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Chapter 1: Introduction

A growing class of complex systems, such as state-of-the-art aircraft, advanced power
systems, unmanned aerial vehicles, and autonomous automobiles, is required to operate
dependably in an ever widening variety of environmental conditions, over a wide range
of missions. Such systems must be cost-effective while being dependable in potentially
extreme conditions and adaptable to a given environment.

In the early stages of conceptual design, engineers tasked with designing complex engi-
neered systems do not have detailed models that ensure that design space exploration, sys-
tem architecture selection, and system integration are conducted in a way to produce sys-
tems that meet high-level design objectives. This research seeks to address this issue, cre-
ating innovation at the intersection of multiple disciplines, requiring expertise in complex
system design, multiagent coordination, uncertainty quantification, and multi-objective op-
timization.

1.1 Motivation

In complex engineered systems, complexity may arise by design. For example, during
the design of an aircraft the complexity is triggered by software & hardware integration
and the use of new materials. Complexity can also be caused by the systems operation.
This is the case of autonomous vehicles, where the vehicle must drive/operate on different
type of environments. In either case, the root cause of complexity is the same: the unpre-
dictable manner in which interactions among components (or between components and the
environment) modifies system behavior.

Traditionally, two broadly different approaches are used to handle such complexity: (i)
Approaches based on a centralized design approach where the impacts of all potential sys-
tem states and behaviors resulting from design decisions must be accurately modeled. (ii)
Approaches based on externally legislating design decisions, which avoid such difficulties,



2

but at the cost of expensive (in time and money) external mechanisms to determine the
trade-offs among competing design decisions.

The work presented in this research is a hybrid of the two approaches, providing a
method in which decisions can be reconciled without the need for either detailed interaction
models or external mechanisms.

A key insight of this work is that complex system design, undertaken with respect to a
variety of design objectives, is fundamentally similar to the multiagent coordination prob-
lem. In both instances, the decisions at the component level (subsystems or agents), and
the interactions among those components, lead to global behavior (complex system or mul-
tiagent system). In multiagent coordination, a key research challenge is to determine what
each agent needs to do so that the system as a whole achieves a predetermined objective.
This does not in itself solve the design problem; rather, it shifts the focus from modeling
interactions to determining how to evaluate/incentivize components so that their collective
behavior achieves the system design goals. This shift in focus is critical to enabling a new
paradigm to emerge: Multiagent coordination approaches can now be used to determine
how to distribute credit (or blame) in a design process to the components/stages in the
design that are critical to success (or failure).
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1.2 Definitions

Many of the terms utilized within this research have alternate meanings when used in
different domains. Therefore, it is necessary to define several terms which are utilized
prominently. Table 1.1 provides a list of the definitions as they are used in this work. Each
definition is supported within the engineering literature.

Table 1.1: Terminology Utilized Throughout This Work

Term Definition

Flow A Flow is an energy, material, or signal acted on by a function.

Function A Function is the transformation of a flow.

Behvaior Behavior is how a function is achieved.

Performance Performance is a specific manifestation of behavior.

Failure A failure is the degradation of performance.

Component A component is the lowest level of a system with behavior.

System A system is a collection of elements, components or otherwise,
which combine to perform a function.

Complex system A complex system is a system displaying emergent interactions
that are not separable without altering system architecture.

Complex
engineered

system

A complex engineered system (CES) is an artificial complex sys-
tem comprised of interdependent engineered systems performing
a function.

Algortithm An algortithm is a self-contained step by step set of operations to
be performed.

Agent Agent is an autonomous entity which observes and acts upon an
environment and directs its activity towards achieving goals.

Multiagent
system

Multiagent system is a system composed of multiple interacting
agents within an environment.
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1.3 Contributions

This thesis consists of two manuscripts that describe a process for implementing a
methodology for making design decisions for complex systems. The presented method-
ology uses a multiagent coordination approach to design complex engineered systems. The
contributions to the field are as follows:

1. The implementation of a learning algorithm within the design optimization process

guarantee the identification of the preeminent solution.

The first contribution of this research specifically addresses the performance of au-
tonomous agents with pre-programmed vs. learned behavior. In the first paper the
implementation of a learning algorithm was shown to work much better than a pre-
programmed behavior. The second paper demonstrates that the implementation of a
cooperative coevolutionary algorithm can complete the design of complex system us-
ing the collaborative work of a team of autonomous agents. It was corroborated that
a complex engineered system can effectively be designed using agents with learned
behavior.

2. The application of a cooperative coevolutionary algorithm and difference evaluation

in the design methodology guarantees the collaboration between agents inside a de-

sign team, and approximate the agent’s impact on the overall system performance.

The second contribution addresses the multiagent coordination problem translated to
the complex engineered system domain. The results from the case studies provide
preliminary evidence that multiagent coordination can be used in design processes by
splitting up the overall system into specific teams. Specifically, cooperative coevolu-
tionary agents from distinct populations collaborate to reach good system solutions.
However, one issue that arises is the problem of credit assignment. One good agent
can be collaborating with a poor team, as a result the desired objective will not be
satisfied. Implementing a difference evaluation function allowed autonomous agents
to measure the impacts of their individual design decisions (choices) in the team
performance for system.
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3. The application of multiagent coordination in the design methodology certifies the

collaboration of the teams of autonomous agents as designers, and guarantees the

success of the system objective.

The third contribution addresses the translation of the multiagent coordination prob-
lem to the design of complex engineered systems. In this research teams of au-
tonomous agents were responsible for the design of different subsystems inside a
complex system. Using the cooperative coevolutionary algorithm, the team of agents
demonstrated that all agents are able to find an appropriate level of tradeoffs between
the team members (subsystems) to satisfy the general system

This research provides evidence demonstrating that a multiagent coordination approach
can be used to design a complex engineered system. It was corroborated that a team of au-
tonomous agents can design a system through the use of difference evaluation functions
combined with cooperative coevolutionary algorithms. The preliminary results demon-
strate that a team of autonomous agents using a cooperative coevolutionary algorithm
(CCEA) can effectively optimize a multiobjective design problem. By demonstrating com-
patibility and performance improvements, providing a theoretical analysis, and providing
a methodology for implementation, we demonstrate the potential practicality of designing
complex engineered systems using multiagent coordination.
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Chapter 2: Background

Before proceeding, a discussion on what is a complex engineered systems design and
how teams of engineers design such systems is included.

The following sections present information related to the design of complex engineered
systems. Also included is a discussion on Integrated Concurrent Engineering (ICE) and an
example of how Team X uses ICE to design complex engineered systems. The concepts of
Multiobjective Optimization, Multidisciplinary Design Optimization, and Problem Formu-

lation, which are important methods and concepts to this research are also presented within
this section.

2.1 Complex Systems

Complex systems represent group of systems with a set of important features. The dis-
tinction between a complex [8] and complicated [30] system frequently leads to mispercep-
tion about the nature of being complex. A complicated system is one that may be difficult
to build, have a large number of components, or may be enormous [30]. While in a complex

system, complexity arises as result of the system interactions between sub-functions. The
system interactions are not separable so long as system behavior and function is retained
[8]. Numerous aspects of biology and biological processes could be considered complex
systems. Ecosystem interactions, brain chemistry and structure, and immune responses, to
name a few, are complex systems [43]. Similarly, the interaction of many social groups
could be considered a complex system as well. The existence of a group structure that
is dependent on individuals belonging to and interacting with multiple groups may make
these types of interactions complex.

The main problem dealing with complex engineered systems is the difficulty with mod-
eling all the interactions within the system. Complex engineered systems share properties,
interactions, and even emergent behaviors between components that cannot be fully un-
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derstood or modeled [65, 42]. However, some authors argue that even very complicated
systems such as aircraft carriers are not actually complex [49]. This research assumes that
complex engineered systems are indeed complex systems.

Furthermore, as an engineered system is an organized combination of hardware, soft-
ware, people, policies, and procedures, the unpredictable interacting nature of all the adove
mentioned elements creates unexpected interactions within the system architecture, thereby
making it complex. The terminology, ‘complex engineered systems’, is used to make a dif-
ferentiation from other complex systems (such as biological ones) to emphasize that they
are artificial, intended to perform specific functions, and comprised of interdependent en-
gineered systems. Various examples include: aircraft, process plants, and satellites [4].

Selection of a design architecture while considering various design criteria and sources
of uncertainty is a fundamental research problem in designing complex systems. Explic-
itly computing quantitative and qualitative objectives of a complex system is generally
viewed as the preferred method for formalizing the design process; however, one of the
key problems is the over-emphasis on requirement satisfaction for evaluating design alter-
natives [53]. This focus is primarily the result of the acquisition process, but is exacerbated
by overly simplistic design objectives, such as minimizing weight or cost, that do not reflect
the true value of the designed system.

The key concept is that many designs meet requirements; however, the design which
maximizes design value is preferred. This approach to design can be applied to complex
systems by decomposing the system-value model to individual components. This allows
concurrent design that carries guarantees that optimizing an individual design goal will op-
timize the system-level goal simultaneously. Currently, the impact of component behavior
upon system performance is quantified using sensitivity analysis [17, 61]. In this approach,
components are broken into their attributes which are then perturbed to analyze their impact
on the system as a whole; however, this analysis is performed after the system is composed
and not concurrently with system design. This approach is typically not feasible in complex
system design, where component interactions are difficult to quantify and model.
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2.2 Integrated Concurrent Engineering

Integrated Concurrent Engineering (ICE) represents a collection of practices that at-
tempts to eradicate inefficiencies in conceptual design and reorganize the process of sharing
information inside a design team. ICE uses: a combination of expert designers; advanced
modeling, visualization and analysis tools; social processes, and a specialized design facil-
ity; to create preliminary designs for complex engineered systems.

When compared with a traditional sequential engineering method, ICE users reduce
project schedule by several orders of magnitude, while substantially improving design cost
and maintaining quality standards. Within a very short period of time, ICE allows engineers
to consider, implement, evaluate, accept and/or reject numerous ideas, with a relatively
high level of fidelity [74]. Traditional design approaches constrain interdisciplinary trades
because of a deficiency of communication among team members. Information is often
scattered throughout the project team, meaning those seeking data on a particular subject
have no central location to search [63]. As a result, engineers spend a significant amount
of time searching or recreating information that already exists; rather than developing new
information or data.

Primarily, ICE methodology addresses this problem by:

• Boosting communication between subsystem teams

• Centralizing information storage

• Providing a universal interface for parameter trading

• Stimulating multidisciplinary trades

The ICE structure allows teams to work independently on problems local to a subsys-
tem and to coordinate effectively on issues that affect other teams. Projects using ICE
methodology are more flexible and can quickly adapt to changes in top-level requirements.
As a result of the combination of all this factors, engineering teams that work with ICE can
successfully complete rapid trades among complex multidisciplinary subsystems.
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The format of an ICE Team vastly increases the efficiency of the design process. Figure
2.1 highlights the advantage of a concurrent engineering process when compared with the
traditional sequential approach.

Start Provide 
Staff EndSubsystem

Design
System 
Trades Cost

Start End

Subsystem
Design

System 
Trades

Cost

`

Sequential Process

Concurrent Process

Figure 2.1: Difference between Sequential & Concurrent Design Process

Innovators in ICE methodology are primarily in the aerospace industry such as Boeing,
where several closely related methods are termed ICE, Extreme Collaboration, Concurrent
Design Engineering, or Radical Collocation [44]. Whereas traditional engineering superfi-
cially resembles a government bureaucracy, ICE performs the same work in an environment
similar to NASA’s Shuttle Mission Control operations.
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2.2.1 Advanced Project Development Team

One of the most experienced team of engineers working with ICE can be found at
NASA Jet Propulsion Laboratory (JPL). JPL is the headquarters of the Advanced Project

Development Team, conventionally known as Team - X.
Team - X completes early-phase design projects in less than one-tenth the time of the

previous process at JPL , and for less than one third of the variable cost [10]. Team - X
begun operations in April of 1995 at the Jet Propulsion Laboratory (JPL).

The team has built a reputation behind his name because they were able to revolution-
ize the design of Complex Systems. They improved the speed and quality of JPL’s new
mission concepts; additionally it created a reusable study process with dedicated facilities,
equipment, procedures, and tools. They were also responsible for developing a database for
the initial mission requirements, which can be easily updated and electronically transferred
for use in subsequent project phases.

Although there are continuous efforts to increase and improve the quality of designs
and the generality of their method, Team - X product results is good enough that outside
investigators choose to purchase their services about fifty times a year [10]. Team - X is in
heavy demand in the competitive market for mission design services, and their successful
concept designs have brought hundreds of millions of dollars in business to JPL and its
suppliers [64].

Team - X is formed by a group of experienced engineers who work in parallel to develop
and evaluate a system-level design such as spacecraft’s. The team includes about eighteen
domain experts, a facilitator, and a customer representative. The team leader divides the
project in several groups that are responsible of the design decisions for each subsystem
such as: cost estimation, telecommunications, hardware, mission design, programmatics,
etc. Each subsystem leader is an expert in his or her dedicated field, and brings considerable
technical proficiency to the team. Each Team - X chair designs a component of mission
function, design form, or anticipated behavior as Figure: 2.2 illustrates. They coordinate
using four independent processes: Facilitator- mediated tracking of design conformance
to goals; Sidebar agreements on design trades; functional review of goals feasibility; and
automatic data sharing of networked spreadsheets.
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Figure 2.2: Team - X Schematic [10]

While the majority of engineering teams of this size employ a multilevel management
hierarchy, Team - X is a much more flat and broad organization [10]. The team’s facilitator
focuses group attention on particular problems, lateral conversations are generated in which
some discipline specialists resolve the problem of shared interest, and directs attention of
individuals and the group to newly emerging information. A customer representative has
the final authority on decisions that impact the achievement of the project’s scientific goals.

Team - X members are selected for their technical skills, experience, and their inde-
pendent ability to work effectively in the informal, superficially chaotic, high-pressure
conditions. Partly because they are so psychologically demanding, Team-X limits design
sessions to three hours [28].

Figure 2.3 illustrates an example on how Team - X is organized inside the war room.
In war rooms, team member’s work together synchronously in all phases of a project, engi-
neers work closely together using a variety of computer technologies, including networked
computers and public displays. The objective of the war room is to maximize communica-
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tion and information flow between team members.
The implementation of Team -X in the of War Room helps achieve the design complex

systems with a balance between electronic and social networks. However, how to optimize
the flow of information between them is an open question [44]. The implementation of
auxiliary autonomous tools for sharing information might be helpful and beneficial for the
team. It may relieve the personal stress reported by team members, and free up time for
more human networking and design decision making.

Trajectory 
Design Tools

Information 
System 

Design Tools

Spacecraft 
Subsystem 
Design Tools

Trajectory 
Design Tools

New Technology 
Design Tools

Cost 
Design Tools

Complex System

Team X

Figure 2.3: Team - X War Room [74]

The purpose of this research is to assist and help Team - X with the design decision
process. This research will set the preliminary work in the implementation of a multiagent
coordination approach to design of complex engineered systems. Team - X would be able
to use this new methodology as an auxiliary tool for their design decision process.
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2.3 Multiobjective Optimization

In system design, multiple criteria, such as cost, safety, and performance, are generally
considered in the process. This represents the multi-objective design optimization (MOO)
problem [12, 34, 73, 85]. General methodologies exist for solving MOO problems [62, 70];
the distinguishing feature of a MOO problem is that, in general, one cannot identify a single
solution that simultaneously optimizes each objective. In the design objective space, the
point obtained by solving the k single-criteria optimization problems individually is called
the utopia (ideal) point. The utopia point is generally not achievable due to conflicts among
the multiple design criteria. A design point is said to be a Pareto solution [58] if there exists
no other feasible design that would improve some design objectives without sacrifice in at
least one other criterion/objective. The Pareto frontier consists of Pareto solutions in the
objective space such that a design criterion cannot be further improved without sacrifice
to another criterion. Various methods for finding the Pareto frontier have been developed,
such as the weighted-sum method [15], compromise programming [12], and the Normal
Boundary Intersection (NBI) method [19]. Work exists in identifying the Pareto frontier
when uncertainty exists in the multiple objectives, either by treating the mean and variance
of each objective as separate objectives [46] or by computing an expected single attribute
utility for each objective [33].

In this research the ultimate goal is to optimize a set of multiple objectives, which are
the one of the distinguish characteristic of a complex system. This research will enable
the identification of the Pareto frontier and allow meaningful trade-offs in problems with
non-convex objective functions, utilizing agent-level information.
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2.4 Multidisciplinary Design Optimization

Multidisciplinary Design Optimization is an optimization method used in engineering
problems that involve multiple subsystems [63]. The advances in computing power have
increased to popularity of this type of optimization methodologies. A number of techniques
have emerged in an attempt to integrate both system decomposition and optimization such
as Collaborative Optimization and Bi-level Integrated System Synthesis.

Collaborative Optimization (CO) is a multidisciplinary design optimization technique,
developed at Stanford University, that divides a problem along disciplinary lines into sub-
problems. Each sub-problem is then optimized so that the difference between the achiev-
able subsystem response and target variables established by the system optimizer is mini-
mized [5, 38].This methodology is powerful and effective for problems with well-defined
disciplinary boundaries, a large number of shared variables and calculations, and a mini-
mum of interdisciplinary coupling. However, on the downside CO leads to setups with high
dimensionality, which requires high processing power. CO has been successfully applied
to a number of different engineering problems typically in the area of vehicle design.

Bi-level Integrated System Synthesis (BLISS) is a multidisciplinary design optimiza-
tion technique, developed at NASA Langley Research Center [67, 69, 68], that uses hierar-
chical decomposition. BLISS works similar to CO, where the goal is to optimize distributed
engineering systems developed by specialty groups who work concurrently to solve a de-
sign problem. The methodology differs from CO because preference weights are used for
multi-objective optimization at the subsystem level. The Constraints and coupling vari-
ables are also controlled fairly differently. The design parameters in BLISS are divided
into three groupings. In the first group the variables are optimized at the local level and
are found only within each of the subsystems. The second group contains variables which
are outputs by one subsystem and are used as inputs for a different subsystem. Finally the
third group contains the system-level design variables, which are shared by at least two
subsystems.

One of the main problems in modern design results from the conflict between the prob-
lem decomposition and multidisciplinary optimization [63]. Decomposing a problem into
smaller sub-problems makes the overall problem more controllable, but as a result it is more
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challenging for system-level optimization to make a important contribution. Connecting a
different number of subsystems into one is not simple. As the complexity of the system
increases, so does the complexity of the model needed to complete the system level opti-
mization. Solving optimization problems with a computer can take long periods of time,
which can result in a delay of time between members on a design team. While waiting
for the optimization results to return, the design team continues on with their work, often
updating models and reacting to changes in the requirements. When an optimization does
finally produce data, the results are often obsolete by these changes. This is the principal
weakness of MDO, because it prohibits a full integration of the parts, subsystems and teams
in the design.

Team of engineers working on the design of complex system cannot afford to wait for
weeks for optimization data when performing a trade analysis. They also require integrat-
ing their work with a computer-based optimizer without distress of overriding each other’s
actions. Thus, is necessary to have a methodology that can relieve the fundamental conflict
between these two approaches throughout the design cycle.

The topics presented in this chapter briefly introduce the different sets of techniques
and tools that engineers use to design complex system. Even though the implementation of
such methodologies generates good results, these methodologies have some problems and
limitations.

This research presents an innovative approach to help engineers with the design de-
cision process following complex engineered system. The design of complex engineered
systems undertaken with respect to a variety of design objectives is essentially comparable
to the multiagent coordination problem. It both cases, the decisions at the component level
(subsystems and agents), and the interaction between those components, lead to global
behavior. The following chapter introduces the subject of multiagent coordination.
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Chapter 3: Related Research

Engineers put a lot of effort to create accurate models for complex engineered systems.
The desired objective is to use a model that allows engineers to perform accurate failure
analysis and evaluations of the system before any manufacturing process. The modeling
of complex engineered systems, and the evaluation of failures are highly researched areas
of interest within the engineering literature. This includes different areas that cover topics
from performance evaluations to sensitivity analyses with input variables under uncertainty.

The main objective associated with this research work is to develop a methodology
where a team of engineers can design complex engineered systems with the implemen-
tation of a multiagent coordination approach. The design of complex engineered system
undertaken with respect to a variety of design objectives is fundamentally similar to the
multiagent coordination problem. In both cases, the decisions at the component level (sub-
systems or agents), and the interactions among those components, lead to global behavior
(complex system or multiagent system).

Multiple areas of engineering design have been reviewed as part of the elaboration
of the two manuscripts included in this document. The following sections describe the
concepts behind: Complex Engineered System Modeling, Multiagent Coordination, and
Coevulutionary Algorithms.

3.1 Complex Engineered System Modeling

Model-based design techniques are often needed when designing complex engineered
systems [75]. Model-based design builds a model of the system that is used to simulate
the functions and evaluate the performance. These models are at times segmented and
combined to form a single model, although they do not need to be [75]. The simulation of
the models helps designers to understand the behavior and performance of the system prior
to any physical testing.
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Most of the times, models such as nuclear power plants are so large and complex that
they are too computationally expensive to create, let alone simulate. For this type of prob-
lems, the system is divided in smaller sub-systems that can be simulated separately to col-
lect information. On the down side, this approach outcome with high levels of uncertainty
because of the missing information of the complete model simulation. Complex engineered
systems present emergent interactions, that are not necessarily modeled or expected couple
a set of components or sub-systems together. The degree of this coupling, or complexity

as it is sometimes called, is difficult to determine because of the associated ambiguity re-
lated to the unknown component links. Coupling is described by the relationship between
system variables and functions [72].

Nevertheless, it could be possible to shift the focus from modeling interactions to eval-
uate and incentivize subsystems so that their collective behavior achieves the system design
goals. This shift in focus could be translated into a new methodology to model complex
engineered systems. A multiagent coordination approach could be used to determine how
to distribute responsibilities in a design process to the components in the design that are
crucial to the success of the system.

3.2 Multiagent Coordination

Multiagent coordination is a key research area in agent-based approaches to automa-
tion [71]. One of the biggest challenges in such an approach is decentralization of control,
and in particular the question of how to incentivize the individual agents such that they work
together [9] to acheive the system objective. The key challenge is that a system designer
needs to address two major credit assignment problems: structural and temporal [9, 71]
credit. The first addresses who should get credit (or blame) for system performance, and
the second addresses which key action (at which key time step) is responsible for fulfilling
the objective [2, 84].

The temporal credit assignment problem has been extensively studied through single-
agent reinforcement learning [9, 57]. The structural credit assignment problem has also
received attention, and has been addressed by two broad approaches: reward shaping and
organizational structures. Reward shaping aims to shape the system objective such that
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the action of agents optimizing local objectives results in desirable system-level perfor-
mance [7, 31].Organizational structures decompose the agents themselves into roles that
enable coordinated behavior [1, 66].

One particular research area in the credit assignment problem focuses upon ensuring
that agents’ objectives are aligned with the system objective (i.e., what is good for the agent
is good for the system), and that the system objective is sensitive to agents’ actions [78, 83]
Providing agents with objectives that satisfy these two properties (formalized in [77, 83] )
leads to a solution where key interactions among the agents are implicitly accounted for.
A particular set of agent objectives that achieves these goals are the difference objectives,
which are based on the difference between the actual performance of the system and the
performance of a counter-factual system in which certain agents have been removed. Dif-
ference objectives have been extensively studied and applied to real world applications
including air traffic control, multi-robot coordination, and resource allocation [3, 37]

The success of the difference objective approach in developing appropriate agent learn-
ing objectives suggests that the approach is applicable to complex system design where a
structural credit assignment problem exists when designing individual components.

In multiagent coordination, a key research challenge is to determine what each agent
needs to do so that the system as a whole achieves a predetermined objective. This prob-
lem can be translated to the design of complex engineered systems. In both cases, the
decisions at the component level (subsystems or agents), and the interactions among those
components, lead to global behavior (complex system or multiagent system.)

The final objective of this research is to demonstrate that a complex engineered system
can be design using a multiagent coordination approach. However, significant challenges
exist in adapting this approach to designing complex systems to meet design goals, while
operating in stochastic and often unpredictable environments.

The first problem that a complex engineered system will confront is the accomplishment
of the system global objective with the interaction of a large number of agents (subsystems).
The complexity of the task resides on accomplishing the correct coordination between the
responsibilities of the different agents. The agents need to receive high factoredness and
learnability objective alignment [20]. Factoredness defines how well two rewards are
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matched in terms of their assessments of the desirability of particular actions. Learnability
defines how discernible the impact of an action is on an agent’s reward function [20].

3.2.1 Reinforcement Learning for Multiagent Systems

The learning algorithm used in this research is Q − learning. When the system un-
der study is using a large number of autonomous agents , Potential-Based Reward Shaping

(PBRS) is used for a significant improvement in the coordination of agents. Reward Shap-
ing is used to help agents to learn faster.

Reward Shaping includes modifying local rewards, difference rewards and global re-
wards such that agents can learn faster; this also helps to understand the agent’s behavior[82].
Reinforcement learning is a paradigm that allows agents to learn by reward and punishment
from interactions with the environment. The numeric feedback received from the environ-
ment is used to improve the agent’s actions. The majority of work in the area of reinforce-
ment learning applies a Markov Decision Process (MDP) as a mathematical model.

An MDP consists of state, action, action reward pair, where s is the state space, A is
the action space, T (s, a, s′) = Pr(S0|S,A) is the probability that action a in state s will
lead to state s′, and R(s, a, s′) is the immediate reward r received when action a taken in
state s results in a transition to state s′. MDP deals with finding a policy to maximize
the reward. When we know about the environment we can approach this problem through
policy and value iteration.

Most real life problems will not have any information regarding system dynamics, so
value iteration cannot be used. But the concept of the iterative approach remains the same.
Transferring information about values of states, V (s), or state action pairs, Q(s, a) pairs
falls under the category of Temporal-Difference learning. These updates are based on the
difference of the two temporally different estimates of a particular state or state-action
value. After each transition, (s, a)→ (s′, a′), in the system, the state-action values updates
by the Eqn. (3.1) [80]:

Q(s, a)← Q(s, a) + α[r + γmaxQ′(s′, a′)−Q(s, a)] (3.1)
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where α is the rate (%) of learning and γ;] is the discount factor.
The discount factor modifies the value of taking action a in state s, when after executing

this action the environment returned reward r, and moved to a new state s′. The variable
α, a value between 0 and 1, determines the relevance of future rewards in the update. A
value of α = 0 will optimized the immediate reward. Whereas, values of α closer to 1
will increase the contributions of future rewards in the future. The immediate reward r,
which is in the update rule given by in above equation, represents the feedback from the
environment. The idea of reward shaping is to provide an additional reward, which will
improve the convergence of the learning agent with regard to the learning speed. Reward
shaping in Q− learning can be represented by Eqn. (3.2):

Q(s, a)← Q(s, a) + α ∗ [r + F (s, s′) + γ ∗maxQ′(s′, a′)−Q(s, a)] (3.2)

where F (s, s′) is the general form of the shaping reward.

3.2.2 Difference Evaluation Function Theory:

The agent-specific difference evaluation function is defined as:

Di(z) = G(z)−G(z−i + ci) (3.3)

where z is the overall system state,G(z) is the system evaluation function, z−i is the system
state without the effects of agent i, and ci is the counterfactual term used to replace agent i.
Intuitively, the difference evaluation compares system performance with and without agent
i, to approximate the agent’s impact on overall system performance. Note that:

∂G(z)

∂ai
=
∂Di(z)

∂ai
(3.4)

where ai is the action taken by agent i. This means that any action an agent takes which
increases the value of the difference evaluation also increases the value of the overall sys-
tem performance. This property is termed alignment. Also note that the second term in
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Equation 3.3 removes the portions of the system evaluation which are not affected by agent
i. This reduces noise in the feedback signal, meaning that difference evaluations are highly
sensitive to the actions of an individual agent.

In addition to the theoretical properties of alignment and sensitivity, difference evalu-
ations have been proven to increase the probability of finding optimal solutions in cases
where the optimal Nash equilibrium is deceptive. In these cases, one agent deviating from
the optimal strategy results in a large decrease in the overall system payoff, meaning that
finding these Nash equilibria is typically extremely difficult.

In this research the concepts of Reinforcement Learning for Multiagent Systems and
Difference Evaluation Function Theory will be implemented in the complex engineered
systems field of study. These concepts are used to address some of the challenges within
multiagent coordination, how to properly select the agents inside the complex system, and
how to define a global objective for the agents in the system that accurate captures the final
objective of the system.

3.3 Coevolutionary Algorithms

Evolutionary Algorithms (EAs) are a class of stochastic population-based search algo-
rithms which can often outperform classical optimization techniques, particularly in com-
plex domains where gradient information is not available [23]. An evolutionary algorithm
typically contains three basic mechanisms: solution generation, a mutation operator, and a
selection operator. These mechanisms are used on an initial set of candidate solutions, or a
population to generate new solutions and retain solutions that show improvement. Simple
EAs are excellent tools, but need to be modified to be applicable to large multiagent search
problems for distributed optimization. One such modification is coevolution, where multi-
ple populations evolve simultaneously in order to develop policies for interacting agents.

3.3.1 Coevolution

Coevolutionary Algorithms (CEAs) are an extension of evolutionary algorithms and
are often well-suited for multiagent coordination domains [22]. In a CEA, the fitness of
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an individual is based on its interactions with other agents it collaborates with. Thus,
assessing the fitness of each agent is context-sensitive and subjective [55]. In cooperative

coevolution, individuals succeed or fail as a team. This research is focused on cooperative
coevolutionary algorithms (CCEAs) for designing optimized complex systems.

One of the key advantages to coevolution is that the algorithm only needs to search
subspaces of the overall solution space, rather than the entire solution space. This reduced
state space often makes the learning process simpler for the cooperating agents, because as
each agent is only optimizing a portion of the overall system, they can focus on a projection
of the overall solution space which is typically of lower dimensionality than the original
solution space.

However, these simpler subspaces represent a large loss in information; the conse-
quence of this is that the policies obtained by using these state projections are strongly
influenced by other populations. The result is that agents evolve to partner well with a
broad range of other agents, rather than evolving to form optimal partnerships [56]. Thus,
in addition to trying to decrease the complexity of the learning process, research in coevo-
lution aims to achieve optimal policies rather than stable ones.

3.3.2 Cooperative Coevolutionary Algorithms

Cooperative coevolutionary clgorithms (CCEAs) are a natural approach in domains
where agents need to develop local solutions (such as subsystem design), but the metric
for success or failure is related to overall system performance [59]. In CCEAs, distinct
populations evolve simultaneously, and agents from these populations collaborate to reach
good system solutions. One issue with CCEAs is that they tend to favor stable solutions,
rather than optimal solutions [81]. This phenomena occurs because the different evolving
populations adapt to each other, rather than adapting to form an optimal policy. Another
issue that arises with CCEAs is the problem of credit assignment. Since the agents succeed
or fail as a team, the fitness of each agent becomes subjective and context-dependent (e.g.
an agent might be a “good” agent, but the agents it collaborates with are “bad,” and the
objective isn’t reached. In this case, the “good” agent may be perceived as “bad”) [81].

Coevolutionary algorithms are implemented in this research to give a fitness evaluation
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to the each design agent based on its collaboration with other agents. The cooperation
between the agents will be used to optimize the design of a subsystem or subsystems inside
a complex engineered system.

3.4 Summary of Manuscripts

The first manuscript presented in this thesis is the Design of a Self Replicating Robotic

Manufacturing Factory, presented at IDETC 2015. The objective of the first manuscript
was the implementation of a multiagent coordination to create a robotic manufacturing
factory that would not require any human intervention. The robots would be responsible of
keeping the system working and expanding. The design of a self-replicating robotic system
was studied using a multiagent coordination based design approach. This paper specifically
compared pre-programmed vs. learned behavior. The learning algorithm used in this case
study was Qlearning. We investigated three different scenarios: two where agents used
Q-learning, and one where agents used pre-programmed behavior. The rewards for tor the
two learning scenarios were a local reward and the difference reward.

The second manuscript presented in this thesis is the Design of Complex Engineered

System Using Multiagent Coordination, presented at IDETC 2016.
The objective of this manuscript was the design of a system using the collaborative

work between a team of autonomous agents. The system we selected is a formula racing
vehicle. The system is evaluated based on a set of objectives. We assigned an agent to
design a particular subsystem of the vehicle. The design task of each agent is to make
design choices that impact the performance of the entire vehicle. This paper specifically
compared the performance of the system using global objectives vs. difference objectives.
The agents used a cooperative coevolutionary algorithm to optimize their objectives.

A discussion about what have we learned from the application on the different learning
algorithms is included in chapter 6.
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4.1 Abstract

This paper presents a Multiagent Systems based design approach for designing a self-
replicating robotic manufacturing factory in space. Self-replicating systems are complex
and require the coordination of many tasks which are difficult to control. This paper
presents an innovative concept using multiagent Systems to design a robotic factory for
space exploration. Specifically presented is an approach for coordinating a conceptual
model of a self-replicating system. The arrival of a set of agents on an unknown planet
is simulated, whereby these simple agents will expand into a self-replicating factory using
the regolith gathered from the surface of the planet. NASA is currently investing in space
exploration missions that consider using the resources on the surface of other planets, as-
teroids or satellites. The challenge of the project is in the implementation of a learning
algorithm that allows a large number of different agents to complete simultaneous tasks in
order to maximize productivity. The simulation in this work is able to present the coordi-
nation of the agents during the construction of the factory as the parameters of the learning
algorithm are changed. System performance is measured with a pre-programmed method,
using local and difference rewards. The results show the advantage of using a learning
algorithm to better build the robotic factory.



27

4.2 Introduction

One of the means of obtaining clean and sustainable power is a solar power satellite; that
is putting large arrays of solar panels into geosynchronous orbit and beaming power down
to where it is needed using microwaves. In orbit, there is no night, and cloudy days are
non-existent, so clean power can be produced around the clock. Unfortunately, launching
everything needed for this solar power satellite from earth is too expensive at the current
time [27].

Utilizing resources found in space can reduce the cost of space missions, allowing the
development of large-scale planetary engineering projects. Projects such as terraforming
via machine self-replicating systems on Mars or Venus are proposed, where a large fac-
tory will create modifications of the environment that will allow human colonies on those
planets[24].

Most proposed self-replicating systems rely on centralized control to coordinate activ-
ities for replication. These systems are difficult to design, and are not very robust. Failure
of the central controller leads to failure of the entire system, so the centralized controller
must be designed to be very robust which leads to increased design costs[13]. However, if
factory robots and machines could coordinate themselves using only local actions then the
system could be made much more robust and easier to design. If one robot fails, the rest of
them will still function.

This paper provides a proof-of-concept to coordinate the different activities necessary
to operate a self-replicating factory so that it replicates rapidly using Multiagent Systems.
The autonomous robotic manufacturing factory will work with two type of agents using a
learning algorithm. The two types of agents, called producers and workers, will interact
together to construct the factory using the resources on the surface. Methodology section
describes the learning algorithm, agents and processes implemented on this paper.

Table (4.1) presents the four possible case scenarios for the implementation of a learn-
ing algorithm in the system. Agents have only two possibilities, Learning orNoLearning
after the implementation of the algorithm. For the present work, cases 1 and 2 were simu-
lated and compared in sections Simulator & Results. The agents workers will be first sim-
ulated using a pre-programmed behavior (Case 1), then using a learning algorithm (Case
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2). The paper shows how the implementation of a learning algorithm allows the factory to
maintain an increasing performance. Cases 3 & 4, were not simulated at this time. How-
ever, the producers agents use a set of reward functions on the simulations which allow the
system to behave as a self-replicating robotic manufacturing factory.

Table 4.1: Implementation of learning algorithm.
Producer

No Learning Learning
Worker No Learning Case 1 Case 3

Learning Case 2 Case 4

As the factory increases the number of agents, the complexity of the system will in-
crease. It will become difficult to control all the interactions between the agents. In this
work, the robotic manufacturing factory is viewed as a large complex engineering system.
The hypothesis in this paper is that a multiagent coordination problem is fundamentally
similar to complex system design, undertaken with respect to a variety of design objec-
tives. In complex engineering systems, complexity will arise in an unpredictable manner in
which interactions between components and environment modifies system behavior. The
self-replicating manufacturing factory is shown to account for unanticipated events and
extreme variation in the system conditions over time. As such, this paper presents a proof-
of-concept for the design of the factory using a candidate complex system design approach
based on a multiagent coordination.

4.3 Background

In the 1980s NASA conducted studies on building a self-replicating factory on the moon
in Advanced Automation for Space Missions.[25] In this study, it was proposed to land a
small seed factory that was capable of expanding itself and replicating by mining lunar
regolith and processing it using solar power. However, the system required a complicated
centralized controller with machine vision, pattern recognition, inference, and reasoning
capabilities to coordinate the factory and troubleshoot faults. This made the system more
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complicated to design and not very robust. This study also outlined a test to determine the
feasibility for this system[48].

More recently, Lackner and Wendt [39] proposed making a self-replicating system in a
desert on earth that was much simpler. This system was to consist of simple small robots
they called auxons running along electrified tracks. To control the system, they proposed
that the auxons in the system follow simple local rules for interacting with each other to
coordinate manufacturing activities. To avoid the need for machine vision and complicated
control schemes, they restricted the auxons to only move on electrified tracks and scrap
auxons that are broken instead of attempting to repair them. This is potentially easier to
design, more robust, and requires less resources to replicate.

However, even though Lackner and Wendt proposed to use local rules to coordinate
self-replicating robot factories, they did not go into detail of what local rules should be nor
did they outline the system beyond the conceptual level [50].Chirikjian and Sukathorn have
demonstrated simple self-replicating robots that pass the basic feasibility test outlined in the
advanced automation for space missions study[26], and did so following simple local rules
in a structured environment. In work done by Eno et al., self-replicating robots capable of
replication in a structured environment were demonstrated that did not require microcon-
trollers for control [21]. Lee and Chirikjian have demonstrated a self-replicating robot that
can replicate in a minimally structured environment without using microcontrollers [41].
Moses et al. recently presented a modular robot capable of assembling copies of itself from
components it could potentially make from raw materials [52].

Much of this work demonstrates that self-replicating robots are feasible and that progress
is being made in the area of processing raw materials into usable components. However,
many of the self-replicating robots mentioned here are not robust enough to handle failure,
do not carry out resource gathering operations, and require centralized control. Recent re-
search on robotics tries to emulate systems from nature. Inspiration is taken from insect
colonies such as: ant and wasp colonies to emulate or derive new coordination algorithms
[14].

Reinforcement learning allows agents to learn by reward and punishment from inter-
actions with the environment. One common algorithm from this field is Q − Learning.
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Q−Learning can be used to find an optimal action-selection policy for any given Markov
decision process (MDP). It works by learning an action-value function that ultimately gives
the expected utility of taking a given action in a given state and following the optimal policy
thereafter. The use ofQ−Learning for exploration robots is popular [45]. However, while
Q−Learning has been extensively used for exploration robots, it has not been widely used
in the self-replicating robot domain.

Swarm Logic typically consists of a population of simple agents interacting locally
with one another and with their environment. The inspiration often comes from nature,
especially biological systems like ants or wasps. The agents follow very simple rules, and
although there is no centralized control structure dictating how individual agents should
behave, local, and to a certain degree random, interactions between such agents lead to the
emergence of ”intelligent” global behavior, unknown to the individual agents [20].

This paper combinesQ−Learning with SwarmLogic to produce simple agents (ants)
with simple tasks that worked in the factory (colony), with limited communication. Mon-
ekosso and Remagnino have used a Q − Learning algorithm inspired by the natural be-
havior of ants. They use a belief factor that measures the confidence of the agent in the
detected pheromone[51]. Chia-Feng Juang used a Reinforcement Q-Learning algorithm
called ACO-FQ to optimize the behavior of an ant colony[36]. The algorithm creates a
list of candidate consequent action rules, and the best combination of actions is selected
according to the pheromone levels and Q values.

4.3.1 Complex System Design

Selection of a design architecture while considering various design criteria and sources
of uncertainty is a fundamental research problem in designing complex systems. Explicitly
computing quantitative and qualitative objectives of a complex system is generally viewed
as the preferred method for formalizing the design process; however, one of the key prob-
lems in typical large-scale engineering system design is the over-emphasis on requirement
satisfaction for evaluating design alternatives [53].

Rather than making design decisions based primarily upon requirement (i.e., constraint)
satisfaction, Value-Centric Design (or Value-Driven Design) offers an alternative approach
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with the formulation of a system-level design objective that reflects the true value of the
system, which can be subsequently optimized [18]. This is a dramatic change in perspective
for system design, promising a reduction (or elimination) of cost and schedule overruns
[6, 16] by identifying high value designs for development. Value-Centric Design can be
considered part of the larger field of Decision-Based Design (DBD) [32, 79]. DBD has been
specifically developed in the system design community as a decision-theoretic approach to
selecting a preferred system design from among the alternatives.

The general approach to formulating a system-level value function is to quantify the
balance between benefits and cost [16, 18]; the model can be developed either from eco-
nomic measures, such as surplus value (benefits of a system minus all costs) or Net Present
Value (NPV) [32], or using design metrics such as complexity or system connectivity
[6, 11, 47, 17, 61, 40].

4.3.2 Multiagent Coordination

Multiagent coordination is a key research area in agent-based approaches to automa-
tion [71]. One of the biggest challenges in such an approach is decentralization of control,
and in particular the question of how to incentivize the individual agents such that they work
together [9] to acheive the system objective. The key challenge is that a system designer
needs to address two major credit assignment problems: structural and temporal [9, 71]
credit. The first addresses who should get credit (or blame) for system performance, and
the second addresses which key action (at which key time step) is responsible for fulfilling
the objective [2, 84].

The temporal credit assignment problem has been extensively studied through single-
agent reinforcement learning [9, 57]. The structural credit assignment problem has also
received attention, and has been addressed by two broad approaches: reward shaping and
organizational structures. Reward shaping aims to shape the system objective such that
the action of agents optimizing local objectives results in desirable system-level perfor-
mance [7, 31]Organizational structures decompose the agents themselves into roles that
enable coordinated behavior [1, 66].

One particular research area in the credit assignment problem focuses upon ensuring
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that agents’ objectives are aligned with the system objective (i.e., what is good for the agent
is good for the system), and that the system objective is sensitive to agents’ actions [78, 83]
Providing agents with objectives that satisfy these two properties (formalized in [77, 83] )
leads to a solution where key interactions among the agents are implicitly accounted for.
A particular set of agent objectives that achieves these goals are the difference objectives,
which are based on the difference between the actual performance of the system and the
performance of a counter-factual system in which certain agents have been removed. Dif-
ference objectives have been extensively studied and applied to real world applications
including air traffic control, multi-robot coordination, and resource allocation [3, 37]

4.4 Methodology: Robotic Manufacturing Base

This paper proposes the design of a simplified version of the manufacturing factory
with a minimum number of tasks to perform in a 2D grid environment.

4.4.1 Environment and Agents

The environment consists of a 2D grid of cells that can be either regolith or factory
elements on which mobile agents can move and where actions occur in discrete time steps
or turns. The simple factory consists of resource gathering and product placing workers,
power producing solar cells, power distributing pavers, resource processing producers. This
simple representation of a self-replicating factory necessitates coordination of resource ac-
quisition, power management, production management, and factory layout that are also
necessary with more complex models.

Pavers are power distributing elements on which other factory elements can be placed
and on which workers can charge. The task of placing pavers represents the task of lay-
ing the foundation for the factory. The factory elements of solar cells and producers are
required to be placed on pavers. Connected sets of pavers share the same amount of power
that is available for use by factory elements on top of them.

Factory elements that use power subtract from the amount of power available. On top of
pavers we can place solar cells, which serve as power production components. Solar cells
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add to this amount of power available each turn. Power cannot be stored and any unused
power is lost at the end of the turn.

The next component which goes on the pavers is the producer which represents the
materials processing and manufacturing system in our factory. The producer can make
anything in the factory from x regolith in n turns as long as it has enough electrical power
in each turn to do so. Producers can only store so much regolith and so many finished
products and cannot receive any more regolith or make more products if this capacity is full.
Producers are also agents and can communicate with worker robots and other producers to
coordinate resource gathering and production activities.

Worker robots, or workers, represent mobile multi-purpose mining and construction
robots. The worker’s main purpose is to collect regolith from cells that do not have pavers
on them and deposit it into producers for processing. The other purpose of the worker is
to pick up pavers and factory elements and put them where they need to be to expand the
factory. Each of these tasks uses up a certain amount of charge from the worker’s battery
and the worker must periodically recharge on paver cells. If a worker runs out of charge
and it isn’t on a paver with power available > 0, it becomes non-functional.

The producer is a non-learning agent and produces the product with the highest utility
determined by a set of utility functions.

4.4.2 Multiagent coordination problem

The first problem that the robotic manufacturing system will confront is the accom-
plishment of the global objective with the interaction of a large number of agents and
processes inside the factory. The complexity of the project resides on accomplishing the
correct coordination between the tasks of the different agents. The agents need to receive
high factoredness and learnability objective alignment [20]. Factoredness defines how
well two rewards are matched in terms of their assessments of the desirability of particu-
lar actions. Learnability defines how discernible the impact of an action is on an agent’s
reward function [20]. These objective alignments will allow the systems to expand rapidly
on the planet with maximized productivity.

The producers need to manage the production and prioritize the construction of work-
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ers, solar cells, and more producers according to the needs of the system. The producer
makes decisions to produce a certain product as a function of the available energy and re-
golith. For example, if the system needs more energy, the production of solar cells will
be prioritized until the energy requirements are satisfied. The same logic will be used on
the production of the other elements and agents. Workers have different tasks, they are
responsible for the regolith collection and placement/retrieval of factory elements. The
workers will have to coordinate not only the interactions with the other workers but also
the activities to meet the needs of the producer. Workers and producers are responsible for
the correct storage of resources and elements in the factory. If this coordination between
agents fails, the factory will stop the manufacturing process and the system will collapse.

4.4.3 Global Objective

The global objective is to maximize its productivity, which is defined for this system
as the number of products produced at each time step divided by the amount of products
that are already placed. (How much is produced divided to how much it took to produce
it). This is similar to the productivity measure defined in [39], which is the amount of mass
processed per time step divided by the mass of the entire system doing the processing.

Since the system does not maintain a measure of product mass, so the number of prod-
ucts is used instead. The problem here is that, during the initial time steps, the productivity
will be equal zero. When the system starts no new products will be produced for a couple
time steps, so the productivity will be zero. Therefore, the productivity of the factory will
be poor. As the factory starts working and growing the value of productivity will increase.
Unfortunately, productivity will vary by a large amount. To solve this, the productivity
measure also counts incomplete products when taking into account number of products.

A product has a value proportional to how many turns the producer has carried out
producing the product over the number of turns to complete the product. A product is a
quarter of the fractional amount that is complete if it is being produced, a half of a product
if it is stored in the producer, three quarters of a product if it is being carried by a worker,
and a full product if it is placed. The regolith carried by a worker is counted as being half
as valuable and is assigned to be the full value if it is stored in the producer. Productivity
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is modeled in Eqn. (4.1).

P =
abs(dregolith) + dpavers + dsolarcells + dworkers + dproducers

Ppavers + Psolarcells + nworkers + Pproducers

(4.1)

where:
dregolith: Difference in regolith

dpavers: Diffe rence # pavers

dsolarcells: Difference # solar cells

dworkers: Difference # workers

dproducers: Difference # producers

Ppavers: Number of pavers placed

Psolarcells: Number of solar cells placed

nworkers: Number of workers present

Pproducers: Number of producers placed

This global objective has high factoredness for the workers and producers. Both the
workers and the producers have actions that can increase the global objective. We take the
absolute value of the difference in regolith to prevent the system from being penalized for
using up regolith. Using up regolith to make products is also considered productive. This
objective function has high factoredness for both producers and workers, as each action is
aligned to the global objective. It is worth noting that this global objective function has
low factoredness for the workers, but high factoredness for the producers. The actions of
the worker do not directly affect the production number of paver, solar cells, workers, or
producers. However, the actions of a producer immediately affect the productivity.

4.5 Simulator

NetLogo is used for the simulation environment. NetLogo is an agent-based program-
ming language with a modelling environment. NetLogo implements a grid environment,
agents, and useful functions for agents to interact with the grid environment.

For the simulation a two dimensional 20x20 grid is created with a torus topology so
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that the world is continuous. As the worker do not know where they are, the size of the
grid does not affect the simulations or the results. The size of the grid can be changed
at any time. However a small grid size allows a faster run time and easy visualization
of the simulation. Each grid cell is created with a random regolith value between: 0 to
10. To simplify things for the simulation, the environment does not have any obstacles,
and workers will be allowed to go through grid cells containing other agents or factory
elements. In future work the simulation will consider a large and complex world. The
world will start with this set of elements on the first iteration:

Producer: The producer is a fixed agent that can create more elements such as: workers,

solar cells, pavers and producers (self-replicating agent) from the regolith. The construc-
tion of each element needs a defined number of resources, so each producer will evaluate
which element is necessary to complete the global objective. Producers can only store a
defined amount of finished products proportional to the size of the product. Whereas a
producer can store four pavers, it can only store one producer. In addition, workers are
not stored in the producer and drive off after they have been produced. Producers are
no-learning agents and produce the most valuable product as long as they have enough re-
golith and power to do so. Producers will store the products in a stack and workers can
only remove the product at the top of the stack.

To communicate with workers, producers also have beacons on them to coordinate
workers. The producers emit three different types of beacons, location beacons, regolith
beacons, and product-done beacons. Location beacons are intended to help the workers
determine where to place things and where pavers are. The location beacons are always
on. Regolith beacons allow the producer to call workers to obtain regolith. Meanwhile
product-done beacons will call for free workers to take the manufactured item out of the
producer. The signal strength to a location beacon decays as an inverse square of distance to
the beacon and the intensity of the signal at the beacon. All location beacons have the same
intensity and are on all the time. The regolith and product-done beacons have intensities
that depend on how full regolith or products are. Product-done and regolith beacons do
not decay with distance and the worker can sense the producer with the maximum beacon
intensity.
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Workers: The workers are mobile agents that can collect regolith from grid cells that
are not covered by pavers and transport products from the producer and the world. Workers
are allowed to install producers and solar cells on empty pavers. Workers can sense the
properties of the cell that they are on and the cells around them. The workers have different
sensors that allow them to detect: factory elements and the amount of regolith on the grid
cell. Workers also have a beacon receiver that receive the different beacon signals emitted
from the producers so that they can coordinate their actions with respect to requirements of
the producers. In addition, the worker has actions to move in the direction of the strongest
signal for each of the beacon types.

Pavers: The pavers work as a network array that transmits energy and information
across continuous pavers. The pavers are the link between the producer’s, solar cells and
worker’s interaction. The eighteen pavers are located at the center of the world. The el-
ements (producer, workers and solar cell)are placed over the pavers on the center of the
world.

Solar cells: The solar cells produce a constant amount of energy at each turn and dis-
tribute it everything on the pavers network. Solar cells add to the energy available on each
set of connected pavers, likewise, producers and charging workers decrease the amount of
energy available on connected pavers. For the proper development of the factory the energy
flow needs to work constantly, and each process will require energy.

Each worker automatically recharge whenever they are on a paver that has power. Pro-
ducers on the other hand, have different energy consumption according to the product it is
producing; for example manufacturing a worker requires more energy than a paver. Each
product that the producer can create requires a defined amount of resources (energy and
regolith) and time (turns). Currently the code is structured so that the individual energy,
time, and regolith costs for each product can be easily changed.

4.5.1 States and Actions of Agents

In the robotic system, workers are dynamic agents. Workers move around the environ-
ment and collect regolith and drop it at the producer. They learn actions from Q-learning
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which moves them to get regolith. Workers also collects pavers from the produces and
place them on the surface forming a grid-like structure. Workers picks up the finished
products from the producer and place it on the paver. A worker can move to any of the
surrounding cells, mine, transfer regolith to a producer, pick up a product from a producer,
place a factory element, move to the cell with the lowest beacon value, move to the cell
with the highest beacon value, move toward the producer with the highest regolith beacon
intensity, or move toward the producer with the highest product done beacon intensity. The
last couple of actions are high-level actions in that they specify a behavior, in this case driv-
ing toward or away from a producer, instead of a low level task such as moving up, down,
left, or right. This enables the Q-matrix to be made smaller and learning to be carried out
more efficiently, because the worker does not need to learn the behavior or keep track of
additional states so the behavior can be implemented.

The state of the agent worker is what is on the cell the worker is currently on, plus
what is on the surrounding cells, and the charge level of the worker’s battery. What is on a
cell is expected to have a discrete value. For a cell containing only regolith, a value from
0 to 1 is assigned in increments of 0.25. For a cell that contains a paver, solar cell, or
producer a value from 2 to 4 is assigned respectively. The state of the battery is discretized
to be either 25%, 50%, 75%, or 100%. The NetLogo interface allows the user to modify
the initial settings of the world. The user can change the number of: resources in the world,
agents (producers, workers), and resources needed for the construction of the different
elements in the factory. As the initial conditions and settings changed, the simulation will
present the different results from the behavior of the system for our analysis. To keep
things simple, workers have a Q−matrix where all the state and actions will be updated,
this list will be use on the implementation of the learning algorithm. The utility functions,
local rewards, and global objective function are calculated using the respective estimate
Q − matrix the agents. If all workers are not charged and located off pavers and if all
producers cannot make another worker, then the factory has failed and the simulation is
reset. Additionally, if all regolith cells are covered by pavers then the simulation is also
reset. The software interface allows the user to stop the simulation at any time step.
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4.5.2 Learning Algorithm

The learning algorithm for the model is Q − learning. As, multiple agents are need,
Potential-Based Reward Shaping (PBRS) is used for a significant improvement in the coor-
dination of agents. With multiple agents and every agent working optimally Reward Shap-
ing is used to help agents to learn faster. Reward Shaping includes modifying local rewards,
difference rewards and global rewards such that agents can learn faster; this also helps to
understand the agent’s behavior[82]. Reinforcement learning is a paradigm which allows
agents to learn by reward and punishment from interactions with the environment. The nu-
meric feedback received from the environment is used to improve the agent’s actions. The
majority of work in the area of reinforcement learning applies a Markov Decision Process
(MDP) as a mathematical model.

An MDP consists of state, action, action reward pair, where s is the state space, A is
the action space, T (s, a, s′) = Pr(S0|S,A) is the probability that action a in state s will
lead to state s′, and R(s, a, s′) is the immediate reward r received when action a taken in
state s results in a transition to state s′. MDP deals with finding a policy to maximize
the reward. When we know about the environment we can approach this problem through
policy and value iteration.

Most real life problems, will not have any information regarding system dynamics,
so value iteration cannot be used. But the concept of the iterative approach remains the
same. Transferring information about values of states, V (s), or state action pairs ,Q(s, a)

pairs falls under the category of Temporal-Difference learning. These updates are based on
the difference of the two temporally different estimates of a particular state or state-action
value. After each transition, (s, a)→ (s′, a′), in the system, the state-action values updates
by the Eqn. (4.2) [80]:

Q(s, a)← Q(s, a) + α[r + γmaxQ′(s′, a′)−Q(s, a)] (4.2)

where α is the rate (%) of learning and γ;] is the discount factor.
The discount factor modifies the value of taking action a in state s, when after executing

this action the environment returned reward r, and moved to a new state s′. The variable
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α, a value between 0 and 1, determines the relevance of future rewards in the update. A
value of α = 0 will optimized the immediate reward. Whereas, values of α closer to 1
will increase the contributions of future rewards in the future. The immediate reward r,
which is in the update rule given by in above equation, represents the feedback from the
environment. The idea of reward shaping is to provide an additional reward which will
improve the convergence of the learning agent with regard to the learning speed. Reward
shaping in Q− learning can be represented by Eqn. (4.3):

Q(s, a)← Q(s, a) + α ∗ [r + F (s, s′) + γ ∗maxQ′(s′, a′)−Q(s, a)] (4.3)

where F (s, s′) is the general form of the shaping reward.

4.5.3 Agent Rewards

Local reward for worker

The worker receives a reward for mining regolith proportional to the regolith mined,
a reward for delivering regolith proportional to the amount of regolith delivered, and a
reward for placing a factory element. The reward for delivering regolith is higher than
the reward for mining regolith, as delivered regolith is more valuable than mined regolith.
It is worth noting that this local reward is aligned with the global, the actions of mining,
delivering regolith, picking up elements, and placing elements all directly increase the
global objective. The total reward given in one time step will be Eqn. (4.4) :

Rworker = Regmined ∗ w1 +Regdeliver ∗ w2 +Rpickup +Rplace (4.4)

where:
Regmined: Amount of regolith mined

Regdeliver: Amount of regolith delivered

Rpickup: Reward for picking up a producer, solarcell, or paver

Rplace: Reward for placing a producer, solarcell, or paver

w1: Reward per regolith mined

w2: Reward per regolith delivered
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Difference Reward for Worker

A difference reward can be implemented for the worker to attain a reward with high
factoredness and learnability. The difference reward is the difference between the group
utility with the agent, and without it Eqn. (4.5)

Di = G(z)−G(z−i) (4.5)

where: G(z) is the World with agent i and G(z−i) is the World without agent i.

4.5.4 Worker Potential Functions

To help the workers learn faster four different potential functions are used. The first
potential function is designed to give the worker an incentive to recharge, the second gives
the worker an incentive to return to a producer if it is full of regolith, the third and fourth
potential functions encourage the worker to drop off or pick up products from a producer.

The first potential function,called the ”stay charged” potential function Eqn. (4.6), gives
the worker a reward proportional to how close the battery is to being drained if the worker
moves in the direction of increasing location-beacon values. Moving in the direction of
increasing location beacon values means that the worker is moving toward a location where
it can recharge.

The second potential function, called the ”go home” potential function Eqn. (4.7), gives
the worker a reward proportional to how close regolith storage is to being full. If the worker
moves in the direction of increasing location beacon values it is likely to find a producer to
drop regolith at. To encourage the workers to drop off regolith and pick up products from
the producers, the Q values are initialized for these associated actions to a high value. It is
worth noting that the first two potential functions use information that can be determined
entirely locally.

Potstaycharged =
Wbc −Wc

Wbc

(4.6)

Potgohome =
Wregolith

Wregolithcapacity

(4.7)
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where:
Wregolith: Worker regolith

Wregolithcapacity: Worker charge

Regdelivered: Amount of regolith delivered

Rplacepaver: Reward for placing paver

Rplaceelement: Reward for placing element

w2: Reward per regolith delivered

4.5.5 Worker Q-Matrix Initialization

One problem with the system is how to initialize a newly produced worker’s Q-matrix.
Initializing a worker’s Q-matrix to empty is inefficient and keeping a population of Q-
matrices from previous runs is difficult due to the variability in population size. In order
to solve this problem, when a worker picks up a product from a producer it copies the Q-
matrix to the producer and any workers produced by said producer will be initialized with a
copy of the Q-matrix. Workers that pick up a product from a producer are a good candidate
to copy Q-matrices from, because they have likely already learned to stay charged, mine,
and transfer regolith to a producer. On the initial time step, no producers will have any
products to pick up, so the workers won’t be able to copy their Q-matrix until regolith has
been mined, transferred, and a product has been produced.

4.5.6 Producer Reward Functions

In the current simulation environment, producers are non-learning agents that manufac-
ture the product that is most valuable to the system. If the system is running low on power
it is more valuable to manufacture a solar cell than a producer because if power available
goes to zero then productivity will decrease. As the power available goes up, solar cells
are not as valuable because productivity is not as constrained by power available. How
valuable a given product is to the system is formally expressed with a set of functions de-
scribing the ’benefit’ of manufacturing that product. This enables the producer to select the
’best’ product to manufacture at each time step.

Alternatively, since the producers are aware of what other products are being produced
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a rough estimate of the future reward can be made. To prevent division to 0, a factor of 0.1
is added to the denominator on the function.

Reward of a solar cell Eqn. (4.8) is inversely proportional to the amount of power
available Pa for reasons that have already been elaborated above.

Usc =
1

Pa + 0.1
(4.8)

Reward of a paver cell Eqn. (4.9) is inversely proportional to the number of pavers available
Pva, because if the number of pavers goes to zero then the factory can no longer expand.

Upav =
1

Pva + 0.1
(4.9)

Reward of producers Eqn. (4.10) is proportional to the power available and inversely pro-
portional to the regolith capacity Cr. If regolith and power are not being used, then the
system is harvesting more energy and material than it can process and production should
be expanded to compensate. Cr is the system regolith capacity remaining or how much
regolith can be stored minus how much regolith is held.

Upro =
Pa

Cr + 0.1
(4.10)

Reward of a worker Eqn. (4.11) is proportional to the global idle time. A high idle time
indicates that there are not enough workers to remove products from producers and more
workers should be added. In addition, while the producer is currently a non-learning agent,
these utility functions might be used as local rewards or potential functions for learning
producers. Idletime, is the amount of time the producers spend with productcapacity = 0.
For each time step that a producer has zero capacity it increments a counter, when the
capacity goes up, the counter resets to zero. The global idle time is the sum of all the
these counters divided by the number of producers. This represents the amount of time the
producer is wasting waiting for a worker to pick up products. w5 is a weighting factor for
tuning the importance of global idle time.
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Uw = globalidletime ∗ w5 (4.11)

However, at the current time it is difficult to determine the factoredness of the functions.
All of these functions encourage a producer to start making a product that will immediately
increase the global objective, but the long term impact of that product on the global objec-
tive is difficult to quantify. The functions for the paver and solar cells are well factored,
because producing a solar cell or paver when power available or pavers available is low
could prevent the system from crashing. It is much more difficult to determine if the util-
ities of workers and producers increase the objective function in the long term. A worker
or producer made could end up decreasing the productivity if said worker or producer does
nothing for the system.

4.6 Results

Three scenarios were considered: local rewards, difference rewards, and pre-programmed
behavior. Five simulations were run of each scenario for 2085 time steps, and each of the
five runs were averaged together. As this data ended up being very noisy despite averaging
five different runs, a running average was used. These results are plotted on Figure 4.1. It
is worth noting that if the factory starts from an initially large ”seed” with a large number
of workers, the factory expands very slowly and almost half of the population of workers
is in the uncharged state at every time step. For the Pre-programmed behavior, the workers
are controlled with a simple state machine and switch between states of mining and placing
elements. The worker also drives back to base if the battery charge drops below a certain
value. In the mining state, the worker drives off the pavers and moves towards cells with
high regolith values and mines. If it can’t find any regolith, it drives in the direction of
decreasing location beacon values. Once it is full of regolith it drives in the direction of
the producer which needs regolith the most determined by regolith beacon values, once it
reaches the producer it drops regolith off and switches to the ”place element” state. In the
”place element” state it finds a producer, picks up a factory element from it, finds a place
for said element and returns to the mining state.
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Figure 4.1: Averaged productivity of the system.

The Pre-programmed behavior works very well and has high productivity for about
500 time steps, then the productivity approaches zero and the factory stops expanding.
This is because the system mines out all the regolith close to the factory until the regolith
is too far away for the workers to reach without needing to head back and recharge. An
example of this state is shown in Figure 4.2. The Pre-programmed behavior also leads to
overproduction of workers. Workers get stuck in the mining state because they can’t find
any regolith, so they don’t remove products from the producers leading to producer idle
times to be increased.

As a result, more workers are been produced, which get stuck in the mining state and
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Figure 4.2: Result of pre-programmed behavior. The large ring of black cells contain zero
regolith, around factory.

furthers the problem. The learning agents with difference rewards and local rewards per-
form better than the pre-programmed behavior and the agents are able to keep expanding
the factory. The policy the workers tend to learn seems to be to expand one side of the
factory. The paths taken by the workers indicate that they tend to stay in one side of the
factory and this is illustrated in the Figure 4.3. In addition the workers tend to keep the
distance to regolith from pavers as short as possible. As the workers expand one side of
the factory, the producers on the far side will stop the manufacturing process because no
worker will deliver regolith.

These inactive producers have indirect negative effect on the Productivity of the sys-
tems, but they are not at capacity so they don’t increase the system idle time and increase
the utility of workers. In addition, because these producers are not using power, the power
available stays almost constant so the utility of solar cells stays low and few new solar cells
are produced. This allows more resources to be used on making a continuously expanding
edge of pavers and producers.

Although the productivity is really low and still decreases for both the difference and
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local rewards, it does not crash to zero like the pre-programmed behavior. Local rewards
perform slightly better than difference rewards. This could be due to the fact that the
productivity without a worker can be higher than the productivity with a worker if said
worker is not mining, transferring regolith, picking up or placing elements. This could be
penalizing the worker for going through the intermediate actions necessary to accomplish
tasks that improve the global objective. The difference in performance between difference
rewards and local rewards is not very large and could just be noise. Another possibility is
that the potential functions have not been weighted correctly in comparison to the difference
reward.

Figure 4.3: Learned behavior with paths.
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4.7 Conclusions

In this paper the design of a self-replicating robotic system was studied using a multia-
gent coordination based design approach. This paper specifically compared pre-programmed
vs learned behavior. A pre-programmed behavior was shown not to be the best approach
to solve the multiagent-based design problem in this domain, as the results showed how
the system can collapse. The pre-programmed behavior was used to present the difference
between using a learning algorithm and a programmed behavior.

The implementation of a learning algorithm was shown to work much better than a pre-
programmed behavior. After running the code for several simulations the workers were
shown to learn how to continuously expand the edges of the factory as shown in Figure
4.3. As workers expand on one side of the factory, the producers on the opposite side
will become inactive. As a result the productivity of the systems decreases because the
number of inactive agents on the system increases as the factory expands towards one side,
but the productivity of the system does not completely crash as is the case with the pre-
programmed behavior.

Even though the local rewards have high factoredness, from the simulation results,
there appears to be quite a bit of room for improvement as the productivities achieved were
very low. The low productivities could be caused by shortcomings of using non-learning
producers and might be remedied by using producers that learn. The workers might be
purposely keeping productivity low as this may be the only way for them to prevent the
producers from overproducing a product and crashing the system.

The utility functions could be used as a local reward for the producers, wherein the
reward a producer receives is proportional to the utility of the product it made at the time of
that product’s completion. Shaping difference rewards by potential-based reward shaping
DRiP , is a very good candidate for a producer reward method and the utility functions
presented above could be used as potentials to determine which product a producer should
start making. If the producers are to be kept non-learning, at the very least it is necessary
to implement a function that makes all producers aware of what other products are being
produced. This way overproduction of the unneeded products does not end up crashing the
system.
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Although the difference reward is well suited for many multiagent Systems domains, it
may not be the best approach for this complex domain. It is necessary to explore other
learning algorithms that consider agent congestion and small task distribution such as
Assignment-Based Decomposition [60]. The method consists of decomposing the prob-
lem of action selection into an upper assignment level and a lower task execution level.
The Assignment-Based Decomposition was used to solve a problem where a large number
of collaborative agents are trying to complete a set of actions assigned determined before-
hand with search. The self-replicating factory could use the same method to separate the
different tasks that workers and producers need to complete in order to coordinate the per-
formance of the system.

4.8 Future Work

The next objective in this research is to obtain results after modifying the interactions
between the world and the agents. In this paper the world was simple; but a real self-
replicating robotic factory needs to consider all the dynamics between gathering different
type of resources and producing different type of mechanical and electrical components,
using a large number of processes and agents. The next challenge in this research is the
implementation of different simultaneous processes that will allow the manufacturing of
several specific components and resources for the assembly of different agents. This will
show how the system performs when failure modes are introduced inside the agents and see
how the system resolves the failure. The goal is to challenge the agents as the environment
and world represent a real hazard to the system.

Furthermore, how the failure of a single agent can cause other agents to fail will be
explored as well as whether the system can adapt to failure. There has been a large amount
of work dedicated to failure analysis of complex systems at the conceptual design phase.
However, much of this work has been focused on what are arguably ’single agent systems’.
The multiagent System should facilitate the failure analysis design approach and obtain
new results.

Failure analysis is important for making a self-replicating robotic factory a reality, be-
cause it can determine whether such a system is viable. In order for a self-replicating sys-
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tem to be viable it needs to be able to replace components faster than said components fail.
However, in the real world determining this is complicated by the fact that failures can cas-
cade into ever larger failures through the interactions of the components. This work could
open a new frontier in the multiagent System research field. Of particular interest, research
will explore the field of complex system design and the analysis of failure propagation.

The design of the robotic factory required the coordinate work between different agents
and process; next steps will consider the agents as the designers of the factory, with the
objective to minimize the cost of construction and maximize the production of an engineer-
ing system. Parallel to this work, the research will explore how the propagation of failures
inside the agent’s components will affect the performance of the system.
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5.1 Abstract

In complex engineering systems, complexity may arise by design, or as a by-product
of the system’s operation. In either case, the root cause of complexity is the same: the
unpredictable manner in which interactions among components modify system behavior.
Traditionally, two different approaches are used to handle such complexity: (i) a central-
ized design approach where the impacts of all potential system states and behaviors re-
sulting from design decisions must be accurately modeled; and (ii) an approach based on
externally legislating design decisions, which avoid such difficulties, but at the cost of ex-
pensive external mechanisms to determine trade-offs among competing design decisions.
Our approach is a hybrid of the two approaches, providing a method in which decisions
can be reconciled without the need for either detailed interaction models or external mech-
anisms. A key insight of this approach is that complex system design, undertaken with
respect to a variety of design objectives, is fundamentally similar to the multiagent coordi-
nation problem, where component decisions and their interactions lead to global behavior.
The design of a race car is used as the case study. The results of this paper demonstrate that
a team of autonomous agents using a cooperative coevolutionary algorithm can effectively
design a Formula racing vehicle.
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5.2 Introduction

Complex engineering systems, such as state-of-the-art aircraft, advanced power sys-
tems, unmanned aerial vehicles, and autonomous automobiles, are required to operate de-
pendably in an ever widening variety of environmental conditions, over a wide range of
missions. Such systems must be cost-effective while being dependable in potentially ex-
treme conditions and adaptable to a given environment. When a large system is designed,
multiple design teams are involved. These teams often are formed according to disciplinary
lines, and each team is responsible for the design of a subsystem. Each team aims to max-
imize the performance of their subsystem, but must be aware of interactions between sub-
systems and system-level constraints in order to result in high overall system performance.
In some occasions the goal of one team can be in conflict with the interests of another
team. In many design problems, design engineering teams share design variables or con-
straints, which is also controlled by a systems engineering team. Different tradeoffs are
required between many design teams before all the subsystems can be implemented in the
final systems.

As the complexity of the system increases, it becomes exceedingly difficult to model
such interactions and explore the design space in a manner that allows system level cer-
tification goals to be met. A systematic method that explores this space, while providing
the necessary adaptability to meet mission needs and dependability with respect to mis-
sion requirements is needed. The key insight of this paper is that complex system design,
undertaken with respect to a variety of design objectives, is fundamentally similar to the
multiagent coordination problem. In both instances, the decisions at the component level
(subsystems or agents), and the interactions among those components, lead to global be-
havior (complex system or multiagent system.)

In multiagent coordination, a key research challenge is to determine what each agent
needs to do so that the system as a whole achieves a predetermined objective. This does not
in itself “solve” the design problem; rather, it shifts the focus from modeling interactions
to determining how to evaluate/incentivize components so that their collective behavior
achieves the system design goals. This shift in focus is critical to enabling a new paradigm
to emerge: multiagent coordination approaches can now be used to determine how to dis-
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tribute credit (or blame) in a design process to the components/stages in the design that are
critical to success (or failure).

The overall goal of this research is to formulate design agents that will explore all the
possible design solutions for a complex engineering system. To be able to achieve more
complex solutions, it is necessary to coordinate the actions of all the design teams. Figure
5.1 ilustrates the design process envisioned in this paper. The approach we explore is to
implement a team of autonomous agents responsible for selecting the best concept using
multiagent coordination. After the customer and engineering requirements are defined,
engineers will create a team of agents suitable for the problem related to the system level
objectives. A cooperative coevolutionary algorithm will perform the design exploration
and multiagent coordination. The algorithm will autonomously evaluate, select and refine
the design solution that results from the best tradeoffs between all the subsystems.

CUSTOMER 
REQUIREMENTS

ENGINEERING 
REQUIREMENTS

RESEARCH DESIGN 
SOLUTIONS

EVAULATE DESIGN 
SOLUTIONSSELECT CONCEPTREFINE CONCEPT

CONCEPT 
ACCEPTED

DESIGN  
MANUFACTURING 

PLAN

DESIGN PROCESS

MANUFACTURING

NO

YES

ENGINEERING
 DESIGN TEAMS

Figure 5.1: Design Process
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5.3 Background

5.3.1 Complex System Design

Selection of design architecture while considering various design criteria and sources
of uncertainty is a fundamental research problem in designing complex systems. Explicitly
computing quantitative and qualitative objectives of a complex system is generally viewed
as the preferred method for formalizing the design process; however, one of the key prob-
lems in typical large-scale engineering system design is the over-emphasis on requirement
satisfaction for evaluating design alternatives [53]. This focus is primarily the result of
the acquisition process, but is exacerbated by overly simplistic design objectives, such as
minimizing weight or cost, that do not reflect the true value of the designed system. As an
example, rather than making design decisions based primarily upon requirement (i.e., con-
straint) satisfaction, Value-Centric Design (or Value-Driven Design) offers an alternative
approach with the formulation of a system-level design objective that reflects the true value
of the system, which can be subsequently optimized [18]. This is a dramatic change in
perspective for system design, promising a reduction (or elimination) of cost and schedule
overruns [6, 16] by identifying high value designs for development. Value-Centric Design
can be considered part of the larger field of Decision-Based Design (DBD) [32, 76]. DBD
has been specifically developed in the system design community as a decision-theoretic
approach to selecting a preferred system design from among the alternatives. DBD takes
an enterprise-level view of the design problem, considering not only typical engineering
concerns but also broader objectives that comprise the total value of the system to the en-
terprise.

In this research, we seek an alternative process that enables distributed design of com-
plex systems based on multiagent coordination, described next.

5.3.2 Multiagent Coordination

Multiagent coordination is a key research area in agent-based approaches to automa-
tion [71]. One of the biggest challenges in such an approach is decentralization of control,
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and in particular the question of how to incentivize the individual agents such that they work
together [9] to acheive the system objective. The key challenge is that a system designer
needs to address two major credit assignment problems: structural and temporal [9, 71]
credit. The first addresses who should get credit (or blame) for system performance, and
the second addresses which key action (at which key time step) is responsible for fulfilling
the objective [2, 84].

The temporal credit assignment problem has been extensively studied through single-
agent reinforcement learning [9, 57]. The structural credit assignment problem has also
received attention, and has been addressed by two broad approaches: feedback shaping and
organizational structures. Feedback shaping aims to shape the system objective such that
the action of agents optimizing local objectives results in desirable system-level perfor-
mance [7, 31]. Organizational structures decompose the agents themselves into roles that
enable coordinated behavior [1, 86].

One particular research area in the credit assignment problem focuses upon ensuring
that agents’ objectives are aligned with the system objective (i.e., what is good for the agent
is good for the system), and that the system objective is sensitive to agents’ actions [78, 83].
Providing agents with objectives that satisfy these two properties (formalized in[77, 83])
leads to a solution where key interactions among the agents are implicitly accounted for.
A particular set of agent objectives that achieves these goals are the difference objectives,
which are based on the difference between the actual performance of the system and the
performance of a counter-factual system in which certain agents have been removed. Dif-
ference objectives have been extensively studied and applied to real world applications
including air traffic control, multi-robot coordination, and resource allocation [3, 37].

The success of the difference objective approach in developing appropriate agent learn-
ing objectives suggests that the approach is applicable to complex system design where a
structural credit assignment problem exists when designing individual components.

One implementation of this approach is based on coevolutionary algorithms, descibed
next.



58

5.3.3 Coevolutionary Algorithms

Evolutionary Algorithms (EAs) are a class of stochastic population-based search algo-
rithms which can often outperform classical optimization techniques, particularly in com-
plex domains where gradient information is not available [23]. An evolutionary algorithm
typically contains three basic mechanisms: solution generation, a mutation operator, and a
selection operator. These mechanisms are used on an initial set of candidate solutions, or a
population to generate new solutions and retain solutions that show improvement. Simple
EAs are excellent tools, but need to be modified to be applicable to large multiagent search
problems for distributed optimization. One such modification is coevolution, where multi-
ple populations evolve simultaneously in order to develop policies for interacting agents.

5.3.3.1 Coevolution:

Coevolutionary Algorithms (CEAs) are an extension of evolutionary algorithms and
are often well-suited for multiagent coordination domains [22]. In a CEA, the fitness of
an individual is based on its interactions with other agents it collaborates with. Thus,
assessing the fitness of each agent is context-sensitive and subjective [55]. In cooperative

coevolution, individuals succeed or fail as a team. This paper is focused on cooperative
coevolutionary algorithms (CCEAs) for designing optimized complex systems.

One of the key advantages to coevolution is that the algorithm only needs to search
subspaces of the overall solution space, rather than the entire solution space. This reduced
state space often makes the learning process simpler for the cooperating agents, because as
each agent is only optimizing a portion of the overall system, they can focus on a projection
of the overall solution space which is typically of lower dimensionality than the original
solution space.

However, these simpler subspaces represent a large loss in information; the conse-
quence of this is that the policies obtained by using these state projections are strongly
influenced by other populations. The result is that agents evolve to partner well with a
broad range of other agents, rather than evolving to form optimal partnerships [56]. Thus,
in addition to trying to decrease the complexity of the learning process, research in coevo-
lution aims to achieve optimal policies rather than stable ones.
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5.3.3.2 Cooperative Coevolutionary Algorithms:

Cooperative coevolutionary algorithms (CCEAs) are a natural approach in domains
where agents need to develop local solutions (such as subsystem design), but the metric
for success or failure is related to overall system performance [59]. In CCEAs, distinct
populations evolve simultaneously, and agents from these populations collaborate to reach
good system solutions. One issue with CCEAs is that they tend to favor stable solutions,
rather than optimal solutions [81]. This phenomena occurs because the different evolving
populations adapt to each other, rather than adapting to form an optimal policy. Another
issue that arises with CCEAs is the problem of credit assignment. Since the agents succeed
or fail as a team, the fitness of each agent becomes subjective and context-dependent (e.g.
an agent might be a “good” agent, but the agents it collaborates with are “bad,” and the
objective isn’t reached. In this case, the “good” agent may be perceived as “bad”) [81].

5.3.3.3 Difference Evaluation Function Theory:

The agent-specific difference evaluation function is defined as:

Di(z) = G(z)−G(z−i + ci) (5.1)

where z is the overall system state,G(z) is the system evaluation function, z−i is the system
state without the effects of agent i, and ci is the counterfactual term used to replace agent i.
Intuitively, the difference evaluation compares system performance with and without agent
i, to approximate the agent’s impact on overall system performance. Note that:

∂G(z)

∂ai
=
∂Di(z)

∂ai
(5.2)

where ai is the action taken by agent i. This means that any action an agent takes which in-
creases the value of the difference evaluation also increases the value of the overall system
performance. This property is termed alignment. Also note that the second term in Equa-
tion 5.23 removes the portions of the system evaluation which are not affected by agent i.
This reduces noise in the feedback signal, meaning that difference evaluations are highly
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sensitive to the actions of an individual agent.
In addition to the theoretical properties of alignment and sensitivity, difference evalu-

ations have been proven to increase the probability of finding optimal solutions in cases
where the optimal Nash equilibrium is deceptive. In these cases, one agent deviating from
the optimal strategy results in a large decrease in the overall system payoff, meaning that
finding these Nash equilibria is typically extremely difficult.

5.4 Methodology

This paper demonstrates that, in a design problem, a team of autonomous agents can
replicate or outperform a team of engineers. The first step is to define the design process
for the agents as shown in Figure 5.2. To begin with, it is necessary to define the system
level objectives and the system constraints. Then we select the team of agents, where each
agent will be responsible for optimizing a specific subsytem. Secondly, using the different
system-level objectives, it is necessary to define the overall system objective. The overall
system objective will be used by the algorithm to measure the impact of the design concept
for each agent team. Using CCEAs (cooperative coevolutionary algorithm), the agents will
evaluate all the possible combinations of solutions and choose the best one. In this paper
we will compare the final design of a system designed by a team of engineers against the
design reached by a team of autonomous agents.
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Figure 5.2: Design Process for Agents

5.4.1 Formula SAE design problem

This paper will illustrate the proof-of-concept of the approach using the design of a
formula SAE racing vehicle. Formula SAE is a collegiate design competition that requires
students to design, build, test and, compete with an racing automobile [35]. Formula SAE
works as a fictional company, where teams of students are contracted to create and build a
functional small formula racing vehicle. The final design is tested based on a series of rules
which ensure safety of all operations, and promote a design challenge for engineers.

The objective is to design a racing vehicle, which will win the acceleration event of a
Formula SAE race. The acceleration event evaluates the car acceleration in a straight line
on flat pavement. The course layout has a length of 75 m and 4.9 m wide from starting
to finish line [35]. In this paper, we compare the design process of a Formula SAE en-
gineering team against a team of autonomous design agents. The design process for the
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autonomous agents will follow the same design principles as the one followed by the team
of engineers, using the parameters in Figure 5.1. We will set some customer requirements
for the vehicle performance. Secondly, we will define the system-level objectives and con-
straints. Finally, the autonomous design teams (agents) will be defined and an algorithm
will be implemented. The key factor of the presented design process will be the design
agent’s selection.

For the purpose of this project the system to be analyzed is going to be simplified. The
design of the suspension system and steering system will not be analyzed in this document.
The selection of components such as the differential, clutch and transmission will be ig-
nored for this first part of the project. All the subsystems and components mentioned will
be implemented as part of future work.

5.4.2 Formulating the System level objective

The first step is to investigate the form of a system-level design objective that ensures
an intrinsically dependable and adaptable system directly from the design process. The key
principle here is that the objective function should capture the designer’s underlying pref-
erences for the system while ensuring the design is both adaptable and dependable. To win
the competition the system needs to maximize the vehicle acceleration and aerodynamic
grip, and minimize weight, drag and the location of the center of gravity. Engineering
teams are responsible for designing the system as shown in Figure 5.3. Consistent with
the philosophy of engineering design, the goal is to make the decisions as accurately as
possible without having to build prototypes or conduct costly testing.

5.4.3 Formulating the Agents as Design Teams

There are eight design teams (agents) each responsible for a subsystem in the overall
design problem. These teams, as well as the design parameters they are responsible for, are
given in Table 5.1. Note that for each component, h corresponds to height, l corresponds
to length, w corresponds to width, α corresponds to angle of attack, x corresponds to an x-
position, y corresponds to a y-position, ρ corresponds to density, P corresponds to pressure,
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Figure 5.3: Racing vehicle Model

r corresponds to radius, m corresponds to mass, Φ corresponds to power, τ corresponds to
torque, t corresponds to thickness, and E corresponds to a material’s modulus of elasticity.
Further, note that each team name has an abbreviation given in Table 5.1 to define variable
naming conventions. So, for example, the height of the rear wing is denoted hrw.

Continuous variables such as height are chosen from a constrained portion of R (con-
straints based on SAE competition rules), while discrete variables such as engine power are
determined by choosing from a discrete list of available engines.

For the purpose of this analysis, the customer requirement for the designed vehicle is
to win the acceleration event of a Formula SAE race. The following assumptions will be
used as the requirements for the system levels objectives and the environment:

1. The car’s top velocity vcar is 26.8m/s (60mph)

2. The car’s engine speed ωe is 3600 rpm

3. The density of air ρair during the race is 1.225kg/m3
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Table 5.1: Description of Design Teams (Agents)

Team Continuous Discrete
Name Parameters Parameters

Rear Wing (rw) h, l, w, α, x, y ρ
Front Wing (fw) h, l, w, α, x, y ρ
Side Wings (sw) h, l, w, α, x, y ρ
Rear Tires (rt) P , x r, m
Front Tires (ft) P , x r, m

Engine (e) x, y Φ, l, h, τ
Cabin (c) h, l, w, t, x, y ρ
Impact h, l, w, x, y ρ, E

Attenuator (ia)

5.4.4 System level objectives

We now discuss the objectives to be optimized for the entire system in the following
sections.

Mass:

The first design objective is to minimize the mass of the car. The rear wing, front wings,
side wings, and impact attenuator are all modeled as cuboids, and their mass is given by:

m = l · w · h · ρ

The cabin is modeled as a cuboid shell with thickness t, and its mass is given by:

mc = 2(hc · lc · tc + hc · wc · tc + lc · hc · tc)ρc
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The mass of the rear tires, front tires, and engine are defined once a set of tires and an
engine are chosen. The total mass of the vehicle is thus:

mtotal = mrw +mfw + 2 ·msw + 2 ·mrt + 2 ·mft +me +mc +mia (5.3)

Note that as there are two side wings, two rear tires, and two front tires, these mass values
are doubled in the overall mass calculation.

Center of Gravity Height:

The second objective is to minimize the center of gravity height (CGy) of the car, or
to keep the center of gravity as low as possible. The y-position of the center of gravity is
defined as:

CGy =
mrwyrw +mfwyfw +meye +mcyc +miayia

mtotal

+ ...

+
2(mswysw +mrtrrt +mftrft)

mtotal

(5.4)

Drag and Downforce:

The third and fourth objectives are to minimize the overall drag of the vehicle and to
maximize the downforce of the vehicle. We assume that the components which influence
drag are the rear wing, front wing, side wings, and cabin. We also assume that only the
wings influence vehicle downforce. We will first analyze the wings, and then the cabin.
The aspect ratio AR of a wing is defined as:

AR =
w cosα

l

The lift coefficient Cl of a wing is defined as:

Cl = 2π
AR

AR + 2
α (5.5)
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The drag coefficient Cd of a wing is defined as:

Cd =
C2

l

πAR
(5.6)

The overall downforce Fd of a wing is given by:

Fd =
1

2
αhwρairv

2
carCl (5.7)

The overall drag FR of a wing is given by:

FR =
1

2
ρairv

2
carCdwh (5.8)

For the cabin, we assume a drag coefficient Cd,c of 0.04 for a streamlined body [54].
The overall drag of the vehicle is thus:

FR,total = Fd,rw + Fd,fw + 2Fd,sw + Fd,c (5.9)

and the overall downforce of the vehicle is:

Fd,total = FR,rw + FR,fw + 2FR,sw (5.10)

Acceleration:

The fifth objective of the design process is to maximize the acceleration of the car in
the x-direction. The rolling resistance coefficient C of the car is given by:

C = 0.005 +
1

p
(0.01 + 0.0095v2car) (5.11)

where p is the tire pressure. The overall rolling resistance Rroll of the car is given by:

Rroll =
Cmtotg

r
(5.12)
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where g is the gravitational constant and r is the tire radius. Thus, the total resistance of
the car Rtot is given by the sum of drag and rolling resistance:

Rtot = Fd,total +Rroll (5.13)

The efficiency η of the engine is given by:

η =
Rtotvcar

Φe

(5.14)

The wheel force Fwheels at the rear tires is given by:

Fwheels =
τeηωe

rrtωwheels

(5.15)

where ωwheels is the rotational speed of the rear wheels, given by:

ωwheels =
vcar
rrt

(5.16)

We can thus find the acceleration of the car acar as follows:∑
F = mtotalacar

Fwheels −Rtotal = mtotalacar

acar =
Fwheels −Rtotal

mtotal

(5.17)

Crash Force:

The sixth objective of the design problem is to minimize the crash force of the car. The
axial deformation δ of the impact attenuator is given by:

δ =
Fcrashlia
wiahiaEia

(5.18)
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The crash force Fcrash is defined as:

Fcrash =
mtotalv

2
car

2δ
(5.19)

Combining Equations 5.18 and 5.19 yields:

Fcrash =
mtotalv

2
car

2 Fcrashlia
wiahiaEia

⇒ Fcrash(2Fcrashlia) = mtotalv
2
carwiahiaEia

⇒ F 2
crash =

mtotalv
2
carwiahiaEia

2lia

⇒ Fcrash =

√
mtotalv2carwiahiaEia

2lia
(5.20)

Impact Attenuator Volume:

The seventh and final objective of the design problem is to minimize the impact atten-
uator volume Via, given by:

Via = liawiahia (5.21)

5.4.5 Overall System Objective

In a Formula SAE competition the car prototype is judged in a number of different
events. In this paper we are not replicating a Formula SAE competition, however, it is
necessary to judge the design of the vehicle. A weighted linear sum is our approximation
on how to judge the design with respect to its performance.

The overall system objective is given by a weighted linear combination of the individual
objectives. Given a candidate design solution z, the system evaluation function G(z) is



69

defined as:

G(z) = −wmmtotal − wCGCGy − wRFR,total + wdFd,total + ...

+ waacar − wcrashFcrash − wiavVia (5.22)

where wi is a weight corresponding to objective i.
Recall that the agent-specific difference evaluation function is defined as:

Di(z) = G(z)−G(z−i + ci) (5.23)

where z is the overall system state,G(z) is the system evaluation function, z−i is the system
state without the effects of agent i, and ci is the counterfactual term used to replace agent i.
Intuitively, the difference evaluation compares system performance with and without agent
i, to approximate the agent’s impact on overall system performance.

5.4.6 Constraints

The constraints used for the vehicle were set according to the Rules of the 2016 Formula
SAE Rules [35]. The SAE rules present the competition regulations technical and design
requirements. The SAE rules were use to define the minimal dimensions and the areas
where the structural components are allowed to allocated.

5.4.7 CCEAs Implementation

The approach to optimizing the vehicle design using cooperative coevolution is shown
in Figure 5.4. Initially, N populations are seeded with k random solutions. In this case,
there are 8 populations, one for each subsystem agent (rear wings, front wings, etc.). In
each generation, each population creates mutated solutions, and then the solutions are used
to create teams, where a team consists of an entire vehicle design. The solution presented
by the team is then evaluated, and each member of the team is assigned a fitness score. Once
each member of each population has been assigned a fitness, solutions in each population
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are selected to survive to the next generation. Each of these evolutionary mechanisms are
explained in the following paragraphs.

A “solution” in the cooperative coevolutionary algorithms consists of two elements:
a continuous element and a discrete element. For any given team (optimized by a single
population), the continuous element of the solution contains an array of values correspond-
ing to that team’s subsystem. For example, for the rear wing team, the continuous portion
of the solution is an array of the form {h, l, w, α, x, y}. The discrete element of the so-
lution contains an array of choices corresponding to that team’s subsystem. For the rear
wing team, the discrete portion of the solution is of the form {ρ}, where the density ρ

was chosen from a list of available materials for wing construction. A random solution is
chosen by drawing the continuous variables from a uniform probability distribution, and
drawing discrete variables where each discrete choice has an equal probability of selection.
Each population (corresponding to different design subsystems) is initially populated with
random solutions.

For mutation, each population of size k is doubled in size to 2k solutions. Each solution
in the original population is copied, and then mutated to create a child solution. For the
continuous portion of the solution, mutation is carried out by first adding a value drawn
from a Gaussian distribution N(µ = 0, σ = 0.001) to each element, and then ensuring the
resulting value is still within the allowable constraints. For example, if a mutated parameter
is a+ ε, but the maximum value (based on vehicle constraints) that the parameter may take
is a, then the value is changed to a.

For team formation, one solution is drawn from each population to form a complete
vehicle design. Each solution in a population has an equal probability of being selected for
a team, and each solution is used only once (i.e, if each population has a size of 2k, then
2k teams are tested).

For fitness assignment (line 11 in Figure 5.4 ), we test two fitness assignment operators.
First, we use the global evaluation G(z) to assign fitness to each agent in a team. This
means that the performance of each subsystem design is assigned using the overall system
performance. Next, we use the difference evaluation Di(z) to assign fitness to each agent.
In this case, we assign a counterfactual of 0, meaning we analyze performance of the car if
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a component was removed from the design. This provides an estimate of the impact on the
overall system performance provided by a single component.

For selection, we use binary tournament selection, which reduces a population of size
2k to size k using the following procedure. Two solutions are drawn from the population
(each solution may be drawn only once). The solution with the higher fitness value is
returned to the population, and the solution with the lower fitness value is discarded. Binary
tournament selection ensures that the best solution in the population is retained and that the
worst solution in the population is discarded. For all other solutions in the population, their
probability of survival increases with their fitness value.

Figure 5.4: Cooperative Coevolutionary Algorithm
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5.5 Results

The results from the cooperative coevolutionary algorithm were validated by comparing
them to a real Formula SAE vehicle. The current formula SAE Michigan champion since
2010 is the Global Formula Racing GFR [29]. GFR is a Formula SAE team formed by
an international cooperation between the BA Racing Team from Duale Hochschule Baden-
Wrttemberg-Ravensburg (DHBW), Germany, and the Beaver Racing Team from Oregon
State University (OSU), USA. GFR team has proven to be the best student engineering
team, winning more than 15 competitions worldwide since 2010. The results from the
coevolutionary algorithm will be compared to the GFR 2013 combustion car.

For the simulation run the population size was set to 50 and the number of generations
for evolution 10,000. The weights for the Overall System Objective (Eqn 5.22) are defined
in Table 5.2.

Since the primary objective is to reduce the overall mass of the vehicle while maxi-
mizing the car’s acceleration, these objectives have the higher weight. Future work will
analyze the effects of weight variation between systems objectives, and modify the Overall
System Objective to enclose the entire complexity of the system. For example, if the weight
value for the downforce objective is increased, the design agents will create larger wings.
However, the use of large wings will increase the drag forces on the vehicle, thus causing
a lower overall system performance. The current model does not include the analysis of
the dynamics behind suspension or lateral accelerations because the vehicle is only moving
on a smooth, straight track. In a real model, where the vehicle would be turning at high
speeds, downforce plays an important role and would be considered in future work.

Figure 5.5 shows how the system performance increases for G(z) and Di(z) as the
number of generations increases. The system performance has negative values because five
of the seven objectives need to be minimized.

Difference Reward Di(z) usually provides better performance than system evaluation
function G(z). This is due to the fact that each team member is given better feedback
on their performance. G(z) outperforms Di(z) when weights are chosen that significantly
favor acceleration and crash forces being optimized. This is because these parameters are
the most coupled as they depend on the mass of each component as well as engine specs.
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Table 5.2: Weights for Overall System Objective

Objective Weight
Mass 15
CGy 5
Drag 3

Downforce 2.5
Acceleration 10
Crash Force 10
IA Volume 1

So basically every team member affects these parameters; and Di(z) has problems when
there is extremely high coupling between agents.

More importantly, in these cases where Di(z) struggles, we see the effect of one agent
being very good with one team but very bad with another team. This type of behavior is
also difficult for Di(z) to handle, because it will only provide good feedback to an agent
if its teammates are reasonably well-suited to work with that agent. For example, an agent
that works extremely well with engine A but extremely poorly with engine B will get a bad
difference evaluation if it is paired with a teammate which selects engine B, even if it is
actually a decent solution.

The result from the design process is shown in Table 5.3, where we compare a solution
found using the CCEA with the GFR solution. The design of the agents does better on all
but one objective, which is drag.
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Figure 5.5: Preliminary results: difference evaluations provide better designs than global
evaluatons.

Table 5.3: Comparison of the SAE solution vs. the design found using CCEA.

Objective SAE Solution CCEA Solution
Mass 34.88 34.45
CGy 0.277 0.260
Drag 217.108 281.720

Downforce 318.748 390.593
Acceleration 0.250 0.333
Crash Force 40.92 18.08
IA Volume 0.009 0.013
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5.6 Conclusions

The long-term goal of this project is to enable new design paradigms for complex sys-
tems to ensure that design space exploration, system architecture selection, and system
integration are conducted in a way to produce a certifiably dependable and adaptable sys-
tem meeting high-level design objectives.

The work done in this paper is primary evidence that distributed artificial intelligence
can be used in design processes by splitting up the overall system into specific teams.

More specifically, the results from Table 5.3 illustrate that a team of autonomous agents
using a cooperative coevolutionary algorithm (CCEA) can effectively design a Formula
racing vehicle. The CCEA results in better performance than the Global Formula Racing
(GFR) design on 6 objectives, and is worse on 1 objective (drag). One of the reasons why
the autonomous agents have a worse performance on Drag could be the selected weight
for the system objectives. Drag and Downforce objectives are highly related, if the weight
value for the downforce objective is increased, the design agents will create larger wings.
However, the use of large wings will increase the drag forces on the vehicle, thus causing a
lower overall system performance. In a higher fidelity model, where the vehicle would be
turning at high speeds, downforce and drag will play an important role.

5.7 Future Work

The next step in this research is to obtain results increasing the complexity of the sys-
tem. In this paper the case study was simple, but a real Formula racing vehicle needs to
consider all the dynamics between the system and the environment. The system needs to
simulate the lateral accelerations caused while the vehicle is turning at a high speed. Differ-
ent types of mechanical and electrical components most be included using a large number
agents. Suspension and brake systems needs to be included as part of the engineering re-
quirements. The system objective must also consider the cost of manufacturing operations
and the cost of the components. The weights used and the linear form of Overall System
Objective will be analyzed in more detail. As the complexity of the system increases, it
will be necessary to analyze how the team of agents behave with multiobjectives.
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Chapter 6: Concluding Remarks

The preliminary results presented in the two manuscripts show how the implementation
of a learning algorithm within autonomous agents increases the performance of the system.
The global objective presented in the first manuscript was to maximize productivity. Pro-
ductivity is defined for this system as the number of products produced at each time step
divided by the amount of products that are already placed. (How much is produced divided
by how much it took to produce it). The levels of productivity achieved by the agents using
learning algorithm were low. This could be caused by the defined global objective. The
system objective as is currently defined is just gathering resources and expanding the fac-
tory elements without any specific target. The journal version of this manuscript would
redefine the global objective of the system, and incorporate the learning algorithm in the
all the agents of the system (workers and producers) case 4 from Table 4.1.

The multiple objectives presented in the second manuscript were a weighted sum of the
different objectives. Each weight was adjusted according to the preferences of the client,
and the objectives were built using the simplified version of the racing vehicle and racing
event. The results were compared with the Global Formula Racing Team in Table 5.3. The
team of agent’s design achieved better performance than the Global Formula Racing (GFR)
design on six of seven objectives. However, the design created by the team of agents cannot
be completely compared to the design of the GFR because the global objectives of each
vehicle model are different. To properly compare the two systems it would be necessary
to update the model fidelity and the multiple objectives of the system used in this project.
The journal version of this manuscript will incorporate more detail to the model of the
system and to the racing event, which will create a new set of objectives to maximize and
minimize, and incorporate new subsystem and agents to the case study.

It is fundamental to notice the importance on defining an accurate global objective
function for the system while implementing a learning algorithm.

Two different learning algorithms were presented in this document. The first manuscript
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used a Q − learning with one type of agent (worker). Three scenarios were considered:
local rewards, difference rewards, and pre-programmed behavior. Local rewards and differ-
ence rewards were the scenarios where the learning algorithm (Q − learning) was incor-
porated. The second manuscript used a cooperative coevolutionary algorithm with eight
different types of agents. Two scenarios were considered: cooperative coevolutionary al-
gorithm to evaluate the team performance, and cooperative coevolutionary algorithm with
difference evaluation to evaluate the team and agents’ performance.

From the first manuscript we learned that Q − learning was suitable to the system as
the defined agents have clear actions and states. Each worker will take an action (deliver
resource, gather resource, etc.) related to the state of the agent. From the results obtained
it was hard to see a distinction between the use local reward and difference reward. In both
scenarios the productivity of the system was low but the system was able to keep expanding
and working. With the current global objective it is hard to see an impact on the system
performance when the difference reward is implemented. Additionally, the implementa-
tion of Q − learning is mostly used in discrete domain, which was suitable for this case
study. However, to implement the multiagent coordination within the design of complex
engineered systems, it would be necessary to explore other types of learning algorithms
that work in discrete and continuous domains.

In the second manuscript we incorporated a cooperative coevolutionary algorithm as
the learning algorithm. From the results obtained we were able to observe how the incor-
poration of cooperative coevolutionary algorithm with difference evaluations evaluated the
performance of the team and each agent member of the team.

Figure 6.1 illustrates the process completed by the cooperative coevolutionary algo-
rithm to evaluate the system performance. Each agent responsible for a specific subsystem
will generate a random population of possible solutions. One selection from each agent is
selected and grouped in one team. The team is then evaluated using the global objective
defined to the system. According to the system performance the team will get a fitness
assignment. The fitness assignment is used to evaluate the performance of the team. The
agent member of the evaluated team used the fitness information to generate new popu-
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lation for each agent to refine future solutions. The implementation of the cooperative
coevolutionary algorithm allowed us to evaluate the performance of the team. However,
if we know how well a team of agents performs when they are all collaborating, we next
need to explore how we can evaluate the performance of a particular agent in that team.
The implementation of the difference evaluation function allows the system to solve the
credit assignment problem. Using the difference evaluation agents can measure the impact
of their actions in the performance of the system.

Figure 6.1: Cooperative Coevolutionary Algorithm

The results from the second manuscript are very promising. The implemented learning
algorithm was shown to effectively evaluated the performance of the team and their indi-
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vidual members. These preliminary results open the door to new research questions that
are part of the future work of this research. But one important question remain: how can we
start implementing the cooperative evolutionary algorithm with difference evaluation with
an integrated concurrent engineering team such as Team X or the Global Formula Racing
Team (GFR) at OSU?

The preliminary results of this research are going to be presented to the leaders of
GFR. And we can discuss the potential benefits of incorporating this methodology into their
design process. Future work will study designing the racing vehicle for the Formula SAE
2017 competition in parallel between GFR team and the presented CCEA methodology.
The collaboration will provide knowledge and experience to increase the fidelity of the
current model. The results from the applied methodology can be used to improve the
design decision process inside the GFR team. Testing the final design in a competition
event would validate the implementation of a cooperative coevolutionary algorithm with
difference evaluation as an optimization tool with an integrated concurrent engineering.
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Chapter 7: Conclusions

As complex engineered systems continue to grow in size or complexity, it is important
to develop new methodologies that allow engineers to model and evaluate such systems
faster and more accurately. The long-term goal of this research is to enable new design
paradigms for complex systems to ensure that design space exploration, system architecture
selection, and system integration are conducted in a way to produce a system meeting high-
level design objectives.

The implementation of the multiagent coordination approach provides one avenue for
such exploration. The results from the case study prove that complex system design, un-
dertaken with respect to a variety of design objectives, is in fact similar to the multiagent
coordination problem. This research translates different techniques used to solve the mul-
tiagent coordination problem to the design of complex engineered systems.

The problem with multiagent coordination, as many researchers have pointed out, is
the credit assignment between agents. As the number of agents increases in the system, it
becomes difficult to track the contribution and collaboration of each agent to achieve the
predetermined objective. This is especially true when agents need to interact with a large
number of agents performing a similar task; or when different agents need to collaborate
performing different sub-objectives. When translated to to designing complex engineered
systems, the presented approach does not in itself solve the design problem; rather, it shifts
the focus from modeling interactions to determining how to evaluate/incentivize compo-
nents so that their collective behavior achieves the system design goals. Multiagent coordi-
nation approaches, can be used to determine how to distribute credit (or blame) in a design
process to the components/stages in the design that are critical to success (or failure).

However, significant challenges exist in adapting this concept to designing complex
systems to meet design goals; while operating in stochastic and often unpredictable en-
vironments. More research, experiments, and simulations using systems containing large
number of agents and interaction with the environment are required to directly address this
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challenge.
Within the first manuscript, methodologies for using and understanding multiagent co-

ordination as designers were introduced. The manuscript presents an approach for coor-
dinating a conceptual model of a self-replicating system. The arrival of a set of agents
on an unknown planet is simulated, whereby these simple agents will expand into a self-
replicating factory using the regolith gathered from the surface of the planet. The results
on this work demonstrated that the implementation of a learning algorithm allows a large
number of different agents to complete simultaneous and different tasks in order to com-
plete a desired objective. However, there appears to be quite a bit of room for improvement
as the productivities achieved by the system of agents were very low. The low productivi-
ties were thought to be caused by shortcomings of using non-learning on one set of agents
(producers), and might be remedied by using producers that learn.

Within the second manuscript, a hybrid approach for the design of complex engineered
systems was introduced. With this method engineering design decisions can be reconciled
without the need for either detailed interaction models or external legislating mechanisms.
A key insight of this approach is that complex system design, undertaken with respect to a
variety of design objectives, is fundamentally similar to the multiagent coordination prob-
lem, where component decisions and their interactions lead to global behavior. The pre-
sented approach demonstrates that multiagent coordination can be used to design a complex
system. A team of autonomous agents was able to design a Formula racing vehicle, with
the implementation of a cooperative coevolutionary algorithm.

Multiagent coordination offers an intriguing tool to assist the design of complex en-
gineered systems. The work presented in this thesis provides a first look into the poten-
tial of using multiagent coordination for the engineering design process. Nevertheless,
more research is necessary to demonstrate the accuracy and benefits of such methodology.
Is it also necessary to incorporate the presented methodology within different design ap-
proaches such as Integrated Concurrent Engineering (ICE), Multi-Objective Optimization
tools (MOO), and Decision Based Design (DBD).
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