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Chapter 1: INTRODUCTION

Semi-supervised clustering aims to improve clustering performance with the help of

user-provided side information. One of the most studied types of side information is

pairwise constraints, which include must-link and cannot-link constraints specifying that

two points must or must not belong to the same cluster. A number of previous studies

have demonstrated that, in general, such constraints can lead to improved clustering

performance [2,3,4]. However, if the constraints are selected improperly, they may also

degrade the clustering performance [9, 11]. Moreover, obtaining pairwise constraints

typically requires a user to manually inspect the data points in question, which can be

time consuming and costly. For example, for document clustering, obtaining a must-link

or cannot-link constraint requires a user to potentially scan through the documents in

question and determine their relationship, which is feasible but costly in time. For those

reasons, we would like to optimize the selection of the constraints for semi-supervised

clustering, which is the topic of active learning.

While active learning has been extensively studied in supervised learning [7, 12, 13,

14, 16, 21], the research on active learning of constraints for semi-supervised clustering

is relatively limited [2,11,15,19,26]. Most of the existing work on this topic has focused

on selecting an initial set of constraints prior to performing semi-supervised clustering

[2,11,19,26]. This is not suitable if we wish to iteratively improve the clustering model

by actively querying the user.
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In this thesis we consider active learning of constraints in an iterative framework.

Specifically, in each iteration we determine what is the most important information to-

ward improving the current clustering model and form queries accordingly. The re-

sponses to the queries (i.e., constraints) are then used to update (and improve) the clus-

tering. This process repeats until we reach a satisfactory solution or we reach the max-

imum number of queries allowed. Such an iterative framework is widely used in active

learning for supervised classification [12,13,14,16], and has been generally observed to

outperform non-iterative methods where the whole set of queries is selected in a single

batch.

We focus on a general approach based on the concept of neighborhoods, which has

been successfully used in a number of previous studies on active acquisition of con-

straints [2,15,19]. A neighborhood contains a set of data points that are known to belong

to the same cluster according to the constraints and different neighborhoods are known

to belong to different clusters. Simply put, neighborhoods can be viewed as containing

the “labeled examples” of different clusters. Well-formed neighborhoods can provide

valuable information regarding what the underlying clusters look like. Analogous to

supervised active learning, an active learner of constraints will then seek to select the

most informative data point to include in the neighborhoods. Once a point is selected,

we query the selected point against the existing neighborhoods to determine to which

neighborhood it belongs.

Specifically, our approach builds on the classic uncertainty-based principle. Here

we define the uncertainty in terms of the probability of the point belonging to differ-

ent known neighborhoods and propose a novel non-parametric approach using random
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forest [5] for estimating the probabilities. Different from supervised learning where

each point only requires one query to obtain its label, in semi-supervised clustering, we

can only pose pairwise queries and it typically takes multiple queries to determine the

neighborhood of a selected point. In general, points with higher uncertainty will require

larger number of queries. This suggests that there is a trade-off between the amount of

information we acquire by querying about a point, and the expected number of queries

(cost) for acquiring this information. We propose to balance this trade-off by normal-

izing the amount of uncertainty of each data point by the expected number of queries

required to resolve this uncertainty, and as such, select queries that have the highest rate

of information.

Note that an obvious alternative approach would be to evaluate all potential pairs

and select the one that has the highest uncertainty regarding wether they are must-linked

or cannot-linked. This idea has previously been explored by Huang et al. [15] in the

context of document clustering. In this thesis, we note a critical issue with this approach

that it only considers the pairwise uncertainty of the first query, and fails to measure

the benefit of the ensuing queries that are required to determine the neighborhood for a

point. Our method, instead, focuses on the point-based uncertainty, allowing us to select

the queries according to the total amount of information gained by the full sequence of

queries as a whole.

We empirically evaluate the proposed method on eight datasets of different com-

plexity. The evaluation results demonstrate that our method achieves consistent and

substantial improvements over three competing methods.

The remainder of the thesis is organized as follows. Chapter 2 presents a brief review
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of the related work on active learning of constraints. Chapter 3 introduces our general

active learning framework and the proposed method within the framework. Experimen-

tal evaluations are presented in Chapter 4. Finally, we conclude the thesis and discuss

future directions in Chapter 5.
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Chapter 2: LITERATURE REVIEW

Active learning has been studied extensively for supervised classification problems [7,

12, 13, 14, 16, 21]. In contrast, the research on active learning for constraint-based clus-

tering has been limited. As mentioned previously, most of the existing research studied

the selection of a set of initial constraints prior to performing semi-supervised cluster-

ing. Specifically, the first study on this topic was conducted by Basu et al. [2]. They

proposed a two-phase approach, which we refer to as the Explore and Consolidate (E &

C) approach. The first phase (Explore) incrementally selects points using the farthest-

first traversal scheme and queries their relationship to identify c disjoint neighborhoods,

where c is the total number of clusters. The second phase (Consolidate) iteratively

expands the neighborhoods, where in each iteration it selects a random point outside

any neighborhood and queries it against the existing neighborhoods until a must-link is

found. More recently, Mallapragada et al. [19] proposed an improvement to Explore

and Consolidate named Min-Max, which modifies the Consolidate phase by choosing

the most uncertain point to query (as opposed to randomly).

Xu et al. [26] proposed to select constraints by examining the spectral eigenvec-

tors of the similarity matrix, which is unfortunately limited to two-cluster problems.

In [1, 11], constraints are selected by analyzing the co-association matrix (obtained by

applying cluster ensembles to the data). A key distinction of our method from the above

mentioned work is that we iteratively select the next set of queries based on the current
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clustering assignment in order to improve the solution. This is analogous to supervised

active learning where data points are selected iteratively based on the current classifica-

tion model such that the model can be improved most efficiently [12, 13, 14, 16].

More relevant to our work is an active learning framework presented by Huang et

al. [15] for the task of document clustering. Specifically, this framework takes an it-

erative approach that is similar to ours. In each iteration, their method performs semi-

supervised clustering with the current set of constraints to produce a probabilistic clus-

tering assignment. It then computes, for each pair of documents, the probability of

them belonging to the same cluster and measures the associated uncertainty. To make

a selection, it focuses on all unconstrained pairs that has exactly one document already

“assigned to” one of the existing neighborhoods by the current constraint set, and among

them identifies the most uncertain pair to query. If a “must-link” answer is returned, it

stops and moves onto the next iteration. Otherwise, it will query the unassigned point

against the existing neighborhoods until a “must-link” is returned.

While Huang’s method is developed specifically for document clustering, one could

potentially apply the underlying active learning approach to handle other types of data by

assuming appropriate probabilistic models. We would like to highlight a key distinction

between Huang’s method and our work, that is Huang’s method makes the selection

choice based on pairwise uncertainty whereas we focus on the uncertainty of a point

in terms of which neighborhood it belongs to. This difference is subtle, but important.

Pairwise uncertainty captures only the relationship between the two points in the pair.

Depending on the outcome of the query, we may need to go through a sequence of

additional queries. Huang’s method only considers the pairwise uncertainty of the first
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query, fails to measure the benefit of the ensuing queries. This is why our method instead

focuses on point-based uncertainty, which measures the total amount of information

gained by the full sequence of queries as a whole. Furthermore, our method also takes

into account the expect number of queries to resolve the uncertainty of a point, which

has not been considered previously.

Finally, we want to mention another line of work that uses active learning to facilitate

clustering [22, 25] where the goal is to cluster a set of objects by actively querying the

distances between one or more pairs of points. This is different from the focus of this

thesis, where we only request pairwise must-link and cannot-link constraints, and do not

require the user to provide specific distance values.
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Chapter 3: METHODOLOGY

The problem addressed in this thesis is how to effectively choose pairwise queries in

order to produce an accurate clustering assignment. Through active learning, we aim to

achieve query efficiency, i.e., we would like to reduce the number of queries/questions

asked in order to achieve a good clustering performance. We view this as an iterative

process such that the decision for selecting queries should depend on what has been

learned from all the previously formulated queries. In this section, we will introduce

our proposed method. Below we will begin by providing a precise formulation of our

active learning problem.

3.1 Problem Formulation

Formally, we define the problem as follows: given a set of data instancesD = {x1, · · · ,xn},

we assume that there exists an underlying class structure that assigns each data instance

to one of the c classes. We denote the unknown labels by y = {y1, · · · , yn}, each label

yi ∈ Y , {1, · · · , c}, ∀i ∈ {1, · · · , n}. In this setting, we cannot (directly) observe

these labels. Instead, information can be obtained through query of the form: Do in-

stances xi and xj belong to the same class? We denote a query by a pair of instances

(xi,xj), and the answer to the query by lij ∈ A , {ML,CL}. In particular, the label

“ML” (“CL”) is returned if yi = yj (yi 6= yj). In each iteration, we need to select one or
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more queries based on D and the current set of constraints C.

Note that must-link and cannot-link constraints satisfy the following properties:

• (xi,xj,ML) ∧ (xi,xk,ML)⇒ (xj,xk,ML)

• (xi,xj,ML) ∧ (xi,xk, CL)⇒ (xj,xk, CL)

Based on these properties, we introduce the concept of neighborhood, which is in-

strumental in the design of many existing methods for active learning of pairwise con-

straints [2, 15, 19].

3.2 A Neighborhood-based Framework

Definition 1. A neighborhood contains a set of data instances that are known to belong

to the same class (i.e., connected by must-link constraints). Further more, different

neighborhoods are connected by cannot-link constraints and thus are known to belong

to different classes.

Given a set of constraints denoted by C, we can identify a set of l neighborhoods

N = {N1, · · · , Nl}, such that l ≤ c and c is the total number of classes. Consider a

graph representation of the data where vertices represent data instances and edges rep-

resent must-link constraints. The neighborhoods, which are denoted by Ni ⊂ D, i ∈

{1, · · · , l}, are simply the connected components of the graph that have cannot-link

constraints between one another. Note that if there exists no cannot-link constraints,

we can only identify a single known neighborhood even though we may have multiple

connected components because some connected components may belong to the same
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X1 X2

X3 X4

X1 X2

X3 X4

(a) (b)

Figure 3.1: Two examples to show how to identify neighborhoods from a set of pairwise
constraints.

class. In such cases, we will treat the largest connected component as the known neigh-

borhood.

Figure 3.1 illustrates two examples that explain how we can form the neighborhoods

from a set of pairwise constraints. The nodes denote data instances, and the solid lines

denote must-link constraints while the dashed lines denote cannot-link constraints. Note

that in our definition, each neighborhood is required to have a cannot-link constraint

with all other neighborhoods. Therefore, Figure 3.1(a) contains three neighborhoods:

{x1,x2}, {x3}, and {x4}, whereas Figure 3.1(b) contains only two known neighbor-

hoods, which can be either {x1,x2}, {x3} or {x1,x2}, {x4}.

One way to interpret the neighborhoods is to view them as the “labeled examples”

of the underlying classes because instances belonging to different neighborhoods are

guaranteed to have different class labels, and instances of the same neighborhood must

belong to the same class. A key advantage of using the neighborhood concepts is that
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by leveraging the knowledge of the neighborhoods, we can acquire a large number of

constraints via a small number of queries. In particular, if we can identify the neighbor-

hood of an instance x, we can immediately infer its pairwise relationship with all other

points that are currently confirmed to belong to any of the existing neighborhoods. This

naturally motivates us to consider an active learning strategy that incrementally expands

the neighborhoods by selecting the most informative data point and querying it against

the known neighborhoods. We summarize this strategy in Algorithm 1.

Briefly, the algorithms begins by initializing the neighborhoods by selecting a ran-

dom point to be the initial neighborhood (line 1). In each iteration, given the current

set of constraints C, it performs semi-supervised clustering on D to produce a clustering

solution π (line 3). A selection criterion is then applied to select the “most informative”

data point x∗ based on the current set of neighborhoods and the clustering solution π

(line 4). The selected point x∗ is then queried against each existing neighborhood Ni

to identify where x∗ belongs, during which the constraint set C is updated (lines 5-12).

In Line 5, we go through the neighborhoods in decreasing order based on p(x∗ ∈ Ni),

i ∈ {1, · · · , l}, i.e. the probability of x∗ belonging to each neighborhood, which is

assumed to be known. This query order will allow us to determine the neighborhood

of x∗ with the smallest number of queries. This process is repeated until we reach the

maximum number of queries allowed (line 13).

In this work, we consider the semi-supervised clustering algorithm as a black-box

and any existing algorithm can be used here. The key question we aim to answer is how

to select the “most informative” instance to query against, i.e., the design of the function

MostInformative in line 4. In the remaining part of this section, we will focus on this
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question and describe our proposed solution.

Algorithm 1 The Neighborhood-based Framework
Input: A set of data points D; the total number of classes c; the maximum number of
pairwise queries T .
Output: a clustering of D into c clusters.

1: Initializations: C = ∅; N1 = {x}, where x is a random point inD;N = N1; l = 1;
t = 0;

2: repeat
3: π = Semi-Supervised-Clustering(D, C);
4: x∗ = MostInformative (D, π, N );
5: for each Ni ∈ N in decreasing order of p(x∗ ∈ Ni) do
6: Query x∗ against any data point xi ∈ Ni;
7: t++;
8: Update C based on returned answer;
9: if (x∗,xi,ML) then Ni = Ni ∪ {x∗}; break;

10: end for
11: if no must-link is achieved
12: then l ++; Nl = {x∗}; N = N

⋃
Nl;

13: until t > T
14: return Semi-supervised-clustering(D, C)

3.3 Selecting the Most Informative Instance

Given a set of existing neighborhoods, we would like to select an instance such that

knowing its neighborhood will allow us to gain maximal information about the underly-

ing clustering structure of the data. Our method is based on the following key observa-

tion. If we can predict with high certainty to which neighborhood an instance belongs

based on our current understanding of the clustering structure, querying about that in-

stance will not lead to any gain of information. Similar observations have been used
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to motivate the widely used uncertainty-based sampling principle for active learning of

classifiers [21].

To apply uncertainty-based sampling for selecting the most informative instance, we

need to address a number of important issues. First, how can we reliably measure the

uncertainty of a data point? Second, we can only ask pairwise queries, and it may take

multiple queries to resolve the uncertainty about a data point. How can we take this into

consideration in our decision. Below we present our approach for dealing with these

two issues.

Measuring uncertainty

In uncertainty-based sampling for supervised learning, an active learner queries the in-

stance about which the label uncertainty is maximized. Numerous studies have investi-

gated different approaches for measuring uncertainty given probabilistic predictions of

the class labels [21]. In our context, one can take a similar approach and measure the

uncertainty of each data instance belonging to different clusters.

For example, one could also take a model-based clustering approach such as Mix-

ture of Gaussians, which will allow us to produce a probabilistic assignment of each

instance to different Gaussian clusters and then compute the associated uncertainty in

cluster assignment using measures such as entropy. While this may appear to be a natu-

ral approach, there are some potential issues. First, this approach can be overly sensitive

to the current clustering solution. An ill-formed clustering solution will lead to meaning-

less models and poor choices of queries. Furthermore, it is also sensitive to the modeling
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assumption. If the clusters can not be properly represented using the assumed model,

this approach will not provide reliable uncertainty estimation.

To address the first issue, we will not estimate the probability of an instance belong-

ing to each of the learned clusters. Instead, we estimate the probability of it belonging

to each of the existing “labeled” neighborhoods. In particular, we will estimate the

neighborhood assignment probability of a particular instance by focusing on its rela-

tionship with only the labeled instances (those with known neighborhood assignments).

All other instances are ignored for this purpose because their cluster assignment may

be inaccurate and misleading. As such, we reduce the sensitivity of our method to poor

clustering results. Since different neighborhoods contain “labeled” examples of differ-

ent underlying clusters, this will allow us to more accurately estimate the probability of

an instance belonging to the true underlying clusters. Given the neighborhood assign-

ment probability, we then compute the uncertainty of an instance using a measure such

as entropy1.

To address the second issue, i.e., the sensitivity to the probabilistic assumptions,

we will avoid making such assumptions at all. Instead, our approach estimates the

probability of each instance belonging to each neighborhood using a similarity-based

approach where the similarity measure is discriminatively learned under the supervision

of the current clustering solution. That is, for instances belonging to different clusters

(according to the current solution) their learned similarity will likely to be low and vice

1Note that the choice to use entropy here is not critical. Other uncertainty or certainty (to be mini-
mized) measures could potentially be used as well. For example, one could measure the certainty of a
point by the maximum probability, or by the difference between the largest and the second largest proba-
bilities.
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versa. This learning based approach allows us to transfer the knowledge that we have

learned from the constraints to the similarity measures.

Below we explain in detail how we learned the similarities and estimate the proba-

bilities.

We are given a current clustering assignment π, and a set of neighborhoods N =

{N1, ..., Nl}. Our goal is to estimate p(x ∈ Ni), i.e. for each data instance x ∈ D, the

probability of it belonging to Ni for i ∈ {1, ..., l}.

Supervised learning of similarities. We first learn a similarity measure using a random

forest based approach. In particular, we leverage the current clustering assignment π by

creating a labeled training set using π(x) as the label of x for all x ∈ D. Using this

training set, we build a random forest classifier (containing 50 decision trees) that pre-

dicts the cluster label π(x) from x. Random forest [5] is an ensemble learning algorithm

that learns a collection of decision trees. Each decision tree is trained using a randomly

bootstrapped sample of the training set and the test for each node of the tree is selected

from a random subset of the features. While one could also use other supervised classi-

fiers, we choose random forest because it is not prone to overfitting [6], and as described

below it provides a natural definition of similarities (proximities) among instances once

a random forest is built.

Given the learned random forest classifier, we compute the similarity between a pair

of instances by sending them down the decision trees in the random forest and count

the number of times they reach the same leaf, normalized by the total number of trees.

This will result in a value between zero and one, with zero for no similarity and one for

maximum similarity. Note that random forest has previously been successfully applied
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to estimating similarities between unsupervised objects [23]. In that work, a random

forest classifier is built to distinguish the observed data from synthetically generated

data, whereas our work builds the random forest classifier to distinguish the different

clusters. Because the clusters are identified by applying constraint-based clustering to

data using the constraint set C, thus the resulting proximities can be also viewed as a

supervised similarity measure learned indirectly using the constraint set C.

Estimating neighborhood probability. Given the similarity matrix M generated by

previous steps, let M(xi,xj) denote the similarity between instance xi and instance

xj . For any unconstrained data point x, we assume that its probability of belonging

to a neighborhood Ni to be proportional to the average 2 similarity between x and the

instances in Ni. More formally, we estimate the probability of an instance x belonging

to neighborhood Ni as:

p(x ∈ Ni) =

1
|Ni|

∑
xj∈Ni

M(x,xj)∑l
p=1

1
|Np|

∑
xj∈Np

M(x,xj)
(3.1)

where |Ni| indicates the number of instances in neighborhood Ni, and l is the total

number of existing neighborhoods. Note that in early stages of our algorithm, when all

neighborhoods are small, it is possible for an unconstrained data point x to have zero

average similarity with every neighborhood. In such cases, we assign equal probabilities

to all neighborhoods for x. This will essentially treat instance x as highly uncertain,

making it a good candidate to be selected by our algorithm. This behavior is reasonable

2Note that instead of average, one can also consider minimum or maximum here. We have observed
empirically that minimum and maximum tend to be more sensitive to outliers and lead to less robust
solutions.
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because it will encourage the discovery of more neighborhoods in early stages.

Finally, we measure the uncertainty of an instance by the entropy of its neighborhood

membership, which we denote H(N|x):

H(N|x) = −
l∑

i=1

p(x ∈ Ni) log2 p(x ∈ Ni). (3.2)

where l is the total number of existing neighborhoods.

Normalizing uncertainty with expected cost

Note that we query a selected instance against the existing neighborhoods to determine

to which neighborhood it belongs. Given a selected data instance, it may take multiple

pairwise queries to decide its neighborhood. In our selection criterion, we should take

this into consideration. In particular, we can consider the number of queries required to

reach a must-link as the cost associated with each data instance. To define and quantify

this cost more precisely, let’s take a closer look at the querying process.

Given a selected instance x, and the probabilities of it belonging to different neigh-

borhoods, which neighborhood should we query against first? Assume the estimated

probabilities p(x ∈ Ni) is accurate for all x ∈ D and Ni ∈ N , we should always start

by querying x against the neighborhood that has the highest probability of containing x

to minimize the total number of required queries. If a must-link is returned, we can stop

with only one query. Otherwise, one should ask the next query against the neighbor-

hood that has the next highest probability of containing x. This procedure is repeated
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until a must-link constraint is returned or we have a cannot-link constraint against all

neighborhoods, at which point a new neighborhood will be created using x.

Let q(x) denote the random variable of the total number of queries that we need to

determine the neighborhood membership of x. Assuming that the neighborhoods are

ranked based on their probability of containing x in descending order, i.e., p(x ∈ N1) ≥

p(x ∈ N2) ≥ · · · ≥ p(x ∈ Nl), where l is the total number of existing neighborhoods,

it is straightforward to show that p(q(x) = i) = p(x ∈ Ni). The expectation E [q(x)] is

thus computed by the following equation:

E [q(x)] =
l∑

i=1

i ∗ p(x ∈ Ni) (3.3)

where l is the total number of existing neighborhoods.

Algorithm 2 MostInformative(D,π, N )
Input: A set of data instances D; the cluster assignments π; A set of neighborhoods
N =

⋃l
i=1Ni;

Output: The most informative data point x∗;

1: Learn a random forest classifier onD′ = {xi, π(xi)}ni=1, and compute the similarity
matrix M ;

2: for each x ∈ D, and /∈
⋃l

i=1Ni do
3: for i = 1 to l do
4: Compute p(x ∈ Ni) using Eq. 3.1;
5: end for
6: Compute H(N|x) using Eq. 3.2;
7: Compute E [q(x)] using Eq. 3.3;
8: end for
9: Return

x∗ = argmaxx∈U
H(N|x)
E[q(x)] where U = D \

⋃l
i=1Ni
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If we consider H(N|x), the entropy of the neighborhood membership of x (defined

by Equation 3.2), as the amount of information we gain by querying about data instance

x, E [q(x)] is simply the cost for obtaining this information as measured by the num-

ber of queries consumed. Ideally we would like to maximize the gain of information,

i.e. H(N|x), and at the same time minimize the cost, i.e. E [q(x)]. However, these two

objectives are at odds and we trade-off them by selecting the instance that maximizes

the ratio between them:

x∗ = argmax
x∈U

H(N|x)
E [q(x)]

(3.4)

where U denotes the set of unconstrained instances (i.e., the set of points that do not

belong to any neighborhood). This criterion can be interpreted as selecting the instance

that has the highest rate of information per query.

So far we have described our proposed method for selecting the most informative in-

stance to query. We summarize this selection algorithm in Algorithm 2. This completes

the description of our overall algorithm which is summarized in Algorithm 1.

3.4 Run Time Analysis

In this section, we analyze the runtime of our proposed algorithm. In particular, we will

focus on Algorithm 2 since it is the core part of our active learning algorithm.

In line 1, we build a random forest classifier, whose running time is O(NTn log n)
3,

3Strictly speaking it should be O(NT dn log n), where d corresponds to the size of the random feature
subset that is considered for selecting each test. Here we drop d because it is generally much smaller than
n and can be viewed as a constant factor in this case.
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where NT is the number of decision trees in RF and n is the number of instances in the

data [6]. Once the RF classifier is built, constructing a full similarity matrix will take

O(n2). However, we do not need to estimate the full similarity matrix, instead we only

need to estimate a subset of the matrix of size m × n, where m is the total number of

points in the neighborhoods. As a result, the total runtime of line 1 is O(NTn log n +

nm).

The for-loop in line 2 is executed at most O(n) times, and the runtime of each

execution is O(m + c), where m is the total number of “labeled” instances, i.e., the

instances that are assigned to a known neighborhood. We can generally bound both m

and c by T , the total number of queries allowed to ask, because it takes at least one query

to assign an instance to a neighborhood and T is generally greater than c. Therefore we

can bound the total runtime between line 2-8 by O(nT ).

Putting it together, the total runtime of Algorithm 2 is O(NTn log n + nT ). Em-

pirically, with a non-optimized matlab implementation on an Intel 8-Core i7-2600 CPU

at 3.40GHz, the average time to select an instance to query for the largest dataset we

experimented with (i.e., Digits-389 with 3165 instances) is approximately 0.02 second

(using random forest of 50 decision trees). For significantly larger datasets with millions

of instances and thousands of features, additional strategies could be applied to scale up

our method. For example, the random forest learning step can be easily parallelized to

increase the efficiency. Another possibility would be to develop and apply an incremen-

tal semi-supervised clustering method that updates the clustering solution incrementally

when new constraints are incorporated.



21

Chapter 4: EXPERIMENTS

In this section, we empirically evaluate the performance of our proposed method in

comparison with current state of the art methods. Below we will first explain our exper-

imental setup.

4.1 Experimental Setup

Datasets

In our experiments, we use eight benchmark UCI datasets [10] that have been used in

previous studies on constraint-based clustering [2,3,4]. Out datasets include breast [20],

pen-based recognition of handwritten digits (3,8,9), ecoli, glass identification, statlog-

heart, parkinsons [18], statlog-image segmentation and wine. For the ecoli dataset, we

removed the smallest three classes, which only contain 2, 2, and 5 instances respectively.

The characteristics of the eight datasets are shown in Table 4.1.

Experimental setting

Our active learning framework assumes the availability of a constraint-based clustering

algorithm. For this purpose, we use the well-known MPCKMeans [4] algorithm, as

implemented in the WekaUT package [24]. We set the maximum number of iterations
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Table 4.1: Characteristics of the Datasets

Datasets # of Classes # of Features # of Examples
Breast 2 9 683

Digits-389 3 16 3165
Ecoli 5 7 327
Glass 6 9 214
Heart 2 13 270

Parkinsons 2 22 195
Segment 7 19 2310

Wine 3 13 178

of MPCKmeans to 200, and used default values for other parameters. Note that the

choice of this algorithm is not critical and our method can be used with any constraint-

based clustering algorithm.

When evaluating the performance of a particular method on a given dataset D, we

apply it to select up to 150 pairwise queries, starting from no constraint at all. The

queries are answered based on the ground-truth class label for the dataset. MPCKmeans

is then applied to the data with the resulting constraints (and their transitive closures).

To account for the randomness in both active learning and MPCKmeans, we repeat this

process for 50 independent runs and report the average performance using evaluation

criteria described below.

Evaluation criteria

Two evaluation criteria are used in our experiments. First, we use Normalized Mutual

Information (NMI) to evaluate the clustering assignments against the ground truth class
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labels [17]. NMI considers both the class label and clustering assignment as random

variables, and measures the mutual information between the two random variables, and

normalizes it to a zero-to-one range. In general, let C be the random variable represent-

ing the cluster assignments of instances, and K be the random variable representing the

class labels of the instances, the NMI is computed by the following equation:

NMI =
2I(C;K)

H(C) +H(K)

where I(X;Y ) = H(X) − H(X|Y ) is the mutual information between random vari-

ables X and Y . H(X) is the entropy of X , and H(X|Y ) is the conditional entropy X

given Y .

Second, we consider F-measure as another criterion to evaluate how well we can

predict the pairwise relationship between each pair of instances in comparison to the

relationship defined by the ground truth class labels [2]. F-measure is defined as the

harmonic mean of precision and recall, which are computed by the following equations:

Precision = #PairsCorrectlyPredictedInSameCluster
#TotalPairsPredictedInSameCluster

Recall = #PairsCorrectlyPredictedInSameCluster
#TotalPairsActuallyInSameCluster

F −measure = 2×Precision×Recall
Precision+Recall
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Baseline methods

To demonstrate the effectiveness of the proposed method, we first compare its perfor-

mance to a set of competing methods, including a random policy, the Min-Max approach

introduced by [19] and a variant of Huang’s method [15] to make it applicable to non-

document data types. Below we briefly explain these baseline methods.

Random. This policy selects random pairwise queries that are not included in or

implied by the current set of constraints C. It is not a neighborhood based approach, and

is a commonly used baseline for active learning studies.

Min-Max. As reviewed in Chapter 2, Min-Max is a neighborhood-based approach

that works in two phases. The first phase, Explore, builds c disjoint neighborhoods

using farthest-first traversal, where c is the total number of clusters. The second phase,

Min-Max incrementally expands the neighborhoods by selecting a point to query using

a distance-based Min-Max criterion [19].

Huang’s method. As noted in Chapter 2, the language-model based method by

Huang et al. is only applicable to document clustering because it assumes a specific lan-

guage model for each cluster. This model is used to estimate the probability of each

document belonging to different clusters. In our experiments, to apply the underlying

active learning method to general-type data, we replace the language with a discrimi-

native approach for estimating the probabilities. In particular, we train a random forest

classifier using the cluster labels as classes. We then estimate for each data point x its

probability of belonging to different clusters using the out-of-bag probabilistic predic-

tion for x. That is, we consider all decision trees in the random forest that were trained
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without using the data point x, and use them to estimate the probability of x belonging

to different clusters.

4.2 Experimental Results

This section presents the experiment results, which compare our proposed method to

the baseline methods. In the remaining discussion, we will refer to our method as the

Normalized Point-based Uncertainty (NPU) method.

Evaluation based on clustering performance

The NMI values of NPU and the baseline methods are shown in Figure 4.1. The x-axis

indicates the total number of pairwise queries and the y-axis shows the resulting clus-

tering performance (as measured by NMI) by running MPCKmeans with the constraints

returned from the queries (and their transitive closures). As mentioned previously, each

curve shows the average performance of a method across 50 independent random runs.

The error bar on each data point indicates the confidence interval (t-test at 95% signifi-

cance level). Note that we use up to 150 queries for all but two datasets, namely Breast

and Wine. For these two datasets, NPU converges before using up 150 queries, therefore

we show the results up to 100 queries.

From Figure 4.1 we can see that the constraints selected by NPU generally leads to

clustering results that are more consistent with the underlying class labels, as can be

seen by the dominating curve of NPU compared to other baseline curves. It is inter-
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Figure 4.1: The NMI values of different methods on eight datasets as a function of the
number of pairwise queries (mean and the confidence interval of t-test at 95% signifi-
cance level).
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esting to note that Random actually degrades the performance in some datasets as we

include more constraints, namely the breast, heart and wine datasets. Previous studies

on semi-supervised clustering [8,9,11] have reported similar results where randomly se-

lected constraints actually degrades the clustering performance for some datasets. This

further demonstrates the importance of selecting the right set of constraints. In com-

parison, Min-Max and Huang’s methods are generally able to improve the performance

consistently as we increase the number of queries, but their performance are dominated

by NPU in most cases.

We also note that in the early stages, the performance of the three non-random meth-

ods are fairly close. As we increase the number of queries, the performance advantage of

our method becomes more and more pronounced. This is expected because our method

make more explicit usage of the current clustering solution when selecting the queries.

As we increase the number of queries, the clustering solution will become better and

better, leading to more pronounced performance advantage of our method.

Evaluation based on pairwise relationship

F-measure focuses on how accurately we can predict the pairwise relationship between

any pair of instances. In Table 4.2, we shows the F-measure values achieved by different

methods with query sizes of 20, 40, 60, 80 and 100. For each query size, we compare

different methods against each other using paired t-test at 95%-significance level and the

best performing method(s) are then highlighted in boldface. Finally Table 4.3 provides

a summary of the win/tie/loss counts of the proposed method versus the other methods.
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This set of results are very similar to what we observe when evaluating using NMI.

When using only 20 queries, the performance of the non-random methods often do not

demonstrate statistically significant difference. However, as we increase the number of

queries, our method begins to dominate all other methods.

Table 4.2: Comparison on F-measure (mean ± std). The best performance and its com-
parable performances based on paired t-tests at 95% significance level are highlighted
in boldface.

Data Algorithm Number of queries
20 40 60 80 100

Breast Random 0.927± 0.005 0.924± 0.008 0.921± 0.010 0.916± 0.013 0.918± 0.012
Min-Max 0.934± 0.001 0.937± 0.002 0.939± 0.002 0.941± 0.002 0.946± 0.002

Huang 0.941± 0.004 0.951± 0.005 0.957± 0.004 0.963± 0.004 0.967± 0.004
NPU 0.943± 0.003 0.959± 0.005 0.972± 0.003 0.976± 0.003 0.978± 0.003

Digits-389 Random 0.762± 0.104 0.774± 0.100 0.749± 0.108 0.752± 0.107 0.752± 0.107
Min-Max 0.805± 0.080 0.788± 0.093 0.797± 0.087 0.842± 0.001 0.842± 0.002

Huang 0.814± 0.072 0.826± 0.061 0.842± 0.034 0.851± 0.002 0.853± 0.003
NPU 0.808± 0.077 0.848± 0.011 0.857± 0.013 0.870± 0.023 0.883± 0.032

Ecoli Random 0.642± 0.076 0.628± 0.050 0.700± 0.092 0.653± 0.064 0.659± 0.076
Min-Max 0.648± 0.043 0.779± 0.060 0.836± 0.009 0.851± 0.008 0.858± 0.010

Huang 0.687± 0.058 0.762± 0.069 0.801± 0.047 0.833± 0.036 0.829± 0.046
NPU 0.673± 0.032 0.798± 0.048 0.858± 0.007 0.879± 0.008 0.900± 0.007

Glass Random 0.440± 0.051 0.403± 0.033 0.410± 0.037 0.410± 0.032 0.413± 0.034
Min-Max 0.432± 0.034 0.418± 0.067 0.463± 0.059 0.484± 0.060 0.493± 0.040

Huang 0.480± 0.039 0.481± 0.042 0.476± 0.043 0.474± 0.038 0.473± 0.039
NPU 0.493± 0.036 0.492± 0.045 0.481± 0.056 0.496± 0.056 0.495± 0.043

Heart Random 0.659± 0.033 0.636± 0.035 0.612± 0.036 0.598± 0.043 0.587± 0.041
Min-Max 0.700± 0.012 0.726± 0.013 0.743± 0.015 0.760± 0.017 0.790± 0.018

Huang 0.680± 0.042 0.682± 0.064 0.709± 0.080 0.744± 0.076 0.789± 0.045
NPU 0.682± 0.046 0.725± 0.049 0.766± 0.047 0.812± 0.016 0.845± 0.014

Parkinsons Random 0.594± 0.023 0.607± 0.023 0.635± 0.032 0.657± 0.040 0.682± 0.059
Min-Max 0.593± 0.005 0.615± 0.015 0.666± 0.007 0.705± 0.010 0.747± 0.008

Huang 0.593± 0.015 0.605± 0.012 0.652± 0.024 0.694± 0.023 0.736± 0.033
NPU 0.597± 0.012 0.637± 0.031 0.695± 0.036 0.759± 0.039 0.814± 0.068

Segment Random 0.546± 0.028 0.553± 0.030 0.552± 0.030 0.548± 0.035 0.549± 0.036
Min-Max 0.571± 0.009 0.582± 0.022 0.569± 0.022 0.566± 0.015 0.569± 0.004

Huang 0.567± 0.017 0.576± 0.015 0.577± 0.013 0.573± 0.024 0.575± 0.012
NPU 0.565± 0.027 0.579± 0.017 0.581± 0.014 0.585± 0.013 0.587± 0.014

Wine Random 0.871± 0.044 0.853± 0.073 0.836± 0.102 0.843± 0.082 0.827± 0.095
Min-Max 0.909± 0.018 0.935± 0.037 0.945± 0.035 0.953± 0.010 0.959± 0.012

Huang 0.931± 0.042 0.964± 0.031 0.982± 0.012 0.988± 0.011 0.994± 0.007
NPU 0.945± 0.025 0.992± 0.008 1.000± 0.000 1.000± 0.000 1.000± 0.000
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Table 4.3: Win/tie/loss counts of NPU versus the other methods with varied numbers of
queries based on F-measure.

Algorithms
Number of queries

In All
20 40 60 80 100

Random 5/3/0 8/0/0 8/0/0 8/0/0 8/0/0 37/3/0
Min-Max 4/3/1 6/2/0 8/0/0 8/0/0 8/0/0 34/5/1

Huang 2/5/1 6/2/0 6/2/0 8/0/0 8/0/0 30/9/1
In All 11/11/2 20/4/0 22/2/0 24/0/0 24/0/0 101/17/2

Table 4.4: Number of queries to discover all c neighborhoods

Data (# of Classes)
Methods

Explore NPU
Breast (2) 1.42 2.68

Digits-389 (3) 14.22 5.50
Ecoli (5) 76.12 50.34
Glass (6) 98.90 73.94
Heart (2) 2.76 2.08

Parkinsons (2) 1.82 4.22
Segment (7) 102.98 36.92

Wine (3) 9.40 6.14

Further analysis of results

Below we provide some more in-depth analysis of the performance to understand what

are the key factors contributing to the performance advantage of our method.

With or without Explore. In the Min-Max method, the first phase is Explore, which

uses furthest first traversal to find at least one example from each neighborhood to obtain

a good “skeleton” of the clusters. Basu et al. [2] showed that given a set of c disjoint

balls (clusters) of uneven sizes, Explore is guaranteed to get at least one example from
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each cluster with a small number of queries. Our method does not use a separate Explore

stage to deliberately build c neighborhoods. Does this help or hurt our performance?

To answer this question, we consider a two-phase variant of NPU, which performs

Explore first (as used by Min-Max), followed by the NPU selection criterion. We ex-

amine this method (referred to as E & NPU) and compare it with NPU. The results are

shown in Figure 4.2, where each point in the figure represents a comparison between

the two methods using NMI on one of the eight datasets, and with one of five different

query sizes including 20, 40, 60, 80 and 100. The x-axis shows the performance of E

& NPU, and the y-axis shows the performance of NPU. We observe that most points

lie above the diagonal line, suggesting that NPU is superior to E & NPU. This indicates

that eliminating the Explore stage actually allows more efficient use of the queries. Note

that the difference is most pronounced in the areas of low NMI values, indicating they

happen in the early stages (small query sizes). This is understandable because the two

variants differ only by the initial stages.

Note that NPU can discover c neighborhoods by itself, where c is the number of

classes. Could our method be more efficient in discovering all of the neighborhoods

than Explore? We record the number of queries used before finding all c neighborhoods

for each dataset using Explore and NPU. Table 4.4 shows the average number of queries

required by each method to find c neighborhoods for each dataset. The results show that

despite the theoretical guarantees of Explore, NPU is empirically more efficient in find-

ing all neighborhoods for multi-class datasets (3 or more classes). This is possibly due

to the fact that real datasets may not have ball-shaped clusters, violating the condition

that is assumed by Explore for its theoretical guarantees.
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Figure 4.2: Comparing the performance(NMI) of NPU with and without Explore

Can our method still outperform its competitors if we put them on equal footing in

terms of the use of Explore? Figures 4.3 and 4.4 represent the comparison between our

method and Min-Max and Huang’s method when each method is applied with Explore

as the common initial stage.

From this comparison we observe that majority of the points lie either on or above

the diagonal lines. It is worth noting that many of the points that are on or close to

the diagonal line have low NMI values, suggesting that they correspond to comparisons

at the early stages of the active learning process. This is precisely what we expect

because in this comparison we use the same Explore phase to initialize all three methods,

thus they should behave exactly the same for the early stages. For higher performance

areas (presumably when using more queries), we observe that more points lie above

the diagonal line. This suggests that after eliminating the compounding factor of the

Explore phase, our NPU method remains superior to Min-Max and Huang’s method.
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Figure 4.3: Comparing performance(NMI) of Min-Max with E & NPU.
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Figure 4.4: Comparing performance(NMI) of E & Huang with E & NPU.
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Figure 4.5: Comparing performance(NMI) of Huang with Unnormalized Point-based
Uncertainty (UPU).

Point-based v.s. pairwise uncertainty. Huang’s method is our closest competitor. A

key difference between the approach we propose and Huang’s method is that our method

considers point-based uncertainty whereas Huang’s method is based on pairwise uncer-

tainty. In Chapter 3, we identify a potential issue with Huang’s method. That is, it only

considers the information content of the first query, even though multiple queries may

be needed to identify the neighborhood of a selected instance. Here we would like to

make a direct comparison between these two approaches. As such, we consider our

method without the normalization step and compare it with Huang’s method in Fig-

ure 4.5. The x-axis shows the performance of Huang’s method, and the y-axis shows

the performance of our method without normalization, i.e. directly using Eq. 3.2 as

the selection criterion (referred to as Unnormalized Point-based Uncertainty, or UPU

for short), both measured in NMI. Each point in the figure corresponds to a particular

dataset with a particular query size. As we can see from the figure, UPU generally out-
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Figure 4.6: Comparing performance(NMI) of the point-based uncertainty method with
and without normalization. The y-axis shows the performance of the normalized version
(NPU) whereas the x-axis shows the performance of the unnormalized version (UPU).

performs Huang’s method, providing strong evidence that point-based uncertainty leads

to better and more informative queries.

Effect of normalization. Finally, we would like to examine the effect of normaliza-

tion. In Figure 4.6, we show the performance comparison between the two variants of

our method with or without the normalization step, namely NPU and UPU. The x-axis

shows the performance of the unnormalized version (UPU) whereas the y-axis shows the

performance of the normalized version (NPU). From the figure we can see that most of

the points lie either above or close to the diagonal line, suggesting that the normalization

step leads to some mild improvement in performance. To understand the significance

of the differences, we performed paired student t-tests at 95% significance level. The

results show that for four of the eight datasets (Digits, Ecoli, Parkinsons, and Segment),

the normalization step was able to improve the performance in a statistically significant
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way. On the other hand, it never hurts the performance significantly. This suggests that

it is advisable to include the normalization step since it may provide additional benefit

for some datasets and generally does not hurt the performance.
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Chapter 5: CONCLUSION

5.1 Conclusion

In this thesis, we study an iterative active learning framework to select pairwise con-

straints for semi-supervised clustering and propose a novel method for selecting the

most informative queries.

Our method takes a neighborhood based approach, and incrementally expands the

neighborhoods by posing pairwise queries. We devise an instance-based selection crite-

rion that identifies in each iteration the best instance to include into the existing neigh-

borhoods. The selection criterion trades-off two factors, the information content of the

instance, which is measured by the uncertainty about which neighborhood the instance

belongs to; and the cost of acquiring this information, which is measured by the expected

number of queries required to determine its neighborhood.

We empirically evaluate the proposed method on the eight benchmark datasets against

a number of competing methods. The evaluation results indicate that our method achieves

consistent and substantial improvements over its competitors.

5.2 Future Work

There are a number of interesting directions to extend our work. The iterative framework

requires repeated re-clustering of the data with an incrementally growing constraint set.
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This can be computationally demanding for large datasets. To address this problem, it

would be interesting to consider an incremental semi-supervised clustering method that

updates the existing clustering solution based on the neighborhood assignment for the

new point. An alternative way to lower the computational cost is to reduce the number

of iterations by applying a batch approach that selects a set of points to query in each

iteration. A naive batch active learning approach would be to select the top k points that

have the highest normalized uncertainty to query their neighborhoods. However, such

a strategy will typically select highly redundant points. Designing a successful batch

method requires carefully trading-off the value (normalized uncertainty) of the selected

points and the diversity among them — a direction that we plan to pursue for future

work.
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