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Chapter 1: Introduction

This dissertation is a collection of three papers I wrote while at Oregon State. As the

title is vague, a few words are in order as to what I mean by “the functional analytic

viewpoint.” In the words of one of my teachers, functional analysis is what one gets when

linear algebra is combined with point set topology. Thus the term is extremely broad. In

general, functional analysis deals with linear operators on linear spaces, usually infinite

dimensional, but I allow linear algebra to be subsumed in this subject as well. About such

operators there is a deep and powerful theory, and to look at a question in mathematics

from a functional analytic point of view means attempting to frame the problem, or parts

of it, in terms of some linear operator(s), thus bringing the above theory to bear. Probably

the most well known examples of this strategy come from partial differential equations, and

below I will describe how it is applied to the problems I consider in the following chapters.

Brownian motion, Bt, t ∈ [0, 1], is the fundamental example of a stochastic process.

With probability one the paths of Bt are continuous, and one can show that Brownian

motion determines a probability measure on the Banach space C[0, 1]. This is one way

in which one is led to study measures on Banach spaces, and in the case of Gaussian

measures there is a rich functional analytic theory. One the most important features of

Brownian motion to emerge is that one can define an integral with respect to it, and in

attempting to extend this theory of integration to other Gaussian processes many authors

relied on the existence of certain integral representations for the process in question, i.e.,

the existence of an integral kernel, say on [0, 1] × [0, 1], which when integrated against

Brownian motion yields a Gaussian process. Thus the question arises: When does such an

integral kernel exist? This question can be answered in terms of certain linear operators

between various Hilbert spaces related to the process in question, and this is the subject of

Chapter 2. It turns out that under very general conditions such an integral kernel exists,

and one corollary to the proof of that fact is that, again in very general situations, a given

Gaussian process is determined by a certain unbounded, self-adjoint operator on a Hilbert

space.

The most important class of Gaussian processes, which contains Brownian motion, is

the class of fractional Brownian motions. In light of the above, one can wonder what are the
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corresponding unbounded operators. It turns out that they are powers of the Laplacian. In

Chapter 3 I address a question that has attracted steady attention since the mid twentieth

century, namely how to extend Brownian motion, and more generally fractional Brownian

motion, from a Gaussian process indexed by R to a process indexed by a manifold, now

called a random field. It is a fact of life that it is often easier to recognize a differential

operator and its various extensions than to recognize the corresponding inverses, and this

is one reason that focusing on the corresponding unbounded operator for fractional Brow-

nian motion yields an approach to the above question that succeeds rather spectacularly

compared to previous approaches. Again we see how focusing on the functional analytic

aspects of the problem, the associated linear operators, bears fruit.

In the above two paragraphs we have described the use of linear operators to study

certain stochastic processes, i.e., random functions. However, if one considers functional

analysis and probability together, in particular if one has followed the usual analytical

training whereby one passes from the study of functions, to spaces of functions, and then

linear operators between them, it doesn’t take long to arrive at the naive notion of a

random linear operator as a possible extension of the theory of random functions. The

fundamental example of a linear operator is a linear transformation on Euclidean space,

that is, a matrix. Thus one could wonder if there is a theory of random matrices, and indeed

there is rich, vast, and growing theory of such random operators. Much of the theory of

random matrices is concerned with the behavior of the eigenvalues as the dimensions of

the matrix in question approaches infinity.

In Chapter 4 we investigate this question for a product of random matrices of a certain

type, and in fact this is the first such study of its kind for any class, or ensemble, of random

matrices. The method is essentially to realize the random matrices in question as discrete

approximations to a certain random differential operator, and many of the arguments follow

the pattern of the classical numerical analysis of such deterministic differential operators,

in particular the tools of functional analysis. The added ingredient is the random nature

of the operators in question, however to the reader familiar with such tools, e.g., coercivity

bounds, the general pattern of proof will be clear.

The chapters are ordered chronologically, Chapter 2 having been written first, and

Chapter 4 most recently. What remained clear to me during the writing of each of these

papers, at least when it was clear at all what was happening, was the functional analytic

picture of linear operators between linear spaces, and it is my hope that this introduction

will aid the reader in seeing this picture throughout the work.
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Chapter 2: White Noise Representation of Gaussian Random Fields

2.1 Introduction

Much of literature regarding the representation of Gaussian fields as integrals against white

noise has focused on processes indexed by R, in particular canonical representations (most

recently see [26] and references therein) and Volterra processes (e.g. [3, 6]). An example

of the use of such integral representations is the construction of a stochastic calculus for

Gaussian processes admitting a white noise representation with a Volterra kernel (e.g.

[3, 36]).

In this paper we study white noise representations for Gaussian random variables in

Banach spaces, focusing in particular on Gaussian random fields indexed by a measure

space. We show that the existence of a representation as an integral against a white noise

on a Hilbert space H is equivalent to the existence of a version of the field whose sample

paths lie almost surely in H. For example a consequence of our results is that a centered

Gaussian process Yt indexed by [0, 1] admits a representation

Yt
d
=

∫ 1

0
h(t, z) dW (z)

for some h ∈ L2([0, 1] × [0, 1], dν × dν), ν a measure on [0, 1] and W the white noise on

L2([0, 1], dν) if and only if there is a version of Yt whose sample paths belong almost surely

to L2([0, 1], dν).

The stochastic integral for Volterra processes developed in [36] depends on the exis-

tence of a white noise integral representation for the integrator. If there exists an integral

representation for a given Gaussian field then the method in [36] can be extended to define

a stochastic integral with respect to this field. We describe this extension for Gaussian

random fields indexed by a measure space whose sample paths are almost surely square

integrable.

Accepted for publication in Communications on Stochastic Analysis, 2013.
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Section 2.2 contains preliminaries we will need from Malliavin Calculus and the theory

of Gaussian measures over Banach spaces. In section 2.3, Theorem 2.3.1 gives our abstract

representation theorem and Corollary 2.3.2 specializes to Gaussian random fields indexed

by a measure space. Section 2.4 contains the extension of results in [36].

2.2 Preliminaries

2.2.1 Malliavin Calculus

We collect here only those parts of the theory that we will explicitly use, see [48].

Definition 2.2.1. Suppose we have a Hilbert space H. Then there exists a complete

probability space (Ω,F ,P) and a map W : H → L2(Ω,P) satisfying the following:

1. W (h) is a centered Gaussian random variable with E[W (h)2] = ‖h‖H

2. E[W (h1)W (h2)] = 〈h1, h2〉H

This process is unique up to distribution and is called the Isonormal or White Noise Process

on H.

The classical example is H = L2[0, 1] and W (h) is the Wiener-Ito integral of h ∈ L2.

Let S denote the set of random variables of the form

F = f(W (h1), ...,W (hn))

for some f ∈ C∞(Rn) such that f and all its derivatives have at most polynomial growth

at infinity. For F ∈ S we define the derivative as

DF =
n∑
1

∂jf(W (h1), ...,W (hn))hj .

We denote by D1,2 the closure of S with respect to the norm induced by the inner product

〈F,G〉D = E[FG] + E[〈DF,DG〉H ].

We also define a directional derivative for h ∈ H as

DhF = 〈DF, h〉H .
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D is then a closed operator from L2(Ω) to L2(Ω, H) and dom(D) = D1,2. Further, D1,2

is dense in L2(Ω). Thus we can speak of the adjoint of D as an operator from L2(Ω, H) to

L2(Ω). This operator is called the divergence operator and denoted by δ. Next, dom(δ) is

the set of all u ∈ L2(Ω, H) such that there exists a constant c (depending on u) with

|E[〈DF, u〉H ]| ≤ c‖F‖

for all F ∈ D1,2. For u ∈ dom(δ), δ(u) is characterized by

E[Fδ(u)] = E[〈DF, u〉H ]

for all F ∈ D1,2.

For examples and descriptions of the domain of δ see [48], section 1.3.1.

When we want to specify the isonormal process defining the divergence we write δW .

We will also use the following notations interchangeably

δW (u) ,

∫
u dW.

2.2.2 Gaussian Measures on Banach Spaces

Here we collect the necessary facts regarding Gaussian measures on Banach spaces and

related notions that we will use in what follows. For proofs and further details see e.g.

[11, 41]. All Banach spaces are assumed real and separable throughout.

Definition 2.2.2. Let B be a Banach space. A probability measure µ on the Borel sigma

field B of B is called Gaussian if for every l ∈ B∗ the random variable l(x) : (B,B, µ)→ R
is Gaussian. The mean of µ is defined as

m(µ) =

∫
B
x dµ(x).

The measure µ is called centered if m(µ) = 0. The (topological) support of µ in B, denoted

B0, is defined as the smallest closed subspace of B with µ-measure equal to 1.

Suppose we have a probability space (Ω,F , P ) and a measurable map X : Ω→ B, i.e. X

is a B-valued random variable. Then we say µ is the distribution of X if P (X−1(A)) = µ(A)

for any Borel set A ⊂ B. Such an X always exists, for we can let X be the identity map

on B as B is a probability space with measure µ.
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The mean of a Gaussian measure is always an element of B, and thus it suffices to

consider only centered Gaussian measures as we can then acquire any Gaussian measure

via a simple translation of a centered one. For the remainder of the paper all measures

considered are centered.

Definition 2.2.3. The covariance of a Gaussian measure is the bilinear form Cµ : B∗ ×
B∗ → R given by

Cµ(k, l) = E [k(X)l(X)] =

∫
B
k(x)l(x) dµ(x).

Any Gaussian measure is completely determined by its covariance: if for two Gaussian

measures µ, ν on B we have Cµ = Cν on B∗ ×B∗ then µ = ν.

If H is a Hilbert space then

Cµ(f, g) = E[〈X, f〉〈X, g〉] =

∫
B
〈x, f〉〈x, g〉 dµ(x)

defines a continuous, positive, symmetric bilinear form on H × H and thus determines a

positive symmetric operator Kµ on H. Kµ is of trace class and is injective if and only

if µ(H) = 1. Conversely, any positive trace class operator on H uniquely determines

a Guassian measure on H [19]. Whenever we consider a Gaussian measure µ over a

Hilbert space H we can after restriction to a closed subspace assume µ(H) = 1 and do so

throughout.

We will denote by Hµ the Reproducing Kernel Hilbert Space (RKHS) associated to a

Gaussian measure µ on B . There are various equivalent constructions of the RKHS. We

follow [55] and refer the interested reader there for complete details.

For any fixed l ∈ B∗, Cµ(l, ·) ∈ B (this is a non trivial result in the theory). Consider

the linear span of these functions,

S = span{Cµ(l, ·) : l ∈ B∗}.

Define an inner product on S as follows: if φ(·) =
n∑
1

aiCµ(li, ·) and ψ(·) =
m∑
1

bjCµ(kj , ·)

then

< φ,ψ >Hµ≡
n∑
1

m∑
1

aibjCµ(li, kj).

Hµ is defined to be the closure of S under the associated norm ‖ · ‖Hµ . This norm is

stronger than ‖ · ‖B, Hµ is a dense subset of B0 and Hµ has the reproducing property with
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reproducing kernel Cµ(l, k):

〈φ(·), Cµ(l, ·)〉Hµ = φ(l) ∀ l ∈ B∗, φ ∈ Hµ.

Remark 2.2.1. Often one begins with a collection of random variables indexed by some

set, {Yt}t∈T . For example suppose (T, ν) is a finite measure space. Then setting K(s, t) =

E[YsYt] and supposing that application of Fubini-Tonelli is justified we have for f, g ∈ L2(T )

E[〈Y, f〉〈Y, g〉] =

∫
T

∫
T
E[Ys, Yt]f(s)g(t) dνdν = 〈K(s, t)(f), g〉

where we denote

∫
T
K(s, t)f(s)dν(s) by K(s, t)(f). If one verifies that this last operator is

positive symmetric and trace class then the above collection {Yt}t∈T determines a measure

µ on L2(T ) and the above construction goes through with Cµ(f, g) = 〈K(s, t)(f), g〉 and

the end result is the same with Hµ a space of functions over T .

Define HX to be the closed linear span of {X(l)}l∈B∗ in L2(Ω,P) with inner product

〈X(l), X(l′)〉HX = Cµ(l, l′) (again for simplicity assume X is nondegenerate). From the

reproducing property we can define a mapping RX from Hµ to HX given initially on S by

RX(

n∑
1

ckCµ(lk, ·)) =

k∑
1

ckX(l)

and extending to an isometry. This isometry defines the isonormal process on Hµ.

In the case that H is a Hilbert space and µ a Gaussian measure on H with covariance

operator K it is known that Hµ =
√
K(H) with inner product 〈

√
K(x),

√
K(y)〉Hµ =

〈x, y〉H .

It was shown in [40] that given a Banach space B there exists a Hilbert space H such

that B is continuously embedded as a dense subset of H. Any Gaussian measure µ on B

uniquely extends to a Gaussian measure µH on H. The converse question of whether a

given Gaussian measure on H restricts to a Gaussian measure on B is far more delicate.

There are some known conditions e.g. [23]. The particular case when X is a metric space

and B = C(X) has been the subject of extensive research [42]. Let us note here however

that either µ(B) = 0 or µ(B) = 1 (an extension of the classical zero-one law, see [11]).

From now on we will not distinguish between a measure µ on B and its unique extension

to H when it is clear which space we are considering.
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2.3 White Noise Representation

2.3.1 The General Case

The setting is the following: B is a Banach space densely embedded in some Hilbert space

H (possibly with B = H), where H is identified with its dual, H = H∗. (A Hilbert space

equal to its dual in this way is called a Pivot Space, see [4]).

The classical definition of canonical representation has no immediate analogue for fields

not indexed by R, but the notion of strong representation does. Let L : Hµ → H be unitary.

Then WX(h) = RX(L∗(h)) defines an isonormal process on H and σ({WX(h)}h∈H) =

σ(HX) = σ({X(l)}l∈B∗) where the last inequality follows from the density of H in B∗.

We now state our representation theorem.

Theorem 2.3.1. Let B be a Banach space, µ a Gaussian measure on B, and Cµ the

covariance of µ on B∗ × B∗. Then µ is the distribution of a random variable in B given

as a white noise integral of the form

X(l) =

∫
h(l) dW. (3.1)

for some h : B∗ → H and a Hilbert space H, where h|H is a Hilbert-Schmidt operator

on H. Moreover, the representation is strong in the following sense: σ({WX(h)}h∈H) =

σ({X(l)}l∈B∗).

proof. Let B ⊂ H = H∗ as above. Let WX be the isonormal process constructed above

and Cµ(l, k) the covariance of µ. Let L be a unitary map from Hµ to H and define the

function kL(l) : B∗ → H by

kL(l) ≡ L(Cµ(l, ·)).

Consider the Gaussian random variable determined by

Y (l) ≡
∫
kL(l) dWX .

We have

E[Y (l1), Y (l2)] = 〈kL(l1), kL(l2)〉H = 〈Cµ(l1, ·), Cµ(l2, ·)〉Hµ = Cµ(l1, l2)
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so that µ is the distribution of Y (l) and

X(l)
d
=

∫
kL(l) dWX .

It is clear that kL is linear and if Cµ(h1, h2) = 〈K(h1), h2〉H , h1, h2 ∈ H, then from

above

k∗LkL = K.

Because K is trace class this implies that kL is Hilbert-Schmidt on H.

From the preceding discussion we have σ({WX(h)}h∈H) = σ({X(l)}l∈B∗).

Remark 2.3.1. While the statement of the above theorem is more general than is needed for

most applications, this generality serves to emphasize that having a “factorable” covariance

and thus an integral representation are basic properties of all Banach space valued Gaussian

random variables.

Remark 2.3.2. The kernel h(l) is unique up to unitary equivalence on H, that is if L′ = UL

for some unitary U on H L as above, then∫
hL′(l) dW

d
=

∫
U (hL(l)) dW

d
=

∫
hL(l) dW.

Remark 2.3.3. In the proof above,

〈kL(l1), kL(l2)〉H = Cµ(l1, l2) (3.2)

is essentially the “canonical factorization” of the covariance operator given in [56], although

in a slightly different form.

Remark 2.3.4. In the language of stochastic partial differential equations, what we have

shown is that every Gaussian random variable in a Hilbert space H is the solution to the

operator equation

L(X) = W

for some closed unbounded operator L on H with inverse given by a Hilbert-Schmidt

operator on H.
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2.3.2 Gaussian Random Fields

The proof of Theorem 2.3.1 has the following corollary for Gaussian random fields:

Corollary 2.3.2. Let X be a Hausdorff space, ν a positive Radon measure on the Borel sets

of X and H = L2(X, dν). If {Bx} is a collection of centered Gaussian random variables

indexed by X, then {Bx} has a version with sample paths belonging almost surely H if and

only if

Bx
d
=

∫
h(x, ·) dW (3.3)

for some h : X → H such that the operator K(f) ≡
∫
X
h(x, z)f(z) dν(z) is Hilbert-Schmidt.

In this case (3.2) takes the form

E[BxBy] =

∫
X
h(x, z)h(y, z) dν(z).

In other words, the field Bx determines a Gaussian measure on L2(X, dν) if and only

if Bx admits an integral representation (3.3).

2.3.3 Some Consequences and Examples

In principle, all properties of a field are determined by its integral kernel. Without making

an exhaustive justification of this statement we give some examples:

In Corollary 2.3.2 above, being the kernel of a Hilbert-Schmidt operator, h ∈ L2(X ×
X, dν × dν). This means that we can approximate h by smooth kernels (supposing these

are available). If we assume h(x, ·) is continuous as a map from X to H i.e.

lim
x→y
‖h(x, ·)− h(y, ·)‖H = 0

for each y ∈ X and let hn ∈ C∞(X), hn
L2

−→ h it follows that ‖hn(x, ·) − h(x, ·)‖H → 0

pointwise so that if

Bn
x =

∫
hn(x, ·) dW

we have

E[Bn
xB

n
y ]→ E[BxBy]
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pointwise. This last condition is equivalent to

Bn d→ B

and we can approximate in distribution any field over X with a continuous (as above)

kernel by fields with smooth kernels.

The kernel of a field over Rd describes its local structure [27]: The limit in distribution

of

lim
rn→0
cn→0

X(t+ cnx)−X(t)

rn

is

lim
rn→0
cn→0

∫
h(t+ cnx)− h(t)

rn
dW

where h is the integral kernel of X, and this last limit is determined by the limit in H of

lim
rn→0
cn→0

h(t+ cnx)− h(t)

rn
.

The representation theorem yields a simple proof of the known series expansion using

the RKHS. The setting is the same as in Theorem 2.3.1.

Proposition 2.3.3. Let Y (l) be a centered Gaussian random variable in a Hilbert space

H with integral kernel h(l). Let {ek}∞1 be a basis for H. Then there exist i.i.d. standard

normal random variables {ξk} such that

Y (l) =

∞∑
1

ξkΦk(l)

where Φk(l) = 〈h(l), ek〉H and the series converges in L2(Ω) and a.s.

proof. For each l

h(l)
H
=
∞∑
1

Φk(l)ek.

We have

Y (l)
L2

=

∫ ∞∑
1

Φk(l)ek dW
L2

=

∞∑
1

Φk(l)ξk
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where {ξk} =

{∫
ekdW

}
are i.i.d. standard normal as

∫
dW is unitary from H to L2(Ω).

As {Φk(l)} ∈ l2(N) the series converges a.s. by the martingale convergence theorem.

2.4 Stochastic Integration

Combined with Theorem 2.3.1 above, [36] furnishes a theory of stochastic integration for

a large class of Gaussian fields. In particular, by Corollary 2.3.2, if (X, dν) is a (positive)

radon measure space and Bx a centered gaussian random field indexed by X with sample

paths almost surely belonging to L2(X, dν) then using [36] we can define a stochastic

integral with respect to Bx as follows:

Denote by µ the distribution of {Bx} in H = L2(X, dν) and as above the RKHS of Bx

by Hµ ⊂ H. Let

Bx =

∫
h(x, ·) dW

and L∗(f) =

∫
h(x, y)f(y)dν(y). Then L∗ : H → Hµ is an isometry and the map

v 7→ RB(L∗(v)) ≡ W (v) : H → HB (HB is the closed linear span of {Bx} as defined in

Section 2.2.2) defines an isonormal process on H. Denote this particular process by W in

what follows.

First note that as Hµ = L∗(H) and L is unitary, it follows immediately that D1,2
Hµ

=

L∗(D1,2
H ) where we use the notation in [48, 36] and the subscript indicates the underlying

Hilbert space.

The following proof from [36] carries over directly: For a smooth variable F (h) =

f(B(L∗(h1), ..., B(L∗(hn)) we have

E〈DB(F ), u〉Hµ =E〈
n∑
1

f ′(B(L∗(h1), ..., B(L∗(hn))L∗(hk), u〉Hµ

= E〈
∑

f ′(B(L∗(h1), ..., B(L∗(hn))hk, L(u)〉H

= E〈
∑

f ′(W (h1), ...,W (hn))hk, L(u)〉H

= E〈DW (F ), L(u)〉H

which establishes

dom(δB) = L∗(dom(δW ))
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and ∫
L∗(u) dB =

∫
u dW ∀u ∈ dom(δW )

The series approximation in [36] also extends directly to this setting.

Theorem 2.4.1. If {Φk} is a basis of Hµ then there exists i.i.d. standard normal {ξk}
such that:

1. If f ∈ H then ∫
L∗(f) dB =

∞∑
1

〈L∗(f),Φk〉Hµξk a.s.

2. If u ∈ D1,2
Hµ

then

∫
u dB =

∞∑
1

(〈u,Φk〉Hµ − 〈DB
Φk
u,Φk〉Hµ) a.s.

proof. The proof follows that in [36].

Remark 2.4.1. For our purposes the method of approximation via series expansions above

seems most appropriate. However in [3] a Riemann sum approximation is given under cer-

tain regularity hypotheses on the integral kernel of the process, and this could be extended

in various situations as well.

Remark 2.4.2. The availability of the kernel above suggests the method in [3] whereby

conditions are imposed on the kernel in order to prove an Ito Formula as promising for

extension to more general settings.
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Chapter 3: Fractional Brownian fields over Manifolds

The fractional Brownian motions and their stationary counterparts are the basic examples

of Gaussian random fields over R and it is natural to ask what are the corresponding

examples when R is replaced by a manifold. The first to do so was Paul Lévy (see [44]),

who extended the standard Brownian motion on R to the standard Brownian field over

Rd, now called Lévy’s Brownian motion. Lévy then extended this field to the sphere Sd.
Since then there have been a number of studies aimed at extending both the Brownian

motion and the fractional Brownian motion to other manifolds. This is a natural step in

the theory of Gaussian fields in general as one would like to understand how the structure

of the index set determines the kinds of fields that can be defined over it. The geometric

and topological structure of Riemannian manifolds make them a convenient and interesting

setting for such a study. When one extends the fractional Brownian motions from R to

Rd the resulting fields are called Euclidean fractional Brownian fields (some authors prefer

Lévy fractional Brownian motions) and our purpose in this article is to construct fields

over Riemannian manifolds that generalize the Euclidean fractional Brownian fields.

Much of the interest in the fractional Brownian fields (fBf ’s) over Rd stems from their

distributional invariance and scaling properties. In particular, if α ∈ (0, 1) denotes the

Hurst index and the corresponding field is denoted by fBfα, the increments of the fBfα

are invariant under rotation and translation and the distribution of the fBfα scales by a

power cα when Rd is dilated by c > 0. Any extension of the fBf ’s should possess these

properties and also reflect the geometry of the index set in question.

As mentioned above the first attempt to extend Lévy’s Brownian motion, fBf
1
2 , from

Rd to a manifold was by Lévy himself in [44]. There he constructed a field over Sd with

covariance given by

d(x, o) + d(y, o)− d(x, y),

d(x, y) being the geodesic distance between x and y and o being a fixed origin point on

the sphere. Further progress in this direction was made in the work of Molchan (see e.g.

[47]) and Gangolli (see [30]) where the authors dealt with extensions of Lévy’s Brownian

motion to other manifolds including the sphere.

Accepted for publication in Transactions of the American Mathematical Society, 2013.
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Most recently Istas in [37] studied fields over certain Riemannian manifolds with co-

variance given by
1

2

(
d(x, o)2α + d(y, o)2α − d(x, y)2α

)
(3.1)

where d(x, y) is the metric of the manifold and o is a chosen point. In particular Istas

showed there that (1.1) defines a Gaussian field over compact rank one symmetric spaces

and hyperbolic space Hd if and only if α ∈ (0, 1/2].

A common feature of the above approaches is that they begin by looking for covariances

of the form f(x, o) + f(y, o)− f(x, y) for some symmetric function f ; the idea being that,

over Rd, o = 0 and f(x, y) = ‖x − y‖Rd . The issue then is to prove that the function so

defined does, in fact, define a covariance, i.e., one must establish positive definiteness. A

necessary and sufficient condition for positive definiteness is that f be of negative type, for

example one can take the above approach on metric spaces (X, d) with metric of negative

type (e.g. [38, 34]). In general if d(x, y) is the metric of a Riemannian manifold, establishing

that d(x, y)2α is of negative type for some α ∈ (0, 1) is non-trivial and indeed, as in [37], it

has been shown d(x, y)2α can fail to be of negative type. Moreover, in all the above work

this approach necessitates symmetry assumptions on the underlying manifold.

In the present article we take an essentially different approach inspired by the work

of Benassi, Jaffard, and Roux (see [8] and more recently [9]). In particular we extend a

characterization of the fBfα in terms of the Laplacian on Rd to the Riemannian setting

via the Laplace-Beltrami operator and the associated heat kernel. Using this approach

we are able to extend the fBfα to a variety of both compact and non-compact manifolds

without any assumptions regarding symmetry of the manifolds and for the full range of

α ∈ (0, 1) (see Theorems 3.2.1-3.2.4 below).

Broadly speaking, in order to build a Gaussian random field over a manifold (or any

index set) there are two things we must do: Determine a covariance function and prove

that this covariance determines a probability measure on a suitable space of functions, e.g.,

some space of continuous functions. If we build our covariance correctly the resulting field

will have the properties we would like, and we will be able to use some theorems from

probability to show that we get a good probabilistic model, that is, a well defined random

element of an appropriate function space.

This article is structured as follows: in Section 3.1 we cover some preliminaries regard-

ing Gaussian random fields and analysis on manifolds, in particular the heat kernel of a

Riemannian manifold. In Section 3.2.1 we describe the motivation behind our approach
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and define our candidate covariance functions before we study conditions which ensure

these covariances exist for a given manifold in section 3.2.2. Section 3.2.3 deals with prob-

ability measures determined by our fields on a space of continuous functions and in 3.2.4 we

establish the appropriate distributional invariance properties. In Section 3.3 we construct

stationary counterparts to the fields of Section 3.2 and establish the corresponding distri-

butional and sample path properties. Section 3.4 contains some open questions concerning

geometry and probability encountered in the course of the article and in section 3.5 we

collect some necessary results concerning sample path regularity of Gaussian fields over

manifolds.

3.1 Preliminaries

3.1.1 Gaussian Random Fields

Given a complete probability space (Ω,F , P ) and some index set I we call a collection of

random variables on Ω, {Xi(ω)}i∈I , a Gaussian random field (GRF) over I if for any finite

subset {ik}n1 ⊂ I the random vector (Xik)n1 has a joint normal distribution. Then for each

ω ∈ Ω, Xi(ω) defines a real valued function on I called a sample path of the field {Xi}.
We let E denote the expectation operator,

E[Xi] ≡
∫

Ω
Xi(ω) dP (ω) i ∈ I

and we call

E[(Xs − E[Xs])(Xt − E[Xt])] = E[XsXt]− E[Xs]E[Xt] s, t ∈ I

the covariance of {Xi}. The covariance of a GRF over I defines a symmetric positive

definite function on I × I.

We say two GRF’s are equal in finite dimensional distribution or simply in distribution,

denoted
d
=, if their covariances are equal. We also say two GRF’s defined on the same

probability space are versions of each other if P (Xi = Yi) = 1 for all i ∈ I. The salient

analytical feature of GRF’s is that for any set I the collection of all GRF’s over I is in one

to one correspondence up to equality in distribution with the set of all symmetric, positive

definite functions on I×I. In other words a GRF is uniquely determined in distribution by

its covariance and every symmetric positive definite function K on I × I is the covariance
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of a GRF over I, that is, there exists some complete probability space (Ω,F , P ) and a

GRF {Xi(ω)}I where for each i ∈ I Xi is a random variable on Ω.

We call a GRF centered if E[Xi] = 0 ∀i ∈ I and in this case its covariance is given by

E[XtXs], s, t ∈ I. Throughout this article we will only consider centered GRF’s.

3.1.1.1 The Euclidean Fractional Brownian Fields

The standard Brownian motion Bt over [0,∞) is the centered GRF with covariance

E[BsBt] =
|s|+ |t| − |t− s|

2
.

From this one generalizes to obtain the fractional Brownian motion fBmα for α ∈ (0, 1):

E[fBmα
s fBm

α
t ] =

|s|2α + |t|2α − |t− s|2α

2
.

We then have Bt = fBm
1
2 .

One then further generalizes to Rd, obtaining the fBfα as the centered GRF over Rd

with covariance

E[fBfαx fBf
α
y ] = ‖x‖2αRd + ‖y‖2αRd − ‖x− y‖

2α
Rd

(note that some authors include the constant factor 1/2). We remark here that throughout

the article we will make a slight abuse of notation and use Rd to refer both to the usual

vector space and to Euclidean space as a manifold, though we doubt this will cause much

confusion as the context will make clear what is meant.

One easily sees that the fBfα is self similar of order α, i.e., if fBfαc denotes the field

rescaled field {fBfαcx}x∈Rd then

fBfαc
d
= cαfBfα ∀ c > 0,

and that it has stationary (or homogeneous) increments:

E[|fBfαx − fBfαy |2] = ‖x− y‖2α = ‖ι(x)− ι(y)‖2α = E[|fBfαι(x) − fBf
α
ι(y)|

2]

for any isometry ι on Rd. Moreover it is known that there exists a version Xx of the fBfα

such that with probability one the sample paths Xx(ω) are Hölder continuous of any order
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γ < α and fail to be Hölder continuous of any order γ > α at every point in Rd (see [1]).

3.1.1.2 White Noise

The treatment here follows [39]. Given a probability space (Ω,F , P ) we call a complete

subspace G of L2(Ω,F , P ) a Gaussian Hilbert space if every element of G is a centered

Gaussian random variable. Note that the inner product H inherits from L2(Ω,F , P ) is

then

〈X,Y 〉G = E[XY ].

Given any (real) Hilbert space H there exists a Gaussian Hilbert space G and a unitary

map W : H → G called the isonormal process or white noise process on H (one can

also consider complex white noises). If, as is the case below, H = L2(M,S, dµ) for some

measure space (M,S, dµ) then if B = {A ∈ S : µ(A) <∞} the map from B → G given by

W (A) ≡W (χA)

determines a Gaussian random measure on M . The properties of such measures will not

be important for us here, but we mention them to motivate the notation for W : H → G,

given by

W (f) =

∫
M
f(z) dW (z),

which we refer to as a white noise integral (this is also commonly called a stochastic

integral). Starting from a random measure one can construct the integral

∫
M
dW in close

analogy with classical measure theory. All that will be important for us is the property

〈f, g〉H = E
[∫

M
f dW ·

∫
M
g dW

]
.

Now suppose we have a function h(x, z) : M → L2(M,dµ), x 7→ h(x, z) ∈ L2(M,dµ(z)).

We can then define a centered GRF Yx over X by

Yx
d
=

∫
M
h(x, z) dW (z).
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The covariance of Yx is then given by

E[YxYy] = 〈h(x, z), h(y, z)〉L2 =

∫
M
h(x, z)h(y, z) dµ(z).

Note that the last expression on the right is in fact positive definite and symmetric. In

this case we call h the integral kernel of Y .

3.1.2 Analysis on Manifolds

In what follows we assume throughout that all Riemannian manifolds are complete and

of dimension d, with 2 ≤ d < ∞. For a manifold M let ∆ denote the Laplace-Beltrami

operator, or simply the Laplacian for short, on M . In any local coordinate system the

action of ∆ on C∞(M) is given by

∆ =
1
√
g

∑
∂j
(
gij
√
g ∂i
)

where (gij) is the matrix of the Riemannian metric in these coordinates, (gij) = (gij)
−1,

and
√
g = (det(gij))

1
2 . Because M is complete, ∆ is essentially self adjoint (see e.g. [54])

and so we may consider from now on the unique minimal self-adjoint extension of ∆, which

we shall write as ∆ also. Moreover the spectrum of ∆ is contained in (−∞, 0] (see e.g.

[54]). By the spectral theorem we can define the heat semigroup

et∆ =

∫ ∞
0

e−tλ dEλ

where dEλ is the spectral measure of −∆. The action of et∆ on L2(M,dVg), where dVg

denotes the measure derived from the metric g, is given by a kernel Ht(x, y):

et∆(f)(x) =

∫
M
Ht(x, y)f(y) dVg(y).

Ht(x, y) is called the heat kernel of M . It is known that Ht is strictly positive, symmetric,

and contained in C∞(M ×M × (0,∞)). Moreover we have the semigroup property∫
M
Ht(x, z)Hs(z, y) dVg(z) = Ht+s(x, y).
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As a consequence Ht is positive definite for each t > 0. As its name suggests, Ht(x, y) is a

fundamental solution to the heat equation on M × (0,∞):
(
∂

∂t
−∆x

)
Ht(x, y) = 0

lim
t↓0

∫
M
Ht(x, y)f(x) dx = f(y) ∀ f ∈ C0(M).

There are various constructions of the heat kernel, that given in [18] being most suited

to our purposes. In particular if we let

Et(x, y) ≡ e−
d(x,y)2

4t√
(4πt)d

then there is an open neighborhood of the diagonal U ⊂M ×M such that on U

Ht(x, y)

Et(x, y)
= Φ(t, x, y) (3.2)

where Φ(t, x, y) is symmetric in x and y, Φ ∈ Ck([0, T ]×U) ∀ T > 0 where k can be chosen

arbitrarily large (see [15] and [10]), and

lim
t→0, x→y

Φ(t, x, y) = 1.

In other words, for x and y close Ht ∼ Et as t → 0. Thus on any manifold heat diffusion

behaves locally for small times as in Euclidean space.

If M is compact then we also have the following eigenfunction expansion of Ht:

Ht(x, y) =
∞∑
k=0

e−λktφk(x)φk(y) (3.3)

where 0 = λ0 < λ1 ≤ ... ≤ λk ↑ ∞ and {φk} are the spectrum and orthonormalized L2

eigenfunctions of −∆ respectively and where (3.3) converges absolutely and uniformly for

each t > 0 (see [15]).

Following [15] we define a regular domain to be an open, connected, relatively compact

subset D of a complete Riemannian manifold such that ∂D 6= ∅ is smooth. In what follows

when we refer to the Laplacian of a regular domain we mean the Dirichlet Laplacian with
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corresponding the heat kernel (see [15], Chapter 7). As in the compact case we have an

eigenfunction expansion (3.3), the only difference being that λ0 > 0. If (M, g) is a regular

domain in a manifold (N, g) then, as noted in [16], (3.2) holds in this setting as well.

Now suppose M is complete and non-compact, {Dk}∞1 is any increasing exhaustion

of M by regular domains, and Hk
t (x, y) denotes the Dirichlet heat kernel of Dk. Then if

we extend each Hk to be zero outside D × D, {Hk
t (x, y)}∞1 forms a pointwise increasing

sequence on M ×M × (0,∞). It was shown in [24] that

lim
k→∞

Hk
t (x, y) = Ht(x, y)

where Ht(x, y) is the heat kernel defined above.

3.2 The Riesz Fields

3.2.1 Motivation and Definition

As mentioned in the introduction, our first task is to write down a candidate covariance for

our fields. We could write down all the properties we want our field to have and see if this

determines a covariance, however even on Rd this is non-trivial and as we shall see below,

on a general manifold the properties of the Euclidean fractional Brownian fields described

above do not uniquely determine a GRF. The other strategy is to find a characterization

of the Euclidean fields that suggests a generalization to manifolds and then verify that this

ansatz does indeed yield a probability measure on a nice function space with the properties

we want. This is the strategy we will follow, and so our first task is to find a suitable

characterization of the Euclidean field fBfα.

In [8] the authors begin by defining a symbol class of pseudodifferential operators over

Rd. From such an operator A they define a Gaussian random field with covariance given

by the integral kernel of A−1. The authors are then able to derive all the important

properties of this field from properties of the symbol of the operator A. This approach to

constructing and studying GRF’s is a natural extension of the classical spectral theory of

Gaussian processes on R and demonstrates of the power of the spectral point of view.

The basic heuristic can be described as follows: Beginning with an unbounded operator

A on some L2 space, define and study the GRF determined by the integral kernel of A−1.

So in attempting to extend the fBfα to a Riemannian manifold, we should first seek an

operator A that determines the fBfα in the manner above.
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Our starting point is the well known (e.g. [8] or [59]) spectral representation of the

fBfα,

fBfαx
d
= Cd,α

∫
Rd

ei〈x,ξ〉 − 1

‖ξ‖
d
2

+α
dŴ (ξ), (3.4)

where Ŵ is a complex white noise on L2(Rd, dx), dx being Lebesgue measure, and Cd,α is a

constant. Examining (3.4) we see that, formally (for example, for f such that f̂ = ‖ξ‖
d
2

+αĝ

for some g ∈ C∞c ) and up to a constant,∫
Rd

ei〈x,ξ〉 − 1

‖ξ‖
d
2

+α
f̂(ξ) dξ = (−∆)−( d

4
+α

2
)(f)(x)− (−∆)−( d

4
+α

2
)(f)(0).

Thus if we denote this last operator above by A then the fBfα is the unique (in distribu-

tion) GRF with covariance given by the Schwarz kernel of the operator A∗A,

E[fBfαx fBf
α
y ] = C

∫
Rd

ei〈x−y,ξ〉 − ei〈x,ξ〉 − ei〈y,ξ〉 + 1

‖ξ‖d+2α
dξ.

We now have a characterization that extends immediately to manifolds: Simply re-

place the Laplacian on Rd by the Laplace-Beltrami operator of the manifold in question

and determine the kernel of the operator A∗A. Following [54] we arrive at the following

definitions:

Definition 3.2.1. For a complete Riemannian manifold M with heat kernel Ht(x, y) define

the Riesz field Rα to be the GRF with covariance given by

E[RαxR
α
y ] ≡ 1

Γ
(
d
2 + α

) ∫ ∞
0

t
d
2

+α−1 (Ht(x, y)−Ht(x, o)−Ht(y, o) +Ht(o, o)) dt (3.5)

where o ∈ M is a fixed “origin” and the stationary (or homogeneous) Riesz field hRα is

the GRF with covariance

E[hRαxhR
α
y ] ≡ 1

Γ
(
d
2 + α

) ∫ ∞
0

t
d
2

+α−1Ht(x, y) dt. (3.6)
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Because Ht(x, y) is positive definite for each t > 0 and

Ht(x, y)−Ht(x, o)−Ht(y, o) +Ht(o, o)

=

∫
M

(
Ht/2(x, z)−Ht/2(o, z)

) (
Ht/2(y, z)−Ht/2(o, z)

)
dVg(z),

each of these expressions is symmetric and positive definite, and thus when the integrals

exist each determines a GRF over M . Of course the convergence of the above integrals is

by no means obvious and our first task in Section 3.2.2 will be to determine manifolds for

which they do converge.

Remark 3.2.1. We will see shortly that if either (3.5) or (3.6) exist for some α0 ∈ (0, 1)

then it also exists for any α ∈ (0, α0). We say Rα (resp. hRα) exists for all α ∈ (0, b) if

(3.5) (resp. (3.6)) is finite for all α ∈ (0, b), b ≤ 1, and all x, y ∈M .

It turns out (Proposition 3.2.5) that the Riesz field (3.5) extends the fBfα and that

they agree up to a constant in distribution over Rd. However we will also see that the

stationary Riesz field has some claim to be an extension of the fBfα, for example over

negatively curved manifolds, even though it does not exist on Rd.
Now let W denote the white noise over L2(M,dVg). We will show that when they exist

the Riesz fields admit the following integral representations:

Rαx
d
=

1

Γ
(
d
4 + α

2

) ∫
M

∫ ∞
0

t
d
4

+α
2
−1 (Ht(x, z)−Ht(o, z)) dt dW (z) (3.7)

and

hRαx
d
=

1

Γ
(
d
4 + α

2

) ∫
M

∫ ∞
0

t
d
4

+α
2
−1Ht(x, z) dt dW (z). (3.8)

The issue is whether or not the functions appearing in the above are in fact square

integrable for each x ∈M . Let us consider this in detail, first for hRα:

Letting

hhR(x, z) =
1

Γ
(
d
4 + α

2

) ∫ ∞
0

t
d
4

+α
2
−1Ht(x, z) dt

we have
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〈hhR(x, z), hhR(y, z)〉L2

=

∫
M

(
1

Γ
(
d
4 + α

2

) ∫ ∞
0

t
d
4

+α
2
−1Ht(x, z) dt

)

×

(
1

Γ
(
d
4 + α

2

) ∫ ∞
0

s
d
4

+α
2
−1Ht(y, z) ds

)
dVg(z)

=

∫
M

∫ ∞
0

∫ ∞
0

1

Γ
(
d
4 + α

2

)2 t d4+α
2
−1s

d
4

+α
2
−1Ht(x, z)Hs(y, z) dt ds dVg(z)

=

∫ ∞
0

∫ ∞
0

1

Γ
(
d
4 + α

2

)2 t d4+α
2
−1s

d
4

+α
2
−1

∫
M
Ht(x, z)Hs(y, z) dVg(z) dt ds

=

∫ ∞
0

∫ ∞
0

1

Γ
(
d
4 + α

2

)2 t d4+α
2
−1s

d
4

+α
2
−1Ht+s(x, y) dt ds

=

∫ ∞
0

∫ ∞
s

1

Γ
(
d
4 + α

2

)2 (t− s)
d
4

+α
2
−1s

d
4

+α
2
−1Ht(x, y) dt ds

=

∫ ∞
0

∫ t

0

1

Γ
(
d
4 + α

2

)2 (t− s)
d
4

+α
2
−1s

d
4

+α
2
−1 dsHt(x, y) dt

by the positivity of Ht(x, y) and the semigroup property.

Next note that if g(s) =
1

Γ
(
d
4 + α

2

)s d4+α
2
−1 then

∫ t

0

1

Γ
(
d
4 + α

2

)2 (t− s)
d
4

+α
2
−1s

d
4

+α
2
−1 ds = g ∗ g(t)

where ∗ denotes the finite convolution f ∗ g(t) ≡
∫ t

0
f(t − s)g(s) ds. If L denotes the

Laplace transform we have the well known property L (f ∗ g) = L(f)L(g). Applying this

to g ∗ g above we have

L(g ∗ g)(s) = (L(g))2 (s) =
(
s−( d

4
+α

2
)
)2

= s−( d
2

+α).
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Then inverting L we obtain

1

Γ(d2 + α)
t
d
2

+α−1 = L−1
(
s−( d

2
+α)
)

=

∫ t

0

1

Γ
(
d
4 + α

2

)2 (t− s)
d
4

+α
2
−1s

d
4

+α
2
−1 ds.

Substituting this into the integral defining 〈hhR(x, z), hhR(y, z)〉L2 above yields

1

Γ(d2 + α)

∫ ∞
0

t
d
2

+α−1Ht(x, y) dt.

Thus whenever hRα exists it is given by (3.8).

Turning now to (3.5), let hR(x, z) =
1

Γ
(
d
4 + α

2

) ∫ ∞
0

t
d
4

+α
2
−1 (Ht(x, z)−Ht(o, z)) dt.

Then

‖hR(x, z)‖2L2

≤
∫
M

∫ ∞
0

∫ ∞
0

s
d
4

+α
2
−1t

d
4

+α
2
−1|Ht(x, z)−Ht(o, z)||Hs(x, z)−Hs(o, z)| ds dt dVg(z)

=

∫ ∞
0

∫ ∞
0

s
d
4

+α
2
−1t

d
4

+α
2
−1

∫
M
|Ht(x, z)−Ht(o, z)||Hs(x, z)−Hs(o, z)| dVg(z) ds dt

≤
∫ ∞

0

∫ ∞
0

s
d
4

+α
2
−1t

d
4

+α
2
−1‖Ht(x, ·)−Ht(o, ·)‖2‖Hs(x, ·)−Hs(o, ·)‖2 ds dt

=

(∫ ∞
0

t
d
4

+α
2
−1‖Ht(x, ·)−Ht(o, ·)‖2 dt

)2

=

(∫ ∞
0

t
d
4

+α
2
−1
√
Ht(x, x)− 2Ht(x, o) +Ht(o, o) dt

)2

.

Recall that if M is any Riemannian manifold then from (3.2) for any x, y ∈M we have

that Ht(x, y) = O(t−
d
2 ) as t→ 0. So then∫ 1

0
t
d
4

+α
2
−1
√
Ht(x, x)− 2Ht(x, o) +Ht(o, o) dt <∞

and ∫ 1

0
t
d
2

+α−1 (Ht(x, x)− 2Ht(x, o) +Ht(o, o)) dt <∞

for all α ∈ (0, 1).
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Next notice that if α+ ε < b∫ ∞
1

t
d
4

+α
2
−1
√
Ht(x, x)− 2Ht(x, o) +Ht(o, o) dt

=

∫ ∞
1

t
d
4

+α
2

+ε−(1+ε)
√
Ht(x, x)− 2Ht(x, o) +Ht(o, o) dt

≤
(∫ ∞

1
t−(1+ε) dt

) 1
2
(∫ ∞

1
t
d
2

+α+ε−1 (Ht(x, x)− 2Ht(x, o) +Ht(o, o)) dt

) 1
2

by Cauchy-Schwarz. Thus if Rα exists for all α ∈ (0, b) we may interchange the order of

integration as with hRα to obtain

〈hR(x, z), hR(y, z)〉L2

=
1

Γ
(
d
2 + α

) ∫ ∞
0

t
d
2

+α−1 (Ht(x, y)−Ht(x, o)−Ht(y, o) +Ht(o, o)) dt

= E[RαxR
α
y ]

for all such α.

In either case of (3.5) or (3.6) we see that the integrands are continuous on (0,∞) so

by (3.2) convergence depends only on the behavior of the integrand at infinity. Thus the

existence of both Rαx and hRαx will depend on the large-time asymptotics of Ht(x, y). These

depend on the manifold in question and we will treat distinct cases below.

3.2.2 Existence

3.2.2.1 The Compact Case

We have the following:

Theorem 3.2.1. If M is a compact Riemannian manifold, then the Riesz field of order α

exists over M for any α ∈ (0, 1) and the stationary Riesz field does not exist over M for

any α ∈ (0, 1).

proof. Recall (3.3):

Ht(x, y) =

∞∑
k=0

e−λktφk(x)φk(y).
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We have

Ht(x, x)− 2Ht(o, x) +Ht(o, o) =
∞∑
k=1

e−λkt|φk(x)− φk(o)|2 = O(e−λ1t) ∀x ∈M

and λ1 > 0. Then (3.5) is clearly finite for any x ∈M and all α ∈ (0, 1).

To see that hRαx does not exist on M notice that lim
t→0

Ht(x, y) = Vol(M)−1 6= 0

∀ x, y ∈M .

Theorem 3.2.2. If M is a regular domain then hRα, and thus by linearity Rα, exists for

any α ∈ (0, 1).

proof. As above let

Ht(x, y) =
∞∑
k=0

e−λktφk(x)φk(y).

Then λ0 > 0 and Ht(x, y) = O(e−λ0t) for each x, y ∈M .

We note here that in either case above we may integrate term by term using the

eigenfunction expansions of Ht to obtain a series expression for the covariance of Rα and

hRα as follows: For Rα and M compact we have

E[RαxR
α
y ] =

1

Γ
(
d
2 + α

) ∫ ∞
0

t
d
2

+α−1Ht(x, y)−Ht(x, o)−Ht(y, o) +Ht(o, o) dt

=
1

Γ
(
d
2 + α

) ∫ ∞
0

t
d
2

+α−1
∞∑
k=0

e−λkt(φk(x)− φk(o))(φk(y)− φk(o)) dt

=
1

Γ
(
d
2 + α

) ∫ ∞
0

t
d
2

+α−1
∞∑
k=1

e−λkt(φk(x)− φk(o))(φk(y)− φk(o)) dt

≤ 1

Γ
(
d
2 + α

) (∫ ∞
0

t
d
2

+α−1
∞∑
k=1

e−λkt|φk(x)− φk(o)|2 dt

) 1
2

×

(∫ ∞
0

t
d
2

+α−1
∞∑
k=1

e−λkt|φk(y)− φk(o)|2 dt

) 1
2

=
(
E[|Rαx |2]E[|Rαy |2]

) 1
2 ,
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which we know from above to be finite.

Then by dominated convergence we may integrate term by term to obtain

E[RαxR
α
y ] =

1

Γ
(
d
2 + α

) ∞∑
k=1

Γ
(
d
2 + α

)
λ
d
2

+α

k

(φk(x)− φk(o))(φk(y)− φk(o))

=

∞∑
k=1

(λk)
−( d2+α)(φk(x)− φk(o))(φk(y)− φk(o)).

In particular

Rαx
d
=
∞∑
k=1

(λk)
−( d4+α

2 )(φk(x)− φk(o))ξk

where {ξk} is an i.i.d. collection of standard normal random variables, the series converging

in L2(M) almost surely.

The same equality holds for M a regular domain if we number the spectrum as {λk}∞1 .

Similar arguments show that for M a regular domain

E[hRαxhR
α
y ] =

∞∑
k=1

(λk)
−( d2+α)φk(x)φk(y)

and

hRαx
d
=
∞∑
k=1

(λk)
−( d4+α

2 )φk(x)ξk.

Example 3.2.1. Let M = S2. Then in terms of the spherical harmonics {Ykm} we have

Ht(x, y) =
∞∑
k=0

e−k(k+1)t
k∑

m=−k
Ykm(x)Ykm(y).

Applying the harmonic addition formula we have

Ht(x, y) =
∞∑
k=0

e−k(k+1)t 2k + 1

4π
Pk(cos θxy)

where Pk is the k-th Legendre Polynomial and 〈x, y〉 = cos θxy. Fixing an origin point
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o ∈ S2 we then have

E[RαxR
α
y ] =

∞∑
k=1

(k(k + 1))−( d2+α) 2k + 1

4π
(Pk(cos θxy)− Pk(cos θxo)− Pk(cos θyo) + Pk(1)) .

Example 3.2.2. Let M = D = {x ∈ R2 : |x| < 1} and Jk the Bessel function of the first

kind of order k, k = 0, 1, 2... Then if λ1
k < λ2

k < ... are the positive zeroes of Jk, using polar

coordinates on D we have

E
[
hRα(r,θ)hR

α
(R,φ)

]
=

√
2

π

∑
k,l

(λlk)
−(d+2α)

|Jk+1(λlk)|
Jk(λ

l
kr)Jk(λ

l
kR) (cos(k(θ − φ)) + sin(k(θ + φ))) .

3.2.2.2 The Non-Compact Case

For the case of M non-compact, first let us show by example that we cannot establish

existence in general.

Example 3.2.3. Let M = S1 × R. Then we have

HM
t ((θ, x), (φ, y)) = HS

t (θ, φ)HR
t (x, y)

where HM is the heat kernel of M , HS is the heat kernel of S1, and HR is the usual heat

kernel on R (see [33], Theorem 9.11).

We then have that

HM
t ((θ, x), (θ, x))− 2HM

t ((θ, x), (φ, y) +HM
t ((φ, y), (φ, y)) ∼ 1

π

1− e
−|x−y|2

4t√
(4πt)

= O(t
3
2 ) as t→∞

for any (θ, x), (φ, y) ∈ M . So E[|Rαp |2] = ∞ ∀ p ∈ M and α ≥ 1/2 and thus Rα does not

exist over M for this range of α. Using S2 instead of S1 in the above we have that Rα fails

to exist for all α ∈ (0, 1).

Example 3.2.3 notwithstanding, for certain manifolds such that Vol(M) < ∞ we have

a situation similar to the compact case:

Theorem 3.2.3. Suppose M is non-compact with Ric(M) ≥ −κ2, κ ∈ R, and

Vol(M) < ∞. Let λ(M) = inf
Ω⊂M

{λ1 : σ(Ω) = {λk}∞k=0} where the infimum is taken over
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regular domains Ω ⊂M and σ(Ω) denotes the Dirichlet spectrum of Ω. Then if λ(M) > 0

Rα exists over M for any α ∈ (0, 1) and hRα does not.

proof. That hRα does not exist follows from the fact that on such M

lim
t→∞

Ht(x, y) =
1

Vol(M)
6= 0 ∀x, y ∈M.

For Rα, under the hypothesis of the theorem it was shown in [43] that

Ht(x, y)− 1

Vol(M)
= O

(
e−

λ(M)
2

t

)
and so (3.5) converges ∀ α ∈ (0, 1).

We now turn to our main existence theorem for the Riesz fields over non-compact

manifolds followed by some examples. Below we use the following notation:

Dp(r) ≡ {x ∈M : d(x, p) < r}

and

Vp(r) ≡ Vol (Dp(r)) =

∫
Dp(r)

dVg.

We write Ht = Õ(t−
ν
2 ) if there exist two distinct points xk ∈ M , k = 1, 2, and constants

Ck > 0 such that

Ht(xk, xk) ≤ Ckt−
ν
2 ∀ t ≥ 1.

In that case using Theorem 1.1 of [32] we know that for any δ > 0 there exists a constant

Cδ > 0 such that for all t ≥ 1 and all x, y ∈M

Ht(x, y) ≤ Cδt−
ν
2 e
− d(x,y)

2

(4+δ)t .

Theorem 3.2.4. Let M be non-compact.

(1) Suppose Ric(M) ≥ 0. Then hRα does not exist for any α ∈ (0, 1). If

Ht = Õ
(
t−( d2−β)

)
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and

lim
r→∞

Vx(r)

rd−2β
<∞ ∀x ∈M

for some β ∈ [0, 1) then Rα exists over M for any α ∈ (0, 1− β).

(2) Suppose that

Ht = Õ
(
t−( d2+β)

)
for some β > 0. Then hRα (and thus Rα also) exists for any α ∈ (0,min{β, 1}).

proof. (1): To begin we note that our hypothesis Ht = Õ(t−(d/2−β)) implies the following

gradient bound for Ht (see [20]): For all x, y ∈M and t ≥ 1

|∇xHt(x, y)| ≤ C ′δt−( d2−β+ 1
2)e
− d(x,y)

2

(4+δ)t (3.9)

for some constant C ′δ > 0.

Recall that by Cauchy-Schwarz in order for for (3.5) to converge it is sufficient to show

that ∫ ∞
1

t
d
2

+α−1 (Ht(x, x)− 2Ht(x, o) +Ht(o, o)) dt <∞

for the specified range of α. Moreover, by first restricting to a compact subset K ⊂M we

may assume positive injectivity radius, i.e., ∃ r > 0 such that d(x, y) < r implies that x, y

belong to some normal neighborhood. By repeated use of the triangle inequality we see

that existence for all such x, y implies existence on all of K, and since K was arbitrary, on

all of M .

To that end let D = Dp(r) be a normal neighborhood containing x and o. We first

apply the mean value theorem:∫ ∞
1

t
d
2

+α−1 (Ht(x, x)− 2Ht(x, o) +Ht(o, o)) dt

=

∫ ∞
1

t
d
2

+α−1

∫
M
|Ht(x, z)−Ht(o, z)|2 dVg(z) dt

≤ d(x, o)2

∫ ∞
1

t
d
2

+α−1

∫
M
|∇xHt(ξz, z)|2 dVg(z) dt

for some ξz lying on some curve (parametrized to have unit velocity) contained in Dp and
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joining x and o. We now apply (3.9),∫ ∞
1

t
d
2

+α−1

∫
M
|∇xHt(ξz, z)|2 dVg(z) dt

≤C
∫ ∞

1
t−

d
2

+α+2β−2

∫
M
e
− 2d(ξz,z)

2

(4+δ)t dVg(z) dt.

We have ∫ ∞
1

t−
d
2

+α+2β−2

∫
M
e
− 2d(ξz,z)

2

(4+δ)t dVg(z) dt

=

∫ ∞
1

t−
d
2

+α+2β−2

∫
D
e
− 2d(ξz,z)

2

(4+δ)t dVg(z) dt

+

∫ ∞
1

t−
d
2

+α+2β−2

∫
M\D

e
− 2d(ξz,z)

2

(4+δ)t dVg(z) dt

≤Vol(D)

∫ ∞
1

t−
d
2

+α+2β−2 dt

+

∫
M\D

∫ ∞
0

t−
d
2

+α+2β−2e
− 2d(ξz,z)

2

(4+δ)t dt dVg(z).

By hypothesis

∫ ∞
1

t−
d
2

+α+2β−2 dt <∞ so we only need to show

∫
M\D

∫ ∞
0

t−
d
2

+α+2β−2e
− 2d(ξz,z)

2

(4+δ)t dt dVg(z) <∞.

We have∫
M\D

∫ ∞
0

t−
d
2

+α+2β−2e
− 2d(ξz,z)

2

(4+δ)t dt dVg(z)

=

(
4 + δ

2

) d
2
−α−2β+1

Γ

(
d

2
− α− 2β + 1

)∫
M\D

d(ξz, z)
−d+2α+4β−2 dVg(z).

Recall D = Dp(r) and let

Ak = Dp(r + k)\Dp(r + k − 1) k = 1, 2, 3...
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By monotone convergence∫
M\D

d(ξz, z)
−d+2α+4β−2 dVg(z) =

∞∑
k=1

∫
Ak

d(ξz, z)
−d+2α+4β−2 dVg(z)

≤
∞∑
k=1

Vol(Ak)

(r + k − 1)d−2α−4β+2

=
∞∑
k=1

Vp(r + k)− Vp(r + k − 1)

(r + k − 1)d−2α−4β+2
.

Because Ric(M) ≥ 0 we have (see [21] or [17])

Vp(cr) ≤ cdVp(r) ∀ r > 0, c ≥ 1.

Thus

∞∑
k=1

Vp(r + k)− Vp(r + k − 1)

(r + k − 1)d−2α−4β+2
≤
∞∑
k=1

Vp(r + k − 1)
(

(r+k)d−(r+k−1)d

(r+k−1)d

)
(r + k − 1)d−2α−4β+2

≤ C
∞∑
k=1

(r + k − 1)d−2β
(

(r+k)d−(r+k−1)d

(r+k−1)d

)
(r + k − 1)d−2α−4β+2

= C
∞∑
k=1

(r + k)d − (r + k − 1)d

(r + k − 1)d−2α−2β+2

The convergence of this last sum is equivalent to that of

∞∑
k=1

kd−1

kd−2α−2β+2
=

∞∑
k=1

k2α+2β−3.

By hypothesis α < 1− β, which implies

∞∑
k=1

k2α+2β−3 <
∞∑
k=1

k−(1+ε) <∞

for some ε > 0.
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To see that hRα does not exist on M for any α, we note that (see e.g. [21])

Ric(M) ≥ 0⇒ Ht(x, y) ≥ (4πt)−
d
2 e−

d(x,y)2

4t

for all x, y ∈M and t > 0. Thus∫ ∞
0

t
d
2

+α−1Ht(x, y) dt =∞

for all x, y ∈M and any α ∈ (0, 1).

To prove (2), simply write∫ ∞
1

t
d
2

+α−1Ht(x, y) dt ≤ C
∫ ∞

1
tα−β−1 dt <∞.

We are now in a position to show that, over Rd, Rα agrees up to a constant with

the fBfα in distribution. We could do this abstractly using arguments along the lines

of Section 3.2.1, however we can also make a simple explicit calculation. Note that Rd

satisfies the first hypothesis of Theorem 3.2.4 with β = 0. Thus Rα exists there and if we

choose o = 0 has covariance

E[RαxR
α
y ] =

1

Γ(d2 + α)

∫ ∞
0

t
d
2

+α−1(Ht(0, 0)−Ht(x, 0)−Ht(y, 0) +Ht(x, y)) dt.

Proposition 3.2.5. If M = Rd then Ht(x, y) =
1√

(4πt)d
e
−‖x−y‖2

4t and for all x, y ∈ Rd

and for α ∈ (0, 1)

E[RαxR
α
y ] = Cα

(
‖x‖2α + ‖y‖2α − ‖x− y‖2α

)
where Cα is the positive constant given by

Cα =
−Γ(−α)

4
d
2

+α(π)
d
2 Γ(d2 + α)

.

proof. First note that if either x = 0 or y = 0 the result is trivial; thus we assume otherwise.
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The integral defining E[RαxR
α
y ] reduces to

1√
(4π)d

∫ ∞
0

tα−1

(
1− e

−‖x‖2
4t − e

−‖y‖2
4t + e

−‖x−y‖2
4t

)
dt,

which we recognize as a Mellin transform. Let Fa(t) = χ[a,∞)(t)−e
−‖x‖2

4t −e
−‖y‖2

4t +e
−‖x−y‖2

4t

with a > 0. Then Fa(t) = O(t−1) as t→∞ and Fa(t) = o(tN ) as t→ 0 ∀ N > 0. Thus∫ ∞
0

ts−1Fa(t) dt

converges absolutely for all s ∈ C with <(s) < 1 and defines an analytic function there.

On the other hand for −1 < <(s) < 0 we have by direct calculation that∫ ∞
0

ts−1Fa(t) dt =
as

s
+
−‖x‖2s − ‖y‖2s + ‖x− y‖2s

4s
Γ(−s).

By analytic continuation this last equality holds for 0 < <(s) < 1 as well. For such s

we have by dominated convergence∫ 1

0
ts−1F0(t) dt = lim

a→0

∫ 1

0
ts−1Fa(t) dt.

Now for a < 1 ∫ ∞
1

ts−1Fa(t) dt =

∫ ∞
1

ts−1F0(t) dt

and so, noting F0(t) ≥ 0, we have using dominated convergence∫ ∞
0

ts−1F0(t) dt =

∫ 1

0
ts−1F0(t) dt+

∫ ∞
1

ts−1F0(t) dt

=

(
lim
a→0+

∫ 1

0
ts−1Fa(t) dt

)
+

∫ ∞
1

ts−1F0(t) dt

= lim
a→0+

(∫ 1

0
ts−1Fa(t) dt+

∫ ∞
1

ts−1F0(t) dt

)
= lim

a→0+

∫ ∞
0

ts−1Fa(t) dt

=
−‖x‖2s − ‖y‖2s + ‖x− y‖2s

4s
Γ(−s)
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Example 3.2.4. Suppose M is non-compact with Ric(M) ≥ 0 and

lim
R→∞

Vp(R)

Rd
= θ ∈ (0, 1)

for some p ∈M (cf. the Bishop-Gromov comparison theorem). Then Rα exists over M for

any α ∈ (0, 1) and hRα does not. Indeed, in [45] it is shown that Ht(x, y) = O(t−
d
2 ) for

every x, y ∈M . Theorem 3.2.4 applies once we note that for all p ∈M

Ric(M) ≥ 0⇒ Vp(R) ≤ ωdRd ∀R ≥ 0,

ωd being the volume of the unit ball in Rd.

Example 3.2.5. If M is simply connected with all sectional curvatures K ≤ k for some

k < 0 and Ric(M) ≥ −κ2 > −∞ then hRα exists over M for any α > 0. For example

this holds if M = Hd, d-dimensional hyperbolic space. This follows from [46] in which it is

shown that σ(−∆)) ⊂ [(d− 1)2|k|/4,∞), which in turn implies the following upper bound

on Ht (see [22]):

Ht(x, y) ≤ Ce
(d−1)2kt

4 ∀ t ≥ 1

for some C > 0 and all x, y ∈M . Theorem 3.2.4 then applies.

In particular for M = H2, letting ρ = d(x, y) we have the well known formula

Ht(x, y) =

√
2

(4πt)
3
2

e−
1
4
t

∫ ∞
ρ

se−
s2

4t

cosh(s)− cosh(ρ)
ds.

Then

E[hRαxhR
α
y ] =

√
2

(4π)
3
2 Γ (1 + α)

∫ ∞
0

∫ ∞
ρ

tα−
3
2

se−
1+s2

4t

cosh(s)− cosh(ρ)
ds dt.

Remark 3.2.2. On negatively curved manifolds, hRα can also be viewed as an extension of

the fBfα in the following way: In Section 3.2.1 we saw how the covariance of the fBfα is

the integral kernel of the operator A∗A where

A(f) = (−∆)−( d
4

+α
2

)(f)(x)− (−∆)−( d
4

+α
2

)(f)(0),
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which can be seen as a correction to (−∆)−( d
4

+α
2

) when this operator does not have an

integral kernel. However on manifolds with spectrum as in Example 3.2.5, (−∆)−( d
4

+α
2

)

does have an integral kernel and no correction is needed. So if we view the fBfα as the

GRF with covariance that is the integral kernel of the minimal correction to (−∆)−( d
4

+α
2

)

that yields an integral operator, then on such manifolds as above we obtain the hRα.

3.2.3 Hölder Regularity

Having done the analytical work to build our covariances and check when they exist,

we now turn to verifying that these covariances do in fact define random fields with the

desired properties. The first of those properties is in some ways the most fundamental:

Do the corresponding GRF’s define probability measures on nice function spaces? In order

to answer this we need some extensions of criteria for continuity of GRF’s indexed by

Euclidean space to the manifold case, that statements and proofs of which we postpone

until Section 3.5 below. What we shall see is that if M is compact or a compact subset

of a regular domain or non-compact manifold over which the Riesz fields exist, then with

probability one they have continuous sample paths and thus they determine probability

measures on C(M) in the usual way (cf. [39], Example 8.27).

If M is any Riemannian manifold or regular domain with heat kernel Ht(x, y) then the

maximum principle implies

Ht(x, y) ≤ Ht(x, x) ∀x, y ∈M

with equality if and only if y = x. We then have that

Ht(x, x)− 2Ht(x, y) +Ht(y, y) > 0 ∀ y 6= x.

In particular E[|Rαx−Rαy |2] and E[|hRαx−hRαy |2] both define metrics on M when they exist.

Note also that

E[|Rαx −Rαy |2] = E[|hRαx − hRαy |2]

when both exist. In particular in the proof below we will not distinguish these two metrics

as the context of the Theorem will make clear which is being discussed.

We are now in a position to prove the following:

Theorem 3.2.6. Let M be a compact Riemannian manifold, a regular domain, or non-
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compact under the hypothesis of Theorem 3.2.4. We then have the following:

1. If M is compact then there exists a version, R̃α, of Rα such that with probability 1

the sample paths of R̃α are uniformly Hölder continuous of any order γ < α on M ,

and there exists a dense subset of M such that with probability 1 the sample paths of

R̃α fail to be Hölder continuous at these points for any γ > α.

2. If M is a regular domain or non-compact under the hypothesis of Theorem 3.2.4,

then for any compact set K ⊂ M there exists a version, R̃α, of Rα such that with

probability 1 the sample paths of R̃α are uniformly Hölder continuous of any order

γ < α on K, and there exists a dense subset of K such that with probability 1 the

sample paths of R̃α fail to be Hölder continuous at these points for any γ > α.

proof. In order to apply Theorem 3.5.4 below we need to compare the metric E[|Rαx−Rαy |2]

(resp. E[|hRαx − hRαy |2]) on (M, g) with the metric d(x, y) derived from g, in particular we

need to study the boundedness of

E[|Rαx −Rαy |2]

(d(x, y))2γ
(3.10)

for d(x, y) small and γ ∈ (0, 1). What we will show is that this ratio is unbounded if γ > α

and approaches zero if γ < α.

Our approach to controlling (3.10) will be to split the integral defining E[|Rαx − Rαy |2]

into two parts:∫ ∞
0

t
d
2

+α−1(Ht(x, x)− 2Ht(x, y) +Ht(y, y)) dt

=

∫ 1

0
t
d
2

+α−1(Ht(x, x)− 2Ht(x, y) +Ht(y, y)) dt (3.11)

+

∫ ∞
1

t
d
2

+α−1(Ht(x, x)− 2Ht(x, y) +Ht(y, y)) dt. (3.12)

We start with (3.11). Recall that in any case around any point p there is a closed disk

Dp such that (3.2) holds with Φ ∈ Ck(Dp ×Dp × [0, T ]) where we can choose k > 2 and

T > 0.

As a consequence we have, denoting the integral (3.10) by I1 and d(x, y) by ρ,

I1 = (4π)−
d
2

∫ 1

0
tα−1(Φ(t, x, x) + Φ(t, y, y)− 2Φ(t, x, y)e−

ρ2

4t ) dt. (3.13)
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Because Φ ∈ Ck(Dp ×Dp × [0, T ]) with k > 2 and is symmetric, by Lemma 3.5.1,

Φ(t, x, x) + Φ(t, y, y)− 2Φ(t, x, y) = O(ρ2) as ρ→ 0

uniformly for t ∈ [0, 1]. Thus we have∫ 1

0
tα−1(Φ(t, x, x) + Φ(t, y, y)− 2Φ(t, x, y)e−

ρ2

4t ) dt

= 2

∫ 1

0
tα−1Φ(t, x, y)(1− e−

ρ2

4t ) dt

+

∫ 1

0
tα−1(Φ(t, x, x) + Φ(t, y, y)− 2Φ(t, x, y)) dt

= 2

∫ 1

0
tα−1Φ(t, x, y)(1− e−

ρ2

4t ) dt+O(ρ2)

Because

lim
x→y

∫ 1

0
tα−1Φ(t, x, y)(1− e−

ρ2

4t ) dt = lim
x→y

ρ2α

∫ ρ−2

0
tα−1Φ(ρ2t, x, y)(1− e−

1
4t ) dt

and

lim
x→y

∫ ρ−2

0
tα−1Φ(ρ2t, x, y)(1− e−

1
4t ) dt <∞,

I1 = O(ρ2α) = O(d(x, y)2α) as d(x, y)→ 0 (3.14)

for x, y ∈ Dp.

For (3.12), which we denote I2, we first deal with the case of M compact. Using (3.3)

we have for t ≥ 1

Ht(x, x)− 2Ht(x, y) +Ht(y, y) =

∞∑
k=0

e−λkt|φk(x)− φk(y)|2

=

∞∑
k=1

e−λkt|φk(x)− φk(y)|2

≤ d(x, y)2
∞∑
k=1

e−λkt‖∇φk‖∞.
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Now we apply the following bound on ‖∇φk‖∞ (see [52]):

‖∇φk‖∞ ≤ CMλ
d+1
4

k

where CM is a constant depending only on M . We then have

Ht(x, x)− 2Ht(x, y) +Ht(y, y) ≤ CMd(x, y)2
∞∑
k=1

e−λktλ
d+1
4

k = CMd(x, y)2O
(
e−λ1t

)
,

which yields

I2 ≤ CMd(x, y)2

∫ ∞
1

t
d
2

+α−1O
(
e−λ1t

)
dt = Cd(x, y)2 (3.15)

as λ1 > 0.

If M is a regular domain then a similar argument using the corresponding bound (see

[58])

‖∇φk‖∞ ≤ CMλ
d+1
4

k

for the Dirichlet eigenfunctions on M we obtain (3.15) in this case as well. Thus for either

M compact or a regular domain

I2 = O
(
d(x, y)2

)
as d(x, y)→ 0.

Turning now to the case of M non-compact, first suppose the first hypothesis of The-

orem 3.2.4 is in force. As in that proof we have, for x, y contained in a sufficiently small

geodesic disc, ∫ ∞
1

t
d
2

+α−1 (Ht(x, x)− 2Ht(x, y) +Ht(y, y)) dt

=

∫ ∞
1

t
d
2

+α−1

∫
M
|Ht(x, z)−Ht(y, z)|2 dVg(z) dt

≤ d(x, y)2

∫ ∞
1

t
d
2

+α−1

∫
M
|∇xHt(ξz, z)|2 dVg(z) dt,

which was shown to be finite.

Next suppose the second hypothesis holds. For this case we will use a Schauder esti-

mate and Lemma A.1: We choose a geodesic disc Dp and let L be ∆ in geodesic normal

coordinates on Dp, D = exp−1(Dp), P = ∂t − L on C∞(D × (0, 1)), and u(x′, y′, t) ∈
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C∞(D×D× (0, 1)) be Ht(x, y) in our chosen coordinates. For any T > 0 we then have

Pu(x′, y′, t+ T ) = ∂tu(x′, y′, t+ T )− Lx′u(x′, y′, t+ T ) = 0

for each for all x′, y′, t ∈ D ×D × (0, 1/2). In other words, u satisfies Pu(x′, y′, t) = 0 on

D× (T, T + 1/2) for each y′ ∈ D and T > 0.

Because L is uniformly elliptic on D and its coefficients are all C∞ (and independent of

T , t), using the Schauder estimate (Theorem 5 p.64 in [29] and choosing α = 1) we obtain

for each closed disk Dr contained in D a constant Kr > 0 such that

sup
(x′,t)∈Dr×(0,1/2)

∣∣∣∣∣ ∂2u

∂x′ix
′
j

(x′, y′, t+ T )

∣∣∣∣∣ ≤ Kr sup
(x′,t)∈Dr×(0,1/2)

|u(x′, y′, t+ T )|

for each i, j and y′ ∈ Dr. We then have

sup
(x′,y′,t)∈Dr×Dr×(0,1/2)

∣∣∣∣∣ ∂2u

∂x′ix
′
j

(x′, y′, t+ T )

∣∣∣∣∣ ≤ Kr sup
(x′,y′,t)∈Dr×Dr×(0,1/2)

|u(x′, y′, t+ T )|.

We note that Kr is independent of T and by our hypothesis that Ht = Õ
(
t−( d2+β)

)
,

sup
(x,y)∈Dp×Dp

Ht(x, y) ≤ Ct−( d
2

+β), β > 0. Thus, returning to Dr = exp (Dr), for all T > 1

sup
(x,y,t)∈Dr×Dr×(0,1/2)

∣∣∣∣ ∂2H

∂xixj
(x, y, t+ T )

∣∣∣∣ ≤ CKrT
−( d

2
+β).

Then applying Lemma 3.5.1 and assuming without loss of generality we have chosen our

disc Dp such that the above estimates hold, we have

∫ ∞
1

t
d
2

+α−1 (Ht(x, x)− 2Ht(x, y) +Ht(y, y)) dt

≤ Cd(x, y)2

∫ ∞
1

t
d
2

+α−1 sup
Dp×Dp

∣∣∣∣∣∣
d∑

i,j=1

∂2H

∂xi∂xj
(t, x, y)

∣∣∣∣∣∣ dt
≤ Cd(x, y)2

∫ ∞
1

t
d
2

+α−1(t− 1/2)−( d
2

+β) dt
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for some C > 0. By hypothesis β > 0, so

∫ ∞
1

t
d
2

+α−1(t− 1/2)−( d
2

+β) dt <∞. Lastly recall

that when hRα exists for α ∈ (0, b) for some b > 0 then Rα does as well. Moreover in that

case

E[|Rαx −Rαy |2] = E[|hRαx − hRαy |2],

so in the second case of Theorem 3.2.4 the arguments above apply to Rα as well.

Thus in each case from the preceeding discussion we know that for each p ∈ M there

exists a closed disc Dp centered at p such that for all γ ≤ α

E[|Rαx −Rαy |2] ≤ Cp(d(x, y)2γ)

for some constant Cp > 0 and all x, y ∈ Dp and that such a condition fails for any γ > α

in light of (3.14). Then if M is compact or K is a compact subset of M , there exists a

constant C > 0 such that for all γ ≤ α

E[|Rαx −Rαy |2] ≤ Cd(x, y)2γ

for all x, y ∈ M (resp. x, y ∈ K). Then by Theorem 3.5.4 there is a version of Rα that

is almost surely uniformly Hölder continuous over M (resp. K) of order γ for any γ < α.

Moreover from the discussion following Theorem 3.5.4 there is a dense subset of M (resp.

K) on which Rα fails to satisfy any Hölder condition of order γ for any γ > α with

probability 1. By the remarks preceding the Theorem the same holds for hRα, when it

exists.

Remark 3.2.3. From the proof above we see that

lim
x→y

E[|Rαx −Rαy |2]

d(x, y)2α
= lim

x→y

∫ d(x,y)−2

0
tα−1Φ(d(x, y)2t, x, y)(1− e−

1
4t ) dt

and thus the exact comparison between the Riemannian metric ofM and the metric induced

by Rα depends on the local geometry of M , in particular on the comparison with the

Euclidean heat kernel contained in Φ(t, x, y).

Remark 3.2.4. It would be desirable in the case of regular domains to extend continuity

to the closure of M . However the local Euclidean approximation of the heat kernel is not

uniform near the boundary of M and so some other method of proof seems necessary. On

the other hand it is easy to show that for any sequence (xk1, . . . , x
k
n) that approaches the
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boundary of M , P (‖(hRα
xk1
, . . . , hRαxkn

)‖ > ε)
k→ 0 for any ε > 0. This combined with the

existence of a continuous version as close as we like to the boundary seems sufficient for

most applications, at least from the point of view of simulation.

3.2.4 Distributional Scaling and Invariance

3.2.4.1 Stationarity

Definition 3.2.2. Let (M, g) be a complete Riemannian manifold and I(M) the group of

isometries of (M, g). If Yx is a centered GRF over (M, g) we say that Yx is stationary (or

homogeneous) if

E[Yι(x)Yι(y)] = E[YxYy]

for any ι ∈ I(M) and all x, y ∈M . We say Yx has stationary (or homogeneous) increments

if

E[|Yι(x) − Yι(y)|2] = E[|Yx − Yy|2]

for any ι ∈ I(M) and all x, y ∈M .

Because for any manifold (M, g) we have Ht(ι(x), ι(y)) = Ht(x, y) for any ι ∈ I(M)

(see [33], Theorem 9.12) it is clear from the definitions,

E[RαxR
α
y ] =

1

Γ
(
d
2 + α

) ∫ ∞
0

t
d
2

+α−1 (Ht(x, y)−Ht(x, o)−Ht(y, o) +Ht(o, o)) dt

and

E[hRαxhR
α
y ] =

1

Γ
(
d
2 + α

) ∫ ∞
0

t
d
2

+α−1Ht(x, y) dt,

that when they exist, Rα and hRα have stationary increments and are stationary respec-

tively.

3.2.4.2 Self-Similarity

Turning to self-similarity, let us first recall how this property is defined for random fields

on Euclidean space: If Yx is a random field over Rd, then Yx is self-similar of order α > 0 if

cαY 1
c
x
d
= Yx. The Euclidean fractional Brownian field fBfα is self similar of order α, and

we want to extend this property to manifolds. To do this we must define an operation that

extends the scaling operation on Rd, x 7→ cx. This operation scales the distance between
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any two points by c > 0:

‖x− y‖ 7→ ‖cx− cy‖ = c‖x− y‖,

or written another way,

d(x, y) 7→ cd(x, y).

Viewing Rd as a manifold, we see this is equivalent to scaling the Riemannian metric

(gij) = (δij) of Rd by c2,

d∑
i,j=1

xixjgij =
d∑
i=1

x2
i = ‖x‖2 7→ c2‖x‖2 =

d∑
i,j=1

xixjc
2gij .

Thus a natural definition of scaling for a manifold M is to simply scale the metric as

above. Indeed, if M is an embedded submanifold of Rd with induced metric gM , then

scaling the ambient space Rd results in the induced scaling on M

gM 7→ c2gM .

Of course, we’d like a definition of scaling that is intrinsic to the manifold in question, i.e.,

independent of any ambient Euclidean space, but that also agrees with the scaling induced

by scaling any ambient space. If we take the above operation as the definition of scaling

for a general manifold M we achieve this goal.

We are thus ready to prove that the Riesz fields are self-similar.

Proposition 3.2.7. Let (M, g) be a complete Riemannian manifold or regular domain.

Both the Riesz field Rα and the stationary Riesz field hRα over (M, g) are self-similar of

order α (if they exist on M) in the sense that if R̄α and hR̄α are the Riesz fields over

(M, c2g) then

cαRαx
d
= R̄αx

and

cαhRαx
d
= hR̄αx

for any c > 0.

proof. First we note from the coordinate expression for ∆, if we denote by ∆g the Laplacian

of (M, g) and Hg
t (x, y) the corresponding heat kernel, we have ∆c2g =

1

c2
∆g. But then
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because L2(M,dVg) = L2(M,dVc2g) we can write∫
M
cdHc2g

t (x, y)f(y) dVg(y) =

∫
M
Hc2g
t (x, y)f(y) dVc2g(y)

= e−t∆c2g(f)

= e−
t
c2

∆g(f)

=

∫
M
Hg

t
c2

(x, y)f(y) dVg(y)

for any f ∈ L2(M,dVg). Thus by symmetry

1

cd
Hg

t
c2

(x, y) = Hc2g
t (x, y) ∀x, y ∈M.

We then have

c2αE[RαxR
α
y ] =

c2α

Γ
(
d
2 + α

) ∫ ∞
0

t
d
2

+α−1 (Hg
t (x, y)−Hg

t (o, x)−Hg
t (o, y) +Hg

t (o, o)) dt

=
1

Γ
(
d
2 + α

) ∫ ∞
0

t
d
2

+α−1 1

cd

(
Hg

t
c2

(x, y)−Hg
t
c2

(o, x)−Hg
t
c2

(o, y) +Hg
t
c2

(o, o)

)
dt

=
1

Γ
(
d
2 + α

) ∫ ∞
0

t
d
2

+α−1
(
Hc2g
t (x, y)−Hc2g

t (o, x)−Hc2g
t (o, y) +Hc2g

t (o, o)
)
dt

= E[R̄αx R̄
α
y ]

and similarly for hRα.

Remark 3.2.5. Here we see that hRα exhibits essentially non-Euclidean phenomena; on Rd

there cannot exist a GRF that is both stationary and self similar (see e.g. [7]). We will

return to the questions this raises in Section 5.

3.2.4.3 Uniqueness

We now come to a natural question: Are the Riesz fields the only fields with stationary

increments that are also self-similar? In other words, does requiring stationarity and self-

similarity as above uniquely determine a GRF over a given manifold M? To answer this

we examine an example, M = S1, which we normalize to have total volume 2π. Using the
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expansion of section 3.2.2.1 we have

Rα(x)
d
=

∑
k∈Z\{0}

1√
2π
|k|−

1
2
−α(eikx − 1)ξk.

In [37] the author constructs a GRF, denoted Rα, with the following covariance

1

2
(d(x, 0)2α + d(y, 0)2α − d(x, y)2α).

In particular it is shown that

Rα(x)
d
=

∑
k∈Z\{0}

dk(e
ikx − 1)ξk

where

dk =

√
−
∫ |k|π

0 u2α cos(u)du
√

2π|k|
1
2

+α
.

Note however that for α =
1

2
,

dk =

0 k even,

(
√
π|k|)−1 k odd

.

Thus

R 1
2
(x) =

∑
k∈Z\{0}

1√
π
|2k + 1|−1(ei(2k+1)x − 1)ξk

and √
2R

1
2 (x) =

∑
k∈Z\{0}

1√
π
|k|−1(eikx − 1)ξk.

We then find that

E[|
√

2R
1
2 (x)|2]− E[|R 1

2
(x)|2] =

∞∑
k=−∞

1

π
|2k|−2|ei2kx − 1|2,
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which is not identically zero. As their variances are not identical, these two fields are not

equal in distribution. However it is easy to see that both fields have stationary increments

and are self-similar of order 1/2.

Thus even in the simple case of S1 we do not have uniqueness, and so in general the

Riesz fields are not the only GRF’s that are self-similar with stationary increments over

a given manifold M . It then remains an open question to determine the general form of

the covariance of a GRF with stationary increments that is also self-similar over a given

manifold other than Rd.

3.3 The Bessel Field

We now turn to constructing stationary counterparts to Rα by analogy with the Brownian

motion and Ornstein-Uhlenbeck processes on R. We define the Bessel Field of order α ∈
(0, 1) by

Bα
x

d
=

1

Γ
(
d
4 + α

2

) ∫
M

∫ ∞
0

t
d
4

+α
2
−1e−tHt(x, z) dt dW (z), (3.16)

which extends the Ornstien-Uhlenbeck fields with covariance given (up to a constant) by∫
Rd

ei〈x,y〉

(1 + |ξ|2)
d
2

+α
dξ.

These fields are altogether more well behaved than the Riesz fields, which is not surprising

in light of the analogy with the Riesz and Bessel potentials.

Theorem 3.3.1. The Bessel field exists over any complete Riemannian manifold or regular

domain M for all α ∈ (0, 1).

proof. Proceeding as for hRα, for each x, y ∈M

E[Bα
xB

α
y ] =

(
1

Γ
(
d
4 + α

2

))2 ∫
M

∫ ∞
0

t
d
4

+α
2
−1e−tHt(x, z) dt

∫ ∞
0

s
d
4

+α
2
−1e−sHs(y, z) ds dVg(z)

=

(
1

Γ
(
d
4 + α

2

))2 ∫ ∞
0

∫ ∞
0

t
d
4

+α
2
−1s

d
4

+α
2
−1e−(t+s)Ht+s(x, y) dt ds

=
1

Γ
(
d
2 + α

) ∫ ∞
0

t
d
2

+α−1e−tHt(x, y) dt (3.17)
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From the fact that the heat kernel always satisfies lim
t→∞

Ht(x, y) < ∞ for any x and y, we

see that (3.17) converges everywhere on M ×M .

Clearly Bα
x is stationary and we can see that it does not possess the scaling properties

of the Riesz fields. Turning to sample path regularity we have the following result.

Theorem 3.3.2. The Bessel field Bα has a version with sample paths almost surely uni-

formly Hölder continuous of order γ for any γ < α and almost surely failing to satisfy a

Hölder condition of order γ for any γ > α on a dense subset of M .

proof. Split the integral

E[|Bα
x −Bα

y |2] =
1

Γ
(
d
2 + α

) ∫ ∞
0

t
d
2

+α2−1e−t (Ht(x, x)− 2Ht(x, y) +Ht(y, y)) dt

=
1

Γ
(
d
2 + α

)(I1 + I2)

where

I1 =

∫ 1

0
t
d
2

+α2−1e−t (Ht(x, x)− 2Ht(x, y) +Ht(y, y)) dt

and

I2 =

∫ ∞
1

t
d
2

+α2−1e−t (Ht(x, x)− 2Ht(x, y) +Ht(y, y)) dt

and argue as in Theorem 3.2.6.

3.4 Conclusion and Further Work

3.4.1 Existence and Uniqueness

Using a spectral theoretic approach we have constructed analogues of the fractional Brow-

nian fields over arbitrary compact manifolds and a wide class of non-compact manifolds.

There are still many questions remaining. For example in light of the non-uniqueness result

in Section 3.2.4.3, one could ask how many different such fields there are over any given

manifold. One could also attempt to determine the general form the covariance of such

objects must take.
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We also saw in Example 3.2.3 that Rα does not exist on S1 × R (with the product

metric) for α > 1/2. This raises the following question: Does there exist any Gaussian

field over S1 × R with stationary increments that is also self similar of order α for some

α ∈ (1/2, 1)? More generally, are there geometric conditions that ensure a given manifold

can have such a field defined over it?

We conjecture that it is possible to construct such fields over any manifold M in the

following way: Somewhat informally, the Riesz fields are solutions to the stochastic equation

(−∆)
d
4

+α
2X = W,

where W is Gaussian white noise over M and ∆ is the Laplacian of M with certain

“boundary conditions,” i.e., with domain restricted to include only functions f such that

f(o) = 0 for some fixed point o ∈ M . As we saw, for example in the case of compact

manifolds, this restriction of the domain led to the existence of a continuous integral kernel

for the corresponding inverse and it seems plausible that in general we could always obtain

such a kernel through restricting the domain of ∆ by determining a sufficient number of

derivatives of f ∈ dom(∆) at the point o. Of course finding an explicit expression for such

a kernel may be very difficult in general.

3.4.2 Restriction to Submanifolds

There is one aspect of this theory we did not touch upon, that being the behavior of

our fields when restricted to geodesics and more general submanifolds. One thing we can

say is that for a given manifold M , following the discussion of self-similarity and dilation

in Section 3.2.4, the Riesz fields over M when restricted to an embedded submanifold

N determine self-similar fields over N . Also, being embedded, the isometry group of N

determines a (possibly trivial) subgroup of the general isometry group of the M . However,

the resulting restricted field may be stationary or have stationary increments (for example,

consider the fBfα over Rd restricted to Sd−1). Moreover, as we already saw, stationarity

and self-similarity alone do not uniquely determine a GRF in general, and so we cannot

say that Rα over M when restricted to a submanifold N agrees with Rα over N .

While we have avoided symmetry hypothesis in our treatment, when dealing with in-

variance properties involving isometry groups one is naturally led towards general harmonic

analysis and it would be interesting to study GRF’s over manifolds from this point of view.
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For example, one could consider GRF’s that are only stationary with respect to a sub-

group of the entire isometry group, analogous to GRF’s over Rd that are only rotationally

invariant (so called isotropic random fields).

One property of the Euclidean fractional Brownian fields (or more generally any GRF

that is self-similar with translation invariant increments) is that when restricted to lines

through the origin they agree with the usual fractional Brownian motion, up to a constant.

One could then ask if this holds more generally. For example one could require that a field

over M when restricted to infinite geodesics became a fractional Brownian motion. This

would require a subgroup of the isometry group of M that restricted to translation of the

given geodesic. Of course, in general geodesics may be closed or infinite. Again, one could

study such questions from a general harmonic analytic point of view.

3.4.3 Hyperbolic GRF’s

We also mentioned above that the existence of hRα raises interesting questions regarding

negatively curved manifolds and what we could loosely call hyperbolic Gaussian random

fields. For example, although the proof of existence of hRα over Hd uses properties of

the heat kernel, one can ask if there are more geometric or topological conditions one can

put on a manifold M to ensure the existence of some self-similar and stationary GRF.

Conversely one can ask what are the implications of such a field existing over M . Is hRα

the only such field or are there others?

The above is only a first attempt to state some questions at the intersection of geometry

and probability that, at least on the face of it, seem novel and interesting; doubtless there

are others. The study of random fields over manifolds, although its history is not short,

seems to the author to still be wide open. It is our hope that the work here and the

questions raised above will be of interest to both researchers in geometry or geometric

analysis and probabilists and lead to further interaction between the two.

3.5 Auxiliary Results

First we record the following Lemma involving Taylor approximation.

Lemma 3.5.1. Let M be complete and suppose f ∈ C∞(M ×M) is symmetric. Around

any point p ∈M there exists a closed geodesic disk Dp centered at p and a constant Cp > 0
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such that

|f(x, x)− 2f(x, y) + f(y, y)| ≤ Cpd(x, y)2 sup
Dp×Dp

∣∣∣∣∣∣
d∑

i,j=1

∂2f

∂xi∂xj

∣∣∣∣∣∣
for all x, y ∈ Dp.

proof. Let F ∈ C2(Rd) and recall Taylor’s Theorem: for each p ∈ Rd and all x ∈ Rd

F (x) = F (p) +
d∑
i=1

∂F

∂xi
(p)(xi − pi)

+

d∑
i,j=1

(xi − pi)(xj − pj)
2

1 + δij

∫ 1

0
(1− t) ∂2F

∂xi∂xj
(p+ t(x− p))dt.

Now let f ∈ C2(Rd×Rd) and f(x, y) = f(y, x). Fix x, y ∈ Rd. Then letting p = (x, y),

from the symmetry of f we have

f(x, x)−2f(x, y) + f(y, y)

=
d∑

i,j=1

(xi − yi)(xj − yj)
∫ 1

0
(1− t) ∂2f

∂xi∂xj
(x+ t(y − x), x)dt

+
d∑

i,j=1

(xi − yi)(xj − yj)
∫ 1

0
(1− t) ∂2f

∂xi∂xj
(y + t(x− y), y)dt

=

∫ 1

0

d∑
i,j=1

(xi − yi)(xj − yj)(1− t)
(

∂2f

∂xi∂xj
(x+ t(y − x), x)

+
∂2f

∂xi∂xj
(y + t(x− y), y)

)
dt

= c

d∑
i,j=1

(xi − yi)(xj − yj)
(
∂2f

∂xixj
(x+ θ1, x) +

∂2f

∂xixj
(y + θ2, y)

)

for some constant c > 0 and θk ∈ Rd with ‖θk‖Rd < ‖x − y‖Rd . In particular for x, y in a

closed disk Dε of radius ε > 0 we have

|f(x, x)− 2f(x, y) + f(y, y)| ≤ C1‖x− y‖2Rd sup
Dε×Dε

∣∣∣∣∣∣
d∑

i,j=1

∂2f

∂xi∂xj

∣∣∣∣∣∣
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for some C1 > 0.

Now suppose f ∈ C∞(M ×M) is symmetric and let Dp be a geodesic disk centered at

p ∈M . Then the above implies

|f(x, x)− 2f(x, y) + f(y, y)| ≤ C2d(x, y)2 sup
Dp×Dp

∣∣∣∣∣∣
d∑

i,j=1

∂2f

∂xi∂xj

∣∣∣∣∣∣ (3.18)

for all x, y ∈ Dp.

3.5.1 Continuity of Gaussian random fields

Here we provide analogues of results given for Gaussian fields over Rd in the setting of

manifolds. These proofs are simple modifications of the originals and we include them for

convenience. The first result is an analytical lemma, given for hypercubes in Rd. We will

replace the cubes with metric disks and Rd by a d-dimensional manifold M . Let p be even

and continuous on [−1, 1], p(|x|) monotone increasing, and satisfy lim
x→0

p(x) = 0.

Lemma 3.5.2. (Manifold version of Lemma 1 in [31]): Let f ∈ C(I0) where I0 ⊂ M is

compact, has non-empty interior, and has no isolated points. Suppose that∫
D

∫
D

exp

(
f(x)− f(y)

p(diam(D))

)2

dx dy ≤ B

for all closed metric disks D ⊂ I0. Then for some C > 0

|f(x)− f(y)| ≤ 8

∫ d(x,y)

0

√
log(BCu−2d) dp(u)

for all x, y ∈ I0.

proof. Fix x, y ∈ I0. Then choose a sequence of disks Dk = {z ∈ M : d(z, x) < rk} such

that Dk ⊂ I0, 2r1 ≤ d(x, y), rk → 0, and if dk = 2rk we have

p(dk) =
1

2
p(dk−1).
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Let fDk = Vol(Dk)
−1

∫
Dk

f dV . We apply Jensen’s inequality to obtain

exp

(
fDk − fDk−1

p(dk−1)

)2

≤ [Vol(Dk)Vol(Dk−1)]−1

∫
Dk

∫
Dk−1

exp

(
f(x)− f(y)

p(dk−1)

)2

dV (x) dV (y)

≤ B[Vol(Dk)Vol(Dk−1)]−1.

We then have

|fDk − fDk−1
| ≤ p(dk−1)

√
log(B[Vol(Dk)Vol(Dk−1)]−1) (3.19)

By the definition of Dk we have

p(dk−1) = 4[p(dk)− p(dk+1)].

Then because

Vol(Dk) = O
(

(dk)
d
)

as k →∞,

∃ C > 0 such that

Vol(Dk) ≥ C(dk)
d

so that dk+1 ≤ u ≤ dk ⇒ u−2d ≤ C[Vol(Dk)Vol(Dk−1)]−1. Then we can write (3.19) as

|fDk − fDk−1
| ≤ 4

∫ dk

dk+1

√
log(BCu−2d) dp(u).

Summing these and using continuity of f we get

|f(x)− fD1 | = lim
k→∞

|fDk − fD1 | ≤ 4

∫ d2

0

√
log(BCu−2d) dp(u).

Now d2 < d(x, y) so if we need to we can replace B by a larger bound to ensure the

integrand is defined, and after doing so we have

|f(x)− fD1 | ≤ 4

∫ d(x,y)

0

√
log(BCu−2d) dp(u).
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The argument is symmetric in x and y, so an application of the triangle inequality yields

the conclusion.

Suppose now we are given a (centered) Gaussian random field Xx over (M, g) and

consider its restriction to a compact set I0 as above. Suppose further that the function

K(x, y) = E[XxXy] is continuous on I0×I0. Then K(x, y) determines a positive trace class

integral operator on L2(I0, dVg) and by Mercer’s theorem we have

K(x, y) =
∞∑
k=0

λkφk(x)φk(y)

uniformly on I0× I0, where λk and φk are the eigenvalues and eigenfunctions of K respec-

tively.

Let

p(u) = sup{
√

E[|Xx −Xy|2] : d(x, y) ≤ |u|}

and

Xn
x =

n∑
k=0

√
λkφk(x)θk

where the θk are independent standard normal random variables.

We then have the following adaptation of Garsia’s theorem to the manifold setting:

Theorem 3.5.3. (Manifold version of Theorem 1 in [31]): Suppose that for x, y ∈ I0 as

above ∫ diam(I0)∧1

0

√
− log(u) dp(u) <∞.

Then with probability 1

|Xm
x −Xm

y | ≤
1

8

∫ d(x,y)

0

√
log(BCu−2d) dp(u)

where C > 0 and

sup
m

∫
I0

∫
I0

exp
1

4

(
Xm
x −Xm

y

p(d(x, y))

)2

dV (x) dV (y) ≤ B <∞

almost surely. In particular the partial sums Xm
x are almost-surely equicontinuous and
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uniformly convergent on I0.

proof. Let

Pn = exp
1

8

(
Xn
x −Xn

y

p(d(x, y))

)2

= Pn−1 exp
1

8

(
(Y n(x, y))2 − 2Y n(x, y)(Xn−1

x −Xn−1(y))

p(d(x, y))

)2

where Y k(x, y) =
√
λk(φk(x) − φk(y))θk. Then by independence of the θk and Jensen’s

inequality for conditional expectation

E[Pn+1 |Pn, ..., P1 ]

= Pn

E

exp
1

8

(
Xn+1
x −Xn+1

y

p(d(x, y))

)2
∣∣∣∣∣∣Pn, ..., P1


≥ Pn exp

1

8

(
E
[(

(Y n+1(x, y))2 − 2Y n+1(x, y)(Xn−1
x −Xn−1(y))

p(d(x, y))

)∣∣∣∣Pn, ..., P1

])2

= Pn exp
1

8

(
E
[(

(Y n+1(x, y))2

p(d(x, y))

)∣∣∣∣Pn, ..., P1

])2

≥ Pn a.s.

Thus {Pn} is a submartingale. Next note that E[P 2
n ] ≤

√
2, as

Xn
x −Xn

y

p(d(x, y))

is centered, Gaussian, and has variance less than or equal to one. Then applying the

classical submartingale inequalities we have

E[max
m≤n

P 2
m] ≤ 4E[P 2

n ] ≤ 4
√

2.

Applying the Fubini-Tonelli theorem we then have

E

(∫
I0

∫
I0

max
m≤n

exp
1

4

(
Xn
x −Xn

y

p(d(x, y))

)2

dV (x) dV (y)

)
≤ 4
√

2 (V (I0))2 .

Letting n tend to infinity and applying monotone converge yields

E[B] ≤ 4
√

2 (V (I0))2 <∞.
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We then have that almost surely∫
I0

∫
I0

exp
1

4

(
Xn
x −Xn

y

p(d(x, y))

)2

dV (x) dV (y) ≤ B <∞ ∀n

so that Lemma (3.5.2) applies.

Lastly note that from

E

[ ∞∑
k=0

λkθ
2
k

]
=

∞∑
k=0

λk =

∫
I0

K(x, x) dV (x) <∞

we obtain with probability one
∞∑
k=0

λkθ
2
k <∞,

which together with the conclusion of Lemma (3.5.2) implies the almost sure uniform

convergence of {Xn
x } on I0.

As remarked in [31] this result gives a sufficient condition for the existence of an almost

surely continuous version of Xx. The next result establishes Hölder continuity.

Theorem 3.5.4. (Manifold version of Thm 8.3.2 in [1]): Let the field X over I0 ⊂M be

as above and let γ = sup{β : E[|Xx − Xy|2] = o(d(x, y)2β) uniformly on I0}. Then there

exists a version of X with sample paths that are almost surely uniformly Hölder continuous

over I0 of any order β < γ.

proof. Let ρ = d(x, y). First note that, with p(u) as above, we have for any L > 0∫ ∞
L

p(e−x
2
) dx ≤ cε

∫ ∞
L

e−(γ−ε)x2 dx <∞

for any 0 < ε < γ and some constant cε. But this is equivalent to

∫ diam(I0)∧1

0

√
− log(u) dp(u) <∞.

Thus by the previous result we have a version (which we also denote by X) for which

|Xx −Xy| ≤ Bp(ρ) + C

∫ ρ

0

√
− log(u) dp(u) a.s.
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for some constant C > 0 and some positive random variable B which is almost surely finite.

Now for any 0 < ε < γ we have some constant Cε > 0 such that p(ρ) < Cερ
γ−ε, and

similarly

∫ ρ

0

√
− log(u) dp(u) < C ′ερ

γ−ε for some C ′ε > 0. Thus, with probability 1, for

each ε > 0 there is an almost surely finite positive random variable Aε such that

|Xx −Xy| ≤ Aεd(x, y)γ−ε ∀x, y ∈ I0.

Note that we can also show under the hypotheses of the theorem that in any disk of

positive radius in I0 the sample paths of X fail to be uniformly Hölder of any order greater

than γ. Indeed,
Xx −Xy

d(x, y)γ+ε

is a centered Gaussian random variable with variance O(d(x, y)−
ε
2 ) and thus becomes

almost surely unbounded as x → y. For example we can pick any countable dense subset

of I0 and modify X on a set of measure zero to obtain the failure of Hölder continuity at

each point in the set. Any stronger converse statement will require more refined tools, i.e.,

local times, which we will not attempt to develop here.

Remark 3.5.1. We mention here that the results in [50], of which the author became aware

after submission of the present article, may be an alternative to the results above for

establishing sample path continuity in Theorem 3.6.
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Chapter 4: On the Largest eigenvalue of products from the β-Laguerre ensemble

4.1 Introduction

The limiting spectral behavior of products of random matrices has been the subject of a

number of studies in random matrix theory and various results on the limiting spectral

distribution of such products are by now known (e.g. [49, 14, 12]). In general the spectra

of such products will be complex, but in the event it is real, e.g., that of the product of

two Hermitian matrices where one is non-negative definite (see for example [5, 53, 13]),

it makes sense to speak of the largest eigenvalue. There are strong limit laws known

for these largest eigenvalues, but so far there are no results regarding the distribution of

the fluctuations around the strong limit. The purpose of this paper is to investigate this

limiting distribution in the setting of the β-Laguerre ensembles.

The β-Laguerre ensemble generalizes the classical Laguerre ensemble by allowing β to

vary over the positive reals in

cβn,κ
∏
i<j

|λi − λj |β
n∏
k=1

λ
β
2

(κ−n+1)−1

k e−
β
2
λk , (4.1)

where without loss of generality κ ≥ n and cβn,κ is a normalizing constant (see e.g. [28]).

The above densities first arose in the study of certain quantum systems and orthogonal

polynomials (see [28] and references therein), however there were initially no known random

matrices with these eigenvalue densities. Then in [25] the authors constructed families of

tridiagonal random matrices whos eigenvalue densities agreed with the above, and in [51]

the limiting distribution of the largest eigenvalues was determined, thus generalizing the

classical Tracy-Widom laws for β = 1, 2, 4 to a family of distributions indexed by β > 0,

denoted TWβ.

In a first approach to the general problem of finding the limiting distribution of the

largest eigenvalue of a product of random matrices, we are free to choose which matrix

Submitted for publication, January 2013.
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ensemble to work with and the β-ensembles along the methods employed in [51] are partic-

ularly amenable to such a study (the reader may note that throughout this paper we make

the slight abuse of language in referring to both the above density and the corresponding

family of random matrices as the β-Laguerre ensemble). Our results are as follows:

Theorem 4.1.1. Let Xp
n and Xq

n be two independent elements of the β-Laguerre ensemble,

with κ = p and q respectively. Assume that n ≤ p ≤ q and that p = O(n) = q. Then if λn,0

is the largest eigenvalue of Xp
nX

q
n,

λn,0 − µn
σn

d→ TWβ0 ,

where TWβ0 denotes the Tracy-Widom Law with parameter β0 and

β0 = lim
n→∞

Cnβ, µn = (
√
n+
√
p)2(
√
n+
√
q)2, σn = cn

(
√
n+
√
p)

4
3 (
√
n+
√
q)

4
3

(
√
np)

1
3 (
√
nq)

1
3

,

the constants Cn and cn being defined by (4.8) and (4.9) in section 2.4 below.

We have written the scaling terms to ease comparison to the case of a single matrix

(e.g. [51], Theorem 1.4), where by the hypothesis p = O(q) we have cn → c ∈ R. It is

worth noting that if both matrices are identically distributed, i.e. p = q, then Cn = 2, so

even in the i.i.d. case the parameter of the limiting Tracy-Widom law is different than that

of the factors.

In [51] the authors show how elements of the β-Laguerre ensemble can be realized as

finite difference approximations to a stochastic differential operator on [0,∞). Just as in

the usual finite difference schemes, e.g., for the Laplacian on [0,∞), the lowest k eigenvalues

and eigenvectors converge to those of the limiting operator. This characterization of the

limiting distributions is robust and we make full use of the results and techniques in [51]

below, in particular Section 5 in that paper. We note here that although we assume in

Theroem 4.1.1 that n ≤ p ≤ q, this is only to simplify the proof; one can relabel parameters

without altering the arguments in any essential way.

In the next section we outline the setup from [51] and then proceed to the proof of

Theorem 4.1.1. We end with some remarks and further questions in section 4.3.
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4.2 Proof of Theorem 4.1.1

4.2.1 Tridiagonal elements of the β-Laguerre ensemble

Here we briefly describe the tridiagonal matrix ensemble that realizes (4.1); for proofs and

further discussion see [25] and [28]. Let χα denote the random variable with density

χα ∼
2

Γ
(
α
2

)xα−1e−x
2
,

said to be a chi random variable with parameter α. Let Bκ
n, κ ≥ n be the following matrix:

Bκ
n =


χ̃βκ

χβ(n−1) χ̃β(k−1)

. . .
. . .

χβ χ̃β(κ−n+1)

 ,

where χ̃α and χα denote independent chi random variables. Then the eigenvalues of

Xκ
n ≡ (Bκ

n)∗Bκ
n

have the density (4.1). Note that Xκ
n has

χ̃2
β(κ−j+1) + χ2

β(n−j)

along the main diagonal, j = 1, . . . , n, and

χ̃β(κ−j)χβ(n−j)

above and below the main diagonal.

4.2.2 Notation and Setup from [51]

Unless specified otherwise, for vectors v, u ∈ Rn, 〈v, u〉 denotes the Euclidean inner product

and ‖v‖ =
√
〈v, v〉.
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Fix β > 0 and let Xi
n, i = p, q, be as above. Define

Hp
n ≡

µn,p −Xp
n

σn,p
, Hq

n ≡
µn,q −Xq

n

σn,q
,

mn,i =

( √
ni

√
n+
√
i

) 2
3

= n
1
3


√

i
n

1 +
√

i
n


2
3

,

µn,i = (
√
n+
√
i)2, σn,i =

(
√
n+
√
i)

4
3

(
√
ni)

1
3

.

Note here that the Xi
n, and hence the H i

n, are independent, a fact we will use repeatedly

below.

Let L∗ be the following subspace of L2,

L∗ = {f ∈ L2[0,∞) : f(0) = 0, ‖f‖2∗ <∞}

where

‖f‖2∗ =

∫ ∞
0

(f ′)2 + xf2 + f2dx.

Let B be standard Brownian motion on [0,∞) and for f ∈ L∗ define

Hβ(f) = − d2

dx2
f + xf +

2√
β
B′f

where B′f is the distribution given by

d

dt

∫ t

0
f dB

and where we denote the action of Hβf on a test function φ ∈ C∞c by

(φ,Hβf).

Thus if φ is a test function,

(B′f, φ) = −(f ′B,φ)− (fB, φ′).
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In [51] it is shown that (g,Hβf) defines a continuous bilinear form on L∗ and if Λ denotes

the smallest eigenvalue of Hβ, given by

Λ = inf{(f,Hβf), : f ∈ L∗, ‖f‖L2 = 1}, (4.2)

then −Λ is distributed as TWβ, that is, −Λ ∼ TWβ.

Next let L∗n,i be the subspace of L2[0,∞) consisting of step functions of the following

form:

f =

n∑
k=1

ckχ[ k−1
mn,i

, k
mn,i

].

Let Pn be the projection from L2 onto this subspace. Then L∗n,i is isometric to Rn with

the inner product

m−1
n,i〈v, u〉 = m−1

n,i

n∑
k=1

vkuk,

〈f, g〉L2 =
n∑
k=1

ckdkm
−1
n,i = m−1

n,i〈f, g〉Rn .

We let Tn denote the shift operator

(Tnv)k = vk+1,

that is, the operator given by the n×n matrix with 1’s above the main diagonal and zero’s

elsewhere. Then define the difference operator

∆i
nvk = mn,i(vk − vk−1) = mn,i(I − T ∗n)vk,

i.e., for φ ∈ C∞c ∆i
n∆i∗

n Pnφ → φ′′ in L2, and note ‖Tn‖ = 1. Additionally, for two vectors

u, v ∈ Rn we denote by u×v the vector

(u1v1, . . . , unvn).

Now H i
n takes the following form:

H i
nv = −∆i

n∆i∗
n v +

(
∆i
ny

i
n,1

)
× v +

1

2

(
∆i
ny

i
n,2

)
× Tnv +

1

2
T ∗n
(
∆i
ny

i
n,2

)
× v,
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∆i
ny

i
n,j = ηin,j + ∆i

nw
i
n,j ,

(ηin,1)k =
m2
n,i√
ni

(n+ i− β−1E[χ̃2
β(i−k+1) + χ2

β(n−k)]) =
m2
n,i√
ni

(2k − 1),

(ηin,2)k =
m2
n,i√
ni

2(
√
ni− β−1E[χβ(n−k)χ̃β(i−k)]),

(win,1)k =
mn,i√
ni

k∑
j=1

(
n+ i− β−1(χ2

n−j + χ̃2
i−j+1)

)
−m−1

n,i(η
i
n,1)k,

(win,2)k =
mn,i√
ni

2
k∑
j=1

(√
ni− β−1χβ(n−j)χ̃β(i−j)

)
−m−1

n,i(η
i
n,2)k.

We now collect some bounds we will need in the proof below in Section 4.2.3. In [51]

it is shown that for each i and any subsequence H i
nm there exists a further subsequence

and a probability space such that the statements below hold almost surely; from now on

we will assume we are working with such a subsequence.

First we have that for any ε > 0 there is a ciε > 0 such that

|∆i
nw

i
n,j,k| ≤ mn,i

√
εη̃in,k + ciε (4.3)

where

η̃in,k =
k

mn,i
.

Next we have the following two bounds

ηin,j,k ≤ 2m2
n,i, cη1η̃

i ≤ ηin,1,k + ηin,2,k ≤ c
η
2η̃
i (4.4)

for some cηi > 0. Finally (cf. Section 6 in [51]), there exist independent Brownian motions

Bi and processes yij(x) such that

yin,j(x) ≡ (yin,j)bxmn,qc1xmn,q∈[0,n] → yij(x) (4.5)

and

yin,1(x) + yin,2(x)→ 2√
β
Bi +

x2

2

in the Skorokhod topology on D[0,∞).
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4.2.3 Outline of the proof

Let H i
β denote the operator Hβ above with Bi in place of B. In [51] the authors show,

for each subsequence restricted to a further subsequence such that the above bounds hold

a.s., that the smallest eigenvalue and corresponding eigenvector of H i
n converge to that of

H i
β using three Lemmas, numbered 5.6 − 5.8, the content of which is as follows: Lemma

5.6 states that there are positive constants cik independent of n such that for all v ∈ Rn

ci1‖v‖2i,n∗ − ci2m−1
n,i‖v‖

2
2 ≤ m−1

n,i〈H
i
nv, v〉Rn ≤ ci3‖v‖2n,i∗

where

‖v‖2i,n∗ = m−1
n,i(‖∆

i
nv‖2Rn + ‖(η̄in)

1
2
×v‖2Rn + ‖v‖2Rn).

This is a coercivity bound used to control the eigenvectors as n → ∞. Lemma 5.7 estab-

lishes convergence in the sense of distributions, i.e., if fn ∈ L∗n,i is such that fn → f and

∆i
nfn → f ′ weakly in L2 then for any φ ∈ C∞c

〈φ,H i
nfn〉L2 → (φ,H i

βf).

Lastly Lemma 5.8 ensures that the eigenvectors of H i
n contain a subsequence converging to

those of H i: If fn ∈ L∗n,i, ‖f‖2n,i∗ ≤ c <∞, and ‖f‖2L2 = 1 then there exists a subsequence

fnk such that fnk →L2 f ∈ L∗ and 〈φ,H i
nk
fnk〉L2 → (φ,H i

βf) for all φ ∈ C∞c .

We want to study the smallest eigenvalue of

Hn =
µn,pµn,qI −Xp

nX
q
n

σ2
n,pσ

2
n,q

=
µn,pI −Xp

n

σn,p

Xq
n

σ2
n,qσn,p

+
µn,p

σ2
n,pσn,q

µn,qI −Xq
n

σn,q

=
µn,q

σ2
n,qσn,p

Hp
n(I − σn,q

µn,q
Hq
n) +

µn,p
σ2
n,pσn,q

Hq
n

= anH̄
p
n + bnH̄

q
n −

m2
n,pm

2
n,q

m4
nσn,pσn,q

H̄p
nH̄

q
n,

where

H̄ i
n =

m2
n

m2
n,i

H i
n, mn =


(

µq
σ2
n,qσn,p

m2
n,p +

µp
σ2
n,pσn,q

m2
n,q

)
mn,pmn,q

µq
σ2
n,qσn,p

mn,q +
µp

σ2
n,pσn,q

mn,p


1
3
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and

an =
m2
n,pµn,q

m2
nσ

2
n,qσn,p

, bn =
m2
n,qµn,p

m2
nσ

2
n,pσn,q

.

This choice of mn ensures the proper scaling for the convergence we need below.

In the next section we determine the limiting operator of Hn in the sense above. The

product term H̄p
nH̄

q
n prevents us from directly applying Theorem 5.1 in [51], so instead

we will follow the proof of that Theorem, stating and proving Lemmas analogous to those

above.

4.2.4 Convergence

To begin we first establish analogous almost sure bounds to those above. We have

H̄ i
nv = −∆n∆∗nv +

(
∆nȳ

i
n,1

)
× v +

1

2

(
∆nȳ

i
n,2

)
× Tnv +

1

2
T ∗n
(
∆nȳ

i
n,2

)
× v

where

∆n = mn(I − T ∗n),

∆nȳ
i
n,j = η̄in,j + ∆nw̄

i
n,j ,

η̄in,j =
m2
n

m2
n,i

ηin,j , w̄in,j =
mn

mn,i
win,j ,

i.e.,

(ȳin,j)k =
1

mn

k∑
i=1

(η̄in,j)k + (w̄in,j)k =
mn

mn,i
(yin,j)k.

Noting that by hypothesis

mn = O(mn,p) = O(mn,q) = O(n1/3),

it follows easily from (4.3) and (4.4) that we can reduce to subsequences as above such that

|(∆nw̄
i
n,j)k| ≤ mn

√
εη̃n,k + cε, (4.6)

η̄in,j,k ≤ 2m2
n, cη1η̃ ≤ η̄

i
n,1,k + η̄in,2,k ≤ c

η
2η̃, (4.7)
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and the processes defined by

ȳin,j(x) ≡ (ȳin,j)bxmnc1xmn ∈ [0, n]

are convergent in the Skorokhod topology on D[0,∞), where η̃n,k = k/mn and where we

have used the same notation for the constants as in (4.4), though they may be different

here. With the bounds (4.6)–(4.7) in hand, the proofs of Lemmas 5.6–5.8 in [51] apply to

H̄ i
n without change, a fact we will use below.

If we now let ȳn,j =
an
cn
ȳpn,j +

bn
cn
ȳqn,j where

cn = an + bn =
(
√
np+

√
nq)2

(
(
√
n+
√
q)2√np+ (

√
n+
√
p)2√nq

)
(
√
n+
√
p)4(
√
n+
√
q)4

, (4.8)

then by our choice of mn and using the independence of the yi, it follows from [51], Section

6, that there is a Brownian motion Bx such that

ȳn,1(x) + ȳn,2(x)→ x2

2
+

2√
Cβ

Bx,

C = lim
n→∞

(
m3
n

m3
n,p

a2
n

c2
n

+
m3
n

m3
n,q

b2n
c2
n

)−1

= 1 + lim
n→∞

p(
√
n+
√
p)2 + q(

√
n+
√
q)2

√
pq
(
(
√
n+
√
p)2 + (

√
n+
√
q)2
) , (4.9)

in law with respect to the Skorokhod topology on D[0,∞). As already noted, we can reduce

to a further subsequence such that this convergence holds almost surely on some probability

space. We now have a candidate limiting operator:

Hn → c

(
− d2

dx2
+ x+

2√
Cβ

B′x

)
= cHβ0 , β0 = Cβ, c = lim cn,

the idea being that c−1
n

(
anH̄

p
n + bnH̄

q
n

)
→ Hβ0 and the product term H̄p

nH̄
q
n vanishes in

the limit.

In the following lemma we let L∗n be the analogue of the discrete spaces already defined

above for our new scaling term, e.g., L∗n is the space of step functions of the form

f =

n∑
k=1

ckχ[ k−1
mn

, k
mn

]
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and Pn denotes the projection from L2 onto this space.

Lemma 4.2.1. Let fn ∈ L∗n be such that fn → f and ∆nfn → f ′ weakly in L2. Then for

all φ ∈ C∞c
〈φ,Hnfn〉L2 = 〈Pnφ,Hnfn〉L2 → (φ, cHβ0f).

proof. The bounds (4.6)–(4.7) can be extended additively to anH̄
p
n+bnH̄

q
n and the proof of

Lemma 5.7 in [51] goes through without change to show that under the hypotheses above

〈φ, (anH̄p
n + bnH̄

q
n)fn〉L2 → (φ, cHβ0f). (4.10)

Next,
m2
n,pm

2
n,q

m4
nσn,pσn,q

= O
(
m−2
n

)
,

so the proof of Lemma 4.2.1 reduces to showing

m−2
n 〈φ, H̄p

nH̄
q
nfn〉L2 = m−2

n 〈H̄p
nPnφ,−∆n∆∗nfn〉L2 +m−2

n 〈H̄p
nPnφ, H̄

q
nfn + ∆n∆∗nfn〉L2 → 0.

First note that for g ∈ L2, Tng → g in L2 and likewise for T ∗n . Then

〈g, Tnfn〉L2 = 〈T ∗ng, fn〉L2 → 〈g, f〉L2

so Tnfn → f weakly and likewise for T ∗nfn. Similarly TnT
∗
nfn → f weakly. Thus

(T ∗n − I)(I − Tn)fn → 0

weakly. Next observe that

〈g,∆n(T ∗n − I)(I − Tn)fn〉 = 〈g, (I − T ∗n)(Tn − I)∆∗nfn〉 = 〈(T ∗n − I)(I − Tn)g,∆∗nfn〉

and (T ∗n − I)(I − Tn)g → 0 in L2. We also have ∆∗nfn → −f ′ weakly. Thus

∆n(T ∗n − I)(I − Tn)fn → 0

weakly as well and Lemma 5.7 in [51] now implies

m−2
n 〈H̄p

nPnφ,−∆n∆∗nfn〉L2 = 〈φ, H̄p
n(T ∗n − I)(I − Tn)fn〉L2 → 0.
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For the terms

〈m−2
n H̄p

nPnφ, H̄
q
nfn + ∆n∆∗nfn〉L2

we note that from the proof of Lemma 5.7 in [51] we have the following: If gn ∈ L∗n is such

that gn is bounded uniformly independent of n, gn and ∆ngn both have supports that are

contained in a finite interval I for all n, and both are convergent in L2 with

gn
L2

→ g and ∆ngn
L2

→ g′,

then

〈gn, H̄q
nfn + ∆n∆∗nfn〉L2 → (g, H̄qf + f

′′
)

for all fn as above. Thus if we show that gn = m−2
n H̄p

nPnφ satisfies the above hypothesis

and gn → 0 the proof will be complete.

The existence of I comes from φ ∈ C∞c and uniform boundedness follows easily from

(4.6) and (4.7) together with the compact support and uniform boundedness of Pnφ.

To control

∆nm
−2
n H̄p

nPnφ

we first consider ∆n(−m−2
n ∆n∆∗nPnφ) = (I −T ∗n)(T ∗n − I)∆∗nPnφ. By the arguments above

this converges to 0 in L2. For the potential term

∆nm
−2
n

((
∆nȳ

p
n,1

)
×
Pnφ+

1

2

(
∆nȳ

p
n,2

)
×
TnPnφ+

1

2
T ∗n

(
∆nȳ

p
n,2

)
×
Pnφ

)
(4.11)

= (I − T ∗n)

((
(I − T ∗n)ȳpn,1

)
×
Pnφ+

1

2

(
(I − T ∗n)ȳpn,2

)
×
TnPnφ

+
1

2
T ∗n

(
(I − T ∗n)ȳpn,2

)
×
Pnφ

)
,

we note that ȳpn,j(x) are locally bounded and convergent a.e. This combined with the

compact support of Pnφ implies the ȳpn,j(x) converge locally in L2, and by the arguments

above regarding Tn we find that the above converges to 0 in L2. That m−2
n H̄p

nPnφ
L2

→ 0

follows similarly.
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Lemma 4.2.2. Define the following norm on Rn:

‖v‖2∗n = m−1
n (‖∆nv‖2Rn + ‖(η̃n)

1
2
×v‖2Rn + ‖v‖2Rn).

Then we have constants Ck > 0 and N > 0 such that for all n > N

C1‖v‖2n∗ − C2m
− 1

2
n ‖v‖Rn

√
‖v‖2n∗ − C3m

−1
n ‖v‖2Rn ≤ 〈Hnv, v〉L2 . (4.12)

proof. We have by definition

H̄ i
nv = −∆n∆∗nv +

((
η̄in,1

)
× v +

1

2

(
η̄in,2

)
× Tnv +

1

2
T ∗n
(
η̄in,2

)
× v

)
+

((
∆nw̄

i
n,1

)
× v +

1

2

(
∆nw̄

i
n,2

)
× Tnv +

1

2
T ∗n
(
∆nw̄

i
n,2

)
× v

)
= Aiv +Biv + Civ.

So letting

dn =
m2
n,pm

2
n,q

m4
nσn,pσn,q

,

we have

an〈H̄p
nv, v〉+ bn〈H̄q

nv, v〉 −
m2
n,pm

2
n,q

m4
nσn,pσn,q

〈H̄p
nv, H̄

q
nv〉

= an(〈(Ap +Bp)(I − dna−1
n (Aq +Bq))v, v〉) + bn〈(Aq +Bq)v, v〉 (4.13)

+ dn (〈Cqv, (Ap +Bp)v〉+ 〈Cpv, (Aq +Bq)v〉+ 〈Cqv, Cpv〉) (4.14)

+ an〈Cpv, v〉+ bn〈Cqv, v〉.

We first bound (4.14) and then (4.13). We have from (4.6)

m−1
n ‖∆i

nw̄n,j,kvk‖ ≤ ‖
√
εη̃n,k + cεvk‖. (4.15)
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Then for m−2
n 〈Cqv, Cpv〉 we have

m−1
n ‖Civ‖ ≤ ‖

√
εη̃n,k + cεvk‖+

1

2
‖∆i

nw̄
i
n,2,kTnvk‖+

1

2
‖T ∗n∆i

nw̄
i
n,2,kvk‖

= ‖
√
εη̃n,k + cεvk‖+

1

2
‖∆i

nw̄
i
n,2,kvk+1‖+

1

2
‖T ∗n∆i

nw̄
i
n,2,kvk‖

≤ ‖
√
εη̃n,k + cεvk‖+

1

2
‖
√
εη̃n,k + cεvk+1‖+

1

2
‖T ∗n∆i

nw̄
i
n,2,kvk‖

≤ ‖
√
εη̃n,k + cεvk‖+

1

2
‖
√
εη̃n,k+1 + cεvk+1‖+

1

2
‖
√
εη̃n,k−1 + cεvk−1‖

≤ 2‖
√
εη̃n,k + cεvk‖

and so

|m−2
n 〈Cqv, Cpv〉| ≤ 4‖

√
εη̃n,k + cεvk‖2 = 4ε‖

√
η̃n,kvk‖2 + cε‖v‖2

≤ 4εmn‖v‖2∗n + cε‖v‖2Rn . (4.16)

For the 〈A,C〉 terms,

m−1
n ‖Aiv‖ = ci‖(I − T ∗n)∆∗nv‖ ≤ 2ci‖∆nv‖

for constants ci > 0, so we have

m−1
n ‖Aiv‖ ≤ cA‖∆nv‖

for some cA > 0. Thus

m−2
n |〈Cqv,Apv〉| ≤ 2‖

√
εη̃n,k + cεvk‖cA‖∆nv‖

≤ 2cA(
√
εmn‖v‖2n∗ +

√
cε‖v‖)

√
mn‖v‖2n∗

= 2cA

(√
εmn‖v‖2n∗ +

√
cε‖v‖Rn

√
mn‖v‖2n∗

)
, (4.17)

and similarly for m−2
n 〈Aqv, Cpv〉.

For the 〈B,C〉 terms note that

m−2
n |(∆nw

i
n,j)k| ≤ m−1

n

√
εη̃ + cε ≤

√
ε

√
m−2
n η̃ +m−1

m,q

√
cε ≤ c1

√
ε+m−1

m,q

√
cε.
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By Cauchy-Schwarz and (4.7) we have

|m−2
n 〈Cqv,Bpv〉| ≤ c2(c1

√
ε+m−1

n

√
cε)
∑

(η̃n)kv
2
k

≤ c3(c1

√
ε+m−1

n

√
cε)mn‖v‖2n∗ (4.18)

and likewise for m−2
n 〈Cpv,Bqv〉.

For the remaining noise terms, we have from the proof of Lemma 5.6 in [51] that

〈Civ, v〉 ≥ −c4

√
εmn‖v‖2n∗ − c5(ε)‖v‖2Rn .

For (4.13), first we note that from the same Lemma in [51] using (4.7) we have

〈(Ap +Bp)v, v〉 ≥ 0.

After some algebra we find

dn
an

=

√
q
n

(1 +
√

q
n)2

m−2
n ≤

1

4
m−2
n .

By definition,

m−2
n 〈(Ap +Bp)v, v〉 =

∑
(m−2

n (η̄pn,1)k − 2)v2
k +m−2

n (η̄pn,2)k + 2)vkvk+1

≤
∑

(m−2
n (η̄pn,2)k + 2)vkvk+1

≤ 4‖v‖2

using (4.7) and Cauchy-Schwarz. Thus

dna
−1
n 〈(Ap +Bp)v, v〉 ≤ ‖v‖2

and so

I − dna−1
n (Ap +Bp)

is Hermitian with spectrum contained in [0, 1]. Thus

T ≡ (Ap +Bp)(I − dna−1
n (Ap +Bp)),



73

being the product of two Hermitian, nonnegative matrices has only real, nonnegative eigen-

values (though it need not be normal). Then using standard results (see e.g. [35], Chapter

1 and [57]) on the numerical range of T ,

{〈Tv, v〉 : ‖v‖ = 1},

we see that 〈Tv, v〉 ≥ −‖v‖2. Thus

〈(Ap +Bp)(I − dna−1
n (Ap +Bp))v, v〉 ≥ −‖v‖2. (4.19)

Lastly, from [51], Lemma 5.6, we know

〈(Aq +Bq)v, v〉 ≥ c6mn‖v‖2n∗ − c7‖v‖2.

Noting that an, bn, and dn are convergent, we now have constants c8, c9, c10(ε), c11(ε), c12(ε) >

0 such that

an〈H̄p
nv, v〉+ bn〈H̄q

nv, v〉 − dn〈H̄p
nv, H̄

q
nv〉 (4.20)

≥ (c8 − c9O(ε)− c10(ε)m−1
n )mn‖v‖2n∗ − c11(ε)‖v‖

√
mn‖v‖2n∗ − c12(ε)‖v‖2.

Taking ε small and then n large establishes the lemma.

Lemma 4.2.3. Suppose fn ∈ L∗n with ‖fn‖2∗n ≤ c <∞ and ‖fn‖L2 = 1. Then there exists

f ∈ L∗ and a subsequence fnk such that fnk
L2

→ f and for all φ ∈ C∞c we have

〈φ,Hnkfnk〉L2 → (φ, cHβ0f).

proof. The proof is that same as that of Lemma 5.8 in [51] and we omit it.

Let λ̄n,0 and vn,0 be the smallest eigenvalue and corresponding eigenvector of Hn such

that ‖vn,0‖2L2 = m−1
n ‖vn,0‖2Rn = 1, and let Λ0 and f0 be the same for Hβ0 . To show that

λ̄n,0 → cΛ0 we can proceed exactly as in [51], repeating the arguments for completeness.

Suppose lim inf λ̄n,0 <∞. Lemma 4.2.2 shows that λ̄n,0 is uniformly bounded below so

there exists a subsequence such that λ̄nk,0 → lim inf λ̄n,0. Lemma 4.2.2 now implies that

‖vnk,0‖
2
n∗ are uniformly bounded, Lemma 4.2.3 then implies that a further subsequence

converges to some f ∈ L∗ as in Lemma 4.2.1, and so Lemma 4.2.1 implies that for this
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further subsequence

〈Pnφ,Hnkvnk,0〉L2 → (φ, cHβ0f).

Then it follows that
(φ, cHβ0f)

〈f, f〉L2

= lim inf λ̄n,0
〈φ, f〉L2

〈f, f〉L2

for all φ ∈ C∞c . Thus

lim inf λ̄n,0 ≥ cΛ0.

To see lim sup λ̄n,0 ≤ cΛ0, let f ε ∈ C∞c be such that ‖f ε − f0‖2∗ < ε. Then by the

minmax principle and Lemma 4.2.1,

lim sup λ̄n,0 ≤ lim sup
n→∞

〈Pnf ε, HnPnf
ε〉L2

〈Pnf ε, Pnf ε〉L2

(4.21)

=
(f ε, cHβ0f

ε)

〈f ε, f ε〉L2

.

Letting ε→ 0 we have

lim sup λ̄n,0 ≤
(f0, cHβ0f0)

〈f0, f0〉L2

= cΛ0.

Noting that by definition

−λ̄n,0 = cn
λn,0 − µn

σn
,

what we have then is that for every subsequence of {λn,0} there exists a probability space

and a further subsequence along which

λn,0 − µn
σn

→ −Λ0

almost surely. Recalling that −Λ0 ∼ TWβ0 , Theorem 4.1.1 obtains.

4.3 Some remarks

The reader may note that contrary to the approach in the classical case, the framework in

terms of a limiting operator allows us to avoid determining the eigenvalue densities for finite

n, which, depending on one’s point of view can be either an advantage or disadvantage to

the approach.

Although Theorem 4.1.1 does not tell us about the largest eigenvalue of the product



75

of two independent Wishart matrices, it does suggest some interesting questions regarding

the classical ensembles. For example, in [13] the authors determine the limiting empirical

spectral distribution for a product of independent Wisharts, the limit depending on the

ratio of the two parameters in the product. The authors there conjecture that the limiting

distribution of the largest eigenvalue of such a product is a Tracy-Widom law. One can

then ask the following: If the limit does indeed follow a Tracy-Widom law TWβ, what is

β, and does it depend on the parameters in a way similar to that in Theorem 4.1.1? Much

is still unknown about the full family of TWβ distributions and it would be of interest to

see them arise for β 6= 1, 2, 4 in the context of the classical ensembles.
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Chapter 5: Conclusion

The above papers are examples of how one can solve problems in probability using func-

tional analytic tools and intuition. Here we have only seen functional analytical ideas

applied to probability, but in fact there is much work where the direction is reversed and

probabilistic tools are used to solve problems in functional analysis. One particular area

that seems to me to offer a wealth of possibilities in both directions is the general theory of

random operators. Of course that is just one example of a still largely undeveloped subject

where probability and functional analysis interact, and it is my hope that the work here

helps to demonstrate the rich possibilities when these two fields are considered together.
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