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Monotone additive models are useful in estimating productivity curves or analyzing

disease risk where the predictors are known to have monotonic effects on the response.

Existing literature mainly focuses on univariate monotone smoothing. Available meth-

ods for the estimation of monotone additive models are either difficult to interpret or

have no asymptotic guarantees. In the first part of this dissertation, we propose a one-

step backfitted constrained polynomial spline method for the estimation of monotone

additive models. In our proposed method, we obtain monotone estimators by imposing

a set of linear constraints on the spline coefficients for each additive component. In the

second part of the dissertation, we extend the constrained polynomial spline method to

estimate the production frontier that is used to quantify the maximum production output

in econometrics. The estimation of frontier functions is more challenging since it is the

boundary of the support rather than the mean output function to be estimated. Here, we

develop a two-step shape constrained polynomial spline method for the frontier estima-



tion. The first step is to capture the shape of frontier while the second step is to estimate

the location of frontier. Both proposed methods in this dissertation give smooth esti-

mators with the desired shape constraints (monotonicity or/and concavity). They are

easily implementable and computationally efficient by taking advantage of linear pro-

gramming. Most importantly, our methods are applicable for multi-dimensions where

some existing methods fail to work. For the assessment of properties of the proposed

estimators, asymptotic theory is also developed. In addition, the simulation studies and

application of our methods to analyze Norwegian Farm data in both parts suggest that

our proposed methods have better numerical performance than the existing methods,

especially when the data has outliers.
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Nonparametric Estimation of Additive Models with Shape Constraints

1 Introduction

Non- and semi-parametric models are useful in modeling nonlinear dynamics in data

sets where linear models fail to take it into account. Compared with linear models, non-

and semi-parametric models are more flexible since they relax the strong assumption on

linear relationships between predictors and the response variable. Due to their flexibility,

non- and semi-parametric models have been widely used in many scientific areas, such

as genetics (Boni et al. 2007), chemistry (Hnizdo et al. 2007), medical imaging (Sled

et al. 1998), environmental (Van Bergeijk et al. 1992) and social sciences (Leys and

Schumann 2010).

Nonparametric methods are also used in production frontier analysis. In economics,

it is often of interest to investigate the relationship between input and output variables.

A production frontier quantifies the maximum output that can be obtained with limited

inputs. It provides a useful reference in production efficiency analysis. Many nonpara-

metric frontier methods have been proposed in recent years including Barr et al. (1994),

Cazals et al. (2002), Aragon et al. (2005) and Martins-Filho and Yao (2007).

A variety of non- and semi-parametric models have been developed in the existing

literature. Among them, additive models have gained increasing popularity in recent

years due to their flexibility and interpretability. Without a linear restriction, additive

models describe the relationship between each predictor and response via an unknown
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nonparametric function. The contribution of each predictor is additive that enables easy

interpretation of the fitted results.

In recent decades, a vast amount of literature has been published on the estima-

tion of additive models. Various estimation methods have been proposed, including

kernel backfitting (Hastie and Tibshirani 1990, Opsomer and Ruppert 1997, Horowitz

and Mammen 2004), polynomial spline smoothing (Stone 1985, Huang 1998, Ma and

Racine 2013), marginal integration (Linton and Nielsen 1995, Linton and Härdle 1996),

kernel backfitting and projection (Mammen, et al. 1999), spline backfitted kernel smooth-

ing (Wang and Yang 2007, Liu and Yang 2010, Ma and Yang 2011, Liu, et al. 2013),

and Bayesian backfitting (Hastie and Tibshirani 2000). Among these estimation meth-

ods, the backfitting algorithm performs an iterative procedure to update the estimate

until convergence. The polynomial spline method is easy to implement and requires

less computation.

In this dissertation, we are particularly interested in the estimation of additive models

when each additive component is monotone. The monotone additive model is useful in

many areas where the predictors are known or required to have monotone effects on the

response. For example, Morton-Jones et al. (2000) used the monotone additive model to

assess disease risk in epidemiology; de Boer et al. (2002) applied the monotone additive

model to explore the relationship between the toxicity and the degree of contamination

of aquatic sediments.

The monotone additive model is not well represented in the literature compared with

the additive model. A widely used approach to estimate the monotone additive model

is to iteratively apply the Pool Adjacent Violator Algorithm (PAVA) in a backfitting
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procedure (Mammen and Yu 2007). The resulting estimator proposed in Mammen and

Yu (2007) enjoys the oracle property, i.e., each additive component can be estimated

with the same asymptotic accuracy as if the other components were known. However,

this method only gives a step-wise estimate that is discontinuous so it is difficult to

interpret the estimation result. Leitenstorfer and Tutz (2007) and Tutz and Leitenstorfer

(2007) proposed a continuous estimate using boosting based on B-spline basis functions

or monotonic basis functions but without asymptotic guarantees.

In the first part of this dissertation, we propose a one-step backfitted constrained

polynomial spline estimator for monotone additive models. The proposed method ap-

proximates nonparametric components using polynomial splines and obtains smooth

monotone estimates by applying the constrained polynomial spline method. The pro-

posed constrained polynomial spline method imposes a set of simple linear constraints

on spline coefficients in a backfitting procedure. This method takes advantage of linear

programming and is efficient to compute. In univariate smoothing with only one predic-

tor and with quadratic spline, our proposed estimator is reduced to the one proposed by

He and Shi (1998). However, their method is only developed for the univariate case and

quadratic spline. Our proposed estimation method can be used for multi-dimensions and

any order of polynomial splines.

Our simulation studies show that the proposed method has better numerical perfor-

mance than some existing methods. It is particularly useful and has advantages when

the data has outliers. In addition, we establish the asymptotic properties of our proposed

smooth monotone estimator and prove that it has the optimal rate of convergence in

terms of L2 norm for large sample sizes.
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As an extension and application of our proposed constrained polynomial spline

method in econometrics, we are also interested in developing a method for the estima-

tion of production frontier functions. Consider a nonnegative vector (x,y) ∈Rd
+×R+,

where x represents the d inputs used in production and y represents the output of a

production unit. According to economic theory (Koopmans 1951, Shephard 1970), the

production set is defined as Ψ =
{
(x,y) ∈Rd

+×R+| x can produce y
}
, i.e., the set of

physically attainable points (x,y). The production frontier function of Ψ is defined as

ρ(x) = sup{y,(x,y) ∈Ψ} that is the upper boundary of the production set. The output

efficiency measure is defined as R = y/ρ(x) ∈ [0,1]. The production function specifies

the maximal achievable output for a firm working at the level of inputs x and presents

a useful benchmark value or reference frontier that can be used to assess efficiency for

firms operating at the same level of inputs. The main focus of frontier analysis is on

the specification and estimation of the production frontier function ρ(·) given a random

sample of the production units {(xi,yi)}n
i=1.

Since the seminal work of Koopmans (1951) and Debreu (1951), an expanding area

of research has focused on the estimation of production frontiers and on the measure-

ment of the corresponding efficiency of production units. Two main approaches have

been developed for the estimation of production frontier functions: the determinis-

tic frontier model and the stochastic approach. Deterministic frontier models rely on

the assumption that all data lie in the production set Ψ, i.e., P{(Xi,Yi) ∈Ψ} = 1, for

i = 1, . . . ,n. Two well-known nonparametric estimation methods have been developed

under this framework: data envelopment analysis (DEA) (Farrell 1957, Charnes et al.

1978) and full disposal hull (FDH) (Deprins et al. 1984). Both methods employ linear
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programming to find the smallest free disposal set or the smallest free disposal convex

set covering all data points. Their improved versions can be found in Hall et al. (1998),

Knight (2001), Hall and Park (2002) and Jeong and Simar (2006). These methods are

attractive because they rely on very few assumptions on the production set Ψ and the

joint distribution of {X,Y}. However, both methods can be severely influenced by the

presence of outliers or extreme values since they envelop all data points in their con-

struction. The stochastic approach, initiated by Aigner et al. (1977) and Meeusen and

van den Broek (1977), allows some observations to be outside of the production set.

However, stochastic frontier models often assume strong parametric restrictions on the

shape of the frontier function ρ (·) and a misspecified model can lead to invalid estima-

tion and inference results.

Martins-Filho and Yao (2007) proposed an appealing deterministic frontier regres-

sion model that is nonparametric in nature and flexible to capture complex structures of

the production frontier. Their method is more robust to extreme values and outliers than

the DEA and FDH approaches. Martins-Filho and Yao (2007) estimated the frontier

using a three-step procedure based on local linear smoothing. However, due to the curse

of dimensionality, their method can only accommodate low dimensions of input vari-

ables. In addition, econometric theories often impose shape constraints on the frontier

function. The general production axiom of free disposability of inputs and outputs (Färe

et al. 1985 and Shephard 1970) implies that the frontier function ρ (·) is monotone. The

convexity of the production set Ψ implies that ρ (·) is also concave, corresponding to

diminish marginal returns. Therefore, it is of interest to provide frontier estimates that

automatically satisfy such shape constraints.
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The nonparametric methods, such as DEA and FDH, give monotone estimates.

However, their estimates are step-wise and hard to interpret. As pointed out in Daouia

et al. (2016), they often underestimate the true support boundary. More recently, Wu

and Sickles (2013) proposed a monotone spline estimator (Ramsay 1998) for a semi-

parametric frontier model. It achieves monotonicity and concavity by using integral

transformations of non-constrained second order derivative functions. But the class

of such integral transformed functions is relatively small compared to the class of all

monotone and concave functions. Better estimation results can be obtained by using

more general spline functions. Daouia et al. (2016) extended the idea in Hall et al.

(1998) and proposed a novel method to estimate the boundary of the production set us-

ing constrained spline methods. They used linear programming or second-order cone

programming to find the closest constrained spline function that envelops the data set.

However, their method focuses on the single input case and only work well for one or

low dimensional input variables.

In the second part of this dissertation, we extend the nonparametric regression fron-

tier model in Martins-Filho and Yao (2007) for multiple input variables and impose an

additive structure on frontier functions to partially alleviate the curse of dimensionality.

Furthermore, we consider to estimate the frontier functions under shape constraints that

is not well represented in the existing literature. Here, we propose a two-step constrained

polynomial spline method for the frontier estimation. Our proposed method guarantees

a smooth estimator and is easy to implement. It also can be applied to multi-dimensions

where many existing methods do not work. Most importantly, we incorporate the shape

constraints (monotonicity or/and concavity) in the estimation procedure to capture the
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shape of frontiers more accurately. The simulation studies illustrate that our proposed

method with shape constraints is effective in enhancing estimation accuracy. In addi-

tion, the proposed estimator is more robust to outliers than the estimator proposed by

Martins-Filho and Yao (2007).

This dissertation is organized as follows. In Chapter 2, we propose a one-step con-

strained polynomial estimation method for the monotone additive models. In Chapter

3, we extend the constrained nonparametric method to estimate the production frontier

functions and develop a two-step shape constrained estimator. In both Chapters 2 and

3, we examine our proposed methods by performing simulation studies and analyzing a

real data set, the Norwegian Farm data. A summary of our findings and discussion are

provided in Chapter 4.
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2 Constrained Polynomial Spline Estimation of Monotone Additive

Models

2.1 Additive Models

The additive model that was made popular by Hastie and Tibshirani (1990) has been

widely used in multivariate nonparametric modeling and received considerable attention

in recent decades. As a nonparametric regression method, the additive model allows the

effect of each predictor variable to be modeled non-parametrically while requiring an

additive structure.

Suppose there are n independent and identically distributed (i.i.d.) observations gen-

erated from the additive model

Yi = α0 +α1 (Xi1)+ . . .+ αd (Xid)+ ε i i = 1, . . . ,n, (2.1)

where Yi is the response variable and Xi = (Xi1, . . . ,Xid)
T are the predictor variables

for the i -th observation. Furthermore, in model (2.1), α0 is the unknown intercept and

{α l (·)}d
l=1 are unknown univariate smooth nonparametric functions. Without loss of

generality, we assume that the predictors are distributed on the compact support [0,1]d .

In addition, for model identification the nonparametric function α l (·) is assumed to

be theoretically centered with E [α l (Xl)] = 0, for l = 1, . . . ,d. As a result, one has

E(Y ) = α0. Therefore, the intercept term α0 can be consistently estimated as α̂0 = Ȳ
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= 1
n ∑

n
i=1Yi at the parametric convergence rate of

√
n that is faster than the convergence

rate for nonparametric function estimation. For the sake of simplicity, in the following

we assume α0 = 0 in (2.1) and focus on the estimation of nonparametric functions

{α l (·)}d
l=1 in the simplified model

Yi = α1 (Xi1)+ . . .+αd (Xid)+ ε i i = 1, . . . ,n, (2.2)

The additive model is a flexible generalization of the linear regression model. On

one hand, it relaxes the restriction on the linear relationship between the predictors and

response. On the other hand, the additive model also retains the important feature of

the linear regression model: the model is additive in the predictor effects. The additive

functional form enables easy interpretation of the fitted results since each predictor has

a marginal effect on the response. Most importantly, the additive model avoids curse of

dimensionality since each additive component can be estimated using univariate smooth-

ing.

In this chapter, we are interested in the estimation of model (2.2) in the situation

where the nonparametric functions {α l (·)}d
l=1 are monotone increasing or decreasing.

Our question of interest is how to estimate the nonparametric functions {α l (·)}d
l=1 un-

der the monotone constraints. In the following, we propose a one-step back-fitted con-

strained polynomial spline procedure to estimate such monotone additive models. It

first uses the traditional polynomial spline method to obtain an initial estimator of each

additive component. Then a back-fitted constrained polynomial spline method is used

to produce the final estimator for each component that is guaranteed to be monotone.
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2.2 Methodology and Theory

In our proposed method, we estimate the nonparametric functions {α l (·)}d
l=1 in

model (2.2) using polynomial splines. Let un = {0 = u0 < u1 < · · ·< uNn < uNn+1 = 1}

be a partition of the interval [0,1], with Nn interior knots. With this knot sequence, the

interval [0,1] is partitioned into Nn + 1 intervals and we write them as Ik = [uk,uk+1)

for k = 0, ...,Nn− 1 and INn = [uNn,uNn+1]. Using un as knots, the polynomial splines

of order p+ 1 are polynomial functions with degree p (or less) on the intervals Ik for

k = 0, ...,Nn, and (p−1)-times differentiable at the interior knots. In this dissertation,

we denote the space of p-times continuously differentiable real-valued functions in [0,1]

as Cp [0,1] and define the space of polynomial splines of order p+1 (or degree p) based

on the knots un as Gp = Gp ([0,1] ,un).

2.2.1 An Initial Estimator

Let B̃(x)=
(
B̃1 (x) , . . . , B̃Jn+1 (x)

)T be the set of B-spline basis of Gp with dimension

Jn = Nn + p. Because of the fact that ∑
Jn+1
j=1 B̃ j(x) = 1 for any x ∈ [0,1]. Without loss

of generality, we focus on the first Jn basis and create an empirically centered B-spline

basis for each variable Xl by taking Bl j = B̃ j− 1
n ∑

n
i=1 B̃ j (xil) for model identification.

We denote the empirically centered B-spline basis as Bl (x) = (Bl1 (x) , . . . ,BlJn (x))
T , for

l = 1, · · · ,d. Lemma 2 of Xue and Yang (2006) ensures that the theoretically centered

function α l (·) in model (2.2) can be approximated well by a linear combination of the

empirically centered B-spline basis. Therefore, one can write α l (x) ≈ BT
l (x)β l with

a set of coefficients β l =
(
β l1, . . . ,β lJn

)T , for l = 1, · · · ,d. Let Y = (Y1, . . . ,Yn)
T and
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Bn = (Bn1, . . . ,Bnd), where Bnl = (Bl (x1l) , . . . ,Bl (xnl))
T . The traditional polynomial

spline method (Stone 1985 and Huang 1998) estimates the unknown coefficients β =(
β

T
1 , . . . ,β

T
d

)T
by taking

β̃ = argmin
β∈RdJn

(Y−Bnβ )T (Y−Bnβ ) =
(
BT

n Bn
)−1 BT

n Y. (2.3)

Then the unknown function α l (·) is estimated as

α̃ l (x) = BT
l (x)β̃ l, (2.4)

for l = 1, . . . ,d. Stone (1985) and Huang (1998) established the optimal L2 rate of

convergence for the polynomial spline estimator (2.4). They showed that the estimate

of each nonparametric component in the additive model enjoys the same optimal con-

vergence rate as a univariate nonparametric function estimator. The local asymptotic

theory of the polynomial spline estimator was developed in Huang (2003). However,

this traditional polynomial spline method is unable to give shape constrained estimates,

such as monotone increasing or decreasing function estimates. Therefore we only use

the traditional polynomial spline estimator (2.4) as an initial estimator and propose a

constrained polynomial spline method to get a monotone estimator. In the following,

we focus on estimating monotone increasing functions. The estimation of monotone

decreasing functions follows similarly.
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2.2.2 Proposed Method

Using the traditional polynomial spline estimator {α̃ l (·)}d
l=1 as an initial estimator,

we define the pseudo response Yi,−l = Yi−∑l′ 6=l α̃ l′ (xil′) and Y−l =
(
Y1,−l, ...,Yn,−l

)T ,

for l = 1, ...,d. Then Y−l can be viewed as an approximation of α l (·) at n data points. In

addition, by Example 4.25 in Schumaker (2007), a sufficient condition for a polynomial

spline g(x) = B̃T (x)β to be monotone increasing is that its coefficients satisfy β j ≥

β j−1, for j = 2, ...,Jn +1. When using the empirically centered B-spline basis, Lemma

4 gives a modified sufficient condition that is β 1 ≥ 0 and β j ≥ β j−1, for j = 2, ...,Jn.

Denote the set of spline coefficients that satisfy the monotone constraints as

Cl =
{(

β l1, . . . ,β lJn

)
∈ RJn | β l1 ≥ 0 and β l j ≥ β l( j−1), for j = 2, . . . ,Jn

}
.

Then, we propose to estimate the coefficients β l by minimizing the following con-

strained least squares to ensure monotonicity,

β̂ l = argmin
β l

(Y−l−Bnlβ l)
T (Y−l−Bnlβ l) , subject to β l ∈Cl. (2.5)

As a result, with the constrained least squares coefficient estimator β̂ l , the monotone

polynomial spline estimation of α l (·) is obtained by

α̂ l (x) = BT
l (x)β̂ l. (2.6)

For p = 2 and d = 1, the constrained estimator (2.6) is reduced to the estimator
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proposed by He and Shi (1998) and its asymptotic theory has been developed. The

estimator developed by He and Shi (1998) is obtained by constraining the first order

derivative of a quadratic spline function to be positive. Their approach, however, is only

feasible for the univariate case and quadratic spline with degree p= 2 when its first order

derivative is linear in unknown parameters. Our approach is generally applicable for any

order of polynomial splines and any dimension of predictor variables. Here, we extend

the work for any integer p and d and are also interested in exploring the asymptotic

properties of the generalized constrained estimator (2.6).

Furthermore, we could also obtain the estimate of the coefficients by directly min-

imizing the global sum of squares as in equation (2.3), but subject to all d constraints

β l ∈Cl for each l = 1, . . . ,d simultaneously. However, this approach is not numerically

stable due to the difficulty in conducting the constrained optimization with a large num-

ber of parameters. Therefore, we choose to estimate each additive component separately

in a backfitting procedure. In addition, one can also use the constrained estimator (2.6)

as an another initial value and repeat the backfitting procedure in (2.5) until conver-

gence. However, our experience indicates that its numerical performance is very similar

to the one-step backfitted constrained polynomial spline estimation. Therefore, we will

focus on the one-step backfitted estimator (2.6).

2.2.3 Asymptotic Properties

To establish the theoretical results of our proposed method, we write the traditional

polynomial spline estimator α̃ l(x) as an unconstrained one-step backfitted spline esti-
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mator of each additive component. Let Y−l be the pseudo response for the predictor

variable Xl . The coefficients estimator β̃ l can be viewed as the solution that mini-

mizes the sum of squares (Y−l−Bnlβ l)
T (Y−l−Bnlβ l) without any constraints and

α̃ l(x) = BT
l (x)β̃ l is the corresponding one-step backfitted spline estimator of α l (·), for

each l = 1, . . . ,d. For finite samples, α̃ l (·) is not always monotone when α l (·) is actu-

ally monotone. But in the following, we show that α̃ l (·) is monotone increasing with

probability approaching to one as the sample size increases.

For our asymptotic analysis, we need the following assumptions:

(A1) The errors {ε i}n
i=1 are i.i.d. distributed with E (ε i|X) = 0 and Var (ε i|X) =

σ2 <+∞. There exists positive constant c1, such that E
(
|ε i|2+η |X

)
≤ c1 a.s. for some

η > 0.

(A2) The predictor variables Xi are i.i.d. distributed on a compact support. Without

loss of generality, we assume that the support is [0,1]d . Its density function, denoted by

f (x), is continuous and 0 < c2 ≤ f (x) ≤ c3 < ∞, for x ∈ [0,1]d and positive constants

c2 and c3.

(A3) For each l = 1, . . . ,d, the additive function α l is strictly monotone increasing

and (p+1)-times continuously differentiable for some integer p≥ 1. Furthermore, we

assume that there exists a constant c4 > 0, such that α ′l (x)≥ c4, for x ∈ [0,1].

(A4) For the set of knots {0 = u0 < u1 < · · ·< uNn < uNn+1 = 1}, there exists a con-

stant c5 > 0, such that max(u j+1−u j, j=0,...,Nn)
min(u j+1−u j, j=0,...,Nn)

≤ c5.

(A5) The number of interior knots Nn satisfies

Nn→+∞ and
N4

n
n
→ 0, as n→+∞.
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Condition (A1) requires that the error terms are i.i.d. distributed with a common

distribution that is not necessarily a Normal distribution. Assumption (A2) is the same

as condition 1 of Stone (1985). Assumption (A3) requires that the regression function

is strictly monotone increasing and its first order derivative is lower bounded. For the

monotone decreasing functions, the corresponding theorems can be developed in a sim-

ilar way. Assumption (A4) requires that the interior knots are pseudo equally spaced in

the interval [0,1]. The same condition is also considered in Huang (1998). Assumption

(A5) is the conditions for the number of interior knots and samples size under those the

following theorems are developed.

Theorem 1 Under regularity conditions (A1)-(A5), for l = 1, ...d, one has,

sup
x∈[0,1]

∣∣α̃ ′l (x)−α
′
l (x)

∣∣= Op

(√
N−2p+1

n +N4
n/n
)
.

Write α̃ l(x) = B̃T
l (x)β̃ l with coefficients β̃ l =

(
β̃ l1, . . . , β̃ l(Jn+1)

)T
.

Theorem 2 Under regularity conditions (A1)-(A5), one has, for l = 1, . . . ,d and p≤ 3,

there exists a spline function gl with gl =BT
l γ l and the coefficients γ l =

(
γ l1, . . . ,γ l(Jn+1)

)T

satisfy the monotone constraints γ l j− γ l( j−1) ≥ 0, j = 2, . . . ,Jn +1, such that

sup
j=1,...,Jn+1

∣∣∣β̃ l j− γ l j

∣∣∣= Op

(√
N3

n logn
n

)
.

Therefore, the coefficients of α̃ l(x) satisfy the monotone constraints β̃ l j− β̃ l( j−1) ≥ 0,

for j = 2, . . . ,Jn +1 with probability approaching to 1 as n→ ∞.
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Theorem 3 Under regularity conditions (A1)-(A5), for p ≤ 3 and any l = 1, ...d, one

has,

‖α̂ l−α l‖= Op

(√
N−2p−2

n +Nn/n
)
.

Theorem 1 implies that the one-step backfitted unconstrained estimator α̃ l (·) is ac-

tually monotone increasing for large sample size. Furthermore, we prove that for degree

p ≤ 3, the coefficients of α̃ l (·) satisfy the monotone constraints with probability ap-

proaching to 1 as the sample size goes to infinity. This suggests that the unconstrained

estimator α̃ l (·) and constrained estimator α̂ l (·) are identical when the sample size is

large enough. Therefore, naturally the constrained estimator α̂ l (·) enjoys the same

asymptotic properties as the unconstrained estimator and the result is stated in Theo-

rem 3.

2.3 Empirical Results

In this section, we conduct simulation studies to evaluate the numerical performance

of our proposed method with finite samples. We also illustrate the application of the

proposed method by analyzing a real data set, the Norwegian Farm data.

2.3.1 Simulation Study

We consider a monotone additive model with five additive components, Y =α1 (X1)+

α2 (X2)+α3 (X3)+α4 (X4)+α5 (X5)+ε , where the five monotone increasing functions

{α l (·)}5
l=1 are given in Table 2.1. The predictors {Xl}5

l=1 are independently generated
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from the uniform distribution on [0,1] and the error ε follows a normal distribution with

mean 0 and variance σ2. We set σ2 = 1
4 ∑

5
l=1

∫ 1

0
α2

l (x)dx so that the signal to noise

ratio is 4.

For this additive model, r = 100 samples of size n = 50, 100, 200 and 500 are

generated, respectively. For each generated data, we estimate the monotone functions

using the proposed constrained quadratic spline method (CQS) with p = 2 as defined

in (2.6). We also consider the unconstrained quadratic spline (UQS) estimator de-

scribed in (2.4) and an estimator obtained by applying Pool Adjacent Violator Algo-

rithm (PAVA) in a one-step backfitting procedure. For l = 1, . . . ,5, let xmin,l and xmax,l

denote the smallest and largest observations of the variable xl , respectively. Knots are

equally placed in the interval
[
xmin,l,xmax,l

]
and the number of the interior knots Nn

is selected as the integer part of n
1

2p+3 . We evaluate the estimation accuracy of three

different estimators by their averaged integrated squared errors (AISE). Let α̂k,l be an

estimator of α l in the k-th replication and
{

x j
}ngrid

j=1 be a set of grid points in the in-

terval [0,1] where the functions are evaluated. Then we define the integrated squared

error as ISE(α̂k,l) =
1

ngrid ∑
ngrid
j=1

[
α̂k,l

(
x j
)
−α l

(
x j
)]2 and averaged integrated squared

error as AISE(α̂ l) =
1
r ∑

r
k=1 ISE(α̂k,l). Furthermore, in order to check the robustness

of the methods, ten outliers are added manually to each generated data set. For the

100 replications, the range of simulated response values varies. But for majority of

the replications, the range is between [−3,3]. To make it simple, ten observations yi

are randomly selected and their response values yi are replaced with yi,new = yi− 5 or

yi,new = yi+5. Then, all three estimators (CQS, UQS, PAVA) are calculated again using

the contaminated data sets and their AISEs are reevaluated.
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The simulation results are summarized in Table 2.2. Overall, it clearly shows that the

AISEs decrease when the sample size n increases. This verifies our asymptotic theory.

Moreover, when there are no outliers, the AISEs of the constrained estimator are slightly

smaller than that of the unconstrained estimator and both of them are much smaller than

that of the PAVA estimator. The difference among these three estimators diminishes as

the sample size increases. When there are outliers, our proposed constrained method

performs noticeably much better than the other two methods, especially for small and

moderate sample sizes. For example, when the sample size n = 50, the AISEs decrease

by about 50% if we use the constrained estimation method instead of the unconstrained

method. It clearly shows that our proposed constrained method is more robust to the out-

liers and is particularly useful when the sample size is small or moderate. Furthermore,

with the increase of sample size, the unconstrained estimator tends to be similar to the

constrained estimator and both are much better than the PAVA estimator, particularly for

large sample sizes.

In addition to the numerical tables, we also plot the typically estimated functions

in Figure 2.1 for the data without outliers and in Figure 2.2 for the data with outliers,

for sample size n = 50. The typically estimated function is the one whose ISE is the

median in the 100 replications. In each plot, we plot the three typically estimated curves

using CQS (dot-dashed red line), UQS (dashed blue line) and PAVA (long-dashed green

line) along with the true functions (solid black line). We also plot the 95% point-wise

confidence intervals for each additive function (dotted brown line) using constrained

polynomial spline method. At each grid point
{

x j
}ngrid

j=1 , the 95% point-wise confidence

interval uses the 2.5% and 97.5% sample quantiles of the 100 estimates from CQS
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as the lower and upper bounds, respectively. From Figure 2.1, we can see that our

proposed estimation method works very well since the fitted functions are very close to

the true functions. The PAVA method has the worst performance and its estimation is

not smooth. When there are outliers, Figure 2.2 shows that there are more fluctuation for

the fitted curves of the unconstrained and PAVA method since the outliers tend to pull

the curve down or up. However, the constrained estimator performs better than the other

two methods and there is no apparent influence of the outliers. It graphically confirms

the numerical findings observed in Table 2.2.

2.3.2 Norwegian Farm Data

In addition to the simulation study, we are also interested in applying our pro-

posed method to a real data set. Here, we consider the Norwegian Farm data that

was used in Kumbhakar, Lien and Hardaker (2014). This data set is originally ob-

tained from the Norwegian Farm Accountancy Survey and includes farm production

and economic data collected annually. In our analysis, we use 2007 data that contains

observations on 151 grain farms in Norway. The data consists of one response variable

and four predictors. The response Y is the farm revenue measured in Norwegian kro-

ner (2008 NOK). The predictors are total number of hours worked (labor) on the farm

(X1), productive farmland in hectares (X2), variable farm inputs (X3) and fixed farm in-

put and capital costs (X4). A monotone additive model with four additive components

Y = α1 (X1) +α2 (X2) +α3 (X3) +α4 (X4) + ε is considered to model the monotone

increasing effects of predictor variables on farm revenue.
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In our analysis, we randomly partition the data into two parts: the training and the

test sets. The 120 observations in the training set are used to obtain the unconstrained

and constrained estimators and the remaining 31 observations in the test set are for

the prediction. The PAVA method is not considered in this analysis because of its in-

ferior performance in our simulation study. For both unconstrained and constrained

methods, we consider linear (p = 1) and cubic (p = 3) splines with two different knot

sequences. The knots are equally spaced in the range of each variable xl or equally

spaced in the percentile ranks by taking the j
Nn+1 -th quantile of the observations of each

variable xl for j = 1, . . . ,Nn. The number of the interior knots Nn is chosen as the in-

teger part of n
1

2p+3 or n
1

2p+3 + 1 . The performance of estimators is assessed by the

averaged mean squared estimation error (AMSEE) and averaged mean squared predic-

tion error (AMSPE). Let {xi = (xi1, . . . ,xi5) ,yi}120
i=1 and {xi = (xi1, . . . ,xi5) ,yi}151

i=121 be

the data points used for estimation and prediction, respectively. Denote α̂ l as an esti-

mator of α l and α̂ = ∑
d
l=1 α̂ l as an estimator of the regression function using a given

partition of the data set. We define the mean squared estimation error (MSEE) and

mean squared prediction error (MSPE) as MSEE (α̂) = 1
120 ∑

120
i=1
[
yi−∑

d
l=1 α̂ l (xil)

]2
and MSPE (α̂) = 1

31 ∑
151
i=121

[
yi−∑

d
l=1 α̂ l (xil)

]2
, respectively. Then we repeat this pro-

cess 100 times and obtain the averaged mean squared estimation error (AMSEE) and the

averaged mean squared prediction error (AMSPE) by AMSEE = 1
100 ∑

100
r=1 MSEE (α̂r)

and AMSPE = 1
100 ∑

100
r=1 MSPE (α̂r), respectively, where α̂

r is an estimator of the re-

gression function in the r-th replication.

The AMSEEs and AMSPEs for both methods are summarised in Table 2.3. We

observe that the AMSEEs of the unconstrained method are smaller than that of the con-
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strained method. This is not surprising since when the constraints are added, the sum of

squares in (2.5) is minimized over a smaller parameter space and this will lead to larger

estimation errors. However, when we compare the AMSPEs, it clearly shows that the

constrained estimator gives smaller AMSPEs. Furthermore, the estimated additive com-

ponents are plotted in Figure 2.3 (equally spaced knots) and Figure 2.4 (equal quantile

knots). In both plots, the estimates using constrained linear spline (dot red line), uncon-

strained linear spline (dashed blue line), constrained cubic spline (solid red line), and

unconstrained cubic spline (dot-dashed blue line) are plotted. The cubic splines method

(p = 3) provide more smooth function estimates compared with linear splines (p = 1).

Furthermore, for the productive farmland variable (X2) in Figure 2.3, we can see a clear

difference in the fitted curves between the unconstrained and constrained methods due

to one particular data point at the right bottom of the plot. This point dramatically pulls

down the fitted curve of the unconstrained method and the resulting estimate is no longer

monotone. However, our proposed method is less sensitive to this data point. Addition-

ally, when using the equal quantile knots, Figure 2.3 illustrates that unconstrained and

constrained methods produce very similar fitted results.

2.4 Proof of Lemmas and Theorems

2.4.1 Preliminary Lemmas and Proof

Lemma 4 A sufficient condition for a polynomial spline g(x) = BT (x)β , where B(x)

is the empirically centered B-spline basis of Gp, to be monotone increasing is that its
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coefficients satisfy the following conditions: β 1≥ 0 and β j ≥ β j−1, for j = 2, ...,Nn+ p.

Proof. Recall that B̃(x) =
(
B̃−p (x) , . . . , B̃Nn (x)

)T is the non-centered B-spline basis of

Gp. By de Boor (2001, p.115), one has

B̃′j,k(x) = (k−1)
[
−B̃ j+1,k−1 (x)/

(
u j+k−u j+1

)
+ B̃ j,k−1 (x)/

(
u j+k−1−u j

)]
,

where k = p+1 is the order of the polynomial spline. Therefore, the first order derivative

of the polynomial spline is

g′(x)

=
[
BT (x)β

]′
=

[
Nn

∑
j=−p+1

β jB j,k (x)

]′

=

[
Nn

∑
j=−p+1

β j

(
B̃ j,k−

1
n

n

∑
i=1

B̃ j,k (xi)

)]′

=

[
Nn

∑
j=−p+1

β jB̃ j,k

]′
=

Nn

∑
j=−p+1

β jB̃
′
j,k

= (k−1)

[
β−p+1

u1−u−p+1
B̃−p+1,k−1 +

Nn

∑
j=−p+2

β j−β j−1

u j+k−1−u j
B̃ j,k−1

]
. (2.7)

Because the B-spline basis is positive, a sufficient condition to guarantee the mono-

tonicity of the polynomial spline is that the coefficients of the basis are non-negative.

Therefore, one has β−p+1 ≥ 0 and β j−β j−1 ≥ 0, for j =−p+2, ...,Nn, and Lemma 4

follows. �

Lemma 5 For any function α (·) that satisfies condition (A3), there exists a monotone

increasing function g∈G(p), such that ‖α−g‖
∞
≤ c
∥∥∥α(p+1)

∥∥∥
∞

/N p+1
n and ‖α ′−g′‖

∞
≤
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c
∥∥∥α(p+1)

∥∥∥
∞

/N p
n for large sample size and some constant c > 0.

Proof. According to Theorem 1.51 in Schumaker (2015), for any α ∈Cp+1 [0,1] , there

exists a function g ∈ G(p), such that ‖α−g‖
∞
≤ c
∥∥∥α(p+1)

∥∥∥
∞

/N p+1
n and ‖α ′−g′‖

∞

≤ c
∥∥∥α(p+1)

∥∥∥
∞

/N p
n for some constant c > 0. Next, we need to show that such g is

monotone increasing. By condition (A3), α ′ (x)≥ c1 > 0 for some constant c1 and any

x ∈ [0,1]. When the sample size n is large enough, one has

g′ (x)≥ α
′ (x)−

∥∥α
′−g′

∥∥
∞
≥ c1/2 > 0,

and Lemma 5 follows. �

For each l = 1, . . . ,d, let α∗l be the one-step backfitted estimate of α l with all the

other additive components known. In this case, it is reduced to a univariate polynomial

spline smoothing for the lth variable. Let Y ∗i,−l =Yi−∑l′ 6=l α l′ (xil′) = α l (xil)+ε i be the

pseudo response with the other additive component known and Y∗−l =
(

Y ∗1,−l, ...,Y
∗
n,−l

)T
,

for l = 1, ...,d. Then α∗l (x) = BT
l (x)β

∗
l with β

∗
l =

(
B̃T

nlB̃nl
)−1 B̃T

nlY
∗
−l. One notes that{

α∗l
}d

l=1 are not available in our analysis and are constructed to prove our theory only.

Lemma 6 Under regularity conditions (A1)-(A5), one has, for l = 1, . . . ,d,

sup
x∈[0,1]

∣∣α∗′l (x)−α
′
l (x)

∣∣= Op

(
N

1
2−p
n +N

3
2
n /
√

n
)
.

Proof. By condition (A3) and Lemma 5, for each l = 1, . . . ,d, there exists a monotone

increasing function gl , such that ‖α l−gl‖∞
≤ c
∥∥∥α

(p+1)
l

∥∥∥
∞

/N p+1
n and

∥∥α ′l−g′l
∥∥

∞
≤ c ‖

α
(p+1)
l ‖∞ /N p

n . Then by definition, we have
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α
∗′
l (x)

=
[
B̃
′
l (x)

]T
β
∗
l =

[
B̃
′
l (x)

]T (
B̃T

nlB̃nl
)−1 B̃T

nlY
∗
−l

=
[
B̃
′
l (x)

]T (
B̃T

nlB̃nl
)−1 B̃T

nl (α l + ε)

=
[
B̃
′
l (x)

]T (
B̃T

nlB̃nl
)−1 B̃T

nl (gl +α l−gl + ε)

=
[
B̃
′
l (x)

]T (
B̃T

nlB̃nl
)−1 B̃T

nlgl +
[
B̃
′
l (x)

]T (
B̃T

nlB̃nl
)−1 B̃T

nl (α l−gl)

+
[
B̃
′
l (x)

]T (
B̃T

nlB̃nl
)−1 B̃T

nlε

= I (x)+ II (x)+ III (x) . (2.8)

One can write gl = B̃nlγ l for some coefficient γ l . Therefore,

I (x) =
[
B̃
′
l (x)

]T (
B̃T

nlB̃nl
)−1 B̃T

nlB̃nlβ
∗
l =

[
B̃
′
l (x)

]T
γ l = g′l (x) ,

then by Lemma 5, one has

sup
x∈[0,1]

∣∣I (x)−α
′
l (x)

∣∣= sup
x∈[0,1]

∣∣g′l (x)−α
′
l (x)

∣∣≤ c
∥∥∥α

(p+1)
l

∥∥∥
∞

/N p
n . (2.9)

For II (x) , Cauchy-Schwarz inequality gives that

sup
x

II (x) ≤

√
sup

x

[
1√
n

B̃′l (x)
]T (1

n
B̃T

nlB̃nl

)−1[ 1√
n

B̃′l (x)
]
×√[

1√
n

B̃T
nl (α l−gl)

]T (1
n

B̃T
nlB̃nl

)−1[ 1√
n

B̃T
nl (α l−gl)

]
.

Let λ min and λ max be the smallest and largest eigenvalues of 1
nB̃T

nlB̃nl , respectively.



25

Then by Theorem 5.4.2 in Devore and Lorentz (1993), we have λ min � λ max � 1/Nn

and sup
x

[
B̃′l (x)

]T
B̃′l (x) = OP

(
N2

n
)
, where � means both sides have the same order.

Therefore

[
1√
n

B̃
′
l (x)

]T (1
n

B̃T
nlB̃nl

)−1[ 1√
n

B̃
′
l (x)

]
≤ 1

nλ min

[
B̃
′
l (x)

]T
B̃
′
l (x) = OP

(
N3

n/n
)
.

(2.10)

Similarly, by Lemma 5, sup |α l−gl| = Op

(
1/N p+1

n

)
, so we have

[
1√
n

B̃T
nl (α l−gl)

]T (1
n

B̃T
nlB̃nl

)−1[ 1√
n

B̃T
nl (α l−gl)

]
≤ 1

nλ min
(α l−gl)

T B̃nlB̃T
nl (α l−gl)

≤ λ max

λ min
(α l−gl)

T (α l−gl) = Op
(
n/N2p+2

n
)
.

Therefore,

sup
x

II (x) = Op

(
N

1
2−p
n

)
. (2.11)

Next, for III (x) , one notes sup
x

[
1√
nB
′
l (x)

]T
= Op (Nn/

√
n) and the element of 1√

nBT
nlε

is 1√
n ∑

n
i=1 Bl j(xi)ε i = Op

(
1/
√

Nn
)
, we have

sup
x

III (x) = Op

(
N

3
2
n /
√

n
)
. (2.12)

Finally, Lemma 6 follows from equations (2.8), (2.9), (2.11), (2.12) and condition

(A5). �

Lemma 7 For any function α ∈ Cp+1 [0,1] that satisfies condition (A3) with p ≤ 3,
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there exists a monotone increasing function g∈G(p) and ĝ ∈G(p) whose coefficients sat-

isfy the linear constraints, such that ‖α−g‖
∞
≤ c1

∥∥∥α(p+1)
∥∥∥

∞

/N p+1
n and ‖g− ĝ‖

∞
≤

c2

∥∥∥α(p+1)
∥∥∥

∞

/N p+1
n , for large sample size and some constants c1,c2 > 0.

Proof. According to Lemma 5, for any function α ∈Cp+1 [0,1] that satisfies condi-

tion (A3), there exists a monotone increasing function g ∈ G(p), such that ‖α−g‖
∞
≤

c1

∥∥∥α(p+1)
∥∥∥

∞

/N p+1
n , for some constant c1 > 0. For p = 1 and 2, it is easy to see that the

coefficients of a monotone spline function satisfy the linear constraints. So by taking

ĝ = g, Lemma 7 directly follows. For p = 3, since α ∈C4 [0,1] , its first order derivative

α ′ ∈C3 [0,1]. The quadratic spline Hermite interpolation g∗ =
Nn
∑

j=−2
γ∗j B̃ j,2 of α ′ satisfies

α ′ (ui) = g∗ (ui) and α(2) (ui) = g∗′ (ui), for i = 0, . . . ,Nn +1, where

γ
∗
2k = α

′ (u2k+2)− (u2k+2−u2k+1)α
(2) (u2k+2)/2

γ
∗
2k+1 = α

′ (u2k+2)+(u2k+3−u2k+2)α
(2) (u2k+2)/2, (2.13)

for k = −1, . . . ,(Nn−1)/2. By Theorem 6 of Dubeau and Savoie (1996), one has

‖α ′−g∗‖
∞
≤ c

∥∥∥α(4)
∥∥∥

∞

/N3
n , for some constant c > 0. Let ĝ(x) =

∫
g∗ (x)dx ∈ G(3).

One has

‖α− ĝ‖
∞

= sup
x
|α (x)− ĝ(x)| = sup

j
sup

u j≤x≤u j+1

|α (x)− ĝ(x)|

= sup
j

sup
u j≤x≤u j+1

∣∣∣∣∣∣
x∫
u j

[
α
′ (u)− ĝ′ (u)

]
du

∣∣∣∣∣∣
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≤ sup
j

sup
u j≤x≤u j+1

x∫
u j

∣∣[α ′ (u)− ĝ′ (u)
]∣∣du

= sup
j

u j+1∫
u j

∣∣[α ′ (u)−g∗ (u)
]∣∣du

≤ c
∥∥∥α

(4)
∥∥∥

∞

/N4
n .

Therefore, we have ‖g− ĝ‖
∞
≤ ‖g−α‖

∞
+‖α− ĝ‖

∞
≤ c2

∥∥∥α(4)
∥∥∥

∞

/N4
n , for some con-

stant c2 > 0.

For ĝ constructed above, we write ĝ=∑
N
j=−3 γ jB̃ j,3 for a set of coefficients

{
γ j

}N

j=−3
.

Now we show that the spline coefficients satisfy the linear constraints that γ j ≥ γ j−1,

for j =−2, . . . ,Nn when the sample size is large enough. By de Boor (2001, p.116), we

have

ĝ′ =

(
Nn

∑
j=−3

γ jB̃ j,3

)′
=

Nn

∑
j=−3

γ jB̃
′
j,3

= 3
N

∑
j=−2

(
γ j− γ j−1

)
B̃ j,2/

(
u j+3−u j

)
=

Nn

∑
j=−2

γ
∗
j B̃ j,2 = g∗.

So the constraints γ j ≥ γ j−1 are equivalent to γ∗j ≥ 0, for j =−2, . . . ,Nn. By the equation

(2.13), min
j

γ∗j > min
x

α ′ (x)/2 > c3/2 > 0 when the sample size n is large enough.

Therefore, ĝ satisfies the linear constraints and the proof of Lemma 7 is complete. �

Recall that α∗l = B̃T
l β
∗
l is the one-step backfitted estimate of α l with all other addi-

tive components known.
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Lemma 8 Under regularity conditions (A1)-(A5), one has, for l = 1, . . . ,d and p ≤ 3,

there exists a spline function gl with gl =BT
l γ l and the coefficients γ l =

(
γ l1, . . . ,γ l(Jn+1)

)T

that satisfy the monotone constraints γ l j− γ l( j−1) ≥ 0, for j = 2, . . . ,Jn +1, such that

sup
j

∣∣∣β ∗l j− γ l j

∣∣∣= Op

(√
N3

n logn
n

)
.

Therefore, the coefficients of α∗l satisfy the monotone constraints β
∗
l j−β

∗
l( j−1) ≥ 0, for

j = 2, . . . ,Jn+ with probability approaching to 1 as n→ ∞.

Proof. Let ε0 = min
{

α ′l (x) ,x ∈ [0,1]
}
≥ c > 0, then α ′l (x) ≥ ε0 for all x ∈ [0,1] .

Lemma 6 suggests that there exists an integer n(ε0), such that supx∈[0,1]
∣∣α∗′l −α ′l

∣∣ <
ε0/2, when n > n(ε0) . Therefore when n > n(ε0), α∗′l ≥ α ′l− ε0/2≥ ε0/2 > 0 for all

x ∈ [0,1]. This implies that α∗l is actually monotone increasing when the sample size

is large enough. For p = 1 and 2, the coefficients of monotone spline satisfy the linear

constraints, so Lemma 8 follows. For p = 3, we show that the coefficients of α∗′l are

positive with probability approaching to 1 as the sample size goes to infinity. By Lemma

7, there exists gl = ∑
Jn+1
j=1 γ l jB̃ such that ‖α l−gl‖∞

= Op

(
N−p−1

n

)
. We next check the

coefficients of α∗l ,

β
∗
l =

(
B̃T

nlB̃nl
)−1 B̃T

nl (α l + ε)

=
(
B̃T

nlB̃nl
)−1 B̃T

nl (gl +α l−gl + ε)

=
(
B̃T

nlB̃nl
)−1 B̃T

nlgl +
(
B̃T

nlB̃nl
)−1 B̃T

nl (α l−gl)+
(
B̃T

nlB̃nl
)−1 B̃T

nlε

= I + II + III. (2.14)
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Since gl = B̃nlγ l , we have

I =
(
B̃T

nlB̃nl
)−1 B̃T

nlB̃nlγ l = γ l. (2.15)

Let | · |∗ denotes element-wise absolute value of a matrix. With the fact that sup
x
|1nB̃T

nlB̃nl|∗

= OP
(
N−1

n
)

and
∥∥α l−g∗l

∥∥
∞
= Op

(
N−p−1

n

)
,

sup |II|∗ = sup
∣∣∣(B̃T

nlB̃nl
)−1 B̃T

nl (α l−g∗l )
∣∣∣
∗
= Op

(
n−1N−p

n
)
. (2.16)

Then, we write part III as III =
(1

nB̃T
nlB̃nl

)−1 1
nB̃T

nlε. The jth element of 1
nB̃T

nlε is

ξ j =
1
n ∑

n
i=1 B̃l j(xil)ε i. Let ξ i j = B̃l j(xil)ε i and define

ξ̃ i j = B̃l j(xil)ε iI
(
|ε i| ≤ nδ

)
−E

[
B̃l j(xil)ε iI

(
|ε i| ≤ nδ

)]

for some δ > 0.

Eξ̃
2
i j ≥

1
2

E
[
B̃2

l j(xil)ε
2
i I
(
|ε i| ≤ nδ

)]
−
[
E
(

B̃l j(xil)ε iI
(
|ε i| ≤ nδ

))]2

=
1
2

E
[
B̃2

l j(xil)ε
2
i

]
− 1

2
E
[
B̃2

l j(xil)ε
2
i I
(
|ε i| ≥ nδ

)]
−
[
E
(

B̃l j(xil)ε iI
(
|ε i| ≥ nδ

))]2
,

in which, under condition (A1),

E
[
B̃2

l j(xil)ε
2
i I
(
|ε i| ≥ nδ

)]
= E

[
B̃2

l j(xil)
]

E
[
ε

2
i I
(
|ε i| ≥ nδ

)
|X
]
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≤ E
[
B̃2

l j(xil)
]

E

(
|ε i|2+η

nηδ
|X

)

≤
c1E

[
B̃2

l j(xil)
]

nηδ

≤ c1

nηδ Nn
.

Moreover,

E
[
B̃2

l j(xil)ε
2
i

]
≥ c2E

[
B̃2

l j(xil)
]
≥ c3

Nn
,

[
E
(

B̃l j(xil)ε iI
(
|ε i| ≥ nδ

))]2
≤ E

[
B̃2

l j(xil)ε
2
i I
(
|ε i| ≥ nδ

)]
≤ c1

nηδ Nn
.

One has Eξ̃
2
i j ≥ c3/2Nn− 3c1/2nηδ Nn ≥ c4/Nn. Then by Minkowski’s inequality, for

any integer k ≥ 3,

E|ξ̃ i j|k ≤ 2k−1
{

E
[
B̃l j(xil)ε iI

(
|ε i| ≤ nδ

)]k
+
[
E
(

B̃l j(xil)ε iI
(
|ε i| ≤ nδ

))]k
}

≤ 2k−1

[
c5nδk

Nn
+

(
c5

Nn

)k
]

≤ c6nδk

Nn
=

c6n3δ (k−2)k!
c4n2δ (k−3)k!

· c4

Nn

≤ c6n3δ (k−2)

c4
k!Eξ̃

2
i j

= ck−2
r k!Eξ̃

2
i j.

So, Cramer’s conditions are satisfied with the Cramer constant cr = cn3δ and we can

apply Bernstein’s inequality to ∑
n
i=1 ξ̃ i j. For any ε > 0 and n is large enough, one has
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P

(
1
n

∣∣∣∣∣ n

∑
i=1

ξ̃ i j

∣∣∣∣∣≥ ε

√
Nn logn

n

)

≤ 2exp

− ε2nNn logn

4∑
n
i=1 Eξ̃

2
i j +2cn3δ ε

√
nNn logn


≤ 2exp

(
− ε2nNn logn

4nc4/Nn +2cn3δ ε
√

(nNn logn)

)
≤ 2exp(−3logn) = 2n−3,

for 0 < δ < (p+1)/(3(2p+3)) . Furthermore, by Markov’s inequality, for any ε > 0,

P

(
1
n

∣∣∣∣∣ n

∑
i=1

(
ξ i j− ξ̃ i j

)∣∣∣∣∣> ε

√
Nn logn

n

)

≤ 1
ε
√

nNn logn
E

∣∣∣∣∣ n

∑
i=1

(
ξ i j− ξ̃ i j

)∣∣∣∣∣
≤ 1

ε
√

nNn logn

n

∑
i=1

E
∣∣∣ξ i j− ξ̃ i j

∣∣∣
=

1
ε
√

nNn logn

n

∑
i=1

E
∣∣∣B̃l j(xil)ε iI

(
|ε i| ≥ nδ

)
−E

[
B̃l j(xil)ε iI

(
|ε i| ≥ nδ

)]∣∣∣
≤ 2

ε
√

nNn logn

n

∑
i=1

E
∣∣∣B̃l j(xil)ε iI

(
|ε i| ≥ nδ

)∣∣∣
≤ c7

ε
√

(Nn logn)/nn(η+1)δ
≤ cn−3,

for η that is large enough. Since

sup
∣∣∣∣1nB̃T

nlε

∣∣∣∣
∗
= sup

j

1
n

∣∣∣∣∣ n

∑
i=1

ξ i j

∣∣∣∣∣≤ sup
j

1
n

∣∣∣∣∣ n

∑
i=1

(
ξ i j− ξ̃ i j

)∣∣∣∣∣+ sup
j

1
n

∣∣∣∣∣ n

∑
i=1

ξ̃ i j

∣∣∣∣∣ ,
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we have

n

∑
i=1

P

(
sup
∣∣∣∣1nB̃T

nlε

∣∣∣∣
∗
≥ 2ε

√
Nn logn

n

)

≤
n

∑
i=1

P

(
sup

j

1
n

∣∣∣∣∣ n

∑
i=1

(
ξ i j− ξ̃ i j

)∣∣∣∣∣≥ ε

√
Nn logn

n

)

+
n

∑
i=1

P

(
sup

j

1
n

∣∣∣∣∣ n

∑
i=1

ξ̃ i j

∣∣∣∣∣≥ ε

√
Nn logn

n

)

≤
n

∑
i=1

Jn+1

∑
j=1

P

(
1
n

∣∣∣∣∣ n

∑
i=1

(
ξ i j− ξ̃ i j

)∣∣∣∣∣≥ ε

√
Nn logn

n

)

+
n

∑
i=1

Jn+1

∑
j=1

P

(
1
n

∣∣∣∣∣ n

∑
i=1

ξ̃ i j

∣∣∣∣∣≥ ε

√
Nn logn

n

)

≤
n

∑
i=1

cNnn−3 <+∞.

Therefore by Borel-Cantelli Lemma,

sup |III|∗ = sup

∣∣∣∣∣
(

1
n

B̃T
nlB̃nl

)−1 1
n

B̃T
nl ε̃

∣∣∣∣∣
∗

= Op

(√
N3

n logn
n

)
. (2.17)

From equations (2.14), (2.15), (2.16) and (2.17), we have sup |β ∗l − γ l|∗ = sup |II +

III|∗ = Op

(√
N3

n logn
n

)
and then Lemma 8 follows. �
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2.4.2 Proof of Theorems

Proof of Theorem 1

Define α̃ i,−l = ∑
l′ 6=l

α̃ l′ (xil′) and α̃−l =
(
α̃1,−l, ..., α̃n,−l

)T . The first order derivative

of the unconstrained estimator is

α̃
′
l (x) =

[
B̃
′
l (x)

]T (
B̃T

nlB̃nl
)−1 B̃T

nl (y− α̃−l)

=
[
B̃
′
l (x)

]T (
B̃T

nlB̃nl
)−1 B̃T

nl

(
d

∑
l=1

α l + ε− α̃−l

)
=

[
B̃
′
l (x)

]T (
B̃T

nlB̃nl
)−1 B̃T

nl (α l + ε)+
[
B̃
′
l (x)

]T (
B̃T

nlB̃nl
)−1 B̃T

nl (α−l− α̃−l)

= α
∗′
l (x)+ I (x) .

According to Lemma 6, for any fixed l = 1, ...d,

sup
x∈[0,1]

∣∣α∗′l (x)−α
′
l (x)

∣∣= Op

(
N

1
2−p
n +N

3
2
n /
√

n
)
. (2.18)

Then, for part I (x), we have

sup
x

I (x)≤

√
sup

x

[
1√
n

B̃′l (x)
]T (1

n
B̃T

nlB̃nl

)−1[ 1√
n

B̃′l (x)
]
×√[

1√
n

B̃T
nl (α−l− α̃−l)

]T (1
n

B̃T
nlB̃nl

)−1[ 1√
n

B̃T
nl (α−l− α̃−l)

]
,

in which, the first term of right hand side is OP(
√

N3
n/n) by (2.10) in the proof of Lemma

6, and
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[
1√
n

B̃T
nl (α−l− α̃−l)

]T (1
n

B̃T
nlB̃nl

)−1[ 1√
n

B̃T
nl (α−l− α̃−l)

]
≤ 1

nλ min
(α−l− α̃−l)

T B̃nlB̃T
nl (α−l− α̃−l)

≤ λ max

λ min
(α−l− α̃−l)

T (α−l− α̃−l)

= Op(nN−2p−2
n +Nn),

in which (α−l− α̃−l)
T (α−l− α̃−l) = Op

(
nN−2p−2

n +Nn

)
by Theorem 1 of Huang

(1998). Therefore, we have

sup
x

I (x) = Op

(√
N1−2p

n +
N4

n
n

)
. (2.19)

Finally, Theorem 1 follows from equations (2.18), (2.19) and condition (A5). �

Proof of Theorem 2

By definition, we have

β̃ l =
(
B̃T

nlB̃nl
)−1 B̃T

nl (y− α̃−l)

=
(
B̃T

nlB̃nl
)−1 B̃T

nl

(
d

∑
l=1

α l + ε− α̃−l

)
=

(
B̃T

nlB̃nl
)−1 B̃T

nl (α l + ε)+
(
B̃T

nlB̃nl
)−1 B̃T

nl (α−l− α̃−l)

= β
∗
l + I.

According to Lemma 8, for any fixed l = 1, ...d, the coefficient β
∗
l satisfies the monotone

constraints with probability approaching to one. Furthermore,
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sup
∣∣∣(B̃T

nlB̃nl
)−1
∣∣∣
∗
= OP (Nn/n) ,

sup
∣∣B̃T

nl (α−l− α̃−l)
∣∣
∗ ≤

√
(α−l− α̃−l)

T B̃nlB̃T
nl (α−l− α̃−l)

= Op

(√(
nN−2p−2

n +Nn

)
n/Nn

)
.

So, sup |I|∗ = Op

(√
N−2p−1

n +N2
n/n
)

and then Theorem 2 directly follows. �

Proof of Theorem 3

Let ε0 = min
{

α ′l (x) ,x ∈ [0,1]
}

. Under condition (A3), each α l is monotone in-

creasing, then we have α ′l (x)≥ ε0≥ c4 > 0, for all x∈ [0,1] . Theorem 1 states that there

exists an integer n(ε0), such that when n > n(ε0), supx∈[0,1]
∣∣α̃ ′l (x)−α ′l (x)

∣∣ < ε0/2.

Therefore when n > n(ε0), α̃
′
l (x)≥ α ′l (x)−ε0/2≥ ε0/2 > 0 for all x ∈ [0,1]. This im-

plies that α̃ l (x) is actually monotone increasing when the sample size is large enough.

For p ≤ 3, Theorem 2 indicates that the coefficients of α̃ l satisfy the linear constraints

for large sample size. It implies that the constrained estimator α̂ l and unconstrained esti-

mator α̃ l are identical when sample size is large enough, for p≤ 3. Therefore, α̂ l enjoys

the same asymptotic properties with α̃ l . According to Theorem 1 in Huang (1998), one

has ‖α̃ l−α l‖ = Op

(√
N−2p−2

n +Nn/n
)
, for l = 1, · · · ,d. The constrained estimator

α̂ l also enjoys this optimal rate of convergence and then Theorem 3 follows. �
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2.5 Tables and Figures

Table 2.1: Monotone increasing functions used in the simulation study.

α1 (x) = 2x−1

α2 (x) = 3
2x2− 1

2

α3 (x) = ex +1− e

α4 (x) = 1
2 (logx+1)

α5 (x) = 2x+ sin(2πx)
2π
−1
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Table 2.2: Simulation results: averaged integrated squared errors (AISE) using uncon-

strained quadratic spline (UQS), constrained quadratic spline (CQS), and pool adjacent

violator algorithm (PAVA).

Outliers Method n α1 (x) α2 (x) α3 (x) α4 (x) α5 (x)

(N/Y)

N UQS 50 0.0384 0.0311 0.0301 0.0424 0.0345

100 0.0152 0.0133 0.0117 0.0250 0.0143

200 0.0101 0.0087 0.0095 0.0194 0.0101

500 0.0037 0.0043 0.0036 0.0148 0.0044

CQS 50 0.0306 0.0236 0.0244 0.0315 0.0280

100 0.0140 0.0111 0.0102 0.0207 0.0128

200 0.0090 0.0072 0.0085 0.0173 0.0092

500 0.0037 0.0039 0.0033 0.0141 0.0043

PAVA 50 0.0694 0.0658 0.0634 0.0791 0.0781

100 0.0353 0.0324 0.0332 0.0356 0.0344

200 0.0211 0.0194 0.0211 0.0217 0.0220

500 0.0098 0.0101 0.0102 0.0100 0.0103

Y UQS 50 0.5237 0.4343 0.4308 0.4679 0.3951

100 0.0988 0.1045 0.0876 0.1037 0.0971

200 0.0330 0.0322 0.0371 0.0463 0.0362

500 0.0067 0.0081 0.0075 0.0174 0.0085

CQS 50 0.1971 0.2132 0.1847 0.2234 0.1368

100 0.0673 0.0602 0.0555 0.0624 0.0577

200 0.0244 0.0203 0.0251 0.0336 0.0265

500 0.0063 0.0062 0.0064 0.0156 0.0078

PAVA 50 0.5296 0.5604 0.4484 0.5336 0.4682

100 0.1764 0.1592 0.1455 0.1602 0.1579

200 0.0521 0.0522 0.0566 0.0566 0.0563

500 0.0177 0.0168 0.0172 0.0173 0.0189
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Table 2.3: Norwegian Farm data: averaged mean squared estimation errors (AMSEE)

and averaged mean squared prediction errors (AMSPE) from constrained (C) and uncon-

strained (U) polynomial spline methods. Both linear (p = 1) and cubic (p = 3) splines

are considered with equally spaced (ES) or equal quantile (EQ) knots.

Knots Method p AMSEE AMSPE

ES U 1 0.0313 0.1501

C 1 0.0319 0.1479

U 3 0.0220 0.4648

C 3 0.0723 0.3330

EQ U 1 0.0897 0.1925

C 1 0.0908 0.1867

U 3 0.0234 0.1550

C 3 0.0299 0.1487
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Figure 2.1: Simulation results of the monotone increasing functions without outliers

and sample size n = 50. In each plot, the solid black line represents the true curve,

while the dashed blue, dot-dashed red and long-dashed green lines represent the typ-

ically fitted curves obtained using unconstrained quadratic spline (UQS), constrained

quadratic spline (CQS) and pool adjacent violator algorithm (PAVA), respectively. The

dotted lines represent the 95% empirical point-wise confidence intervals using the CQS

method.
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Figure 2.2: Simulation results of the monotone increasing functions with outliers and

sample size n = 50. The solid black line represents the true curve, while the dashed

blue, dot-dashed red and long-dashed green lines represent the typically fitted curves ob-

tained using unconstrained quadratic spline (UQS), constrained quadratic spline (CQS)

and pool adjacent violator algorithm (PAVA), respectively. The dotted lines represent

the 95% empirical point-wise confidence intervals using the CQS method. The solid

triangles and circles locate the positions of ten outliers: the triangle (or circle) indicates

the location where the response is manually decreased (or increased) by five.
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Figure 2.3: Norwegian Farm data: fitted results for each component using equally

spaced knots. The black circle represents the pseudo response for each predictor. The

dashed and dot-dashed blue lines represent fitted curves using unconstrained method for

p = 1 and p = 3, respectively. The dotted and solid red lines represent fitted curves

using constrained method for p = 1 and p = 3, respectively.
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Figure 2.4: Norwegian Farm data: fitted results for each component using equal quan-

tile knots. The black circle represents the pseudo response for each predictor. The

dashed and dot-dashed blue lines represent fitted curves using unconstrained method for

p = 1 and p = 3, respectively. The dotted and solid red lines represent fitted curves

using constrained method for p = 1 and p = 3, respectively.
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3 Estimation of Additive Frontier Functions with Shape Constraints

3.1 Additive Frontier Models

In this chapter, we extend the constrained polynomial spline method described in

Chapter 2 to estimate the production frontier functions. Consider a nonnegative vector

(x,y) ∈ Rd
+×R+, where x represents the d inputs and y represents the output of a

production unit. The production set is defined as the set of physically attainable points

(x,y), i.e., Ψ =
{
(x,y) ∈Rd

+×R+| x can produce y
}

. The production frontier function

of Ψ is defined as ρ(x) = sup{y,(x,y) ∈Ψ} that is the upper boundary of the production

set. In production analysis, the main interest lies on the specification and estimation of

the production frontier function ρ(·) given a random sample of the production units

{(xi,yi)}n
i=1.

First of all, we develop an additive frontier model that is inspired by the determinis-

tic nonparametric regression frontier model proposed in Martins-Filho and Yao (2007).

The construction of the additive frontier model is as follows. Suppose there are n inde-

pendent distributed observations generated from the additive frontier model

Yi = ρ (Xi)Ri, i = 1, . . . ,n, (3.1)

where Yi is the output variable and Xi = (Xi1, . . . ,Xid)
T are the input variables of the i-th

observation. We assume that the frontier function ρ (Xi) is of an additive structure and
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written as ρ (Xi) = ρ0+ρ1 (Xi1)+ . . .+ρd (Xid), where ρ0 is an unknown intercept and

{ρ l (·)}
d
l=1 are unknown univariate nonparametric functions that quantify the effect of

input variables on the maximum output. For model identification, we assume that each

additive component ρ l (·) is theoretically centered with E [ρ l (Xl)] = 0, for l = 1, . . . ,d.

The efficiency R is an unobserved random variable that takes values in [0,1]. The larger

value of R indicates more efficient production because the realized output Y is closer

to the production frontier ρ(X). In a special case with R = 1, the maximum output is

obtained. Furthermore, we assume that E (R|X) = µR ∈ (0,1) and Var (R|X) = σ2
R. The

parameter µR is viewed as the mean efficiency given the production set and σR is the

scale parameter for the distribution of R.

The proposed additive frontier model (3.1) has a number of desirable properties.

First, there is no restriction on the production set Ψ since the frontier function ρ (·) is not

constrained to a specific parametric family. Furthermore, compared with the nonpara-

metric frontier model described in Martins-Filho and Yao (2007), our proposed additive

frontier model allows that the contribution of each input variable is additive. Therefore,

the proposed frontier model enjoys the advantages of additive models and is especially

less affected by the curse of dimensionality.

In this chapter, our main interest lies in the estimation of frontier function ρ (·) of

model (3.1). To begin with, we rewrite model (3.1) as

Yi = ρ (Xi)µR +ρ (Xi)ε i = m(Xi)+ρ (Xi)ε i, i = 1, . . . ,n, (3.2)

where m(Xi) = ρ (Xi)µR = m0 + m1 (Xi1) + . . .+ md (Xid) and m j = ρ jµR, for j =
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0, . . . ,d. The error term ε i = Ri−µR is with E (ε i|Xi) = 0 and Var (ε i|Xi) = σ2
R. In the

regression model (3.2), the additive regression function m j characterizes the shape of ρ j.

These two functions are different only by a scale parameter µR that represents the mean

efficiency. In the following section, we propose a two-step polynomial spline method

to estimate the additive frontier functions {ρ l (·)}
d
l=1. In the first step, we estimate the

additive regression functions {ml (·)}d
l=1 using the polynomial spline method. The mean

functions {ml (·)}d
l=1 describe the shape of frontier functions. In addition, production

theory in econometrics often imposes shape constraints on the additive frontier functions

{ρ l (·)}
d
l=1 such as monotonicity or concavity. Therefore, in order to capture the shape

of frontiers more accurately, we also consider incorporating shape constraints in the first

estimation step. The second step is for estimating the location of the frontier function

that is associated with the mean efficiency µR. Finally, with the fact that m(·) = ρ (·)µR,

the estimator of frontier functions can be obtained by combining estimators in the pre-

vious two steps.

3.2 Methodology and Theory

3.2.1 Proposed Method

We propose to estimate the frontier functions in two easily implementable steps.

In the first step, we estimate the mean functions {ml (·)}d
l=1 in model (3.2) using the

polynomial spline method. Let un = {0 = u0 < u1 < · · ·< uNn < uNn+1 = 1} be a knot

sequence on the interval [0,1], with Nn interior knots. With the knot sequence un, the
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interval [0,1] is partitioned into Nn +1 smaller intervals. The polynomial splines of or-

der p+ 1 are polynomial functions with degree p (or less) on the partitioned intervals

and (p−1)-times differentiable at the interior knots. Follow the notation in Chapter 2,

we denote the space of polynomial splines with degree p based on the knots un as Gp =

Gp ([0,1] ,un) that is with dimension Nn+ p+1. Then we denote B-spline basis of Gp as

B̃(x) =
(
B̃1 (x) , . . . , B̃Jn+1 (x)

)T , where Jn =Nn+ p. Due to the fact that ∑
Jn+1
j=1 B̃ j(x) = 1,

without loss of generality, we focus on the first Jn basis and create empirically centered

B-spline basis by taking B j = B̃ j− 1
n ∑

n
i=1 B̃ j (xi). Let Bl (x) = (Bl1 (x) , . . . ,BlJn (x))

T

be the centered basis for the input variable Xl, for l = 1, . . . ,d. Under the assump-

tion that the additive frontier functions {ρ l (·)}
d
l=1 are theoretically centered, the inter-

cept term m0 can be consistently estimated as m̂0 = Ȳ = 1
n ∑

n
i=1Yi. Then we approxi-

mate the theoretically centered nonparametric function ml (·) by a linear combination

of the centered B-spline basis, i.e., ml (x) ≈ BT
l (x)β l , where β l =

(
β l1, . . . ,β lJn

)T is a

set of coefficients. Let Y∗ = (Y1− m̂0, . . . ,Yn− m̂0)
T and Bn = (Bn1, . . . ,Bnd), where

Bnl = (Bl (x1l) , . . . ,Bl (xnl))
T . The polynomial spline method (Stone 1985 and Huang

1998) estimates the unknown coefficients β =
(

β
T
1 , . . . ,β

T
d

)T
by minimizing the sum

of squares, i.e.,

β̃ = argmin
β∈RdJn

(Y∗−Bnβ )T (Y∗−Bnβ ) =
(
BT

n Bn
)−1 BT

n Y∗. (3.3)

Then the unknown function ml (·) is given as

m̃l (x) = BT
l (x)β̃ l, (3.4)
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for l = 1, . . . ,d.

The traditional polynomial spline estimator (3.4) enjoys the same optimal rate of

convergence as an univariate nonparametric function estimator, however, it can not give

shape constrained estimates, such as monotone increasing or concave function estimates.

To capture the shape of frontier functions more accurately, we consider to incorporate

shape constraints that guarantee our estimates to be monotone or concave. In the fol-

lowing, Lemma 9 gives a sufficient condition for a polynomial spline to be monotone

increasing that is considered in Chapter 2. In addition to the monotone constraints, we

are also interested in imposing concave constraints to control the rate of increasing since

the rate of technology productivity change is commonly decreasing in practice. As a re-

sult, the sufficient conditions for a polynomial spline to be concave are developed in

Lemmas 10 and 11.

Lemma 9 A sufficient condition for a polynomial spline g(x) = BT (x)β , where B(x)

is the empirically centered B-spline basis of Gp, to be monotone increasing is that its

coefficients satisfy the following conditions: β 1≥ 0 and β j ≥ β j−1, for j = 2, ...,Nn+ p.

Lemma 10 A sufficient condition for a linear spline g(x) = BT (x)β , where B(x) is the

empirically centered B-spline basis of G1, to be concave is that its coefficients satisfy the

following conditions: β 1−β 0≤ β 0 and β j−β j−1≤ β j−1−β j−2, for N≥ 2, j = 2, ...,Nn

or β 1−β 0 ≤ β 0, for N = 1.

Lemma 11 A sufficient condition for a polynomial spline g(x) = BT (x)β with degree

p≥ 2, where B(x) is the empirically centered B-spline basis of Gp, to be concave is that

its coefficients satisfy the following conditions:
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β−p+2−β−p+1 ≤ 2β−p+1,

β j−β j−1 ≤ ( j+ p)β j−1/( j+ p−1)−β j−2, for j =−p+3, ...,−1

β 0−β−1 ≤ pβ−1/(p−1)−β−2,

β j−β j−1 ≤ β j−1−β j−2, for j = 1, ...,Nn− p+1

β Nn−p+2−β Nn−p+1 ≤ (p−1)
(

β Nn−p+1−β Nn−p

)
/p,

β j−β j−1 ≤ (Nn +1− j)
(

β j−1−β j−2

)
/(Nn +2− j) , for j = Nn− p+3, ...,Nn

For the sake of simplicity, we use CM and CC to represent the set of spline coef-

ficients that satisfies the monotone increasing conditions and concave conditions, re-

spectively. In Chapter 2, we have developed a one-step backfitted constrained polyno-

mial spline method to estimate monotone additive regression functions. In this chap-

ter, we adopt the same estimation method but with more options of shape constraints.

With the traditional unconstrained estimator {m̃l}d
l=1, we define the pseudo response

Y ∗i,−l =Y ∗i −∑l′ 6=l m̃l′ (xil′) and Y∗−l =
(

Y ∗1,−l, ...,Y
∗
n,−l

)T
, l = 1, . . . ,d. Then to produce a

shape constrained estimator, we propose to estimate the coefficients by minimizing the

following constrained least squares

β̂ l = argmin
β l

(
Y∗−l−Bnlβ l

)T (Y∗−l−Bnlβ l
)
, subject to β l ∈Cl, (3.5)

where Cl is the set of shape constraints of the spline coefficients for the l-th additive com-

ponent. Taking Cl =CM gives a monotone estimator. In addition, to ensure monotonicity

and concavity simultaneously, we propose to impose the shape constraints Cl =CM∩CC

to guarantee a monotone and concave estimator. Furthermore, we are also able to im-

pose different sets of shape constraint for different additive components. As a result, the
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shape constrained polynomial spline estimator of ml (·) is obtained by

m̂l (x) = BT
l (x)β̂ l, (3.6)

for l = 1, . . . ,d. Then the mean function m(·) is naturally estimated as m̂(x) = m̂0 +

∑
d
l=1 m̂l(xl).

In the second step, we observe that the mean function m(·) and the frontier function

ρ (·) are different only by the parameter µR that is associated with the location of the

frontier function. So we consider to estimate the parameter µR. Notice that Y/m(X) =

ρ (X)R/ρ (X)µR = R/µR and its supremum is 1/µR since the maximum value of the

efficiency variable R is 1. Therefore, we propose to estimate the mean efficiency by

taking

µ̂R =

[
max

i
(Yi/m̂(Xi))

]−1

. (3.7)

In addition, since this estimator is sensitive to the outliers, in our implementation, we

propose a robust estimator of µR. The details for the robust modification are given in

section 3.2.3.

Finally, one observes that the regression model (3.2) implies that ml (xl)= ρ l (xl)µR.

Therefore, the additive frontier functions ρ l can be estimated as ρ̂ l (xl) = m̂l (xl)/µ̂R,

for l = 0, . . . ,d, and ρ̂(x) = ρ̂0 +∑
d
l=1 ρ̂ l(xl).

The proposed two-step polynomial spline estimation method gives a smooth esti-

mator of the frontier function and is easy to implement. Compared with the local lin-

ear regression method given in Martins-Filho and Yan (2007), our proposed method is

computationally easier and faster. Furthermore, the incorporation of monotonicity or
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concavity constraints allows us to capture the shape of frontiers more accurately. In

addition, as illustrated in Chapter 2, the constrained polynomial spline method is more

robust to the outliers than the unconstrained method. Most importantly, our proposed

method is applicable for the multi-dimensions where there are multiple input variables

and less affected by the curse of dimensionality.

3.2.2 Asymptotic Properties

In this section, we establish the asymptotic properties of our proposed frontier esti-

mator. For the asymptotic analysis, the following assumptions are required:

(A1) The input variables Xi are i.i.d. distributed on a compact support. Without

loss of generality, we assume that the support is [0,1]d . Its density function, denoted by

f (x), is continuous and 0 < c1 ≤ f (x) ≤ c2 < ∞, for x ∈ [0,1]d and positive constants

c1 and c2.

(A2) The efficiency variables {Ri}n
i=1 are i.i.d. distributed with E (Ri|Xi) = µR and

Var (Ri|Xi)=σ2
R <+∞. There exists positive constant c3, such that E

(
|Ri−µR|2+η |Xi

)
≤ c3 a.s. for some η > 0.

(A3) For the set of knots {0 = u0 < u1 < · · ·< uNn < uNn+1 = 1}, there exists a con-

stant c4 > 0, such that max(u j+1−u j, j = 0, . . . ,Nn)/min(u j+1−u j, j = 0, . . . ,Nn)≤ c4.

(A4) The number of interior knots Nn satisfies

Nn→+∞ and
N4

n
n
→ 0, as n→+∞.
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(A5) For each l = 1, . . . ,d, the additive frontier function ρ l is monotone increasing

and (p+1)-times continuously differentiable for some integer p≥ 1. Furthermore, we

assume that there exists a constant c5 > 0, such that ρ ′l (x)≥ c5, for x ∈ [0,1].

(A5*) For each l = 1, . . . ,d, the additive frontier function ρ l is concave and (p+2)-

times continuously differentiable for some integer p≥ 1. Furthermore, we assume that

there exists a constant c6 < 0, such that ρ
(2)
l (x)≤ c6, for x ∈ [0,1].

Assumption (A1) is the same as condition 1 in Stone (1985). Condition (A2) requires

that the unobserved efficiency random variables are i.i.d. distributed with a common

distribution. Condition (A3) assumes that the interior knots are pseudo equally spaced in

the interval [0,1]. This condition is also considered in Chapter 2 and Huang (1998). The

conditions for the number of interior knots and samples size are give in the assumption

(A4). Additionally, for the monotone constrained estimator, condition (A5) assumes

that each additive frontier function is monotone increasing and its first order derivative

is lower bounded. Similarly, for the concave constrained estimator, condition (A5*)

requires that each additive frontier function is concave and its second order derivative is

upper bounded.

Let m̃l and m̂l represent the unconstrained and shape constrained (monotone or con-

cave constrained) estimators of ml , respectively. The corresponding estimators of µR

and ρ are µ̃R (without constraint) or µ̂R (with constraint) and ρ̃ (without constraint)

or ρ̂ (with constraint), respectively. The following theorems are developed for both

unconstrained and shape constrained estimators.
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Theorem 12 Under regularity conditions (A1)-(A4), one has, for l = 1, . . . ,d,

sup
x
|m̃l (x)−ml (x)|= Op

(√
N2

n/n+N−2p−1
n

)
.

Theorem 13 Let Ln be a sequence such that Ln > 0 and Ln converges to 0 as the sample

size goes to infinity. Suppose supx |m̃(x)−m(x)| = Op (Ln) and 1−max
i

Ri = Op (Ln),

then one has

|µ̃R−µR|= Op (Ln) .

Theorem 14 Under the assumptions given in Theorem 13, one has,

sup
x
|ρ̃ (x)−ρ (x)|= Op

(√
N2

n/n+N−2p−1
n

)
.

The results in Theorems 12 and 13 refer to the estimators m̃l and µ̃R that are obtained

in the first and second estimation steps, respectively. The asymptotic behavior of our

main interest ρ̃ is a combination of the results in these two steps and its characterization

is given in Theorem 14. Note that in Theorems 13 and 14, an additional restriction on

the distribution of the efficiency variable 1−max
i

Ri = Op (Ln) is required.

Theorem 15 Under regularity conditions (A1)-(A5) (for monotone constrained estima-

tor) or (A1)-(A4), (A5*) (for concave constrained estimator), for p ≤ 3 and l = 1, ...d,

one has

sup
x
|m̂l (x)−ml (x)|= Op

(√
N2

n/n+N−2p−1
n

)
.
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Furthermore, assume that 1−max
i

Ri = Op

(√
N2

n/n+N−2p−1
n

)
, then one has

|µ̂R−µR|= Op

(√
N2

n/n+N−2p−1
n

)

and

sup
x
|ρ̂ (x)−ρ (x)|= Op

(√
N2

n/n+N−2p−1
n

)
.

Theorem 15 is developed for our proposed two-step shape constrained polynomial

spline estimator. We prove that when the shape constraints are correctly specified, the

constrained estimator of the mean function m̂l has the same asymptotic properties with

the unconstrained estimator m̃l , for l = 1, . . . ,d. With this property and the asymptotic

results described in Theorems 13 and 14, we naturally obtain the asymptotic behavior

of the parameter estimator µ̂R and our final frontier estimator ρ̂ .

3.2.3 Implementation

In section 3.2.1, we estimate the mean efficiency µR in the second step by tak-

ing µ̂R =

[
max

1≤i≤n
(Yi/m̂(Xi))

]−1

. We observe that this estimator is sensitive to the ex-

treme large values or outliers in the data sets. Therefore, in the implementation, we

propose a modified estimator that is more robust to outliers. Let Q1 and Q3 be the

first and third quantiles of max
1≤i≤n

(Yi/m̂(Xi)), respectively. The corresponding interquan-

tile range (IQR) is defined as IQR = Q3−Q1. The data points that are beyond 1.5

times interquantile range (IQR) are regarded as outliers. Then the adjusted estimator is

µ̂R =

[
max
i∈S

(Yi/m̂(Xi))

]−1

, where S = [Q1−1.5IQR,Q3 +1.5IQR]. In our simulation
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studies, we implement this robust modification and the numerical results show that this

method is effective especially when the data has outliers.

In addition, in our proposed polynomial spline estimation method, the appropriate

selection of the knot sequences is crucial. To reduce computational complexity, we

use the same knot sequences for both initial and constrained polynomial spline esti-

mation procedures. The knot sequences are equally spaced in the range of each input

variable. The same number of interior knots Nn is used for all input variables. For

the simulation studies in section 3.3.1, we adopt the optimal Nn that is selected us-

ing the Bayes Information Criterion (BIC). To be specific, let Ŷi (Nn) denote the esti-

mator of the i-th observation using Nn as the number of interior knots. Then the se-

lected N̂n is the one that minimizes the BIC value, i.e., N̂n = argmin
Nn∈(1,2,3,4,5)

BIC(Nn) =

argmin
Nn∈(1,2,3,4,5)

{logMSE +[(Nn + p+1) logn]/n}, where MSE =
n
∑

i=1

[
Yi− Ŷi (Nn)

]2
/n.

3.3 Empirical Results

In this section, we conduct simulation studies to evaluate the numerical performance

of our proposed method with finite samples. Both univariate and multivariate cases are

considered. For comparison purpose, in the univariate case, we also include a nonpara-

metric estimation method via local linear regression described in Martins-Filho and Yao

(2007). In addition to the simulation studies, the application of our proposed method to

the Norwegian Farm data is also illustrated.



55

3.3.1 Simulation Study

3.3.1.1 Univariate Case

In this example, we adopt a simulation set-up as given in Martins-Filho and Yao

(2007) to compare our proposed method with their nonparametric method based on local

linear regression. The data is generated from a frontier model with a single input variable

Y = ρ (X)R, where ρ (X) is the frontier function and R is the efficiency variable. The

input variable X is generated from the uniform distribution on [1,2]. Let R = exp(−Z) ,

where Z is an exponential variable with the scale parameter β , therefore R has support

on (0,1). We choose ρ (x) = 3(x−1.5)3 + 0.25x+ 1.125 and consider three different

parameters for the exponential distribution with β = 1/3,1, and 3. These choices of

the parameter β lead to three different shapes for the distribution of the production

efficiency variable R: left-skewed, uniform, and right-skewed for β = 1/3,1, and 3,

respectively. We aim to examine the impact of different underlying distributions of R

on the performance of frontier estimator. Three sample sizes n = 100, 250, and 500 are

considered and r = 100 replications are generated for each design.

For each simulated data set, we estimate the frontier function using both uncon-

strained (ULS) and constrained linear spline estimation methods. Two types of shape

constraints are considered: monotonicity only (MCLS), and monotonicity and concavity

(MCCLS). In this example, the true frontier function is monotone increasing. The above

spline methods are considered to illustrate the effect of incorporating shape constraints

on improving estimation accuracy. For the purpose of comparison, we also consider the

nonparametric estimator using local linear regression as proposed in Martins-Filho and
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Yao (2007).

We use the averaged integrated squared errors (AISE) to evaluate the estimation

accuracy of these four different estimation methods. Let ρ̂k be an estimator of ρk

in the k-th replication and
{

x j
}ngrid

j=1 be a set of grid points where the functions are

evaluated. Then the integrated squared error (ISE) of ρ̂k is defined as ISE(ρ̂k) =

1
ngrid ∑

ngrid
j=1

[
ρ̂k
(
x j
)
−ρ

(
x j
)]2 and the averaged integrated squared error is calculated

as AISE(ρ̂) = 1
r ∑

r
k=1 ISE(ρ̂k). To better understand the performance of our proposed

two-step polynomial spline estimation methods, in addition to the AISEs of ρ̂ (x), we

also report the AISEs of m̂(x) from the first estimation step and the mean squared errors

(MSE) of µ̂R from the second estimation step.

The simulation results are summarized in Tables 3.1 and 3.2. Overall, it clearly

shows that for all four methods, the AISEs decrease as the sample size n increases, sup-

porting our asymptotic convergence results. When comparing the three spline methods,

we observe that the monotone constrained spline methods with correctly specified con-

straints have better performance than the one without constraint under all three designs.

Furthermore, Table 3.2 shows that the incorporation of shape constraints enhance the

estimation accuracy in both first and second estimation steps. In addition, the MCLS

method with correctly specified constrains has the smallest AISEs under the scenario

where β = 1/3, while the MCCLS method has the best performance when β = 1 and 3

although the additional constraint on concavity is misspecified. For the local linear re-

gression method (LLR), the AISEs of the LLR method is the largest when β = 1/3. For

the other two cases when β = 1 and 3, the LLR method is comparable with the spline

methods and even has slightly better performance than the other two when β = 3.
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These results also suggest the impact of different underlying distributions of the pro-

duction efficiency variable R on the performance of different estimation methods. Since

the LLR and our proposed spline methods estimate different components of the model,

the distributions of R have different influences on their final estimation of frontiers. The

spline methods have least favorable performance when β = 3 compared with the case

when β = 1/3 or 1. This phenomena is mainly due to the difficulty in estimating µR

under the right-skewed distribution of the efficiency variable R where the majority of

observations are close to 0. However, the LLR method has the worst performance when

β = 1/3. This inferior performance is due to the fact that under this design σ2
R = 0.04

that is half of that in the other two cases, leading to a larger variability in estimating the

frontier function as indicated by Theorem 2 in Martins-Filho and Yao (2007). In this

simulated example, Table 3.1 shows the three spline methods have great advantage over

the LLR method when the efficiency variable R has a left-skewed distribution (β = 1/3).

In addition, for our spline methods, a robust procedure is proposed in the estimation

of the location parameter µR to alleviate the effect of outliers. In order to evaluate its

effectiveness, two artificial outliers located at (X ,Y ) = (1.4,3) and (1.6,3) are added

manually to each simulated data set. Then, all four estimation procedures are performed

again and compared with the ones without robust modification. Notice that, for the LLR

method we only report the AISEs of frontier function since this method estimates σ2
R

instead of µR. To make the LLR method comparable with our robust method, we apply

similar robust modification in estimating σ2
R. Table 3.3 clearly illustrates the effective-

ness of the robust procedure when there are outliers. In particular, the AISEs of the

frontier estimator reduce dramatically for all four methods after the robust modification
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is applied. For the spline methods, it suggests that the robust method is effective in esti-

mating µR thus improve the performance of the frontier estimation. Also, we can easily

see that when there are outliers, our proposed spline methods are noticeably much better

than the LLR method under all three designs. For example, in the case when n = 50 and

β = 1/3, the AISEs of the frontier estimation using MCLS method decrease by 99.07%

as compared to the LLR method.

In Figures 3.1 and 3.2, we plot the estimated frontier functions from one simulated

data set using four different methods: LLR (solid blue line), ULS (dashed green line),

MCLS (dotted purple line), and MCCLS (dot-dashed red line), along with the true fron-

tier (solid black line). Without outliers, Figure 3.1 shows that our proposed methods

perform very well as the fitted curves are very close to the true curve and they are no-

ticeably much better than the LLR method in the case where β = 1/3. When there

are outliers and without robust method, by Figure 3.2 we can see that all fitted curves

are pulled up due to those two extreme outliers. When the robust method is applied,

the plots indicate that all four methods work much better and the three spline methods

are even better than the LLR method especially for the smaller sample size. This sug-

gests that our proposed method is more robust to the outliers. It graphically verify our

numerical findings.

3.3.1.2 Multivariate Case

In addition to the univariate case, here we consider an additive frontier model with

multiple input variables, Y = [ρ0 +ρ1 (X1)+ρ2 (X2)+ρ3 (X3)+ρ4 (X4)]R, where ρ0 =
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8, ρ1 (x) = 2x−1, ρ2 (x) = 2x+[sin(2πx)]/2π−1, ρ3 (x) = 3x1/3−9/4, and ρ4 (x) =

(logx+1)/2. The input variables {Xl}4
l=1 are independently generated from the uni-

form distribution on [0,1] . The efficiency variable R is generated in the same way as

that in the univariate example. The selected additive frontier functions cover a com-

bination of the functions that are either monotone increasing or monotone increasing

and concave. Similarly, three sample sizes n = 100, 250, and 500 are considered and

r = 100 replications are generated for each set-up. For each generated data, we esti-

mate the additive frontier functions using three linear splines methods: ULS, MCLS

and MCCLS as described in the univariate case. Again, AISE and MSE are used to

evaluate the estimation accuracy of the nonparametric functions and the parameter µR,

respectively. Two artificial outliers located at (X1,X2,X3,X4,Y ) = (0.4,0.4,0.4,0.4,12)

and (0.6,0.6,0.6,0.6,12) are added manually to each simulated data set.

The simulation results are summarized in Tables 3.4 (without outliers) and 3.5 (with

outliers). For all three spline methods, Table 3.4 shows that the estimation errors de-

crease as the sample size increases. Also, the two spline methods with shape constraints

(MCLS and MCCLS) perform much better than the unconstrained method (ULS) in

both first and second step estimation. These findings are consistent with that in the uni-

variate case. In addition, the MCCLS method gives the least AISEs among these three

spline methods. Furthermore, similar to the univariate case, the spline methods have

the worst performance when β = 3 due to the difficulty in estimating µR. Again, when

using the contaminated data set, without the robust modification, Table 3.5 shows that

the ULS method gives very large estimation errors when β = 3 because of large errors

in the estimation of µR. When the robust method is applied, the ULS method is im-
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proved greatly but still worse than the other two constrained methods. It illustrates that

the robust method improve the estimation accuracy of µR greatly, especially under the

case with right-skewed distribution of the efficiency variable R (β = 3). For example,

when applying the robust modification, the MSE of 1/µR obtained using ULS decreases

from 800.34 to 0.076.

3.3.2 Norwegian Farm Data

In this real data example, we apply our proposed method to the Norwegian Farm

data. This data set is originally from Norwegian Farm Accountancy Survey collected by

Norwegian Agricultural Economics Research Institute. Recall that a monotone additive

model has been used to analyze this data set in Chapter 2. Here we revisit the same data

set but the additive frontier model is applied. We consider the data of year 2007 that

includes observations on 151 grain farms in Norway. Similarly, we focus on four input

variables: total number of hours worked (labor) on the farm (X1), productive farmland

in hectares (X2), variable farm inputs (X3) and fixed farm input and capital costs (X4).

The output variable (Y ) is the logarithm of farm revenue measured in Norwegian kro-

ner. Kumbhakar, Lien and Hardaker (2014) thoroughly studied 6 different parametric

stochastic frontier models for the estimation of farm efficiency. In Chapter 2, we use a

monotone additive regression model to quantify the relationship between the input vari-

ables and the output variable. In this chapter, we consider the additive frontier model

Y = [ρ0 +ρ1 (X1)+ρ2 (X2)+ρ3 (X3)+ρ4 (X4)]R to quantify the maximum farm rev-

enue given these four input variables. Our semi-parametric model is more flexible that
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the parametric ones considered in Kumbhakar, Lien and Hardaker (2014). In addition,

in Chapter 2 we focus on the estimation of the regression or conditional mean function,

not the frontier function.

To estimate the unknown components in the model, three linear spline methods:

unconstrained linear spline (ULS), monotone constrained linear spline (MCLS), and

monotone and concave constrained linear spline (MCCLS) are considered. The number

of interior knots Nn is taken as the integer part of n1/(2p+3). The knot sequence is

selected to be equally spaced in the range of each input variable Xl .

Figure 3.3 plots the estimates of the conditional mean function obtained in the first

estimation step. We plot the pseudo responses (black circle) along with the estimated

mean functions using the ULS (dashed blue line), MCLS (dot-dashed green line), and

MCCLS (long-dashed red line) methods. The 95% point-wise confidence intervals from

boostrapping for each input variable (dotted blue line) of the ULS method are also plot-

ted. At each grid point, the 95% point-wise confidence intervals use the 2.5% and 97.5%

sample quantiles of the ULS estimates obtained from 100 boostrapped samples as the

lower and upper bounds, respectively. It clearly shows that the three spline methods

give very similar estimation results. Additionally, all four input variables have mono-

tonic effects on the farm revenue and the increasing rates decrease as the input variables

increase.

Furthermore, to assess the production efficiency of each farm, in Figure 3.4 we plot

the estimated maximum farm revenue (left top), efficiency estimates (right top), and

the kernel density distribution of the efficiency estimates (left bottom). We can easily

see that the estimation results are very similar for the three spline methods: the ULS
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(blue rectangle or line), MCLS (green triangle or line), and MCCLS (red plus or line)

methods. Furthermore, it indicates that the majority of 151 farms have high efficiency

with the estimate above 0.95. In addition, farms with lower revenue tend to have lower

production efficiency.

In addition, to explain the difference in efficiency among these farms, we also ex-

plore the relationships between the efficiency and 5 other explanatory variables of in-

terest that include off-farm income share (net income off the farm as a proportion of

the total net income), coupled subsidy income share (coupled subsidies as a proportion

of the total farm net income), environmental subsidy income share (farm environmental

payments as a proportion of the total farm net income), farmer experience (number of

years as a farmer) and the farmers’ education level. Figure 3.5 shows the scatter plots

of those variables versa the estimated efficiency and the box plots of the estimated effi-

ciency for the three different groups of farmers with different education levels, using the

MCCLS method. For the first four explanatory variables, we also fit the least squares

regression lines (solid red lines). Clearly, it indicates that larger coupled subsidy income

share or environmental subsidy income share are associated with lower efficiency. These

negative influences may be due to the reason that the motivation of the farmers to work

is reduced by the extra off-farm income. However, it seems that there is no apparent

relationship between the efficiency and off-farm income share, farmer experience or the

farmer’s education level.
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3.4 Proof of Lemmas and Theorems

3.4.1 Preliminary Lemmas and Proof

Proof of Lemma 9.

See the proof of Lemma 4 in section 2.4.1. �

Proof of Lemma 10.

According to equation (2.7), the first order derivative of the linear spline can be

written as

g′(x) =

[
(β 0/(u1−u0)) B̃0,1(x)+

Nn

∑
j=1

((
β j−β j−1

)
/
(
u j+1−u j

))
B̃ j,1(x)

]
.

For a linear spline, the rate of change is a constant in each interval. To ensure that g(·)

is a concave function, the rate of change needs to be non-increasing in the whole region.

Therefore, we have (β 1−β 0)/(u2−u1)≤ β 0/(u1−u0) and
(

β j−β j−1

)
/
(
u j+1−u j

)
≤
(

β j−1−β j−2

)
/
(
u j−u j−1

)
, for j = 2, ...,N and N ≥ 2. When N = 1, one has

(β 1−β 0)/(u2−u1) ≤ β 0/(u1−u0) . Since the knots are equally space, Lemma 9 fol-

lows. �

Proof of Lemma 11.

By equation (2.7), we have

g′(x) = (k−1)

[
β−p+1

u1−u−p+1
B̃−p+1,k−1 +

Nn

∑
j=−p+2

β j−β j−1

u j+k−1−u j
B̃ j,k−1

]
.



64

When degree p≥ 2, we can take the second order derivative and obtain

g(2)(x)

= (k−1)

[
β−p+1

u1−u−p+1
B̃′−p+1,k−1 +

Nn

∑
j=−p+2

β j−β j−1

u j+k−1−u j
B̃′j,k−1

]

= (k−1)(k−2)
Nn

∑
j=−p+2

β j−β j−1

u j+k−1−u j

(
−B̃ j+1,k−2

u j+k−1−u j+1
+

B̃ j,k−2

u j+k−2−u j

)

+(k−1)(k−2)
−β−p+1(

u1−u−p+1
)(

u1−u−p+2
) B̃−p+2,k−2

= I + II.

Furthermore, part I can be decomposed as

I = (k−1)(k−2)
−1

∑
j=−p+2

β j−β j−1

u j+k−1−u j

(
−B̃ j+1,k−2

u j+k−1−u j+1
+

B̃ j,k−2

u j+k−2−u j

)

+(k−1)(k−2)
Nn−k+2

∑
j=0

β j−β j−1

u j+k−1−u j

(
−B̃ j+1,k−2

u j+k−1−u j+1
+

B̃ j,k−2

u j+k−2−u j

)

+(k−1)(k−2)
Nn

∑
j=Nn−k+3

β j−β j−1

u j+k−1−u j

(
−B̃ j+1,k−2

u j+k−1−u j+1
+

B̃ j,k−2

u j+k−2−u j

)

= I1 + I2 + I3.

Then, we check each partition and get
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I1 = (k−1)(k−2)
β−p+2−β−p+1(

u2−u−p+2
)(

u1−u−p+2
) B̃−p+2,k−2

+(k−1)(k−2)

×
−1

∑
j=−p+3

[
β j−β j−1(

u j+k−1−u j
)(

u j+k−2−u j
) − β j−1−β j−2(

u j+k−2−u j−1
)(

u j+k−2−u j
)] B̃ j,k−2

+(k−1)(k−2)
−
(
β−1−β−2

)
(uk−2−u−1)(uk−2−u0)

B̃0,k−2

= (k−1)(k−2)
β−p+2−β−p+1

2h2 B̃−p+2,k−2

+(k−1)(k−2)
−1

∑
j=−p+3

[
β j−β j−1

( j+ k−1)( j+ k−2)h2 −
β j−1−β j−2

( j+ k−2)2 h2

]
B̃ j,k−2

+(k−1)
−
(
β−1−β−2

)
(k−2)h2 B̃0,k−2, (3.8)

I2 =
β 0−β−1

h2 B̃0,k−2 +
Nn−k+2

∑
j=1

β j−β j−1−
(

β j−1−β j−2

)
h2 B̃ j,k−2

+
−
(
β Nn−k+2−β Nn−k+1

)
h2 B̃Nn−k+3,k−2, (3.9)

and

I3 = (k−1)(k−2)

(
β Nn−k+3−β Nn−k+2

)
(uNn+2−uNn−k+3)(uNn+1−uNn−k+3)

B̃Nn−k+3,k−2
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+(k−1)(k−2)

×
Nn

∑
j=Nn−k+4

[
β j−β j−1(

u j+k−1−u j
)(

u j+k−2−u j
) − β j−1−β j−2(

u j+k−2−u j−1
)(

u j+k−2−u j
)] B̃ j,k−2

= (k−1)

(
β Nn−k+3−β Nn−k+2

)
(k−2)h2 B̃Nn−k+3,k−2

+(k−1)(k−2)

×
Nn

∑
j=Nn−k+4

[
β j−β j−1

(Nn +1− j)2 h2
−

β j−1−β j−2

(Nn +2− j)(Nn +1− j)h2

]
B̃ j,k−2. (3.10)

Also, II can be written as

II = (k−1)(k−2)
−β−p+1

h2 B̃−p+2,k−2. (3.11)

By conducting the above decomposition, the second order derivative of the polynomial

spline of order k can be written as a linear combination of B-spline basis in the poly-

nomial spline space with order k− 2. Since the B-spline basis is positive, a sufficient

condition to guarantee the concavity of the polynomial spline is that the coefficients of

the distinct basis are all non-positive. Now, combine with (3.8), (3.9), (3.10) and (3.11),

we get the following set of inequalities:

β−p+2−β−p+1 ≤ 2β−p+1,

β j−β j−1 ≤ ( j+ p)
(

β j−1−β j−2

)
/( j+ p−1), for j =−p+3, ...,−1

β 0−β−1 ≤ p
(
β−1−β−2

)
/(p−1),

β j−β j−1 ≤ β j−1−β j−2, for j = 1, ...,Nn− p+1

β Nn−p+2−β Nn−p+1 ≤ (p−1)
(

β Nn−p+1−β Nn−p

)
/p,
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β j−β j−1 ≤ (Nn +1− j)
(

β j−1−β j−2,

)
/(Nn +2− j), for j = Nn− p+3, ...,Nn

with degree p≥ 2 and Lemma 11 follows. �

Lemma 16 A sufficient condition for a quadratic spline g(x) = BT (x)β , where B(x) is

the empirically centered B-spline basis of G2, to be concave is that its coefficients satisfy

the following conditions:

β 0−β−1 ≤ 2β−1,

β 1−β 0 ≤
(
β 0−β−1

)
/2, for N = 1, and

β 0−β−1 ≤ 2β−1,

β j−β j−1 ≤ β j−1−β j−2,

β N−β N−1 ≤
(
β N−1−β N−2

)
/2, for N ≥ 2, j = 1, ...,N−1.

Proof. Following from Lemma 11, we get the results. �

Lemma 17 A sufficient condition for a cubic spline g(x) = BT (x)β , where B(x) is the

empirically centered B-spline basis of G3, to be concave is that its coefficients satisfy

the following conditions:

β−1−β−2 ≤ 2β−2,

β 0−β−1 ≤ β−1−β−2,

β 1−β 0 ≤
(
β 0−β−1

)
/2, for N = 1,

β−1−β−2 ≤ 2β−2,

β 0−β−1 ≤ 3
(
β−1−β−2

)
/2,

β 1−β 0 ≤ 2
(
β 0−β−1

)
/3,

β 2−β 1 ≤ (β 1−β 0)/2, for N = 2 and

β−1−β−2 ≤ 2β−2,
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β 0−β−1 ≤ 3
(
β−1−β−2

)
/2,

β j−β j−1 ≤ β j−1−β j−2,

β N−1−β N−2 ≤ 2
(
β N−2−β N−3

)
/3,

β N−β N−1 ≤
(
β N−1−β N−2

)
/2, for N ≥ 3, j = 1, ...,N−2.

Proof. Following from Lemma 11, we have the results. �

Lemma 18 For any m that satisfies condition (A5*) and large sample size, there ex-

ists a concave function g ∈ G(p+1), such that ‖m−g‖
∞
≤ c

∥∥∥m(p+2)
∥∥∥

∞

/N p+2
n , and∥∥∥m(2)−g(2)

∥∥∥
∞

≤ c
∥∥∥m(p+2)

∥∥∥
∞

/N p
n for some constant c > 0.

Proof. According to Theorem 1.51 in Schumaker (2015), for any m ∈ Cp+2 [0,1] ,

there exists a function g ∈ G(p+1), such that ‖m−g‖
∞
≤ c
∥∥∥m(p+2)

∥∥∥
∞

/N p+2
n and∥∥∥m(2)−g(2)

∥∥∥
∞

≤ c
∥∥∥m(p+2)

∥∥∥
∞

/N p
n for some constant c> 0. By condition (A5*), m(2) (x)

≤ c1 < 0 for some constant c1 and any x ∈ [0,1]. Then for large sample size, one has

g(2) ≤
∥∥∥m(2)−g(2)

∥∥∥
∞

+m(2) ≤ c1/2 < 0.

Therefore, the spline function g is concave and Lemma 18 follows. �

For each l = 1, . . . ,d, let m∗l be the one-step backfitted estimate of ml when all the

other additive components are known. In this case, it reduces to a univariate polynomial

spline smoothing. Define Y ∗i,−l = Yi− ∑
l′ 6=l

ml′ (xil′) = ml (xil) + ρ (xi)ε i as the pseudo

response, and for l = 1, . . . ,d let Y∗−l =
(

Y ∗1,−l, ...,Y
∗
n,−l

)T
. Then m∗l (x) = B̃T

l (x)β
∗
l

where β
∗
l =

(
B̃T

nlB̃nl
)−1 B̃T

nlY
∗
−l . Note that

{
m∗l
}d

l=1 are only constructed to prove our

theorem.
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Lemma 19 Under regularity conditions (A1)-(A4),(A5*), one has, for l = 1, . . . ,d,

sup
x∈[0,1]

∣∣∣m∗(2)l (x)−m(2)
l (x)

∣∣∣= Op

(
N

1
2−p
n +N

5
2
n /
√

n
)
.

Proof. By Lemma 18, for each l = 1, . . . ,d, there exists a concave function gl ,

such that ‖ml−gl‖∞
≤ c
∥∥∥m(p+2)

l

∥∥∥
∞

/N p+2
n and

∥∥∥m(2)
l −g(2)l

∥∥∥
∞

≤ c
∥∥∥m(p+2)

l

∥∥∥
∞

/N p
n . By

definition, one has

m∗(2)l (x)

=
[
B̃(2)

l (x)
]T

β
∗
l =

[
B̃(2)

l (x)
]T (

B̃T
nlB̃nl

)−1 B̃T
nlY
∗
−l

=
[
B̃(2)

l (x)
]T (

B̃T
nlB̃nl

)−1 B̃T
nl (ml +ρε)

=
[
B̃(2)

l (x)
]T (

B̃T
nlB̃nl

)−1 B̃T
nl (gl +ml−gl +ρε)

=
[
B̃(2)

l (x)
]T (

B̃T
nlB̃nl

)−1 B̃T
nlgl +

[
B̃(2)

l (x)
]T (

B̃T
nlB̃nl

)−1 B̃T
nl (ml−gl)

+
[
B̃(2)

l (x)
]T (

B̃T
nlB̃nl

)−1 B̃T
nlρε

= I (x)+ II (x)+ III (x) . (3.12)

Since we can write gl = B̃nlγ l for some coefficient γ l ,

I (x) =
[
B̃(2)

l (x)
]T (

B̃T
nlB̃nl

)−1 B̃T
nlB̃nlγ l =

[
B̃(2)

l (x)
]T

γ l = g(2)l (x) ,

then by Lemma 18, we have

sup
x∈[0,1]

∣∣∣I (x)−m(2)
l (x)

∣∣∣= sup
x∈[0,1]

∣∣∣g(2)l (x)−m(2)
l (x)

∣∣∣≤ c
∥∥∥m(p+2)

l

∥∥∥
∞

/N p
n . (3.13)
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Next, apply Cauchy-Schwarz inequality to II (x) and we get

sup
x

II (x) ≤

√
sup

x

[
1√
n

B̃(2)
l (x)

]T (1
n

B̃T
nlB̃nl

)−1[ 1√
n

B̃(2)
l (x)

]
×√[

1√
n

B̃T
nl (ml−gl)

]T (1
n

B̃T
nlB̃nl

)−1[ 1√
n

B̃T
nl (ml−gl)

]
.

Let λ min and λ max be the smallest and largest eigenvalues of B̃T
nlB̃nl/n, respectively.

According to Theorem 5.4.2 in Devore and Lorentz (1993), λ min � λ max = Op (1/Nn),

where�means both sides have the same order. With the fact that sup
x

[
B̃(2)

l (x)
]T

B̃(2)
l (x)

= OP
(
N4

n
)
, one has

[
1√
n

B̃(2)
l (x)

]T (1
n

B̃T
nlB̃nl

)−1[ 1√
n

B̃(2)
l (x)

]
≤ 1

nλ min

[
B̃(2)

l (x)
]T

B̃(2)
l (x)=OP

(
N5

n/n
)
.

Also,

[
1√
n

B̃T
nl (ml−gl)

]T (1
n

B̃T
nlB̃nl

)−1[ 1√
n

B̃T
nl (ml−gl)

]
≤ 1

nλ min
(ml−gl)

T B̃nlB̃T
nl (ml−gl)

≤ λ max

λ min
(ml−gl)

T (ml−gl) = Op
(
n/N2p+4

n
)
.

So,

sup
x

II (x) = Op

(
N

1
2−p
n

)
. (3.14)

Next, we notice that sup
x

[
B̃(2)

l (x)
]T

= Op
(
N2

n
)
, and the element of 1

nB̃T
nlρε is
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1
n ∑

n
i=1 Bl j(xi)ρ(xi)ε i = Op

(
1/
√

nNn
)
, therefore

sup
x

III (x) = Op

(
N

5
2
n /
√

n
)
. (3.15)

Finally, Lemma 19 follows from equations (3.12), (3.13), (3.14), (3.15). �

Lemma 20 For any function m ∈ Cp+2 [0,1] that satisfies condition (A5*) with p ≤ 3

and large sample size, there exists a concave function g ∈G(p+1) and ĝ ∈G(p+1) whose

coefficients satisfy the concave constraints, such that ‖m−g‖
∞
≤ c1

∥∥∥m(p+2)
∥∥∥

∞

/N p+2
n

and ‖g− ĝ‖
∞
≤ c2

∥∥∥m(p+2)
∥∥∥

∞

/N p+2
n , for some constant c1,c2 > 0.

Proof. By Lemma 18, for any m ∈ Cp+2 [0,1] that satisfies condition (A5*) and

large sample size, there exists a concave function g ∈ G(p+1), such that ‖m−g‖
∞
≤

c1

∥∥∥m(p+2)
∥∥∥

∞

/N p+2
n for some constant c1 > 0. Since m ∈ Cp+2 [0,1], its first order

derivative m′ ∈ Cp+1 [0,1]. According to Lemma 7 in Chapter 2, for p ≤ 3 and large

sample size, there exists a ĝ′ ∈ G(p) whose coefficients satisfy the linear constraints,

such that ‖g′− ĝ′‖
∞
≤ c2

∥∥∥m(p+2)
∥∥∥

∞

/N p+1
n , for some constant c2 > 0. With ĝ(x) =∫

ĝ′ (x)dx ∈ G(p+1) and follow the similar arguments in the proof of Lemma 7, we can

easily show that ‖g− ĝ‖
∞
≤ c2

∥∥∥m(p+2)
∥∥∥

∞

/N p+2
n . Moreover, in the proof of Lemma

7, we showed that the spline coefficients of ĝ(2) are non-positive that suggests that the

coefficients of ĝ satisfy the concave constraints. Therefore, Lemma 20 follows. �

Recall that m∗l =
Jn+1
∑
j=1

β
∗
l jB̃ j is the one-step backfitted estimate of ml with all other

additive components known, for l = 1, . . . ,d.
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Lemma 21 Under regularity conditions (A1)-(A4),(A5*), one has, for l = 1, . . . ,d and

p≤ 3, there exists a spline function gl
Jn+1
= ∑

j=1
γ l jB̃ j whose coefficients satisfy the concave

constraints such that

sup
j

∣∣∣γ l j−β
∗
l j

∣∣∣= Op

(√
N3

n logn
n

)
.

Therefore, the coefficients of m∗l satisfies the concave constraints with probability ap-

proaching to 1 as n→ ∞.

Proof. For p ≤ 3, by Lemma 20, there exists a spline function gl whose coefficients

satisfy the concave constraints such that ‖ml−gl‖∞
= Op

(
N−p−2

n

)
. By definition, we

have

β
∗
l =

(
B̃T

nlB̃nl
)−1 B̃T

nl (ml +ρε)

=
(
B̃T

nlB̃nl
)−1 B̃T

nl (gl +ml−gl +ρε)

=
(
B̃T

nlB̃nl
)−1 B̃T

nlgl +
(
B̃T

nlB̃nl
)−1 B̃T

nl (ml−gl)+
(
B̃T

nlB̃nl
)−1 B̃T

nlρε

= I + II + III. (3.16)

Write gl = B̃nlγ l , then

I =
(
B̃T

nlB̃nl
)−1 B̃T

nlB̃nlγ l = γ l. (3.17)

Let | · |∗ denotes the element-wise absolute value of a matrix. Since sup
x
|1nB̃T

nlB̃nl|∗ =

OP
(
N−1

n
)

and ‖ml−gl‖∞
= Op

(
N−p−2

n

)
, we have

sup |II|∗ = Op
(
n−1N−p−1

n
)
. (3.18)
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Then, follow the similar argument in the proof of Lemma 8, one has

sup |III|∗ = Op

(√
N3

n logn
n

)
. (3.19)

From equations (3.16), (3.17), (3.18) and (3.19), we have sup |β ∗l − γ l|∗ = sup |II +

III|∗ = Op

(√
N3

n logn
n

)
and then Lemma 21 follows. �

Recall that m̃l =
Jn+1
∑
j=1

β̃ l jB̃ j is the one-step backfitted unconstrained estimate of ml

for l = 1, . . . ,d.

Lemma 22 Under regularity conditions (A1)-(A5*), one has, for l = 1, . . . ,d and p ≤

3, there exists a spline function gl
Jn+1
= ∑

j=1
γ l jB̃ j whose coefficients satisfy the concave

constraints such that

sup
j

∣∣∣γ l j− β̃ l j

∣∣∣= Op

(√
N3

n logn
n

)
.

Therefore, the coefficients of m̃l satisfies the concave constraints with probability ap-

proaching to 1 as n→ ∞.

Proof. We have

β̃ l =
(
B̃T

nlB̃nl
)−1 B̃T

nl (y− m̃−l)

=
(
B̃T

nlB̃nl
)−1 B̃T

nl

(
d

∑
l=1

ml +ρε− m̃−l

)
=

(
B̃T

nlB̃nl
)−1 B̃T

nl (ml +ρε)+
(
B̃T

nlB̃nl
)−1 B̃T

nl (m−l− m̃−l)

= β
∗
l + I.
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By Lemma 21, for any fixed l = 1, ...d, the coefficient β
∗
l satisfies the concave con-

straints with probability approaching to 1 as the sample size goes to infinity. Moreover,

sup
∣∣∣(B̃T

nlB̃nl
)−1
∣∣∣
∗
= OP (Nn/n) ,

sup
∣∣B̃T

nl (m−l− m̃−l)
∣∣
∗ ≤

√
(m−l− m̃−l)

T B̃nlB̃T
nl (m−l− m̃−l)

= Op

(√(
nN−2p−2

n +Nn

)
n/Nn

)
.

Therefore, sup |I|∗ = Op

(√
N−2p−1

n +N2
n/n
)

and then Lemma 22 follows. �

3.4.2 Proof of Theorems

Proof of Theorem 12

By the definition of m̃l (x), one has

m̃l (x) = BT
l (x)β̃ l = BT

l (x)
(
BT

nlBnl
)−1 BT

nlY−l

= BT
l (x)

(
BT

nlBnl
)−1 BT

nl

(
Y−∑

l′ 6=l
m̃l′

)
= BT

l (x)
(
BT

nlBnl
)−1 BT

nl (ml +ρε)

+BT
l (x)

(
BT

nlBnl
)−1 BT

nl ∑
l′ 6=l

(ml′− m̃l′) .

Then we have
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sup
x
|m̃l (x)−ml (x)|

≤ sup
x

∣∣∣BT
l (x)

(
BT

nlBnl
)−1 BT

nl (ml +ρε)−ml (x)
∣∣∣

+sup
x

∣∣∣∣∣BT
l (x)

(
BT

nlBnl
)−1 BT

nl ∑
l′ 6=l

(ml′− m̃l′)

∣∣∣∣∣
= I (x)+ II (x) . (3.20)

Let m̄l (x) = BT
l (x)

(
BT

nlBnl
)−1 BT

nlml, then by Corollary 3.1 and Theorem 5.1 of Huang

(2003), sup
x

∣∣∣BT
l (x)

(
BT

nlBnl
)−1 BT

nl (ml +ρε)− m̄l (x)
∣∣∣= Op

(√
Nn/n

)
and

sup
x
|m̄l (x)−ml (x)|= Op

(
N−p−1

n

)
. Therefore,

I (x) ≤ sup
x

∣∣∣BT
l (x)

(
BT

nlBnl
)−1 BT

nl (ml +ρε)− m̄l (x)
∣∣∣+ sup

x
|m̄l (x)−ml (x)|

= Op

(√
Nn/n+N−p−1

n

)
. (3.21)

For II (x) , Cauchy-Schwarz inequality gives that

II (x) ≤ sup
x

√[
Bl (x)/

√
n
]T (BT

nlBnl/n
)−1 [Bl (x)/

√
n
]
×√√√√[BT

nl ∑
l′ 6=l

(ml′− m̃l′)/
√

n

]T (
BT

nlBnl/n
)−1

[
BT

nl ∑
l′ 6=l

(ml′− m̃l′)/
√

n

]
= II1 (x)× II2 (3.22)

Let λ min and λ max be the smallest and largest eigenvalues of BT
nlBnl/n, respectively.

Then by Theorem 5.4.2 in Devore and Lorentz (1993), λ min � λ max = Op (1/Nn) where

� means both sides have the same order. Along with the fact that sup
x

BT
l (x)Bl (x) =
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OP (1), one has

II1 (x)≤ sup
x

√
BT

l (x)Bl (x)/nλ min = Op

(√
Nn/n

)
. (3.23)

Similarly,

II2 ≤

√√√√[
∑
l′ 6=l

(ml′− m̃l′)

]T

BnlBT
nl

[
∑
l′ 6=l

(ml′− m̃l′)

]
/nλ min

≤

√√√√
λ max

[
∑
l′ 6=l

(ml′− m̃l′)

]T [
∑
l′ 6=l

(ml′− m̃l′)

]
/λ min

= Op

(√
Nn +nN−2p−2

n

)
, (3.24)

in which
[
∑l′ 6=l (ml′− m̃l′)

]T [
∑l′ 6=l (ml′− m̃l′)

]
=Op

(
Nn +nN−2p−2

n

)
is given by The-

orem 1 of Huang (1998). Therefore, according to (3.22), ( 3.23) and (3.24), we conclude

that

II (x) = Op

(√
N2

n/n+N−2p−1
n

)
. (3.25)

Finally, Theorem 1 follows from equations (3.20), (3.21) and ( 3.25). �

Proof of Theorem 13

By the definition of µ̃R, we have µ̃R =

{
max

i
[Yi/m̃(Xi)]

}−1

≤ supx |m̃(x)|
(

max
i

Yi

)−1

= Op (1), in which supx |m̃(x)| = Op (1) is given by Theorem 12. Since |µ̃R−µR| =

µ̃RµR
∣∣µ̃−1

R −µ
−1
R

∣∣ , we only need to show that
∣∣µ̃−1

R −µ
−1
R

∣∣= Op (Ln) . We note that
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∣∣µ̃−1
R −µ

−1
R

∣∣ = µ
−1
R

∣∣∣∣µRmax
i

[Yi/m̃(Xi)]−1
∣∣∣∣

= µ
−1
R

∣∣∣∣µRmax
i

[ρ (Xi)Ri/m̃(Xi)]−1
∣∣∣∣

= µ
−1
R

∣∣∣∣max
i

[m(Xi)Ri/m̃(Xi)]−1
∣∣∣∣ ,

therefore it is sufficient to show that
∣∣∣∣max

i
[m(Xi)Ri/m̃(Xi)]−1

∣∣∣∣ = Op (Ln) . Given the

assumption that supx |m̃(x)−m(x)| = Op (Ln) , for any ε > 0, there exists δ > 0, such

that for all n > Nε ,

P
(

L−1
n sup

x
|m(x)/m̃(x)−1|< δ

)
> 1− ε. (3.26)

When max
i

[m(Xi)Ri/m̃(Xi)]−1≥ 0, L−1
n

∣∣∣∣max
i

[m(Xi)Ri/m̃(Xi)]−1
∣∣∣∣

≤ L−1
n supx |m(x)/m̃(x)−1| . By inequality (3.26),

P
(

L−1
n

∣∣∣∣max
i

[m(Xi)Ri/m̃(Xi)]−1
∣∣∣∣< δ

)
> 1− ε.

When max
i

[m(Xi)Ri/m̃(Xi)]−1 < 0,

∣∣∣∣max
i

[m(Xi)Ri/m̃(Xi)]−1
∣∣∣∣≤ 1−max

i
Riinf

x
[m(x)/m̃(x)]

and

P
(

L−1
n

∣∣∣∣max
i

[m(Xi)Ri/m̃(Xi)]−1
∣∣∣∣< δ

)
≥ P

(
max

i
Riinf

x
[m(x)/m̃(x)]> 1−Lnδ

)
.
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By the assumption that 1−max
i

Ri = Op (Ln) and inequality (3.26), for any ε > 0, there

exists δ 1 and δ 2 > 0, such that for all n > Nε , P
(

inf
x
[m(x)/m̃(x)]> 1−Lnδ 1

)
> 1−ε

and P
(

max
i

Ri > 1−Lnδ 2

)
> 1−ε. Therefore, for any ε > 0, there exists δ 3 > 0, such

that for all n > Nε , P
(

max
i

[m(Xi)Ri/m̃(Xi)]> 1−Lnδ 3

)
> 1− ε. �

Proof of Theorem 14

By definition, we have

ρ̃ (x)−ρ (x) = m̃(x)/µ̃R−m(x)/µR

= m̃(x)/µ̃R− m̃(x)/µR + m̃(x)/µR−m(x)/µR

= m̃(x)
(
µ̃
−1
R −µ

−1
R
)
+µ

−1
R [m̃(x)−m(x)] .

By Theorems 12 and 13 ,

sup
x

{
µ
−1
R [m̃(x)−m(x)]

}
= Op

(√
N2

n/n+N−2p−1
n

)

and

sup
x

[
m̃(x)

(
µ̃
−1
R −µ

−1
R
)]

= Op

(√
N2

n/n+N−2p−1
n

)
.

Therefore, we conclude that sup
x
[ρ̃ (x)−ρ (x)] = Op

(√
N2

n/n+N−2p−1
n

)
. �
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Proof of Theorem 15

When each ml is monotone increasing, Theorem 2 in Chapter 2 states that for p≤ 3,

the coefficients of the unconstrained estimator m̃l satisfy the monotone constraints for

large sample size. Similarly, when each ml is concave, for p ≤ 3 Lemma 21 indi-

cates that the coefficients of the m̃l satisfy the concave constraints with large sam-

ple size. These imply that for p ≤ 3 the unconstrained estimator m̃l and the shape

constrained estimator m̂l are identical when the sample size is large enough. There-

fore, m̂l enjoys the same asymptotic properties with m̃l , then by Theorem 12, we have

supx |m̂l (x)−ml (x)|= Op

(√
N2

n/n+N−2p−1
n

)
. Moreover, under the assumption that

1−max
i

Ri = Op

(√
N2

n/n+N−2p−1
n

)
, the results follow directly from Theorem 13 and

14. �
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3.5 Tables and Figures

Table 3.1: Univariate case: averaged integrated squared errors (AISE) of frontier func-

tions under three different experimental designs without outliers using four estimation

methods: local linear regression (LLR), unconstrained linear spline (ULS), monotone

constrained linear spline (MCLS), and monotone and concave constrained linear spline

(MCCLS).

Method n β = 1
3 β = 1 β = 3

LLR 100 0.3259 0.1193 0.0856

250 0.1843 0.0412 0.0313

500 0.0771 0.0227 0.0152

ULS 100 0.0207 0.0485 0.1176

250 0.0129 0.0325 0.0438

500 0.0082 0.0270 0.0246

MCLS 100 0.0174 0.0322 0.0876

250 0.0114 0.0285 0.0358

500 0.0075 0.0242 0.0218

MCCLS 100 0.0174 0.0282 0.0796

250 0.0140 0.0263 0.0313

500 0.0139 0.0215 0.0184
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Table 3.2: Univariate case: averaged integrated squared errors (AISE) of the mean func-

tion m(·) and mean squared errors (MSE) of the parameter 1/µR under three different

experimental designs without outliers using three spline estimation methods: uncon-

strained linear spline (ULS), monotone constrained linear spline (MCLS), and monotone

and concave constrained linear spline (MCCLS).

β = 1
3 β = 1 β = 3

Method n m(x) 1/µR m(x) 1/µR m(x) 1/µR

ULS 100 0.0051 0.0117 0.0074 0.0653 0.0062 0.2196

250 0.0026 0.0063 0.0036 0.0456 0.0024 0.0557

500 0.0015 0.0042 0.0023 0.0321 0.0014 0.0151

MCLS 100 0.0042 0.0101 0.0061 0.0405 0.0040 0.2046

250 0.0023 0.0057 0.0034 0.0404 0.0019 0.0610

500 0.0015 0.0039 0.0021 0.0301 0.0013 0.0147

MCCLS 100 0.0038 0.0105 0.0052 0.0425 0.0033 0.2171

250 0.0025 0.0074 0.0029 0.0397 0.0016 0.0560

500 0.0021 0.0078 0.0019 0.0285 0.0011 0.0163
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Table 3.3: Univariate case: averaged integrated squared errors (AISE) of the frontier

function and mean squared errors (MSE) of the parameter 1/µR under three different

experimental designs with outliers and sample size n = 50 and 250.

n 50 250

Robust (N/Y) Method β Frontier 1/µR Frontier 1/µR

N LLR 1/3 68.3250 NA 3.8018 NA

1 13.6266 NA 1.3963 NA

3 3.9625 NA 1.2244 NA

ULS 1/3 2.1778 1.2629 2.5235 1.8358

1 2.3620 2.5041 2.6167 4.1562

3 3.9186 9.1302 2.5637 14.3460

MCLS 1/3 2.3131 1.3654 2.4847 1.8079

1 2.3626 2.6171 2.6368 4.2044

3 3.0650 7.9891 2.5305 14.4676

MCCLS 1/3 2.3104 1.3637 2.6178 1.9081

1 2.3446 2.5998 2.5661 4.0956

3 3.0595 7.9839 2.4068 13.7622

Y LLR 1/3 3.1842 NA 0.5935 NA

1 1.1308 NA 0.2340 NA

3 0.5706 NA 0.0983 NA

ULS 1/3 0.0526 0.0096 0.0161 0.0058

1 0.1930 0.0962 0.0391 0.0370

3 0.2622 1.1732 0.0467 0.1023

MCLS 1/3 0.0296 0.0044 0.0153 0.0056

1 0.0747 0.0639 0.0327 0.0295

3 0.1180 1.3090 0.0336 0.1074

MCCLS 1/3 0.0296 0.0044 0.0178 0.0069

1 0.0748 0.0636 0.0320 0.0296

3 0.1183 1.3069 0.0332 0.1060
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Table 3.4: Multivariate case: averaged integrated squared errors (AISE) of frontier func-

tions {ρ l (·)}
4
l=1 and the mean function m(·), and mean squared errors (MSE) of the pa-

rameter 1/µR under three different experimental designs without outliers using three

spline estimation methods: unconstrained linear spline (ULS), monotone constrained

linear spline (MCLS), and monotone and concave constrained linear spline (MCCLS).

Setting Method n ρ1 (x) ρ2 (x) ρ3 (x) ρ4 (x) m(x) 1/µR

β = 1/3 ULS 100 0.3709 0.3913 0.4200 0.4211 0.7733 0.0335
250 0.0972 0.1000 0.1136 0.1110 0.1964 0.0273
500 0.0455 0.0535 0.0665 0.0685 0.1183 0.0192

MCLS 100 0.1063 0.1116 0.1222 0.1072 0.2411 0.0184
250 0.0593 0.0623 0.0579 0.0669 0.1389 0.0158
500 0.0321 0.0365 0.0461 0.0446 0.0952 0.0127

MCCLS 100 0.0729 0.0819 0.0878 0.0729 0.1924 0.0144
250 0.0381 0.0471 0.0437 0.0559 0.1254 0.0127
500 0.0226 0.0273 0.0381 0.0415 0.0938 0.0112

β = 1 ULS 100 1.7966 1.9123 1.8255 1.9192 1.4766 0.1613
250 0.6512 0.7733 0.7137 0.5614 0.4102 0.2310
500 0.2122 0.2206 0.2495 0.2664 0.1757 0.1388

MCLS 100 0.4333 0.4107 0.3987 0.4365 0.4129 0.1528
250 0.2151 0.2661 0.2681 0.1865 0.2149 0.1215
500 0.1151 0.1030 0.1301 0.1196 0.1039 0.0739

MCCLS 100 0.3164 0.3023 0.3085 0.3441 0.3319 0.1346
250 0.1771 0.2127 0.2436 0.1682 0.1921 0.1254
500 0.0896 0.0857 0.1095 0.0985 0.0991 0.0611

β = 3 ULS 100 3.9584 3.7585 4.1963 3.2029 1.3848 0.3845
250 1.3849 1.2420 1.2552 1.3002 0.3562 0.0525
500 0.4669 0.4942 0.4227 0.4770 0.1394 0.0253

MCLS 100 0.7481 0.5459 0.9112 0.6893 0.3529 0.1692
250 0.4383 0.3251 0.3839 0.3972 0.1506 0.0421
500 0.2391 0.2305 0.2258 0.1882 0.0829 0.0280

MCCLS 100 0.5816 0.4565 0.6605 0.5216 0.2830 0.1932
250 0.3184 0.2727 0.2938 0.3279 0.1165 0.0409
500 0.1933 0.1733 0.1861 0.1413 0.0659 0.0305
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Table 3.5: Multivariate case: averaged integrated squared errors (AISE) of frontier func-

tions {ρ l (·)}
4
l=1 and mean squared errors (MSE) of the parameter 1/µR under three

different experimental designs with outliers and sample size n = 250.

Robust Method β ρ1 (x) ρ2 (x) ρ3 (x) ρ4 (x) 1/µR

(N/Y)

N ULS 1/3 0.2443 0.2497 0.2801 0.2773 0.4312

1 3.5493 1.9495 3.5332 3.2385 5.9337

3 228.5200 193.8965 64.1956 140.7903 800.3386

MCLS 1/3 0.2137 0.2122 0.2152 0.2195 0.4809

1 0.5556 0.6298 0.7567 0.5675 1.4698

3 1.7420 1.1424 1.2625 1.5039 6.0256

MCCLS 1/3 0.1932 0.1969 0.1977 0.2054 0.4782

1 0.4385 0.4831 0.6144 0.4373 1.1451

3 1.4518 1.0076 1.0545 1.2604 4.9243

Y ULS 1/3 0.1064 0.1187 0.1334 0.1387 0.0613

1 0.7613 0.8911 0.8691 0.7025 0.4747

3 1.4437 1.2105 1.4161 1.3748 0.0759

MCLS 1/3 0.0762 0.0871 0.0790 0.0919 0.0654

1 0.2925 0.3704 0.3811 0.2692 0.4612

3 0.3869 0.3133 0.3522 0.4041 0.0616

MCCLS 1/3 0.0729 0.0839 0.0798 0.0941 0.0873

1 0.2673 0.3254 0.3656 0.2541 0.4577

3 0.3612 0.2964 0.3256 0.3819 0.0630
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Figure 3.1: Simulation results of the frontier functions without outliers and sample size

n = 250. Cases 1, 2, and 3 correspond to the three different experimental designs with

the scale parameter β = 1/3, 1, and 3, respectively. The solid black line represents the

true curve, while the solid blue, dashed green, dotted purple and dot-dashed red lines

represent the fitted curves of one simulated data set obtained using local linear regression

(LLR), unconstrained linear spline (ULS), monotone constrained linear spline (MCLS)

and monotone and concave constrained linear spline (MCCLS), respectively.
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Figure 3.2: Simulation results of the frontier functions under the experimental design

where β = 1 with outliers and for sample size n = 50 and 250. The solid black line rep-

resents the true curve, while the solid blue, dashed green, dotted purple and dot-dashed

red lines represent fitted curves of one simulated data set obtained using local linear re-

gression (LLR), unconstrained linear spline (ULS), monotone constrained linear spline

(MCLS) and monotone and concave constrained linear spline (MCCLS), respectively.

The solid red circles represent two artificial outliers.
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Figure 3.3: Norwegian Farm data: fitted results for each input variable obtained in the

first estimation step. The black circle represents the pseudo response. In each plot,

the dashed blue, dot-dashed green, and long-dashed red lines represent estimated mean

function using unconstrained linear spline (ULS), monotone constrained linear spline

(MCLS) and monotone and concave constrained linear spline (MCCLS), respectively.

The dotted blue lines represent the 95% point-wise confidence intervals from 100 boos-

trapped samples using the ULS method.
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Figure 3.4: Norwegian Farm data: estimated maximum farm revenue (left top), effi-

ciency estimates (right top), and the kernel density distribution of the efficiency esti-

mates (left bottom). In the top figures, the blue rectangle, green triangle and red plus

represent estimated maximum revenue or efficiency of all 151 farms using unconstrained

linear spline (ULS), monotone constrained linear spline (MCLS) and monotone and con-

cave constrained linear spline (MCCLS), respectively. The true farm revenue is denoted

by the black circle. In the left bottom figure, the dashed blue, dot-dashed green, and

long-dashed red lines represent kernel density distribution of the efficiency estimates

using ULS, MCLS, and MCCLS, respectively.
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Figure 3.5: Norwegian Farm data: the exploration of relationships between the effi-

ciency and 5 other explanatory variables of interest. The scatter plots of off-farm income

share, coupled subsidy income share, environmental subsidy income share, and farmer

experience versa the efficiency estimates obtained using the MCCLS method for the

151 farms, in which the solid red lines represent the linear least squares regression lines.

Box plots of the estimated efficiency in the subgroups with different education levels of

the farmers.
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4 Discussion

In this dissertation, we first propose a one-step backfitted constrained polynomial

spline estimation method for the monotone additive models. The proposed method ap-

proximates nonparametric functions via polynomial splines and obtains monotone esti-

mates by applying a set of simple linear constraints on the spline coefficients. We then

extend this constrained method to estimate the production frontier functions and pro-

pose a two-step polynomial spline estimation method with monotone or/and concave

constraints.

Both proposed estimation methods give smooth estimators with desirable asymp-

totic properties. They are also easy to implement and fast to compute. Furthermore, our

methods are designed for data sets with multi-dimensions of predictor variables while

some existing methods only work the univariate case with only one predictor. In addi-

tion, the empirical results in Chapters 2 and 3 illustrate that compared with the existing

methods (Mammen and Yu 2007 and Martins-Filho and Yao 2007), ours have better

numerical performance and are very competitive in terms of computational time and es-

timation accuracy. In particular, our proposed methods outperform other methods when

there are outliers or extreme values.

We believe that we have clearly demonstrated that our proposed one-step backfit-

ted constrained polynomial spline method makes an excellent candidate to solve the

problem of estimating additive models with known shape constraints. Our work con-
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tributes to the literature by providing a desirable solution to this less studied problem.

The proposed method is prospectively promising since it is useful in many scientific

areas, such as estimating growth curves or predicting disease risk. A particular applica-

tion presented in this dissertation is the estimation of production frontier functions. Our

proposed frontier estimator can be viewed as a useful alternative to the DEA, FDH and

other estimators (Hall et al. 1998, Knight 2001 and Cazals et al. 2002) that have been

widely used in practice. In addition, our proposed method takes the shape of frontiers

into consideration and this provides a great improvement compared with the existing

approaches.

There are few areas that our work can be extended. First, the linear constraints devel-

oped in Lemmas 9, 10 and 11 are sufficient but not necessary conditions for polynomial

splines to be monotone or concave. This implies that our constrained optimization is

performed over a subspace of the true monotone or concave spline functions. Better

estimation results can be obtained if the constrained optimization is performed over the

larger space of all monotone or concave spline functions. Papp and Alizadeh (2012)

gave the sufficient and necessary conditions for spline functions to be monotone or con-

cave. Their approach is based on a characterization of nonnegative polynomials that

leads to the requirement for solving optimization problems with semi-definite and sec-

ond order conic constraints. For future work, it is desirable to adopt such approaches

in conducting constrained optimization and compare it with our current results. But

the computation of their method will be more challenging than our approach since our

method takes advantage of linear programming.

Furthermore, we note that the asymptotic properties of our proposed shape con-
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strained estimators are developed only up to cubic splines. It is desirable to develop a

more general theoretical result that is applicable to higher orders of polynomial splines.

The challenge here is to construct a spline function that satisfies our linear constraints

and still provides good approximation to smooth functions with shape constraints.

In addition, the Norwegian Farm data contains an unbalanced set of farm-level panel

data. In our analysis, we only focus on a one-year data rather than the whole panel. It

will be interesting in future research to generalize our methods to analyze panel data.

Lastly, there is some other potential work to consider regarding the estimation of

frontier functions. Since our method is constructed under the deterministic frontier

framework, the extension or generalization of the additive frontier model and proposed

estimator to accommodate stochastic frontier analysis is desirable. Furthermore, an-

other direction for future research is to make an extension to the case with multiple

output variables since this is not well explored in the existing literature.
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vain/Louvain Economic Review, 417 - 429.

Boni, M. F., Posada, D., and Feldman, M. W. (2007). An exact nonparametric method
for inferring mosaic structure in sequence triplets. Genetics, 176, 1035 - 1047.

de Boor, C. (2001). A Practical Guide to Splines. New York: Springer.

de Boer, W. J., Besten, P. J., and Ter Braak, C. F. (2002). Statistical analysis of sediment
toxicity by additive monotone regression splines. Ecotoxicology, 11, 435 - 450.

Cazals, C., Florens, J. P., and Simar, L. (2002). Nonparametric frontier estimation: a
robust approach. Journal of Econometrics, 106, 1 - 25.

Charnes, A., Cooper, W. W., and Rhodes, E. (1978). Measuring the efficiency of decision
making units. European Journal of Operational Research. 2, 429 - 444.

Daouia, A., Noh, H., and Park, B. U. (2016). Data envelope fitting with constrained
polynomial splines. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 78, 3 - 30.

Debreu, G. (1951). The coefficient of resource utilization. Econometrica: Journal of the

Econometric Society, 19, 273 - 292.



94

Deprins, D., Simar, L., and Tulkens, H. (1984). Measuring labor-efficiency in post of-
fices. In: Marchand, M., Pestiau, P., Tulkens, H. (Eds.). The Performance of Public

Enterprises: Concepts and Measurements. North-Holland, Amsterdam.

Devore, R. A., and Lorentz, G. G. (1993). Constructive Approximation. Berlin Heidel-
berg: Springer-Varlag.

Dubeau, F., and Savoie, J. (1996). Optimal error bounds for quadratic spline interpola-
tion. Journal of Mathematical Analysis and Applications, 198, 49 - 63.
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