthesizer output 
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frequency selected output frequency is controlled by a digital word. The control words 

for neighboring output frequencies differ from each other by as little as one least 

significant bit (LSB). It is quite possible to find a setting of output frequency that has a 

few spurs in its output spectrum whereas the neighboring setting of output frequency 

differing by only the LSB has a spectrum with more spurs. 

In the research reported in this thesis, the spur spectrum for a selected output frequency 

is due to periodic occurrences of errors in the locations of rising and falling edges of the 

output signal. Error sequences for different selected output frequencies are shown to be 

related in a way that can be exploited by application of the axis-scaling property of the 

Discrete Fourier Transform (DFT). The axis-scaling property of the DFT relates the 

transforms of two sets of sequences that are predictable permutations of each other. Their 

respective transforms are also (differently) systematic permutations of each other. One 

key insight is that the time-domain errors for all output frequencies can be classified into 

a very small number of error sequence classes. All error sequences within a class are 

shown to be systematically re-arranged (permutated) versions of each other. This insight 

along with the DFT axis-scaling property permits the respective spur spectra to be 

classified into a small number of spur spectra classes. All spur spectra within a class are 

shown to be systematically re-arranged (permutated) and amplitude-scaled versions of 

each other. There are two sources of edge errors: quantization error and buffer delay 

errors. This classification of spur spectra to a few error spectra classes is shown to be 

possible for both sources of errors. In this thesis, the case of quantization errors is 

considered first. The analysis is then extended to the case when both sources of errors are 

present. 

One may form a set of ‘principal’ error sequences by choosing one member sequence 

from each of the error sequence classes. For any output frequency setting, the error 

sequence is guaranteed to be a permutation of exactly one sequence from the principal 

error sequence set. The idea of ‘principal’ error sequences can be extended to the 

frequency domain using the DFT axis-scaling property. One may form a set of ‘principal’ 

spur spectra by choosing one member spur spectrum from each of the spur spectra 
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classes. Spur spectra related with all output frequency settings are guaranteed to be 

amplitude-scaled permutations of exactly one spur spectrum from the principal spur 

spectrum set. The characterization of spur spectra in terms of worst spurs associated with 

every output frequency can be completely accomplished by considering only the spur 

spectra in the principal set. 

Consider an example of a DTC synthesizer that uses a 32-bit frequency control word. 

This means that there are 232, that is, over 4 billion different possible output frequencies. 

Each of these over 4 billion output frequency settings has an associated spur pattern of 

undesirable tones that are present in the spectrum in addition to the desired tone. For this 

synthesizer there is a principal spur spectrum set with only 32 spur spectra. The spur 

technique developed in this thesis enables the entire set of spur patterns for any frequency 

setting to be completely characterized by this principal set of 32 spur spectra.  

An important tool in this analysis is the axis-scaling property of the Discrete Fourier 

Transform (DFT). This property of the DFT is the analogue of the time-frequency axis-

scaling property of continuous-time Fourier Transform. The main contributions of this 

thesis are: 

i)  the modeling of the spurs of DTC-based frequency synthesizers that 

permits the application of the DFT axis-scaling property; and 

ii) the recognition that error sequence for every output frequency setting is a 

permutation of one of a small set of principal error sequences. 

1.1 Overview of Frequency Synthesizer Types 

The goal of a frequency synthesizer is to generate a desired output frequency signal 

given a reference input frequency signal and a frequency control word. Important 

performance metrics of frequency synthesizers include: frequency range, frequency 

resolution, settling time (when changing the output frequency), spectral purity (spur 

mitigation) and stability. Also important, especially for mobile communication systems, 

is the ease of design integration and battery power drain. 
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Various frequency synthesis methods can be classified in the broad hierarchy 

according to references [1.1] and [1.2] as shown in Figure 1.1. 

Incoherent frequency synthesis is primarily an analog technique and is therefore not 

found in digital design literature. An example of incoherent frequency synthesis is 

described in [1.1]. The incoherent frequency synthesis architecture uses multiple 

reference frequencies (such as multiple crystal oscillators) to generate the desired output 

frequency (using combination of frequency division, band pass filtering and mixing to 

generate a desired output frequency). 

Digital design literature (see [1.1] – [1.5] for example) focuses only on the coherent 

frequency synthesis class. The main difference between incoherent and coherent 

synthesis is the number of frequency references used in the synthesis process. While 

multiple references are used in the incoherent synthesis approach, only one reference 

source is used in the coherent synthesis approach. 

Incoherent Coherent 

Frequency 
Synthesizers 

Indirect Direct 

Analog PLL 
Digital to Time Conversion 
Direct Dig Synthesis 

Digital PLL 
Fractional-N 

subject of this thesis 

Figure 1.1 Frequency synthesizer types 



 

 

 

 

 

5 

The class of coherent synthesizers can be further divided into indirect and direct types. 

Indirect coherent synthesizers typically have a phase locked loop (PLL) architecture. 

Important components of a PLL include a phase detector, loop filter, a voltage controlled 

oscillator (VCO) and a frequency divider in the feedback path. The subject of PLL is very 

mature and has been treated in detail in [1.1], [1.3], and [1.4]. Fractional–N synthesizers 

were designed to overcome the limitation of frequency resolution in an integer-N only 

divider [1.5]. Delta-sigma based fractional–N synthesis addresses the noise produced by 

the switching of the divider values [1.6]. All the components in analog PLLs are 

implemented in analog circuits. In digital PLLs the phase detector and the loop filter are 

implemented in digital circuits. A digital VCO (DCO) implements the tuning components 

of the VCO in discrete values instead of using a continuously variable capacitor 

(varactor) as used in analog VCOs [1.7]. Recent papers indicate a drive toward all digital 

PLL (ADPLL) [1.8]. The less expensive and more compact integration available through 

CMOS technology is the main reason for this drive to all digital implementation. Finally, 

the class of direct coherent synthesizers includes the basic architecture called direct 

digital synthesis (DDS) first described in [1.9]. The DDS architecture runs an 

accumulator that essentially integrates the instantaneous frequency samples to produce 

the instantaneous phase samples, as shown in Figure 1.2. 

Figure 1.2 Block diagram of a direct digital synthesizer (DDS) as in [1.9] 

The phase samples then go through a look up table (LUT) implemented with a read-

only memory (ROM) to obtain the sine value of the instantaneous phase. The output 
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value of the ROM is applied to a digital to analog converter (DAC) to produce the 

sampled-and-held analog version of the sinusoidal waveform of the desired frequency. 

The LUT operation generally includes phase truncation (to allow for a practical size 

LUT). This truncation gives rise to spurious tones in the DDS output. This has been 

analyzed in [1.10]. Several methods for size reduction, or complete elimination, of the 

ROM using efficient computation of the sine value have been proposed in [1.11] and 

[1.12]. 

1.1.1 Synthesizer Performance Comparison 

Table 1.1 provides a subjective performance comparison summarized by the author 

of this thesis. The comparison is based on the frequency synthesizer architectures from 

[1.5], [1.15], [1.16], [1.17] and [1.18]. The DDS architecture offers two important 

advantages over the PLL based methods: fast switching and wide frequency range. The 

primary drawback of DDS architecture is the higher power consumption by all the digital 

blocks that operate at a high clock frequency. All PLL based methods allow for a trade-

off between signal purity and speed of switching by controlling the bandwidth of the loop 

filter. Integer-N based PLLs have a limited frequency resolution compared to fractional-N 

based PLLs. On the other hand, fractional–N based methods suffer from the issue of 

fractional spurs that are generated due to the modulation of the changing divider ratio. 

VCOs generally have limited frequency ranges (a maximum of an octave of frequency). 

This makes all the indirect frequency synthesis approaches limited in their range 

compared to direct synthesis approaches. 

The subject of this thesis, digital-to-time conversion (DTC) architecture, is also a 

direct synthesis method. The DTC architecture offers the following advantages as that of 

the DDS architecture: wide frequency range, high precision and extremely fast frequency 

switching (within few cycles of the output frequency). In addition, it overcomes the 

important limitation of the higher power drain of a DDS system. DTC architecture also 

offers simplified integration since most of the design can be easily integrated in a 

standard digital CMOS process. With newer silicon fabrication technologies, the supply 
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voltages are reduced as the devices become faster. For analog circuits that use the voltage 

domain  

Table 1.1 Comparison of frequency synthesizer architectures 

PLL 

Integer – N 

PLL 

Frac – N 

DDS DTC 

Range - - + + 

Resolution - + + + 

Settling Time - - + + 

Spectral Purity + + - -

Direct Modulation - + + + 

Portability across 

Fabrication Technologies 
+ + 

for encoding information, decreasing the supply voltages will reduce the signal swing 

creating an impediment to scalability. The DTC architecture is, however, uniquely 

qualified for scaling to newer digital technologies. The information in a DTC architecture 

is encoded by the location of output signal edges rather than by the absolute voltage 

swing. With the faster devices that become available with newer technologies, the 

temporal edge location placement resolution increases. This time domain signal 

processing [1.13] aspect of the DTC makes it very scalable to newer CMOS technologies. 

DTC, however, suffers from the problem of the presence of spurious frequencies in the 

output due to the presence of time domain edge placement error or jitter. The main results 
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of this thesis are to model and analytically predict the structure of the spur spectra of 

DTC synthesizers. 

As the advantages of the DTC architecture become better known, it is evolving 

from experimental ICs to actual product use. Motorola and Texas Instruments both have 

products that make use of the DTC architecture. These are reported in [1.14] and [1.15] 

respectively. 

1.1.2 Synthesizer State of Art 

Table 1.2 provides illustrative comparison of the various frequency synthesizer 

architectures from the indicated references. The three synthesizers represented in this 

comparison are chosen for roughly comparable frequency range specifications. 

Table 1.2 Illustrative comparison of some recent synthesizer literature 

Ref. [1.16] Ref. [1.17] Ref. [1.14] 

Power (mW) 46.98 4700 120 

Freq Range (MHz) 5870-6370 <1 – 2500 100-4000 

Resolution (KHz) Not available 76.2 0.06 

Settling time (ms) 8.7 < 0.001 0.1 

Technology CMOS 180 nm SiGe 130 nm CMOS 90 nm 

Spurious Free Dynamic 

Range (SFDR) (dB) 

-61 -38 -45 

Area (mm2) 3.24 7.5 1.03 

Year 2009 2009 2010 

Architecture  Frac-N DDS, 24b Acc, 

10b DAC 

DTC 



 

 

 

 

 

9 

1.2 DTC Example 

We now describe the digital-to-time conversion (DTC) synthesis architecture using a 

simple example. Figure 1.3 shows a series of four delays, each with a delay d. They are 

fed with a reference signal with period TREF ( = 1/FREF). The delay d is related to the 

reference period as d = TREF / 4 so that the output of delay 4 coincides with the input of 

the delay line. 

Figure 1.3 Delay line (DL) with four ideal buffers 

Within each reference period, there are four rising edges that are available to trigger 

some event. The delay line can now be combined with a pair of multiplexers (MUXs) 

with control signals CS and CR and a S-R (set-reset) flip flop (FF) shown in Figure 1.4. 
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Figure 1.4 Delay line with MUX controls to create output period T=(3/2) x TREF 
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The multiplexer control signals CS and CR are controlled by the tap selector logic. The 

tap selector block is a digital block having two inputs: the reference frequency signal and 

a digital frequency control word T/TREF. In this example, the frequency control word is 

equal to 3/2 so that the desired output period is T = (3/2) x TREF. Based on the frequency 

control word, the tap selector logic generates the multiplexer control waveforms shown in 

the figure. The multiplexers route rising edges of the appropriate reference waveform to 

the set or reset inputs of the S-R FF in order to generate either a rising or a falling edge in 

the output signal. 

1.3 Motivation to Analytically Understand DTC Spurs 

Note, in the example above, that, different rising and falling edges in the output are 

derived from various delay elements in the delay line. An error in the edge location of a 

delay output signal will show up in the corresponding edge location in the output 

waveform. It can be shown that the delay choices are made in a periodic fashion (subject 

of chapters 3 and 4). This periodicity in the choice of multiplexer control signal causes 

the edge errors to appear periodically in the output waveform. This periodic error in the 

output causes undesirable spurious tones, or simply spurs, to be present in the output 

spectrum. The next four figures show actual measured spectra for four different settings 

of output frequencies generated by an experimental DTC synthesizer for a reference 

frequency of 1 GHz. The four output frequencies are F1 = 763 MHz in Figure 1.5, F2 = 

780 MHz in Figure 1.6, F3 = 790 MHz in Figure 1.7 and F4 = 800 MHz in Figure 1.8. All 

four figures have the same settings with an analog spectral analysis span of 1 GHz from 

550 MHz to 1550 MHz. It can be observed that the spur patterns for the four output 

frequencies have no observable relationship to each other in terms of the locations of the 

spurs and their amplitudes. 
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Figure 1.5 DTC spectrum: Output frequency 763 MHz (FREF = 1 GHz) 

Figure 1.6 DTC spectrum: Output frequency 780 MHz (FREF = 1 GHz) 
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Figure 1.7 DTC spectrum: Output frequency 790 MHz (FREF = 1 GHz) 

Figure 1.8 DTC spectrum: Output frequency 800 MHz (FREF = 1 GHz) 
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This thesis answers the following question: do we need to measure the spurs at every 

possible output frequency setting in order to come up with the worst spur magnitude and 

location for the synthesizer? If the answer to the above question is ‘yes’, then it will be a 

prohibitively large task to make such measurements. As a result of the contributions of 

this thesis, the answer is ‘no’. There is a rich structure among the spur patterns for 

different output frequencies that allows us to determine spur patterns for any output 

frequency by determining a principal set of spur spectra. Moreover, the determination of 

a principal set of spur spectra can be done analytically for the spurs due to quantization 

errors. Results show that more than 99% of the spur locations can be predicted correctly 

and more than 95% of the spur power levels are within 10 dB of their predicted value. 

1.4 Key Property of DFT Axis-Scaling 

The key to modeling the structure of the DTC spur spectra and levels is aided by the 

application of the axis-scaling property of the Discrete Fourier Transform. This property 

of the DFT is the discrete analogue to the more familiar continuous time/frequency axis-

scaling property, namely, if a continuous-time signal is stretched by an arbitrary scaling 

factor in the time domain, then its Fourier Transform (FT) is compressed by the same 

factor (or stretched by the reciprocal of the time-axis stretch factor) in the frequency 

domain. The notion of stretching or compressing the time axis in the case of a 

continuous-time function translates to a permutation of samples in the case of discrete 

samples. Unlike the continuous-time case, however, in the case of discrete samples there 

is a limitation on the stretch factor to be an integer that is relatively prime with the length 

of the sequence. Two integers a and b are relatively prime if they have no common 

factors, that is, if gcd(a, b) = 1. It is shown in this thesis that the DTC error sequences 

satisfy these requirements. Therefore, time domain errors for different desired output 

frequencies are related to each other via discrete ‘stretching’ (or ‘compressing’). 

Consequently, the frequency domain spurs can be related to each other by the application 

of the DFT axis-scaling property. 
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1.5 Contributions and Organization of This Thesis 

Chapter 2 is based on the published conference results [1.18] and it describes the DFT 

axis-scaling property in detail. This property is analogous to the time/frequency scaling 

property of the continuous-time (CT) Fourier Transform. The case of continuous 

time/frequency allows an arbitrary real-valued scaling factor; however, there is a 

restriction on the scaling factor in the case of discrete time. The restriction requires the 

scaling factor to be relatively prime with respect to the length of the DFT sequence.  

Chapter 3 is derived from the peer-reviewed IEEE Transactions paper [1.19] and it 

describes the application of the DFT axis-scaling property to the problem of quantization 

errors that create spurs. In order to limit the sources of errors to only quantization, the 

delay line (DL) is assumed to be ideal. In an ideal delay line, every delay has its ideal 

value and hence the delay line mismatch errors are all zero. The quantization error 

sequences for different selected output frequencies are shown to be related via scaling in 

the discrete time domain. The spur spectrum for any output frequency is shown to be the 

Discrete Fourier Transform of the edge location error sequence under a linear 

approximation. (The validity of this first-order approximation of an exponential is 

considered in the appendix C).Using the time/ frequency axis-scaling property of the 

Discrete Fourier Transform (DFT), it is then shown that the quantization spectra 

associated with all possible output frequencies can be divided into a very small number 

of classes. The spectra within each class are predictably scaled and permutated versions 

of each other. For a DTC that has a phase accumulator with I integer and M fractional 

bits, this result simplifies the number of DTC output spectra possibilities from 2(I+M) to 

less than M base classes. Spur spectral locations predictions based on the analysis 

techniques of this thesis match more than 99% of those measured on a DTC synthesizer 

fabricated on a 90-nm CMOS IC, while predicted power levels are within 10 dB for more 

than 95% of these locations. The analysis provided in this thesis also applies to a flying 

adder (FA) synthesizer, which is an alternative implementation of a DTC-based 

synthesizer that is slightly different in the design approach than the one used in the 

modeling of this thesis. The treatment of all possible output spur patterns helps to find an 
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expression for the location and strength of the ith worst quantization spur. The analysis of 

this chapter also shows that the choice of the specific method of quantization (truncation 

or rounding) does not affect the non-DC sub-harmonic spurs. 

Chapter 4 is based on the peer-reviewed IEEE Transactions paper [1.20] and it extends 

the application of the DFT axis-scaling property to the general case of an actual delay 

line (DL) in which the delay of every buffer is not equal to its ideal value. This delay 

mismatch error in addition to the previously considered quantization errors can also be 

analyzed using the DFT axis-scaling property. The spur spectra classification of an ideal 

DL from chapter 3 is extended in chapter 4 to this case of a non-ideal DL with mismatch 

error present. The condition that permits the separation of the buffer errors spur locations 

from the quantization errors spur location is derived. Spurs predicted based on the 

analysis match closely with actual measurements performed on a 90 nm CMOS DTC 

synthesizer, with more than 99% spur locations matching and power levels within 10 dB 

for more than 95% of these locations. 

Chapter 5 concludes this thesis with an indication of directions for future research. 
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2 Time-Frequency Axis-Scaling Property of Discrete Fourier 


Transform 


The contents of this chapter, by Sumit A. Talwalkar (principal author) and Prof. S. 

Lawrence Marple, Jr., were published in the International Conference on Acoustics and 

Speech Signal (ICASSP) 2010, pp 3658 – 3661, March 2010 

2.1 Chapter Introduction 

This chapter presents the analogue of the time or frequency scaling theorem of 

continuous-time/frequency Fourier Transform (FT) in appropriate integer terms that 

apply to the Discrete Fourier Transform (DFT). The scaling property applies to scaling by 

only integers which are relatively prime to the length of the DFT. The time reversal 

property of DFT is identified as a special case of this theorem. 

The time and frequency scaling property of the Fourier Transform (FT) of continuous-

time functions is a fundamental property. It can be found in all the basic textbooks on 

linear systems and signals, e.g. [2.1] and [2.2]. In qualitative terms, whenever a function 

is stretched (or compressed) in one domain by a factor; its transform is stretched (or 

compressed) by the reciprocal of the factor in the other domain. The property does make 

sense intuitively.  For example, if a signal is compressed in time domain by a factor of 2, 

then the same signal “happens” twice as fast in time. It is not unexpected that the FT of 

the compressed function has the same content at twice the frequency extent as the 

original (uncompressed function) frequency extent. Admittedly, this example does not 

make a mathematically rigorous statement. However, it does make a point. 

Many properties of the FT, such as linearity, symmetry, time/frequency shifting and 

convolution have their direct analogues for the DFT. As for the time-frequency axis-

scaling property in discrete time, there are extensive treatments of integer interpolation 

and decimation operations (see [2.3], for example). Both those operations, however, 

inherently change the sample values in the discrete time data set. For interpolation, zero 



 
 

 

  

 

  

 

 

 

 

 

 

 

20 

samples are inserted, while for decimation samples are removed. This chapter considers 

data permutation operations only. The data values and its DFT values are both rearranged 

in a systematic way using integer scaling factors. The scaling factors are limited to 

integers that are relatively prime with respect to the length of the DFT. A related result is 

stated in [2.4] without reference to the multiplicative inverse in modulo arithmetic. The 

main focus of most references (for example, [2.5]) is to use results from number theory 

for efficient transform computation. This chapter explicitly states the time/frequency 

axis-scaling in terms of the multiplicative inverse of the scaling factor. It also rigorously 

proves that the underlying condition (that the scaling factor be relatively prime with 

respect to the length of the sample set) are necessary and sufficient. 

The chapter is organized as follows: Section 2.2 defines FT and DFT. It also describes 

the scaling property of FT. Section 2.3 presents and proves the scaling property of DFT. 

Section 2.4 shows an example that illustrates the DFT scaling property. In appendix 1 one 

may find proofs of some basic results from number theory that are used in this chapter. 

2.2 Definitions 

The Fourier Transform (FT), X(f), of a function x(t) and the inverse transform are 

defined as 

 

F{x(t)}  X ( f )  x(t)exp( j2ft)dt (2.1) 
t 

and 

 
-1 F {X ( f )}  x(t)  X ( f ) exp( j2ft)df . (2.2) 

f  
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This chapter, for convenience, does not consider here the conditions for a function to 

be Fourier transformable, since they are not directly relevant to the subject of the paper. 

The important aspects to note is that the function x(t) and its transform X(f) are both 

defined on continuous variables t and f over – ∞ to + ∞. 

The time/frequency axis-scaling property of FT can be stated for a real number a 

(negative valued a reverses the function) as 

F{x(t)}
X ( f ) 
F{x(at)}

1 

a 
X

 







f 

a 
. 
(2.3) 


 

Note that there is no restriction on the number a other than it being a real number. The 

special case of a = –1 gives rise to time (and frequency) axis reversal.  

The Discrete Fourier Transform (DFT) of an N point sequence x[n], n = 0, 1, …, N – 1 

is defined for k = 0, 1, …, N–1 with WN = exp(-j2π/N) as 

N	 1

 
0 

1
 knX [k] (2.4)
D{x[n]} 
 
 x[n]WN . 

N
 n 

The inverse Discrete Fourier Transform is defined as 



 
N	 1 

0 

1
 kn 

Note that the integer arguments, n and k, of the finite sequence and its DFT go from 0 to 

N – 1. It is not possible to state a time frequency scaling property for any arbitrary real 

scaling factor. Because sequences are defined over the integer set {0, 1, …, N – 1}, a 

non-integer general scaling may generate numbers outside this set. However, could it be 

-1 {X [k]} (2.5)

x[n] 
 X [k]WND
 .
 
N
 k 
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possible to say something about a limited set of scaling factors, such as integers? The 

next section answers this question. 

2.3 Time/Frequency Scaling Property of DFT 

The time/frequency scaling property for Discrete Fourier Transform (DFT) can be 

stated for a restricted set of scaling factors. The restrictions come from the fact that the 

arguments n and k are integers in the set {0, 1, …, N – 1}. Any scaling should be done to 

ensure that the scaled arguments fall in the same set. This may be guaranteed by 

restricting the scaling to integer factors and taking the modulo N of the scaled value. 

Additionally, it is necessary to have the scaling factor be relatively prime to N, the size of 

the DFT. This second condition is necessary to ensure that the scaled arguments do 

completely span the set {0, 1, …, N – 1} as will be seen in the proof. The notation of 

triangular brackets for modulo from [2.4] is used throughout this thesis, such as 

x  x mod N . (2.6)
N 

Theorem 2.1: Time/Frequency Scaling of DFT 

For an integer a, 

D{x[n]}  X[k]  D{x[ an ]}  X[ bk ] (2.7)
N N 

iff (if and only if) a is relatively prime to N. The scaling factor b is given 

by 

 (N )1b  a (2.8)
N 
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where φ(N) is the Euler’s phi function which denotes the number of 

positive integers less than and relatively prime to N (see appendix A). 

Proof of Theorem 2.1: We begin by stating two related known results 

from basic number theory that follow from the fact that a and N are 

relatively prime. They are both stated here (appendix A contains a detailed 

proof for the sake of completeness) as they are used in this proof of the 

time/scaling property theorem. 

For every integer a that is relatively prime with N 

 ( N )1i) there exists a unique integer b  a , such that ab
N 
 1 . Note 

N 

that b essentially is the “reciprocal” or the multiplicative inverse of a in a 

modulo integer arithmetic sense. 

ii) the sequence { an } for n = 0, 1, …, N – 1 contains every number 
N 

from the set {0, 1, …, N – 1} exactly once. 

Now consider the definition of DFT (2.4) for the time scaled sequence 

x[ an ] for k = 0, 1, …, N – 1 as
N 

N 11
D{x[ an ]}   x[ an ]WN 

kn . (2.9)
NN N n0 

anIntroducing a change of variable m   then for n = 0, 1, …, N – 1,
N 

the index m also takes every value in {0, 1, …, N – 1}, although not in the 

same order. Further, n can be expressed in terms of m by multiplying both 

sides of the equation above by b (the modulo multiplicative inverse of a) 

and taking modulo N. 

N 
 bm b an ban n ba  n . (2.10)

N 
 

N 
 

N NN N 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

24 

bmThe last step uses the identity ab  1. Therefore, 
N 
 n  . With 

N 

the change of variable, the DFT of the scaled function (2.9) can be written 

for k = 0, 1, …, N – 1 as 

N 11 k bm 
ND{x[ an ]}   x[m]WN . (2.11)

N N m0 

The final step follows from the fact that the exponential term is itself 

periodic so that 

 2k bm 
N 
  

2kbm k bm 
N exp j  exp jWN  N   

 N   
(2.12)

 2m bk m bk 
N exp j N 

 
W . N   N 

  

With this substitution, the DFT of the time scaled function can be 

expressed as 

N 11 m bk 
N . (2.13)D{x[ an ]}   x[m]W

N N m0 
N 

bkThe right hand side above is simply the DFT X[·] evaluated at .
N 

Therefore, for n, k = 0, 1, …, N – 1, the time scale property of the DFT is 

given by 

D{x[ an ]}  X [ bk ] . (2.14)
N N 
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This proves the sufficiency of the condition that the scaling factor a be 

relatively prime to the length of the DFT N. In order to prove the necessity 

of this condition, one needs to prove that if a and N do have common 

factors (other than 1), the scaling property does then not hold. In fact, the 

multiplicative inverse of a does not exist. Note also that the sequence 

{ an } for n = 0, 1, …, N – 1 does not contain every number from the set 
N 

{0, 1, …, N – 1}. This can be seen by considering c = gcd(a,N). Since c > 

1, two numbers n1 and n2 = n1 + (N/c) can be found in {0, 1, …, N – 1} 

such that n c n c (see example 3 in next section). Thus, the 1 2N 


N
 

scaling operation is now many-to-one and does not map to all N integers. 


Thus, the scaling operation leads to loss of data samples. 


Clearly now, we see that the DFT of a circular time scaled sequence can 

be expressed with the circular frequency scaled DFT of the original 

sequence x[n] if and only if the scale factor has no common factors with 

the DFT length. 

2.4 Examples of DFT Time/Frequency Scaling 

Example 1: Consider a random sequence of N = 7 samples. Use a time stretch factor of 

a = 5. The Euler’s phi function of DFT length is φ(7) = 6 (see appendix A). Then, 

 ( N )1  (7)1 61b  a  5  5  55  3 . Note that ab 
N 
 5 3  15 

7 
 1.

7N 7 7 7 

Figure 2.1 shows the sequence x[n] and its time-scaled version y[n]  x[ 5n ] . Figure
7 

2.2 shows the real part of the corresponding DFT. It is apparent that the DFT of the time-

scaled version is frequency scaled (by a factor of b = 3) version of the DFT of the original 

sequence, that is  Y[k]  X[ 3k 
7
]. 
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Figure 2.1 Time axis-scaling: N = 7, x[n] (top) stretched by a = 5 (bottom) 

Figure 2.2 Frequency axis-scaling: Re(X[k]) (top) stretched by b = 3 (bottom) 
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Example 2: Time Reversal: The time reversal property of DFT is found in many texts 

[2.1]. This can be seen as a special case of the time scaling property for N point DFT with 

1 2N  a stretch factor a = N – 1. Since  1  the multiplicative inverse of a = N – 1 is 
N 

b = N – 1,. Therefore, the DFT of the time reversed sequence is the frequency reversed 

version of the original DFT. 

Example 3: gcd(a,N) > 1: Here is an example in which the time scaling does not work. 

Let N = 6 and a = 4 which are not relatively prime (c = gcd(6,4) = 2). Then, { an
N 

}  = 

{0, 4, 2, 0, 4, 2} for n = 0, 1, …, 5. Any two integers n1 and n2 = n1 + N/c = n1 + 3 map to 

the same number. Thus, every alternate sample is dropped in the time scale operation. 

2.5 Chapter Summary 

The time/frequency axis-scaling property of Discrete Fourier Transforms (DFT) is 

presented with the necessary and sufficient condition on the scaling integer that it be 

relatively prime with the length of the DFT. The DFT of the time scaled (permuted) 

sequence is the DFT of the original sequence scaled (permuted) by the modulo inverse of 

the scaling factor. Appendix A contains some basic results from number theory that are 

used in this chapter. 
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3	 Quantization Error Spectra Structure of a DTC Synthesizer via the 

DFT Axis-Scaling Property 

The contents of this chapter, by Sumit A. Talwalkar, were published in peer-reviewed 

IEEE Transactions on Circuits and Systems I: Regular Papers, volume 59, issue 6, pages 

1242 – 1250, June 2012. 

3.1 Chapter Introduction 

Phase accumulator quantization of a digital-to-time conversion (DTC) direct 

frequency synthesizer is analyzed for a fixed output frequency. This chapter applies the 

time/ frequency axis-scaling property of the Discrete Fourier Transform (DFT) from 

chapter 2 to the analysis of the phase accumulator quantization error of a DTC 

synthesizer. Using a first-order approximation it is shown that the quantization spectra 

associated with all possible output frequencies can be divided into a very small number 

of classes. The spectra within each class are predictably scaled and re-arranged versions 

of each other. For a DTC that has a phase accumulator with I integer and M fractional 

bits, this result simplifies the number of DTC output spectra from 2(I+M) to M classes. 

Spur values predicted based on the analysis match closely with measurements performed 

on a 90 nm CMOS DTC synthesizer. It is shown that the choice of the specific method of 

quantization (truncation or rounding) does not affect the non-DC sub-harmonic spurs. 

The analysis also applies to a flying adder (FA) synthesizer. 

Frequency synthesizers are critical components of all communication systems. They 

are used to generate the reference signal to up-convert a baseband signal to RF in a 

transmitter and down-convert an RF signal in a receiver. Synthesizers also generate clock 

signals to run the baseband processing blocks. Important performance metrics of 

frequency synthesizers include: frequency range, frequency resolution, settling time 

(when changing the output frequency), stability and spectral purity. Also important, 

especially to the mobile communication systems, is the ease of integration and the battery 

power drain. 
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Frequency synthesizers can be classified into two main classes: indirect phase locked 

loop (PLL) based and direct digital frequency synthesis (DDFS) [3.1]. Digital-to-time 

conversion (DTC) frequency synthesis is a relatively newer type of DDFS. DTC 

synthesizers attempt to preserve the large frequency range and the fast frequency 

switching ability of the conventional DDFS (as in [3.2] with a ROM and a precision 

DAC) while addressing the high power consumption problem. Some of the earliest 

descriptions of the DTC architecture are found in [3.3] and [3.4]. Further evolution of the 

DTC architecture (also called digital period synthesis, flying adder, and time-average­

frequency) is reported in [3.6] - [3.20]. DTC has some promising unique characteristics. 

It is capable of generating a wide range of frequencies with very low switching times 

when changing frequency. DTC is uniquely conducive to integration using the widely 

used digital CMOS technology. Reference [3.11] reports a DTC-based on-chip 

synthesizer and [3.12] reports a transceiver IC that has a DTC synthesizer. The time 

domain signal processing [3.16] aspect of a DTC makes it very scalable to newer CMOS 

technologies as device voltages keep falling. 

The DTC architecture, however, also presents its own unique set of challenges. 

Important among them is the presence of undesirable spurious tones (spurs), specifically 

spurs that have a sub-harmonic fundamental component. A small spur frequency 

fundamental can potentially produce spurs close to the desired output frequency. Sub­

harmonic spurs are due to the periodic nature of the edge location errors ([3.15],[3.17] - 

[3.19], [3.20]) with periods longer than the desired output period. There are two main 

contributors to the periodic edge location errors: the phase accumulator quantization 

errors and the buffer delay errors (called mismatch errors [3.15]). Only the effect of 

quantization errors is considered here. The output spur pattern of a DTC synthesizer is 

dependent on the choice of the desired output frequency. Small changes in the desired 

output frequency can alter the spur pattern completely. This chapter applies the time-

frequency axis-scaling property of the Discrete Fourier Transform (DFT) to the analysis 

of phase quantization errors. This new insight allows dividing all the output frequencies 

into a small number of classes. The spur patterns within each class are simply permutated 

http:3.15],[3.17
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and scaled versions of each other under a linear first-order approximation. For an M-bit 

phase accumulator, there are only M classes of spur patterns. This insight provides direct 

closed form expressions to determine the strength and location of the ith worst spur for a 

given output frequency. The worst spur value across all output frequencies is also found 

easily. 

There are two common types of DTC synthesizers. The first type described in [3.4] 

and named a “flying adder” (FA) in [3.5] is further considered in [3.6], [3.8] - [3.11], 

[3.13] - [3.15] and [3.17] - [3.19]. Figure 3.1 shows block diagram of a FA based DTC. 

Figure 3.1 Flying adder architecture 
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The FA architecture uses a signal fed back from the multiplexer (MUX) output to 

clock the phase accumulator. Thus, the accumulator is clocked at twice the output 

frequency. The other architecture described in [3.3], [3.7] and [3.20] has a fixed clock 

accumulator (FCA). An FCA-DTC is analyzed in this chapter. It is shown here that for all 

output frequencies the phase quantization errors of the FCA-DTC and the FA are 

identical. This allows the use of either of the two types of architectures to analyze the 

effect of phase quantization. 

Phase quantization spurs for a fixed frequency control word have been analyzed in 

[3.9], [3.10], [3.15], and [3.17] - [3.19]. The analysis presented here shows how the spurs 

for all possible frequency control words are related. Previous analyses [3.9], [3.10], 

[3.15], and [3.17] - [3.19] use truncation as the method of phase quantization. It is shown 

here that rounding, another common but hardware-intensive method of quantization, does 

not improve any non-DC spurs. Therefore, it is not necessary to use rounding. 

The chapter is organized as follows. The model of the DTC synthesizer used for 

analysis is explained in section 3.2. The edge error model and output spurs are described 

in section 3.3. The main result regarding the application of the DFT axis-scaling property 

to the DTC quantization error spectrum is derived in section 3.4. Throughout the chapter, 

relevant aspects of the comparison of the FCA-DTC and the FA are included. A 90-nm 

CMOS transceiver IC with a DTC synthesizer was reported in [3.12]. Quantization spur 

measurements on this synthesizer validate the theoretical results presented in this chapter. 

An example is presented in section 3.5 followed by a summary in section 3.6. 

3.2 DTC Model 

Digital-to-time conversion frequency synthesis architecture uses a series of uniformly 

spaced digital phases of a reference signal to generate an output binary signal of output 

frequency specified by the user. Multiple phases may be produced by identical buffers in 

a delay locked loop (DLL). Depending on the desired frequency the digital tap selector 

logic selects appropriate phases of the reference signal to create edges in the output 

signal. 
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Figure 3.2 Digital-to-time conversion architecture 

Figure 3.2 shows an ideal DL with a series of N = 4 buffers that carry the reference 

square wave signal (period TREF). Let d = (TREF/4) denote the delay of each of the buffers. 

The final buffer output is used to complete the delay loop for locking. The buffer signals 

0 through 3 are connected to set and reset inputs of an edge-triggered R-S flip-flop via 

multiplexers. The R-S flip-flop output is the synthesizer output signal. 

The tap selector block is given the desired output frequency (actually, the inverse 

frequency or period) value as the ratio T/TREF in the form of a binary word. The tap 

selector logic generates the multiplexer control signals CS and CR. Note that the 

requirement to represent the ratio as a binary number constrains the DTC to produce 

output periods such that T/TREF is a binary word. The exact dependence of the output 

period resolution on the number of precision bits of T/TREF is considered later. The other 

input for the tap-selector block is the clock signal at the reference frequency. The tap 
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selector block processes signals clocked uniformly at the reference frequency. The fixed 

clocking of the phase accumulator (tap selector logic) distinguishes this type of DTC 

from the flying adder type of DTC. All other blocks (labeled non-uniformly clocked) also 

carry rail-to-rail signals; however, they don’t always change at the rising edge of the 

reference clock signal. Each multiplexer control sends one or none of the buffer outputs 

(when the MUX input connected to ground is chosen) to the R-S FF to create edges in the 

synthesizer output. The maximum frequency (minimum period) that can be generated is 

F = FREF. 

Figure 3.3 shows an example of CS and CR the MUX control signals that synthesize 

output with period T = (3/2)×TREF. Each edge in the output signal x(t) is generated by 

selecting the appropriate rising edge in one of the phases of the reference signal. The 

reference edge selected to create each of the output edges has been highlighted. 

3.2.1 Desired Output Period T/TREF 

The period (and frequency) of the DTC output is controlled using a binary digital 

word representing the ratio T/TREF. Let p/q denote the reduced form (gcd(p,q) = 1) of this 

ratio. Then, 

T T p T 
p   and q  REF so that  . (3.1)

gcd( T ,TREF ) gcd( T ,TREF ) q TREF 

Since (T/TREF) is in binary format, q is always a power of 2, and p is always an odd 

number. This architecture can generate a minimum output period of TREF so that p ≥ q. 
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Figure 3.3 Example waveforms to generate period T = (3/2)×TREF. 
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Suppose the binary input value of T/TREF is represented using I = 2 integer bits and 

M = 3 fractional bits. Then, a ratio of T/TREF = 2.25 is represented as 10.0102. In this case 

p = 9 and q = 4. It can be seen that the value of q can be found by simply locating the 

position of the right-most non-zero bit in the fractional part of the binary representation 

of T/TREF. If l denotes the position of the right-most fractional non-zero bit measured 

from the binary point, then, q = 2l. In the example above with T/TREF = 10.0102, the 

second position (shown in bold face) to the right of the binary point has the rightmost 

non-zero bit. Thus, l = 2 and q = 2l = 4. The reason for this is the trailing zeros to the 

right represent factors of 2 that are common to the ratio. Determination of p and q is 

crucial to predicting the spectral structure of the output as will be seen in the following 

sections. The number of integer and fractional bits allowed to represent the input ratio 

(T/TREF) determine the output period (and frequency) range and resolution. For the range, 

note the bounds on the input ratio 

T FI  M REF1   2  2  F  F  . (3.2)REF I  MTREF 2  2 

The output frequency resolution is the difference between a pair of neighboring 

output frequencies. For a DTC synthesizer the resolution is uniform for the output period, 

but not uniform across the output frequency. Let T1 = 1/F1 and T2 = 1/F2 be two 

neighboring output periods. Then, 

 M 2T  T F F 2 F1 2  M  M 1 2 2  F  F2  F1  2  . (3.3)
TREF FREF FREF 

The equation above shows the dependence of the frequency resolution F on the 

output frequency. The DTC has better resolution (smaller frequency steps) at the lower 

value of the output frequency. The worst resolution occurs at F = FREF. 
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F  2 M FREF . (3.4) 

Some clarifications are in order. First, the constraint that T/TREF be represented in 

fixed point binary format with finite number of fractional bits limits the output periods T 

that can be generated from a DTC synthesizer. In a way this is a form of quantization 

along the “output period continuum”. This quantization of the output period is not the 

subject of this thesis. The focus here is the other quantization that happens in the choice 

of individual output edge locations after an allowed period T (such that T/TREF is 

represented in binary format) is chosen. Second, N, the number of phases available, is not 

to be confused with M, the number of fractional bits allowed for the input word 

controlling the output period. In a practical DTC synthesizer implementation M is much 

larger than N, thus, allowing for a large choice of output frequency words. 

3.2.2 Comparison with Flying Adder 

The flying adder (FA) has the advantage of running the accumulator at the 

minimum possible frequency for a given output frequency, thus consuming the least 

possible dynamic power. The fixed clock accumulator DTC (FCA-DTC) analyzed here 

has the advantage of responding quickly to changes in the frequency control word, on the 

very next reference clock edge and not on the output edge. Such quick response is 

important in applications that depend on the fast frequency switching. Table 3.1 lists the 

mapping of some key FA variables used in [3.17] - [3.19] to variables used to analyze 

FCA-DTC in this thesis. 

Table 3.1 Mapping of variables used in [3.17] - [3.19] to that in this thesis 

Ref. 
phases 

Accum. 
bits 

REF 

OUT 

T 

T Tap 
Period 

Quant 
Error Seq 

Flying Adder (FA) [3.17] 2m n w/2(n-1) K L 

FCA-DTC (analyzed here) N M p/q 2q 2KQ 
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The flying adder can theoretically synthesize a maximum frequency of FREF×(N/2), 

the FCA-DTC can generate a maximum frequency of FREF. The FA maximum frequency 

in practice will be limited by the accumulator speed and the loop delay: clock-to-q delay 

of the phase register, the multiplexer delay and the clock tree for the phase register clock. 

For all possible frequencies of an FCA-DTC (up to FREF), the output of an FCA­

DTC is identical to an FA. Thus, the results about quantization error spectra apply to both 

DTCs. It is explained later that for output frequencies above FREF that only an FA can 

generate, the error in the approximation of the quantization spur spectrum increases. 

Therefore, the spur magnitude predictions will be increasingly erroneous as F reaches 

FREF×(N/2) (spur locations are still exactly predicted). For brevity, the term DTC is used 

instead of FCA-DTC. 

3.3 DTC Output Spectrum for Ideal DL 

The focus of this chapter is the effect of the edge quantization errors. Such errors are 

present even when the reference edges are spaced uniformly at d = TREF/N. 

3.3.1 Rising and Falling Edge Tap Sequences 

Assume that the first rising edge (k = 0) is at t = 0. Then, the ideal times of the kth 

rising and falling edges are: 

t r , Ideal [k ]  kT and t f , Ideal [k ]  (k  0.5)T . (3.5) 

The reference rising edges are available at each multiple of d. So the actual times of 

the kth rising and falling edges are:  

 t r , Ideal [k ]   t f , Ideal [k ]  
t r [k ]  d  Q d  and t f [k ]  d  Q d  . (3.6)

    

Here Q(·) denotes the quantization operation, for example floor(·), ceil(·) or round(·). 
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Finally, the buffer (out of the N buffers) for generating the kth rising and falling 

edges of the output are given by 

 kNp   (k  0.5) Np  
. (3.7)rk  Q  and f k  Q  q q   N N 

Here < >N denotes the modulo-N operation. The period of each of rk and fk is q. An 

example of a DTC with N = 4 taps is shown in Figure 3.4. The desired output period is T 

= (9/8)×TREF. The figure shows the computation of control signals for rising and falling 

edges in the output signals. Next the ideal output waveform is shown. Below that all four 

phases of the reference signals are shown followed by the actual output waveform. The 

edge of the reference signal that is used to create each of the output signal edges has been 

highlighted. Finally the error signal is shown. The periodic nature of the error signal 

gives rise to spurs in the frequency spectrum. 

3.3.2 Quantization Error Sequences 

The edge quantization error in the kth rising edge is 

  kpN  kpN  
q r [k ]  t r , Actual [k ]  t r , Ideal [k ]  d Q    . (3.8)

q q    

Similarly the kth falling edge quantization error is 

  (k  0.5) pN  (k  0.5) pN  
q f [k ]  d Q    . (3.9)

q q    
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Figure 3.4 Edge quantization for a DTC with N = 4 for T = (9/8) TREF 

From (3.8) and (3.9), it can be easily verified that each of the rising and falling 

edge quantization error sequences have a period of 
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K Q  q gcd( N , q) . (3.10) 

The last three equations are consistent with the related FA expressions (27)-(32) in 

[3.18]. For the example shown in Figure 3.4, the rising and falling edge quantization 

errors are periodic with a period KQ = 2. A period of the rising edge quantization error 

sequence is {0, -0.5} and the falling edge quantization error sequence is {-0.25, -0.75}. 

3.3.3 Output Spectrum 

With the identification of the period of the quantization errors, the output waveform 

x(t) may be written as an infinite sum of periods of quantization errors. Each term in the 

sum is a pair of unit step functions, added at each rising edge in the output and subtracted 

at each falling edge in the output. 

K 1 

x(t )  A 
 Q 

u (t  t [k  iK ])  u (t  t [k  iK ]). (3.11)   r , Actual Q f , Actual Q 
i k 0 

Here A is the amplitude of the binary output (goes from 0 to A) and u(t) denotes the 

unit step function. The inner sum (over k) goes over one period of quantization errors, 

while the outer sum (over i) goes over all such periods. The Fourier Transform (FT) of 

the output can be shown to be (see appendix B for details of the derivation) 

A  m  
X ( f )    f   

j2fK T   K T  QQ m   (3.12)
K 1Q  j 2f kT  q [ k ]  j 2f ( k 0.5)T q f [ k ]   e  e .

r 


 k 0  
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The FT is a series of impulses at the multiples of the fundamental spur frequency of 

1/(KQT) = F/KQ. The notation can be simplified by defining the strength of the mth 

impulse as 

K 1A Q 

2 mk 2 mq [ k ] / T  m 2 mq [ k ] / T  
r fJ   W W  W W . (3.13)m j2m k  0 

Here W = exp(-j/KQ). Then, the output spectrum of a DTC signal is  

  m  
X ( f )   J  

 f  
 . (3.14)m 

m   K QT  

This is consistent with equation (30) in [3.19] with the variable mapping given in 

Table 3.1. The desired output is at mDesired = KQ with strength (m = KQ , qr[k] = qf[k] = 0 

in (3.13)) 

A
J  . (3.15)KQ j 

This is same as the amplitude of the first harmonic in an ideal square wave with 

amplitude A. This confirms that the DTC does synthesize a tone at the desired frequency. 

For those values of m which are multiples of KQ, Jm represents the strength of harmonics 

of the output. For other values of m, Jm represents the strength of non-harmonic spurs. Of 

these, the sub-harmonic spurs for m < 2KQ are studied in more detail. 

3.4 DTC Quantization Spectra and DFT Axis-Scaling 

The expression for Jm, the strength of the mth spur, can be further simplified with the 

approximation 
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exp( j )  1  j , for |  | 1 . (3.16) 

The validity of this first-order approximation of an exponential is considered in 

appendix C. With this approximation applied to both of the exponentials containing qr[k] 

and qf[k], and observing that the sum of the powers of Wmk for k = 0, 1, …, KQ - 1 is zero 

KQ 1 A 2 mk mJ m  W qr [k ]  W q f [k ]. (3.17)
K QT k 0 

For F ≤ FREF it can be shown that θ≤ (π/N) so that (3.16) is a good approximation for 

both FCA-DTC and FA. The approximation error rises for FREF < F ≤ FREF × N/2 in FA. 

The spur locations are still predicted by equation (3.14). However, the approximate value 

of the spur strength given by (3.17) is increasingly erroneous. 

It is useful to define a 2KQ - long period of quantization error sequence by interleaving 

the rising edge error and falling edge error as 

 (qr [l / 2] / d ) for even l 


qe [l ]   (3.18) 
 (q [(l  1) / 2] / d ) for odd l. f 

Hereafter, the combined sequence qe[l] is referred to as the quantization error sequence. 

Using (3.8) and (3.9) in (3.18) , the quantization error for l = 0, 1, …, 2KQ – 1 is 

l   lpN  lpN  
qe [l ]  (1) Q    . (3.19)

2q 2q    
The strength of the mth spur is a scaled Discrete Fourier Transform (DFT) of the 2KQ 

long quantization error sequence is therefore 
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 A gcd( N , q)
J m  Qe [m] , (3.20)

pN 

where the DFT of the interleaved quantization error sequence is defined for m = 0, 1, 

…, 2KQ – 1 

2 K Q 1   j2ml  
Qe [m]   qe [l ] exp 

 

 . (3.21) 

l 0  2K Q  

Since the error sequence is real, by the symmetry property of the DFT, the spurs are 

symmetric about the desired output tone. That is for m = 1, …, KQ – 1 

J  J . (3.22)m 2 K  mQ 

Example: Suppose N = 12, p = 9 and q = 8. For this DTC, KQ = q/gcd(q,N) = 2. Using 

(3.19), one period of the interleaved quantization error sequence for l = 0, 1, …, 3 is 

l   27  27  
q [l ]  (1) Q l   l . (3.23)e  

  4  4  

Figure 3.5 shows two period-lengths of the quantization sequence (using equation 

(3.23) for the two common methods of quantization, truncation and rounding). 
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Figure 3.5 Quantization error sequence example for two quantization methods 

Next we consider additional useful properties of the quantization error sequences. 

3.4.1 Properties of the Quantization Error Sequences 

Rewriting the expression for the quantization error sequence while emphasizing its 

dependence on p, for l = 0, 1, …, 2KQ – 1 yields, 


 

 



lpN 
 



lpN
qe [l , p]

(

1)
l Q
 
 . 
(3.24)






2
q 2
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Theorem 3.1. The quantization error sequence is periodic over p with a 

period P = 2KQ. 

Proof of Theorem 3.1: This is easily seen by substituting (p + P) for p in 

(3.24). 

Note that the periodicity of qe[l,p] over p is separate from the periodicity over l, 

although the period happens to be the same (2KQ). The periodicity over p implies that, at 

the most, there are KQ distinct quantization error sequences (not 2KQ since p can take 

only odd values) for a given value of N and q. Next consider the structure within a period 

along the p-axis. 

Theorem 3.2. The quantization error sequences for two different values 

p1 and p2 (and same q) are related as time scaled (modulo) versions of 

each other. That is, for every p1 and p2 there exists a unique a such that 

qe[l , p2 ]

qe [
 KQ 
. (3.25)al ]
p,
 12 

Proof of Theorem 3.2: First note that the periodicity over p means that 


 l p 
P

N l p 
P

N 







(

1)
l[l , 

P 
]qe [l , p] 
qe Q
 
 . 
(3.26)
 



 



p 
2
q 2
q
 


The modulo-2KQ value of p in the right hand side above is simply a 

mathematically useful substitution. Now consider two odd numbers p1 and 

p2 from {1, 3,…, 2KQ – 1}. Since neither of them have any common 

factors with q, they don’t have any common factors with KQ = q/gcd(N,q). 

Therefore, 
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gcd( p1 ,2K Q )  gcd( p2 ,2K Q )  1 . (3.27) 

From basic number theory (see [3.21] for example) there exists a unique 

odd integer a < 2KQ such that 

p2  ap 
2 K 

for a  p2  p11 2 K (3.28)Q Q 

where p1 is the modulo-2KQ inverse of p1. The quantization error for p2 

can be written using (3.28), 

l   lap1 N  lap1 N  
qe [l , p2 ]   1 Q    . (3.29)

2q 2q    

2As a is odd and 2KQ is even, 1l  1al  1 al 
KQ , then 

  la p1 N  la
2 K Q  Q2 

e [l , p ]   al 
K Q Q  

2 K
p1 N 


 

. (3.30)q 2  1 
  2q  2q 
    

That is, for every l, q, N and p1, p2, 

2 KQ 
, p1 ] . (3.31)qe [l , p2 ]  qe [ al 

This is an important relation that shows, in addition to the entire sequence {qe[l,p]}, 

l = 0, 1, …, 2KQ – 1, being periodic over p with a period 2KQ, the sequences at any two 
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values of p are axis-scaled (along the l-axis) versions of each other. The scaling factor is 

a given by (3.28). 

Example: Consider a DTC with N = 12 taps. For q = 16, the value of KQ = 

q/gcd(N,q) = 16/4 = 4. The period of the interleaved quantization error sequence qe[l,p] 

over p is 2KQ = 8. During each such period, there are KQ = 4 distinct sequences 

(corresponding to 4 odd values of p). All these 4 sequences can be directly found from 

each other using modulo-8 scaling along the l-axis. Suppose p1 = 19 and p2 = 21. The 

multiplicative inverse of p1 (modulo-8) is 3 (since 3p1 is 1 in modulo-8 sense). Then, 

using (3.28), the scale factor is a = 7, so that, (see second (green) and third (blue) plots in 

Figure 3.6) 

KQ 
,19] , for l = 0, 1, …, 7. (3.32)qe [l ,21]  qe [ 7l 

2 

The final step is to relate the quantization spectra for any two values of p for given 

N and q. This uses the DFT axis-scaling property from [3.22] (or equation (2.7) from 

chapter 2). According to the time-frequency scaling property applied to the quantization 

error sequence qe[l], the DFT D{qe[l]} = Qe[m] of the time-scaled (along the l-axis) 

sequence is the frequency-scaled (along m-axis, the spur index) version of the DFT of the 

original sequence. The frequency scaling factor is the “reciprocal” of the time scaling 

factor (in modulo-2KQ sense). That is, 

D{qe [l ]}  Qe [m] for l , m  0,1,..., 2K Q  1  
. (3.33)

D{qe [ al ]}  Qe [ bm ], where ab 
2 K 

 1
2 K 2 KQ Q Q 
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Figure 3.6 Quantization error sequences, qe[l,p], over one period of p. 

Using (3.20), the DFT scaling property and (3.25), the relation for the spur spectra 

for given values of N and q, and for any two values p1 and p2 can be stated as 
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p 
p2 p1 2 K Q 

. (3.34)J [m, p2 ]  1 J [ bm 
2 KQ 

, p1 ] , where b  
p2 

Here p2 denotes the modulo-2KQ multiplicative inverse of p2. Since p2 and q are 

relatively prime and, so are p2 and 2KQ. This ensures the existence and the uniqueness of 

b for every p2. According to (3.34) any two output frequencies that have the same value 

of q, the quantization spectra are related through an amplitude scale factor and an axis-

scaling (modulo-2KQ) along the spur index m-axis. 

3.4.2 Example: N = 4 Delays and M = 4 Fractional Bits 

Consider a simple example of a DTC synthesizer with N = 4 phases to see the spur 

relation between all output frequencies. Suppose (T/TREF) uses a 5-bit fixed point binary 

representation with 1 integer bit and 4 fractional bits. 

Table 3.2 lists all possible cases of output frequencies. For the group of four 

frequencies with KQ = 1, the two least significant bits (LSB’s) of T/TREF are 2’b00. The 

notation n’b00 describes a n-bit wide value with ‘b’ denoting binary representation 

according the IEEE-1364 standard. There is no quantization error for the rising edge 

locations. Falling edges may possibly have a constant quantization error depending on the 

method of quantization. The result is on the duty cycle of the output waveform. 

Spectrally, there are no sub-harmonic spurs. 

For the group of four output frequencies with KQ = 2, the two LSB’s of T/TREF are 

2’b10. The quantization error sequences qe[l,p] and spectra J[m,p] are related to qe[l,9] 

and J[m,9] respectively for l, m=0, 1, …, 3 as 

9 
qe [l ,11]  qe [ 3l ,9] and J [m,11]  J [ 3m ,9]

44 11 
9 

qe [l ,13]  qe [l ,9] and J [m,13]  
13 

J [m,9] . (3.35) 

9 
qe [l ,15]  qe [ 3l ,9] and J [m,15]  J [ 3m ,9]

44 15 
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The last group of eight output frequencies with KQ = 4, the two LSB’s of T/TREF are 

2’b01 or 2’b11. The quantization error sequences qe[l,p] and spectra J[m,p] are related to 

qe[l,17] and J[m,17] respectively for l, m=0, 1, …, 7 as shown in (3.36). 

Table 3.2 All possible output frequencies for the example DTC 

Binary T/TREF Ratio T/TREF p q 
Kq = 

)gcd( ,q N 

q 

1.0000 16/16 1 1 1 

1.0001 17/16 17 16 4 

1.0010 18/16 9 8 2 

1.0011 19/16 19 16 4 

1.0100 20/16 5 4 1 

1.0101 21/16 21 16 4 

1.0110 22/16 11 8 2 

1.0111 23/16 23 16 4 

1.1000 24/16 3 2 1 

1.1001 25/16 25 16 4 

1.1010 26/16 13 8 2 

1.1011 27/16 27 16 4 

1.1100 28/16 7 4 1 

1.1101 29/16 29 16 4 

1.1110 30/16 15 8 2 

1.1111 31/16 31 16 4 

The time scale factors in the first columns of (3.35) and (3.36) are inverses 

(modulo-4 and modulo-8, respectively) of the frequency scale factors in the second 

columns. 
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In conclusion, for this example, all 12 non-trivial spectra (of 16 possible output 

frequencies) can be found from a principal set of two spur spectra, J[m,9] for m = 0, 1, 

…, 3 and J[m,17] for m = 0, 1, …, 7 using (3.35) and (3.36). 

17 
qe [l ,19]  qe 

7[ 

5[ 

3[ l 
8
,17 ] and J [m ,19]  

19 
J 

7[ 

5[ 

3[ m ,17 ]
8 

17 
qe [l ,21]  qe l ,17 ] and J [m ,21]  J m ,17 ]

88	 21 
17 

qe [l ,23]  qe l ,17 ] and J [m ,23]  J m ,17 ]
88	 23 

17 
,17 ] (3.36)qe [l ,25]  qe [

5[ 

3[ 

l ,17 ] and J [m ,25]  J [

5[ 

3[ 

m 
88	 25 

17 
qe [l ,27 ]  qe l ,17 ] and J [m ,27 ]  m ,17 ]

88	 27 
J 

17 
qe [l ,29]  qe l m,17 ] and J [m ,29]  J ,17 ]

88 29 
17 

,17 ].qe [l ,31]  qe [ 7l ,17 ] and J [m ,31]  J [ 7m 
88	 31 

3.4.3 General Spur Pattern Classification 

The example above can be generalized to the case of a DTC with N delay elements. 

Suppose the digital hardware uses M (> N) fractional and I integers bits to express T/TREF. 

Then, there are 2(I + M) possible output frequencies. Of these, 

 2(I + N) output frequencies with q less than or equal to N have no 

quantization error. In terms of their frequency settings, the control words 

have M – N trailing zeros. Then, the period of (with KQ = gcd(q/N) = 1) 

have no sub-harmonic quantization spurs.  

 For each one of the remaining 2I×(M – N ) output frequencies the frequency 

control word has non-zero bits in the trailing M – N bits and hence there is 

quantization error. The corresponding spectra have spurs due to 

quantization. These 2I×(M – N ) output frequencies can be classified into M – 

N classes. For i = 0, 1, 2, …, M – N – 1, the ith class has 2(I + N + i) output 

frequencies. The value of KQ for the ith class is 2(i+1). Each of these 2I×(M – N ) 
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output frequency settings have quantization error sequences that are 

permutations of each other. Each of the corresponding spectra are 

amplitude scaled permutations of each other. Every spur pattern possible 

can be found from the knowledge of a principal spur spectra set consisting 

only (M – N) spur spectra using (3.34). 

3.4.4 Worst Spurs 

In order to find the worst spur value, it is convenient to use a value of p = p0 such 

that 

p0 

N
 

gcd( q, N ) 
2 K Q 


1 . (3.37) 


Such a value of p0 (> q) is guaranteed to exist since N/gcd(q,N) and q/gcd(q,N) = 

KQ are relatively prime. Since all quantization sequences and spectra for a given q are 

related, we may choose any convenient value of p to compute the worst spur values. 

Once the results for the special value of p is found, they can be readily translated for any 

other value of p using spectral permutation given by equation (3.34). Then, one period of 

the quantization error sequence, for l = 0, 1, …, 2KQ – 1, is 


 











 

 



lp0 N 
 



lp 0 N l l
Q
 Q
 (3.38)

 
 
 



 











.

K
 K
2
q 2
q 2
 2

 
Q Q 

Using (3.24), the error sequence for l = 0, 1, …, 2KQ – 1 is 


 










l l 
qe [l , p0 ]

(

1)
l Q
 (3.39)

 



 



.

K
 K
2
 2

 
Q Q 
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When truncation is used for quantization, the argument inside the Q( ) function in 

(3.39) is less than 1 for all values of l. Thus, the quantized values are all zero. This gives 

 
l l 

qe [l , p0 ] 
Q floor 

 qe , floor [l , p0 ]  (1)   . (3.40)
  2K Q   

The DFT of the quantization error sequence for m = 1, 2, …, KQ – 1 is 

2 K 1 2 K 1Q Ql   j2ml  1
Qe , floor [m]   (1) l exp 


   la l , (3.41) 

l 0 2K Q  2K Q  2K Q l 0 

where a = – exp{-j2[KQ+m]/(2KQ)}. Using a closed form for the sum in the right hand 

side above (see appendix D) 

 1  1
Qe , floor [m]   . (3.42)

1  a   j2 (m  K )  
1  exp 

Q 
2K Q  

Finally, the mth spur can be written using (3.20) 

 A gcd( N , q)  1
J m , floor   . (3.43)

p0 N   j2 (m  K Q )  1  exp 
 


 

2K Q  

It has been shown in appendix E that the DFTs of the quantization error sequences 

obtained using the two different methods of quantization, truncation and rounding, have 

the same magnitudes. That is, for  



 
 

 

  

 

 

 

 

 

 

  

 

 

 

 

55 

m 
0,1,..., 2
K
 Q 
1.
 (3.44)
Q
e , floor 
Q
e , floor[ ]
 [ ] form m 

Therefore, it is not necessary to indicate the quantization method when considering 

the sub-harmonic non-DC (m = 1, 2, …, KQ – 1) spur magnitudes. It is clear from (3.43) 

that the worst (largest) magnitude spur occurs at index m for which the exponential in the 

denominator is closest to 1, that is, when m + KQ is closest to zero. It happens when m = 

KQ – 1 (m = KQ is the desired signal). The result is, 

A gcd( N , q)
J
 
 J
 . (3.45)

WC K 1Q

1 

 


exp 

 

  




j
p0 N  


K Q 

The derivation of the worst spur was obtained for a special value of p that satisfied 

(3.37). For such p, the location of the worst spur mWC = KQ – 1. For any general value of 

p (within the same class, i.e. same value of q), the magnitude of the worst spur relative to 

desired output (see (3.15)) is  

J
J
 

J
 


gcd( N , q)WC
 

K
 

mWC
 
 (dBc) . (3.46)
( A /

)
 

 

1 




exp 

 

  j 
K Q 

pNQ  




Here ‘dBc’ refers to the spur magnitude in decibels with respect to the ‘carrier’ or 

the desired output frequency magnitude. The worst spur index, found using (3.34) and 

(3.37), is 

mWC 
 K Q 
1
 p .
2 K 

N

 (3.47)

Q gcd( q , N ) 

2 K Q 
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The general ith worst spur for a given output frequency is found by noting, as m 

goes away from KQ in (3.43), that 

i 
 gcd( N , q)JWC 

(dBc). (3.48) 
   ji J K Q pN 1  exp 


K  Q   

The ith worst spur index is found by generalizing (3.47)  

Ni . (3.49)K Q  i  pmWC 
Q2 K gcd( q , N ) 

2 K Q 

The worst spur over all possible output frequencies is found by using q = N and p = 

q+1 in (3.48). 

3.5 Measurement Results 

This section presents a comparison of the measured spurs of a CMOS – DTC 

synthesizer with the values computed using the analysis presented in this chapter for two 

related output frequencies. The DTC synthesizer is a part of the transceiver IC in 90-nm 

CMOS that was described in [3.12]. As part of the IC characterization process, the 

measurements were made of the actual synthesizer spurs. The IC has a synthesizer output 

port that allows for direct measurements using an analog spectrum analyzer.  

The synthesizer uses FREF = 1000 MHz and N = 32 phases of the reference signal. The 

synthesizer uses dithering (as described in [3.23] and [3.24]) to mitigate the quantization 

spurs. For the spur values reported below, the dithering was disabled to allow for the 

measurement of raw un-dithered spurs. Dithering has been shown to reduce spurs in 

[3.13] by at least 20 dB (see Figure 25 in [3.13], for example). Similar improvement is 

also reported in [3.24]. Note that the dither injection mechanisms of [3.13] and [3.24] are 
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different. While the former adds random noise to the frequency control word, the latter 

adds it to the phase MUX control. 

Synthesizer output spurs were measured for two output frequencies with a common 

value of q = 256 (KQ = 8) with p1 = 259 and p2 = 261. The output frequencies are about 

988.416 MHz and 980.843 MHz, respectively. The spur spectra for these two frequencies 

are predicted to be related by (3.34) as 

259
J [m ,261]  J [ 7m ,259 ] . (3.50)

16261 

Figure 3.7 and Figure 3.8 show the comparison of the measured and the analytically 

computed (using (3.20) spurs for m = 0, 1, …, 7 (output is at m = 8). 

The worst quantization spur for the first frequency shown in Figure 3.7) is (using 

(3.46)) 

J WC 
  30 .14 (dBc). (3.51)

J    j K Q 259  1  exp   
  8  

The worst spur index is found using (3.47) to be mWC = 5. The spurs (both predicted 

by the analysis tools of this thesis and measured) in Figure 3.8 are re-arranged and scaled 

versions of those in Figure 3.7. Note that the amplitude scaling factor in (3.50) is 

10*log10(259/261) = – 0.03 dB. The spur index scaling factor in (3.50) is 7 (modulo–16). 

Therefore, the first spur (m = 1) in Figure 3.8 is 0.03 dB smaller than the seventh spur (m 

= 7) in Figure 3.7. The second spur in Figure 3.7 is 0.03 dB smaller than the 14th spur in 

Figure 3.7. Although the 14th spur is not shown in Figure 3.7, there is symmetry around 

the desired tone since the errors are real valued. Thus, the 14th spur is the same as the 2nd 

spur (m = 2). 
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Figure 3.7 Computed (using 3.20) and measured spurs for F1=FREF x (256/259). 

Figure 3.8 Computed (using 3.20) and measured spurs for F2 = FREF (256/261). The 
computed spectra for F1 in Figure 3.7 and F2 in this figure are related via (3.50). 
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The measured and analytically predicted spur locations match exactly. The measured 

amplitudes (shown with the marker ‘x’) for both the frequencies show the frequency-

scale relation predicted by (3.50). Each measured spur value is within 3.5 dB of the 

corresponding predicted value. Discrepancies between the computed and measured 

values are likely due to phase mismatch errors (see [3.15]) which are considered in the 

analysis of the next chapter. The mismatch errors also cause additional spurs since the 

fundamental frequency of mismatch errors is much smaller than the fundamental 

frequency of quantization errors. However, all of the additional measured spurs are about 

–53 dBc or smaller. 

3.6 Chapter Summary 

Sub-harmonic spurs due to the quantization error in a fixed clock accumulator digital-

to-time conversion (FCA-DTC) synthesizer have been analyzed for all possible output 

frequencies. While the spur locations and magnitudes had been computed for a fixed 

frequency control word before, this chapter reveals an elaborate structure for the 

quantization error sequences based on different frequency control words. A first-order 

linear approximation allows the structure to be extended to the frequency domain using 

the time/frequency axis-scaling property of the Discrete Fourier Transform (DFT). The 

results derived here also apply to the flying adder (FA) based synthesizer, although the 

approximation error rises for output frequencies above the reference frequency.  

The insight provided in this chapter into the quantization spectra structure allows the 

quantization spectra for all 2(I+M) output frequencies to be classified in just M classes. The 

spectra within each class are systematically rearranged and scaled versions of each other. 

The location and value of the ith worst spur was analytically derived. It is also shown that 

the two common methods of quantization, truncation or rounding, lead to the same non-

DC sub-harmonic spurs. This justifies the use of much more hardware-friendly truncation 

as the method of quantization. Finally measurements on a 90-nm CMOS DTC 

synthesizer validate the theoretical model results. 
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4	 Digital-to-Time Synthesizers: Separating Delay Line Error Spurs 

and Quantization Error Spurs 

The contents of this chapter, by Sumit A. Talwalkar, were accepted for publication on 

22 Jan. 2013 after peer-review for publication in IEEE Transactions on Circuits and 

Systems I: Regular Papers. 

4.1 Chapter Introduction 

This chapter analyzes the spurs due to delay line (DL) buffer mismatch errors and 

phase quantization errors in a digital-to-time conversion (DTC) direct frequency 

synthesizer. Applying the time/frequency axis-scaling property of the Discrete Fourier 

Transform (DFT) to a linear first-order approximation of the general case for both buffer 

error and quantization error spurs, it is shown that the spur spectra for all possible output 

frequencies can be divided into a very small number of classes. All the spectra within a 

class are scaled and permutated versions of each other. For a DTC with a phase 

accumulator with I integer and M fractional bits, this result reduces the number of spectra 

possibilities from 2(I+M) to M. The condition that allows separation of the buffer error spur 

locations from the quantization error spur locations is derived. Spurs predicted based on 

the analysis of this chapter match closely with actual measurements performed on a 90 

nm CMOS DTC synthesizer. The spur analysis also applies to the flying adder (FA) 

synthesizer. 

Frequency synthesizers are critical components of all communication systems. They 

are used to generate the reference signal to up-convert a baseband signal to RF in a 

transmitter and down-convert an RF signal to baseband in a receiver. Synthesizers also 

generate clock signals to run baseband processing. Important performance metrics of 

frequency synthesizers include: frequency range, frequency resolution, settling time 

(when changing the output frequency), stability and spectral purity. Also important, 

especially to the mobile communication systems, is the ease of integration and battery 

power drain. 
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Digital-to-time conversion (DTC) frequency synthesis is a newer type of direct digital 

frequency synthesis (DDFS) architecture. DTC combines the large frequency range and 

the fast switching of a traditional direct digital synthesizer (as in [4.1] with a ROM and a 

DAC) while addressing its high power consumption problem. Since early publications 

found in [4.2]and [4.3], various implementations and analyses of DTC are reported in 

[4.4]-[4.18]. In addition to its ability for generating a wide range of frequencies with very 

low switching times, the DTC is also uniquely suitable to integration using the widely 

used digital CMOS technology ([4.10] and [4.11], for example). The time-domain signal 

processing [4.15] aspect of DTC makes it especially conducive to scaling to newer nodes 

of CMOS technologies even as the device voltages keep falling. 

 The DTC architecture, however, presents its own unique set of challenges. Important 

among them is the presence of undesirable spurious tones (spurs); specifically spurs that 

are sub-harmonic, that is, at frequencies lower than the output frequency. These sub­

harmonic spurs are due to the periodic nature of the edge location errors ([4.8] and [4.9]) 

with periods longer than the desired output period. There are two main contributors to the 

periodic edge location errors: the phase accumulator output quantization errors and the 

buffer delay errors. Detailed analysis of the DTC spurs in the case of an ideal delay line 

(DL) (quantization-only errors, no buffer errors) was considered in chapter 3. This 

chapter extends the spur analysis to the case of a delay line with buffers that have non-

ideal delays. The buffer delays errors are due to mismatches in silicon fabrication and 

hence are also called mismatch errors. The spur expression for a given output frequency 

is presented in [4.14]. This chapter shows that by using a linear first-order approximation 

the spurs can be separated into quantization spurs and mismatch spurs. The output spur 

pattern of a DTC synthesizer is dependent on the choice of the desired output frequency. 

This chapter extends the application of the time-frequency axis-scaling property of the 

Discrete Fourier Transform (DFT) to the analysis of non-ideal delay line DTC. This new 

insight allows dividing the spur patterns for all possible output frequencies into a small 

number of classes. The spur patterns within each class are simply permutated and scaled 

versions of each other under the linear approximation. For a phase accumulator with I 
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integer and M fractional bit input frequency control word, there are only M classes of 

spur patterns. This greatly simplifies analytical determination of the average and worst 

spur values for a given output frequency, as well as the worst spur value across all output 

frequencies. 

This chapter is organized as follows. Section 4.2 describes the model of a DTC 

synthesizer and develops a spur spectrum expression. The following three sections 

contain the three key contributions of this chapter. Section 4.4 develops the application of 

the DFT axis-scaling property to the DTC (mismatch and quantization) spur spectrum. 

Section 4.5 derives the condition for the separation of quantization error spurs and 

mismatch error spurs. Measurements on a DTC synthesizer in a 90 nm CMOS transceiver 

IC [4.11] that confirm the theoretical determination are presented in section 4.6 followed 

a by chapter summary in section 4.7. 

4.2 DTC Synthesizer Model 

The Digital-to-time conversion frequency synthesis architecture uses a series of 

uniformly spaced phases of a reference signal to generate an output binary signal with a 

desired output frequency specified by the user. Such phases may be produced by a delay 

line (DL) of identical ideal buffers in a delay locked loop (DLL). The operation is 

explained with an example in detail in [4.20]. Note that the DL always carries the 

reference frequency signal. Depending on the desired frequency the digital tap selector 

logic selects appropriate phases of the reference signal using multiplexers. The 

multiplexer outputs are used to create edges in the output using an R-S flip flop. An 

example of a DTC using N=4 buffers is shown in Figure 4.1. 

The tap selector block is given the desired output frequency (or rather, the period) 

control word in the form of the ratio T/TREF expressed as a binary format. It generates 

multiplexer control signals CS and CR. The number of precision bits of T/TREF determines 

the output period precision. With M fractional bits to represent T/TREF, the frequency 

resolution F is better than 2-MFREF.(see chapter 3). The binary frequency control word 

T/TREF can be expressed as a ratio p/q such that q is a power of 2 and p is an odd number. 
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Chapter 3 shows the importance of p and q on finding the spur spectra in the case of an 

ideal delay line. This chapter shows that p and q are important to the analysis of delay 

lines with non-ideal delays as well. 

Desired output period input 

out 

T/TREF 

FREF 

Single bit 

0 1 2 3 4 

S 

R 

Q 

Tap 
Selector CR 

Logic 

CS 

Un-clocked 

FREF 

Multiple bits Clocked 

Figure 4.1 Digital-to-time conversion architecture- buffer outputs going through 
multiplexers to R-S flip flop to cause rising and falling edges 

Table 4.1 lists the definitions of some key variables used in the analysis in this 

chapter. These variables are explained with the help of an example in Figure 4.2. The 

DTC in this example has N = 4 buffers with a buffer edge error in one of the four buffers. 

The ideal buffer delay is d = TREF/4. The frequency control word is T/TREF = p/q = 9/8 

(1.001002 assuming M = 5 fractional bits). The first row shows the output cycle count k. 

The next three rows each show the rising and falling tap selections. Finally there are 

important waveforms at the bottom. The ideal output signal is shown along with the four 

available buffer outputs. The buffer signal b1 has a position error that shows in the actual 

output (points B, C and D). The choice of buffers selected to create rising (and falling) 
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edges in the output is periodic with period K= q = 8. Using truncation as the method of 

phase quantization, one period of the rising and falling edge buffer sequences are 

rk={0,0,1,1,2,2,3,3} and fk={2,2,3,3,0,0,1,1}, respectively. The quantization error 

sequence is periodic with period KQ = K/gcd(q,N) = 2. One period of rising edge and 

falling edge quantization errors are qr[k]={0, -d/2} and qf[k]={-d/4,-3d/4}, respectively. 

Now consider the buffer output edge location errors in shown Figure 4.2. The example 

assumes that only one of the four buffer output signals is incorrectly delayed. The output 

of buffer b1 is delayed by d/4 (shown in continuous red line) compared to its ideal 

waveform (shown in dashed black line). Thus the error in the position of the output of 

buffer b1 is b[1] = d/4. Each time buffer b1 is used to create an output edge, that edge 

location occurs d/4 later than the ideal location of the output edge. The remaining three 

buffer outputs (b0,b2 and b3) are at their ideal position. Thus, the other three buffer errors 

are b[0] = b[2] = b[3] = 0. The final waveform in Figure 4.2 illustrates the combined 

effect of quantization and buffer errors. Point A has no quantization error, but only buffer 

error. Point B has quantization error of d/2 and buffer error of d/4 for a combined error of 

–d/4. Point C has quantization error of –d/4 cancelled by buffer error of d/4. Finally, 

point D has quantization error of -3d/4 and buffer error of d/4 for a total error of –d/2. 

Table 4.1 Definitions of key variables 

Variable Definition 
N Number of buffers in the delay line 
d Nominal delay of each buffer 
TREF (= N•d) Reference signal period (= 1/FREF) 
b[n] Error in the position of the output of buffer n 
T Desired output period (= 1/F) 
p/q Reduced ratio for the control word p/q = T/TREF. In binary logic q is 

always a power of 2 and p is odd 
rk, (fk) Buffer chosen to create the kth rising (falling) edge of the output  
qr[k]), (qf[k]) Quantization error incurred in placing the kth rising (falling) edge of the 

output 
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Figure 4.2 Example DTC with buffer error: N = 4 delays, T = (9/8) 

Note that the quantization errors are exactly known for a given desired output 

frequency. The buffer errors are unknown without some type of measurement of the 
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delay line. Buffer errors are different for each instance of the DL. A study of sources and 

features of mismatch errors is found in [4.21]. The terms buffer errors, delay errors and 

mismatch errors are used interchangeably throughout this chapter. 

4.3 Output Spectrum 

The total errors er[k] and ef[k] associated with the kth rising and falling edges in the 

output signal are respectively 

er [k ]  q r [k ]  b[rk ] and e f [k ]  q f [k ]  b[ f k ] . (4.1) 

In (4.1) above, the quantization error components are given by (see equations (3.8) 

and (3.9) in chapter 3) 

  kpN  kpN  
qr [k ]  d Q    , (4.2)

q q    

and 

  (k  0.5) pN  (k  0.5) pN  
q f [k ]  d Q    . (4.3)

q q    

Here < >N denotes the modulo-N operation and Q(•) is a function that represents the 

quantization operation (truncation or rounding). The rising and falling tap sequences in 

(4.1) given by (see equation (3.7) in chapter 3) are 

 kNp   (k  0.5)Np  
.  (4.4)rk  Q and f k  Q    q q   N N 

The rising and falling tap sequences, {rk} and {fk}, have period K = q (see appendix E 

for a proof). Note that the quantization errors, {qr[k]} and {qf[k]}, have period  = 
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K/gcd(K,N) (see equation (3.10) in chapter 3). Therefore, the total rising and falling edge 

error sequences {er[k]} and {ef[k]} are periodic with period K. Using analytical 

operations like the derivation of the quantization-only spectrum in chapter 3, the output 

spectrum is found to be 

)

 


 









m
X f J
 f 
(
 , (4.5)
m KT
m   

where the mth spur at f = m×(F/K) is 


 er [k ] 


 
  

 1 

 


 

Define a 2K - long edge error sequence that interleaves K rising and K falling edge 

errors for l = 0, 1, …, 2K – 1 







j2 
mexp 
 
 
 



 
 
 
 



j mk2 KT




K 

m k 



A
 KJ
 (4.6)

 e .





[k ] 



m 
j2 
 




 



1
e0 f
j2
 
mexp 
KT
 2K

 




qr [l / 2] b[rl / 2 ] 

q f [ l 1 / 2] b[ f l 1 / 2 ] 

Here qe[l] is the 2K – long combined quantization error sequence given by equation 

(3.18) and be[l] is the 2K – long combined buffer error sequence given as 


  

d 
for even l



e[l ] [l ] b [l ] (4.7)

 
 
q .
e e 

 




for odd l
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
 b[rl / 2 ] for even l

 
 


(

1)
l b 



Q


 



lpN 

2q 


 

 N 

 



 (4.8)



b [l ] 
e 

 b[ f l] for odd .
1) / 2 

Using the linearization approximation of the exponential function, the mth spur for m = 

1, 2, …, K – 1 is approximately 

( l 

2 K 

l 

  

where E[m] is the DFT of the total interleaved error sequence. The validity of the first­


 

order approximation for quantization-only errors is considered in appendix C. The 

approximation continues to be valid for combined quantization and mismatch error as 



 

dlong as the average mismatch error is similar to the average quantization error ( /4 for 

rounding, d/2 for truncation). 

4.4 Time-Frequency Scaling Property Application 

This section extends the results of chapter 3, which are applicable only to an ideal DL 

with no buffer errors, to the general case of a DL with buffer errors. Equation (4.7) for 

the total error sequence may be rewritten with explicit emphasis on its dependence on p, 

for l = 0, 1, …, 2K – 1 as 

1 

e[l ]exp 

A
 j ml A
2

 






J
 E[m , (4.9)]

 
m pN K
 pN2
0 


 




 



Q


 



lpN 

2
q 


 

 N 


 

 




 



lpN lpNl Q
e[l , p]

(

1)
 
b
 . (4.10)
 



 

2
q 2
q
 


Now we can state two important properties of the error sequences for two output 

frequencies with the same q but two different values of p. 
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Theorem 4.1: The total error sequence e[l,p] is periodic over p with a 

period 2K, that is 

e[l , p]  e[l , p  2 K ] . (4.11) 

Proof of Theorem 4.1: This is seen by substituting p + 2K for p in 

(4.10). 

The periodicity over p implies that, at the most, there are K distinct error sequences. 

Although the period of the error sequences over p is 2K, we do not have 2K distinct error 

sequences since p can take only odd values for a given value of N and q. The structure 

within a period along the p-axis is considered in the next theorem. 

Theorem 4.2: The total error sequences for two different values p1 and 

p2 (and same q) are related as time scaled (modulo – 2K) versions of each 

other. That is, for every p1 and p2, there exists a unique a such that 

e[l , p2 ]  e[ al , p1 ] . (4.12)
2 K 

Proof of Theorem 4.2: First note that the periodicity over p means that 

] e[l , p]  e[l , p 
2 K 

   . (4.13) l p N  l p  l p 2 K  2 K
N 

 b
 

2 K
N 



Q (1) l 


 Q     2q2q 2q       N   

The modulo-2K value of p in the right hand side above is simply a 

mathematically useful substitution. Consider two odd numbers p1 and p2 
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from {1, 3,…, 2K – 1}. Because neither of them have any common factors 

with q = K, one can conclude 

gcd( p1 ,2 K )  gcd( p2 ,2 K )  1 . (4.14) 

From basic number theory (see appendix A lemma A.1) and noting that 

p1 and 2K are relatively prime, there exists a unique odd integer a < 2K 

such that 

p2  ap 
2 K 

for a  p2  p11 2 K , (4.15) 

where p1  is the modulo – 2K inverse of p1. The quantization error for p2 

can be written using (4.13), 

 
l   lap1 N  lap1 N  lap1 N  Q   . (4.16)e[l , p ]  1 
 

Q   b 

   2   

 
 2q 

 2q   2q    N   

2As a is odd and 2K is even, 1l  1al  1 al 
K , then 

  la p1 N  la p1 N  
2 K  2 K Q   2q 2q  

2 K     . (4.17)e[l , p2 ]   1 al 

    la p N 
2 K 1 Q  b   2q      N   

That is, for every l, q, N and p1, p2, 
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e[l , p2 ]  e[ al , p1] . (4.18)
2 K 

This is an important relation that shows, in addition to the entire sequence {e[l,p]} for 

l = 0, 1, …, 2K – 1 being periodic over p with a period 2K, the sequence at any two 

values of p are axis-scaled (along the l-axis) modulo – 2K permutated versions of each 

other. The scaling factor a was defined in equation (4.15). 

Example: Consider a DTC with N = 12 taps. For q = 16, the value of K = q = 16. The 

period of the interleaved total error sequence e[l,p] over p will then be 2K = 32. During 

each such period, there are K = 16 distinct sequences (corresponding to 16 odd values of 

p). All these four sequences can be directly found from each other using modulo-32 

scaling along the l-axis. Suppose p1 = 19 and p2 = 21. The multiplicative inverse of p1 

(modulo-32) is 27 (since 27xp1 is 1 in modulo-32 sense). Using equation (4.15), the 

scaling factor is 

a  p2  p1 21  27  23 . (4.19)
2 K 

 
32 

Using the knowledge that the total error sequences for different values of p are time 

scaled (in modulo sense) versions of each other given by equation (4.12) and the spurs 

sequence is the DFT of the error sequence equation (4.9), we can use the DFT scaling 

property (equation (2.7) in chapter 2) to relate the spurs for different values of p as 

p 
p2 p1 , (4.20)J [m, p2 ]  1 J [ bm 

2 K 
, p1 ] , where b  

2 Kp2 

where p2  is the modulo-2K inverse of p2. This result extends the spur classification 

procedure for an ideal DL with only quantization errors to, the case of DL with buffer 
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errors. It is consistent with the main result (equation (3.34)) in chapter 3 which considers 

the special case of an ideal delay line with only the quantization errors. 

4.5 Quantization Error Spurs and Buffer Error Spurs 

Since the edge error sequence is the sum of the quantization error and buffer errors, 

the approximated spectrum can be written as a sum of the two spur component spectra, 

J m  J m
Q  J m

B , (4.21) 

where 

2 K 1 
Q  A   j2ml 

J m   qe [l ]exp   (4.22)
pN l 0  2K  

is the quantization error spectrum and the buffer error spectrum is 

2 K 1 
B  A   j2ml 

J m   be [l ]exp   . (4.23)
pN l 0  2K  

The sequences qe[l] and be[l] are the interleaved (rising edge and falling edge) 

quantization and mismatch error components of the total error in equation (4.7) given by 

equations (3.18) and (4.8). 

4.5.1 Quantization Error Spurs 

Consider the quantization error spurs from (4.21) using a change of variable l = 

KQ) +  with the limits l = 0, 1, …, 2K – 1 replaced by  = 0, 1, …,  - 1 and  = 0, 1, 

…, 2KQ – 1. Here  = gcd (N,q) = K/KQ (see equation (3.10)). We get 

 1 2 K Q 1 A   j2m( (2K )   ) 
J m

Q     qe [ (2K Q )   ] exp  Q  . (4.24) pN  0   0  2K  
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Recognizing the periodicity of the quantization errors (see section 3.3.2), 

qe((2KQ)+)=qe(). The double summation can then be de-coupled using  = K/KQ as 

2 K Q 1  1 A   j2m    j2m 
J m

Q   qe [ ] exp     exp  . (4.25)
pN   0  2K    0    

The second summation is zero except when m is a multiple of . In other words, if m = 

 +  with an integer  and a non-negative integer less than  

 1  1  j2m     j2 (  )    if   0
 exp    exp    . (4.26) 
 0     0    0 otherwise 

Using equation (4.26) the quantization error spectrum can be written as 

2 K Q 1 A 
  j2 

 
  qe [ ]exp if   0Q     (4.27)J m m    
 pN  0  2K Q  

0 otherwise 

In the case of = 0, that is when  is a multiple of , the expression above matches 

the quantization-only spur expression from equations (3.20) and (3.21). Intuitively, this 

can be understood by noting that the period of the quantization error KQ (= K/ ) is  

times smaller than the buffer (and the total) error period K. Thus, the fundamental 

frequency of the quantization spectrum is  times higher than that of the buffer (and the 

total) error. 

4.5.2 Buffer Error Spurs 

This section considers the buffer error spurs at the location of the quantization error 

spurs (m = ). It can be shown that the buffer errors are zero at the quantization error 
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spur locations when N is a factor of q. On the other hand, if N is not a factor of q, 

simulations show that the buffer error spurs are greatly smaller than the quantization error 

spurs at the quantization spur locations. Proving this analytically for any N is still an open 

problem. Analysis that follows shows that the buffer error spurs are zero at the 

quantization spur locations when the number of buffers, N, is a factor of q. 

The buffer error spurs at the locations of quantization error spurs (m = ) can be 

expressed as 

2 K 1
 

J m
B
  A   j2 l   b [l ]exp   . (4.28)

m   pN l 0 
e 

 2K  

With a change of variable l = KQ) +  with the limits l = 0, 1, …, 2K – 1 

replaced by  = 0, 1, …,  - 1 and  = 0, 1, …, 2KQ – 1 in the first sum above, 

2 K 1   j2 l  be [l ]exp   
 
l 0  2K 
 

2 1 (4.29)
  K Q1   j2 2K Q   
   be [2K Q   ]exp  . 
 0  0  2K  

Using the definition of be[l] from equation (4.8), with p = q+1, the first term in the 

right hand side of the summand above is simplified below 

  2K Q   (q  1) N ( 2K Q  )be [2K Q   ]  (1) b Q  
2q   N  

 
 
 (1)  b
 Q

 2K Q qN  qN  2K Q N  N  
 (4.30)  

 2q  N   
 
 

 (1)  b
 
 2K Q N N 

Q   . 
 2q 2q  N   
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Under the condition that N is a factor of q, gcd(N,q) = N so that KQ = q/N, 

  2K Q N N 
Q    b 

2q 2q    N  
(4.31)

         
Q  b   b   Q

 

 . 2K 2K    Q   Q  N   N  

For Q(·) = floor(·) for quantization and  < 2KQ, we have Q( /(2KQ))=0 and 

    
b   Q   b[ ] . (4.32) 2K  Q  N  Q  floor 

Thus the first term in the right hand side of the summand in (4.29) is independent 

of . Next observe that the exponential term in equation (4.29) depends only on  

  j2 2K Q      j2  
exp    exp   . (4.33) 2K 2K   Q  

Therefore, the buffer error spur double summation can be separated into a product of two 

sums as 

 1 2 K Q 1 A     j2   
J B   b[ ]

  (1)  exp     0 . (4.34)m   Q floor    pN   0   0  2K Q   

The second term is zero for  > 0. Thus, the buffer error spurs (except at DC for  = 0) at 

the quantization error spur locations are zero. Note that the derivation of equation (4.34) 

uses two assumptions. First, the number of buffers N is assumed to be a factor of q (or 
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equivalently N is a power of 2, q being a power of 2). This is often the case for 

implementation ease of the tap selection logic. All the published implementations of DTC 

([4.3]-[4.5], [4.11]) satisfy this condition. The second assumption concerns the type of 

phase quantization. The proof above used truncation as the method of quantization. If 

rounding is used instead of truncation, the same final result can be obtained by redefining 

the limits in equation (4.23) for l = -KQ to 2K-1-KQ, so that a change of variables to  and 

 yields 

2 K 1 K A Q   j2 l J m
B   be [l ]exp    

m  pN l  K Q  2K  
(4.35)

 1 K Q 1   j2 2K Q   
   be [2K Q   ]exp  . 
 0   K  2K Q 

For Q(·) = round(·) and – KQ ≤  < KQ, Q( /(2KQ)) = 0, the result is 

J m
B  0 . (4.36)

m  ,Q round 

Example: Consider a DTC with N = 8 buffers with desired output period T = (p/q) 

TREF = (33/32)×TREF. Since, the number of buffers is a factor of the denominator q in the 

output period control word, the spur locations due to buffer errors and quantization errors 

can be separated. The spur fundamental is at F/q = F/32. The spurs for m = 1, 2, …, 31 

Bcan be divided into buffer error spurs ( J m 
) that are at all m locations except m = 8, 16 and 

24, at these locations the quantization error spurs are present. Simulated spurs (using a 

randomly chosen set of buffer errors) are shown in Figure 4.3. Dashed lines show the 

exact and approximate total spurs for m = 1,2,…, 31. Solid lines show the quantization 

error component (red ×) and buffer error component (cyan □). As expected, the 

quantization component is non-zero only for m = 8, 16, 24, while the buffer is zero at 

those locations. 
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Figure 4.3 Spectrum for F = (32/33)xFREF using a N = 8 buffer DL. 

4.6 Measurement Results 

In this section measured results from a DTC synthesizer IC synthesized in 90nm 

CMOS process [4.11] is evaluated relative to theoretical predictions. The DTC uses an N 

= 32 tap delay line running at a reference frequency FREF = 1000 MHz. Figure 4.4 and 

Figure 4.5 show the verification of the spur permutation relation in equation (4.20). The 

two output frequencies use the same q = 4 for two values of p: p1 = 5 and p2 = 7 with 

output frequencies F1 = 800 MHz and F2 = 571.428 MHz. There are three sub-harmonic 

(m = 1, 2 and 3) spurs in both cases marked by coordinated marker numbers.  
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Figure 4.4 F1 = (4/5)xFREF = 800 MHz with three spurs at m (F1/4) for m = 1, 2 and 3 
shown by respectively numbered markers. 

Figure 4.5 F2 = (4/7)xFREF = 571.428 MHz with three spurs at m (F2/4) for m = 1, 2 and 3 

shown by respectively numbered markers.  
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As per equation (4.20) it can be seen that the order of the spurs gets reversed and 

scaled by a factor of 20log10(5/7) = 2.92 dB. Figure 4.4 and Figure 4.5 show this to be the 

case. In both the figures the top lines correspond to the reference power level of 10 dBm. 

The vertical scale is identical in both the figures, however, the horizontal scale is 

different to account for the two different output frequencies. Spurs for one case can be 

easily predicted (location and magnitude) from the other case. 

The validity of equation (4.20) for spur prediction is further evaluated as follows. 

Figure 4.6 shows the measured spur spectra for the case of F2 = (32/35) FREF together 

with predicted spur spectra based on the measurement of the spur spectra at another 

output frequency of F1 = (32/33)xFREF. The prediction according to equation (4.20) for p1 

= 33, p2 = 35 and q = 32 gives 

33
J [m ,35]  J [ bm ,33] , with b  35 1  33  43 . (4.37)

64 6435 

The plots in Figure 4.6 show that the prediction is fairly close (spur locations match 

100% while magnitudes are within 10 dB as explained below). The quality of the 

prediction is measured with the prediction error plotted in Figure 4.7. The prediction 

error is within ±5 dB in most cases. More precisely, the cumulative distribution function 

of the absolute prediction error in dB is plotted in Figure 4.8. It shows that 80% 

prediction errors are within 5 dB. Similar cumulative distribution function of prediction 

error for another case of p1 = 257, p2 = 259 and q = 256 is shown in Figure 4.9. Again, 

about 80% prediction errors are within 5dB. It is observed that the larger prediction errors 

occur at places where the predicted spur value itself is smaller than -60 dBc. The final 

plot in Figure 4.10 shows the prediction error versus the measured spurs that were being 

predicted. It is seen in Figure 4.10 that most prediction errors of more than 5 dB had a 

small spur value at -60 dBc or below. Simulations have shown that the errors of the first-

order approximation used in equation (4.9) have a similar error profile. This means that 

the prediction errors are largely due to errors of making the first-order approximation. 
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Recall, however, that the approximation is key to the entire classification of all the spur 

patterns. 

Figure 4.6 Comparison of measured spurs (blue +)for F2 = (32/35)xFREF and those 
predicted from the measured spurs (red o) at F1 = (32/33)xFREF 

Figure 4.7 Prediction error in Figure 4.6 between the measured spurs for F2 = 
(32/35)xFREF and those predicted from the measured spurs at F1 = (32/33)xFREF 
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Figure 4.8 Cumulative distribution function of the prediction error between the measured 
spurs for F2 = (32/35)xFREF and those predicted from the measured spurs at F1 = 

(32/33)xFREF 

Figure 4.9 Cumulative distribution function of the prediction error between the measured 
spurs for F2 = (259/256)xFREF and those predicted from the measured spurs at F1 = 

(257/256)xFREF 
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Figure 4.10 Prediction error versus measured spur. Larger prediction errors in dB occur 
for very weak spurs (< -60 dBc). 

4.7 Chapter Summary 

Sub-harmonic spurs due to periodic edge errors, buffer delay errors and quantization 

errors of a digital-to-time conversion (DTC) synthesizer have been analyzed in this 

chapter for all possible output frequencies. Results here extend an earlier application (see 

equation (3.34) from chapter 3) of the DFT axis-scaling property to the case of non-ideal 

delay line. Table 4.2 summarizes the expressions for quantization error spurs from [4.20] 

and mismatch error spurs developed in this chapter. Further, conditions are derived in this 

chapter, under which the spurs due to buffer delay errors and those due to quantization 

errors, can be separated. This condition (number of buffers N be a power of 2 so that it is 

a factor of q) is naturally satisfied in most practical implementations. The results of this 

chapter apply to spurs of the flying adder (FA) based DTC as well. The insight into the 

edge error spectra structure allows the error spectra for all 2(I+M) output frequencies (for 

frequency control words with I integer and M fractional bits) to be classified in just M 
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classes. The spectra within each class are systematically rearranged and scaled versions 

of each other. Spur measurements on an actual 90nm DTC synthesizer support the 

theoretical results.  

Table 4.2 Summary of results for a N buffer delay line [Assumed here: N is a power of 2 
(true in most implementations) and hence, a factor of q and KQ = q/gcd(N,q)]. 

Description Expression 
Desired output control word 
(p/q) in fixed point binary 
format (p odd, q = power of 2) 

TREF q 

p
T  , F REF p 

q
F  

Mismatch spur fundamental 
frequency 

F/q (=FREF/p) 

Mismatch spur locations for m 
= 1, 2, …, q – 1 (except for 
multiples of N which are the 
locations of quantization spur) 

m x (F/q) 

Mismatch spur amplitudes Needs to be computed using equation (4.23) for a 
given buffer error profile 

Quantization spur fundamental 
frequency 

N x (F/q) 

ith worst quantization spur 
amplitude (w.r.t. the desired 
tone output) (dBc) (equation 
(3.48) in chapter 3) 

 
 
 
 
 




 
 
 
 
 



 

 


 
 










 

 
 exp1 

),gcd(
20 log 10 

K Q 

ji
pN 

N q 

 

 

Frequency location of the ith 

worst quantization spur 
(equation (3.49) in chapter 3) 

  
QK 

KQ K 

F 

q N 

N 
piK 

Q 

Q 
 

2 
2 ),gcd( 
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5 Thesis Summary and Future Research 

The structure of the sub-harmonic spur spectra of a digital-to-time conversion (DTC) 

based frequency synthesizer has been modeled and analytical expressions derived for 

spur locations and strength levels. Time-frequency axis-scaling property is shown to 

apply to the linkage between spur spectra of a DTC synthesizer for different frequency 

settings. The insight and method of classification of the DTC spur spectra developed in 

this thesis greatly simplifies the characterization of spurs for all possible output 

frequencies. In the case of quantization error spurs, all the locations and strengths of 

spurs are theoretically predicted. Measured spur values match all the spectral locations 

predicted by the analysis and have strengths within 3-4 dB of the analytically predicted 

values. For buffer mismatch error spurs, all the spectral locations are completely 

predicted. The strengths of the mismatch spurs depend on the mismatch errors that cannot 

be measured directly. However, measurements verify that the validity of the DFT axis-

scaling property is capable of predicting to within 5 dB for 80% (and within 10 dB for 

95%) of the actually observed spurs. The remaining 20% of spur cases that involve 

higher prediction error are for spurs that are more than 60 dB weaker than the desired 

signal. 

In chapter 2, the time/frequency axis-scaling property of Discrete Fourier Transforms 

(DFT) is presented with the necessary and sufficient conditions on the digital scaling 

integer that require it to be relatively prime with the length of the DFT. The DFT of the 

time scaled (permuted) sequence is the DFT of the original sequence scaled (permuted) 

by the modulo inverse of the scaling factor. 

In chapter 3, the sub-harmonic spurs due to the quantization errors in a DTC synthesizer 

have been analyzed for all possible output frequencies. In this analysis, an ideal delay line 

(DL) is assumed so that the edge errors are entirely due to quantization and not buffer 

delay. An elaborate structure of the quantization error sequences for different frequency 

control words is described in the context of the DFT axis-scaling property. A first-order 

linear approximation allows the structure to be evaluated in the frequency domain by 
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applying the time/frequency axis-scaling property of the Discrete Fourier Transform 

(DFT). The results derived in this chapter also apply to the flying adder (FA) based 

synthesizer, although the approximation error rises for output frequencies above the 

reference frequency. The insight into the quantization spectra structure provided by the 

chapter 3 model allows the quantization spectra for all 2(I+M) output frequencies to be 

classified with M classes. The spectra within each class are modulo permutations and 

scaled versions of each other. Analytical expressions providing the location and value of 

the ith worst spur were developed. It was also shown that the two common methods of 

quantization, truncation or rounding, lead to identical non-DC sub-harmonic spur 

magnitudes. This justifies the use of truncation, rather than hardware-intensive rounding, 

as the method of quantization. Measurements on a DTC synthesizer fabricated on 90-nm 

CMOS process validate the theoretical results. 

In chapter 4, the sub-harmonic spurs due to periodic edge errors for a non-ideal delay 

line were considered. This means that both buffer delay errors as well as phase 

quantization errors were present. Extending the methods of chapter 3, the spur spectra of 

a DTC synthesizer with non-ideal delay line were analyzed for all possible output 

frequencies. Further, conditions were derived under which the spurs due to buffer delay 

errors and those due to quantization errors can be separated. This condition (that the 

number of buffers N be a power of 2) is naturally satisfied in most practical hardware 

implementations. The results of this chapter also apply to spurs of the flying adder (FA) 

based DTC architecture. The insight into the edge error spectra structure allows the error 

spectra for all 2(I+M) output frequencies (for frequency control words with I integer and M 

fractional bits) to be classified in just M classes. The spectra within each class are modulo 

permutations and scaled versions of each other. Spur measurements taken on an actual 

90nm DTC synthesizer supported the theoretical results. 

Further research can enhance the modeling and analytic fidelity of the characterization 

of DTC spurs. The next three sections address these research areas. 
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5.1 Dynamic Edge Errors and Dither Analysis 

The entire analysis in this thesis considers only static errors, either stemming from the 

buffer mismatch or due to quantization. There is no change in these errors over time. A 

practically important extension, modeling edge errors of a DTC would permit changes 

dynamically over time. This change over time could be either deterministic or random, 

such as in the case of dither. Loosely speaking, static errors give rise to discrete spurious 

tones, while dynamic errors give rise to spread (non-discrete) power spectral density. 

Deliberate insertion of random dither is used in analog-to-digital converter (ADCs) 

designs to help mitigate effects of quantization [5.1]. Similar to ADCs, the insertion of 

dither also mitigates quantization spurs DTC-based synthesizers [5.2]. A rigorous 

theoretical analysis of how and why dither helps DTC spectrum is an open area for 

research. Further, determining the effect of shaping of the quantization noise using 

sigma-delta converters on the DTC spectrum is an additional area for research. 

5.2 Use Higher Order Approximation 

This future research area was suggested by Prof. Marple, my adviser. Chapters 3 and 4 

use the first-order linear approximation of the exponential (see equation (3.16)). This 

approximation is a contributor to the error between measured spurs and predicted spurs, 

especially at lower spur levels (see Figure 4.7 in section 4.6). The error in prediction can 

be mitigated by considering higher order terms in the analysis. For example, a third-order 

approximation for the exponential term is  

j 2 j 3 

exp( j )  1     

  

(3.52)j 
2 6 

One may start with the consideration of the second-order approximation and extend 

the technique to the third order approximation. 
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5.3 Buffer Mismatch Spur Statistics 

Another enhancement of the modeling fidelity of this thesis can be done by modeling 

the statistical properties of the buffer mismatch errors. Based on the error statistical 

properties, useful insight may be derived about the statistics of the mismatch error spur 

spectra using equation (4.23). The problem can be briefly stated as follows. The edge 

delay error for the lth buffer output for l = 0, 1, 2, …, N – 1 can be written as 

l 1 

bUNLOCKED dl UNLOCKED [ ] dlk [ ] . (5.1) 
k 0 

The variable dUNLOCKED[k] is the delay of the kth buffer before the delay line is locked 

and d is the ideal delay of each buffer. When the delay line is locked so that every 

unlocked delay value gets scaled by a factor  using a tuning mechanism to apply the 

constraint, the result is 

N 1 

b [ N ]    d [k ]  N  d  0 . (5.2)LOCKED UNLOCKED 
k 0 

With the locking constraint, the tuning factor can be solved as 

N  d  . (5.3)N 1 

 d [k ]UNLOCKED 
k 0 

The buffer errors when the DL is locked are given by 

l 1 

b[l ]   d [k ]  l  d . (5.4)UNLOCKED 
k 0 
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The unlocked delay may be modeled using a suitable probability density function 

(PDF). The challenge is to derive the statistics for b[l]. This may involve deriving the 

entire PDF, or just the mean and variance may suffice for b[l]. 

5.4 Relating Cross-Class Spur Spectra 

This future research was suggested by Prof. Faridani of OSU Math department. 

Chapters 3 and 4 of this thesis suggest a way to relate error spectra for two output 

frequencies for which the output periods T1 and T2 are related to the reference period TREF 

for the same value of q as 

T1 p1 T2 p 2  and  . (5.5)
T q T qREF REF 

Here p1 and p2 are two different odd numbers and q is a power of 2. There is a possibility 

to generalize this to the case of two output frequencies with different values of q. The 

first step to doing this would be to relate the spur spectra for two output frequencies with 

two sequential powers of 2 for the two values of q. Choosing p1 = q1+1 and p2 = q2+1, 

T1 q  1 T2 2q  1
  and  . (5.6)

TREF q TREF 2q 

In this particular case, it can be shown that the buffer error sequences for the two 

frequencies are related using equations (4.10) as 



 
 

 

 

 

 

 

 

 

 

 

95 

2( 2 K )1b , 2 [l ] e l 0 

{be ,1[0], be ,1[1], be ,1[0], be ,1[1],
 

be ,1[2], be ,1[3], be ,1[2], be ,1[3], (5.7) 


...,
 

be ,1[2K  2], be ,1[2K  1], be ,1[2K  2], be ,1[2K  1]}.
 

Note that the sequence be,2 is constructed by repeating every two-sample set of the 

sequence be,1 at a time. Conversely, the sequence be,1 is found by ‘bunched’ decimation 

be,2 by a factor of 2. Here bunching refers to taking two samples and skipping two 

samples. The problem to relate the spectra for the two cases is now transformed to the 

application of bunched sampling results described in [5.3] and [5.4]. The relationship 

between the DFTs of be,1 and be,2 may help relate spur spectra of two elements of a 

principal set of spur spectra described in chapter 3 and 4. The ultimate goal here would 

be to determine if the principal set can be further reduced to a smaller set of spur spectra. 
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A. Number Theory Results 

The appendix contains proofs of some background number theory results that are used 

in the proof of the DFT time/frequency scaling theorem. These are included for the sake 

of completeness. More elaborate treatment can be found in [2.4], [2.5] and [2.6]. 

We start with a definition of the Euler’s phi-function (also known as the totient 

function) of an integer N 

(N )  {0  i  N | gcd(i, N )  1}  (A.1) 

The notation denotes the number of positive integers less than and relatively prime to 

N. The Euler’s phi-function of a number N can be computed as follows. First factorize the 

number as product of powers of prime numbers 

n n n n1 2 r lN  p p ...p  
r

p  (A.2) 1 2 r l 
l 1 

Then, the Euler’s phi-function is 

r 
l 
 1 (N )  pl 

n 

1 
p 
  (A.3) 

l1  l  

For example, for the case of N = 7 presented in the paper, φ(7) = 71(1 – 1/7) = 6. 

Fermat’s Little Theorem (due to Euler, stated here without proof): 

If integers a and N are relatively prime, then 
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 ( N )a  1  (A.4) 
N 

where, φ(N) is the Euler’s phi-function. 

Lemma A.1: Given integers N, for every a < N which is relatively prime 

with N, there exists a unique integer b < N such that, 

ab  1  (A.5) 
N 

Such a number b is a (since uniqueness has not yet been proven) 

multiplicative inverse of the number a in modulo N sense. 

Proof of Lemma A.1: First consider the existence of b. This follows 

from Fermat’s Little Theorem since a and N are relatively prime with 

 ( N )1b  a 
N 

 ( N )1  ( N )ab 
N 
 a.a  a  1.  (A.6) 

N N 

Now consider the uniqueness of the multiplicative inverse. This is 

proved using reduction-ad-absurdum. Consider that the converse is instead 

true, that is, there are two distinct inverses of a, b1 and b2, both less than N 

such that 
N 
 1  and  1  .Further assume that b1 < b2. Takingab1 ab2 N 

the difference yields 
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ab2  b1   0  (A.7) 
N 

Since a is relatively prime with N, the difference (b2 – b1) must be a 

multiple of N. In other words, for some positive integer j, b2  b1  jN . 

Since, they are distinct and both less than N, this is impossible. Hence the 

assumption about non-uniqueness of multiplicative inverse is not true. 

Lemma A.2: For integer N and number a that is relatively prime to N, 

and 0  n1  n2  N 

n1  n2  an an  (A.8) 1 2N 
 

N 

Proof of Lemma A.2: Again assume that the converse is true. That is, 

an an . Similar to the proof above it then follows that such 1 2N 
 

N 

distinct numbers n1 and n2, both less than N, cannot exist. 

}  are distinct for The above lemma means that for all numbers in the sequence { an
N 

n = 0, 1, …, N – 1. Since the sequence is mapped from {0, 1, …, N – 1} to itself, this 

means that all the numbers are mapped to exhaustively. 

B. Fourier Transform of Output of DTC with an Ideal DL 

Rewriting equation (3.11), the output of a DTC synthesizer with an ideal DL with N 

buffers, each with a delay d 
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K 1 Q u (t  tr , Actual [k  iK Q ])  
x(t)  A   





. (B.1) 
i k 0  u(t  t f , Actual [k  iK Q ])  

In order to find the frequency domain representation of the output, it is easier to 

consider the first derivative x’(t) with a change in the order of the double summation 

KQ 1   (t  [(iK Q  k )T  qr [k ]])   
x(t)  A     . (B.2) 

k 0 i (t  [(iK  k  0.5)T  q [k ]]) Q f  

Note that for a given value of k, the infinite internal sum (over l) contains uniformly 

spaced train of impulses. The Fourier Transform (FT) of each of the train of infinite sum 

of impulses is well-known. Note that the train of impulses (B.2) is separated by KQT. 

Adding the time-domain shift property  

   1   m  
  (t  iK QT )    

 f  
 . (B.3)

i  K QT m  K QT  

With a time domain shift  

 (  j 2f )    e m  
  (t  iK QT  )    

 f  
 . (B.4)

i  K QT m  K QT  

Note that the time-domain shift in (B.2) is  = kT + qr[k] 
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  
  (t  [(iK Q  k )T  qr [k ]])   
i  

(B.5)
(  j 2f [ kT  q [ k ]]) e r m  

 
f  


 
.

K T m  K TQ  Q  

The FT of the derivative of the output can be written as  

 
 


 

X ( f )  
A  

  f  
m  

K T  K QTQ m   (B.6)
K 1 Q 

(  j 2f [ kT  qr [ k ]]) (  j 2f [( k 0.5)T  q f [ k ]]) 

  e  e . 
 k 0  

Finally, using the property for FT of a derivative, the FT of the output x(t) is 

A  m  
X ( f )     f   

j2fK T  
 K QT Q m   (B.7)

K 1 Q 
(  j 2f [ kT  qr [ k ]) (  j 2f [( k  0.5)T  q f [ k ]) e  e .  

 k  0  

C. On the First-order Approximation of the Exponential 

The accuracy of the linear approximation (see equation (3.16)) can be studied by 

considering the maximum absolute value of the term inside the exponential. Since the 

maximum absolute value of the quantization error is d (for floor(·), and d/2 for round(·)), 

for m’ < KQ (quantization spurs at frequencies less than the output frequency) 

j2mqr [i] 2qd 2 (q / N ) 2
  

K T pT 2 p 2NQ REF . (C.1) 
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The last inequality is true because q is not greater than p. With this bound, the ratio of 

the approximation error magnitude to the approximated term magnitude can be is shown 

in the Figure C.1. For example, for a value of N = 8, the approximation error is 80 dB 

below the term being approximated. 

Figure C.1 Error caused by the first-order approximation of the exponential 

D. Series Expansion Used for Worst Quantization Spur 

Let S denote the series 

2 KQ 1 

S   la l . (D.1) 
l 0 

Then, a x S is 
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2 K 1 2 KQ Q 
l 1 laS   la  (l  1)a . (D.2) 

l 0 l 1 

Taking the difference of (D.1) and (D.2) 

2 K 1Q
l 2 K Q(1  a)S   a  (2K Q  1)a . (D.3) 

l 1 

Then, 

Q1  a  a 2 K 
2 K Q 


S    (2K Q  1)a .  (D.4)  1  a 1  a 
 

In particular if a = exp{-j2[KQ+m]/(2KQ)}, 


a 2 K Q  1  S  j 2  [ KQ  m ] 2 KQ  a  exp 

. (D.5)1  a  1  2K Q   (2K Q  1)   
1  a  1  a  1  a 

E. Quantization Spur Magnitudes: Truncation vs Rounding 

Recall that for the special value of p = p0 that satisfies (3.37), the quantization error 

sequence for l = 0, 1, …, 2KQ can be rewritten from (3.39) as 

  l 
l 

 l 
qe [l , p0 ]  (1) Q 


   . (E.1)  2K Q  2K Q  
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For l = 0, 1, …, 2KQ two types of quantization methods yield the output 

 l   l  0 when 0  l 2K  0.5 
Q floor 





  0 and Qround 





   

Q . (E.2)
2K 2K 1 when 0.5  l 2K  1Q Q   Q   

Using the quantization values from equation (E.2), the quantization error sequences in 

equation (E.1) for the two methods can written as  

qe , floor [l , p0 ]  (1) l 


  

l 

 for l  0,1,..., 2K Q  1 and

2K Q  
  

l l
 (1) 

  
 when l  0,1,..., K Q  1 (E.3)

2K  Q qe ,round [l , p0 ]    (1) l 1  
l  when l  K , K  1,..., 2K  1.Q Q Q  2K  Q  

From (E.3), qe,round [l, p0], the error sequence due to rounding may be expressed in 

terms of, qe,floor [l, p0], the error sequence due to truncation, as 

 qe , floor [l , p0 ] when l  0,1,..., K Q  1 
qe ,round [l , p0 ]   l (E.4) 

qe , floor [l , p0 ]  (-1 ) when l  K Q , K Q  1,..., 2K Q  1. 

 The DFT of the error sequences due to rounding is the sum of the DFT due to 

truncation and the DFT of the sequence of (-1)l for l from K to 2KQ – 1, yielding 

  j 2lm    j 2lm 2 K 1   2 K 1  Q Q   2 K 2 KQ l Q   (E.5)Qe ,round [m]   qe ,round [l ]e   Qe , floor [m]   (1) e .
 
l 0 l  K
 Q 
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With the definition a = exp{-j2[KQ+m]/(2KQ)} (similar to equation (3.42)), 

  j 2lm 2 K 1   2 K 1 2 K K 
l 

 2 K Q 

 l a  aQ Q Q Q 

 (1) e   a  . (E.6) 
Q Q

a  1l  K l  K 

Recognizing that, 

  j 2 [ K Q  m ]  
  2 K Q K Q  2  ma  1 and a  e  (1) , (E.7) 

the DFT of the error sequence due to rounding from equation (E.5) becomes 

1  (1) m 

Qe ,round [m]  Qe , floor [m]  . (E.8)
1  a 

Recall from equation (3.42) that Qe.floor [m] = – 1/(1 – a). Using this in equation (E.8), 

m 1 1  (1)  Qe , floor when m is even 
Qe ,round [m]     . (E.9)

1  a 1  a  Qe , floor when m is odd 

Therefore, the magnitude of the quantization error spectra are the same whether rounding 

is used or truncation is used. 

 Qe , floor [m] for m  0,1,..., 2K Q  1. (E.10)Qe , floor [m] 
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F. Period of Rising and Falling Tap Sequences 

The kth rising and falling edges in the output are generated from taps 

 kNp   (k  0.5) Np  
rk  Q  and f k  . (F.1)Q  q q   N N 

With a substitution (k+q) in place of k in equation (F.1), it can be verified that q is a 

period of these sequences. That is, for every k, 

rk  rk  q and f k  f k q . (F.2) 

In order to prove that q is the period, it is necessary to prove that no factor of q is a 

period of these sequences. In order to do this, it is sufficient to consider only the rising 

edge tap sequence. Suppose that the period is not q, but the period has factor q/. For 

every k, this implies rk = rk+(q/. In particular, since r0 = 0, so should rq/, r2q/, … be zero. 

That is, for every l, 

 lqNp   Np Q   0 . (F.3)r   Q l l ( q / ) 
   q  NN 

Consider the case of l = 1. Suppose truncation is used for quantization (other methods 

have similar arguments). The result is 

Np Np  r  0   m1 N  1 . (F.4)Q ( q / )  
N 

   
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where (m1N) is the multiple of N closest to and less than Np/, such that floor(Np/) = 

m1N and 1, the truncation error, is in [0, 1). Of course, 1 cannot be zero, otherwise, 

(p/) = m1 would mean that  has to be 1 (since p and q are relatively prime and so are p 

and ). One can show that it is possible to find another value of l = l’ for which equation 

(F.3) requires that tap be zero, but equation (F.4) implies that tap be non-zero. Since 1 is 

not zero, and noting that l’ = ceil(1/1) = (1/1 + 1) where 1 is the ceiling error, the 

result is 

r  Q ceil (1 /  )(m N   )  Q 1  11   1. (F.5)l( q / ) 1 1 1 N 

This apparent contradiction is due to the incorrect assumption that 1 is not zero. Thus, 

 has to be equal to 1 and hence q is the period of rk. Similar arguments can be used to 

prove that the rising and falling edge tap sequences have period K = q if another 

quantization method is used. 




