
 

 

  



 

AN ABSTRACT OF THE THESIS OF 

 
Addison Wisthoff for the degree of Master of Science in Mechanical Engineering 

presented on May 26, 2016. 

 

Title: Using Automation to Understand Sustainable Design Trade-Offs and to 

Promote Environmental Sustainability in the Early Design Phase 

 

 

 

 

Abstract approved:  

 

_____________________________________________________________________ 

Dr. Bryony L. DuPont 

 

 

Sustainable product design is becoming an important component of the development 

of consumer products. Currently there are limited design resources to aid in the creation 

of environmentally sustainable products. The purpose of this research is to theorize a 

new method for integrating sustainable design knowledge into the early design phase 

of new products and processes. A novel organized search tree—consisting of 

sustainable product design guidelines, empirical design knowledge, international 

design regulations and preliminary consumer preference information—is constructed 

to enable application of sustainable design knowledge before and during concept 

generation. To further facilitate its application, this search tree is embedded in an easy-

to-use web-based application called the GREEn Quiz (Guidelines and Regulations for 

Early design for the Environment). The quiz provides users with weighted questions 

pertaining to the design or redesign of a product concept, with a list of possible pre-



generated responses to choose from. As a designer progresses through the quiz, user 

responses are compiled and weighted, and a final report that displays the top ten design 

attributes contributing to the eventual environmental impact of the product are provided 

to the user. Accompanied by the top ten list, is a list of design decisions that can be 

used to better help inform the designer to make improvements that can make the 

product more sustainable. To further assist designers in understanding the impact of 

their design decisions, a preliminary investigation into life cycle estimation is 

conducted by training an artificial neural network on 37 different consumer products. 

The results of this work found that the design method facilitates designers of varied 

experience to increase the number of environmentally conscience design decisions 

made in the concept generation process. It was also found that a neural network can be 

used to learn valuable correlations between product attributes and life cycle data (which 

is promising for life cycle impact estimation), but further work into increasing the 

capability of the neural network approach is required before this data can be used to 

inform the weights used in the GREEn Quiz. Without new environmentally conscious 

methods similar to the current method, it will continue to be challenging to design eco-

friendly products, and the impact of consumable products will continue to be 

unsustainable.  
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1. Introduction 

Unprecedented growth in both global population and affluence has led to a substantial 

and continual increase in the design, manufacturing, and consumption of consumer 

products. In a 2009 report by the United States Environmental Protection Agency 

(EPA), it was found that "in the past 50 years, humans have consumed more resources 

than in all previous history" [1]. Additionally, the use of renewable resources such as 

wood or other biomass products in the United States has decreased from 41% to 6% in 

the last century, with the percentage continuing to decrease in the subsequent years [1]. 

As nonrenewable resources (including fossil-fuel-based materials, metals, and 

minerals) are not commonly compostable or biodegradable, most of the materials used 

in modern production end up in landfills [2]. This large influx of waste can be traced 

to the beginning of US consumerism in the late 1940’s, which brought forth a more 

materialistic society that led to the sale and purchase of large a quantity and variety of 

consumer products, most of which eventually end up landfills [3]. In 2013, residential 

waste generation from products totaled 178.92 million tons [2]. This averages to 

approximately half a ton of waste per person per year in the United States. While there 

has been significant effort to encourage recycling of materials in order to reduce this 

considerable waste, nonrenewable materials such as metals and plastics have a recovery 

rate of just 34.1% and 9.2% respectively [2]. The majority of waste—made of 

recyclable materials or otherwise—generated by the US population is from products or 

is product-related (including product consumables and packaging). 
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This increase in consumer products has begun to create a push from society to start 

producing new products with a reduced environmental impact [4]. Design and 

development of consumer products is challenging in that there exist very few design 

methods that inform designers of the environmental impact of new products; in 

particular, there is a lack of resources that are applicable in the early (pre-concept 

generation) design phase. This lack of suitable design methods poses an issue, as 80% 

of the environmental impact of a product is determined after only 20% of the design 

process is complete [5].  

The goal of this work is to provide design decisions to designers developing new and 

redesigned consumer products, such that designers will reduce the environmental 

impact of products throughout the conceptual design phase. The objective is to inform 

designers about the impact of their decisions by linking quantitative values based on 

vetted LCA metrics to design decisions as the designer is making them. 

1.1 Literature Review of Sustainable Design Knowledge 

To achieve this research goal, a great deal of information must be collected and 

synthesized. The collection of sustainable design knowledge will consist of information 

in current literature related to (A) Sustainable Design Guidelines, including Design for 

End of Life and Use Phase impacts [6]–[11], (B) Design Heuristics, including Design 

for the Environment and Design for Manufacturing [12]–[18], (C) International Design 

Standards [8], [19]–[21], (D) Customer Preference for Sustainable Products [22]–[28], 

(E) Product Cost [29], and (F) Existing Sustainable Design Methods [30]–[42]. While 

the listed references are exploratory in nature and are not considered exhaustive, they 
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represent the availability of information relating to sustainable design. A detailed 

description of the acquisition of this design knowledge can be found in subsection 

2.1.1. 

1.2 Literature Review of Sustainable Design Decisions 

Along with the sustainable design knowledge, related design decisions are needed to 

help inform designs on how to improve their designs. The objective is to provide 

designers with series of product design decisions that imply how to apply the collection 

of sustainable design knowledge to any consumer product. Such design decisions are 

pulled from design textbooks [5], [43], design software [44], and other sources such as 

design patents [45]. An example of a design decision is organizing subassemblies and 

parts into modules to improve the process of repair, which is related to the sustainable 

design knowledge of “products organized into modules allow for easier maintenance 

and repair, as well as providing a means of separating incompatible materials at a 

products end of life” [5], [6].  Implementation of the design decisions are discussed in 

section 2.1.5. 

1.3 Literature Review of Life-cycle estimation  

Currently there is a series of robust methods that can assist designers in determining 

the environmental impact of an existing product, after the design has been fully 

clarified. This method is called a life-cycle analysis/assessment (LCA). As defined by 

the ISO 14040 standard, a LCA is a "compilation and evaluation of the inputs, outputs 

and the potential environmental impacts of a product system throughout its life cycle" 

[46]. LCA is an a posteriori method, and is not designed to be applicable during the 
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early design (product ideation) phase. Considering this, there exist few methods with 

the depth of LCA that are specifically designed to inform product developers of the 

environmental impact of design decisions as those decisions are being made. Due to 

this, LCA is extremely useful when used as a retrospective resource. 

Life-cycle impact assessment (LCIA) is a subset of LCA, and focuses specifically on 

measurable environmental impacts throughout the life cycle. Current LCIA methods 

include, but are not limited to CML, Eco-indicator 99, simplified LCA (SLCA), 

environmentally responsible product assessment (ERPA), ReCiPe, and TRACI [35], 

[36], [47]–[50]. In-depth LCIA methods are generally embodied in commercial 

software, with each method having their own strengths and weaknesses, as well as the 

optimum place at which it can be used in the design process. For some LCIA methods, 

mid-point and end-point metrics are the primary means of measuring environmental 

impact. Mid-points and end-points are both components of a cause-effect chain that 

takes life cycle inventory (LCI) data as an input and performs calculations to quantify 

an assortment of categories [51]. Various LCI data are formulated to generate a single 

mid-point value. Mid-point values offer insight into the environmental impacts of 

specific common chemical outputs in a product’s life cycle. End-point values are 

calculated from mid-point values, as well as LCI data to reflect changes in higher-level 

impact categories, such as effects on human health and loss of species per year. 

A visualization of different sustainable design tools can be seen in Figure 1, with a two-

dimensional coordinate plane indicating the placement of sustainable design tools by 

which phase in the design process they are relevant (x-axis) and the quality/type of 
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information the analysis provides (y-axis). Some design methods, such as applying 

sustainable design guidelines [9]–[11], [52], [53] and Environmentally-Conscious 

Quality Function Deployment (ECQFD) [39]–[42] are employable during early 

conceptual design. However, these methods are not designed to yield a quantitative 

assessment; rather they help to integrate sustainability considerations into the early 

design process. Environmentally Responsible Product Assessment (ERPA) is a 

quantitative matrix method that explores the environmental impact of the individual 

life-cycle phases of a product [30]. Simplified LCA (SLCA) methods are tailored, 

streamlined methods—essentially skeletonized LCA—that are much less costly to 

perform and require less input information. While both the ERPA and SLCA methods 

are designed to be less costly and time-consuming than traditional LCA, they have 

distinct shortcomings; both require many design decisions to be fully clarified in order 

to be useful, precluding their use as part of a new conceptual design method. 

Furthermore, SLCA methods are not widely applicable to many different types of 

products, and must be tailored for use [31], [32]. There is a clear research gap in 

sustainable design methods that is both in-depth and accurate (and readily available for 

the design of varied consumer goods), yet are applicable before and during the concept 

generation phase of design.  



6 

 

Figure 1: Visualization of a selection of Sustainable Design Tools (x-axis: Phase in 

the design process y-axis: Quality/type of analysis generated information) 

 

Recent work has improved the LCA methodology by bringing the detailed results of 

LCA to an earlier point in the design process, without sacrificing accuracy [54] [55]. 

These investigations used an artificial neural network to learn from a test set of 

completed LCA data to infer the environmental impact of potential design concepts 

during the concept selection phase. Unlike the proposed work (which is intended to be 

employed as part of the concept generation process) the work by Sousa et al. facilitates 

the sustainable design of a product after preliminary concept generation has been 

performed, suggesting improvement to a more established design.  

Previous research has begun to explore LCA estimation to bring LCA data into the 

early design phase. This is done by take product information available earlier on in the 
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design process and sending it through an estimation algorithm to determine 

environmental impact of a product earlier in the design process. In LCA estimation 

methods, product attributes are correlated with known LCA data to estimate the impact 

of similar products. Estimations can be linked manually by grouping similar products 

together and making assumptions based on their LCA data. These assumptions can then 

be used to estimate how a particular product impacts the environment in a given life-

cycle phase [56].  

An effective method that can be used for performing LCA estimation is machine 

learning techniques. Machine learning can take product-specific data generated from 

currently available products and learn from their environmental impact. An informed 

machine learning algorithm can make estimations of a product’s environmental impact 

during conceptual design. In this work, the machine learning technique employed is a 

traditional multi-layer perceptron network, commonly known as an artificial neural 

network [57]. In related research, artificial neural networks are applied to families of 

similar products, learning the correlation between product attributes and LCA data [55], 

[58], [59]. However, this previous research does not look at a wide variety of products, 

and the resulting method is only applicable to selection of product families. The current 

work seeks to understand this relationship to inform a design method that can be 

applied to the development of widely varying consumer products.  

It is important to consider that LCA has associated uncertainty. LCA estimation 

methods, and any method that requires estimating any parameters necessary to 

complete the LCA (such as component weights, distance to transport products, etc.) 
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introduce uncertainty that can impact the accuracy of the analysis. While uncertainty 

in LCA is not explicitly treated in this work (but is reserved for more advanced, future 

research), it is the relative changes in LCA metrics across products and product 

attributes—not the absolutely metric values themselves—that are important to the 

conducted analysis. 

Research into improving integration of Design for Environment (DfE) methods has 

shown that the earlier DfE is incorporated into the design process, the more of an effect 

it has on reducing the environmental impact of a product [5], [6], [60]. Other work has 

found that the more DfE principles are integrated in the process, the greater the chance 

that the product would become more sustainable as compared to just using a single tool 

at one stage in the process [53]. 

This thesis intends to provide a new method that designers can use to reduce the 

environmental impact of a consumer product in and around the conceptual design 

phase. To accomplish this, a novel search tree will be developed that combines 

sustainable design guidelines, international design regulations and standards, empirical 

design knowledge, and attributes of product cost and preference. The search tree, 

created in the form of a series of questions and possible user responses, is preliminarily 

embedded in a web-based survey; the results of the survey are presented to the user as 

a final report. The goal of this work is to help inform designers of the environmental 

impact of design decisions as they are being made, and will contribute to the 

development of more sustainable products. 
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The following sections include the methodology for development of the decision 

engine, sustainable design repository, and the artificial neural network used in the life-

cycle estimation. The results section includes two case studies used to test the validity 

of the decision engine and data from a preliminary investigation into life-cycle 

estimation. Following the results section, the thesis concludes with a discussion and 

concluding remarks.  
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2. Methodology 

2.1 Decision Engine 

2.1.1 Design Knowledge Acquisition 

As mentioned in section 1.1, the collection of sustainable design knowledge employed 

in this research consists of information in current literature. The objective of the design 

knowledge literature search is to find, sort, and formulate this knowledge into a form 

that can be used by designers. The design knowledge found relates to six different 

categories: (A) Sustainable Design Guidelines, including Design for End-of-Life and 

Use Phase impacts, (B) Design Heuristics, including Design for the Environment and 

Design for Manufacturing, (C) International Design Standards, (D) Customer 

Preference for Sustainable Products, (E) Product Cost, and (F) Existing Sustainable 

Design Methods. Some examples from this set of sustainable design knowledge include 

“products should have similar or better performance to competing products” [26] and 

“the product should allow for informative wear to be detected” [6]. 

2.1.2 Question Formulation 

Upon collecting sustainable design knowledge, the information needs to be formatted 

into a medium that can be used by designers. To accomplish this, design knowledge is 

written into the form of questions. The core meaning of the sustainable design 

knowledge was identified and then used to formulate a question by asking a potential 

user if their design incorporates the given knowledge in the question. These questions 

are matched with potential user responses in the form of a Likert scale; meaning that 

each question has responses associated with it that is intended to gauge a user’s 
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agreement to a particular question [61]. User responses are prepopulated to facilitate 

quantifying the results of the process; additionally, users are not reliant on previous 

understanding or mastery of sustainable product design in order to provide an informed 

response. This question/answer-generation process is performed on the complete set of 

obtained design knowledge, resulting in 60 questions and between two and five 

responses for each. Responses are generated from the formulated question, with the 

quantity of the responses dependent on the given question. Some questions, such as the 

example shown in Table 1, have five possible responses, but others, such as the 

example in Table 2, have only two possible responses. 

 

Table 1: Example Question with Five Likert-Style Responses 

Question Will recyclable materials be used in the design? 

Response 1 Recyclable materials will not be used 

Response 2 Very few recyclable materials will be used 

Response 3 Some recyclable materials will be used 

Response 4 Recyclable materials will be used to make most of the product 

Response 5 Recyclable material will be used to make the entire product 

 

Table 2: Example Question with Two Likert-Style Responses 

Question Will product consumables be reusable? 

Response 1 Consumables are not reusable 

Response 2 Consumables are  reusable 
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2.1.3 Search Tree 

The questions are arranged in a data tree structure [62], which will facilitate the 

application of sustainable design knowledge that is directly relevant to the product at 

hand. This filtering process is possible due to the nature of data trees. As one progresses 

through the tree, the path they choose determines the future questions they see. To 

further improve the filtering process, a series of filtering questions are employed that 

further remove irrelevant questions from the search space, such that the designer’s 

question set is selected specifically for the type of product being designed. These 

features are key to making this design resource easy to use. An example of one small 

branch of the tree is seen in Figure 2. The tree consists of preliminary filtering questions 

and foundational questions; the filtering questions determine which branches of the 

foundational questions will be included. 
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Figure 2: Example of one branch of the search tree 

 

2.1.4 Web-based implementation 

In order to make this design resource accessible, the physical implementation is web-

based. The programming language Python is used for the development of the quiz’s 

backend, while Django, a web application framework [63], is used to provide a means 

of placing the quiz on a server, such that the quiz may be accessed by multiple users 

from any location with internet access. The design resource embedded in the web-based 

Does the product 
produce waste?

Yes

Will the product 
incorporate features that 

prevent waste of materials 
by the user?

There are no 
waste prevention 

features

There are some 
features that help 

prevent waste

The product 
forces the user to 

prevent waste

Will any potential wastes 
produced by the product be 

water-based or biodegradable?

No
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application is herein referred to as The GREEn Quiz (Guidelines and Regulations for 

Early design for the Environment). 

The quiz starts by asking the user a series of pre-quiz filtering questions, which are 

selected to help filter out unneeded questions, thus allowing the designer to focus only 

on what is relevant to their design. After the filtering questions are completed, the 

questions from the accordant truncated search tree are provided in a depth-first manner. 

An example question can be seen in Figure 3.a.  

The organization of the quiz is structured such that similar questions—by theme, such 

as material selection, energy consumption, and transportation—are grouped together. 

These groups follow the flow seen in Figure 4. The process starts with questions that 

compare the current design that is being tested with other competing products. The next 

two consecutive groups deal with questions regarding the design process, such as 

material selection and structural design. The questions are then grouped into their 

respective life-cycle phases: manufacturing, transportation, use, hazardous material, 

disassembly, and disposal. The motivation for this organization is to present questions 

in an order that better reflects the timeline of the product being developed from its 

original concept to the disposal of its final form. A complete list of both filtering and 

sustainable design questions are presented in Table 10 in Appendix 3.  
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Figure 3: (a) An example question, and (b) Calculating a value for a chosen response 

 

 

Figure 4: Flow of categories in the GREEn Quiz 

 

2.1.5 Report Development 

Upon completion of the quiz, a report is presented to the designer. The goal of the 

report is to provide the user of the quiz with relevant information and potential design 

Comparison
Material 
Selection

Design/

Structure
Manufacturing

Transportation Use Phase Maintenance
Hazardous 
Materials

Dissassembly Disposal
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decisions that will enable the user to improve their design concept by making it more 

sustainable. To do this, quantitative values corresponding to each user response provide 

a score for each answered question. An example of the how the responses are calculated 

is seen in Figure 3.b, where each response in Figure 3.a has a value correlated to the 

strength or weakness of that response, multiplied by a weight for each question. 

Currently the weights for each question is uninformed and is set to a value of one; 

however, the first steps in informing these weights are discussed in section 2.3. This 

score is then presented in the post-quiz report, which displays the summed score of 

each individual group, as well as a list of the top ten contributing questions that have 

the greatest impact on the environment. After listing the top ten contributors, a follow-

up list is provided to give additional motivation and suggestions to improve the 

environmental impact of the design. The score received for each question and a 

paragraph discussing the means and/or motivation on how to improve the score is 

provided. It is here where the acquired design decisions (described in section 1.2) are 

then presented to the designer. In keeping with the logical attempt to reduce 

environmental impact, the scoring is structured in such a way that lower scores are 

better, enabling the designer to try to reduce both the GREEn Quiz score and the 

environmental impact of the product concept.  

2.2 Sustainable Design Repository 

As indicated in section 1.3, this work intends explore how an artificial neural network 

can be used to learn from LCA metrics in order to better inform early-design-phase 
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product design. To do this, a sufficient amount of product and LCA data must be 

collected, and as such, a preliminary repository of this data was created. 

2.2.1 Product Selection 

Thirty-seven consumer products were selected to constitute the initial sustainable 

design repository. The selected consumer products are intended to represent a wide 

variety of consumer products. They were chosen based on the complexity of the 

product (quantified by the number of parts), and the number of related questions in the 

GREEn Quiz. Figure 5 shows a scatter plot of all 37 products with respect to number 

of parts and related questions, with Table 3 listing the 37 selected products. 

 

Figure 5: Scatter Plot of 37 Selected Consumer Products (Product 24 is located 

outside the axes at [53, 239]) 
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Table 3: Sustainable Design Repository Product List 

# Product # Product 

1 Vacuum 19 Hand Dryer 

2 Plastic Water Bottle 20 Single Serve Coffee Maker 

3 Office Chair 21 Oil Lamp 

4 Coffer Maker 22 Disposable Battery Toothbrush 

5 Stapler 23 Tattoo Gun 

6 Lamp 24 3D Printer 

7 Game Boy 25 Toaster 

8 Electric Chainsaw 26 Scissors 

9 Drill- Battery pack 27 Blender 

10 Drill- Corded 28 Motorcycle Helmet 

11 Kayak 29 Soda Can 

12 Wooden Bookshelf 30 Mechanical Pencil 

13 “Big Wheel” Toy 31 Electric Tea Kettle 

14 Bicycle 32 Razor Scooter 

15 Spring Drive 33 R/C Car 

16 Apple Peeler Corer 34 Electric Shaver 

17 Mechanical Calculator 35 Lawn Mower 

18 Hand Gun 36 Cast Iron Skillet 

-  37 Electric Guitar 
 

 

2.2.2 Life Cycle Impact Assessment Methods 

Three different LCIA methods were specifically selected for the development of the 

product metrics in this work, based on variation in method fidelity, applicability, and 

availability. The selected methods, Eco-Indicator 99, ReCiPe (embedded in GaBi 

software), and Solidworks Sustainability, are prominent methods that represent the 

breadth of current LCIAs. A description of each of these methods are given as follows: 

2.2.2.1  Eco-Indicator 99 

Of the three methods employed, Eco-Indicator 99 (EI99) provides the simplest way to 

observe product impact without the need for software. EI99 looks at the impact a 
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product can have on the environment, which is comprised of three components: 

Ecosystem Quality, Human Health, and Resources [35].  EI99 provides milliPoint 

(mPt) indicator values for products based on their environmental impact; a higher 

indicator value correlates to a greater environmental impact. Three categories of 

environmental impact were created for the sustainable design repository: 

production/processes, use phase, and end-of-life. The indicator values for 

production/processes describe the impact of creating a product, the use-phase values 

describe the impact of using a product on a yearly basis, and the end-of-life values show 

the impact of disposing of a product, often times with assumption that the product will 

end up in a landfill [64]. 

As some indicator values for materials and processes are not available in the EI99 

manual, these must be estimated or determined using another source, such as Matbase 

[65]. For materials where no information could be retrieved from the EI99 manual or 

Matbase, the mPt value was estimated based on similarities to other materials and 

processes. 

2.2.2.2 GaBi (ReCiPe) 

ReCiPe is the most in-depth LCA method used in this work. ReCiPe employs 21 impact 

indicators that are used to describe the environmental impact of each of the products. 

Of the 21 indicators, three of them are end-point indicators and 18 are mid-point 

indicators [36].  
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As described in section 1.3, mid-point indicators are measures of impact (such as CO2) 

of each product, while end-point indicators are calculated from the 18 mid-point 

indicators to convey higher level impacts. In order to implement the ReCiPe method, 

software called GaBi is used [66]. GaBi provides a graphical platform that allows the 

user to input various product attributes, such as parts, weight, manufacturing processes, 

and disposal methods. Using these attributes, GaBi is able to apply the ReCiPe method 

and output the 21 related indicator values.  

In GaBi, each product was entered using the information from the products in the 

preliminary sustainable design repository; this information includes material type, 

manufacturing methods, weight, number of parts, and disposal method. GaBi works by 

connecting the materials to their manufacturing methods, then finally to their disposal 

methods. From there, the user inputs secondary resources, defined by GaBi, for the 

manufacturing processes. For example, injection molding requires tap water and 

electricity to complete the molding process. GaBi includes an extensive database that 

provides the appropriate inputs and outputs specific to each manufacturing process. 

However, reasonable assumptions were made if GaBi did not have the identical 

material or process information for a product. In addition to providing material and 

process data, GaBi has ample information on a variety of resources. These resources, 

such as electricity, allow the user to identify where production is taking place, and what 

emissions are tied to that resource. After the user connects all the processes and 

secondary resources, weights for each material can be defined for each process. When 
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all of the weights for each manufacturing process are defined, GaBi can implement the 

ReCiPe LCA method to determine the environmental impact. 

GaBi displays 13 of the 18 ReCiPe mid-point indicators.  The GaBi software combines 

some of the mid-point metrics into a single indicator. The 13 mid-point indicators 

displayed by GaBi are shown in Table 4. 

GaBi also displays the three end-point ReCiPe indicators. These indicators are not 

combined and are normalized from all 18 of the ReCiPe mid-point indicators; not just 

the 13 displayed by GaBi. These end-point indicators are Damage to Human Health 

(Disability Adjusted Life Year), Damage to Ecosystem Diversity (Species/yr.), and 

Damage to Resource Availability ($). For purposes of this research, global land 

occupation potential will not be included, because upon completing the LCA for each 

of the 37 products the value obtained for global land occupation potential was 

negligible. 

Table 4: ReCiPe Mid -Point Indicators 

# Indicator Units 

1 Global Warming Potential CO2 

2 Ozone Depletion Potential CFC-11 

3 Terrestrial Acidification Potential SO2 

4 Freshwater Eutrophication Potential P 

5 Marine Eutrophication Potential N 

6 Global Eco-toxicity Potential1 14-DBC 
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Continued 

# Metric Units 

7 Photochemical Oxidant Formation Potential NMVOC 

8 Particulate Matter Formation Potential PM10 

9 Ionizing Radiation Potential U235 

10 Global Land Occupation Potential2 m2 

11 Mineral Depletion kg of Fe 

12 Water Depletion m3 

13 Fossil Depletion kg of Oil 

1. Four combined indicators. 2. Three combined indicators 

2.2.2.3 Solidworks Sustainability 

The Solidworks Sustainability is a CAD-based LCA method.  Solidworks 

Sustainability uses a modified CML LCA method to analysis the environmental impact 

of a product based on the mass of a product calculated from volumetric data, material 

types, and available manufacturing processes [38], [47]. This method provides an 

output of four indicators: Carbon Footprint (CO2), Energy Consumption (MJ), Air 

Acidification (SO2), and Water Eutrophication (PO4). The Solidworks Sustainability 

method is more of a comparative LCA method than a standalone LCA method; it allows 

the user to compare the relative change in the four indicators based on changes to 

material, manufacturing methods, and manufacturing locations. 

In order to implement this method, product models were generated using the 

Solidworks CAD program. These Solidworks models provided the part weights that 
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were used in the previous LCA methods. Each of the part models were assigned a 

material, life expectancy, manufacturing method, and manufacturing location. The 

parts of the models were assembled into the full product, use phases were added, and 

Solidworks Sustainability software generated the four indicators.  

2.3 Artificial Neural Network 

2.3.1 Development 

The artificial neural network used in this work follows the common structure of a three-

layer perceptron network, which uses a back-propagated supervised learning method. 

A three layer perceptron network consists of an input layer, a hidden layer, and an 

output layer with each node being connected to the neighboring layer by means of a 

weight, as seen in Figure 6. The motivation for using a neural net is that machine-

learning methods, such as this one, are capable of correlating a set of inputs to a set of 

outputs, which are not a linear function of each other. This feature allows the neural 

net to estimate unknown non-linear functions. In the case of this work, product 

attributes are being mapped to LCA metrics.  
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Figure 6: Three-Layer Perceptron Network 

 

Before a neural network is of use, it must go through a training process. Since this work 

uses supervised learning, the training process starts by initializing all the weights in the 

network using generated random weights. To assist in the performance of the neural 

net, the weight is randomly assigned a value in the range of −
1

√𝑛
 to 

1

√𝑛
, where 𝑛 is the 

number of input nodes in the network [57]. With the weights initialized, the network is 

ready to begin the first portion of training. This consists of forward propagation through 

the network. Forward propagation is accomplished by calculating the values of the 

hidden layer nodes and the output layer nodes. To calculate the value of the hidden 

layer nodes, the value of the input nodes are multiplied by the weights that are 

associated to the hidden layer node that is being calculated. This is shown in Eq. 1. 

 𝐻𝜍 = ∑ 𝐼𝑖𝑥𝑖𝜍
𝑁
𝑖=1  (1) 
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where 𝐻𝜍 is a given hidden layer node, 𝑁 is the total number of nodes in the input layer, 

𝐼𝑖 is the value at the input layer node 𝑖, and 𝑥𝑖𝜍 is the weight that links a given input 

node 𝐼𝑖 to the hidden layer node being calculated. The number of hidden layer nodes 

used is generated from the general rule of thumb of the number of hidden layer nodes 

is roughly equal to two thirds times the number of input nodes. Upon calculating all of 

the hidden layer nodes, the activations of each hidden layer node need to be determined. 

An activation function is used in neural networks to control whether a given node is 

active, by making its value either zero or one. There are a variety of activation functions 

that can produce those values given a range of inputs. The activation function selected 

for this work is the sigmoid function, which is seen in Eq. 2 and Figure 7. 

 𝑎𝜍 =
1

1+𝑒−𝛽𝐻𝜍
  (2) 

 

 

Figure 7: Sigmoid Function 

0

0.5

1
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The activation function specific to the hidden layer is represented by 𝑎𝜍, with 𝛽 being 

a tunable parameter, and 𝐻𝜍 a given hidden layer node. 

Now the output layer nodes can be calculated. To accomplish this, a similar equation 

to Eq. 1 is used (Eq. 3). In this case, the values obtained from the activation function in 

the hidden layer nodes are used to calculate the output layer. 

 𝑂𝜅 = ∑ 𝑎𝑗𝑦𝑗𝜅
𝑁
𝑗=1  (3) 

This results in the output estimation of 𝑂𝜅 being equal to the sum of the product of the 

activation values, 𝑎𝜍, of the hidden layer, and the weights 𝑦𝜍𝜅, that link a given hidden 

layer node 𝑗 to the output node 𝜅. Similar to the hidden layer, the output layer activation 

values also need to be found, as seen in Eq. 4. 

 𝑏𝜅 =
1

1+𝑒−𝛽𝑂𝜅
 (4) 

At this point, the output nodes have their first estimated values, but as they are being 

partially calculated with random weights, these are poor estimations. This is where the 

second portion of training begins. Now it is necessary to adjust the weights to improve 

the calculated output estimates that were just found. In general, the most common 

training method for supervised back propagation is gradient descent [57]. To apply 

gradient descent to this algorithm, an objective function needs to be selected. The 

commonly used sum-of-squares method is selected for use and is shown in Eq. 5 [57]: 

 𝐸 =
1

2
∑ (𝑂𝑘 − 𝑡𝑘)2𝑁

𝑘=1  (5) 
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where the error is calculated as half of the difference between the estimated output 

value and the known output value squared, and then summed for each output layer 

node 𝑘, with 𝑂𝑘 being the estimated output and 𝑡𝑘 being the normalized known true 

value. 

Now that the objective function and optimization method is selected, it is now possible 

to adjust the weights in the network. This is achieved by calculating the negative 

gradient of the error function with respect to the weights. The negative gradient is 

calculated by taking the partial derivative of the error with respect to the estimated 

output, as seen in Eq. 6. 

 
𝜕𝐸

𝜕𝑦𝜍𝜅
=

𝜕𝐸

𝜕𝑂𝜅

𝜕𝑂𝜅

𝜕𝑦𝜍𝜅
  (6) 

Eq. 6 can be more easily evaluated by calculating 
𝜕𝐸

𝜕𝑂𝜅
 and 

𝜕𝑂𝜅

𝜕𝑦𝜍𝜅
 individually. Eq. 7 

through Eq. 15 shows the progression for calculating the gradient with respect to the 

𝑦𝜍𝜅 weights. 

  
𝜕𝑂𝜅

𝜕𝑦𝜍𝜅
=

𝜕(∑ 𝑎𝑗𝑦𝑗𝜅
𝑁
𝑗=1 )

𝜕𝑦𝜍𝜅
 (7) 

Eq. 7 can be simplified to Eq. 8, due to the partial derivative always equals zeros except 

for when 𝑗 = 𝜍. 

 
𝜕𝑂𝜅

𝜕𝑦𝜍𝜅
= 𝑎𝜍 (8) 
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The partial derivative of 
𝜕𝐸

𝜕𝑂𝜅
, from Eq. 6, can be solved by performing the product rule. 

 
𝜕𝐸

𝜕𝑂𝜅
=

𝜕𝐸

𝜕𝑏𝜅

𝜕𝑏𝜅

𝜕𝑂𝜅
 (9) 

Similar to before, 
𝜕𝐸

𝜕𝑏𝜅
 and 

𝜕𝑏𝜅

𝜕𝑂𝜅
 can be derived individually. 

 
𝜕𝑏𝜅

𝜕𝑂𝜅
=

𝜕(
1

1+𝑒−𝛽𝑂𝜅
)

𝜕𝑂𝜅
 (10) 

Eq. 10 can be simplified to Eq. 11. 

 
𝜕𝑏𝜅

𝜕𝑂𝜅
= 𝛽𝑏𝜅(1 − 𝑏𝜅) (11) 

The partial derivative 
𝜕𝐸

𝜕𝑏𝜅
 can be expanded and then simplified, as seen in Eq. 12 and 

Eq. 13. 

 
𝜕𝐸

𝜕𝑏𝜅
=

𝜕(
1

2
∑ (𝑂𝑘−𝑡𝑘)2𝑁

𝑘=1 )

𝜕𝑏𝜅
 (12) 

 
𝜕𝐸

𝜕𝑏𝜅
= (𝑂𝑘 − 𝑡𝑘) (13) 

Now that both  
𝜕𝐸

𝜕𝑏𝜅
 and 

𝜕𝑏𝜅

𝜕𝑂𝜅
 have been solved, 

𝜕𝐸

𝜕𝑂𝜅
 can be assigned a placeholder 

variable. 

 𝛿𝑂𝑢𝑡 =
𝜕𝐸

𝜕𝑂𝜅
=  (𝑂𝑘 − 𝑡𝑘) 𝛽𝑏𝜅(1 − 𝑏𝜅)  (14) 
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The formula for 
𝜕𝐸

𝜕𝑂𝜅
 will be written for now on as 𝛿𝑂𝑢𝑡. This results in Eq. 6 simplifying 

down to Eq. 15. 

 
𝜕𝐸

𝜕𝑦𝜍𝜅
= 𝛿𝑂𝑢𝑡𝑎𝜍 (15) 

Up until this point, 
𝜕𝐸

𝜕𝑦𝜍𝜅
 has been derived. So far, this only adjusts the weights between 

the hidden layer and output layer. To adjust the weights between the input layer and 

hidden layer,  
𝜕𝐸

𝜕𝑥ι𝜍
, a similar approach is necessary: 

 
𝜕𝐸

𝜕𝑥ι𝜍
=

𝜕𝐸

𝜕𝐻𝜍

𝜕𝐻𝜍

𝜕𝑥ι𝜍
 (16) 

Using the product rule, 
∂E

∂Hς
 and 

∂Hς

∂xις
  in Eq. 16 can be solved individually. 

 
𝜕𝐻𝜍

𝜕𝑥ι𝜍
=

𝜕(∑ 𝐼𝑖𝑥𝑖𝜍
𝑁
𝑖=1 )

𝜕𝑥ι𝜍
 (17) 

Eq. 17 simplifies to Eq. 18, due to the partial derivative always equaling zero except 

for when 𝑖 = ι. 

 
𝜕𝐻𝜍

𝜕𝑥ι𝜍
=  𝐼ι (18) 

The partial 
𝜕𝐸

𝜕𝐻𝜍
 can be derived by the use of another product rule. 

 
𝜕𝐸

𝜕𝐻𝜍
=  ∑

𝜕𝐸

𝜕𝑂𝜅

𝑁
𝑘=1

𝜕𝑂𝜅

𝜕𝐻𝜍
 (19) 
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As recalled from Eq. 14  
𝜕𝐸

𝜕𝑂𝜅
 was substituted to be 𝛿𝑂𝑢𝑡. 

 
𝜕𝑂𝜅

𝜕𝐻𝜍
=  

𝜕(∑ 𝑎𝑗𝑦𝑗𝜅
𝑁
𝑗=1 )

𝜕𝐻𝜍
 (20) 

The partial of 
𝜕𝑂𝜅

𝜕𝐻𝜍
 simplifies down further, due to the partial derivative always equals 

zeros except for when 𝑗 = 𝜍. 

 
𝜕𝑂𝜅

𝜕𝐻𝜍
=  𝛽𝑎𝜍(1 − 𝑎𝜍) 𝑦𝜍𝜅 (21) 

The partial 
𝜕𝐸

𝜕𝑂𝜅
 has been derived in Eq. 14, resulting in the substitution shown in Eq. 

22. 

 
𝜕𝐸

𝜕𝐻𝜍
= 𝛿𝑂𝑢𝑡𝛽𝑎𝜍(1 − 𝑎𝜍) 𝑦𝜍𝜅 (22) 

Taking Eq. 17 and Eq. 22 gives the value 
𝜕𝐸

𝜕𝑥ι𝜍
, to adjust the weights between the input 

layer and hidden layer,   

 
𝜕𝐸

𝜕𝑥ι𝜍
= 𝛿𝑂𝑢𝑡𝛽𝑎𝜍(1 − 𝑎𝜍) 𝑦𝜍𝜅𝐼ι (23) 

With Eq. 15 and Eq. 23 the weights of the neural network can be calculated, by 

evaluating Eq. 24 and Eq. 25, where 𝜂 is a tunable scaling training parameter. 

 𝑦𝜍𝜅 = 𝑦𝜍𝜅 − 𝜂𝛿𝑂𝑢𝑡𝑎𝜍 (24) 

 𝑥ι𝜍 = 𝑥ι𝜍 − 𝜂𝛿𝑂𝑢𝑡𝑎𝜍(1 − 𝑎𝜍) 𝑦𝜍𝜅𝐼ι (25) 
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Up until this point, inputs are fed forward through the neural net, where output 

estimations are calculated. From there, back propagation and gradient descent is used 

to adjust the weights in the neural net to improve the overall estimation of the neural 

network. All of these steps constitute a single iteration of training. In order to properly 

train a neural net using supervised learning, the training must occur in an iterative 

process. The neural net trains off of a set of data that has known inputs that correlate to 

a set of known outputs. This process should be repeated for a predefined number of 

iterations before the network is validated using a separate set of data. During this 

training process, the sum-of-squares error formula from Eq. 5 should be used to keep 

track of the error in the network. By keeping track of the error in the system, the tracked 

difference in error can be used as a stopping criterion. This is possible because as the 

neural net trains, the error in the system should continually decease; however, the 

network will reach a point where it starts to learn to the noise in the training data, rather 

than the general function the data follows, as seen in Figure 8. It is at this point where 

the validation data begins to have its error value increase; once this occurs, the neural 

net can be halted. 
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Figure 8: Generalized Neural Network Training and Validation Error Over Time 

 

2.3.2 Development of Product Attributes 

In order to use the neural net algorithm as described, a set of inputs needs to be 

identified. As the first step in the overarching work to relate design decisions to life-

cycle impacts, product attributes are mapped to LCA metrics. To accomplish this, a list 

of 20 quantifiable product attributes relevant to each product in the product repository 

is used as the input data for the neural net, as seen in Table 5. Product attributes are 

generated through the systematic application of the GREEn Quiz to each of the 37 

products, thereby determining product attributes that were relevant for to the user 

response to each question. 

After generating the product attribute values for each product in the repository, 

products were then partitioned into similar attribute bins. This resulted in 60 partitioned 

groups, with a given product having attributes in multiple groups. These bins consisted 
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of products being grouped on a Likert-style scale; generally, one to three groups were 

made for each of the product attributes. For example, three product groups were 

generated from the product attribute “Size”: Size_small, Size_medium, and Size_large. 

Also included in the list of 60 product attribute groups are three new attributes that are 

logical indicators of whether the product requires electricity, combustion, or human/no 

energy to operate. Products are partitioned to assist in the performance of the neural 

network. This allows the network to learn from a set of data, of what is assumed to be 

products with similar impacts. 

 

Table 5: Product Attributes 

Product Attribute Description 

Size Volume of bounding box (cm3) 

Mass kg 

Number of Parts Quantity 

Number of Types of Material Quantity 

Amount of Energy Required for a Single 

Operation 
Watts/Operation 

Lifetime Years 

Number of Consumables per Year Quantity/Year 

Number of Batteries Lifetime Quantity 

Percent Ferrous Metal Percent total mass 

Percent Non-Ferrous Metal Percent total mass 

Percent Plastic Percent total mass 

Percent Glass Percent total mass 

Percent Organic Material Percent total mass 

Percent Hazardous Material Percent total mass 

Percent Electrical Components Percent total mass 

Percent Other Material Percent total mass 

Number of Subassemblies Quantity 

Number of Stock Parts Quantity 

Number of Manufacturing Processes Quantity 

Number of Fasteners Percent total mass 
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2.3.3 Applying Product Attributes to the Neural Network 

The neural net algorithm discussed in subsection 2.3.1 presents a general methodology 

of a three-layer perceptron network that uses supervised learning. To relate product 

attributes to LCA metrics, the neural network structure must take on a slightly altered 

form. The inputs to the neural network are the normalized values of the 20 product 

attributes shown in Table 5. Preliminary data found that the performance (the resulting 

error of the estimated output) of the neural network was greatly improved when 

estimating one LCA metric at a time, which is why a single metric is used in training 

and estimating. As commonly practiced, the output layer is normalized to increase 

performance in the machine learning process. In order to successfully link product 

attributes to life cycle data, all 60 partitioned product groups are used to estimate a 

single LCA metric. This is then repeated for the remainder of the 22 LCA metrics.  

To further improve the performance of the neural net, a dynamic scaling feature, 𝜂, was 

added to the algorithm to replace a static parameter. The dynamic scaling feature 

operates by allowing the neural net to have multiple attempts at reducing the error of 

the network for a given scaling value 𝜂. When the maximum number of attempts limit 

is reached, then 𝜂 will be scaled by a predetermined value, with the attempts counter 

then being reset. The new 𝜂 value then has a similar number of chances to successfully 

reduce the error of the network. This continues to repeat until either the error is 

successfully decreased or a number of error reductions are met. If the code is successful 

in reducing the error, 𝜂 is reset to its initial value and the attempt counters are reset. If 

the error does not decrease by the time the maximum number of attempts is made and 
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the number of 𝜂 reductions reaches a predetermined value, then the algorithm has 

reached its stopping criterion. 

2.3.4 Training the Neural Network 

The neural network was trained to the products in the 60 attribute groups along with a 

network trained to each of the LCA metrics. Due to a limited number of data points, a 

series of average values for each group was generated to create a validation case. The 

validation data is generated by taking the average of each input data (product attributes) 

and output (LCA metric), to create a synthetic product’s data set that falls within the 

intended product attribute group. The resultant data set is used as a stopping mechanism 

as described at the end of section 2.3.1. 

2.3.4.1 Problem Formulation 

The tunable parameters used in the training of the neural network are listed in  

 

Table 6. 

 

Table 6: Neural Network Parameters 

Parameter Value 

Number of Hidden Layer Nodes 10 

Number of Training Iterations 20 

𝛽 1 

𝜂 0.01 
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Maximum Number of Tries 500 

Number of 𝜂 reduction 6 

𝜂 Multiplier 0.1 
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3. Results 

3.1 Case studies 

3.1.1 Undergraduate case study 

To test the validity of the GREEn Quiz, two separate studies were conducted (Oregon 

State University Institutional Review Board Study IDs: 6635 and 6816). The first study 

conducted in an undergraduate class focused on how inexperienced designers in 

sustainable design would perform while using various sustainable design resources to 

re-design a product. The class of 96 students were divided into three different groups. 

These groups differed by the design resource they received. The first group was 

designated as the control group and did not receive any extra resourced, the second 

group received a print-out of sustainable design guidelines found in academic literature 

[6], and the third group received access to the GREEn Quiz. All three groups were then 

given the following prompt, as seen in Figure 9: “For this activity, please explain how 

you will redesign a toaster into a more environmentally friendly product. Please write 

down and/or sketch every design decision that comes to mind.” 
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Figure 9: Undergraduate Study Activity Prompt 

 

Figure 10 and Figure 11 display the average number of design decisions that are shown 

with respect to the three different groups (control, sustainable design guidelines, and 

GREEn Quiz), with Figure 10 showing all design decisions, and Figure 11 showing all 

stated sustainable design decisions. These design decisions were determined 

empirically, and are considered to be unique when features are either specifically called 

out or drawn.  Examples of such features include a solar panel embedded in a toaster, 

as seen in Figure 12, or a text call-out stating the material for the housing would be 

made of recycled steel. A sustainable design decision is classified as a feature or aspect 

of a sketched design which follows one or more ideas captured in sustainable design 

knowledge within the quiz. 
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Figure 10: Average Number of Design Decisions 

 

Further results collected from the undergraduate study are shown in Figure 13 and 

Figure 14. Figure 13 shows the number of average sketches for each group.  In Figure 

14, the average number of concepts generated per person for each group is shown. 

Sketches were counted whenever a complete product concept was shown.  For 

example, when a student drew two perspectives of the same concept, as seen in Figure 

15, the tally of two sketches were given to that student. For some cases, multiple 

features were acknowledged, but were not presented in a form where they all existed 

in the product simultaneously, as seen in Figure 16. For this case a concept was counted 

for each unique feature that wasn't coexisting with another. Features that were indicated 

to be part of the same concept were only counted once, as seen in Figure 17. 
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Figure 11: Average Number of Stated Sustainable Design Decisions 

 

  
Figure 12: Example sketch of a Sustainable Design Decision:  solar-powered toaster  
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Figure 13: Average Number of Concept Sketches 

 

 

Figure 14: Average Number of Concepts 
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Figure 15: Example of two Sketches of one Concept 

 

 

Figure 16: Two sketches of two Unique Designs. Left: Hand Crank Powered Toaster. 

Right: Solar Powered Toaster 
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Figure 17: One Concept Sketch of two Features. Sketch of a Human and Solar 

Powered Toaster 

 

3.1.2 Graduate case study 

The second study, conducted in a graduate level class, was focused on designers with 

previous knowledge in sustainable design. During concept generation, students were 

instructed to take the GREEn Quiz for a particular product concept. After completion 

of the GREEn Quiz they were told to redesign their initial concept such that it would 

be more sustainable. The results of this study are shown in Figure 18.  For both before 

(blue diagonal) and after (orange horizontal) employing the GREEn quiz, Figure 18 

indicates the number of students who referred to a question category within the GREEn 

Quiz.  It is important to note that a given person is only counted once per section even 

though they may have referenced multiple quiz questions that relate to a single 

category.  
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Figure 18: Referenced Sustainable Decisions: Before and After the GREEn Quiz 

 

3.2 Artificial Neural Network 

To assist in making a connection between design decisions and life cycle impacts, an 

intermediate step of linking product attributes to LCA data was performed. The neural 

net was trained on the set of product attributes detailed in Table 5 and was used to 

estimate the value of a single LCA metric. Using input data from organized product 

attribute bins, allowed for 60 groups of products to 22 LCA metrics individually; the 

full list is available in Appendix 1. The resulting analysis generated a table of percent 

error for the effectiveness of the neural net. The error was calculated by taking the 

known output data and comparing it to the estimated value obtained from the neural 

net. A sample of the results are seen in Table 7 and the entire table of results are in 

Table 9 of Appendix 2.  
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Table 7: Selection of Estimated LCA Metric Percent Error Data 

Product Attribute Group ReCiPe: CO2 EI99: Use 

SolidWorks: 

Energy 

Consumption 

Size_Large 1.12E-04 6.83E-06 9.26E-03 

Mass_Medium 1.18E-06 1.80E-02 1.81E-02 

Number of Parts_Few 5.28E-02 5.93E-02 1.19E-01 

Number of types of 

material_Some 
1.51E-05 2.03E-02 2.75E-05 

Electrial Energy_Yes 2.93E-07 4.04E-05 5.80E-05 

Combustion_No 1.03E-04 3.87E-02 1.00E-06 

Energy per use_Some 3.03E-06 1.19E-03 2.54E-02 

Lifetime_Medium 9.71E-07 5.39E-06 1.73E-05 

Number of Consumables_A lot 8.74E-07 3.85E-02 5.56E-02 

Number of Batteries_None 1.33E-05 1.87E-01 5.24E-04 

Percent Ferrous 

Metal_Majority 
4.09E-03 1.23E-01 1.15E-01 

Percent Non_Ferrous 

Metal_Some 
2.01E-05 1.46E-07 8.15E-08 

Percent Plastic_Majority 2.52E-06 6.92E-06 1.31E-06 

Hazardous Material_Yes 2.87E-04 6.07E-02 1.12E-03 

Electrical Components_Yes 9.60E-03 1.29E-03 8.12E-02 
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4. Discussion 

4.1 Case Studies 

Two studies were conducted to test the validity of the GREEn Quiz method. The first 

study (the undergraduate study) was to verify that the GREEn Quiz would be useful as 

a design tool and benefit the designer in generating sustainable product designs. As 

shown in Figure 10 these results imply that when students are given a resource (be it 

the list of guidelines or the GREEn quiz), they are able to call out and/or include more 

design decisions than the control group, who did not receive any additional material. 

Moreover, the GREEn Quiz group was able to generate the highest number of average 

design decisions for that redesign activity. By having directly-applicable and relevant 

concepts presented in the quiz, the students were able to implement sustainable design 

knowledge—of which they were previously unaware—and apply it to their redesign.  

In Figure 11, the average number of sustainable design decisions for each group is 

shown. As expected, the trend in Figure 11 is similar as to what is seen in Figure 10, 

since the sustainable design decisions are a subset of the total number of design 

decisions referenced in Figure 10. The GREEn Quiz is intended to assist the designer 

in making more sustainable design choices, and these results support the statement that 

by using the proposed method, a designer can design a product that has more 

sustainable design considerations.  

Other results that were obtained through the undergraduate study include a possible 

negative correlation between creativity and the design resources applied in the study. 

As shown in Figure 13 and Figure 14, students in the two groups that used a design tool 
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were generally more focused on completing a single toaster redesign. However, the 

results from the control group indicated that students were creating more sketches of 

their ideas than the students with a resource. In contrast, the groups that received a 

design resource tended to write out more information specific to their design, as 

compared to the control group. This difference in the way students were displaying 

their ideas could be seen as an indication that sustainable design resources (the list of 

guidelines and the GREEn Quiz) may indicate a hindrance in creative sketching, but 

further research is needed to make an informed statement on this matter. 

The second study tasked graduate students to evaluate and redesign concepts that were 

generated for their team-based product design term project. This study allows for the 

measuring sustainable design improvements in a before-and-after setting. As seen in 

Figure 18, prior to using the GREEn quiz, the students mentioned only a few potential 

sustainable design decisions, and in narrow breadth. After taking the GREEn Quiz and 

redesigning their initial concept, there were more students making sustainable design 

decisions and in a wider breadth of categories. The increase in breadth can be attributed 

to the wide array of sustainable design knowledge encompassed in the quiz. This result 

shows that when users of the quiz are exposed to knowledge they might not know in 

an easy-to-interpret format, they are capable of directly applying it in the development 

of design concepts with a reduced environmental impact. 
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4.2 Artificial Neural Network 

A preliminary investigation into life cycle estimation is conducted to look at predicting 

life cycle impacts for a given set of product attributes. A three layer artificial neural 

network is used to train on the product data in the sustainable design repository.  The 

percent error values calculated are low, with the majority of the error values below 1%. 

The low error values in this data can be attributed to the effectiveness of the product 

grouping. A low error value indicates that the validation data set was accurately 

estimated. This is because the error value is the percent difference in the actual LCA 

metric value versus the estimated LCA metric value the neural network calculated. 

The process of creating a working neural network has revealed some interesting aspects 

of the repository LCA data. For example, during the process of developing the 

methodology of this work, it was found that neural network could only effectively 

handle one LCA metric at a time. Based on the results that were obtained, the use of an 

artificial neural network has shown that LCA estimations through machine learning can 

provide an effective method for linking product attributes to life-cycle impacts. With 

future progression of this work and the accumulation of more product data, the results 

obtained in this work shows a promising preliminary result for estimating products 

based on their product attributes. 
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5. Conclusion 
 

This research sets to provide design decisions to designers developing new and 

redesigned consumer products, such that designers will reduce the environmental 

impact of products throughout the conceptual design phase. To achieve this goal, 

sustainable design knowledge was acquired and formatted in the form of a set of 

questions, and then structured as a search tree. This search tree is meant to provide 

designers design knowledge in an organized manner, where questions would appear 

only when relevant. An online web-based application called the GREEn Quiz was 

developed to be the physical embodiment of the theory. Design decisions were mapped 

to each question to aid in informing designers about how to improve their concept. To 

aid in linking quantitative values to design decisions, a preliminary investigation was 

conducted to map product attributes to vetted LCA metrics from three popular LCA 

methods by using an artificial neural network to train from a sustainable product design 

repository. 

 

This work found that upon completion of two separate case studies, the physical 

embodiment of the theory was able to assist both the undergraduate and graduate 

students in the design tasks that were presented. It was shown that having a DfE 

resource, such as the GREEn Quiz when designing during concept generation, allowed 

the student participants to make informed decisions on how to better improve the 

sustainability of their product, by providing them with a method that supplies them 
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with developed questions, feasible responses, and a corresponding report that indicates 

where design improvements can be made and how they can be implemented.  

In addition to the findings of the GREEn Quiz, this work found that life cycle estimation 

by means of an artificial neural network is a feasible approach for eventually linking 

design decisions to their respective environmental impact. This was performed by 

training an artificial neural network on the environmental impact and attributes of 37 

consumer products from a sustainable design repository. 

Future related research should focus on two aspects of this thesis work. One focus 

should be to improve upon the user interface of the GREEn Quiz. This can lead to a 

better understanding as to how design resources affect the design process. Improved 

layouts and the addition of images relating to the presented design knowledge can assist 

in providing a better user experience, as well as providing a supplemental means of 

conveying sustainable design information. The second focus of future work is 

furthering the development of the sustainable product design repository. Furthering this 

would allow for the progression of linking design decisions to their subsequent 

environmental impacts. This is due to the amount of data required for using artificial 

neural network for life cycle estimation. 

  



51 

6. References 

[1] U.S. Environmental Protection Agency, “Sustainable Materials Management: 

The Road Ahead,” 2009. 

[2] U.S. Environmental Protection Agency, “Advancing Sustainable Materials 

Management : 2013 Fact Sheet,” 2015. 

[3] PBS, “The Rise of American Consumerism,” 1995. [Online]. Available: 

http://www.pbs.org/wgbh/americanexperience/features/general-

article/tupperware-consumer/. [Accessed: 01-Jul-2015]. 

[4] M. Gell-Mann, “Visions of a Sustainable World,” Eng. Sci., pp. 5–10, 1992. 

[5] K. Otto and K. Wood, Product Design: Techniques in Reverse Engineering 

and New Product Development. Prentice Hall, 2001. 

[6] C. Telenko, C. C. Seepersad, and M. E. Webber, “A Compilation of Design for 

Environment Principles and Guidelines,” ASME 2008 Int. Des. Eng. Tech. 

Conf., pp. 1–13, 2008. 

[7] C. Telenko and C. C. Seepersad, “A Methodology for Identifying 

Environmentally Conscious Guidelines for Product Design,” J. Mech. Des., 

vol. 132, no. 9, p. 091009, 2010. 

[8] S. Rachuri, P. Sarkar, A. Narayanan, J. H. Lee, and P. Witherell, “Towards a 

Methodology for Analyzing Sustainability Standards using the Zachman 

Framework,” 2011. 

[9] D. Russo, C. Rizzi, and G. Montelisciani, “Inventive guidelines for a TRIZ-

based eco-design matrix,” J. Clean. Prod., vol. 76, pp. 95–105, 2014. 

[10] C. Telenko, C. C. Seepersad, and M. E. Webber, “A Method for Developing 

Design for Environment Guidelines for Future Product Design,” in ASME 

International Design Engineering Technical Conference, 2009, pp. 1–12. 

[11] C. Telenko, “Developing Green Design Guidelines : A Formal Method and 

Case Study,” The University of Texas at Austin, 2009. 

[12] L. Y. Ljungberg, “Materials selection and design for development of 

sustainable products,” Mater. Des., vol. 28, no. 2, pp. 466–479, 2007. 

[13] B. DuPont and A. Wisthoff, “Exploring the Retention of Sustainable Design 

Principles in Engineering Practice through Design Education,” ASME Int. Des. 

Eng. Tech. Conf. Comput. Inf. Eng. Conf., vol. 8, pp. 1–4, 2015. 

[14] V. Goepp, P. Zwolinski, and E. Caillaud, “Design process and data models to 

support the design of sustainable remanufactured products,” Comput. Ind., vol. 

65, no. 3, pp. 480–490, 2014. 

[15] M. Paju, J. Heilala, M. Hentula, A. Heikkila, B. Johansson, S. Leong, and K. 

Lyons, “Framework and Indicators for as Sustainable Manufacturing Mapping 

Methodology,” in Proceedings of the 2010 Winter Simulation Conference, 

2010, pp. 1–12. 



52 

[16] J. Srivastava and L. H. Shu, “Affordances and Product Design to Support 

Environmentally Conscious Behavior,” J. Mech. Des., vol. 135, no. 10, p. 

101006, 2013. 

[17] C. Telenko and C. Seepersad, “Scoping Usage Contexts and Scenarios in Eco-

Design,” Asme 2014 Idetc Dfmlc, pp. 1–10, 2014. 

[18] F. Rubik, “Environmental sound product innovation and Integrated Product 

Policy ͑ IPP ͒,” pp. 219–232, 2003. 

[19] D. Eddy, S. Krishnamurty, I. Grosse, P. Witherell, J. Wileden, and K. Lewis, 

“An Integrated Approach to Information Modeling for the Sustainable Design 

of Products,” J. Comput. Inf. Sci. Eng., vol. 14, no. 2, p. 021011, Apr. 2014. 

[20] D. Eddy, S. Krishnamurty, I. Grosse, and J. Wileden, “DETC2014-34280 A 

Robust Surrogate Modeling Approach for Material Selection in Sustainable 

Design of Products,” pp. 1–18, 2014. 

[21] A. E. D’Alessio, P. Witherell, and S. Rachuri, “Modeling Gaps and Overlaps 

of Sustainability Standards,” in CIRP International Conference on Life Cycle 

Engineering, 2012. 

[22] F. Rasamoelina, C. Bouchard, and A. Aoussat, “Towards a Kansei-Based User 

Modeling Methodology for Eco-design,” Int. J. Affect. Eng. - Spec. Issue 

KEER 2012, vol. 12, no. 2, pp. 337–348, 2013. 

[23] C. Withanage, R. Ashok, K. Holtta-Otto, and K. Otto, “DETC2014-34798 

Identifying and Categorizing Opportunities for Design for Sustainable User,” 

in ASME 2014 International Design Engineering Technical Conferences, 2014, 

pp. 1–12. 

[24] PCF Pilot Project Germany, “Product Carbon Footprinting – The Right Way to 

Promote Low Carbon Products and Consumption Habits?,” http://www.pcf-

projekt.de/files/1241103260/lessons-learned_2009.pdf, 2009. 

[25] J. She and E. F. Macdonald, “Trigger Features on Prototypes Increase 

Preference for Sustainability,” in Proceedings of the ASME 2013 International 

Design Engineering Technical Conferences & Computers and Information in 

Engineering Conference, 2013, pp. 1–11. 

[26] E. MacDonald and J. She, “Seven Cognitive Concepts for Successful 

Sustainable Design,” ASME Int. Des. Eng. Tech. Conf. Comput. Inf. Eng. 

Conf., pp. 1–16, 2012. 

[27] E. Macdonald, K. Whitefoot, A. Arbor, J. T. Allison, and R. Gonzalez, “An 

Investigation of Sustainability, Preference, and Profitability in Design 

Optimization,” in ASME International Design Engineering Technical 

Conferences and Computers and Information in Engineering Conference, 

2010, pp. 1–14. 

[28] P. Murto, O. Person, and M. Ahola, “Shaping the face of environmentally 

sustainable products: Image boards and early consumer involvement in ship 

interior design,” J. Clean. Prod., vol. 75, pp. 86–95, 2014. 



53 

[29] D. C. Eddy, S. Krishnamurty, I. R. Grosse, J. C. Wileden, and K. E. Lewis, “A 

normative decision analysis method for the sustainability-based design of 

products,” J. Eng. Des., vol. 24, no. 5, pp. 342–362, May 2013. 

[30] T. E. Graedel and B. R. Allenby, Industrial Ecology. Englewood Cliffs, NJ, 

USA: Prentice Hall, 1995. 

[31] A. Bala, M. Raugei, G. Benveniste, C. Gazulla, and P. Fullana-I-Palmer, 

“Simplified tools for global warming potential evaluation: When ‘good 

enough’ is best,” Int. J. Life Cycle Assess., vol. 15, no. 5, pp. 489–498, 2010. 

[32] T. Hur, J. Lee, J. Ryu, and E. Kwon, “Simplified LCA and matrix methods in 

identifying the environmental aspects of a product system,” J. Environ. 

Manage., vol. 75, no. 3, pp. 229–237, 2005. 

[33] D. C. A. Pigosso, S. R. Souza, A. R. Ometto, and H. Rozenfeld, “Life Cycle 

Assessment (LCA): discussion on full-scale and simplified assessments to 

support the product development process,” 3rd Int. Work. - Adv. Clean. Prod., 

2011. 

[34] J. Valkama and M. Keskinen, “Comparison of simplified LCA variations for 

three LCA cases of electronic products from the ecodesign point of view,” 

IEEE Int. Symp. Electron. Environ., 2008. 

[35] M. Goedkoop and R. Spriensma, “The Eco-indicator 99 - A damage oriented 

method for Life Cycle Impact Assessment,” Annex Rep. Eco-Indicator 99, no. 

October, p. 144, 2001. 

[36] M. Goedkoop, R. Heijungs, M. Huijbregts, A. De Schryver, J. Struijs, and R. 

Van Zelm, “ReCiPe 2008,” 2009. 

[37] D. Chang, C. K. M. Lee, and C.-H. Chen, “Review of Life Cycle Assessment 

towards Sustainable Product Development,” J. Clean. Prod., vol. 83, no. July 

2015, pp. 48–60, 2014. 

[38] Dassault Systems, “SolidWorks Sustainability.” [Online]. Available: 

http://www.solidworks.com/sustainability/. [Accessed: 01-Jul-2015]. 

[39] S. Vinodh, V. Kamala, and K. Jayakrishna, “Integration of ECQFD, TRIZ, and 

AHP for innovative and sustainable product development,” Appl. Math. 

Model., vol. 38, no. 11–12, pp. 2758–2770, 2014. 

[40] S. Vinodh and G. Rathod, “Integration of ECQFD and LCA for sustainable 

product design,” J. Clean. Prod., vol. 18, no. 8, pp. 833–842, 2010. 

[41] A. Romli, P. Prickett, R. Setchi, and S. Soe, “Integrated eco-design decision-

making for sustainable product development,” Int. J. Prod. Res., no. April 

2015, pp. 37–41, 2014. 

[42] A. Romli, P. Prickett, R. Setchi, and S. Shoe, “A Conceptual Model for 

Sustainable Product Design,” Key Eng. Mater., vol. 572, pp. 3–6, 2014. 

[43] D. G. Ullman, The Mechanical Design Process, 4th ed. McGraw-Hill, 2010. 

[44] Esko-Graphics bvba, “ArtiosCAD.” 2016. 



54 

[45] D.-S. Siamak, “Wear Indicator for a Disposable Razor,” 5388331, 1995. 

[46] Technical Committee ISO/TC 207, “ISO 14040:2006,” ISO, 2006. [Online]. 

Available: www.iso.org. [Accessed: 01-Jul-2015]. 

[47] Universiteit Leiden/CML, “LCA resources at CML-IE,” 2008. [Online]. 

Available: http://www.leidenuniv.nl/interfac/cml/ssp/projects/lca2/. [Accessed: 

01-Jan-2016]. 

[48] J. A. Todd and M. A. Curran, “Streamlined Life-Cycle Assessment: A Final 

Report from the SETAC North America Streamlined LCA Workgroup,” 1999. 

[49] T. E. Graedel, B. R. Allenby, and P. R. Comrie, “Matrix approaches to 

abridged life cycle assessment,” Environ. Sci. Technol., vol. 29, no. 3, pp. 134–

139, 1995. 

[50] J. Bare, “Tool for the Reduction and Assessment of Chemical and other 

Environmental Impacts (TRACI).” UNITED STATES ENVIRONMENTAL 

PROTECTION AGENCY, 2012. 

[51] J. C. Bare, P. Hofstetter, D. W. Pennington, and H. A. U. de Haes, “Midpoints 

versus endpoints: The sacrifices and benefits,” Int. J. Life Cycle Assess., vol. 5, 

no. 6, pp. 319–326, Nov. 2000. 

[52] C. Luttropp and J. Lagerstedt, “EcoDesign and The Ten Golden Rules: generic 

advice for merging environmental aspects into product development,” J. Clean. 

Prod., vol. 14, no. 15–16, pp. 1396–1408, 2006. 

[53] S. Byggeth, G. Broman, and K. H. Robèrt, “A method for sustainable product 

development based on a modular system of guiding questions,” J. Clean. 

Prod., vol. 15, no. 1, pp. 1–11, 2007. 

[54] I. Sousa and D. Wallace, “Product classification to support approximate life-

cycle assessment of design concepts,” Technol. Forecast. Soc. Change, vol. 73, 

no. 3, pp. 228–249, 2006. 

[55] J. Park and K.-K. Seo, “Approximate life cycle assessment of product concepts 

using multiple regression analysis and artificial neural networks,” KSME Int. 

J., vol. 17, no. 12, pp. 1969–1976, 2003. 

[56] D. Collado-Ruiz and H. Ostad-Ahmad-Ghorabi, “Estimating Environmental 

Behavior Without Performing a Life Cycle Assessment,” J. Ind. Ecol., vol. 17, 

no. 1, pp. 31–42, 2013. 

[57] S. Marsland, Machine Learning: An Algorithmic Perspective, Second. CRC 

Press, 2015. 

[58] I. Sousa, J. L. Eisenhard, and D. Wallace, “Approximate Life-Cycle 

Assessment of Product Concepts Using Learning Systems,” J. Ind. Ecol., vol. 

4, no. 4, pp. 61–81, 2000. 

[59] S. Golak, D. Burchart-Korol, K. Czaplicka-Kolarz, and T. Wieczorek, 

“Application of Neural Network for the Prediction of Eco-efficiency,” Adv. 

Neural Networks – ISNN 2011, vol. 6677, pp. 380–387, 2011. 



55 

[60] S. Poole, M. Simon,  a Sweatman, T. a Bhamra, S. Evans, T. C. Mcaloone, C. 

Street, M. M. Sgd, and B. M. K. Oal, “Integrating Environmental Decisions 

into the Product Development Process : Part 2 The Later Stages,” Concurr. 

Eng., pp. 334–337, 1999. 

[61] R. Likert, “A technique for the measurement of attitudes.,” Arch. Psychol., 

1932. 

[62] E. W. Weisstein, “Tree,” MathWorld, 2016. [Online]. Available: 

http://mathworld.wolfram.com/Tree.html. [Accessed: 05-Oct-2016]. 

[63] Django Software Foundation, “Django,” 2005. [Online]. Available: 

https://djangoproject.com. [Accessed: 14-Aug-2015]. 

[64] U.S. Environmental Protection Agency, “Advancing sustainable materials 

management: facts and figures 2013,” United States Environmental Protection 

Agency, 2015. 

[65] “Matbase.” [Online]. Available: www.matbase.com. [Accessed: 01-Jan-2016]. 

[66] Thinkstep, “GaBi Software,” 1999. [Online]. Available: http://www.gabi-

software.com. [Accessed: 01-Jul-2015]. 

 

  



56 

 

 

 

 

 

 

APPENDICES 

  



57 

Appendix 1   
Table 8: Full Grouping List of Partitioned Products (Pg. 56-57) 

Product Attribute Group Range Unit 

Size_Large >100000 cm^3 

Size_Medium 10000 to 100000 cm^3 

Size_Small <10000 cm^3 

Mass_Large >10 kg 

Mass_Medium 1-10 kg 

Mass_Small <1 kg 

Number of Parts_A lot >40 Number 

Number of Parts_Medium 20 to 40 Number 

Number of Parts_Few <20 Number 

Number of types of material_A lot >7 Number 

Number of types of material_some 4 to 7 Number 

Number of types of material_Few <4 Number 

Electrial Energy_Yes Yes 

Electrical Energy_No No 

Combustion_Yes Yes 

Combustion_No No 

Human_None_Yes Yes 

Human_None_No No 

Energy per use_A lot >100 Watts 

Energy per use_Some 10 to 100 Watts 

Energy per use_Few <10 Watts 

Lifetime_Long >5 Years 

Lifetime_Medium 1 to 5 Years 

Lifetime_Short <1 Years 

Number Consumables_A lot >100 Number 

Number Consumables_Some 1 to 100 Number 

Number Consumables_None 0 Number 

Number Batteries_A lot >1 Number 

Number Batteries_Some 1 Number 

Number Batteries_None 0 Number 

Fer Metal_Majority >60 Percent total Mass 

Fer Metal_Some 30 to 60 Percent total Mass 

Fer Metal_Minority <30 Percent total Mass 

Non-Fer Metal_A lot >40 Percent total Mass 

Non_Fer Metal_Some 10 to 40 Percent total Mass 

Non_Fer Metal_Few <10 Percent total Mass 

Plastic_Majority >60 Percent total Mass 

Plastic_Some 30 to 60 Percent total Mass 

Plastic_Minority <30 Percent total Mass 

Glass_None 0 Percent total Mass 
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Product Attribute Group Range Unit 

Organic_A lot >2 Percent total Mass 

Organic_Some <2 Percent total Mass 

Organic_None 0 Percent total Mass 

Hazardous_Yes >0 Percent total Mass 

Hazardous_None 0 Percent total Mass 

Electrical Components_Yes >0 Percent total Mass 

Electrical Components_None 0 Percent total Mass 

Other_None 0 Percent total Mass 

Number Stock Parts_A lot >20 Number 

Number Stock Parts_Some 5 to 20 Number 

Number Stock Parts_None-Few <5 Number 

Number Subassemblies_A lot >4 Number 

Number Subassemblies_Some 3 to 4 Number 

Number Subassemblies_Few <3 Number 

Number MFG Proccesses_A lot >20 Number 

Number MFG Processes_Some 10 to 20 Number 

Number MFG Processes_Few <10 Number 

Fasteners_A lot >1 Percent total Mass 

Fasteners_Some <0 to 1 Percent total Mass 

Fasteners_None 0 Percent total Mass 
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Appendix 2  
Table 9: Estimation Error from Neural Network of all 60 Attribute Groups for Each 

Metric (Pg. 58-72) 

Product 

Attribute 

ReCiPe Metrics 

Global 

Warming 

Potential 

Ozone 

Depletion 

Potential 

Terrestrial 

Acidification 

Potential 

Freshwater 

Eutrophication 

Potential 

Size_Large 1.12E-02 2.07E-02 7.55E-01 2.20E-06 

Size_Medium 7.20E-01 3.02E+00 6.53E+00 1.08E-02 

Size_Small 3.12E-02 7.78E+00 2.22E-04 1.48E-02 

Mass_Large 7.30E+00 4.46E+00 8.83E-01 -1.48E-06 

Mass_Medium 1.18E-04 1.78E-03 5.65E-04 1.60E+00 

Mass_Small 9.46E-01 7.72E-01 1.58E-01 1.36E-01 

Number of 

Parts_A lot 3.33E-02 1.67E-01 1.70E-01 4.49E+01 

Number of 

Parts_Medium 2.38E-02 3.48E-04 8.38E-04 1.18E-01 

Number of 

Parts_Few 5.28E+00 1.64E-03 1.55E-03 8.61E-01 

Num of types 

of material_A 

lot 6.33E+00 1.88E-02 6.28E+00 2.06E-05 

Num of types 

of 

material_some 1.51E-03 6.02E-01 1.91E-03 9.39E+00 

Num of types 

of 

material_Few 9.05E+00 3.69E-02 7.96E+01 9.24E+00 

Electrial 

Energy_Yes 2.93E-05 9.99E-02 9.39E-02 1.01E+00 

Electrical 

Energy_No 3.19E-01 8.86E-03 1.71E+00 3.57E+00 

Combustion_Y

es 3.95E-02 1.74E-03 7.79E-01 1.04E-04 

Combustion_N

o 1.03E-02 2.13E-03 1.49E-02 1.86E+00 

Human_None_

Yes 1.20E+00 1.01E-01 7.80E-01 2.86E-05 

Human_None_

No 7.12E-01 2.96E+00 1.79E-01 6.09E-01 

Energy per 

use_A lot 1.37E+00 6.14E-02 4.07E-01 4.28E+01 
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Product 

Attribute 

ReCiPe Metrics 

Global 

Warming 

Potential 

Ozone 

Depletion 

Potential 

Terrestrial 

Acidification 

Potential 

Freshwater 

Eutrophication 

Potential 

Energy per 

use_Some 3.03E-04 3.37E+01 3.94E-02 2.80E-04 

Energy per 

use_Few 3.17E+00 9.97E-01 5.04E-02 2.37E-03 

Lifetime_Long 2.19E-03 8.93E-03 5.77E-03 9.69E+00 

Lifetime_Medi

um 9.71E-05 2.02E+00 3.64E-03 3.76E+00 

Lifetime_Short 2.95E+03 3.95E+01 7.95E+01 1.45E-02 

Num 

Consumables_

A lot 8.74E-05 3.32E-04 2.49E-03 2.05E-01 

Num 

Consumables_

Some 2.50E-05 1.24E+00 6.63E+00 6.88E+00 

Num 

Consumables_

None 4.87E-01 2.07E-01 5.70E-03 1.10E-01 

Num 

Batteries_A lot 6.76E+01 8.40E-01 1.88E+01 8.00E-02 

Num 

Batteries_Som

e 1.34E+01 3.99E+00 1.87E-01 7.86E-04 

Num 

Batteries_Non

e 1.33E-03 1.05E-04 4.59E-02 4.23E+00 

Fer 

Metal_Majorit

y 4.09E-01 7.87E-03 5.89E+00 3.61E-01 

Fer 

Metal_Some 1.76E-01 5.92E-01 2.08E-03 3.95E+01 

Fer 

Metal_Minorit

y 4.34E-05 1.89E+01 1.62E-01 3.95E-05 

Non-Fer 

Metal_A lot 2.79E-02 6.23E-01 1.04E-02 2.19E+00 

Non_Fer 

Metal_Some 2.01E-03 2.84E-02 3.09E-05 1.10E-05 

Non_Fer 

Metal_Few 2.63E-04 1.40E-02 1.38E+01 1.20E+00 
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Product 

Attribute 

ReCiPe Metrics 

Global 

Warming 

Potential 

Ozone 

Depletion 

Potential 

Terrestrial 

Acidification 

Potential 

Freshwater 

Eutrophication 

Potential 

Plastic_Majori

ty 2.52E-04 6.75E+00 1.04E-03 5.14E-01 

Plastic_Some 4.60E+00 1.89E-01 6.74E+00 5.73E-01 

Plastic_Minori

ty 6.01E+00 2.94E-04 5.92E-03 5.80E-01 

Glass_None 9.08E-03 1.34E+01 2.42E-02 7.16E-01 

Organic_A lot 1.69E-01 2.70E-01 7.82E-02 1.52E-06 

Organic_Some 5.41E+00 1.90E+00 1.38E+00 1.07E-03 

Organic_None 2.00E-03 7.29E-02 1.97E-03 1.41E+00 

Hazardous_Ye

s 2.87E-02 6.43E-01 1.87E+01 2.24E-02 

Hazardous_No

ne 3.63E-02 1.21E+01 1.14E+01 4.68E+00 

Electrical 

Components_

Yes 9.60E-01 8.50E-01 1.11E+01 9.56E-01 

Electrical 

Components_

None 8.15E-05 2.92E-01 4.12E-04 5.49E-02 

Other_None 1.74E+00 1.85E-02 4.04E+00 5.28E+00 

Num Stock 

Parts_A lot 1.27E+00 6.49E-02 9.01E-04 8.56E-03 

Num Stock 

Parts_Some 5.03E-04 2.68E-02 2.45E+00 6.28E+00 

Num Stock 

Parts_None-

Few 3.15E-04 9.19E-03 2.06E-02 1.72E-01 

Num 

Subassemblies

_A lot 8.55E-03 2.20E+00 5.92E+00 1.76E-01 

Num 

Subassemblies

_Some 1.68E-01 4.95E-05 5.64E-01 3.39E+00 

Num 

Subassemblies

_Few 2.22E-01 6.62E-01 1.48E-01 9.49E-01 

Num MFG 

Proccesses_A 

lot 3.00E-02 2.90E-01 9.99E+00 3.23E+00 
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Product 

Attribute 

ReCiPe Metrics 

Global 

Warming 

Potential 

Ozone 

Depletion 

Potential 

Terrestrial 

Acidification 

Potential 

Freshwater 

Eutrophication 

Potential 

Num MFG 

Processes_So

me 1.36E-02 1.16E-01 5.24E-04 5.19E-02 

Num MFG 

Processes_Few 1.20E+01 1.32E+00 6.68E-01 1.10E+01 

Num 

Fasteners_A 

lot 3.84E-02 1.12E-01 2.33E-02 9.98E-03 

Num 

Fasteners_Som

e 1.84E-02 1.46E-01 4.86E+00 3.94E+00 

Num 

Fasteners_Non

e 1.29E-02 2.54E-02 9.17E+00 1.65E-01 

 

 

Product 

Attribute 

ReCiPe Metrics 

Marine 

Eutrophicatio

n Potential 

Global Eco-

toxicity 

Potential1 

Photochemical 

Oxidant 

Formation 

Potential 

Particulate 

Matter 

Formation 

Potential 

Size_Large 4.24E-03 3.47E+00 6.20E-03 2.27E-01 

Size_Mediu

m 
1.26E+01 1.03E-03 1.32E+00 1.29E+00 

Size_Small 3.24E-02 8.46E+00 1.12E-03 7.10E-01 

Mass_Large 9.00E-04 1.23E-01 4.01E+00 6.06E-04 

Mass_Mediu

m 
8.81E+00 5.99E-01 1.94E-04 2.93E-02 

Mass_Small 3.39E+00 9.92E+00 2.75E-04 7.94E-01 

Number of 

Parts_A lot 
1.17E-01 3.35E+00 1.00E-01 2.78E+00 

Number of 

Parts_Mediu

m 

4.47E-02 1.37E-02 1.37E-04 6.48E+00 

Number of 

Parts_Few 
2.30E+00 1.79E-01 1.02E-03 5.18E-01 
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Product 

Attribute 

ReCiPe Metrics 

Marine 

Eutrophicatio

n Potential 

Global Eco-

toxicity 

Potential1 

Photochemical 

Oxidant 

Formation 

Potential 

Particulate 

Matter 

Formation 

Potential 

Num of 

types of 

material_A 

lot 

4.91E-03 7.24E+00 2.02E-02 3.23E+00 

Num of 

types of 

material_so

me 

2.28E+00 2.84E+00 4.14E-04 1.13E-02 

Num of 

types of 

material_Fe

w 

4.98E-02 9.38E-03 4.39E-02 1.57E-03 

Electrial 

Energy_Yes 
3.41E-03 3.71E-01 1.32E-01 5.61E+00 

Electrical 

Energy_No 
1.27E-02 1.04E-01 3.15E-04 5.87E-01 

Combustion

_Yes 
1.55E-03 1.43E-02 3.65E-01 1.70E-02 

Combustion

_No 
3.01E-01 1.27E+00 1.06E+01 4.74E-01 

Human_Non

e_Yes 
7.29E-03 4.34E+01 3.40E+00 8.60E+00 

Human_Non

e_No 
5.95E-04 3.25E+00 6.60E+00 1.13E-01 

Energy per 

use_A lot 
5.74E-02 1.46E-03 1.39E+00 4.12E-05 

Energy per 

use_Some 
1.27E-04 6.20E+00 2.84E-02 1.74E-01 

Energy per 

use_Few 
3.15E-03 9.97E-03 2.00E+00 1.30E-02 

Lifetime_Lo

ng 
6.87E-05 1.52E-03 6.15E-03 1.58E-01 

Lifetime_Me

dium 
2.87E-02 1.36E+01 2.42E-02 2.85E-02 

Lifetime_Sh

ort 
2.19E+03 3.53E+02 2.67E+02 7.03E-01 

Num 

Consumable

s_A lot 

1.76E-01 1.08E+00 2.70E-01 1.21E-01 
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Product 

Attribute 

ReCiPe Metrics 

Marine 

Eutrophicatio

n Potential 

Global Eco-

toxicity 

Potential1 

Photochemical 

Oxidant 

Formation 

Potential 

Particulate 

Matter 

Formation 

Potential 

Num 

Consumable

s_Some 

5.13E+00 1.17E+00 8.17E-01 1.23E-02 

Num 

Consumable

s_None 

3.57E-02 5.57E+00 1.73E-03 8.13E-01 

Num 

Batteries_A 

lot 

4.57E+01 6.22E+00 4.06E-01 1.09E+01 

Num 

Batteries_So

me 

3.49E+00 4.62E-02 3.24E+00 1.23E-03 

Num 

Batteries_No

ne 

3.04E+01 8.19E-05 3.35E-02 2.51E-02 

Fer 

Metal_Major

ity 

2.45E+00 1.31E-01 4.63E-02 2.79E-02 

Fer 

Metal_Some 
6.79E-02 9.25E-04 2.07E-04 7.72E-01 

Fer 

Metal_Minor

ity 

2.90E+00 3.38E-02 1.30E+01 2.82E-02 

Non-Fer 

Metal_A lot 
2.04E-04 3.33E-03 1.35E+00 1.44E-02 

Non_Fer 

Metal_Some 
7.18E+00 8.21E-02 1.03E+01 5.52E-01 

Non_Fer 

Metal_Few 
1.82E-03 6.26E-04 7.51E-03 1.53E-01 

Plastic_Majo

rity 
4.10E-01 2.66E-01 6.19E-04 4.45E-04 

Plastic_Som

e 
3.24E+00 1.46E+02 6.51E-01 6.54E+00 

Plastic_Mino

rity 
1.53E+01 4.21E+00 2.44E-01 2.51E-01 

Glass_None 3.94E-01 6.76E-01 3.87E+00 5.13E-02 

Organic_A 

lot 
3.09E-06 2.15E-03 1.03E-02 2.06E-04 

Organic_So

me 
1.44E-01 7.61E-01 3.53E+00 5.91E+00 
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Product 

Attribute 

ReCiPe Metrics 

Marine 

Eutrophicatio

n Potential 

Global Eco-

toxicity 

Potential1 

Photochemical 

Oxidant 

Formation 

Potential 

Particulate 

Matter 

Formation 

Potential 

Organic_No

ne 
2.29E-03 8.97E-01 7.34E-03 6.27E-02 

Hazardous_

Yes 
3.15E+01 6.68E-04 3.26E-02 1.14E-03 

Hazardous_

None 
1.77E-03 2.13E+01 1.22E-01 2.68E-03 

Electrical 

Components

_Yes 

6.89E-04 7.32E-01 2.48E-02 6.54E-02 

Electrical 

Components

_None 

3.86E-02 3.24E-03 9.89E+00 5.40E+00 

Other_None 1.47E-01 5.81E-05 1.22E+01 3.05E-02 

Num Stock 

Parts_A lot 
7.97E-02 6.79E-01 3.92E-05 1.74E-02 

Num Stock 

Parts_Some 
3.29E-01 1.74E+00 7.86E-01 2.40E-02 

Num Stock 

Parts_None-

Few 

1.32E+01 6.99E-03 1.04E+02 1.71E-01 

Num 

Subassembli

es_A lot 

1.03E-01 2.17E-01 3.36E-01 6.00E-01 

Num 

Subassembli

es_Some 

2.98E+00 1.65E+00 3.52E-01 4.45E-03 

Num 

Subassembli

es_Few 

8.50E-01 4.56E-03 2.53E+00 5.96E-02 

Num MFG 

Proccesses_

A lot 

2.53E-04 1.77E-02 2.67E+01 6.69E-02 

Num MFG 

Processes_S

ome 

2.08E-01 1.01E-01 4.51E-03 2.48E-02 

Num MFG 

Processes_F

ew 

1.05E+00 3.47E-03 5.93E-01 6.16E+00 
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Product 

Attribute 

ReCiPe Metrics 

Marine 

Eutrophicatio

n Potential 

Global Eco-

toxicity 

Potential1 

Photochemical 

Oxidant 

Formation 

Potential 

Particulate 

Matter 

Formation 

Potential 

Num 

Fasteners_A 

lot 

5.75E+00 6.16E+00 2.60E-01 1.79E+00 

Num 

Fasteners_So

me 

5.03E+00 1.81E-02 1.50E+01 4.16E-03 

Num 

Fasteners_N

one 

3.73E+01 4.56E-02 4.60E+01 1.98E-02 

 

 

Product 

Attribute 

ReCiPe Metrics 

Ionizing 

Radiation 

Potential 

Mineral 

Depletion 
Water Depletion 

Fossil 

Depletion 

Size_Large 9.35E-05 1.54E-01 3.82E+00 2.56E+00 

Size_Mediu

m 
9.94E-05 9.73E-03 8.54E-02 8.99E-04 

Size_Small 2.86E-03 8.30E-01 5.80E+00 2.89E+00 

Mass_Large 2.85E-01 1.02E+00 6.44E-01 2.90E-03 

Mass_Mediu

m 
1.15E+01 8.43E-03 5.77E-01 4.12E-04 

Mass_Small 4.06E-03 1.99E+00 2.83E-03 8.59E-02 

Number of 

Parts_A lot 
1.84E+00 1.18E-01 7.80E-01 8.65E-02 

Number of 

Parts_Mediu

m 

6.55E-05 6.16E-01 7.97E-04 1.07E-02 

Number of 

Parts_Few 
2.45E-03 1.74E-03 8.71E-03 2.95E-03 

Num of types 

of 

material_A 

lot 

1.58E+00 2.34E-04 4.82E-05 1.64E-01 

Num of types 

of 

material_som

e 

3.37E-01 2.60E-02 1.74E-01 4.60E-05 
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Product 

Attribute 

ReCiPe Metrics 

Ionizing 

Radiation 

Potential 

Mineral 

Depletion 
Water Depletion 

Fossil 

Depletion 

Num of types 

of 

material_Fe

w 

1.81E+01 4.07E+00 3.32E-03 2.11E-03 

Electrial 

Energy_Yes 
6.04E+00 3.40E-03 3.76E-01 3.08E-01 

Electrical 

Energy_No 
4.34E-03 1.14E+00 2.53E-02 7.61E-02 

Combustion_

Yes 
2.57E-04 3.82E-02 6.13E-02 6.93E-03 

Combustion_

No 
1.16E-04 2.22E+00 2.17E-03 2.92E-01 

Human_Non

e_Yes 
5.59E-01 2.98E-02 9.44E+00 4.96E-01 

Human_Non

e_No 
1.87E-02 2.28E-01 1.52E-01 1.13E+00 

Energy per 

use_A lot 
1.45E-04 4.10E+00 3.09E-04 1.79E-03 

Energy per 

use_Some 
3.44E-01 5.42E+00 3.26E-02 4.78E-05 

Energy per 

use_Few 
6.98E-04 4.06E-03 3.18E-01 7.29E-01 

Lifetime_Lo

ng 
1.71E-03 2.76E-02 3.96E-01 1.62E-03 

Lifetime_Me

dium 
1.13E-01 1.37E+00 1.04E-01 1.94E-02 

Lifetime_Sh

ort 
2.79E+01 1.59E+04 6.62E+00 1.14E+00 

Num 

Consumables

_A lot 

1.35E-01 3.72E-03 8.29E-02 1.49E-01 

Num 

Consumables

_Some 

5.90E+00 4.72E-04 8.30E+00 5.33E+00 

Num 

Consumables

_None 

1.71E-03 3.21E-03 8.56E-03 3.76E-02 

Num 

Batteries_A 

lot 

1.49E-02 1.16E+01 4.86E-02 1.73E-01 
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Product 

Attribute 

ReCiPe Metrics 

Ionizing 

Radiation 

Potential 

Mineral 

Depletion 
Water Depletion 

Fossil 

Depletion 

Num 

Batteries_So

me 

4.48E-04 2.70E-01 2.34E+01 1.01E+01 

Num 

Batteries_No

ne 

4.18E+01 2.60E-01 1.03E+00 1.33E-02 

Fer 

Metal_Major

ity 

2.22E+01 5.70E+00 2.10E-03 2.05E-01 

Fer 

Metal_Some 
5.64E+00 3.87E-03 1.02E+00 7.54E-01 

Fer 

Metal_Minor

ity 

1.83E-03 1.27E+00 2.61E-02 2.02E+00 

Non-Fer 

Metal_A lot 
1.16E-01 4.09E-03 6.48E-01 4.05E-02 

Non_Fer 

Metal_Some 
4.05E-06 3.21E-02 3.06E-02 2.17E+01 

Non_Fer 

Metal_Few 
7.29E-02 1.53E-02 6.08E-02 5.73E-02 

Plastic_Majo

rity 
9.04E+00 1.29E-02 1.37E-01 2.70E-01 

Plastic_Some 1.43E+00 3.82E+01 2.23E-02 1.05E-03 

Plastic_Mino

rity 
1.08E-01 7.08E-01 1.30E-01 5.11E+00 

Glass_None 6.04E+00 2.76E-03 5.59E+00 1.63E-03 

Organic_A 

lot 
4.83E-05 6.02E-05 8.95E+00 6.58E-05 

Organic_So

me 
2.97E+00 8.76E-01 1.70E-03 4.07E-02 

Organic_Non

e 
2.84E+00 6.49E-03 2.29E-02 4.58E-03 

Hazardous_

Yes 
4.74E-01 6.39E-02 2.94E-01 8.19E-02 

Hazardous_

None 
2.11E-04 1.87E-03 1.52E+00 4.59E-05 

Electrical 

Components

_Yes 

1.05E+00 6.40E-01 5.60E-01 3.84E-02 
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Product 

Attribute 

ReCiPe Metrics 

Ionizing 

Radiation 

Potential 

Mineral 

Depletion 
Water Depletion 

Fossil 

Depletion 

Electrical 

Components

_None 

8.93E-05 8.59E-03 8.14E-03 1.27E-03 

Other_None 4.19E-05 1.80E+01 9.79E+00 9.57E-02 

Num Stock 

Parts_A lot 
6.82E+00 1.39E-01 4.05E-01 9.56E+00 

Num Stock 

Parts_Some 
1.46E+00 2.31E-01 1.04E+00 9.67E-01 

Num Stock 

Parts_None-

Few 

5.22E-01 2.62E-03 7.26E+00 1.25E-01 

Num 

Subassembli

es_A lot 

1.07E-01 6.13E-01 1.68E-03 2.76E-01 

Num 

Subassembli

es_Some 

1.02E-01 1.75E+01 5.26E-02 4.38E-03 

Num 

Subassembli

es_Few 

1.93E-01 2.37E-01 3.56E-01 5.56E-03 

Num MFG 

Proccesses_

A lot 

2.38E-01 4.02E-02 5.38E-01 9.76E+00 

Num MFG 

Processes_So

me 

7.78E+00 1.17E-01 2.50E-03 2.61E-03 

Num MFG 

Processes_Fe

w 

6.55E-01 6.04E+01 1.76E-01 5.54E-01 

Num 

Fasteners_A 

lot 

9.51E-01 1.00E+01 4.46E+00 4.11E+00 

Num 

Fasteners_So

me 

1.20E+00 5.92E-01 1.36E-04 2.18E-03 

Num 

Fasteners_N

one 

8.06E-02 3.65E-01 1.67E-01 1.60E+00 
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Product Attribute 
Eco-indicator 99 Metrics 

Production Use Disposal 

Size_Large 1.35E+00 6.83E-04 -4.55E-03 

Size_Medium 2.20E+00 9.13E+00 -3.42E-04 

Size_Small 4.03E-03 9.30E-02 1.18E-05 

Mass_Large 1.93E-05 9.69E-02 -2.35E-02 

Mass_Medium 7.06E-01 1.80E+00 -1.59E-05 

Mass_Small 1.84E-01 2.68E-01 -2.86E+00 

Number of Parts_A lot 1.67E+00 1.30E-02 -1.48E-05 

Number of Parts_Medium 1.30E+01 2.74E-03 -2.44E-05 

Number of Parts_Few 6.13E-02 5.93E+00 -2.53E-05 

Num of types of material_A lot 1.17E-01 2.01E-03 -7.84E-04 

Num of types of material_some 1.80E-04 2.03E+00 -7.45E-06 

Num of types of material_Few 1.58E-01 9.92E-01 -2.09E-05 

Electrial Energy_Yes 3.80E+00 4.04E-03 -7.35E-06 

Electrical Energy_No 5.39E+00 5.52E+00 -7.59E-05 

Combustion_Yes 1.09E+01 7.27E+00 -8.91E-06 

Combustion_No 3.72E+00 3.87E+00 2.23E-04 

Human_None_Yes 6.41E-03 1.15E+02 7.82E-05 

Human_None_No 2.84E-02 7.35E+00 -1.69E-05 

Energy per use_A lot 6.92E-01 2.53E-01 -1.07E-05 

Energy per use_Some 9.95E-02 1.19E-01 -8.82E-06 

Energy per use_Few 1.47E-01 2.02E+01 -5.89E-04 

Lifetime_Long 3.31E+01 1.53E+00 -1.32E-04 

Lifetime_Medium 7.24E-04 5.39E-04 -9.20E-06 

Lifetime_Short 3.71E-02 6.55E+04 -1.37E+02 

Num Consumables_A lot 3.69E-02 3.85E+00 2.27E-05 

Num Consumables_Some 7.85E-01 3.03E-01 -2.89E-06 

Num Consumables_None 2.23E-04 1.38E-04 -1.04E-04 

Num Batteries_A lot 7.15E+00 2.72E+01 1.38E-01 

Num Batteries_Some 1.99E-01 6.17E-01 -3.32E-05 

Num Batteries_None 1.11E+00 1.87E+01 8.53E-05 

Fer Metal_Majority 1.52E+00 1.23E+01 -2.15E-05 

Fer Metal_Some 6.02E-03 5.44E-04 -2.74E-04 

Fer Metal_Minority 4.43E-05 2.46E-03 -3.45E-06 

Non-Fer Metal_A lot 1.48E-05 1.44E-01 -6.47E-06 

Non_Fer Metal_Some 1.14E-02 1.46E-05 -1.22E-05 

Non_Fer Metal_Few 2.06E-01 1.05E+02 -2.14E-04 

Plastic_Majority 2.19E-02 6.92E-04 -1.08E-05 

Plastic_Some 5.07E+00 1.27E-02 8.06E-03 
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Product Attribute 
Eco-indicator 99 Metrics 

Production Use Disposal 

Plastic_Minority 3.18E-01 3.89E-02 1.05E-03 

Glass_None 1.36E+01 7.64E+00 7.12E-05 

Organic_A lot 4.79E-04 5.51E-01 -2.12E-05 

Organic_Some 8.25E-02 2.69E-04 -9.64E-06 

Organic_None 5.76E-02 1.42E+00 -7.33E-05 

Hazardous_Yes 8.29E-03 6.07E+00 -1.36E-05 

Hazardous_None 3.82E-01 2.95E+00 4.45E-05 

Electrical Components_Yes 1.61E+00 1.29E-01 -3.81E-06 

Electrical Components_None 8.34E+00 8.57E-03 -2.96E-05 

Other_None 6.73E-03 4.60E+00 5.12E-05 

Num Stock Parts_A lot 1.13E-03 5.03E+00 -7.95E-06 

Num Stock Parts_Some 1.19E-03 2.72E+00 -5.44E-06 

Num Stock Parts_None-Few 4.88E-03 8.74E-04 -1.54E-05 

Num Subassemblies_A lot 2.76E-05 9.41E-04 -6.19E-06 

Num Subassemblies_Some 1.76E-04 2.37E-03 -3.86E-05 

Num Subassemblies_Few 4.96E-05 2.09E+01 1.99E-05 

Num MFG Proccesses_A lot 1.05E-01 6.92E+00 -1.64E-04 

Num MFG Processes_Some 9.77E-04 3.49E+00 -3.96E-05 

Num MFG Processes_Few 7.04E-03 9.83E-01 -7.01E-05 

Num Fasteners_A lot 1.72E-02 4.03E-03 -1.23E-05 

Num Fasteners_Some 5.53E-03 4.03E+00 -1.85E-04 

Num Fasteners_None 1.36E-02 8.18E-01 -5.35E-05 

 

 

Product Attribute 

Solidworks Sustainability 

Carbon 

Footprint 

Energy 

consumption 

Air 

Acidificati

on 

Water 

Eutorphication 

Size_Large 6.34E-01 9.26E-01 2.48E-03 2.43E-03 

Size_Medium 9.81E-03 5.72E-05 2.16E-01 5.63E-03 

Size_Small 5.86E-04 3.77E+00 1.44E-02 9.13E-04 

Mass_Large 2.17E-01 9.86E+00 3.26E-05 1.75E-01 

Mass_Medium 3.04E+00 1.81E+00 1.16E-01 5.68E-01 

Mass_Small 2.92E-03 1.57E-01 3.58E-02 2.50E+00 

Number of Parts_A 

lot 
1.45E+00 1.55E+01 3.79E-03 1.67E-02 

Number of 

Parts_Medium 
1.20E-01 5.41E-01 1.58E-02 9.86E-02 
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Product Attribute 

Solidworks Sustainability 

Carbon 

Footprint 

Energy 

consumption 

Air 

Acidificati

on 

Water 

Eutorphication 

Number of 

Parts_Few 
1.78E+00 1.19E+01 2.05E+00 9.78E-04 

Num of types of 

material_A lot 
4.00E-01 2.24E-05 8.84E-01 1.65E-03 

Num of types of 

material_some 
1.35E-04 2.75E-03 2.34E-03 2.61E+00 

Num of types of 

material_Few 
6.25E-01 8.46E-03 6.54E+00 3.37E+00 

Electrial Energy_Yes 1.61E-05 5.80E-03 8.99E-02 1.24E-03 

Electrical Energy_No 2.91E-02 2.04E-01 2.11E-03 1.06E-04 

Combustion_Yes 4.30E-02 1.38E-05 2.13E-04 2.21E-01 

Combustion_No 6.64E+00 1.00E-04 3.60E-01 1.65E-01 

Human_None_Yes 5.33E-04 1.77E-03 9.04E+00 4.48E-02 

Human_None_No 6.36E-01 3.82E+00 8.05E+00 6.75E-03 

Energy per use_A lot 4.95E+00 2.47E-01 8.51E-03 1.21E+00 

Energy per 

use_Some 
8.04E-01 2.54E+00 6.54E-02 1.23E+01 

Energy per use_Few 2.64E+00 7.85E-05 2.52E-04 2.11E+00 

Lifetime_Long 1.09E-01 1.80E-01 5.31E-02 5.15E+00 

Lifetime_Medium 2.75E-03 1.73E-03 2.06E-01 2.08E-01 

Lifetime_Short 4.19E-01 1.43E+02 9.37E+01 5.56E-01 

Num 

Consumables_A lot 
1.06E+00 5.56E+00 3.87E-01 1.72E+00 

Num 

Consumables_Some 
2.76E-05 1.09E-03 1.65E-01 1.30E+00 

Num 

Consumables_None 
5.71E-01 9.38E-01 3.04E-04 1.80E-02 

Num Batteries_A lot 2.21E+00 1.61E+01 3.64E-01 2.30E-01 

Num Batteries_Some 3.38E-02 1.17E-03 1.77E-02 4.06E-04 

Num Batteries_None 1.74E-01 5.24E-02 5.22E+00 6.30E-04 

Fer Metal_Majority 5.36E+00 1.15E+01 6.03E+00 3.54E+01 

Fer Metal_Some 9.57E-01 1.10E-01 4.53E-02 7.02E-02 

Fer Metal_Minority 1.15E-01 2.02E-03 3.33E-02 1.16E-02 

Non-Fer Metal_A lot 4.63E-05 1.32E-02 1.78E+00 4.84E+00 

Non_Fer 

Metal_Some 
1.45E-05 8.15E-06 5.87E-06 5.09E-06 

Non_Fer Metal_Few 2.57E-01 7.65E-01 1.41E-04 8.06E-01 

Plastic_Majority 2.56E-02 1.31E-04 7.69E-03 1.02E+00 
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Product Attribute 

Solidworks Sustainability 

Carbon 

Footprint 

Energy 

consumption 

Air 

Acidificati

on 

Water 

Eutorphication 

Plastic_Some 2.37E-01 9.34E+00 4.65E-01 3.03E-03 

Plastic_Minority 5.51E-02 3.54E-02 8.32E-05 8.89E-04 

Glass_None 5.76E+00 1.52E-01 5.09E+00 3.05E+00 

Organic_A lot 3.28E-01 8.88E-02 6.56E+00 2.35E+01 

Organic_Some 3.63E+00 1.97E+00 1.34E+00 2.81E+00 

Organic_None 9.32E-02 2.93E-01 7.15E+00 5.27E-01 

Hazardous_Yes 4.28E-01 1.12E-01 2.25E-02 1.33E-04 

Hazardous_None 1.56E+01 1.15E-01 1.81E-01 7.93E-02 

Electrical 

Components_Yes 
3.25E-02 8.12E+00 2.29E+00 1.92E-04 

Electrical 

Components_None 
2.97E+00 8.30E-02 2.33E-01 1.51E-01 

Other_None 8.10E-01 4.49E-02 1.98E-01 8.90E-02 

Num Stock Parts_A 

lot 
5.41E-01 1.12E-04 4.10E-01 1.33E+01 

Num Stock 

Parts_Some 
1.25E-02 3.81E+00 8.28E+00 6.61E+00 

Num Stock 

Parts_None-Few 
1.44E-02 3.39E-02 1.92E+00 6.32E-04 

Num 

Subassemblies_A lot 
9.23E-01 2.01E-04 1.35E-01 9.64E-03 

Num 

Subassemblies_Some 
1.47E+00 3.31E+00 3.76E+00 2.48E+01 

Num 

Subassemblies_Few 
6.91E-03 1.57E+02 2.57E+00 4.94E-03 

Num MFG 

Proccesses_A lot 
9.72E-02 1.03E+00 1.45E-03 6.23E-01 

Num MFG 

Processes_Some 
2.50E-01 6.26E-03 2.44E+00 3.05E+00 

Num MFG 

Processes_Few 
4.95E-01 7.56E-03 2.02E-04 1.14E-01 

Num Fasteners_A lot 1.92E-02 1.02E+00 2.67E+00 4.76E+00 

Num 

Fasteners_Some 
3.13E+00 2.60E+00 6.03E+00 9.90E-03 

Num Fasteners_None 7.99E-04 7.04E-02 7.59E+00 3.52E-03 
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Appendix 3 

Table 10 : Table of GREEn Quiz Questions (Pg. 73-106) 
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